WO2017080153A1 - 一种内容分发网络cdn节点选择方法及其装置 - Google Patents
一种内容分发网络cdn节点选择方法及其装置 Download PDFInfo
- Publication number
- WO2017080153A1 WO2017080153A1 PCT/CN2016/082145 CN2016082145W WO2017080153A1 WO 2017080153 A1 WO2017080153 A1 WO 2017080153A1 CN 2016082145 W CN2016082145 W CN 2016082145W WO 2017080153 A1 WO2017080153 A1 WO 2017080153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cdn
- delay
- link
- nodes
- node
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements, protocols or services for addressing or naming
- H04L61/45—Network directories; Name-to-address mapping
- H04L61/4505—Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols
- H04L61/4511—Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols using domain name system [DNS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/101—Server selection for load balancing based on network conditions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1097—Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/289—Intermediate processing functionally located close to the data consumer application, e.g. in same machine, in same home or in same sub-network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/60—Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
- H04L67/63—Routing a service request depending on the request content or context
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/14—Multichannel or multilink protocols
Definitions
- the embodiments of the present invention relate to the field of network communication technologies, and in particular, to a content distribution network CDN node selection method and device thereof.
- CDN Content Delivery Network
- DNS Domain Name System
- IP Internet Protocol
- the terminal can realize multiple links to access the Internet server simultaneously based on the multi-link access device, but in the prior art, when one terminal passes through multiple
- each link corresponds to a local DNS server address assigned by an ISP (Internet Service Provider), and the terminal only obtains the CDN node server obtained after processing the request from the local DNS server.
- the IP address randomly selects an IP address of the CDN node as the default communication, and the default CDN node server may have a problem of large data transmission delay with the terminal.
- the embodiment of the present invention provides a CDN node selection method and a device thereof, which are used to solve the problem of large data transmission delay between a terminal and a selected default CDN node server in the prior art.
- a CDN node selection method and device thereof are provided in the embodiment of the present application, including:
- a method for selecting a CDN node of a content distribution network comprising: determining a CDN node for a domain name resolution request returned by a network side after initiating a domain name resolution request through multiple links; determining the CDN for a link Determining a delay of each of the CDN nodes corresponding to the link when the number of nodes is multiple; determining, for a CDN node, the CDN according to a delay between the CDN node and each of the links a delay average corresponding to the node; selecting one of the CDN nodes from all of the CDN nodes according to determining a delay average corresponding to the CDN node.
- the embodiment of the present application further provides a device for selecting a CDN node of a content distribution network, including: determining a CDN node unit, configured to determine, after a domain name resolution request is initiated through multiple links, a CDN node of the domain name resolution request; determining a delay unit, configured to determine, for a link, a delay of each of the CDN nodes corresponding to the link when determining that the CDN node is multiple; determining a time delay a mean value unit, configured to determine, according to a delay between the CDN node and each of the links, a delay average corresponding to the CDN node for a CDN node; and selecting a CDN node unit, according to the determining The average of the delays corresponding to the CDN nodes, one of the CDN nodes is selected from all of the CDN nodes.
- the terminal obtains a domain name resolution request by multiple links, and obtains multiple CDN nodes for domain name resolution request returned by the network side;
- the method of sending the test information by the node obtains the delay of each of the CDN nodes corresponding to each link, and then selects the smallest one of the corresponding delay averages from each CDN node as the CDN node to be selected, by scheduling the CDN node.
- the delay in data transmission is reduced, and the access speed and quality of service are improved.
- the embodiment of the present application provides a selection terminal, including a memory, and one or more processors, wherein the selecting the terminal terminal further includes:
- One or more units the one or more units being stored in the memory and configured to be executed by the one or more processors, the one or more units including instructions for performing the following steps :
- the embodiment of the present application provides a computer program product for use in combination with a selection terminal, the computer program product comprising a computer readable storage medium and a computer program mechanism embedded therein, the computer program mechanism including:
- FIG. 1 is a schematic diagram of a link between a terminal and another server according to an embodiment of the present application
- FIG. 2 is a schematic flowchart of a method for selecting a CDN node according to an embodiment of the present application
- FIG. 3 is a diagram of interaction between a terminal and other servers according to an embodiment of the present application.
- FIG. 4 is a device for selecting a CDN node according to an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of an in-vehicle antenna system according to an embodiment of the present application.
- FIG. 6 is a schematic structural diagram of an antenna module according to an embodiment of the present application.
- 6b is a schematic structural diagram of an antenna module according to an embodiment of the present application.
- 6c is a schematic structural diagram of an antenna module according to an embodiment of the present application.
- FIG. 6 is a schematic structural diagram of an antenna module according to an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of an LTE module according to an embodiment of the present application.
- FIG. 8 is a schematic diagram of an installation location of an LTE module according to an embodiment of the present application.
- FIG. 9 is a schematic diagram of an installation location of an LTE module according to an embodiment of the present application.
- FIG. 10 is a schematic structural diagram of an in-vehicle antenna system according to an embodiment of the present application.
- FIG. 11 is a schematic structural diagram of an in-vehicle antenna system according to an embodiment of the present application.
- FIG. 12 is a schematic structural diagram of an in-vehicle antenna system according to an embodiment of the present application.
- FIG. 13 is a schematic structural diagram of an antenna module according to an embodiment of the present application.
- FIG. 14 is a schematic structural diagram of an antenna module according to an embodiment of the present application.
- FIG. 15 is a schematic structural diagram of an antenna module according to an embodiment of the present application.
- 16 is a schematic diagram of a mounting position of an antenna module according to an embodiment of the present application.
- FIG. 17 is a schematic diagram of a mounting position of an antenna module according to an embodiment of the present application.
- FIG. 18 is a schematic diagram of a mounting position of an antenna module according to an embodiment of the present application.
- FIG. 19 is a schematic diagram of a mounting position of an antenna module according to an embodiment of the present application.
- 20 is a schematic structural diagram of an in-vehicle antenna system according to an embodiment of the present application.
- 21 is a schematic structural diagram of an in-vehicle antenna system according to an embodiment of the present application.
- FIG. 22 is a schematic structural diagram of an in-vehicle antenna system according to an embodiment of the present application.
- FIG. 23 is a schematic structural diagram of an in-vehicle antenna system according to an embodiment of the present application.
- FIG. 24 provides a selection terminal according to an embodiment of the present application.
- the terminal when a terminal uses the SIM (Subscriber Identity Module) card of two carriers (Mobile, China Unicom) to access the target website, the terminal operates to the local DNS server of the mobile operator and China Unicom.
- the local DNS server of the quotient initiates a domain name resolution request of the target website, and after receiving the domain name resolution request, the local DNS server sends the domain name resolution request to the DNS server 1 and the DNS server 2 of the Internet service provider corresponding to the target website;
- the service provider's DNS server 1 and DNS server 2 select a suitable CDN node from the respective scheduled CDN node pools, and return the IP addresses of the selected two CDN nodes to the terminal.
- the prior art is from two CDNs. If one of the nodes is randomly selected, there is a possibility that the data transmission delay between the terminal and the CDN node is large. To solve this problem, the following solutions are provided in the embodiment of the present application.
- the embodiment of the present application provides a schematic flowchart of a method for selecting a CDN node, and specifically implementing the method includes:
- Step S101 After initiating a domain name resolution request through multiple links, determine a CDN node returned by the network side for the domain name resolution request.
- Step S102 for determining a link, when determining that the CDN node is multiple, determining each link corresponding to the link The delay of the CDN node.
- Step S103 for a CDN node, determining a delay average corresponding to the CDN node according to a delay between the CDN node and each of the links.
- Step S104 Select one of the CDN nodes from all the CDN nodes according to determining a delay average corresponding to the CDN node.
- the terminal When the user accesses the domain name of the target website through the terminal device, the terminal initiates a domain name resolution request of the target website to the network side, and the network side finds the IP address of the server of the service provider of the target website according to the domain name resolution request, and The address is fed back to the terminal, so the terminal used by the user actually communicates with the IP address server.
- the network side In order to ensure communication reliability and communication speed, the network side actually joins the network node with the IP address server, that is, the CDN.
- the node accelerates the data transmission of the communication, so the process of initiating a domain name resolution request at the terminal where the user is located is also a process of selecting a CDN node. The difference in CDN node selection will lead to the quality of service.
- step S101 in order to ensure that one terminal can use multiple links at the same time, the terminal needs to complete the configuration in advance, that is, the port number of each Internet operator's DNS server corresponding to multiple links, so that each Internet operator The DNS server can receive the domain name resolution request at the same time.
- the configuration method of the embodiment of the present application may be: first modifying the local application of the terminal, opening the file in the storage path according to the running file storage path of the DNS server program (such as /etc/resolve.conf), modifying the DNS.
- the server address points to the local IP address (such as 127.0.0.1), and then in the terminal local according to the DNS server program, open the configuration service and set the DNS server program to automatically listen to the local IP address, at this time the DNS server program will listen to the DNS port, port
- the number (such as 53) receives the DNS resolution request from the native application.
- a terminal sends a domain name resolution request to the local DNS of each operator, and then obtains the IP address of one CDN node for each link.
- the multiple link sharing data traffic is equivalent to increasing the bandwidth and improving the access of the user to the website. speed.
- multiple CDN nodes for the domain name resolution request returned by the network side may be obtained.
- the embodiment of the present application further determines, for one link, a transmission time of the first test information sent by the link to each of the CDN nodes, and a reception time of the second test information returned by each of the CDN nodes received through the link; The transmission time and the reception time corresponding to the CDN node are determined, and the delay of each of the CDN nodes corresponding to the link is determined.
- UDP User Datagram Protocol
- ICMP Control Message Protocol
- TCP Transmission Control Protocol
- the first test information includes identifier information that is sent by the terminal to send the first test information, and is received by the CDN node. After the first test information, the field indicating the sending time in the first test information is returned to the terminal, that is, the second test information, so the difference between the time when the terminal receives the returned second test information and the sending time in the second test information The value is the delay between the terminal and the CDN node.
- the data field of the icmp_data in the structure of the ICMP data packet is assigned the current transmission time, and the code is as follows:
- the icmp_data assignment is the current transmission time obtained when the terminal sends a packet.
- the DNS server on the network side will return the icmp_data data field after receiving the ICMP packet.
- the function gettimeofday is called again to read the current receiving time, and subtracted from the sending time of the icmp_data in the returned packet, thereby obtaining the delay of the packet.
- the terminal sends the first test information to the two CDN nodes through the mobile operator's local DNS server, and obtains the delays of Link 1 and Link 2 (see the dotted line in the figure). Similarly, the terminal sends the first test information to the two CDN nodes through the local DNS server of the Unicom operator, and obtains the delay of the link 3 and the link 4 (see the dotted line in the figure).
- the purpose of this is that the terminal actively sends out test information to obtain the delay size of each link and each candidate CDN node for subsequent screening.
- the time delay of the CDN node corresponding to each link is averaged for one CDN node to obtain a delay average corresponding to the CND node; or, for one
- the CDN node performs a weighting process on the delay of the CDN node corresponding to each link according to the weight of each link, and averages the weighted delays to obtain a delay average corresponding to the CND node.
- the terminal directly averages the weighted delays of the link 1 and the link 3 to determine the average delay corresponding to the CDN node selected by the DNS server 1 , and similarly passes the link 2 and the chain.
- the delay of the way 4 directly takes the average to determine the average delay corresponding to the CDN node selected by the DNS server 2.
- the terminal determines the average delay corresponding to the CDN node selected by the DNS server 1 through the delay weighting of the link 1 and the link 3, and similarly passes the link 2 and the link 4
- the time delay weighted and averaged to determine the average delay corresponding to the CDN node selected by the DNS server 2 are different, and the weight value selection may be determined according to different operators, for example, the network of the mobile operator. If the signal is good, it will be considered to have a larger weight. It can also be different according to the geographical location. The weights of different operators are different because there are differences between the networks in the north and the south.
- the effect of this can be obtained as the average of the delays after each operator selects a CDN node in common, and the average of the delays can be used as a discretion indicator of the CDN node.
- the embodiment of the present application further selects one of the CDN nodes with the smallest corresponding delay average from all the CDN nodes.
- the CDN node to be selected is determined according to the formula [1], and the formula [1] is as follows:
- rtt xi represents the delay of the xth CDN node corresponding to the i-th link
- minSrtt represents the CDN node with the smallest average value selected
- n represents the number of links
- n is an integer greater than 1
- m represents CND The number of nodes, m is an integer greater than 1.
- selecting one of the CDN nodes whose corresponding delay average value is the smallest can also be determined by:
- CDN node to be selected is determined according to the formula [2], and the formula [2] is as follows:
- rtt xi represents the delay of the xth CDN node corresponding to the i-th link
- minSrtt represents the CDN node with the smallest average value selected
- n represents the number of links
- n is an integer greater than 1
- m represents CND The number of nodes
- P i represents the weight of each link.
- the CDN node corresponding to the minimum delay average value is selected, and when the terminal uses the link of different operators at the same time, the CDN node can ensure that the CDN node has the smallest delay and is the optimal choice, thereby improving the speed of website access and service quality.
- the executor of the embodiment of the present application may be a terminal, such as a mobile communication terminal equipped with a SIM card of a different operator, or a mobile communication terminal supporting multi-link TCP, or another tablet with multiple different network cards. Computer equipment, etc.
- the embodiment of the present application further provides FIG. 3, and illustrates a selection process of the CDN node by using an interaction diagram between the terminal and the server.
- Step 301 and step 302 The terminal sends a domain name resolution request of the target website to the local DNS server 1 and the local DNS server 2, respectively.
- Step 303 and step 304 the local DNS server 1 and the local DNS server 2 send the domain name resolution request DNS server 1 authorized to the target website and DNS server 2 authorized by the target website.
- Step 305 and step 306 The DNS server 1 authorized by the target website and the DNS server 2 authorized by the target website return the analysis result and the IP address of the selected CDN node to the local DNS server 1 and the local DNS server 2.
- Step 307 and step 308 The local DNS server 1 and the local DNS server 2 return the above result to the terminal.
- Step 309 and step 310 The terminal sends the first test information to the first CDN node server and the second CDN node server according to the acquired IP address of the CDN node.
- Step 311 and step 312 The first CDN node server and the second CDN node server return the second test information, and the terminal obtains a delay average according to the round-trip information, and then selects a CDN node with the smallest average delay.
- the embodiment of the present application further provides a CDN node selection device.
- the device includes: determining a CDN node unit 401, determining a delay unit 402, determining a delay average unit 403, and selecting CDN node unit 404. among them:
- the determining delay unit 402 is configured to determine, for a link, a delay of each of the CDN nodes corresponding to the link when determining that the CDN node is multiple;
- Determining a delay average unit 403, configured to determine, according to a delay between the CDN node and each of the links, a delay average corresponding to the CDN node for a CDN node;
- the CDN node unit 404 is selected to select one of the CDN nodes from all of the CDN nodes according to determining a delay average corresponding to the CDN node.
- the domain name resolution request sending unit 405 needs to complete the configuration in advance, and the domain name resolution request sending unit 405 is configured to use the local domain name resolution system DNS corresponding to each link.
- the domain name resolution request is initiated.
- a terminal sends a domain name resolution request to the local DNS of each operator, and then obtains the IP address of one CDN node for each link.
- the multiple link sharing data traffic is equivalent to increasing the bandwidth and improving the access of the user to the website. speed.
- each link is further determined by determining the delay unit 402.
- the delay of each CDN node is specifically configured to: determine, for one link, a sending time of the first test information sent to each of the CDN nodes by using the link, and Receiving time of the second test information returned by each of the CDN nodes received by the link; according to the sending time corresponding to each of the CDN nodes And the receiving time, determining the delay of each of the CDN nodes corresponding to the link.
- the first test information may be one of a UDP (User Datagram Protocol) message, an ICMP (Control Message Protocol) message, and a TCP (Transmission Control Protocol) message.
- the first test information includes the identifier information of the time when the terminal sends the first test information, and after receiving the first test information, the CDN node returns a field indicating the sending time in the first test information to the terminal, that is, the second test information, Therefore, the difference between the time when the terminal receives the returned second test information and the time sent by the second test information is the delay between the terminal and the CDN node.
- the data field of the icmp_data in the structure of the ICMP data packet is assigned the current transmission time, and the DNS server on the network side returns the icmp_data data field after receiving the ICMP data packet.
- the terminal subtracts the received icmp_data time from the received time to obtain the delay of the ICMP packet.
- the terminal sends the first test information to the two CDN nodes through the mobile operator's local DNS server, and obtains the delays of link 1 and link 2 (see the dotted line in the figure). Similarly, the terminal passes.
- the local DNS server of the Unicom operator sends the first test information to the two CDN nodes, and obtains the delay of Link 3 and Link 4 (see the dotted line in the figure).
- the purpose of this is that the terminal actively sends out test information to obtain the delay size of each link and each candidate CDN node for subsequent screening.
- the delay average value corresponding to each CDN node is obtained by the delay average unit 403, and the determined delay average unit 403 is specifically configured to:
- the delay of the CDN node corresponding to each link is weighted according to the weight of each link, and the weighted delay is averaged to obtain a delay average corresponding to the CND node.
- the terminal directly averages or weights the delays of the link 1 and the link 3 to determine the average delay corresponding to the CDN node selected by the DNS server 1 , and similarly passes the link 2 .
- the delay of the link 4 is directly averaged or weighted and averaged to determine the average delay corresponding to the CDN node selected by the DNS server 2. The effect of this can be obtained as the average of the delays after each operator selects a CDN node in common, and the average of the delays can be used as a discretion indicator of the CDN node.
- the embodiment of the present application further selects a CDN node with the smallest average delay value according to the selected CDN node unit 404, and the selected CDN node unit 404 is specifically configured to:
- N of the CDN nodes with the smallest average delay value selects one of the CDN nodes with the smallest current load, where N is an integer greater than one.
- the CDN node to be selected is determined according to the formula [1] or the formula [2], and the formula [1] or the formula [2] will not be described again.
- the CDN node corresponding to the minimum delay average value is selected, and when the terminal uses the link of different operators at the same time, the CDN node can ensure that the CDN node has the smallest delay and is the optimal choice, thereby improving the speed of website access and service quality.
- the related unit in the embodiment of the present application may be implemented by a hardware processor.
- the terminal obtains a plurality of CDN nodes for domain name resolution request returned by the network side after initiating a domain name resolution request by using multiple links, and sends test information to each CDN node on the other hand.
- the method obtains the delay of each of the CDN nodes corresponding to each link, and then selects the smallest one of the corresponding delay averages from each CDN node as the CDN node to be selected, and reduces the data transmission by scheduling the CDN node. The delay increases the access speed and quality of service.
- the terminal in the embodiment of the present application may be a mobile device, such as a mobile phone, a tablet computer, or the like; or may be an in-vehicle mobile device.
- the solution of the embodiment of the present application is applied to an in-vehicle mobile device, and data can be transmitted through multiple virtual links, thereby improving the utilization of bandwidth in the in-vehicle system.
- the network transmission speed of the in-vehicle antenna system can be compared to the 2G mode and the 3G mode.
- the network transmission speed of the antenna system is fast, so that the vehicle can provide high-speed network transmission, and realize the activity of car video call and high-definition video in the vehicle.
- the structure of the in-vehicle system of the following embodiment can be referred to.
- FIGS. 5 to 11 are descriptions for the first in-vehicle system
- FIGS. 12 to 23 are descriptions for the first in-vehicle system.
- FIG. 5 shows a schematic structure of an in-vehicle antenna system.
- the in-vehicle antenna system includes:
- the central control unit 102 and the plurality of LTE modules 101, the LTE module 101 includes an LTE module 1011 and at least one antenna module 1012, wherein the LTE module 1011 is connected to the antenna module 1012, and the central control unit 102 and each The LTE module 101 is connected.
- the central control unit 102 includes all of the units in FIG. 4 and transmits or receives information through the LTE module 101 when it is necessary to transmit or receive information.
- the LTE module 101 transmits the information to be sent by the central control unit 102 after being sent, and transmits the received information to the central control unit 102.
- the LTE module 1011 in the LTE module 101 can perform 2G (second generation mobile communication) and 3G (third generation migration).
- the communication of the 4G (fourth generation mobile communication) the LTE module 1011 can receive and transmit signals through its corresponding antenna module 1012 to communicate with the external network.
- each LTE module 101 corresponds to one LTE module 1011, and the LTE module 1011 is connected to two antenna modules 1012.
- the LTE module 1011 can also be combined with an antenna module.
- the 1012 connection the more the number of connected antenna modules 1012, the better the communication performance of the LTE module 1011.
- the network transmission speed of the vehicle antenna system can be faster than the network transmission speed of the antenna system in the 2G mode and the 3G mode.
- a plurality of LTE modules 101 in the in-vehicle antenna system can provide high-speed network transmission for the vehicle, thereby implementing an activity of in-vehicle video calling and watching high-definition video in the vehicle.
- the embodiment of the present application improves the network transmission speed.
- the LTE module 1011 can be disposed on a PCB (Printed Circuit Board) to integrate the LTE module 1011 onto the PCB.
- the antenna feed of the antenna module 1012 can be crimped to the antenna feed point on the PCB. Then, it is electrically connected to its corresponding LTE module 1011 through a trace on the PCB.
- the manufacturing process of the antenna module 1012 in the embodiment of the present application includes at least the following:
- the antenna module 1012 is fixed on the antenna bracket of the PCB, and the antenna module 1012 is supported by the antenna bracket.
- the antenna bracket is fixed on the PCB, and the antenna feed pin of the antenna module 1012 can be crimped onto the antenna feed point on the PCB.
- the antenna module 1012 is formed by etching an FPC (Flexible Printed Circuit).
- the labyrinth type antenna module 1012 is fabricated by exposing an FPC masked using a mask having an antenna pattern and then etching the metal layer on the exposed FPC.
- the antenna module 1012 manufactured by the FPC process has a small structure and is easy to install.
- the FPC can be pasted on the structural shell through the adhesive, such as the outer casing of the LTE module 101, and can be the outer side of the non-metallic portion of the module outer casing. It may be the inner side of the non-metallic part of the outer casing, or the surface of the non-metallic inner casing, or the FPC may be attached to the PCB.
- the antenna module 1012 has the advantages of high wiring density, light weight, and easy bending.
- the antenna module 1012 is formed on the housing of the structural member by laser engraving by LDS (Laser Direct Structuring).
- LDS Laser Direct Structuring
- the metal powder is laser-etched onto the casing of any structural member using the LDS process, such as the outer casing of the LTE module 101, which may be the outer side of the non-metallic portion of the module outer casing, the inner side of the non-metallic portion of the outer casing, or a non-metal The surface of the middle shell.
- the antenna module 1012 can arbitrarily design an antenna pattern, and the laser engraving is in any shape.
- the housing of the structural member is not limited by the shape of the product structure, and has greater flexibility, which not only avoids metal interference with the LTE module 101, but also reduces the volume of the LTE module 101.
- FIG. 6a is a cross-sectional view of an antenna module 1012, and a cross-sectional view of the antenna module 1012.
- the graphic structure of the antenna module 1012 is printed on the graphic structure of the antenna module 1012.
- Figure 6b shows an antenna module 1012 made of FPC, the black point in the figure is the antenna feed pin.
- 6c and 6d respectively show antenna patterns of two antenna modules 1012, which are a toroidal structure and a return structure, respectively.
- the antenna module 1012 is fabricated, the two patterns can be designed.
- the antenna module 1012 is etched according to the pattern on the FPC, or the two patterns are carved by the LDS laser using metal powder.
- the graphics of the antenna module 1012 can be freely designed in practical applications.
- the above-mentioned three embodiments of the antenna module 1012 are only used as an example in the embodiment of the present application, and the manufacturing process of the antenna module 1012 is not limited to the above solution.
- Each LTE module 101 in the embodiment of the present application may be designed in a single module box, and FIG. 7 shows a schematic diagram of the LTE module 101.
- the antenna module 1012 is laser engraved on top of the case, such as the antenna pattern 503, using LDS.
- the LTE module 1011 in the LTE module 101 can communicate with the central control unit 102 through a USB cable harness.
- Each box includes a box 502, and a USB interface 501 is reserved.
- the USB interface can be compatible with various USB versions. For example, the USB 3.0 version is used, and the LTE module 101 and the central control unit 102 communicate and supply power through the USB 3.0 harness.
- the module box also includes a main channel antenna and a secondary channel antenna of the LTE module 1011 for transmitting and receiving signals.
- the antenna can be designed as a directional antenna with a radiation angle of less than or equal to 180°, so that the actual designed radiation surface position of the antenna can be determined according to the surrounding environment of different installation positions.
- each box can be designed according to the actual application, and is not limited to the rectangular parallelepiped.
- the antenna module 1012 can be laser engraved on the four sides of the module box, and the antenna is designed as a directional antenna, and the radiation surface of the antenna module 1012 can be designed according to different installation positions.
- the position of the antenna module 1012 is set in an area of the module box facing the passenger side, that is, the antenna module 1012 is laser-engraved on the top of the module box, or is disposed on the side of the module box. The location of the face.
- a plurality of LTE modules 101 can be installed at different positions of the vehicle. As shown in FIG. 8 , the LTE module 101 can be installed at the A-pillar of the vehicle. B column, C column, D column. Then, they are respectively connected to the central control unit 102 of the vehicle center console through the USB bus, and communicate with the central control unit 102.
- the LTE module 101 in the embodiment of the present application may also be located outside the roof of the vehicle, inside the door of the vehicle, the platform at the bottom of the front windshield of the vehicle, the platform at the bottom of the rear windshield of the vehicle, or the position in the rear view mirror of the vehicle or Any group Hehe. If the number of LTE modules 101 required by the vehicle is large, multiple locations can be placed in the same location, and the more the number of LTE modules 101 used, the better the quality of high-speed communication. As shown in FIG. 9, the LTE module 101 can be installed outside the roof of the vehicle in the thick black line area of FIG. 9 and inside the door of the vehicle.
- FIG. 5 includes N LTE modules 101, each of which is connected to the central control unit 102.
- the signal received by the LTE module 101 is sent to the central control unit 102 for processing.
- the central control unit 102 is connected to each LTE module 101 through a USB (Universal Serial Bus) bus.
- the central control unit 102 and the LTE module 101 are both provided with a USB interface, which is respectively connected to the USB interface of the central control unit 102 and the LTE module 101.
- the embodiment of the present application integrates the LTE module 1011 and the antenna module 1012 in an LTE module, and the LTE module 101 can be disposed in multiple locations of the vehicle without being installed only on the roof of the vehicle. External, thus improving the stability of the vehicle.
- the embodiment of the present application provides a connection manner between the central control unit 102 and the LTE module 101.
- Each LTE module 101 is connected to a USB interface in the central control unit 102 via a USB bus, and one LTE module 101 corresponds to one USB interface.
- a plurality of USB interfaces are connected to the USB hub, and each USB hub can be connected to Y USB interfaces, Y is greater than or equal to 1, for example, four USB interfaces can be connected to one USB hub.
- the USB hub has X, X is greater than or equal to 1, and the X USB hubs are aggregated to a USB hub, and the CPU of the central control unit 102 is connected through the total USB hub.
- LTE modules 101 when the networking is required, more LTE modules 101 may be used for combination, and multiple LTE modules 101 are dispersed to various locations of the vehicle, which reduces the assembly difficulty of the vehicle antenna system and facilitates random combination.
- the radio frequency power loss introduced by the coaxial line can be effectively reduced, the radio frequency performance is improved, and the harness length between the LTE module 101 and the central control unit 102 can be reduced.
- the constraints make the LTE module 101 installation location more flexible.
- the embodiment of the present application further provides an in-vehicle antenna system, as shown in FIG. 11, the in-vehicle antenna system includes: a central control unit 702 and a plurality of LTE modules 701, and the LTE module 701 includes an LTE module. 7011 and at least one antenna module 7012, wherein the LTE module 7011 is connected to the antenna module 7012, and the central control unit 702 is connected to each LTE module 701.
- the central control unit 702 includes all of the units in FIG. 4 and transmits or receives information through the LTE module 701 when it is necessary to transmit or receive information.
- a CPU (Central Processing Unit) 7021, an FM module 7022, a GPS module 7023, a WiFi/BT module 7024, and a CMMB module 7025 are disposed on the PCB of the central control unit 702.
- the vehicle antenna system further includes an FM module 7022. , GPS module 7023, WiFi/BT module 7024, FM antenna corresponding to CMMB module 7025, GPS antenna, WiFi/BT antenna and CMMB antenna.
- the FM antenna, the GPS antenna, the WiFi/BT antenna, and the CMMB antenna are sequentially connected to the central control unit 702 through a coaxial line through terminal.
- the central control unit 702 is connected to each LTE module 701 via a USB (Universal Serial Bus) bus.
- the central control unit 702 and the LTE module 701 are both provided with a USB interface, which is respectively connected to the USB interfaces of the central control unit 702 and the LTE module 701.
- the embodiment of the present application further provides an automobile, which includes the above-mentioned vehicle antenna system, and the specific structure is described in the above embodiment, and details are not described herein again.
- a plurality of LTE modules and a central control unit are connected to implement a high-speed communication function of the vehicle antenna.
- the LTE module and the antenna module are integrated structures, and multiple LTE modules can be flexibly installed to avoid multiple LTE.
- the module concentrates on the central control unit and causes communication interference.
- FIG. 12 shows a schematic structure of an in-vehicle antenna system.
- the in-vehicle antenna system includes:
- the central control unit T102 and the plurality of antenna modules T101 include: a CPU (Central Processing Unit) 1022, a plurality of LTE modules 1021, and each LTE module 1021 and at least one antenna module in the central control unit T102.
- the T101 is connected, and the plurality of LTE modules 1021 are respectively connected to the CPU 1022.
- the central control unit T102 includes all the units in FIG. 4, and transmits or receives information through the antenna module T101 when it is necessary to transmit or receive information.
- the antenna module T101 transmits the information to be transmitted and outputted by the central control unit T102, and transmits the received information to the central control unit T102.
- the LTE module 1021 can perform communication of 2G (second generation mobile communication), 3G (third generation mobile communication), 4G (fourth generation mobile communication), and each LTE module 1021 can receive and receive through its corresponding antenna module T101.
- the signal is transmitted for communication with the external network.
- each LTE module 1021 is connected to two antenna modules T101, which are a primary antenna and a secondary antenna, respectively.
- the LTE module 1021 can also be connected to one antenna module T101. The more the number of connected antenna modules T101, the better the communication performance of the LTE module 1021.
- the network transmission speed of the vehicle antenna system can be faster than the network transmission speed of the antenna system in the 2G mode and the 3G mode.
- multiple LTE modules 1021 and multiple antenna modules T101 In the scenario, due to multi-carrier aggregation, a plurality of LTE modules 1021 and a plurality of antenna modules T101 in the vehicle antenna system can provide high-speed network transmission for the vehicle, thereby implementing an activity of in-vehicle video calling and watching high-definition video in the vehicle.
- the embodiment of the present application improves the network transmission speed.
- the manufacturing process of the antenna module T101 is different.
- the manufacturing process of the antenna module T101 in the embodiment of the present application includes at least the following:
- the antenna module T101 is printed on a first PCB (Printed Circuit Board), and the metal layer of the first PCB is etched by etching to obtain an antenna module T101. It is also possible to print the pattern of the antenna module T101 on the first PCB.
- the antenna module T101 is connected to the RF interface through an RF (Radio Frequency) transmission line, and the RF interface is connected to the LTE module 1021.
- the LTE module 1021 performs signal transmission and reception through the antenna module T101.
- the antenna module T101 has a simple overall structure and is easy to install.
- the antenna module T101 is formed by etching an FPC (Flexible Printed Circuit).
- the labyrinth type antenna module T101 is fabricated by exposing an FPC masked using a mask having an antenna pattern and then etching the metal layer on the exposed FPC.
- the antenna module T101 manufactured by the FPC process has a small structure and is easy to install.
- the FPC can be pasted on the center console housing by a glue, such as the outer casing of the center console, which can be a non-metallic part of the center console housing.
- the outer side may also be the inner side of the non-metallic portion of the center console, and the FPC may be attached to the second PCB.
- the antenna module T101 is connected to the RF interface through an RF cable, and the RF interface is connected to the LTE module 1021.
- the antenna module T101 has the advantages of high wiring density, light weight, and easy bending.
- the antenna module T101 is formed by LDS (Laser Direct Structuring) laser engraving on the housing of the structural member.
- the metal powder is laser-engraved to the casing of any structural member using the LDS process, such as the outer casing of the center console, which may be the outer side of the non-metallic portion of the outer casing of the center console, or the inner side of the non-metallic portion of the outer casing.
- the antenna module T101 can arbitrarily design the antenna pattern, and the laser engraving is on the shell of the structural member of any shape, which is not limited by the structure of the product, and has greater flexibility, and can not only avoid metal interference with the LTE module 1021, but also The volume of the LTE module 1021 can be reduced.
- the antenna module T101 is connected to the RF interface through an RF cable, and the RF interface is connected to the LTE module 1021.
- the antenna module T101 can be disposed in the center console.
- the graphic of the antenna module T101 can be laser engraved on the outer casing of the center console by using the LDS process, and the laser can be laser-etched in the center console.
- the outer side of the outer casing can also be laser-engraved inside the outer casing of the center console. If the outer casing of the center console is assembled with the central control main screen and the outer casing is separately assembled, the antenna module T101 is disposed on the four sides of the outer casing facing the passenger side.
- the structure of the mounting position of the antenna module T101 is the position at which the antenna module T101 can be mounted, that is, four of the four sides of the outer casing of the center console.
- the location of the corners Four antenna modules T101 (including the main antenna and the auxiliary antenna) are placed at eight positions in four corners, and the antenna modules T101 at the four corners are the farthest.
- the connection between the main antenna and the auxiliary antenna is "one horizontal and one vertical", which is advantageous for polarization isolation. It can achieve good isolation between the two antennas and ensure communication performance.
- the shape of the center console is elliptical, and eight positions are equally spaced on the side of the outer casing of the center console, and four antenna modules T101 (including the main antenna and the auxiliary antenna) are placed at the eight positions. The distance between each antenna can be the farthest interval, thus ensuring the isolation between each antenna and ensuring communication performance. If the shape of the center console is circular, install it according to the above method.
- the embodiment of the present application can set the antenna module T101 on the center console of the vehicle without being installed outside the vehicle, thereby improving the stability of the vehicle.
- the main antenna and the auxiliary antenna in the antenna module T101 described above may be designed as a directional antenna having a radiation angle of 180 or less.
- the directional antenna has a larger gain, which can improve the radiation efficiency.
- the radiation angle and direction of each antenna can be artificially designed.
- the radiation direction of each antenna is designed to face a metal-free area such as a window. Compared with the omnidirectional antenna, the signal transmission efficiency is higher and the communication effect is better.
- the periphery of the housing of the center console may be four sides of the square housing, or may be a side of a circular or elliptical housing.
- the housing of the center console of the embodiment of the present application is not limited to the above shape, and is merely an exemplary function.
- the central control unit T102 can be disposed on the second PCB, and the plurality of LTE modules 1021 and 1022 are disposed on the second PCB, and the plurality of LTE modules 1021 are connected to the CPU 1022 through the traces on the second PCB.
- the LTE module can also be disposed on the third PCB.
- the LTE module can be connected through a MiniPCI (Mini Peripheral Component Interconnect Express) interface or other PCI (Peripheral Component Interconnect) interface and the second interface.
- MiniPCI Mini Peripheral Component Interconnect Express
- PCI Peripheral Component Interconnect
- the central control unit T102 includes N LTE modules 1021, and the N LTE modules 1021 are respectively connected to the CPU 1022.
- the signal received by the LTE module 1021 is sent to the CPU 1022 for processing.
- the antenna module T101 and the central control unit T102 are disposed in the central control station, and the routing between the antenna module T101 and the central control unit T102 is simple, the wiring harness is small and short, and the high-frequency energy transmission process can be reduced. The loss ensures excellent performance.
- the embodiment of the present application further provides an in-vehicle antenna system, as shown in FIG. 20,
- the vehicle-mounted antenna system includes: a central control unit 1002 and a plurality of antenna modules 1001, and the central control unit 1002 includes: a CPU 10022, and more
- Each LTE module 10021 of the central control unit 1002 is connected to at least one antenna module 1001, and the plurality of LTE modules 10021 are respectively connected to the CPU 10022.
- the central control unit 1002 includes all the units in FIG. 4, and transmits or receives information through the LTE module 1001 when it is necessary to transmit or receive information.
- the second PCB of the central control unit 1002 is provided with a CPU 10022, an FM module 10023, a GPS module 10024, a WiFi/BT module 10025, and a CMMB module 10026.
- the vehicle antenna system further includes an FM module 10023, a GPS module 10024, and a WiFi/BT.
- the FM antenna, the GPS antenna, the WiFi/BT antenna, and the CMMB antenna are sequentially connected to the central control unit 1002 through an RF transmission line.
- FIG. 21 to 23 respectively show the structure of the vehicle-mounted antenna system under the three design processes of the antenna module 1001, and the structure in FIG. 21 is the structure of the vehicle-mounted antenna system in which the antenna module 1001 is a PCB process.
- the structure in Fig. 22 is that the antenna module 1001 is a structure of an in-vehicle antenna system of the FPC process.
- the structure in FIG. 23 is that the antenna module 1001 is a structure of an in-vehicle antenna system of the LDS process.
- the specific structure of the vehicle-mounted antenna system in FIG. 21 to FIG. 23 has been described in the above embodiments, and details are not described herein again.
- the embodiment of the present application further provides an automobile, which includes the above-mentioned vehicle antenna system, and the specific structure is described in the above embodiment, and details are not described herein again.
- the embodiment of the present application provides a selection terminal, including a memory 2400, and one or more processors 2401.
- the selection terminal further includes:
- One or more units 2402 the one or more units being stored in the memory 2400 and configured to be executed by the one or more processors 2401, the one or more units including for performing the following Instructions for the steps:
- the CDN for the domain name resolution request returned by the network side is determined. node;
- the embodiment of the present application provides a computer program product for use in conjunction with a selection terminal, the computer program product comprising a computer readable storage medium and a computer program mechanism embedded therein, the computer program mechanism comprising instructions for performing the following steps :
- the vehicle-mounted antenna system provided by the embodiment of the present invention realizes high-speed communication function of the vehicle-mounted antenna through multiple antenna modules and multiple LTE modules of the central control unit, and the LTE module is disposed in the central control unit, thereby reducing the length of the wire harness. It can reduce signal attenuation, improve transmission efficiency and reduce power consumption.
- the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Environmental & Geological Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供一种内容分发网络CDN节点的选择方法及其装置,包括:在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点;针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每个所述CDN节点的时延;针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点,用以解决现有技术中终端与选择的默认的CDN节点服务器之间数据传输时延较大的问题。
Description
本申请要求在2015年11月11日提交中国专利局、申请号为201510767535.6、申请名称为“一种内容分发网络CDN节点选择方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及网络通讯技术领域,尤其涉及一种内容分发网络CDN节点选择方法及其装置。
CDN(Content Delivery Network,内容分发网络)的基本思想是为了尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和环节,使内容传输的更快、更稳定,通过在网络各处放置节点服务器进而构成以现有的互联网为基础建设的智能虚拟网络。
DNS(Domain Name System,域名解析系统)是指一个全球的分布式的名称服务器系统,主要作用是将网站的域名解析成具体的服务器IP(Internet Protocol,互联网协议)地址。终端访问某个网站时,CDN授权的DNS服务器通过解析提供服务的距离终端最近的CDN节点服务器的IP地址,将该CDN节点的IP地址返回给用户,从而使终端调度该IP地址进行数据传输。
随着网络技术的发展及带宽的瓶颈,为了提高用户的访问速度及服务质量,终端基于多链路接入设备可以实现多条链路同时访问互联网服务器,但是现有技术,当一个终端通过多条链路访问某网址时,每条链路都对应一个ISP(Internet Service Provider,互联网服务提供商)分配的本地DNS服务器地址,该终端只是从本地DNS服务器处理该请求后获取的CDN节点服务器的IP地址随机选择一个作为默认通信的CDN节点的IP地址,而默认的CDN节点服务器可能存在与该终端之间数据传输时延较大的问题。
发明内容
本申请实施例提供一种CDN节点选择方法及其装置,用以解决现有技术中终端与选择的默认的CDN节点服务器之间数据传输时延较大的问题。
本申请实施例一种CDN节点选择方法及其装置,包括:
一种内容分发网络CDN节点的选择方法,包括:在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点;针对一个链路,在确定所述CDN
节点为多个时,确定所述链路对应的每个所述CDN节点的时延;针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
基于同样的发明构思,本申请实施例还提供一种内容分发网络CDN节点的选择装置,包括:确定CDN节点单元,用于在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点;确定时延单元,用于针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每个所述CDN节点的时延;确定时延平均值单元,用于针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;选择CDN节点单元,用于根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
本申请实施例提供的CDN节点选择方法及其装置,终端一方面通过多个链路发起域名解析请求后得到网络侧返回的针对域名解析请求的多个CDN节点;另一方面通过向每个CDN节点发送测试信息的方式得到每条链路对应的每个所述CDN节点的时延,进而从每个CDN节点选择对应的时延平均值最小的一个为要选择的CDN节点,通过调度该CDN节点进行数据传输减少的时延,提高了访问的访问速度及服务质量。
本申请实施例提供一种选择终端,包括存储器,以及一个或者多个处理器,其中,选择终端终端还包括:
一个或多个单元,所述一个或多个单元被存储在所述存储器中并被配置成由所述一个或多个处理器执行,所述一个或多个单元包括用于执行以下步骤的指令:
在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点;
针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每个所述CDN节点的时延;
针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;
根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
本申请实施例提供一种与选择终端结合使用的计算机程序产品,所述计算机程序产品包括计算机可读的存储介质和内嵌于其中的计算机程序机制,所述计算机程序机制包括执
行以下步骤的指令:
在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点;
针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每个所述CDN节点的时延;
针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;
根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的终端与其它服务器之间的链路示意图;
图2为本申请实施例提供的一种CDN节点的选择方法流程示意图;
图3为本申请实施例提供的终端与其它服务器的交互图;
图4为本申请实施例提供的提供一种CDN节点的选择装置;
图5为本申请实施例中的一种车载天线系统的结构示意图;
图6a为本申请实施例中的一种天线模组的结构示意图;
图6b为本申请实施例中的一种天线模组的结构示意图;
图6c为本申请实施例中的一种天线模组的结构示意图;
图6d为本申请实施例中的一种天线模组的结构示意图;
图7为本申请实施例中的一种LTE模块的结构示意图;
图8为本申请实施例中的一种LTE模块安装位置示意图;
图9为本申请实施例中的一种LTE模块安装位置示意图;
图10为本申请实施例中的一种车载天线系统的结构示意图;
图11为本申请实施例中的一种车载天线系统的结构示意图;
图12为本申请实施例中的一种车载天线系统的结构示意图;
图13为本申请实施例中的一种天线模块的结构示意图;
图14为本申请实施例中的一种天线模块的结构示意图;
图15为本申请实施例中的一种天线模块的结构示意图;
图16为本申请实施例中的一种天线模块安装位置示意图;
图17为本申请实施例中的一种天线模块安装位置示意图;
图18为本申请实施例中的一种天线模块安装位置示意图;
图19为本申请实施例中的一种天线模块安装位置示意图;
图20为本申请实施例中的一种车载天线系统的结构示意图;
图21为本申请实施例中的一种车载天线系统的结构示意图;
图22为本申请实施例中的一种车载天线系统的结构示意图;
图23为本申请实施例中的一种车载天线系统的结构示意图;
图24为本申请实施例提供一种选择终端。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,当一个终端同时使用两个运营商(移动、联通)的SIM(Subscriber Identity Module,用户身份识别卡)卡访问目标网站时,终端向移动运营商的本地DNS服务器和联通运营商的本地DNS服务器发起该目标网站的域名解析请求,本地DNS服务器接收到该域名解析请求后,发送该域名解析请求至目标网站对应的因特网服务提供商的DNS服务器1和DNS服务器2;然后因特网服务提供商的DNS服务器1和DNS服务器2从各自调度的CDN节点池中选择一个较合适的CDN节点,并将选择出的两个CDN节点的IP地址返回至终端,现有技术从两个CDN节点中随机选择一个,就有可能存在终端与该CDN节点数据传输延时较大的问题,为了解决这一问题,本申请实施例提供了如下解决方法。
参见图2所示,本申请实施例提供一种CDN节点的选择方法流程示意图,具体地实现方法包括:
步骤S101,在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点。
步骤S102,针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每
个所述CDN节点的时延。
步骤S103,针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值。
步骤S104,根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
当用户通过终端设备访问目标网站的域名时,终端就会向网络侧发起该目标网站的域名解析请求,网络侧会根据该域名解析请求找到目标网站的服务提供商的服务器的IP地址,并将该地址反馈给终端,因此用户使用的终端实际在与该IP地址服务器进行通信,为了保证通信的可靠性和通信速度,网络侧会在终端实际在与该IP地址服务器加入网络节点,也就是CDN节点,对该通信的数据传输进行加速,因此在用户所在的终端发起域名解析请求的过程,也是一个选择CDN节点的过程。CDN节点选择的不同就会带来服务质量的优劣。
在步骤S101中,为了保证一个终端可以同时使用多条链路,终端需要预先完成配置,即多个链路对应的每个因特网运营商的DNS服务器的端口号,以使每个因特网运营商的DNS服务器均可以同时接收所述域名解析请求。
可选的,本申请实施例的配置方法可以为:首先修改终端本地应用程序,根据DNS服务器程序的运行文件存储路径,将存储路径下的文件打开(比如/etc/resolve.conf),修改DNS服务器地址指向本机IP地址(比如127.0.0.1),然后在终端本地按照DNS服务器程序,开启配置服务的同时设置DNS服务器程序自动监听本机IP地址,此时DNS服务器程序会监听DNS端口,端口号(比如53),接收本机应用程序发出的DNS解析请求。这样,一个终端向各个运营商的本地DNS发送域名解析请求,进而每条链路获取一个CDN节点的IP地址,多条链路分担数据流量相当于增大了带宽,提高了用户访问网站的访问速度。
当完成上述配置之后,就可以获取网络侧返回的针对域名解析请求的多个CDN节点,为了从多个CDN节点中选择最优的一个,本申请实施例进一步地,针对一个链路,确定通过所述链路发送给每个所述CDN节点的第一测试信息的发送时间,以及通过所述链路收到的每个所述CDN节点返回的第二测试信息的接收时间;根据每个所述CDN节点对应的发送时间和接收时间,确定所述链路对应的每个所述CDN节点的时延。
其中,本申请实施例的第一测试信息可以是下列中的一种:
UDP(用户数据报协议)报文、ICMP(控制报文协议)报文、TCP(传输控制协议)报文。
第一测试信息中包含终端发出第一测试信息发送时间的标识信息,当CDN节点接收
到第一测试信息之后会返回该第一测试信息中含义发送时间的字段至终端,即第二测试信息,因此终端收到返回的第二测试信息的时间与第二测试信息中发送时间的差值就是终端与所述CDN节点之间的时延。
例如,若发送的第一测试信息是ICMP数据包,将ICMP数据包的结构体中的icmp_data该数据字段赋值为当前发送时间,代码如下:
time=(struct timeval*)pkt->icmp_data;
gettimeofday(time,NULL);
如上,icmp_data赋值为终端发送数据包时获取的当前发送时间。
因为icmp的协议规定服务器端接收到icmp包后会将icmp_data原封不动的返回,因此网络侧的DNS服务器接收到该ICMP数据包后将icmp_data数据字段返回,当终端接收到服务器发送的回包后,会再次调用函数gettimeofday读取当前接收时间,并与返回数据包中的icmp_data的发送时间作减法,从而得到了这个数据包的时延。
如图1所示,终端通过移动运营商的本地DNS服务器发送第一测试信息至两个CDN节点,获取到链路1和链路2(参见图中虚线)的时延。同理,终端通过联通运营商的本地DNS服务器发送第一测试信息至两个CDN节点,获取到链路3和链路4(参见图中虚线)的时延。
这样做的目的是终端主动发出测试信息获取了每条链路、每个备选CDN节点的时延大小,以便后续筛选。
进一步地,确定出每条链路的时延之后,针对一个CDN节点,将每条链路对应的所述CDN节点的时延取平均得到所述CND节点对应的时延平均值;或,针对一个CDN节点,根据每条链路的权值对每条链路对应的所述CDN节点的时延进行加权处理,将加权处理后的时延取平均得到所述CND节点对应的时延平均值。
比如,如图1所示,终端通过链路1和链路3的时延直接取平均加权后取平均确定出DNS服务器1选择的CDN节点对应的平均时延,同理通过链路2和链路4的时延直接取平均确定出DNS服务器2选择的CDN节点对应的平均时延。
还比如,如图1所示,终端通过链路1和链路3的时延加权后取平均确定出DNS服务器1选择的CDN节点对应的平均时延,同理通过链路2和链路4的时延加权后取平均确定出DNS服务器2选择的CDN节点对应的平均时延,权重不同选择的结果就会不同,权重值的选择可以根据运营商的不同进行确定,例如移动运营商的网络信号较好,就会考虑对其设置较大的权重,也可以根据地理位置的不同,不同运营商的权重选择不同,因为南北方的网络之间存在差异。
这样做的效果可以得出每个运营商共同选择一个CDN节点之后的时延平均值,该时延平均值可以作为CDN节点的删选指标。
确定出每个CDN节点的平均值之后,本申请实施例进一步地从所有所述CDN节点中选择对应的时延平均值最小的一个所述CDN节点。
具体地,根据公式[1]确定要选择的CDN节点,所述公式[1]如下:
其中,rttxi表示第i条链路对应的第x个CDN节点的时延,minSrtt表示选择的平均值最小的CDN节点,n表示链路的条数,n为大于1的整数,m表示CND节点的个数,m为大于1的整数。
除了上述方式选择对应的时延平均值最小的一个所述CDN节点,还可以通过下述方式确定:
从所有所述CDN节点中选择对应的时延平均值最小的N个所述CDN节点,并从最小的N个所述CDN节点中选择当前负载最小的一个所述CDN节点,其中N为大于1的整数。
具体地,根据公式[2]确定要选择的CDN节点,所述公式[2]如下:
其中,rttxi表示第i条链路对应的第x个CDN节点的时延,minSrtt表示选择的平均值最小的CDN节点,n表示链路的条数,n为大于1的整数,m表示CND节点的个数,m为大于1的整数,Pi表示每条链路的权重。
可见,选择出时延平均值最小对应的CDN节点,当终端同时使用不同的运营商的链路后可以保证此CDN节点是时延最小的,也是最优的选择,进而提高了网站访问的速度和服务质量。
其中,本申请实施例的执行主体可以是终端,比如装有不同运营商SIM卡的移动通信终端、或者支持多链路TCP的移动通信终端、亦或是其它装有多张不同上网卡的平板电脑设备等。
为了系统性的描述CDN节点的选择方法,本申请实施例进一步提供图3,通过终端与服务器的交互图阐述CDN节点的选择过程。
步骤301和步骤302:终端通过分别向本地DNS服务器1和本地DNS服务器2发送目标网站的域名解析请求。
步骤303和步骤304:本地DNS服务器1和本地DNS服务器2将域名解析请求发送
至目标网站授权的DNS服务器1和目标网站授权的DNS服务器2。
步骤305和步骤306:目标网站授权的DNS服务器1和目标网站授权的DNS服务器2将解析结果和选择的CDN节点的IP地址返回给本地DNS服务器1和本地DNS服务器2。
步骤307和步骤308:本地DNS服务器1和本地DNS服务器2将上述结果返回给终端。
步骤309和步骤310:终端根据获取的CDN节点的IP地址发送第一测试信息至第一CDN节点服务器和第二CDN节点服务器后。
步骤311和步骤312:第一CDN节点服务器和第二CDN节点服务器返回第二测试信息,终端根据往返信息得到时延平均值,进而选择时延平均值最小的一个CDN节点。
基于同样的发明构思,本申请实施例还提供一种CDN节点的选择装置,如图4所示,该装置包括:确定CDN节点单元401,确定时延单元402,确定时延平均值单元403,选择CDN节点单元404。其中:
确定CDN节点单元401,用于在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点;
确定时延单元402,用于针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每个所述CDN节点的时延;
确定时延平均值单元403,用于针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;
选择CDN节点单元404,用于根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
进一步地,为了保证一个终端可以同时使用多条链路终端需要通过域名解析请求发送单元405预先完成配置,所述域名解析请求发送单元405,用于通过每个链路对应的本地域名解析系统DNS发起所述域名解析请求。这样,一个终端向各个运营商的本地DNS发送域名解析请求,进而每条链路获取一个CDN节点的IP地址,多条链路分担数据流量相当于增大了带宽,提高了用户访问网站的访问速度。
当完成上述配置之后,就可以获取网络侧返回的针对域名解析请求的多个CDN节点,为了从多个CDN节点中选择最优的一个,进一步通过确定时延单元402确定出每条链路、每个CDN节点的时延,所述确定时延单元402具体用于:针对一个链路,确定通过所述链路发送给每个所述CDN节点的第一测试信息的发送时间,以及通过所述链路收到的每个所述CDN节点返回的第二测试信息的接收时间;根据每个所述CDN节点对应的发送时
间和接收时间,确定所述链路对应的每个所述CDN节点的时延。
具体地,第一测试信息可以是UDP(用户数据报协议)报文、ICMP(控制报文协议)报文、TCP(传输控制协议)报文中的一种。第一测试信息中包含终端发出第一测试信息发送时间的标识信息,当CDN节点接收到第一测试信息之后会返回该第一测试信息中含义发送时间的字段至终端,即第二测试信息,因此终端收到返回的第二测试信息的时间与第二测试信息中发送时间的差值就是终端与所述CDN节点之间的时延。
例如,若发送的第一测试信息是ICMP数据包,将ICMP数据包的结构体中的icmp_data该数据字段赋值为当前发送时间,网络侧的DNS服务器接收到该ICMP数据包后将icmp_data数据字段返回,终端将接收到的时间减去收到的icmp_data时间,就可以获得该ICMP数据包的时延。
如图1所示,终端通过移动运营商的本地DNS服务器发送第一测试信息至两个CDN节点,获取到链路1和链路2(参见图中虚线)的时延,同理,终端通过联通运营商的本地DNS服务器发送第一测试信息至两个CDN节点,获取到链路3和链路4(参见图中虚线)的时延。
这样做的目的是终端主动发出测试信息获取了每条链路、每个备选CDN节点的时延大小,以便后续筛选。
进一步地,确定出每条链路的时延之后,通过时延平均值单元403得出每个CDN节点对应的时延平均值,所述确定时延平均值单元403具体用于:
针对一个CDN节点,将每条链路对应的所述CDN节点的时延取平均得到所述CND节点对应的时延平均值;或,
针对一个CDN节点,根据每条链路的权值对每条链路对应的所述CDN节点的时延进行加权处理,将加权处理后的时延取平均得到所述CND节点对应的时延平均值。
具体地,如图1所示,终端通过链路1和链路3的时延直接取平均或者加权后取平均确定出DNS服务器1选择的CDN节点对应的平均时延,同理通过链路2和链路4的时延直接取平均或者加权后取平均确定出DNS服务器2选择的CDN节点对应的平均时延。这样做的效果可以得出每个运营商共同选择一个CDN节点之后的时延平均值,该时延平均值可以作为CDN节点的删选指标。
当确定出每个CDN节点的平均值之后,本申请实施例进一步地根据选择CDN节点单元404选择出时延平均值最小的CDN节点,所述选择CDN节点单元404具体用于:
从所有所述CDN节点中选择对应的时延平均值最小的一个所述CDN节点;或
从所有所述CDN节点中选择对应的时延平均值最小的N个所述CDN节点,并从最
小的N个所述CDN节点中选择当前负载最小的一个所述CDN节点,其中N为大于1的整数。
具体地,根据公式[1]或公式[2]确定要选择的CDN节点,所述公式[1]或公式[2]不再赘述。
可见,选择出时延平均值最小对应的CDN节点,当终端同时使用不同的运营商的链路后可以保证此CDN节点是时延最小的,也是最优的选择,进而提高了网站访问的速度和服务质量。
需要说明的是,本申请实施例中的相关单元可以通过硬件处理器(hardware processor)来实现。
综上所述,本申请实施例,终端一方面通过多个链路发起域名解析请求后得到网络侧返回的针对域名解析请求的多个CDN节点;另一方面通过向每个CDN节点发送测试信息的方式得到每条链路对应的每个所述CDN节点的时延,进而从每个CDN节点选择对应的时延平均值最小的一个为要选择的CDN节点,通过调度该CDN节点进行数据传输减少的时延,提高了访问的访问速度及服务质量。
在实施中,本申请实施例的终端可以是移动设备,比如手机、平板电脑等;还可以是车载移动设备。采用本申请实施例的方案应用于车载移动设备中,可以通过多个虚拟链路发送数据,提高了车载系统中带宽的利用率,该车载天线系统的网络传输速度可以比2G模式和3G模式下的天线系统的网络传输速度要快,从而可以为车辆提供高速网络传输,实现在车辆中进行车载视频通话、观看高清视频的活动。
上述实施例中所述的装置对应的终端的结构可以参照如下实施例车载系统的结构。
在下面的实施例中给出了两种车载系统的结构,其中图5~图11为针对第一种车载系统的描述;图12~图23为针对第一种车载系统的描述。
图5示出了一种车载天线系统的示意结构,如图5所示,该车载天线系统包括:
中控单元102和多个LTE模块101,该LTE模块101包括一个LTE模组1011和至少一个天线模组1012,其中,LTE模组1011与天线模组1012连接,该中控单元102与每个LTE模块101连接。
中控单元102包括图4中的所有单元,并在需要发送或接收信息时,通过LTE模块101发送或接收信息。
LTE模块101在对中控单元102输出的需要发送的信息进行发送处理后向外发送,并对接收到信息进行接收处理后输出给中控单元102。
该LTE模块101中的LTE模组1011可以进行2G(第二代移动通信)、3G(第三代移
动通信)、4G(第四代移动通信)的通信,该LTE模组1011可以通过其对应的天线模组1012接收和发射信号进行与外网的通信。
如图5所示,多个LTE模块101,每个LTE模块101对应一个LTE模组1011,该LTE模组1011与两个天线模组1012连接,该LTE模组1011也可以与一个天线模组1012连接,连接的天线模组1012的个数越多,LTE模组1011的通信性能越好。
在只有一个LTE模块101的场景下,该车载天线系统的网络传输速度可以比2G模式和3G模式下的天线系统的网络传输速度要快。在多个LTE模块101的场景下,由于多载波聚合,通过车载天线系统中的多个LTE模块101可以为车辆提供高速网络传输,从而实现在车辆中进行车载视频通话、观看高清视频的活动。与现有技术相比,本申请实施例提高了网络传输速度。
该LTE模组1011可以设置在PCB(Printed Circuit Board,印制电路板)上,将LTE模组1011集成到PCB上,天线模组1012的天线馈脚可以压接在该PCB上的天线馈点上,然后通过PCB上的走线与其对应的LTE模组1011进行电连接。
天线模组1012的制作工艺有多种,本申请实施例中的天线模组1012的制作工艺至少包括以下几种:
方案一
天线模组1012固定在PCB的天线支架上,通过天线支架支撑该天线模组1012,天线支架固定在PCB上,天线模组1012的天线馈脚可以压接在该PCB上的天线馈点上。
方案二
天线模组1012通过刻蚀FPC(Flexible Printed Circuit,柔性电路板)形成的。通过对使用具有天线图形的掩膜板遮掩的FPC进行曝光,然后对曝光后的FPC上的金属层进行刻蚀,制作成迷宫型的天线模组1012。FPC工艺制作的天线模组1012,结构空间小,便于安装,可以将该FPC通过背胶粘贴在结构壳体上,如LTE模块101的外壳上,可以是模块外壳非金属部分的外侧,也可以是外壳非金属部分的内侧,还可以是非金属中壳的面上,也可以将FPC粘贴在PCB上。这种天线模组1012,具有配线密度高,重量轻,易弯折等优点。
方案三
天线模组1012是通过LDS(Laser Direct Structuring,激光直接成型技术)镭雕在结构件的壳体上形成的。使用LDS工艺将金属粉镭雕至任意的结构件的壳体上,如LTE模块101的外壳上,可以是模块外壳非金属部分的外侧,也可以是外壳非金属部分的内侧,还可以是非金属中壳的面上。这种天线模组1012可以任意设计天线图形,镭雕在任意形状
的结构件的壳体上,不受产品结构形态的限制,灵活性较大,不仅可以避免与LTE模块101内的金属干扰,还可以减小LTE模块101的体积。
相应地,本申请实施例还提供了几种天线模组1012的结构示意图,如图6a至图6d所示。图6a示出了一种天线模组1012的剖视图,天线模组1012的截面图,从图6a中可以看出,天线模组1012的图形结构,该天线模组1012的图形结构是印制在FPC上的。图6b示出了一种由FPC制作而成的天线模组1012,图中的黑点为天线馈脚。图6c和图6d分别示出了两种天线模组1012的天线图形,分别是圆环形结构和回形结构。在制作天线模组1012时,可以设计成这两种图形,在FPC上按照图形进行刻蚀得到天线模组1012,或者是使用金属粉通过LDS镭雕成这两种图形。天线模组1012的图形在实际应用时,可以自由设计。
上述三种制作天线模组1012的方案,仅是本申请实施例用以示例,不表示该天线模组1012的制作工艺仅限于上述方案,本申请实施例不对此做限制。
本申请实施例中的每个LTE模块101可以设计成在一个单独模块盒子,图7示出了一种LTE模块101成型的示意图。如图7所示,将天线模组1012使用LDS镭雕在该盒体的顶部,如天线图形503。而LTE模块101中的LTE模组1011通过USB线束可以与中控单元102进行互联通信,每个盒子包括盒体502,预留USB接口501,该USB接口可以兼容各种USB版本,本申请实施例使用的是USB3.0版本,LTE模块101与中控单元102通过USB3.0线束进行通信和供电。在该模块盒子中还包括LTE模组1011的主路天线和辅路天线,用于收发信号。天线可以设计成辐射角小于等于180°的定向天线,这样可以根据不同的安装位置的周边环境判定天线的实际设计辐射面位置。
每个盒子的外观可以根据实际应用进行设计,并不限于长方体。同时,也可以根据实际应用,将天线模组1012镭雕在该模块盒子的四个边上,将天线设计为定向天线,可以根据不同的安装位置的设计天线模组1012的辐射面。本申请实施例中,优选地,将天线模组1012的位置设置在模块盒子面对乘客的一面的区域,即将天线模组1012镭雕在该模块盒子的顶部,或是设置在模块盒子侧面四个面的位置。
为了更好的使得车载天线系统进行高速通信,可以将多个LTE模块101安装在车辆的不同的位置,如图8所示LTE模块101安装位置,可以将LTE模块101安装在车辆的A柱、B柱、C柱、D柱内。然后通过USB总线分别连接到车辆中控台的中控单元102上,与中控单元102进行通信。
本申请实施例中LTE模块101还可以位于车辆的车顶外部、车辆的车门内侧、车辆前挡风玻璃底部的平台、车辆后挡风玻璃底部的平台、车辆后视镜中的位置之一或者任意组
合。如果车辆需要的LTE模块101数量多,同一位置可以放置多个,使用的LTE模块101的数量越多,进行高速通信的质量越好。如图9所示,LTE模块101可以安装在图9中粗黑色线区域的车辆的车顶外部、车辆的车门内侧。
图5中包括N个LTE模块101,该N个LTE模块101都分别与中控单元102连接,与中控单元102连接的LTE模块101的数量越多,该车载天线系统的性能越优,可以是实现高速通信,如10Gb/s,20Gb/s的高速通信功能。LTE模块101接收到的信号发送给该中控单元102进行处理。
本申请实施例中,该中控单元102是通过USB(Universal Serial Bus,通用串行总线)总线与每个LTE模块101连接的。中控单元102和LTE模块101都设有USB接口,该USB总线分别连接中控单元102和LTE模块101的USB接口。
由于现有技术中的车辆的天线系统都是单天线设计方案,如果需要接收到各类信号,就需要将多个天线同时安装在车辆上,这些天线需要安装在车辆的车顶外部,这就增加了车辆的不稳定性。而与现有技术相比,本申请实施例将LTE模组1011和天线模组1012集成在LTE模块中,该LTE模块101可以将设置在车辆的多个位置,无需只安装在车辆的车顶外部,从而提高了车辆的稳定性。
如图10所示,本申请实施例提供了一种中控单元102与LTE模块101的连接方式。每个LTE模块101通过USB总线与中控单元102中的USB接口相连接,一个LTE模块101对应一个USB接口。在中控单元102中,多个USB接口与USB集线器连接,每个USB集线器可以连接Y个USB接口,Y大于等于1,如可以4个USB接口连接一个USB集线器。该USB集线器有X个,X大于等于1,该X个USB集线器汇总到一个USB集线器上,通过这个总的USB集线器与中控单元102的CPU连接。
在本申请实施例中,进行组网需要时,可以使用更多的LTE模块101进行组合,将多个LTE模块101分散到车辆的各个位置,降低了车载天线系统的组装难度,便于随意组合。在需要时,只需将设计的LTE模块101盒子与中控台中的中控单元102进行连接即可。同时使用USB总线与中控单元102进行通信,与传统设计相比,能够有效降低由同轴线引入的射频功率损耗,提高射频性能,且能够降低LTE模块101和中控单元102之间线束长度的约束,使得LTE模块101安装位置选择更灵活。
相应地,本申请实施例还提供了一种车载天线系统,如图11所示的结构,该车载天线系统包括:中控单元702和多个LTE模块701,该LTE模块701包括一个LTE模组7011和至少一个天线模组7012,其中,LTE模组7011与天线模组7012连接,该中控单元702与每个LTE模块701连接。
中控单元702包括图4中的所有单元,并在需要发送或接收信息时,通过LTE模块701发送或接收信息。
该中控单元702的PCB上设置了CPU(Central Processing Unit,中央处理器)7021,FM模块7022、GPS模块7023、WiFi/BT模块7024、CMMB模块7025,该车载天线系统还包括与FM模块7022、GPS模块7023、WiFi/BT模块7024、CMMB模块7025对应的FM天线、GPS天线、WiFi/BT天线和CMMB天线。该FM天线、GPS天线、WiFi/BT天线和CMMB天线依次通过同轴线通过端子与中控单元702连接。
该中控单元702是通过USB(Universal Serial Bus,通用串行总线)总线与每个LTE模块701连接的。中控单元702和LTE模块701都设有USB接口,该USB总线分别连接中控单元702和LTE模块701的USB接口。基于相同的发明构思,本申请实施例还提供了一种汽车,该汽车包括上述车载天线系统,具体结构以在上述实施例中描述,不再赘述。
本申请实施例通过多个LTE模块和中控单元连接,实现车载天线的高速通信的功能,LTE模组与天线模组为一体化结构,可以将多个LTE模块进行灵活安装,避免多个LTE模组集中在中控单元而导致通信干扰的问题。
如下针对另一种车载系统的结构进行详细阐述。
图12示出了一种车载天线系统的示意结构,如图12所示,该车载天线系统包括:
中控单元T102和多个天线模块T101,中控单元T102包括:CPU(Central Processing Unit,中央处理器)1022、多个LTE模块1021,中控单元T102中每个LTE模块1021与至少一个天线模块T101连接,多个LTE模块1021分别与CPU1022连接。
中控单元T102包括图4中的所有单元,并在需要发送或接收信息时,通过天线模块T101发送或接收信息。
天线模块T101在对中控单元T102输出的需要发送的信息进行发送处理后向外发送,并对接收到信息进行接收处理后输出给中控单元T102。
该LTE模块1021可以进行2G(第二代移动通信)、3G(第三代移动通信)、4G(第四代移动通信)的通信,每个LTE模块1021可以通过其对应的天线模块T101接收和发射信号进行与外网的通信。
如图12所示,多个LTE模块1021,每个LTE模块1021与两个天线模块T101连接,分别是主路天线和辅路天线。该LTE模块1021也可以与一个天线模块T101连接,连接的天线模块T101的个数越多,LTE模块1021的通信性能越好。
在只有一个LTE模块1021的场景下,该车载天线系统的网络传输速度可以比2G模式和3G模式下的天线系统的网络传输速度要快。在多个LTE模块1021和多个天线模块T101
的场景下,由于多载波聚合,通过车载天线系统中的多个LTE模块1021和多个天线模块T101可以为车辆提供高速网络传输,从而实现在车辆中进行车载视频通话、观看高清视频的活动。与现有技术相比,本申请实施例提高了网络传输速度。
本申请实施例中,天线模块T101的制作工艺有多种,本申请实施例中的天线模块T101的制作工艺至少包括以下几种:
第一种
如图13所示,将天线模块T101印刷在第一PCB(Printed Circuit Board,印制电路板)上,通过刻蚀的方法刻蚀第一PCB的金属层,获取天线模块T101。也可以将天线模块T101的图形印刷在第一PCB上。该天线模块T101通过RF(Radio Frequency,射频)传输线连接至RF接口上,RF接口与LTE模块1021连接。LTE模块1021通过该天线模块T101进行收发信号。这种天线模块T101整体结构简单,便于安装。
第二种
如图14所示,天线模块T101通过刻蚀FPC(Flexible Printed Circuit,柔性电路板)形成的。通过对使用具有天线图形的掩膜板遮掩的FPC进行曝光,然后对曝光后的FPC上的金属层进行刻蚀,制作成迷宫型的天线模块T101。FPC工艺制作的天线模块T101,结构空间小,便于安装,可以将该FPC通过背胶粘贴在中控台壳体上,如中控台的外壳上,可以是中控台外壳非金属部分的外侧,也可以是中控台非金属部分的内侧,也可以将FPC粘贴在第二PCB上。该天线模块T101通过RF电缆连接至RF接口上,RF接口与LTE模块1021连接。这种天线模块T101,具有配线密度高,重量轻,易弯折等优点。
第三种
如图15所示,天线模块T101是通过LDS(Laser Direct Structuring,激光直接成型技术)镭雕在结构件的壳体上形成的。使用LDS工艺将金属粉镭雕至任意的结构件的壳体上,如中控台的外壳上,可以是中控台的外壳非金属部分的外侧,也可以是外壳非金属部分的内侧。这种天线模块T101可以任意设计天线图形,镭雕在任意形状的结构件的壳体上,不受产品结构形态的限制,灵活性较大,不仅可以避免与LTE模块1021内的金属干扰,还可以减小LTE模块1021的体积。该天线模块T101通过RF电缆连接至RF接口上,RF接口与LTE模块1021连接。
本申请实施例中的可以将天线模块T101设置在中控台中,如图16所示,可以使用LDS工艺将天线模块T101的图形镭雕在中控台的外壳上,可以镭雕在中控台的外壳外侧,也可以镭雕在中控台的外壳内侧。如果中控台的外壳是与中控主屏幕前后叠加组装,外壳单独安装,则将天线模块T101设置在该外壳面对乘客一面的四个边上。
具体的,如图17所示的天线模块T101的安装位置的结构,图17中粗黑实体线标注的区域为天线模块T101可以安装的位置,即在中控台的外壳的四条侧边的四个角的位置。在四个角共8个位置摆放4个天线模块T101(包括主路天线和辅路天线),四个角的天线模块T101之间距离最远。每个角的天线模块T101中的主路天线和辅路天线虽然距离不是最远,但是主路天线和辅路天线之间由于是“一横一竖”的安装位置,有利于极化方向隔离,同样可以做到两个天线之间的隔离度很好,保证通信性能。
如图18所示的天线模块T101的安装位置的结构,图18中粗黑实体线标注的区域为天线模块T101可以安装的位置,即在中控台的外壳的四条侧边的上,在每个侧边的1/3位置处,共8个位置摆放4个天线模块T101(包括主路天线和辅路天线),这样每个天线之间的距离可以做到间隔最远,从而保证每个天线之间的隔离度,保证通信性能。
如图19所示的天线模块T101的安装位置的结构,图19中粗黑实体线标注的区域为天线模块T101可以安装的位置。该中控台的形状为椭圆形,在中控台的外壳的侧边上等距离划分8个位置,在这8个位置摆放4个天线模块T101(包括主路天线和辅路天线),这样每个天线之间的距离可以做到间隔最远,从而保证每个天线之间的隔离度,保证通信性能。如果中控台的形状为圆形,则依据上述方法进行安装。
由于现有技术中的车辆的天线系统都是单天线设计方案,如果需要接收到各类信号,就需要将多个天线同时安装在车辆上,这些天线需要安装在车辆的车顶外部,这就增加了车辆的不稳定性。而与现有技术相比,本申请实施例可以将天线模块T101设置在车辆的中控台上,无需安装在车辆的外部,从而提高了车辆的稳定性。
上述天线模块T101中的主路天线和辅路天线可以设计成辐射角小于等于180°的定向天线。与传统的汽车外置天线相比,定向天线的增益较大,可以提升辐射效率。可以人为设计各天线的辐射角度和方向,根据实际中控单元T102在车体的位置,以及天线在中控台中的位置,将各个天线的辐射方向设计朝向车窗等无金属遮挡的区域。与全向天线相比,信号传输效率更高,通讯效果更好。
本申请实施例中,中控台的壳体的周边可以是方形壳体的四个侧边,也可以是圆形或椭圆形壳体的侧边。本申请实施例的中控台的壳体不限于上述形状,仅是示例作用。
图12所示,中控单元T102可以设置在第二PCB上,将多个LTE模块1021和CPU1022设置在第二PCB上,该多个LTE模块1021通过第二PCB上的走线与CPU1022连接。该LTE模块也可以设置在第三PCB上,该LTE模块可以通过MiniPCIE(Mini Peripheral Component Interconnect Express,小型特快外设组件互联)接口或者其它PCI(Peripheral Component Interconnect,外设组件互联)接口与第二PCB上的中控单元T102中的CPU1022
连接。
中控单元T102包括N个LTE模块1021,该N个LTE模块1021都分别与CPU1022连接,与CPU1022连接的LTE模块1021的数量越多,该车载天线系统的性能越优,可以是实现高速通信,如10Gb/s,20Gb/s的高速通信功能。LTE模块1021接收到的信号发送给该CPU1022进行处理。
在本申请实施例中,将天线模块T101和中控单元T102设置在中控台中,天线模块T101与中控单元T102之间的走线设计简单,线束少且短,能够减少高频能量传输过程的损耗,保证优异的性能。
相应地,本申请实施例还提供了一种车载天线系统,如图20所示的结构,该车载天线系统包括:中控单元1002和多个天线模块1001,中控单元1002包括:CPU10022、多个LTE模块10021,中控单元1002中每个LTE模块10021与至少一个天线模块1001连接,多个LTE模块10021分别与CPU10022连接。
中控单元1002包括图4中的所有单元,并在需要发送或接收信息时,通过LTE模块1001发送或接收信息。
该中控单元1002的第二PCB上设置了CPU10022,FM模块10023、GPS模块10024、WiFi/BT模块10025、CMMB模块10026,该车载天线系统还包括与FM模块10023、GPS模块10024、WiFi/BT模块10025、CMMB模块10026对应的FM天线、GPS天线、WiFi/BT天线和CMMB天线。该FM天线、GPS天线、WiFi/BT天线和CMMB天线依次通过RF传输线与中控单元1002连接。
图21至图23分别示出了天线模块1001的三种设计工艺下的车载天线系统的结构,图21中的结构为天线模块1001是PCB工艺的车载天线系统的结构。图22中的结构为天线模块1001是FPC工艺的车载天线系统的结构。图23中的结构为天线模块1001是LDS工艺的车载天线系统的结构。图21至图23中车载天线系统的具体结构已在上述实施例中描述,在此不再赘述。
基于相同的发明构思,本申请实施例还提供了一种汽车,该汽车包括上述车载天线系统,具体结构以在上述实施例中描述,在此不再赘述。
如图24所示,本申请实施例提供一种选择终端,包括存储器2400,以及一个或者多个处理器2401,其中,选择终端还包括:
一个或多个单元2402,所述一个或多个单元被存储在所述存储器2400中并被配置成由所述一个或多个处理器2401执行,所述一个或多个单元包括用于执行以下步骤的指令:
在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN
节点;
针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每个所述CDN节点的时延;
针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;
根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
本申请实施例提供一种与选择终端结合使用的计算机程序产品,所述计算机程序产品包括计算机可读的存储介质和内嵌于其中的计算机程序机制,所述计算机程序机制包括执行以下步骤的指令:
在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点;
针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每个所述CDN节点的时延;
针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;
根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
本申请实施例提供的车载天线系统,通过多个天线模块和中控单元的多个LTE模块连接,实现车载天线的高速通信的功能,LTE模块设置在中控单元中,减少了线束的长度,可以减少信号衰减,提升传输效率,减少功耗。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各
个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (10)
- 一种内容分发网络CDN节点的选择方法,其特征在于,包括:在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点;针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每个所述CDN节点的时延;针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
- 如权利要求1所述的方法,其特征在于,所述确定所述链路对应的每个所述CDN节点的时延,包括:针对一个链路,确定通过所述链路发送给每个所述CDN节点的第一测试信息的发送时间,以及通过所述链路收到的每个所述CDN节点返回的第二测试信息的接收时间;根据每个所述CDN节点对应的发送时间和接收时间,确定所述链路对应的每个所述CDN节点的时延。
- 如权利要求1所述的方法,其特征在于,所述确定所述CND节点对应的时延平均值,包括:针对一个CDN节点,将每条链路对应的所述CDN节点的时延取平均得到所述CND节点对应的时延平均值;或,针对一个CDN节点,根据每条链路的权值对每条链路对应的所述CDN节点的时延进行加权处理,将加权处理后的时延取平均得到所述CND节点对应的时延平均值。
- 如权利要求1所述的方法,其特征在于,所述根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点,包括:从所有所述CDN节点中选择对应的时延平均值最小的一个所述CDN节点;或从所有所述CDN节点中选择对应的时延平均值最小的N个所述CDN节点,并从最小的N个所述CDN节点中选择当前负载最小的一个所述CDN节点,其中N为大于1的整数。
- 如权利要求1所述的方法,其特征在于,所述通过多个链路发起域名解析请求,包括:通过每个链路对应的本地域名解析系统DNS发起所述域名解析请求。
- 一种内容分发网络CDN节点的选择装置,其特征在于,包括:确定CDN节点单元,用于在通过多个链路发起域名解析请求后,确定网络侧返回的针对域名解析请求的CDN节点;确定时延单元,用于针对一个链路,在确定所述CDN节点为多个时,确定所述链路对应的每个所述CDN节点的时延;确定时延平均值单元,用于针对一个CDN节点,根据所述CDN节点与每个所述链路之间的时延,确定所述CDN节点对应的时延平均值;选择CDN节点单元,用于根据确定所述CDN节点对应的时延平均值,从所有所述CDN节点中选择一个所述CDN节点。
- 如权利要求6所述的装置,其特征在于,所述确定时延单元具体用于:针对一个链路,确定通过所述链路发送给每个所述CDN节点的第一测试信息的发送时间,以及通过所述链路收到的每个所述CDN节点返回的第二测试信息的接收时间;根据每个所述CDN节点对应的发送时间和接收时间,确定所述链路对应的每个所述CDN节点的时延。
- 如权利要求6所述的装置,其特征在于,所述确定时延平均值单元具体用于:针对一个CDN节点,将每条链路对应的所述CDN节点的时延取平均得到所述CND节点对应的时延平均值;或,针对一个CDN节点,根据每条链路的权值对每条链路对应的所述CDN节点的时延进行加权处理,将加权处理后的时延取平均得到所述CND节点对应的时延平均值。
- 如权利要求6所述的装置,其特征在于,所述选择CDN节点单元具体用于:从所有所述CDN节点中选择对应的时延平均值最小的一个所述CDN节点;或从所有所述CDN节点中选择对应的时延平均值最小的N个所述CDN节点,并从最小的N个所述CDN节点中选择当前负载最小的一个所述CDN节点,其中N为大于1的整数。
- 如权利要求6所述的装置,其特征在于,还包括:域名解析请求发送单元,用于通过每个链路对应的本地域名解析系统DNS发起所述域名解析请求。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16739384.2A EP3190776A1 (en) | 2015-11-11 | 2016-05-13 | Method for selecting content delivery network (cdn) node, and apparatus thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510767535.6A CN105897822B (zh) | 2015-11-11 | 2015-11-11 | 一种内容分发网络cdn节点选择方法及其装置 |
CN201510767535.6 | 2015-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017080153A1 true WO2017080153A1 (zh) | 2017-05-18 |
Family
ID=57001802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/082145 WO2017080153A1 (zh) | 2015-11-11 | 2016-05-13 | 一种内容分发网络cdn节点选择方法及其装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170134253A1 (zh) |
EP (1) | EP3190776A1 (zh) |
CN (1) | CN105897822B (zh) |
WO (1) | WO2017080153A1 (zh) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10530852B2 (en) * | 2016-05-19 | 2020-01-07 | Level 3 Communications, Llc | Network mapping in content delivery network |
WO2017209668A1 (en) * | 2016-05-31 | 2017-12-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Distinguishing icn from non-icn traffic in a mobile network |
CN107645525A (zh) * | 2016-07-21 | 2018-01-30 | 阿里巴巴集团控股有限公司 | 内容分发网络的探测处理、调度方法及相应装置、节点 |
CN107872423B (zh) * | 2016-09-23 | 2020-12-18 | 中国电信股份有限公司 | 用于实现cdn调度的方法、设备和系统 |
CN106790647B (zh) * | 2017-01-15 | 2020-06-23 | 网宿科技股份有限公司 | 一种自适应服务管理的方法和系统 |
CN109104506B (zh) * | 2017-06-20 | 2021-05-14 | 腾讯科技(深圳)有限公司 | 域名解析规则的确定方法、装置和计算机可读存储介质 |
CN107911722B (zh) * | 2017-10-31 | 2020-06-16 | 贝壳找房(北京)科技有限公司 | 一种内容分发网络调度方法、装置、电子设备及计算机可读存储介质 |
CN107659676A (zh) * | 2017-11-03 | 2018-02-02 | 北京云端智度科技有限公司 | 基于动态ip资源池的智能调度技术 |
CN107979638A (zh) * | 2017-11-16 | 2018-05-01 | 北京小米移动软件有限公司 | 内容提供方法、装置、设备及存储介质 |
EP3785469A4 (en) * | 2018-05-30 | 2021-06-09 | Samsung Electronics Co., Ltd. | METHOD AND DEVICE FOR ESTABLISHING A CONNECTION WITH A CONTENT SERVER |
CN109167674B (zh) * | 2018-07-24 | 2021-05-18 | 网宿科技股份有限公司 | 服务节点的评分方法、域名系统dns调度方法及服务器 |
CN109194542B (zh) * | 2018-08-22 | 2021-05-07 | 网宿科技股份有限公司 | Cdn系统中直播流内耗统计的方法和装置 |
CN109412946B (zh) * | 2018-11-14 | 2021-10-19 | 网宿科技股份有限公司 | 一种确定回源路径的方法、装置、服务器及可读存储介质 |
CN112565482B (zh) * | 2018-11-21 | 2022-04-15 | Oppo广东移动通信有限公司 | 电子设备、域名查询方法及相关产品 |
CN109617758B (zh) * | 2018-11-30 | 2021-03-19 | 网宿科技股份有限公司 | 节点网络质量计算方法及装置、服务器、计算机存储介质 |
KR102110312B1 (ko) * | 2018-12-27 | 2020-05-13 | (주)아이앤아이소프트 | Cdn 선택 방법 및 장치 |
CN110138887B (zh) * | 2019-04-03 | 2021-07-16 | 华为技术有限公司 | 一种数据处理方法、装置及存储介质 |
US10958592B2 (en) * | 2019-04-12 | 2021-03-23 | Wangsu Science & Technology Co., Ltd. | Domain name bandwidth adjustment method and apparatus |
CN110380890B (zh) * | 2019-06-03 | 2021-04-02 | 网宿科技股份有限公司 | 一种cdn系统服务质量检测方法及系统 |
CN112153095A (zh) * | 2019-06-28 | 2020-12-29 | 北京金山云网络技术有限公司 | Cdn功能模块运行方法、运行装置、电子设备及存储介质 |
CN110445886B (zh) * | 2019-07-05 | 2020-11-06 | 网宿科技股份有限公司 | 一种实现域名访问加速的方法和系统 |
CN110545450B (zh) * | 2019-09-09 | 2021-12-03 | 深圳市网心科技有限公司 | 一种节点分配方法、系统及电子设备和存储介质 |
CN113301085B (zh) * | 2020-06-30 | 2022-04-12 | 阿里巴巴集团控股有限公司 | 调度方法、装置、设备及存储介质 |
CN111935329B (zh) * | 2020-07-16 | 2023-03-31 | 郑州悉知信息科技股份有限公司 | 域名解析方法和装置 |
EP3979601A3 (en) * | 2020-10-01 | 2022-07-13 | Nokia Technologies Oy | Apparatus, methods, and computer programs |
US11593180B2 (en) * | 2020-12-15 | 2023-02-28 | Kyndryl, Inc. | Cluster selection for workload deployment |
US11956293B1 (en) * | 2023-03-29 | 2024-04-09 | Adeia Guides Inc. | Selection of CDN and access network on the user device from among multiple access networks and CDNs |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101287011A (zh) * | 2008-05-26 | 2008-10-15 | 蓝汛网络科技(北京)有限公司 | 内容分发网络中响应用户服务请求的方法、系统和设备 |
US20100088405A1 (en) * | 2008-10-08 | 2010-04-08 | Microsoft Corporation | Determining Network Delay and CDN Deployment |
CN102148752A (zh) * | 2010-12-22 | 2011-08-10 | 华为技术有限公司 | 基于内容分发网络的路由实现方法及相关设备、系统 |
CN102368776A (zh) * | 2011-11-25 | 2012-03-07 | 中国科学技术大学 | 一种内容分发网络中节点列表的优化功能模块 |
CN103037025A (zh) * | 2012-11-21 | 2013-04-10 | 哈尔滨理工大学 | 多链路自适应dns解析方法及设备 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7991910B2 (en) * | 2008-11-17 | 2011-08-02 | Amazon Technologies, Inc. | Updating routing information based on client location |
CN101764747B (zh) * | 2009-12-24 | 2012-05-02 | 北京云快线软件服务有限公司 | 内容分发网络流量智能调度方法、装置及系统 |
CN101873358B (zh) * | 2010-06-11 | 2014-09-10 | 杭州华三通信技术有限公司 | 一种基于域名解析的链路负载均衡方法和设备 |
WO2012109852A1 (zh) * | 2011-07-29 | 2012-08-23 | 华为技术有限公司 | 节点排序与选取方法、装置及系统 |
CN103716348B (zh) * | 2012-09-29 | 2019-03-12 | 北京百度网讯科技有限公司 | 基于cdn网络的数据访问方法、系统及装置 |
US20150127721A1 (en) * | 2013-11-06 | 2015-05-07 | Fastly, Inc. | Server network address selection based on network characteristics of service providers |
-
2015
- 2015-11-11 CN CN201510767535.6A patent/CN105897822B/zh active Active
- 2015-12-15 US US14/970,126 patent/US20170134253A1/en not_active Abandoned
-
2016
- 2016-05-13 EP EP16739384.2A patent/EP3190776A1/en not_active Withdrawn
- 2016-05-13 WO PCT/CN2016/082145 patent/WO2017080153A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101287011A (zh) * | 2008-05-26 | 2008-10-15 | 蓝汛网络科技(北京)有限公司 | 内容分发网络中响应用户服务请求的方法、系统和设备 |
US20100088405A1 (en) * | 2008-10-08 | 2010-04-08 | Microsoft Corporation | Determining Network Delay and CDN Deployment |
CN102148752A (zh) * | 2010-12-22 | 2011-08-10 | 华为技术有限公司 | 基于内容分发网络的路由实现方法及相关设备、系统 |
CN102368776A (zh) * | 2011-11-25 | 2012-03-07 | 中国科学技术大学 | 一种内容分发网络中节点列表的优化功能模块 |
CN103037025A (zh) * | 2012-11-21 | 2013-04-10 | 哈尔滨理工大学 | 多链路自适应dns解析方法及设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3190776A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3190776A4 (en) | 2017-07-12 |
EP3190776A1 (en) | 2017-07-12 |
CN105897822B (zh) | 2019-07-26 |
CN105897822A (zh) | 2016-08-24 |
US20170134253A1 (en) | 2017-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017080153A1 (zh) | 一种内容分发网络cdn节点选择方法及其装置 | |
US9882810B2 (en) | Method and device for data transfer over a plurality of links | |
WO2017080163A1 (zh) | 一种车载音视频传输方法及系统、车载终端、服务器 | |
US11134127B2 (en) | Method and electronic device for providing multi-access edge computing service using multi-access edge computing discovery | |
US20220166776A1 (en) | Method for edge computing service and electronic device therefor | |
US20160057635A1 (en) | Vehicular wireless local area network device | |
US10674379B2 (en) | Simultaneous channel switching within a mesh network | |
EP3934191A1 (en) | Method for edge computing service and electronic device therefor | |
US10455564B2 (en) | Simultaneous channel switching within a mesh network | |
CN114339688A (zh) | 用于ue与边缘数据网络的认证的装置和方法 | |
US11871460B2 (en) | Domain name system (DNS)-based discovery of regulatory requirements for non-3GPP inter-working function (N3IWF) selection | |
US20230337119A1 (en) | Harmonization of spectrum access tier and core network architecture | |
US10785114B2 (en) | Fingerprinting BYOD (bring your own device) and IOT (internet of things) IPV6 stations for network policy enforcement | |
EP4239479A1 (en) | Orchestration of computing services and resources for next generation systems | |
CN118765519A (zh) | 具有对第三方的服务暴露的无线蜂窝系统中的服务功能链锁 | |
WO2022217093A1 (en) | Methods and apparatus to support the registration of edge application server (eas) and multi-access edge computing (mec) applications to edge enabler servers (ees) and mec platforms | |
KR20220125094A (ko) | 전자 장치 및 전자 장치에서 ims 기반의 콜을 처리하는 방법 | |
WO2014159718A1 (en) | Simultaneous channel switching within a mesh network | |
WO2023154921A1 (en) | Reception of new radio (nr) multicast and broadcast service (mbs) control and data in the downlink | |
EP4393180A1 (en) | Access control for electronic device tethering with supported network slicing in cellular networks | |
CN116981056A (zh) | 用于人工智能或机器学习辅助的波束管理的装置 | |
CN117544223A (zh) | 物流运输的调度方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2016739384 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16739384 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |