WO2017080146A1 - 一种实现电子和离子速度影像同时测量的方法及装置 - Google Patents

一种实现电子和离子速度影像同时测量的方法及装置 Download PDF

Info

Publication number
WO2017080146A1
WO2017080146A1 PCT/CN2016/081797 CN2016081797W WO2017080146A1 WO 2017080146 A1 WO2017080146 A1 WO 2017080146A1 CN 2016081797 W CN2016081797 W CN 2016081797W WO 2017080146 A1 WO2017080146 A1 WO 2017080146A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
ion velocity
pole electrode
extraction electrode
voltages
Prior art date
Application number
PCT/CN2016/081797
Other languages
English (en)
French (fr)
Inventor
陆培祥
罗四强
兰鹏飞
张鹏
张庆斌
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2017080146A1 publication Critical patent/WO2017080146A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/50Devices characterised by the use of electric or magnetic means for measuring linear speed

Definitions

  • the invention relates to the field of particle velocity imaging technology, and in particular to a method and device for simultaneously measuring electronic and ion velocity images.
  • the core component of the particle velocity imager is three circular electrode plates with intermediate openings, which are a repellent electrode plate, an extraction electrode plate and a ground electrode plate.
  • the electric fields formed by the three electrode plates constitute an electrostatic lens.
  • ions/electrons with the same momentum are repelled by the repeller plate and focused by the extraction electrode plate and the ground electrode plate and concentrated on the microchannel plate (MCP) detector.
  • MCP microchannel plate
  • the existing Photoelectron-photoion Coincidence Spectroscopy consists of two sets of particle velocity imager devices, measuring the momentum spectrum of the electrons while measuring the momentum spectrum of the ions on the other side.
  • the device is complicated to control and the cost of the experimental instrument is high.
  • an object of the present invention is to provide a method and apparatus for simultaneously measuring electron and ion velocity images by applying a repulsion electrode plate and an extraction electrode plate of an ion velocity imager, respectively. Jump voltage to achieve electron and ion velocity Simultaneous measurement of images.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a method for simultaneously measuring electronic and ion velocity images, the method comprising the following steps:
  • the repeller electrode plate and the extraction electrode plate respectively apply different negative pressures for accelerating electrons to the detection screen to generate a two-dimensional momentum spectrum of the electron;
  • the voltages on the repeller electrode plate and the extraction electrode plate are respectively changed from negative pressure to positive pressure, and are used to accelerate ions to the detection screen to generate a two-dimensional momentum spectrum of ions.
  • the initial voltage ratio of the extraction electrode plate and the repulsion electrode plate before the jump is 0.768.
  • the voltages on the repeller electrode plate and the extraction electrode plate are respectively changed from a negative voltage to a positive voltage, and the hopping time of the hopping voltage is less than 10 ns, and the triggering time of the hopping voltage is After 10 ns of laser and gas molecules.
  • the present invention also provides an apparatus for simultaneously measuring electronic and ion velocity images, including an ion velocity imager, the apparatus further comprising:
  • a pulse power source respectively connected to the repulsion electrode plate and the extraction electrode plate in the ion velocity imager is used for applying a hopping voltage to the repeller electrode plate and the extraction electrode plate, respectively.
  • the present invention can obtain the following beneficial effects: a jump voltage is respectively added to the repulsion electrode plate and the extraction electrode plate of the particle velocity imager, and the initial voltage is set to be negative for accelerating electrons, and then the repeller electrode plate and extraction are performed.
  • the voltage on the electrode plate is changed from negative pressure to positive pressure to accelerate the ions, and the two-dimensional momentum spectrum of electrons and ions can be obtained simultaneously in a single ionization experiment.
  • the method of the invention divides a flight time into two pieces, one for accelerating the flight of electrons, one for accelerating the flight of ions, and at the detecting end, separating the signals of the two time periods according to the division of the previous time period, that is, One is an electronic signal and the other is an ion signal, which increases the time utilization and improves the efficiency of speed image generation.
  • the invention can simultaneously measure the velocity images of electrons and ions by using a set of particle velocity imager, and the invention can be implemented without changing the structure of the original device; and the two sets of particle velocity imager devices are not needed, which greatly reduces the experimental cost.
  • FIG. 1 is a schematic structural view of a device for simultaneously measuring electron and ion velocity images according to the present invention
  • FIG. 2 is a schematic diagram showing the control of the hopping voltage on the repeller electrode plate and the extraction electrode plate on the speed imager of the present invention
  • Figure 3 is a schematic view showing the movement trajectory of H + ions obtained by the apparatus of the present invention.
  • Figure 4 is a schematic diagram of a two-dimensional momentum spectrum of electrons obtained by the apparatus of the present invention.
  • Figure 5 is a schematic illustration of the two-dimensional momentum spectrum of H + ions obtained by the apparatus of the present invention.
  • the invention provides a method and a device for realizing simultaneous measurement of electron and ion velocity images, which are based on the principle of time division multiplexing, respectively adding a hopping voltage on the repulsion electrode plate and the extraction electrode plate of the particle velocity imager.
  • the device includes a repeller electrode plate 1, an extraction electrode plate 2, a ground electrode plate 3, a dual micro channel plate (MCP) 4, a fluorescent screen 5, a CCD camera 6, and a repeller electrode plate 1 A trip voltage control unit connected to the extraction electrode plate 2.
  • the repeller electrode plate 1 and the extraction electrode plate 2 are respectively connected to a hopping voltage, and the ground electrode plate 3 is grounded.
  • the method for simultaneously measuring electronic and ion velocity images of the present invention comprises the following steps:
  • the repeller electrode plate and the extraction electrode plate respectively apply different negative pressures for accelerating electrons to the detection screen to generate a two-dimensional momentum spectrum of the electron;
  • the voltages on the repulsion pole plate and the extraction electrode plate are respectively changed from negative pressure to positive Pressure, used to accelerate ions to the detector screen to generate a two-dimensional momentum spectrum of ions.
  • the ratio of the negative pressure applied to the repeller electrode plate to the negative pressure applied to the extraction electrode plate is based on the distance between the different electrode plates, the distance of the particles flying, the diameter of the center hole of the electrode plate, and the like. Factors are adjusted.
  • the initial voltage ratio of the extraction electrode plate and the repeller electrode plate before the jump is 0.768. Under this ratio, the resolution of the electronic two-dimensional momentum spectrum is optimized.
  • the voltages on the repeller electrode plate and the extraction electrode plate are respectively changed from negative pressure to positive voltage, and the hopping voltage has a transition time of less than 10 ns. Among them, it is necessary to satisfy the shortest transition time to reduce the influence of the electric field on the trajectory of the ion during the hopping process.
  • the triggering time of the hopping voltage should be 10 ns after the action of the laser and the gas molecule, so that the electron is accelerated to the detection. Provide plenty of time on the screen.
  • the distance between the pole electrode plate and the detecting screen is 120 mm
  • the opening of the electrode plate is 4 mm
  • the opening of the electrode plate is 16 mm
  • the opening of the electrode plate is 18 mm
  • the electrode plate is extracted and extracted.
  • the distance between the electrode plates is 14 mm
  • the distance between the extraction electrode plates and the ground electrode plates is 16 mm
  • the diameter of the double micro channel plates is 40 mm.
  • the action of the laser and the gas molecules is at the center of the repeller electrode plate and the extraction electrode plate, that is, 7 mm from the repeller electrode plate.
  • the hopping voltage and the extraction pole's hopping voltage control are shown in Figure 2.
  • the initial voltage of the repeller is -825V
  • the initial voltage of the extraction pole is -629V.
  • the electric field between the two electrode plates is suitable for accelerating electrons.
  • the repulsion pole voltage jumps to 1000V
  • the extraction pole voltage jumps to 768V, and is used to accelerate the ion.
  • the hopping time is controlled at 7ns.
  • the repulsion pole and the extraction will be performed before the next laser pulse arrives.
  • the pole voltage jumps back to the initial value and waits for the next laser pulse to come to the next cycle.
  • the initial velocity direction is perpendicular to the flight tube axis
  • the energy distribution is 0.5eV to 5.5eV
  • the interval is 1eV
  • the two-dimensional momentum spectrum of the electron is obtained, as shown in Fig. 4.
  • Figure 3 shows the trajectory of H + ions under the control of the voltage. Due to the initial 10 ns, the H + ions are reversely accelerated in the electron acceleration field, resulting in a slight distortion of the front part of the trajectory, but it can be seen in conjunction with Figure 5. This has little effect on the two-dimensional momentum spectrum imaging of the subsequent H + ions. This distortion has less impact than other ions with longer flight times.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种实现电子和离子速度影像同时测量的方法及装置,所述方法包括以下步骤:S1、在离子速度影像仪排斥极电极板(1)和提取极电极板(2)分别施加不同大小的负压,用于加速电子至探测屏(5),生成电子的二维动量谱;S2、将排斥极电极板(1)和提取极电极板(2)上的电压分别从负压跳变到正压,用于加速离子至探测屏(5),生成离子的二维动量谱。所述装置包括离子速度影像仪,与离子速度影像仪中排斥极电极板(1)和提取极电极板(2)分别连接的脉冲电源,用于对排斥极电极板(1)和提取极电极板(2)分别施加跳变电压。无需改变原有装置结构,实施简便,降低了实验成本。

Description

一种实现电子和离子速度影像同时测量的方法及装置 【技术领域】
本发明涉及粒子速度影像技术领域,具体涉及一种实现电子和离子速度影像同时测量的方法及装置。
【背景技术】
在上世纪80年代后期发展起来的粒子速度影像技术在光致解离/电离反应的认知过程中一直扮演着重要的角色。粒子速度影像仪的核心部件是三个中间开孔的圆形电极板,分别为排斥极电极板、提取极电极板和接地极电极板。这三个电极板形成的电场构成了静电透镜。产生于不同位置,具有相同动量的离子/电子经过排斥极电极板的排斥,经提取极电极板和接地极电极板聚焦并汇聚在微通道板(MCP)探测器上。最终不同动能的粒子会在探测器上形成不同直径的圆环,经过重构算法重构后,就能得到电离后产生的粒子的三维速度矢量分布。
而同时获得电子和离子的二维动量谱,对于揭示光致解离/电离反应中的微观动力学过程具有重要意义。现有的同时测量光电子-离子的光谱仪装置(Photoelectron-photoion Coincidence Spectroscopy)由两套粒子速度影像仪装置组成,一边测电子的动量谱,另一边测离子的动量谱。该装置控制复杂、实验仪器成本高。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明的目的在于提供一种实现电子和离子速度影像同时测量的方法及装置,通过对离子速度影像仪的排斥极电极板和提取极电极板分别施加跳变电压,实现对电子和离子速度 影像的同时测量。
本发明解决其技术问题所采用的技术方案是,提供一种实现电子和离子速度影像同时测量的方法,所述方法包括以下步骤:
S1、在离子速度影像仪排斥极电极板和提取极电极板分别施压不同大小的负压,用于加速电子至探测屏,生成电子的二维动量谱;
S2、将排斥极电极板和提取极电极板上的电压分别从负压跳变到正压,用于加速离子至探测屏,以生成离子的二维动量谱。
作为进一步优选地,所述步骤S1中,跳变前的提取极电极板和排斥极电极板上的初始电压比值为0.768。
作为进一步优选地,所述步骤S2中,将排斥极电极板和提取极电极板上的电压分别从负压跳变到正压,跳变电压的跳变时间小于10ns,跳变电压的触发时间在激光与气体分子作用的10ns后。
相应地,本发明还提供一种实现电子和离子速度影像同时测量的装置,包括离子速度影像仪,所述装置还包括:
与离子速度影像仪中排斥极电极板和提取极电极板分别连接的脉冲电源,用于对排斥极电极板和提取极电极板分别施加跳变电压。
因此,本发明可以获得以下的有益效果:在粒子速度影像仪的排斥极电极板和提取极电极板分别添加跳变电压,初始电压设置为负用于加速电子,随后将排斥极电极板和提取极电极板上的电压从负压跳变到正压,用于加速离子,即可在一次电离实验中,同时获得电子和离子的二维动量谱。本发明方法把一次飞行时间分为两块,一块用来加速电子的飞行,一块用来加速离子的飞行,在探测端再根据前面时间段的划分,将两个时间段的信号分开来,即一个为电子信号,另一个为离子信号,增加了时间利用率,提高速度影像生成的效率。本发明可用一套粒子速度影像仪同时测量电子和离子的速度影像,实施本发明无需改变原有装置结构,实施简便;也无需两套粒子速度影像仪装置,大大降低了实验成本。
【附图说明】
图1是本发明实现电子和离子速度影像同时测量的装置结构示意图;
图2是本发明速度影像仪上排斥极电极板和提取极电极板上的跳变电压控制示意图;
图3是本发明装置获得的H+离子的运动轨迹示意图;
图4是本发明装置获得的电子的二维动量谱示意图;
图5是本发明装置获得的H+离子的二维动量谱示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供一种实现电子和离子速度影像同时测量的方法及装置,其基于时分复用原理,在粒子速度影像仪的排斥极电极板和提取极电极板分别添加跳变电压。
如图1所示,装置包括排斥极电极板1、提取极电极板2、接地极电极板3、双微通道板(MCP)4、荧光屏5、CCD相机6,还包括与排斥极电极板1和提取极电极板2连接的跳变电压控制单元。排斥极电极板1和提取极电极板2分别连接跳变电压,接地极电极板3接地。
本发明实现电子和离子速度影像同时测量的方法包括以下步骤:
S1、在离子速度影像仪排斥极电极板和提取极电极板分别施压不同大小的负压,用于加速电子至探测屏,生成电子的二维动量谱;
S2、将排斥极电极板和提取极电极板上的电压分别从负压跳变到正 压,用于加速离子至探测屏,以生成离子的二维动量谱。
上述步骤S1中,在排斥极电极板施压的负压与在提取极电极板施加的负压的比值根据不同电极板之间的距离、粒子飞行的距离、电极板中心圆孔直径的大小等因素进行调整。本发明一个优选实施例中,跳变前的提取极电极板和排斥极电极板上的初始电压比值为0.768,在这个比例条件下,获得电子二维动量谱分辨率最优。
上述步骤S2中,将排斥极电极板和提取极电极板上的电压分别从负压跳变到正压,跳变电压的跳变时间小于10ns。其中,需满足跳变时间尽可能短,以减小跳变过程中的电场对离子的轨迹的影响,跳变电压的触发时间应在激光与气体分子作用的10ns后,以为将电子加速到探测屏上提供充足的时间。
以下结合一个具体实施例对本发明的技术方案做进一步说明。
在本发明的一个具体实施例中,排斥极电极板到探测屏距离120mm,排斥极电极板开孔4mm,提取极电极板开孔16mm,接地极电极板开孔18mm,排斥极电极板与提取极电极板间距14mm,提取极电极板与接地极电极板间距16mm,双微通道板探测屏直径40mm。
激光与气体分子的作用点在排斥极电极板和提取极电极板的正中央,即距排斥极电极板7mm处。
排斥极和提取极的跳变电压控制如图2所示,排斥极初始电压为-825V,提取极初始电压为-629V,此时两电极板间的电场适合加速电子,在电子飞行完毕,即10ns之后,将排斥极电压跳变到1000V,提取极电压跳变到768V,用于加速离子,跳变时间控制在7ns,在离子加速完毕后,下一个激光脉冲到来前,将排斥极和提取极电压跳变回初始值,等下一个激光脉冲到来即开始下一个周期。
以电子作为离子源,其初始速度方向垂直于飞行管轴,能量分布为0.5eV到5.5eV,间隔1eV,得到电子的二维动量谱,如图4所示。
以质量、带电量分别为1.67×10-27kg,1.6×10-19C的大量单个H+离子为离子源,其初始速度方向垂直于飞行管轴,能量分布为0.5eV到5.5eV,间隔1eV,得到离子的二维动量谱,如图5所示。
图3所示为H+离子在所述电压控制下的运动轨迹,由于初始的10ns,H+离子在电子加速场中被反向加速,导致前面部分轨迹有些微的畸变,但结合图5可知,这对之后的H+离子的二维动量谱成像几乎没影响。而这个畸变相对于飞行时间更长的其他离子来说,影响更小。
以上结果表明,采用这种基于时分复用原理电子和离子速度影像同时测量的方法,能很好地同时得到电子和离子的二维动量谱。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

  1. 一种实现电子和离子速度影像同时测量的方法,其特征在于,所述方法包括以下步骤:
    S1、在离子速度影像仪排斥极电极板和提取极电极板分别施压不同大小的负压,用于加速电子至探测屏,生成电子的二维动量谱;
    S2、将排斥极电极板和提取极电极板上的电压分别从负压跳变到正压,用于加速离子至探测屏,以生成离子的二维动量谱。
  2. 如权利要求1所述的实现电子和离子速度影像同时测量的方法,其特征在于,所述步骤S1中,跳变前的提取极电极板和排斥极电极板上的初始电压比值为0.768。
  3. 如权利要求2所述的实现电子和离子速度影像同时测量的方法,其特征在于,所述步骤S2中,将排斥极电极板和提取极电极板上的电压分别从负压跳变到正压,跳变电压的跳变时间小于10ns,跳变电压的触发时间在激光与气体分子作用的10ns后。
  4. 一种实现电子和离子速度影像同时测量的装置,包括离子速度影像仪,其特征在于,所述装置还包括:
    与离子速度影像仪中排斥极电极板和提取极电极板分别连接的脉冲电源,用于对排斥极电极板和提取极电极板分别施加跳变电压。
PCT/CN2016/081797 2015-11-10 2016-05-12 一种实现电子和离子速度影像同时测量的方法及装置 WO2017080146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510760750.3A CN105301278B (zh) 2015-11-10 2015-11-10 一种实现电子和离子速度影像同时测量的方法及装置
CN201510760750.3 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017080146A1 true WO2017080146A1 (zh) 2017-05-18

Family

ID=55198782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081797 WO2017080146A1 (zh) 2015-11-10 2016-05-12 一种实现电子和离子速度影像同时测量的方法及装置

Country Status (2)

Country Link
CN (1) CN105301278B (zh)
WO (1) WO2017080146A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301278B (zh) * 2015-11-10 2018-06-26 华中科技大学 一种实现电子和离子速度影像同时测量的方法及装置
CN105789021B (zh) * 2016-02-05 2019-03-26 南京信息工程大学 双极光电子光离子成像仪的离子透镜装置
CN108680944B (zh) * 2018-03-19 2020-07-14 华中科技大学 一种探测电子运动的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB730134A (en) * 1952-07-09 1955-05-18 Bendix Aviat Corp Mass spectrometer
US6888130B1 (en) * 2002-05-30 2005-05-03 Marc Gonin Electrostatic ion trap mass spectrometers
US20050258356A1 (en) * 2004-05-19 2005-11-24 Ecelberger Scott C Bipolar ion detector
CN101523547A (zh) * 2006-10-03 2009-09-02 中央研究院 双极质谱仪
JP2010182596A (ja) * 2009-02-09 2010-08-19 Jeol Ltd 荷電粒子ビーム装置
CN101952926A (zh) * 2008-01-11 2011-01-19 埃克西可集团公司 脉冲电子源、脉冲电子源的供电方法和控制脉冲电子源的方法
CN105301278A (zh) * 2015-11-10 2016-02-03 华中科技大学 一种实现电子和离子速度影像同时测量的方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB730134A (en) * 1952-07-09 1955-05-18 Bendix Aviat Corp Mass spectrometer
US6888130B1 (en) * 2002-05-30 2005-05-03 Marc Gonin Electrostatic ion trap mass spectrometers
US20050258356A1 (en) * 2004-05-19 2005-11-24 Ecelberger Scott C Bipolar ion detector
CN101523547A (zh) * 2006-10-03 2009-09-02 中央研究院 双极质谱仪
CN101952926A (zh) * 2008-01-11 2011-01-19 埃克西可集团公司 脉冲电子源、脉冲电子源的供电方法和控制脉冲电子源的方法
JP2010182596A (ja) * 2009-02-09 2010-08-19 Jeol Ltd 荷電粒子ビーム装置
CN105301278A (zh) * 2015-11-10 2016-02-03 华中科技大学 一种实现电子和离子速度影像同时测量的方法及装置

Also Published As

Publication number Publication date
CN105301278A (zh) 2016-02-03
CN105301278B (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
León et al. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters
WO2017080146A1 (zh) 一种实现电子和离子速度影像同时测量的方法及装置
CN103065921A (zh) 一种多次反射的高分辨飞行时间质谱仪
Wada Genealogy of gas cells for low-energy RI-beam production
GB2478806A (en) Mass spectrometer and methods
JP2007287404A (ja) タンデム型質量分析装置
Long et al. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector
WO2020248812A1 (zh) 改进飞行时间质谱测量激光烧蚀离子物种的质谱分辨装置
JP2010244903A (ja) 質量分析装置
CN108140537A (zh) 质谱分析装置
Habs et al. The rex-isolde project
Abplanalp et al. An optimised compact electron impact ion storage source for a time-of-flight mass spectrometer
CN104576290B (zh) 一种脉冲加压的离子富集方法
JP2011175897A (ja) 質量分析装置
CN206340512U (zh) 激光解吸电离质谱装置
WO2006098230A1 (ja) 質量分析装置
JP2007005307A (ja) 直交パルスイオンを検出する飛行時間質量分析計
US7858931B2 (en) Methods and devices for the mass-selective transport of ions
US9754772B2 (en) Charged particle image measuring device and imaging mass spectrometry apparatus
Stråhlman et al. A tandem time–of–flight spectrometer for negative–ion/positive–ion coincidence measurements with soft x-ray excitation
Yoshimura et al. Evaluation of a delay-line detector combined with analog-to-digital converters as the ion detection system for stigmatic imaging mass spectrometry
Zhang et al. A photoionized pulsed low-energy ion beam source for quantum state-to-state crossed ion-molecule scattering
CN208062022U (zh) 实现对自由飞行区解离碎片分辨的离子速度成像仪
CN104795305B (zh) 一种补偿粒子速度影像仪球面像差的方法及装置
CN208722842U (zh) 探测电子、离子和中性自由基的三极速度成像仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863335

Country of ref document: EP

Kind code of ref document: A1