WO2017079975A1 - 一种室内定位方法及设备 - Google Patents

一种室内定位方法及设备 Download PDF

Info

Publication number
WO2017079975A1
WO2017079975A1 PCT/CN2015/094585 CN2015094585W WO2017079975A1 WO 2017079975 A1 WO2017079975 A1 WO 2017079975A1 CN 2015094585 W CN2015094585 W CN 2015094585W WO 2017079975 A1 WO2017079975 A1 WO 2017079975A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
predicted
probability
location
corridor
Prior art date
Application number
PCT/CN2015/094585
Other languages
English (en)
French (fr)
Inventor
匡运生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15908105.8A priority Critical patent/EP3364698B1/en
Priority to CN201580079585.3A priority patent/CN107534949B/zh
Priority to US15/775,437 priority patent/US10228453B2/en
Priority to PCT/CN2015/094585 priority patent/WO2017079975A1/zh
Publication of WO2017079975A1 publication Critical patent/WO2017079975A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • G01S5/02521Radio frequency fingerprinting using a radio-map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0263Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
    • G01S5/0264Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems at least one of the systems being a non-radio wave positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0278Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves involving statistical or probabilistic considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • Embodiments of the present invention relate to positioning technologies, and in particular, to an indoor positioning method and device.
  • the existing indoor positioning basically adopts a wireless communication method, such as a Bluetooth-based beacon, a Wi-Fi (Wireless Fidelity) AP (Access Point), and a macro base station-based positioning technology.
  • the Bluetooth beacon and the Wi-Fi AP-based positioning technology are all implemented by the terminal side, and the macro base station-based positioning technology is used by the network side server to locate the terminal connected to the network.
  • the existing Bluetooth-based beacons and Wi-Fi AP-based indoor positioning technologies mostly adopt the positioning technology based on RSSI (Received Signal Strength Indicator).
  • the RSSI-based positioning technique is implemented based on the energy attenuation model of electromagnetic waves propagating in free space.
  • There is an inverse correlation between the received intensity of the signal and the propagation distance that is, the received intensity of the signal is attenuated as the propagation distance increases.
  • the distance between the receiver and the sender can be estimated, and the position of the receiver or the sender can be calculated according to the plurality of estimated distance values. .
  • the positioning accuracy of the RSSI-based positioning technology is low.
  • the receiving strength of the signal is a time variable, that is, when the distance between the receiver and the sender is fixed, the receiver
  • the received signal strength will also fluctuate with time, not to mention the fact that there will be a large number of interference factors in the actual environment, making the simple inverse correlation between the received intensity of the signal and the propagation distance more unreliable and cannot be received according to the received Signal strength to accurately determine the unique position of the terminal;
  • there are many interference factors that affect the receiving strength of the signal such as human body occlusion, human flow effects, moving object motion, etc. These unsteady interference factors make even the user standing In the same position, the received signal strength of the terminal is also different under different body orientations, human flow density and other factors, and the unique position of the terminal cannot be determined according to the received signal strength.
  • the RSSI-based positioning technology in the prior art relies on the received signal strength as the basis for ranging and positioning, which will cause uncertainty in the positioning result, resulting in low positioning accuracy.
  • Embodiments of the present invention provide an indoor positioning method and device, which are used to solve the problem that the positioning accuracy of the RSSI-based positioning technology is low.
  • an indoor positioning method including:
  • the terminal acquires the first location of the terminal at the first moment
  • the terminal Determining, by the terminal, the first probability corresponding to each of the predicted locations according to the historical motion information of the terminal; the first probability corresponding to the first predicted location is obtained by predicting the terminal according to historical motion information of the terminal a probability of being at the first predicted position at a second time; the first predicted position being any one of the all predicted positions; the second time being after the first time;
  • the terminal Obtaining, by the terminal, a second probability corresponding to each of the predicted positions according to a signal strength of the at least one wireless signal; the second probability corresponding to the first predicted position is according to the at least one Obtaining, by the signal strength of the line signal, a probability that the terminal is in the first predicted position at the second moment;
  • the terminal determines a predicted position with the highest probability among the all predicted positions as the second position of the terminal at the second moment.
  • the acquiring, by the terminal, all predicted locations corresponding to the first location includes:
  • the terminal acquires all predicted positions corresponding to the first location according to the type of the geographical area where the first location is located and the historical moving speed of the terminal.
  • all the predicted positions corresponding to the first location are obtained by the type of the geographical area where the first location is located. Since the motion direction of the terminal is predictable in a specific geographic area type, the predicted position of the terminal can be made more accurate and consistent. actual.
  • the type of the geographic area includes: a one-way corridor, a two-way corridor, a one-way arc corridor, and a two-way Curved corridors, plazas and Unicom areas;
  • the one-way corridor is a linear corridor that allows pedestrians to walk in one direction;
  • the two-way corridor is a linear corridor that allows pedestrians to walk in both directions;
  • the one-way curved corridor is an arc-shaped corridor that allows pedestrians to walk in one direction;
  • the two-way curved corridor is an arc-shaped corridor that allows pedestrians to walk in two directions;
  • the square is an area that does not restrict the walking direction of the pedestrian
  • the communication area is an area connecting at least two geographical areas.
  • the geographic area type of the geographical location where the positioning terminal may be located is divided, and all the predicted positions corresponding to the first position of the terminal can be quickly determined when the positioning position prediction is performed on the terminal, thereby further improving the accuracy of the terminal positioning and improving the terminal.
  • the positioning speed is divided, and all the predicted positions corresponding to the first position of the terminal can be quickly determined when the positioning position prediction is performed on the terminal, thereby further improving the accuracy of the terminal positioning and improving the terminal.
  • the historical motion information of the terminal includes at least the following Any one or more of: a moving position of the terminal in a preset time period before the first time, a moving speed of the terminal in the preset time period before the first time, and the a direction of motion of the terminal within the preset time period before the first moment.
  • the terminal acquires each of the first probability and the second probability corresponding to each of the predicted positions
  • the third probability corresponding to the predicted position includes:
  • the terminal weights and sums the first probability and the second probability corresponding to each of the predicted positions to obtain a third probability corresponding to each of the predicted positions;
  • the terminal multiplies the first probability and the second probability corresponding to each of the predicted positions to obtain a third probability corresponding to each of the predicted positions.
  • a terminal including:
  • a communication device for transmitting and receiving wireless signals
  • a sensor configured to acquire motion information of the terminal
  • the first predicted location includes at least two predicted locations; the first probability corresponding to the first predicted location is obtained according to the historical motion information of the terminal, and the terminal is predicted to be in the first predicted location at the second moment. a probability that the first predicted position is any one of the all predicted positions; the second time is after the first time; the second probability corresponding to the first predicted position is according to the at least one
  • the signal obtained by the signal strength of the wireless signal indicates the probability that the terminal is in the first predicted position at the second moment.
  • the processor when the processor obtains all predicted locations corresponding to the first location, the processor is specifically configured to:
  • all the predicted positions corresponding to the first location are obtained by the type of the geographical area where the first location is located. Since the motion direction of the terminal is predictable in a specific geographic area type, the predicted position of the terminal can be made more accurate and consistent. actual.
  • the type of the geographic area includes: a one-way corridor, a two-way corridor, a one-way arc corridor, and a two-way Curved corridors, plazas and Unicom areas;
  • the one-way corridor is a linear corridor that allows pedestrians to walk in one direction;
  • the two-way corridor is a linear corridor that allows pedestrians to walk in both directions;
  • the one-way curved corridor is an arc-shaped corridor that allows pedestrians to walk in one direction;
  • the two-way curved corridor is an arc-shaped corridor that allows pedestrians to walk in two directions;
  • the square is an area that does not restrict the walking direction of the pedestrian
  • the communication area is an area connecting at least two geographical areas.
  • the geographic area type of the geographical location where the positioning terminal may be located is divided, and all the predicted positions corresponding to the first position of the terminal can be quickly determined when the positioning position prediction is performed on the terminal, thereby further improving the accuracy of the terminal positioning and improving the terminal.
  • the positioning speed is divided, and all the predicted positions corresponding to the first position of the terminal can be quickly determined when the positioning position prediction is performed on the terminal, thereby further improving the accuracy of the terminal positioning and improving the terminal.
  • the historical motion information of the terminal includes at least the following Any one or more of: a moving position of the terminal in a preset time period before the first time, a moving speed of the terminal in the preset time period before the first time, and the a direction of motion of the terminal within the preset time period before the first moment.
  • the processor acquires each of the first probability and the second probability corresponding to each of the predicted positions
  • the third probability corresponding to the predicted position is specifically used for:
  • an indoor positioning device including:
  • a third acquiring unit configured to acquire, according to the first probability and the second probability corresponding to each of the predicted positions, a third probability corresponding to each of the predicted positions;
  • a determining unit configured to determine a predicted position with the highest probability among the all predicted positions as the second position of the device at the second moment
  • the first predicted position includes at least two predicted positions; the first probability corresponding to the first predicted position is obtained according to the historical motion information of the device, and the device is predicted to be in the first predicted position at the second moment. a probability that the first predicted position is any one of the all predicted positions; the second time is after the first time; the second probability corresponding to the first predicted position is according to the at least one
  • the signal strength acquired by the wireless signal indicates the probability that the device is at the first predicted position at the second time.
  • the first acquiring unit when acquiring all predicted locations corresponding to the first location, is specifically used to:
  • all the predicted positions corresponding to the first location are obtained by the type of the geographical area in which the first location is located, and since the motion direction of the device is predictable in the specific geographic region type, the acquired device is The predicted position corresponding to a position is more accurate and realistic.
  • the type of the geographic area includes: a one-way corridor, a two-way corridor, a one-way arc corridor, two-way Curved corridors, plazas and Unicom areas;
  • the one-way corridor is a linear corridor that allows pedestrians to walk in one direction;
  • the two-way corridor is a linear corridor that allows pedestrians to walk in both directions;
  • the one-way curved corridor is an arc-shaped corridor that allows pedestrians to walk in one direction;
  • the two-way curved corridor is an arc-shaped corridor that allows pedestrians to walk in two directions;
  • the square is an area that does not restrict the walking direction of the pedestrian
  • the communication area is an area connecting at least two geographical areas.
  • the geographical area type division is performed on the geographical area where the device may be located, and all the predicted positions corresponding to the first position of the terminal can be quickly determined when the positioning position prediction is performed on the terminal adopting the device, thereby further improving the positioning. Accuracy and positioning speed.
  • the historical motion information of the device includes at least the following Any one or more of: a moving position of the device in a preset time period before the first time, a moving speed of the device in the preset time period before the first time, and the The direction of motion of the device within the predetermined period of time prior to the first moment.
  • the third acquiring unit is configured to use the first probability and the second probability corresponding to each of the predicted positions, Obtaining a third probability corresponding to each of the predicted positions, specifically for:
  • An embodiment of the present invention provides an indoor positioning scheme, where a terminal acquires all predicted positions of a current location, predicts a first probability that the terminal passes each predicted position at a next moment according to historical motion information of the terminal, and receives the wireless sent by the positioning transmitter. a signal, based on the received signal strength, obtaining a second probability that the terminal passes each predicted position at a next moment; generating a third probability of each predicted position according to the first probability and the second probability of each predicted position, and The predicted position point with the highest probability is determined as the position at which the terminal is located at the second time.
  • the historical motion information of the terminal and the wireless signal strength received by the terminal are comprehensively analyzed to predict the location of the terminal, because the terminal is located.
  • the historical motion information of the terminal is used to calculate the occurrence probability of the predicted position, thereby preventing the occurrence of the jump of the positioning position, ensuring the continuity of the positioning position of the terminal, improving the user experience, and improving the accuracy of the positioning.
  • FIG. 1 is a schematic flowchart of an indoor positioning method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of different geographical regions in an indoor positioning environment according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of predicted positions corresponding to a geographical area of a two-way corridor type according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of predicted locations corresponding to geographical areas of a connected area type according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of predicted positions corresponding to a geographical area of a plaza according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of predicted positions corresponding to another connected area according to an embodiment of the present invention.
  • FIG. 7 is a specific example diagram of calculating a first probability of each predicted position in a two-way corridor according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of probability distribution of RSSI feature space according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an indoor positioning terminal according to an embodiment of the present invention.
  • the embodiment of the invention provides an indoor positioning method and device for solving the problem that the positioning accuracy of the RSSI based positioning technology is low.
  • the method and the device are based on the same inventive concept, and since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other. The repetitions are not repeated here.
  • FIG. 1 is a flowchart of an indoor positioning method according to an embodiment of the present invention.
  • the method can accurately locate a terminal in an indoor area.
  • the specific process is as follows:
  • Step 100 The terminal acquires the first location of the terminal at the first moment.
  • the embodiment does not limit the method in which the terminal acquires its first position at the first moment.
  • the terminal can obtain the location of the terminal according to the existing indoor positioning technology.
  • the terminal can obtain its own location according to the following specific situations.
  • the first case is that the terminal has been located using the solution of the embodiment before the first time, that is, the terminal does not use the positioning method in this embodiment for the first time.
  • the first position of the terminal at the first moment is obtained by the scheme of step 100-step 106 of the embodiment, that is, the wireless signal received according to the location of the previous moment of the first moment and the first moment.
  • the signal strength, and then by the solution of this embodiment, the position of the first moment, that is, the first position, can be obtained.
  • the second case is that the terminal does not use the positioning function in this embodiment before the first moment, that is, the terminal uses the positioning method in this embodiment for positioning for the first time at the first moment.
  • the terminal may have the following manner. One way is: if the terminal has opened the positioning function before entering the positioning area, but the signal of the wireless signal transmitter deployed in the positioning area cannot be received outside the positioning area, and the positioning cannot be performed, in this case, the first time
  • the wireless signal transmitted by the wireless signal transmitter is located at the boundary of the positioning area, such as a doorway.
  • Such a boundary area is often easy to confirm the positioning, so the terminal determines the corresponding boundary position according to the first received wireless signal, and determines The resulting boundary position serves as the first position of the terminal at the first moment.
  • the terminal may be located at any position in the positioning area, and there is no historical positioning information; In this case, according to the prior art, the location of the positioning transmitter that can receive the maximum RSSI value of the terminal can be used as the first position of the terminal at the first moment. Alternatively, you can use other existing targeting methods.
  • Step 101 The terminal acquires all predicted locations corresponding to the first location, where all predicted location packets are included. Including at least two predicted positions.
  • the indoor location area where the terminal is located may be geographically divided according to the geographic area type, and the divided geographical regions belong to The geographic area type informs the terminal.
  • all predicted positions corresponding to each location are predicted according to various types of geographical regions in advance, and then all predicted positions corresponding to each location are transmitted to the terminal.
  • the terminal acquires all predicted positions corresponding to the first location from the outside.
  • a one-way corridor is a linear corridor that allows pedestrians to walk in one direction.
  • the geographic area type includes a one-way corridor, a two-way corridor, a one-way curved corridor, a two-way curved corridor, a square, and a Unicom area.
  • the one-way corridor is a linear corridor that allows pedestrians to walk in one direction.
  • One-way corridors generally appear in indoor environments where airports, stations, ports, etc. require crowd control; two-way corridors are linear in shape that allows pedestrians to walk in both directions. Corridors, two-way corridors generally appear in indoor environments such as shopping malls, supermarkets, garages, theaters, etc., which are relatively common types of geographical areas; one-way curved corridors are curved corridors that allow pedestrians to walk in one direction; two-way curved The corridor is a curved corridor that allows pedestrians to walk in two directions; the square is an area that does not restrict the direction in which pedestrians walk; the user can walk in any direction within the square; the Unicom area is an area connecting at least two geographical areas, including entrances and exits.
  • Figure 2 shows an example of a specific indoor positioning environment that has been geographically divided.
  • Figure 2 can be an indoor environment of a mall, including multiple stores (shop AK) and multiple roads for people to walk, all of which The road for walking can be equivalent to the indoor positioning environment described in this embodiment.
  • the indoor positioning environment is divided into seven different geographical areas, and the number and type of the geographical area are as shown in Table 1.
  • the overall indoor positioning coverage area is divided into several geographical areas, which is convenient for predicting the location where the terminal may be located at the next moment, thereby improving the accuracy of the terminal positioning.
  • the predicted position of the terminal refers to a location point where the terminal may be located at the next positioning moment (ie, the second moment).
  • the predicted position depends on the type of geographic area in which the first location is located, and the corresponding predicted location is different for different geographic area types.
  • all predicted locations of the first location may be directly obtained from the server side based on the first location, and all predicted locations of the first location are based on the geographic region type of the first location. Pre-set; or, the terminal may also use any one of the following two methods to obtain all predicted positions corresponding to the first location.
  • the first mode is: the terminal acquires the type of the geographic area where the first location is located, and obtains all predicted locations corresponding to the first location according to the type of the geographical location where the first location is located.
  • the terminal determines that the geographic area to which the first location is located belongs to a corridor.
  • the predicted position of the first location is the adjacent location of the first location in the direction of the corridor.
  • the predicted position is a neighboring position ahead of the prescribed walking direction.
  • the current position point of the terminal that is, the first position point is point 0 since the user can move in the direction of the corridor in both directions in the two-way corridor, it can also remain stationary, so at the next moment
  • the terminal may be at point 1 or at point 2, or
  • the predicted position point at point 0, the first position is point 0, 1, 2.
  • the terminal determines that the geographic area to which the first location belongs is a connected area.
  • the connected area when the terminal is in the connected area, the user using the terminal may have multiple selected paths, so the first location The predicted location should cover all geographic areas with which it communicates.
  • the current position point of the terminal that is, the first position point is point 0. Since the communication area is connected to two two-way corridors, the direction of movement of the user can be connected thereto. Any two-way motion of the two-way corridor can also be stationary, so at the next moment, the terminal may be at point 1, possibly at point 2, possibly at point 3, possibly at point 4, and possibly at point 0, ie first The predicted position of the position is point 0, 1, 2, 3, 4.
  • the terminal determines that the geographic area to which the first location belongs is a plaza.
  • the predicted position of the first location is the first location in all directions. Proximity location.
  • the current position point of the terminal that is, the first position point is 0. Since the movement direction of the user in the square can be moved in any direction from the current position point, it can also be stationary. So at the next moment, the terminal may be at point 1, possibly at point 2, possibly at point 3, possibly at point 4, possibly at point 5, possibly at point 6, possibly at point 7, possibly at point 8, and possibly at point 0, that is, the predicted position points of the first position are points 0, 1, 2, 3, 4, 5, 6, 7, 8.
  • the second method is: the terminal acquires the type of the geographical area where the first location is located and the historical motion speed of the terminal, and obtains all predictions corresponding to the first location according to the type of the geographical area where the first location is located and the historical motion speed of the terminal. position.
  • the terminal determines a geographic area type to which the geographical area where the first location belongs, and determines, according to the area type, all predicted positions of the first location are located in a geographical area where the first location is located.
  • the further terminal determines the number of predicted positions based on its historical movement speed at the first position and before the first position.
  • the terminal determines that the geographic area to which the first location belongs is a connected area.
  • the connected area when the terminal is in the connected area, the user using the terminal has multiple selected paths, so the first location
  • the predicted location should cover all geographic areas with which it communicates.
  • the connected area in the example given in Figure 6, the user has four paths selectable.
  • the number of predicted position points distributed in each direction may be determined according to the historical moving speed of the terminal, and the greater the historical moving speed of the terminal, the more the predicted position points of the corresponding first position, and the terminal is assumed to be in the first position.
  • the moving speed V1 is greater than the preset threshold V0 and less than 2 times V0.
  • the number of predicted positions in each direction of the selectable path is twice as large as the number of moving speeds less than the threshold, and the current position of the terminal is the first position.
  • the point is 0, so the predicted position points of the first position are points 0, 1, 2, 3, 4, 5, 6, 7, 8.
  • Step 102 The terminal acquires a first probability corresponding to each predicted location according to historical motion information of the terminal.
  • the first predicted position corresponding to the first predicted position is a probability that the predicted terminal is in the first predicted position at the second time according to the historical motion information of the terminal; the first predicted position is any one of all predicted positions; The second moment is after the first moment.
  • the historical motion information of the terminal at least includes: a motion position of the terminal in a preset time period before the first time, a motion speed of the terminal in the preset time period before the first time, and a terminal at the first time Any one or any combination of the movement directions in the previous preset time period.
  • the terminal can obtain a correspondence relationship between each predicted position, a position change, and a motion state, and the predicted position, position change, and motion in the corridor shown in FIG.
  • the correspondence between the states is shown in Table 2.
  • the current positioning position point of the terminal that is, the first position point is point 0, so the predicted position point of the first position is point 0, 1, 2.
  • the previous one The positioning position point of the moment is point 1, and the moving direction of the user is 1 ⁇ 0.
  • Different predicted positioning position points correspond to different motion states, for example, the position change is 0 ⁇ 2, which means that the user's motion state is to continue.
  • the position change is 0 ⁇ 1, which means the user is back.
  • the current positioning position point that is, the first position point is 0, so the predicted position point of the first position is point 0, 1, 2, 3, 4. It can be known from the historical motion information of the terminal that the positioning position point of the previous moment is point 1, and the moving direction of the user is 1 ⁇ 0.
  • Different predicted positioning positions also correspond to different motion states, that is, the position change is 0 ⁇ 3, meaning that the user continues to move forward, 0 ⁇ 0 means that the user is stationary at point 0, and 0 ⁇ 1 means that the user is back, 0 ⁇ 4 means the user turns left, and 0 ⁇ 2 means the user turns right
  • the current positioning position point that is, the first position point is 0, so the predicted position point of the first position is point 0, 1, 2, 3, 4, 5, 6, 7, 8 .
  • the positioning position point of the previous moment is point 1
  • the movement direction of the user is 1 ⁇ 0
  • the selected predicted positioning position point is the adjacent positioning position point of eight directions around the 0 point. Therefore, the predicted positioning position points are nine points of 0-8.
  • the positional changes of different predicted positioning position points correspond to different motion states.
  • Step 202 is to predict the first probability that each of the predicted positions passes through all the predicted positions according to the historical motion information of the terminal.
  • the following two points can be inferred: 1.
  • the probability that the user's walking direction remains consistent over a period of time is greater, that is, if the former The user who uses the terminal for a period of time is moving forward in a certain direction, so the probability of continuing to move in the direction at the next moment is large; 2.
  • the probability that the user's walking speed of the user using the terminal maintains a small fluctuation during a period of time Larger, that is, people tend to walk at a constant speed during walking, and the walking speed will fluctuate slightly in an interval.
  • Figure 7 shows a concrete example of the first probability of calculating each predicted position in a two-way corridor.
  • the location point of the terminal at the current time is point 0.
  • the historical motion trajectory of the terminal within the preset time period before the current time is -3 ⁇ -2 ⁇ -1. ⁇ 0
  • the user using the terminal walks to the left (from the point of point-3 to point 3) in the straight corridor.
  • the predicted location points of the first location are obtained as seven location locations of the points -3, -2, -1, 0, 1, 2, and 3. Different predicted position points correspond to different motion states, that is, point 1 (0 ⁇ 1) represents continuing forward at the original speed.
  • point-1 (0 ⁇ -1) means that the user who uses the terminal changes the original direction of motion, and retreats and walks at the original speed.
  • the probability of occurrence the probability of occurrence is represented by P1'; point-2 (0 ⁇ -2)
  • the user who uses the terminal changes the original walking direction, retreats and accelerates the movement at 2 times the original speed, the probability of occurrence is small, and the probability of occurrence is represented by P2';
  • the point -3 (0 ⁇ -3) represents the terminal
  • the original speed accelerates the walking, and the probability of occurrence is the smallest, and the probability of occurrence is represented by P3'.
  • other positioning position points of the positioning area since it is far from the current position, it can be considered that the user cannot move to other positioning position points at the next positioning time, and therefore does not belong to the predicted position point.
  • Step 103 The terminal acquires a signal strength of the at least one wireless signal received by the terminal at the second moment.
  • Step 104 The terminal acquires a second probability corresponding to each of the predicted positions according to a signal strength of the at least one wireless signal.
  • the second probability corresponding to the first predicted position is obtained according to the signal strength of the at least one wireless signal, indicating a probability that the terminal is at the first predicted position at the second moment.
  • the terminal can receive the wireless signal sent by multiple wireless signal transmitters (Wi-Fi APs or BLE Beacons) at the second moment, and the terminal extracts the RSSI characteristics according to the signal strength of the received wireless signals, and obtains the terminal according to the RSSI characteristics.
  • the probability of the location at the second moment is called the RSSI feature probability.
  • the RSSI feature can be divided into two categories: RSSI absolute value and RSSI size relationship.
  • the RSSI absolute value reflects the distance from the wireless signal transmitter closest to the location.
  • the field test data shows that when the linear distance of the terminal from the transmitter is less than 1m, the received RSSI value is the largest and the variation range is not large, and it can basically stabilize at -55 ⁇ -60dBm (decibel milliwatt), and when the distance is greater than 2m At this time, the RSSI will be greatly attenuated to below -70 dBm, and the variation will start to increase. Therefore, when the wireless signal received by the terminal includes a signal whose RSSI absolute value is greater than -60 dBm, the positioning position is in a range close to the position of its corresponding wireless transmitter.
  • RSSI size relationship During terminal positioning, the terminal will receive wireless signals transmitted by multiple wireless signal transmitters, and the RSSI of these wireless signals will form a size relationship. In general, a transmitter with a relatively large RSSI value is relatively close to the user's position, but this correspondence becomes unstable due to various interference factors such as human body occlusion and human flow.
  • a spatial probability distribution of the RSSI feature is generated, and a sample training method is generally used.
  • the specific process is as follows: First, a plurality of sampling position points are selected in a coverage area of a wireless signal transmitter that has been deployed for indoor positioning, and RSSIs of signals transmitted by the wireless transmitters are collected at the sampling position points, and the wireless signals received by the terminal are acquired. The training sample of the correspondence between the RSSI and the location of the terminal. In the specific implementation process, multiple signals should be collected at the same sampling position to ensure the capacity of the training samples. In general, the larger the sample size, the more the training results reflect the actual location of the location.
  • the RSSI features in the training samples are extracted, that is, the above two RSSI features: the RSSI absolute value and the RSSI size relationship.
  • the specific RSSI characteristics are as follows: Feature 1 is: the RSSI of the wireless transmitter No. 1 is the largest and the absolute value of the RSSI is greater than -60 dBm; the second feature is: wireless transmission No. 2 The RSSI of the device is the largest and the absolute value of the RSSI is greater than -60dBm.
  • the third feature is that the RSSI of the wireless transmitters 1 and 2 is greater than the RSSI of other transmitter signals and the RSSI absolute values of the transmitters 1 and 2 are both located at -60 ⁇ . -70dBm interval, and so on.
  • each sample data that meets the specific RSSI characteristics is selected in the training sample, and the number of occurrences of the sample data within a specific location interval is counted.
  • the spatial probability distribution of the RSSI feature shown in FIG. 8 as an example, a total of 10,000 training samples are collected during the sample collection phase, and a total of 320 training samples satisfying the feature 1 are selected. Of the 320 training samples, 280 of the training samples were collected within 5 meters of the deployment position of the No.
  • the location of the location is 10 meters away from the deployment of the No. 1 transmitter.
  • the spatial probability distribution of the location can be obtained according to the collected RSSI, that is, the spatial probability distribution of the RSSI feature is generated.
  • the RSSI of the signal collected by the terminal satisfies the feature 1, that is, the RSSI of the transmitter No. 1 is the largest.
  • the terminal maps each predicted position to a position point in the RSSI feature space probability distribution, that is, finds a position coordinate point corresponding to each predicted position from the RSSI feature space probability distribution, and specific position coordinates according to each predicted position , get the second probability of each predicted position.
  • the needle For the example in Figure 7, the predicted position point 1 is located within 5 meters of the deployment location of the No. 1 transmitter, so the second probability of predicting position 1 is 0.875.
  • Step 105 The terminal acquires a third probability corresponding to each of the predicted positions according to the first probability and the second probability corresponding to each of the predicted positions.
  • the third probability corresponding to each of the predicted positions is obtained according to the first probability and the second probability corresponding to each of the predicted positions, and specifically includes the following implementation manners:
  • the terminal performs weighted summation on the first probability and the second probability corresponding to each of the predicted positions, to obtain a third probability corresponding to each of the predicted positions.
  • the probability of occurrence of the predicted position of the terminal that is, the first probability and the second probability of each predicted position obtained by the RSSI feature space probability distribution are comprehensively considered, and finally the first predicted position is obtained.
  • the specific process is to determine a specific coordinate position point of each predicted position in the RSSI feature space probability distribution, and then obtain a second probability of the RSSI feature probability corresponding to each predicted position, and weight and sum the first probability and the second probability.
  • the weight values of the first probability and the second probability may be differently set according to actual situations.
  • Manner 2 The terminal multiplies the first probability and the second probability corresponding to each of the predicted positions to obtain a third probability corresponding to each of the predicted positions.
  • the probability of occurrence of the predicted position of the terminal that is, the first probability and the second probability of each predicted position obtained by the RSSI feature space probability distribution are comprehensively considered, and finally the first predicted position is obtained.
  • the specific process is to determine the specific coordinate position point of each predicted position in the RSSI feature space probability distribution, and then obtain the RSSI feature corresponding to each predicted position, that is, the second probability, and multiply the first probability and the second probability to obtain the first Three probability, the specific results are shown in Table 6.
  • Step 106 The terminal determines the predicted position with the third highest probability among all the predicted positions as the second position of the terminal at the second moment.
  • the third probability of predicting the position point 1 is the highest, and therefore, the point 1 is determined as the position of the terminal at the second time.
  • the embodiment of the present invention further provides a terminal having an indoor positioning function, which may be a mobile phone, a tablet personal computer, or a laptop computer ( Laptop Computer), multimedia player, digital camera, personal digital assistant (PDA), navigation device, mobile internet device (Mobile Internet Device, MID) or Wearable Device.
  • a terminal having an indoor positioning function which may be a mobile phone, a tablet personal computer, or a laptop computer ( Laptop Computer), multimedia player, digital camera, personal digital assistant (PDA), navigation device, mobile internet device (Mobile Internet Device, MID) or Wearable Device.
  • FIG. 9 is a terminal according to an embodiment of the present invention.
  • the terminal includes a communication device 901, a processor 902, a memory 903, a sensor 904, an input unit 905, an output unit 906, and a peripheral interface 907.
  • the communication device 901, the processor 902, the memory 903, the sensor 904, the input unit 905, the output unit 906, and the peripheral interface 907 are connected to each other.
  • the specific connecting medium between the above components is not limited in the embodiment of the present invention.
  • the embodiment of the present invention is connected in FIG. 9 between the communication device 901, the processor 902, the memory 903, the sensor 904, the input unit 905, the output unit 906, and the peripheral interface 907 via a bus 908.
  • the bus is thick in FIG.
  • bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the structure of the terminal shown in FIG. 9 does not constitute a limitation of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more or less components than FIG. 9 or a combination thereof. Some components, or different component arrangements.
  • the communication device 901 is configured to send and receive wireless signals
  • a sensor 904 configured to acquire motion information of the terminal
  • the processor 902 is configured to acquire a first location of the terminal at a first moment, acquire all predicted locations corresponding to the first location, and acquire, according to historical motion information of the terminal, a corresponding location of each predicted location. a probability of acquiring a signal strength of the at least one wireless signal received by the communication device at the second time; acquiring a second probability corresponding to each of the predicted positions according to a signal strength of the at least one wireless signal; Determining a third probability corresponding to each of the predicted positions, and determining, by the first probability and the second probability, the third probability that the third probability is the highest among all the predicted positions, a second position of the second time; wherein the all predicted positions include at least two predicted positions; the first probability corresponding to the first predicted position is obtained according to the historical motion information of the terminal, and the terminal is predicted to be in the first a probability that the second time is at the first predicted position; the first predicted position is any one of the all predicted positions; the second time After the first time point; a second position corresponding to the first predicted
  • the memory 903 is used to store the program code executed by the processor 902.
  • the memory 903 mainly includes a program storage area and a data storage area, wherein the program storage area can store an operating system and an application required for at least one function. For example, a sound playing program, an image playing program, and the like; the data storage area can store data created according to the use of the terminal such as audio data, a phone book, and the like.
  • the memory 903 may include a volatile memory, such as a non-volatile volatile random access memory (NVRAM) or a phase change random access memory (PRAM).
  • NVRAM non-volatile volatile random access memory
  • PRAM phase change random access memory
  • a magnetoresistive random access memory may also include a non-volatile memory, such as at least one disk storage device, Electronically Erasable Programmable Read-Only Memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), flash memory device, such as NOR flash memory or NAND flash memory, or memory 903, can be used to carry or store desired program code in the form of instructions or data structures and can be Any other medium accessed by the computer, but is not limited to this.
  • the memory 903 may be a combination of the above memories.
  • the non-volatile memory stores an operating system and an application executed by the processor 902.
  • the processor 902 loads running programs and data from the non-volatile memory into memory and stores the digital content in a plurality of storage devices.
  • the operating system includes various components and/or drivers for controlling and managing conventional system tasks such as memory management, storage device control, power management, and the like, as well as facilitating communication between various hardware and software.
  • the operating system may be an Android (Android system), an iOS system, a Windows operating system, or the like, or an embedded operating system such as Vxworks.
  • the application includes any application installed on the terminal, including but not limited to browser, email, instant messaging service, word processing, keyboard virtualization, widget, encryption, digital rights management, voice recognition , voice copying, positioning, music playback, and more.
  • the processor 902 connects various parts of the entire terminal by using various interfaces and lines, by running or executing software programs and/or modules stored in the storage unit, and calling the storage.
  • the data in the memory 901 is executed to perform the method shown in FIG.
  • the processor 902 may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be composed of a plurality of packaged ICs that have the same function or different functions.
  • the processor 902 may include only a central processing unit (CPU), or may be a CPU, a digital signal processor (DSP), and a control chip in the communication device 901, such as a combination of baseband chips.
  • the CPU may be a single operation core, and may also include multiple operation cores.
  • the communication device 901 is mainly used for transmitting and receiving wireless signals, and the communication device 901 is further configured to establish a communication channel, so that the terminal connects to the remote server through the communication channel, and media data from the remote server.
  • the communication device 901 may include a wireless local area network (Wireless Local Area Network) module, a Bluetooth module, a baseband module, and the like, and a radio frequency (RF) circuit corresponding to the communication module.
  • RF radio frequency
  • wireless local area network communication Bluetooth communication, infrared communication, and/or cellular communication system communication, such as Wideband Code Division Multiple Access (W-CDMA) and/or high speed downlink packet access. (High Speed Downlink Packet Access, referred to as HSDPA).
  • the communication module is used to control communication of components in the terminal, and can support Direct Memory Access.
  • various communication modules in the communication device 901 generally appear in the form of an integrated circuit chip, and can be selectively combined without including all communication modules and corresponding Antenna group.
  • the communication device 901 can include only a baseband chip, a radio frequency chip, and a corresponding antenna to provide communication functionality in a cellular communication system.
  • the wireless communication connection established by the communication device 901, such as wireless local area network access or WCDMA access may be connected to a cellular network (Cellular Network) or the Internet (Internet).
  • a communication module, such as a baseband module, in the communication device 901 can be integrated into the processor 902.
  • the radio frequency circuit is used for receiving and transmitting signals during information transmission and reception or during a call. For example, after the downlink information of the base station is received, it is processed by the processing unit; in addition, the uplink data is designed to be sent to the base station.
  • the radio frequency circuit includes well-known circuits for performing these functions, including but not limited to an antenna system, a radio frequency transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a codec. (Codec) chipset, Subscriber Identity Module (SIM) card, memory, etc.
  • the RF circuit can communicate with the network and other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code). Division Multiple Access (CDMA), WCDMA (Wideband Code Division Multiple Access), High Speed Uplink Packet Access (HSUPA), LTE (Long Term Evolution) , email, SMS (Short Messaging Service), etc.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High Speed Uplink Packet Access HSUPA
  • LTE Long Term Evolution
  • email Short Messaging Service
  • the input unit 905 is configured to implement interaction between the user and the terminal and/or information input into the terminal.
  • the input unit 905 can receive numeric or character information input by the user to generate a signal input related to user settings or function control.
  • the input unit 905 may be a touch panel, or may be other human-computer interaction interfaces, such as physical input keys, microphones, etc., and may also be other external information capture devices, such as cameras.
  • a touch panel also known as a touch screen or touch screen, collects operational actions that the user touches or approaches on.
  • the user uses an action of any suitable object or accessory such as a finger or a stylus on or near the touch panel, and drives the corresponding connecting device according to a preset program.
  • the touch panel may include two parts: a touch detection device and a touch controller. Wherein the touch detection device detects a touch operation of the user, converts the detected touch operation into an electrical signal, and transmits the electrical signal to the touch controller; the touch controller receives the electrical signal from the touch detection device, and It is converted to contact coordinates and sent to processor 902. The touch controller can also receive commands from the processor 902 and execute them.
  • touch panels can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the physical input keys used by the input unit 905 may include, but are not limited to, a physical keyboard, function keys such as a volume control button, a switch button, etc., a trackball, a mouse, a joystick, etc. A variety of combinations. Wheat
  • the input unit 905 in the form of a wind can collect the voice input by the user or the environment and convert it into a command executable by the processor 902 in the form of an electrical signal.
  • the senor 904 is configured to acquire motion information of the terminal, and the sensor 904 may be various types of sensor components, such as a Hall device, for detecting physical quantities of the electronic device, such as force, torque, pressure, Stress, position, displacement, velocity, acceleration, angle, angular velocity, number of revolutions, speed, and time when the operating state changes, are converted into electricity for detection and control.
  • sensor components may also include gravity sensors, three-axis accelerometers, gyroscopes, and the like.
  • the sensor 904 can be integrated into the input unit 905.
  • the output unit 906 is configured to output characters, pictures, and/or videos, and the output unit 906 includes, but is not limited to, an image output unit and a sound output unit.
  • the image output unit may include a display panel, such as a liquid crystal display (LCD), an organic light-emitting diode (OLED), a field emission display (FED), or the like. Display panel.
  • the image output unit may comprise a reflective display, such as an electrophoretic display, or a display utilizing an Interferometric Modulation of Light.
  • the image output unit may comprise a single display or multiple displays of different sizes.
  • the touch panel used by the input unit 905 can also serve as the display panel of the output unit 906 at the same time. For example, when the touch panel detects a touch or proximity gesture operation thereon, it is transmitted to the processor 902 to determine the type of the touch event, and then the processor 902 provides a corresponding visual output on the display panel according to the type of the touch event. .
  • the input unit 905 and the output unit 906 are two independent components to implement the input and output functions of the electronic device, in some embodiments, the touch panel and the display panel may be integrated into one. Terminal input and output functions.
  • the image output unit can display various graphical user interfaces (GUIs) as virtual control components, including but not limited to windows, scroll axes, icons, and scrapbooks, for the user to touch. Take action.
  • GUIs graphical user interfaces
  • the image output unit includes a filter and an amplifier for filtering and amplifying the video output by the processing unit.
  • Audio output unit including digital to analog converter
  • the audio signal output by the processor 901 is converted from a digital format to an analog format.
  • the terminal in the embodiment of the present invention further includes a power supply unit 909 for supplying power to different components of the terminal to maintain its operation.
  • the power supply unit 909 may be a built-in battery, such as a conventional lithium ion battery, a nickel hydride battery, etc., and also includes an external power source that directly supplies power to the terminal, such as an AC adapter.
  • the power supply unit 909 can also be more widely defined, for example, can also include a power management system, a charging system, a power failure detection circuit, a power converter or an inverter, and a power status indication.
  • Devices such as light emitting diodes, as well as any other components associated with electrical energy generation, management, and distribution of electronic devices.
  • the terminal acquires all predicted positions of the current location, predicts the first probability that the terminal passes each predicted position at the next moment according to the historical motion information of the terminal, and receives the wireless signal sent by the positioning transmitter. And obtaining, according to the received signal strength, a second probability that the terminal passes each predicted position at the next moment; generating a third probability of each predicted position according to the first probability and the second probability of each predicted position, and generating the third probability
  • the largest predicted position point is determined as the position of the terminal at the second time.
  • the historical motion information of the terminal and the wireless signal strength received by the terminal are comprehensively analyzed to predict the location of the terminal, because the terminal is located.
  • the historical motion information of the terminal is used to calculate the probability of occurrence of the predicted position, which can prevent the occurrence of the jump of the positioning position, ensure the continuity of the positioning position of the terminal, improve the user experience, and improve the accuracy of the positioning.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Probability & Statistics with Applications (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及地理信息技术领域,特别是涉及一种室内定位方法及设备,用以解决基于RSSI的定位技术定位精度较低的问题。该方法为,终端获取当前位置的所有预测位置,根据终端的历史运动信息预测终端在下一时刻经过每个预测位置的第一概率,并基于接收到的信号强度得到终端在下一时刻经过每个预测位置的第二概率;根据每个预测位置的第一概率和第二概率生成对应的第三概率,并将第三概率最大的预测位置点判定为终端在第二时刻所处位置。这样,在终端定位过程中,将终端的历史运动信息和终端接收到的无线信号强度进行综合分析,来预测终端的定位位置,能够防止出现定位位置的跳变,保证终端定位位置的连续性,提高定位的准确性。

Description

一种室内定位方法及设备 技术领域
本发明实施例涉及定位技术,特别是涉及一种室内定位方法及设备。
背景技术
现代城市中的居民,每天平均有70%的时间在室内度过,因此对于室内环境下的定位以及从定位衍生出来的导航、找人、找物等功能具有强烈的需求。由于卫星信号到达地面时较弱、不能穿透建筑物,因此在室内环境无法直接使用现有的GPS(Global Positioning System,全球定位系统)进行定位。现有的室内定位基本采用无线通信方式,例如基于蓝牙信标、基于Wi-Fi(Wireless Fidelity,无线保真)AP(Access Point,接入点)以及基于宏基站的定位技术。其中,基于蓝牙信标和基于Wi-Fi AP的定位技术都是由终端侧实现自身的定位,而基于宏基站的定位技术是由网络侧服务器来对接入到网络的终端进行定位。
现有的基于蓝牙信标和基于Wi-Fi AP的室内定位技术从实现手段来看大都采用基于RSSI(Received Signal Strength Indicator,接收信号强度指示)的定位技术。
基于RSSI的定位技术是根据电磁波在自由空间传播的能量衰减模型来实现的。信号的接收强度与传播距离之间呈现反相关关系,即信号的接收强度随着传播距离的增加而衰减。接收方与发送方离得越近,则接收方接收到的信号强度就越强;接收方离发送方越远,则接收方接收到的信号强度就越弱。根据接收方接收到的信号的接收强度和已知的无线信号衰落模型,可以估算出接收方与发送方之间的距离,根据多个估算的距离值,可以计算出接收方或者发送方的位置。
基于RSSI的定位技术的定位精度低,主要存在两方面原因,一方面,信号的接收强度是一个时变量,即在接收方与发送方之间距离固定时,接收方 得到的信号的接收强度也会随时间起伏变化,更何况实际环境中会有大量的干扰因素,使得信号的接收强度与传播距离之间简单的反相关关系变得更加不可靠,无法根据接收的信号强度来准确确定出终端唯一的位置;另一面,影响信号的接收强度的干扰因素很多,例如人体遮挡、人流影响、移动物体运动等,这些非稳态的干扰因素的影响使得即使用户站在同一位置,在不同的身体朝向、人流密度等因素下终端获得的信号接收强度也相差较大,无法根据接收的信号强度来确定终端唯一的位置。
综上所述,现有技术中基于RSSI的定位技术由于单纯依靠接收的信号强度作为测距和定位的依据将会造成定位结果的不确定性,使得定位精度较低。
发明内容
本发明实施例提供一种室内定位方法及设备,用以解决基于RSSI的定位技术定位精度较低的问题。
本发明实施例提供的具体技术方案如下:
第一方面,提供一种室内定位方法,包括:
终端获取所述终端在第一时刻的第一位置;
所述终端获取所述第一位置对应的所有预测位置,所述所有预测位置包括至少两个预测位置;
根据所述终端的历史运动信息,所述终端获取每个所述预测位置对应的第一概率;第一预测位置对应的第一概率为根据所述终端的历史运动信息获取的、预测所述终端在第二时刻处于所述第一预测位置的概率;所述第一预测位置为所述所有预测位置中的任意一个;所述第二时刻在所述第一时刻之后;
所述终端获取所述终端在所述第二时刻接收到的至少一个无线信号的信号强度;
所述终端根据所述至少一个无线信号的信号强度获取每个所述预测位置对应的第二概率;所述第一预测位置对应的第二概率为根据所述至少一个无 线信号的信号强度获取的、表示所述终端在第二时刻处于所述第一预测位置的概率;
根据每个所述预测位置对应的第一概率和第二概率,所述终端获取每个所述预测位置对应的第三概率;
所述终端将所有所述预测位置中第三概率最高的预测位置确定为所述终端在所述第二时刻的第二位置。
结合第一方面,在第一方面的第一种可能实现方式中,所述终端获取所述第一位置对应的所有预测位置包括:
所述终端获取所述第一位置所在的地理区域的类型;
所述终端根据所述第一位置所在的地理区域的类型,获取所述第一位置对应的所有预测位置;或者,
所述终端获取所述第一位置所在的地理区域的类型和所述终端的历史运动速度;
所述终端根据所述第一位置所在的地理区域的类型和所述终端的历史运动速度,获取所述第一位置对应的所有预测位置。
这里,通过第一位置所处的地理区域类型来获取第一位置对应的所有预测位置,由于在特定地理区域类型中,终端的运动方向是可以预测的,能够使得终端的预测位置更加准确和符合实际。
结合第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,所述地理区域的类型包括:单向廊道、双向廊道、单向弧形廊道、双向弧形廊道、广场和联通区域;
所述单向廊道为允许行人单向行走的直线形的廊道;
所述双向廊道为允许行人双向行走的直线形的廊道;
所述单向弧形廊道为允许行人单向行走的弧形的廊道;
所述双向弧形廊道为允许行人双向行走的弧形的廊道;
所述广场为不限制行人行走方向的区域;
所述联通区域为连接至少两个地理区域的区域。
这里,对定位终端可能位于的地理区域进行地理区域类型划分,在对终端进行定位位置预测时能够快速确定出终端的第一位置对应的所有预测位置,进一步提高终端定位的准确性,并提升终端的定位速度。
结合第一方面、第一方面的第一种可能实现方式或第一方面的第二种可能实现方式,在第一方面的第三种可能实现方式中,所述终端的历史运动信息至少包括以下任意一个或多个:所述终端在所述第一时刻之前的预设时间段内的运动位置、所述终端在所述第一时刻之前的所述预设时间段内的运动速度和所述终端在所述第一时刻之前的所述预设时间段内的运动方向。
结合第一方面或以上任何一种可能实现方式,在第一方面的第四种可能实现方式中,所述根据每个所述预测位置对应的第一概率和第二概率,所述终端获取每个所述预测位置对应的第三概率,包括:
所述终端将每个所述预测位置对应的第一概率和第二概率进行加权求和,得到每个所述预测位置对应的第三概率;或者
所述终端将每个所述预测位置对应的第一概率和第二概率相乘,得到每个所述预测位置对应的第三概率。
第二方面,提供一种终端,包括:
通信器件,用于收发无线信号;
传感器,用于获取所述终端的运动信息;
处理器,用于
获取所述终端在第一时刻的第一位置;
获取所述第一位置对应的所有预测位置;
根据所述终端的历史运动信息,获取每个所述预测位置对应的第一概率;
获取在所述第二时刻通过所述通信器件接收到的至少一个无线信号的信号强度;
根据所述至少一个无线信号的信号强度获取每个所述预测位置对应的第二概率;
根据每个所述预测位置对应的第一概率和第二概率,获取每个所述预测位置对应的第三概率;
将所有所述预测位置中第三概率最高的预测位置确定为所述终端在所述第二时刻的第二位置;
其中,所述所有预测位置包括至少两个预测位置;第一预测位置对应的第一概率为根据所述终端的历史运动信息获取的、预测所述终端在第二时刻处于所述第一预测位置的概率;所述第一预测位置为所述所有预测位置中的任意一个;所述第二时刻在所述第一时刻之后;所述第一预测位置对应的第二概率为根据所述至少一个无线信号的信号强度获取的、表示所述终端在第二时刻处于所述第一预测位置的概率。
结合第二方面,在第二方面的第一种可能实现方式中,所述处理器在获取所述第一位置对应的所有预测位置时,具体用于:
获取所述第一位置所在的地理区域的类型;
根据所述第一位置所在的地理区域的类型,获取所述第一位置对应的所有预测位置;或者,
获取所述第一位置所在的地理区域的类型和所述终端的历史运动速度;
根据所述第一位置所在的地理区域的类型和所述终端的历史运动速度,获取所述第一位置对应的所有预测位置。
这里,通过第一位置所处的地理区域类型来获取第一位置对应的所有预测位置,由于在特定地理区域类型中,终端的运动方向是可以预测的,能够使得终端的预测位置更加准确和符合实际。
结合第二方面的第一种可能实现方式,在第二方面的第二种可能实现方式中,所述地理区域的类型包括:单向廊道、双向廊道、单向弧形廊道、双向弧形廊道、广场和联通区域;
所述单向廊道为允许行人单向行走的直线形的廊道;
所述双向廊道为允许行人双向行走的直线形的廊道;
所述单向弧形廊道为允许行人单向行走的弧形的廊道;
所述双向弧形廊道为允许行人双向行走的弧形的廊道;
所述广场为不限制行人行走方向的区域;
所述联通区域为连接至少两个地理区域的区域。
这里,对定位终端可能位于的地理区域进行地理区域类型划分,在对终端进行定位位置预测时能够快速确定出终端的第一位置对应的所有预测位置,进一步提高终端定位的准确性,并提升终端的定位速度。
结合第二方面、第二方面的第一种可能实现方式或第二方面的第二种可能实现方式,在第二方面的第三种可能实现方式中,所述终端的历史运动信息至少包括以下任意一个或多个:所述终端在所述第一时刻之前的预设时间段内的运动位置、所述终端在所述第一时刻之前的所述预设时间段内的运动速度和所述终端在所述第一时刻之前的所述预设时间段内的运动方向。
结合第二方面或以上任何一种可能实现方式,在第二方面的第四种可能实现方式中,所述处理器在根据每个所述预测位置对应的第一概率和第二概率,获取每个所述预测位置对应的第三概率时,具体用于:
将每个所述预测位置对应的第一概率和第二概率进行加权求和,得到每个所述预测位置对应的第三概率;或者
将每个所述预测位置对应的第一概率和第二概率相乘,得到每个所述预测位置对应的第三概率。
第三方面,提供一种室内定位装置,包括:
第一获取单元,用于
获取所述装置在第一时刻的第一位置;
获取所述第一位置对应的所有预测位置;
根据所述装置的历史运动信息,获取每个所述预测位置对应的第一概率;
第二获取单元,用于
获取在所述第二时刻通过所述通信器件接收到的至少一个无线信号的信号强度;
根据所述至少一个无线信号的信号强度获取每个所述预测位置对应的第 二概率;
第三获取单元,用于根据每个所述预测位置对应的第一概率和第二概率,获取每个所述预测位置对应的第三概率;
确定单元,用于将所有所述预测位置中第三概率最高的预测位置确定为所述装置在所述第二时刻的第二位置;
其中,所述所有预测位置包括至少两个预测位置;第一预测位置对应的第一概率为根据所述装置的历史运动信息获取的、预测所述装置在第二时刻处于所述第一预测位置的概率;所述第一预测位置为所述所有预测位置中的任意一个;所述第二时刻在所述第一时刻之后;所述第一预测位置对应的第二概率为根据所述至少一个无线信号的信号强度获取的、表示所述装置在第二时刻处于所述第一预测位置的概率。
结合第三方面,在第三方面的第一种可能实现方式中,所述第一获取单元在获取所述第一位置对应的所有预测位置时,具体用于:
获取所述第一位置所在的地理区域的类型;
根据所述第一位置所在的地理区域的类型,获取所述第一位置对应的所有预测位置;或者,
获取所述第一位置所在的地理区域的类型和所述装置的历史运动速度;
根据所述第一位置所在的地理区域的类型和所述装置的历史运动速度,获取所述第一位置对应的所有预测位置。
这里,通过第一位置所处的地理区域类型来获取第一位置对应的所有预测位置,由于在特定地理区域类型中,所述装置的运动方向是可以预测的,因此获取的所述装置的第一位置对应的预测位置更加准确和符合实际。
结合第三方面的第一种可能实现方式,在第三方面的第二种可能实现方式中,所述地理区域的类型包括:单向廊道、双向廊道、单向弧形廊道、双向弧形廊道、广场和联通区域;
所述单向廊道为允许行人单向行走的直线形的廊道;
所述双向廊道为允许行人双向行走的直线形的廊道;
所述单向弧形廊道为允许行人单向行走的弧形的廊道;
所述双向弧形廊道为允许行人双向行走的弧形的廊道;
所述广场为不限制行人行走方向的区域;
所述联通区域为连接至少两个地理区域的区域。
这里,对所述装置可能位于的地理区域进行地理区域类型划分,在对采用所述装置的终端进行定位位置预测时能够快速确定出所述终端的第一位置对应的所有预测位置,进一步提高定位的准确性和定位速度。
结合第三方面、第三方面的第一种可能实现方式或第三方面的第二种可能实现方式,在第三方面的第三种可能实现方式中,所述装置的历史运动信息至少包括以下任意一个或多个:所述装置在所述第一时刻之前的预设时间段内的运动位置、所述装置在所述第一时刻之前的所述预设时间段内的运动速度和所述装置在所述第一时刻之前的所述预设时间段内的运动方向。
结合第三方面或以上任何一种可能实现方式,在第三方面的第四种可能实现方式中,所述第三获取单元在根据每个所述预测位置对应的第一概率和第二概率,获取每个所述预测位置对应的第三概率时,具体用于:
将每个所述预测位置对应的第一概率和第二概率进行加权求和,得到每个所述预测位置对应的第三概率;或者
将每个所述预测位置对应的第一概率和第二概率相乘,得到每个所述预测位置对应的第三概率。
本发明实施例提供了一种室内定位方案,终端获取当前位置的所有预测位置,根据终端的历史运动信息预测终端在下一时刻经过每个预测位置的第一概率,并接收定位发射器发送的无线信号,基于接收到的信号强度得到终端在下一时刻经过每个预测位置的第二概率;根据每个预测位置的第一概率和第二概率生成每个预测位置的第三概率,并将第三概率最大的预测位置点判定为终端在第二时刻所处位置。这样,在终端定位过程中,不单纯依靠终端接收到的无线信号强度,而是将终端的历史运动信息和终端接收到的无线信号强度进行综合分析,来预测终端的定位位置,由于在终端定位过程中采 用了终端的历史运动信息来计算预测位置位置的发生概率,这样能够防止出现定位位置的跳变,保证终端定位位置的连续性,提高用户体验,还能够提高定位的准确性。
附图说明
图1为本发明实施例中室内定位方法流程示意图;
图2为本发明实施例中室内定位环境中不同的地理区域划分示意图;
图3为本发明实施例中一双向廊道类型的地理区域对应的预测位置示意图;
图4为本发明实施例中一联通区域类型的地理区域对应的预测位置示意图;
图5为本发明实施例中一广场类型的地理区域对应的预测位置示意图;
图6为本发明实施例中另一联通区域对应的预测位置示意图;
图7为本发明实施例中双向廊道中计算每个预测位置的第一概率的具体实例图;
图8为本发明实施例中RSSI特征空间概率分布示意图;
图9为本发明实施例中室内定位终端的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种室内定位方法及装置,用以解决基于RSSI的定位技术定位精度较低的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见, 重复之处不再赘述。
下面结合附图对本发明的实施方式进行详细说明。
参阅图1所示,图1为本发明实施例中提供的室内定位方法流程图,利用该方法能够对室内区域的终端实现准确定位,具体过程为:
步骤100:终端获取所述终端在第一时刻的第一位置。
具体的,在步骤100中,本实施例并不限定终端获取自身在第一时刻的第一位置的方法。终端可以根据已有的室内定位技术获取终端的位置。在具体实现时,终端可以根据以下具体情形来获取自身的位置。
第一种情形为:终端在第一时刻之前已经使用本实施例的方案进行定位,即终端非首次使用本实施例中的定位方法进行定位。此时,终端在第一时刻的第一位置是通过本实施例步骤100-步骤106的方案得到的,也就是说,根据第一时刻的前一时刻的位置和第一时刻接收到的无线信号的信号强度,然后通过本实施例的方案,可以得到第一时刻的位置,即第一位置。
第二种情形为:终端在第一时刻之前未使用本实施例中的定位功能,即终端在第一时刻首次使用本实施例中的定位方法进行定位。此时,终端获取自身在第一时刻的第一位置时,可以有以下方式。一种方式为:若终端在进入定位区域之前已经开启定位功能,但在定位区域之外无法接收到部署在定位区域内的无线信号发射器的信号而无法定位,这种情况下往往第一次接收到无线信号发射器发送的无线信号是用户位于定位区域的边界,如门口,这种边界区域往往容易确认定位,因此终端根据第一次接收到的无线信号确定出对应的边界位置,将确定出的边界位置作为终端在第一时刻的第一位置。另一种情况是若终端在进入定位区域之后才开启定位功能,这样终端接收到的无线信号发射器的信号时,终端可能位于定位区域中的任何一个位置,并且没有历史的定位信息;在这种情况下,根据现有技术,可以将终端接收到的最大RSSI值的定位发射器的位置作为终端在第一时刻的第一位置。或者,还可以使用其他现有的定位方式。
步骤101:终端获取第一位置对应的所有预测位置,所述所有预测位置包 括至少两个预测位置。
具体的,在执行步骤101之前,为了使终端能够获取第一位置对应的所有预测位置,可以按照地理区域类型对终端所在的室内定位区域进行地理区域划分,并将划分好的各地理区域所属的地理区域类型通知所述终端。或者,预先根据地理区域的各种类型,预测出每个位置对应的所有预测位置,然后将每个位置对应的所有预测位置发送给终端。或者,终端从外部获取第一位置对应的所有预测位置。
因为在某种地理区域类型中用户的运动趋势是可以预测的,所以为了便于预测终端的运动趋势,将终端所处的室内区域按照地理区域类型进行划分。例如,单向廊道是允许行人单向行走的直线形的廊道,当终端所在的第一位置所在的地理区域所属的地理区域类型为单向廊道时,终端的运动趋势只能是沿着该单相廊道继续运动。其中,所述地理区域类型包括单向廊道、双向廊道、单向弧形廊道、双向弧形廊道、广场和联通区域。单向廊道为允许行人单向行走的直线形的廊道,单向廊道一般出现在机场、车站、口岸等需要进行人流管制的室内环境;双向廊道为允许行人双向行走的直线形的廊道,双向廊道一般出现在商场、超市、车库、剧院等室内环境,是比较普遍的地理区域类型;单向弧形廊道为允许行人单向行走的弧形的廊道;双向弧形廊道为允许行人双向行走的弧形的廊道;广场为不限制行人行走方向的区域;用户可在广场内沿任意方向行走;联通区域为连接至少两个地理区域的区域,包含入口、出口、岔路口等,当用户位于联通区域时,用户的可选择路径增多,因此对于联通区域的定位准确性要求较高。图2给出了一个具体的进行了地理区域划分的室内定位环境的实例,图2可以为一个商场的室内环境,其中包括多个商店(商店A-K)和多个供人行走的道路,其中所有供行走的道路可以相当于本实施例中所述的室内定位环境,该室内定位环境被划分为7个不同的地理区域,地理区域的编号和类型如表1所示。
表1
区域编号 类型
1 双向弧形廊道
2 双向廊道
3 双向廊道
4 联通区域
5 联通区域
6 广场
7 双向廊道
将整体的室内定位覆盖区域划分为若干个地理区域,便于预测下一时刻终端可能处于的位置,从而提高终端定位的准确性。
终端的预测位置,是指终端在下一个定位时刻(即第二时刻)可能位于的位置点。预测位置取决于第一位置所在的地理区域类型,对于不同的地理区域类型,其对应的预测位置也不同。
具体的,终端获取第一位置对应的所有预测位置时,可以基于第一位置直接从服务器侧获取第一位置的所有预测位置,第一位置的所有预测位置是基于第一位置所在的地理区域类型预先设置好的;或者,终端还可以采用以下两种方式中的任意一种来获取第一位置对应的所有预测位置。
第一种方式为:终端获取所述第一位置所在的地理区域的类型,并根据第一位置所在的地理区域的类型,获取第一位置对应的所有预测位置。
例如,终端确定所述第一位置所在的地理区域所属的地理区域类型为廊道。对于廊道,由于只有一维分量,因此第一位置的预测位置为沿廊道方向上第一位置的邻近位置。对于单向廊道而言,其预测位置为规定的行走方向前方的邻近位置。在图3给出的实例中的双向廊道中,假设终端的当前位置点即第一位置点为点0,由于双向廊道中用户可以沿廊道方向双向运动,也可以保持静止,因此在下一时刻,终端可能处于点1,也可能处于点2,还可以 处于点0,即第一位置的预测位置点为点0,1,2。
又例如,终端确定所述第一位置所在的地理区域所属的地理区域类型为联通区域,对于联通区域,当终端处于联通区域时,使用终端的用户会有多种选择的路径,因此第一位置的预测位置应该覆盖所有与之联通的地理区域。在图4给出的实例中的联通区域中,终端的当前位置点即第一位置点为点0,由于此联通区域连接的是两个双向廊道,用户的运动方向可以沿着与之联通的任何一个双向廊道双向运动,也可以静止不动,因此在下一时刻,终端可能处于点1,可能处于点2,可能处于点3,可能处于点4,还可能处于点0,即第一位置的预测位置点为点0,1,2,3,4。
再例如,终端确定所述第一位置所在的地理区域所属的地理区域类型为广场,对于广场,由于使用终端的用户可以沿任意方向行走,因此第一位置的预测位置为第一位置各个方向的邻近位置。在图5给出的实例中的广场中,终端的当前位置点即第一位置点为0,由于广场中,用户的运动方向可以从当前位置点沿着任何方向运动,也可以静止不动,因此在下一时刻,终端可能处于点1,可能处于点2,可能处于点3,可能处于点4,可能处于点5,可能处于点6,可能处于点7,可能处于点8,还可能处于点0,即第一位置的预测位置点为点0,1,2,3,4,5,6,7,8。
第二种方式为:终端获取第一位置所在的地理区域的类型和终端的历史运动速度,并根据第一位置所在的地理区域的类型和终端的历史运动速度,获取第一位置对应的所有预测位置。
在上述第二种方式中,终端确定所述第一位置所在的地理区域所属的地理区域类型,根据所述区域类型确定第一位置的所有预测位置在第一位置所在的地理区域内所处的方向,进一步的终端基于自身在第一位置时及第一位置之前的历史运动速度,确定预测位置的数量。
例如,终端确定所述第一位置所在的地理区域所属的地理区域类型为联通区域,对于联通区域,当终端处于联通区域时,使用终端的用户会有多种选择的路径,因此第一位置的预测位置应该覆盖所有与之联通的地理区域。 在图6给出的实例中的联通区域中,用户会有四个方向可选择的路径。进一步的,可以根据终端的历史运动速度,确定每个方向上分布的预测位置点的数量,终端历史运动速度越大对应的第一位置的预测位置点越多,假设终端在第一位置时的运动速度V1大于预设阈值V0且小于2倍V0,因此,预测位置在可选择路径的每个方向的数量分布比运动速度小于阈值时的数量多一倍,终端的当前位置点即第一位置点为0,因此第一位置的预测位置点为点0,1,2,3,4,5,6,7,8。
步骤102:根据终端的历史运动信息,终端获取每个预测位置对应的第一概率。
其中,第一预测位置对应的第一概率为根据终端的历史运动信息获取的、预测终端在第二时刻处于所述第一预测位置的概率;第一预测位置为所有预测位置中的任意一个;第二时刻在所述第一时刻之后。
具体的,终端的历史运动信息至少包括:终端在第一时刻之前的预设时间段内的运动位置、终端在第一时刻之前的所述预设时间段内的运动速度和终端在第一时刻之前的所述预设时间段内的运动方向中的任意一个或任意组合。
进一步的,终端基于自身的历史运动速度和所述第一位置,能够得到每个预测位置、位置变化与运动状态之间的对应关系,对于图3所示廊道中的预测位置、位置变化与运动状态之间的对应关系参阅表2所示。
表2
预测位置点 运动状态 位置变化
2 继续前行 0→2
0 静止 0→0
1 后退 0→1
在图3给出的双向廊道中,终端的当前定位位置点即第一位置点为点0,因此第一位置的预测位置点为点0,1,2。由终端的历史运动信息可知,前一 时刻的定位位置点为点1,用户的运动方向为1→0。不同的预测定位位置点对应不同的运动状态,例如位置变化为0→2,意味着用户的运动状态为继续前行。同理,当位置变化为0→0,意味着用户的运动状态为静止在原地不动;位置变化为0→1,意味着用户后退。
对于图4所示联通区域中的预测位置、位置变化与运动状态之间的对应关系参阅表3所示。
表3
预测位置点 运动状态 位置变化
3 继续前行 0→3
0 静止 0→0
1 后退 0→1
4 左转 0→4
5 右转 0→5
对于图4给出的实例中的联通区域,当前定位位置点即第一位置点为0,因此第一位置的预测位置点为点0,1,2,3,4。由终端的历史运动信息可知,前一时刻的定位位置点为点1,用户的运动方向为1→0。不同的预测定位位置点同样对应不同的运动状态,即位置变化为0→3意味着用户继续前行,0→0意味着用户静止在点0不动,0→1意味着用户后退,0→4意味着用户左转,而0→2意味着用户右转
对于图5所示广场中的预测位置、位置变化与运动状态之间的对应关系参阅表4所示。
表4
预测位置点 运动状态 位置变化
5 继续前行 0→5
0 静止 0→0
1 后退 0→1
4 左前方 0→4
6 右前方 0→6
3 左转 0→3
7 右转 0→7
2 左后方 0→2
8 右后方 0→8
对于图5给出的实例中的广场,当前定位位置点即第一位置点为0,因此第一位置的预测位置点为点0,1,2,3,4,5,6,7,8。由终端的历史运动信息可知,前一时刻的定位位置点为点1,用户的运动方向为1→0,选定的预测定位位置点为在0点周围的八个方向的相邻定位位置点,所以预测定位位置点为0-8这九个点。同样,不同的预测定位位置点的位置变化对应不同的运动状态。
由此可知,不同的预测位置对应终端下一时刻不同的运动方向和运动状态,而这些运动状态的发生概率不尽相同,因此终端经过上述所有预测位置中的每个预测位置的发生概率也不会相同。步骤202就是根据终端的历史运动信息来预测自身经过所有预测位置中每个预测位置的第一概率。
具体的,预测终端经过所述所有预测位置中每个预测位置的第一概率时,可以通过以下两点推论计算:1.在一段时间内用户的行走方向保持一致的概率较大,即如果前一段时间使用终端的用户是朝着某一方向一直前行,那么在下一时刻继续朝着该方向前行的概率较大;2.在一段时间内使用终端的用户的行走速度保持小幅波动的概率较大,即人在行走的过程中更倾向于匀速行走,行走速度会在一个区间里小幅波动。基于上述两点推论以及终端的运动状态和预测位置的对应关系,可以得到不同终端经过不同预测位置的发生概率。图7给出了一个双向廊道中计算每个预测位置的第一概率的具体实例 示意图。
从图7可以看出,终端在当前时刻的位置点为点0,通过终端的历史运动信息可知,终端在当前时刻之前的预设时间段内的历史运动轨迹为-3→-2→-1→0,使用终端的用户在直线廊道内向左(从点-3到点3的方向)行走。根据所述第一位置所在的地理区域类型和自身的运动速度,得到第一位置的预测位置点为点-3、-2、-1、0、1、2和3这七个定位位置点。不同的预测位置点对应不同的运动状态,即点1(0→1)代表按原速度继续前行,这种情况是当前终端的运动状态和运动趋势的延续,因此发生的概率最大,其发生概率用P1表示;点2(0→2)代表使用终端的用户沿运动方向以2倍原速度加速前行,发生概率中,其发生概率用P2表示;点3(0→3)代表用户沿运动方向以3倍原速度加速前行,由于速度变化剧烈,因此发生概率小,其发生概率用P3表示;点4(0→4)代表静止在0点不动,发生概率中,其发生概率用P4表示;点-1(0→-1)代表使用终端的用户改变了原先的运动方向,后退并按原速度行走,发生概率中,其发生概率用P1’表示;点-2(0→-2)代表使用终端的用户改变了原先的行走方向,后退并以2倍原速度加速行走,发生概率小,其发生概率用P2’表示;点-3(0→-3)代表使用终端的用户改变了原先的行走方向,后退并以3倍原速度加速行走,发生概率最小,其发生概率用P3’表示。至于定位区域的其他定位位置点,由于距离当前位置较远,可认为在下一定位时刻用户不可能移动到其他定位位置点,因此也不属于预测位置点。
根据上述分析,可以得到所有的预测位置点的发生概率大小排序,即P1>P2=P4=P1’>P3=P2’>P3’。在图7的本实例中,可以将用户在行进过程中从第一位置到预测位置发生概率大小设置为倍数关系,即P1=2P2=4P3=8P3’,当然,这种具体的取值也可以根据实际情况具体设定,因此在该实例中0→1的发生概率P1=0.32,0→2的发生概率P2=0.16,0→3的发生概率P3=0.08,0→0的发生概率P4=0.16,0→-1的发生概率P1’=0.16,0→-2的发生概率P2’=0.08,0→-3的发生概率P3’=0.04。
步骤103:终端获取终端在第二时刻接收到的至少一个无线信号的信号强度。
步骤104:终端根据所述至少一个无线信号的信号强度获取每个所述预测位置对应的第二概率。
其中,第一预测位置对应的第二概率为根据所述至少一个无线信号的信号强度获取的、表示终端在第二时刻处于第一预测位置的概率。
终端在第二时刻可以接收到多个无线信号发射器(Wi-Fi AP或者BLE Beacon)发送的无线信号,终端根据接收的无线信号的信号强度提取出RSSI特征,并根据RSSI特征得出终端在第二时刻所处位置的概率,称为RSSI特征概率。在这里,RSSI特征可分为RSSI绝对值和RSSI大小关系两类。
RSSI绝对值:RSSI绝对值能反映出距离定位位置最近的无线信号发射器的距离。实地测试数据表明,当终端距离发射器的直线距离在1m以内时,接收到的RSSI值最大且变化幅度不大,基本能稳定在-55~-60dBm(分贝毫瓦),而当距离大于2m时,RSSI就会大幅度衰减至-70dBm以下,且变化幅度开始增大。因此,当终端接收到的无线信号中包含RSSI绝对值大于-60dBm的信号,那么该定位位置就离其对应的无线发射器的位置很近的范围。
RSSI大小关系:在终端定位过程中终端会接收到多个无线信号发射器发送的无线信号,这些无线信号的RSSI就会形成大小关系。一般来说,RSSI值相对大的发射器离用户位置的距离相对较近,但由于受到人体遮挡、人流影响等多种干扰因素的影响使得这种对应关系变得不稳定。
进一步的,根据接收到的无线信号的RSSI得到终端所处位置的概率后,生成RSSI特征的空间概率分布,通常采用样本训练方法。具体过程如下:首先,在已经部署用于室内定位的无线信号发射器的覆盖区域选取若干采样位置点,在这些采样位置点上采集无线发射器发射的信号的RSSI,获取终端接收到的无线信号的RSSI和终端所在位置这种对应关系的训练样本。在具体实施过程中,在同一个采样位置点应当采集多次信号,以保证训练样本的容量。一般来说,样本容量越大,训练的结果就越能反映实际情况下定位位置的发 生概率,样本训练的可靠性也就越高。在训练样本的采集工作完成后,提取训练样本中的RSSI特征,即上述的两个RSSI特征:RSSI绝对值和RSSI大小关系。假设室内区域覆盖了4个无线信号发射器,此时,具体的RSSI特征如下,特征一为:1号无线发射器的RSSI最大且RSSI绝对值在大于-60dBm;特征二为:2号无线发射器的RSSI最大且RSSI绝对值大于-60dBm;特征三为:1号和2号无线发射器的RSSI大于其他发射器信号的RSSI且1号和2号发射器的RSSI绝对值均位于-60~-70dBm区间,等等。提取出这些RSSI特征之后,在训练样本中筛选出每一项符合特定RSSI特征的样本数据,并统计这些样本数据在具体位置区间范围内出现的个数。以图8所示RSSI特征的空间概率分布的情况为例,在样本采集阶段一共采集了10000个训练样本,其中共筛选出320个满足特征1的训练样本。在这320个训练样本中,有280个训练样本的采集位置点距离1号发射器的部署位置5米以内,有25个训练样本的采集位置点距离1号发射器的部署位置在5米至10米的范围,而只有15个训练样本的采集位置点距离1号发射器的部署位置在10米以外。这样,就能根据采集到的RSSI得到所处位置的空间概率分布,即生成RSSI特征的空间概率分布,此时,当终端采集到的信号的RSSI满足特征1,即1号发射器的RSSI最大且RSSI绝对值大于-60dBm,就可以得到其对应的RSSI特征空间概率分布为距离1号发射器的部署位置5米以内的概率为280/320=0.875,距离1号发射器的部署位置5米至10米范围内的概率为25/320=0.078175,而距离1号发射器的部署位置10米以外的概率为15/320=0.046875。同理,特征2、特征3以及其他所有特征对应的RSSI特征的空间概率分布都可以通过上述方法获得。这里需要说明的是,由于在不同的室内定位场所中部署无线信号发射器的密度、部署方式、发射功率等因素都不同,因此构建的训练样本只是针对特定的室内定位覆盖区域,并不是一个通用的训练样本库。
接着,终端将每个预测位置映射到RSSI特征空间概率分布中的位置点,即从所述RSSI特征空间概率分布中找到每个预测位置对应的位置坐标点,根据每个预测位置具体的位置坐标,得到每个预测位置的第二概率。例如,针 对图7中的实例,预测位置点1位于距离1号发射器的部署位置5米以内,因此预测位置1的第二概率为0.875。
步骤105:终端根据每个所述预测位置对应的第一概率和第二概率,获取每个所述预测位置对应的第三概率。
可选的,根据每个所述预测位置对应的第一概率和第二概率,获取每个所述预测位置对应的第三概率,具体包括以下实施方式:
方式一,终端将每个所述预测位置对应的第一概率和第二概率进行加权求和,得到每个所述预测位置对应的第三概率。
例如,针对图7中的实例,将终端经过预测位置的发生概率即第一概率与通过RSSI特征空间概率分布得到的每个预测位置的第二概率进行综合考虑,最终得到每个预测位置的第三概率。具体过程为确定出每个预测位置在RSSI特征空间概率分布中具体坐标位置点,进而得到每个预测位置对应的RSSI特征概率即第二概率,将第一概率和第二概率进行加权求和得到第三概率。假设第一概率和第二概率的权重均设置为0.5,则加权求和得到的第三概率=第一概率*0.5+第二概率*0.5,具体的结果请见表5。其中,第一概率和第二概率的权重值,可以根据实际情形进行不同的设置。
表5
运动状态 预测位置点 第一概率 第二概率(RSSI 第三概率概率(加权
原速前行 1 0.32 0.62 0.47
2x加速前行 2 0.16 0.58 0.35
2x前行后右转 3 0.08 0.37 0.275
静止 0 0.16 0.55 0.355
原速后退 -1 0.16 0.36 0.26
2x加速后退 -2 0.08 0.22 0.15
3x加速后退 -3 0.04 0 0.02
方式二:终端将每个所述预测位置对应的第一概率和第二概率相乘,得到每个所述预测位置对应的第三概率。
例如,针对图7中的实例,将终端经过预测位置的发生概率即第一概率与通过RSSI特征空间概率分布得到的每个预测位置的第二概率进行综合考虑,最终得到每个预测位置的第三概率。具体过程为确定出每个预测位置在RSSI特征空间概率分布中具体坐标位置点,进而得到每个预测位置对应的RSSI特征概即第二概率,将第一概率和第二概率进行相乘得到第三概率,具体的结果请见表6。
表6
运动状态 预测位置点 第一概率 第二概率(RSSI 第三概率(乘积)
原速前行 1 0.32 0.62 0.1984
2x加速前行 2 0.16 0.58 0.0928
2x前行后右转 3 0.08 0.37 0.0296
静止 0 0.16 0.55 0.0880
原速后退 -1 0.16 0.36 0.0576
2x加速后退 -2 0.08 0.22 0.0176
3x加速后退 -3 0.04 0 0
步骤106:终端将所有预测位置中第三概率最高的预测位置确定为终端在第二时刻的第二位置。
通过上述图7中的实例可知,预测位置点1的第三概率最高,因此,将点1判定为终端在第二时刻的位置。
基于与图1所示的实施例同样的发明构思,本发明实施例还提供了一种具有室内定位功能的终端,该终端可以是移动电话、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、多媒体播放器、数字摄影机、个人数字助理(personal digital assistant,PDA)、导航装置、移动上网装置 (Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等。
图9为本发明实施例给出的一个具体实施方式的终端,该终端包括通信器件901、处理器902、存储器903、传感器904、输入单元905、输出单元906和外设接口907。通信器件901、处理器902、存储器903、传感器904、输入单元905、输出单元906以及外设接口907相互连接。本发明实施例中不限定上述部件之间的具体连接介质。本发明实施例在图9中以通信器件901、处理器902、存储器903、传感器904、输入单元905、输出单元906以及外设接口907之间通过总线908连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,图9中示出的终端的结构并不构成对本发明的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图9更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本发明实施例中,通信器件901,用于收发无线信号;
传感器904,用于获取所述终端的运动信息;
处理器902,用于获取所述终端在第一时刻的第一位置;获取所述第一位置对应的所有预测位置;根据所述终端的历史运动信息,获取每个所述预测位置对应的第一概率;获取在所述第二时刻通过所述通信器件接收到的至少一个无线信号的信号强度;根据所述至少一个无线信号的信号强度获取每个所述预测位置对应的第二概率;根据每个所述预测位置对应的第一概率和第二概率,获取每个所述预测位置对应的第三概率;将所有所述预测位置中第三概率最高的预测位置确定为所述终端在所述第二时刻的第二位置;其中,所述所有预测位置包括至少两个预测位置;第一预测位置对应的第一概率为根据所述终端的历史运动信息获取的、预测所述终端在第二时刻处于所述第一预测位置的概率;所述第一预测位置为所述所有预测位置中的任意一个;所述第二时刻在所述第一时刻之后;所述第一预测位置对应的第二概率为根 据所述至少一个无线信号的信号强度获取的、表示所述终端在第二时刻处于所述第一预测位置的概率。
本发明实施例中存储器903,用于存储处理器902执行的程序代码,存储器903主要包括程序存储区和数据存储区,其中,程序存储区可存储操作系统、至少一个功能所需的应用程序,比如声音播放程序、图像播放程序等等;数据存储区可存储根据终端的使用所创建的数据例如音频数据、电话本等。在本发明实施例具体实施方式中,存储器903可以包括易失性存储器,例如非挥发性动态随机存取内存(Nonvolatile Random Access Memory,NVRAM)、相变化随机存取内存(Phase Change RAM,PRAM)、磁阻式随机存取内存(Magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、或者存储器903是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器903可以是上述存储器的组合。
其中,非易失存储器储存处理器902所执行的操作系统及应用程序。所述处理器902从所述非易失存储器加载运行程序与数据到内存并将数字内容储存于大量储存装置中。所述操作系统包括用于控制和管理常规系统任务,例如内存管理、存储设备控制、电源管理等,以及有助于各种软硬件之间通信的各种组件和/或驱动器。在本发明实施方式中,所述操作系统可以是安卓(Android系统)、iOS系统或Windows操作系统等,或者是Vxworks这类的嵌入式操作系统。
所述应用程序包括安装在所述终端上的任何应用,包括但不限于浏览器、电子邮件、即时消息服务、文字处理、键盘虚拟、窗口小部件(Widget)、加密、数字版权管理、语音识别、语音复制、定位、音乐播放等等。
本发明实施例中处理器902利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储单元内的软件程序和/或模块,以及调用存储 在存储器901内的数据,以执行图1所示的方法。所述处理器902可以由集成电路(Integrated Circuit,IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。例如,处理器902可以仅包括中央处理器(Central Processing Unit,CPU),也可以是CPU、数字信号处理器(Digital Signal Processor,DSP)、及通信器件901中的控制芯片,例如基带芯片的组合。在本发明实施方式中,CPU可以是单运算核心,也可以包括多运算核心。
本发明实施例中通信器件901主要用于收发无线信号,所述通信器件901还用于建立通信信道,使终端通过所述通信信道以连接至远程服务器,并从所述远程服务器下媒体数据。所述通信器件901可以包括无线局域网(Wireless Local Area Network,简称wireless LAN)模块、蓝牙模块、基带(Base Band)模块等通信模块,以及所述通信模块对应的射频(Radio Frequency,简称RF)电路,用于进行无线局域网络通信、蓝牙通信、红外线通信及/或蜂窝式通信系统通信,例如宽带码分多重接入(Wideband Code Division Multiple Access,简称W-CDMA)及/或高速下行封包存取(High Speed Downlink Packet Access,简称HSDPA)。所述通信模块用于控制终端中的各组件的通信,并且可以支持直接内存存取(Direct Memory Access)。
在本发明的不同实施方式中,所述通信器件901中的各种通信模块一般以集成电路芯片(Integrated Circuit Chip)的形式出现,并可进行选择性组合,而不必包括所有通信模块及对应的天线组。例如,所述通信器件901可以仅包括基带芯片、射频芯片以及相应的天线以在一个蜂窝通信系统中提供通信功能。经由所述通信器件901建立的无线通信连接,例如无线局域网接入或WCDMA接入,所述终端可以连接至蜂窝网(Cellular Network)或因特网(Internet)。在本发明的一些可选实施方式中,所述通信器件901中的通信模块,例如基带模块可以集成到处理器902中。
射频电路用于信息收发或通话过程中接收和发送信号。例如,将基站的下行信息接收后,给处理单元处理;另外,将设计上行的数据发送给基站。 通常,所述射频电路包括用于执行这些功能的公知电路,包括但不限于天线系统、射频收发机、一个或多个放大器、调谐器、一个或多个振荡器、数字信号处理器、编解码(Codec)芯片组、用户身份模块(SIM)卡、存储器等等。此外,射频电路还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、高速上行行链路分组接入技术(High Speed Uplink Packet Access,HSUPA)、LTE(Long Term Evolution,长期演进)、电子邮件、SMS(Short Messaging Service,短消息服务)等。
本发明实施例中输入单元905用于实现用户与所述终端的交互和/或信息输入到所述终端中。例如,输入单元905可以接收用户输入的数字或字符信息,以产生与用户设置或功能控制有关的信号输入。在本发明的具体实施方式中,输入单元905可以是触控面板,也可以是其他人机交互界面,例如实体输入键、麦克风等,还可是其他外部信息撷取装置,例如摄像头等。触控面板,也称为触摸屏或触控屏,可收集用户在其上触摸或接近的操作动作。比如用户使用手指、触笔等任何适合的物体或附件在触控面板上或接近触控面板的位置的操作动作,并根据预先设定的程式驱动相应的连接装置。可选的,触控面板可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸操作,并将检测到的触摸操作转换为电信号,以及将所述电信号传送给触摸控制器;触摸控制器从触摸检测装置上接收所述电信号,并将它转换成触点坐标,再送给处理器902。所述触摸控制器还可以接收处理器902发来的命令并执行。此外,可以采用电阻式、电容式、红外线(Infrared)以及表面声波等多种类型实现触控面板。在本发明的其他实施方式中,输入单元905所采用的实体输入键可以包括但不限于物理键盘、功能键例如音量控制按键、开关按键等、轨迹球、鼠标、操作杆等中的一种或多种组合。麦 克风形式的输入单元905可以收集用户或环境输入的语音并将其转换成电信号形式的、处理器902可执行的命令。
本发明实施例中传感器904,用于获取所述终端的运动信息,所述传感器904可以是各类传感器件,例如霍尔器件,用于侦测电子设备的物理量,例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。其他的一些传感器件还可以包括重力感应计、三轴加速计、陀螺仪等。在本发明的一些可选实施方式中,所述传感器904可以集成到所述输入单元905中。
本发明实施例中输出单元906用于输出文字、图片和/或视频,所述输出单元906包括但不限于影像输出单元和声音输出单元。所述影像输出单元可包括显示面板,例如采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)、场发射显示器(field emission display,FED)等形式来配置的显示面板。或者所述影像输出单元可以包括反射式显示器,例如电泳式(electrophoretic)显示器,或利用光干涉调变技术(Interferometric Modulation of Light)的显示器。所述影像输出单元可以包括单个显示器或不同尺寸的多个显示器。在本发明的具体实施方式中,上述输入单元905所采用的触控面板亦可同时作为输出单元906的显示面板。例如,当触控面板检测到在其上的触摸或接近的手势操作后,传送给处理器902以确定触摸事件的类型,随后处理器902根据触摸事件的类型在显示面板上提供相应的视觉输出。虽然在图9中,输入单元905与输出单元906是作为两个独立的部件来实现电子设备的输入和输出功能,但是在某些实施例中,可以将触控面板与显示面板集成一体而实现终端的输入和输出功能。例如,所述影像输出单元可以显示各种图形化用户接口(Graphical User Interface,GUI)以作为虚拟控制组件,包括但不限于窗口、卷动轴、图标及剪贴簿,以供用户通过触控方式进行操作。
在本发明具体实施方式中,影像输出单元包括滤波器及放大器,用来将处理单元所输出的视频滤波及放大。音频输出单元包括数字模拟转换器,用 来将处理器901所输出的音频信号从数字格式转换为模拟格式。
本发明实施例中的终端还包括电源单元909,用于给终端的不同部件进行供电以维持其运行。作为一般性理解,所述电源单元909可以是内置的电池,例如常见的锂离子电池、镍氢电池等,也包括直接向所述终端供电的外接电源,例如AC适配器等。在本发明的一些实施方式中,所述电源单元909还可以作更为广泛的定义,例如还可以包括电源管理系统、充电系统、电源故障检测电路、电源转换器或逆变器、电源状态指示器例如发光二极管,以及与电子设备的电能生成、管理及分布相关联的其他任何组件。
综上所述,本发明实施例中,终端获取当前位置的所有预测位置,根据终端的历史运动信息预测终端在下一时刻经过每个预测位置的第一概率,并接收定位发射器发送的无线信号,基于接收到的信号强度得到终端在下一时刻经过每个预测位置的第二概率;根据每个预测位置的第一概率和第二概率生成每个预测位置的第三概率,并将第三概率最大的预测位置点判定为终端在第二时刻所处位置。这样,在终端定位过程中,不单纯依靠终端接收到的无线信号强度,而是将终端的历史运动信息和终端接收到的无线信号强度进行综合分析,来预测终端的定位位置,由于在终端定位过程中采用了终端的历史运动信息来计算预测位置位置的发生概率,这样能够防止出现定位位置的跳变,保证终端定位位置的连续性,提高用户体验,还能够提高定位的准确性。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程 和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种室内定位方法,其特征在于,包括:
    终端获取所述终端在第一时刻的第一位置;
    所述终端获取所述第一位置对应的所有预测位置,所述所有预测位置包括至少两个预测位置;
    根据所述终端的历史运动信息,所述终端获取每个所述预测位置对应的第一概率;第一预测位置对应的第一概率为根据所述终端的历史运动信息获取的、预测所述终端在第二时刻处于所述第一预测位置的概率;所述第一预测位置为所述所有预测位置中的任意一个;所述第二时刻在所述第一时刻之后;
    所述终端获取所述终端在所述第二时刻接收到的至少一个无线信号的信号强度;
    所述终端根据所述至少一个无线信号的信号强度获取每个所述预测位置对应的第二概率;所述第一预测位置对应的第二概率为根据所述至少一个无线信号的信号强度获取的、表示所述终端在第二时刻处于所述第一预测位置的概率;
    根据每个所述预测位置对应的第一概率和第二概率,所述终端获取每个所述预测位置对应的第三概率;
    所述终端将所有所述预测位置中第三概率最高的预测位置确定为所述终端在所述第二时刻的第二位置。
  2. 根据权利要求1所述的方法,其特征在于,所述终端获取所述第一位置对应的所有预测位置包括:
    所述终端获取所述第一位置所在的地理区域的类型;
    所述终端根据所述第一位置所在的地理区域的类型,获取所述第一位置对应的所有预测位置;或者,
    所述终端获取所述第一位置所在的地理区域的类型和所述终端的历史运 动速度;
    所述终端根据所述第一位置所在的地理区域的类型和所述终端的历史运动速度,获取所述第一位置对应的所有预测位置。
  3. 根据权利要求2所述的方法,其特征在于,所述地理区域的类型包括:单向廊道、双向廊道、单向弧形廊道、双向弧形廊道、广场和联通区域;
    所述单向廊道为允许行人单向行走的直线形的廊道;
    所述双向廊道为允许行人双向行走的直线形的廊道;
    所述单向弧形廊道为允许行人单向行走的弧形的廊道;
    所述双向弧形廊道为允许行人双向行走的弧形的廊道;
    所述广场为不限制行人行走方向的区域;
    所述联通区域为连接至少两个地理区域的区域。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述终端的历史运动信息至少包括以下任意一个或多个:所述终端在所述第一时刻之前的预设时间段内的运动位置、所述终端在所述第一时刻之前的所述预设时间段内的运动速度和所述终端在所述第一时刻之前的所述预设时间段内的运动方向。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述根据每个所述预测位置对应的第一概率和第二概率,所述终端获取每个所述预测位置对应的第三概率,包括:
    所述终端将每个所述预测位置对应的第一概率和第二概率进行加权求和,得到每个所述预测位置对应的第三概率;或者
    所述终端将每个所述预测位置对应的第一概率和第二概率相乘,得到每个所述预测位置对应的第三概率。
  6. 一种终端,其特征在于,包括:
    通信器件,用于收发无线信号;
    传感器,用于获取所述终端的运动信息;
    处理器,用于
    获取所述终端在第一时刻的第一位置;
    获取所述第一位置对应的所有预测位置;
    根据所述终端的历史运动信息,获取每个所述预测位置对应的第一概率;
    获取在所述第二时刻通过所述通信器件接收到的至少一个无线信号的信号强度;
    根据所述至少一个无线信号的信号强度获取每个所述预测位置对应的第二概率;
    根据每个所述预测位置对应的第一概率和第二概率,获取每个所述预测位置对应的第三概率;
    将所有所述预测位置中第三概率最高的预测位置确定为所述终端在所述第二时刻的第二位置;
    其中,所述所有预测位置包括至少两个预测位置;第一预测位置对应的第一概率为根据所述终端的历史运动信息获取的、预测所述终端在第二时刻处于所述第一预测位置的概率;所述第一预测位置为所述所有预测位置中的任意一个;所述第二时刻在所述第一时刻之后;所述第一预测位置对应的第二概率为根据所述至少一个无线信号的信号强度获取的、表示所述终端在第二时刻处于所述第一预测位置的概率。
  7. 根据权利要求6所述的终端,其特征在于,所述处理器在获取所述第一位置对应的所有预测位置时,具体用于:
    获取所述第一位置所在的地理区域的类型;
    根据所述第一位置所在的地理区域的类型,获取所述第一位置对应的所有预测位置;或者,
    获取所述第一位置所在的地理区域的类型和所述终端的历史运动速度;
    根据所述第一位置所在的地理区域的类型和所述终端的历史运动速度,获取所述第一位置对应的所有预测位置。
  8. 根据权利要求7所述的终端,其特征在于,所述地理区域的类型包括:单向廊道、双向廊道、单向弧形廊道、双向弧形廊道、广场和联通区域;
    所述单向廊道为允许行人单向行走的直线形的廊道;
    所述双向廊道为允许行人双向行走的直线形的廊道;
    所述单向弧形廊道为允许行人单向行走的弧形的廊道;
    所述双向弧形廊道为允许行人双向行走的弧形的廊道;
    所述广场为不限制行人行走方向的区域;
    所述联通区域为连接至少两个地理区域的区域。
  9. 根据权利要求6-8任一所述的终端,其特征在于,所述终端的历史运动信息至少包括以下任意一个或多个:所述终端在所述第一时刻之前的预设时间段内的运动位置、所述终端在所述第一时刻之前的所述预设时间段内的运动速度和所述终端在所述第一时刻之前的所述预设时间段内的运动方向。
  10. 根据权利要求6-9任一所述的终端,其特征在于,所述处理器在根据每个所述预测位置对应的第一概率和第二概率,获取每个所述预测位置对应的第三概率时,具体用于:
    将每个所述预测位置对应的第一概率和第二概率进行加权求和,得到每个所述预测位置对应的第三概率;或者
    将每个所述预测位置对应的第一概率和第二概率相乘,得到每个所述预测位置对应的第三概率。
PCT/CN2015/094585 2015-11-13 2015-11-13 一种室内定位方法及设备 WO2017079975A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15908105.8A EP3364698B1 (en) 2015-11-13 2015-11-13 Method, terminal, data processing apparatus and computer readable storage medium for indoor positioning
CN201580079585.3A CN107534949B (zh) 2015-11-13 2015-11-13 一种室内定位方法及设备
US15/775,437 US10228453B2 (en) 2015-11-13 2015-11-13 Indoor positioning method and device
PCT/CN2015/094585 WO2017079975A1 (zh) 2015-11-13 2015-11-13 一种室内定位方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094585 WO2017079975A1 (zh) 2015-11-13 2015-11-13 一种室内定位方法及设备

Publications (1)

Publication Number Publication Date
WO2017079975A1 true WO2017079975A1 (zh) 2017-05-18

Family

ID=58694633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094585 WO2017079975A1 (zh) 2015-11-13 2015-11-13 一种室内定位方法及设备

Country Status (4)

Country Link
US (1) US10228453B2 (zh)
EP (1) EP3364698B1 (zh)
CN (1) CN107534949B (zh)
WO (1) WO2017079975A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132029A (zh) * 2019-10-16 2020-05-08 张苏 基于地形约束的定位方法及装置
US10863452B2 (en) 2018-12-12 2020-12-08 Rohde & Schwarz Gmbh & Co. Kg Method and radio for setting the transmission power of a radio transmission
CN114449439A (zh) * 2021-10-29 2022-05-06 国网河北省电力有限公司雄安新区供电公司 一种地下管廊空间的定位方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587988B1 (en) * 2019-03-15 2020-03-10 Mapsted Corp. Method and system of mobile device sequencing for localization
CN109991569B (zh) * 2019-04-03 2021-01-15 北京邮电大学 一种基于毫米波机器人的反射物定位方法及装置
CN111741431B (zh) * 2020-06-30 2022-09-02 Oppo广东移动通信有限公司 室内定位方法及装置、终端、存储介质
US20220286805A1 (en) * 2021-03-05 2022-09-08 Comcast Cable Communications, Llc Locating devices within a premises
CN113411748B (zh) * 2021-04-28 2024-04-02 杭州医惠物联网科技有限公司 一种室内蓝牙定位坐标稳定和误差修正方法
CN117270692B (zh) * 2023-10-12 2024-06-07 江南大学 一种视线状态预测方法、装置及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066969A (zh) * 2008-05-16 2011-05-18 苹果公司 位置确定
US20130178230A1 (en) * 2011-06-03 2013-07-11 Apple Inc. Altitude estimation using a probability density function
CN103957505A (zh) * 2014-04-22 2014-07-30 北京航空航天大学 一种基于ap的行为轨迹检测分析与服务提供系统及方法
CN104333903A (zh) * 2014-09-17 2015-02-04 北京邮电大学 基于rssi和惯性测量的室内多目标的定位系统和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE361609T1 (de) * 2005-06-28 2007-05-15 Research In Motion Ltd Probabilistische vorhersage des aufenthaltsortes für eine mobilstation
US8565783B2 (en) * 2010-11-24 2013-10-22 Microsoft Corporation Path progression matching for indoor positioning systems
CN102958153A (zh) * 2011-08-24 2013-03-06 无锡天锐科技发展有限公司 一种基于无线传感器网络的定位方法
US9194935B2 (en) 2012-05-08 2015-11-24 Texas Instruments Incorporated Wireless local area network based positioning
CN104081831B (zh) * 2012-08-21 2018-08-14 统一有限责任两合公司 选择接入点的方法和通信系统
US9143926B2 (en) * 2012-09-06 2015-09-22 Dell Products, Lp Method and apparatus for context aware management of location optimization of virtual machines for mobility and real-time enterprise applications
US9247381B2 (en) * 2014-03-24 2016-01-26 Qualcomm Incorporated System, method and devices for delivering positioning assistance data
US9125019B1 (en) * 2014-05-01 2015-09-01 Glopos Fzc Positioning arrangement, method, mobile device and computer program
US9599698B2 (en) * 2014-12-02 2017-03-21 Intel Corporation Enhanced positioning system using hybrid filter
CN104655137B (zh) * 2015-03-05 2017-07-14 中国人民解放军国防科学技术大学 行人航迹推测辅助的Wi‑Fi信号指纹定位算法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066969A (zh) * 2008-05-16 2011-05-18 苹果公司 位置确定
US20130178230A1 (en) * 2011-06-03 2013-07-11 Apple Inc. Altitude estimation using a probability density function
CN103957505A (zh) * 2014-04-22 2014-07-30 北京航空航天大学 一种基于ap的行为轨迹检测分析与服务提供系统及方法
CN104333903A (zh) * 2014-09-17 2015-02-04 北京邮电大学 基于rssi和惯性测量的室内多目标的定位系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364698A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10863452B2 (en) 2018-12-12 2020-12-08 Rohde & Schwarz Gmbh & Co. Kg Method and radio for setting the transmission power of a radio transmission
CN111132029A (zh) * 2019-10-16 2020-05-08 张苏 基于地形约束的定位方法及装置
CN114449439A (zh) * 2021-10-29 2022-05-06 国网河北省电力有限公司雄安新区供电公司 一种地下管廊空间的定位方法及装置
CN114449439B (zh) * 2021-10-29 2023-05-23 国网河北省电力有限公司雄安新区供电公司 一种地下管廊空间的定位方法及装置

Also Published As

Publication number Publication date
US20180348351A1 (en) 2018-12-06
CN107534949A (zh) 2018-01-02
CN107534949B (zh) 2020-06-09
EP3364698A1 (en) 2018-08-22
EP3364698A4 (en) 2018-10-24
US10228453B2 (en) 2019-03-12
EP3364698B1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2017079975A1 (zh) 一种室内定位方法及设备
EP3664513B1 (en) Positioning method and apparatus
CN103563406B (zh) 对从地理围栏离开的监视
CN103563405B (zh) 选择用于地理围栏监视的无线接入点
EP2880880B1 (en) Generating geofences
US9253728B2 (en) Operating geographic location systems
KR101686477B1 (ko) 개선된 삼변 측량 처리
CN105740291B (zh) 地图界面显示方法及装置
EP2550838A2 (en) Mobile computing device having relative positioning circuit
CN104238900B (zh) 一种页面定位方法及装置
JP2018511038A (ja) 適応型位置インジケータ
CN106465327B (zh) 移动终端的控制方法、装置及系统
CN103236183A (zh) 一种基于无线地磁检测的自动寻车系统、方法及移动终端
CN108917766B (zh) 一种导航方法和移动终端
CN115361040A (zh) 一种nfc应用的调用方法、电子设备及nfc装置
KR102230583B1 (ko) 위치 기반 서비스 제공 방법, 전자 장치, 서버 및 저장 매체
JP2013171044A (ja) 位置測位方法及び装置並びに電子装置
KR20140097426A (ko) 컴퓨팅 장치의 글로벌 위치를 결정하기 위해 측지 삼각 측량을 사용하고 용이하게 하기 위한 메커니즘
Le et al. Indoor navigation system for handheld devices
CN111309223B (zh) 应用功能启动方法、装置、存储介质及移动终端
Narupiyakul et al. An indoor navigation system for the visually impaired based on RSS lateration and RF fingerprint
US20200393573A1 (en) Control apparatus, method and computer program code for controlling indoor positioning transitions
KR101573198B1 (ko) 관심 지점 자동 인식을 위한 방법 및 장치, 이를 위한 기록 매체
CN112783992A (zh) 一种基于兴趣点的地图功能区域确定方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015908105

Country of ref document: EP