WO2017079815A1 - Formulação de compósito de resíduos de madeira e termoplástico reciclado com aditivos nanométricos e produto resultante - Google Patents

Formulação de compósito de resíduos de madeira e termoplástico reciclado com aditivos nanométricos e produto resultante Download PDF

Info

Publication number
WO2017079815A1
WO2017079815A1 PCT/BR2016/050233 BR2016050233W WO2017079815A1 WO 2017079815 A1 WO2017079815 A1 WO 2017079815A1 BR 2016050233 W BR2016050233 W BR 2016050233W WO 2017079815 A1 WO2017079815 A1 WO 2017079815A1
Authority
WO
WIPO (PCT)
Prior art keywords
wood
formulation
recycled
composite
additives
Prior art date
Application number
PCT/BR2016/050233
Other languages
English (en)
French (fr)
Inventor
Guilherme HOFFMANN BAMPI
Original Assignee
Hoffmann Bampi Guilherme
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann Bampi Guilherme filed Critical Hoffmann Bampi Guilherme
Publication of WO2017079815A1 publication Critical patent/WO2017079815A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to improvements made in thermoplastic composite and resulting product applied in the plastic wood industry (WPC), which obtain pellets and extruded parts with excellent physical and chemical characteristics for application as structure and / or finishing and with the purpose of recycling materials for the sake of ecology, through the introduction of nanometer-sized components, bringing advantages to improve the resistance to bacteria and fungi and consequently to obtain optimized formulation with greater amount of wood residues, higher mechanical resistance, higher resistance. weathering and longer shelf life.
  • WPC plastic wood industry
  • Composite materials are defined as materials formed of two or more constituents with distinct compositions, structures and properties and which are separated by an interface. The main purpose in producing composites is to combine different materials to produce a single device with properties superior to unitary components. Thus, composites with optical, structural, electrical, optoelectronic, chemical and other are easily found in modern devices and systems. (Reference: Polymer and Composite Engineering Laboratory at UFMG - http://www.demet.ufmg.br/ docentes / rodrigo / compositos.htm).
  • composites make it possible to aggregate materials that are generated from the disposal of other industrial processes, for example waste from sawmills, can be brought back to a productive process in the form of cargo; Discarded paper and cardboard can be pulped again and molded into other products ranging from modular furniture structures to providing fibers for composite panel structures. So an important feature for composite materials is recycling.
  • Silver nanoparticle additives are of a nonhealthy size and have been added to the original formula along with zinc to fill the small spaces between wood and plastic fibers. Nanoparticles offer the advantage of adhering and destroying bacterial cells.
  • the Protective Master consists of: 6 parts of
  • Nanoparticles half silver, half zinc of Nanox Clean or similar brand, 5 parts Anti-UV, 3 parts Antioxidant, 10 parts High Density Polyethylene (HDPE) Crystal. These proportions were obtained through the theoretical analysis of the desirable characteristics in the product and the technical specifications of each component. Utilization ranged from 1% to 3% depending on the degree of weather resistance desired, taking into account the concentration of wood in the composition. The greater the amount of wood, the greater the need for Protective Master to ensure good durability of the material. The minimum established was derived from the tests. In smaller amounts the product does not perform as expected, while more than the stipulated dosage results in material waste, not changing the behavior of the agent.
  • HDPE High Density Polyethylene
  • the internal lubricant chosen was the Modified Fatty Acid Ester Complex Mixture composition with a drop point of 71 to 86 ° C from Sreteol TPW-113® trade mark or equivalent.
  • the internal lubricant is chemically compatible with the polymer and works at the molecular level. Its function is to reduce the friction between polymer molecules and van der Waals forces. This results in a reduction in the energy consumption required for processing and mainly promotes a reduction in composite viscosity inside the machine.
  • the minimum established was derived from the tests. If applied less than the minimum stipulated parts are obtained with cracks and low production speed and inhomogeneous product. If applied more than the maximum stipulated, material waste occurs.
  • the external lubricant chosen was the polyethylene scale with a melting point of 95 to 105 ° C.
  • the external lubricant acts by creating an interface between the polymer granule and the metal surface of the equipment, reducing friction. Its function is to delay melting of the extruded material and to control the melt flowability.
  • the best empirical results of material processability were obtained when the dosage of external lubricant was twice the amount of internal lubricant. The lower the percentage of external lubricant in the formulation, the slower and more difficult the material processing is.
  • the minimum established was derived from the tests. If applied less than stipulated, parts come out stuffed and production drops. If applied more than the maximum stipulation, process stains are obtained on the parts, being aesthetically disapproved.
  • HDPE High Density Polyethylene
  • HDPE High Density Polyethylene
  • HDPE was prepared with a blend of industrial chip HDPE (homogeneous) and post-consumer waste HDPE (heterogeneous).
  • the proportion of Homogeneous HDPE ranged from 12% to 30% of total HDPE, with the remainder (to complete 100%) supplemented with heterogeneous HDPE (post-consumption).
  • the use of higher homogeneous HDPE concentration was used when the quality of heterogeneous HDPE was lower or when there was very large heterogeneity (too much quality variation).
  • HDPE high density polyethylene
  • a lower concentration makes the material more rigid and consequently more brittle, so that the best results obtained in the formulation were in the indicated range.
  • the minimum established was derived from the tests. If applied less than stipulated, the formulation does not homogenize. If applied more than stipulated, there is variation in the expansion of the material.
  • the Wood Flour used was a mixture of pine and / or eucalyptus wood dust and / or post-consumer wood (undetermined species) from the remains of coils, pallets, cabinets and / or wooden furniture. The minimum established was derived from the tests. If applied less than stipulated, much variation in dilation occurs. If applied more than stipulated, does not homogenize the material.
  • the Mineral Load used was talc and / or magnesium silicate and / or calcium carbonate. The minimum established was derived from the tests. If applied less than stipulated, the resistance of the part drops. If applied more than stipulated, the part becomes very brittle and the wear is very large on the machine thread.
  • the composition may be added to the composition: coupling agent, which is grafted (grafted) maleic anhydride in polyolefin polymer; a modified fatty acid complex ester mixture; additional photoprotective agent as amine-type photostabilizer; other primary and secondary antioxidant agents, such as phosphonite-type process stabilizers, blocked phenolic compounds, secondary aromatic amines, aromatic amines, sulfur-containing co-stabilizers or metal deactivators.
  • the composition may utilize flame retardant additives, blowing agent and desiccant agent, process return (recycled defective parts) among others.
  • Pigment is a coloring agent
  • masterbatch which may be a compound of organic and inorganic pigments and may be completely removed from the formulation if the part is for structural application without the need for aesthetic color.
  • UV and Antioxidant 1% to 2%
  • UV Resistance and Fading After 2000 hours of intense exposure to UV rays in the Xenon chamber, delta-E did not reach 6, which is a good result. In the UVB test, after 2000 hours of exposure, delta-E did not reach 1, which corresponds to an excellent result.
  • Shear Strength [065] Test for shear strength evaluation in plastic materials according to NBR 7190: 1997. Evaluation carried out on a EMIC Universal Testing Machine with a load application rate of 2.5 MPa / min. The test was performed in two sets of specimens of the "Tábua Aitá" sample, one set conditioned at 23 + 2 ° C and 50 + 5% RH, and the other in saturated humidity to constant mass conditioning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Wood Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Refere-se a invenção a aperfeiçoamentos introduzidos em compósito termoplástico e produto resultante, aplicado na indústria de madeira plástica (WPC), que obtém pellets e peças extrudadas com excelentes características físicas e químicas para aplicação como estrutura e/ou acabamento e com finalidade de reciclagem de materiais para o bem da ecologia, através de formulação com componentes em tamanho nanométrico que obtém produto com teores de madeira entre 30 e 54% e resistência contra o desenvolvimento de bactérias e fungos, trazendo vantagens de obter formulação otimizada com maior quantidade de resíduos de madeira, elevada resistência mecânica, resistência a intempéries e durabilidade do plástico.

Description

"FORMULAÇÃO DE COMPÓSITO DE RESÍDUOS DE MADEIRA E TERMOPLÁSTICO RECICLADO COM ADITIVOS NANOMÉTRICOS E PRODUTO RESULTANTE"
[01] A presente invenção refere-se a aperfeiçoamentos introduzidos em compósito termoplástico e produto resultante, aplicado na indústria de madeira plástica (WPC), que obtém pellets e peças extrudadas com excelentes características físicas e químicas para aplicação como estrutura e/ou acabamento e com finalidade de reciclagem de materiais para o bem da ecologia, através de introdução de componentes em tamanho nanométrico, trazendo vantagens de melhorar a resistência a bactérias e fungos e consequentemente obter formulação otimizada com maior quantidade de resíduos de madeira, maior resistência mecânica, maior resistência a intempéries e maior prazo de validade.
[02] Como é de conhecimento dos meios técnicos ligados à indústria de WPC, a indústria de madeiras plásticas proporciona uma variedade de produtos os quais vêm, com o contínuo melhoramento, apresentando características apropriadas para a substituição de inúmeros materiais tradicionalmente utilizados na produção de bens e produtos. Materiais como a madeira, por exemplo, já podem ser substituídos com grande aceitação por uma série de materiais compósitos amplamente difundidos.
[03] Materiais compósitos são definidos como materiais formados de dois ou mais constituintes com distintas composições, estruturas e propriedades e que estão separados por uma interface. O objetivo principal em se produzir compósitos é de combinar diferentes materiais para produzir um único dispositivo com propriedades superiores às dos componentes unitários. Dessa forma, compósitos com finalidades ópticas, estruturais, elétricas, opto-eletrônicas, químicas e outras são facilmente encontrados em modernos dispositivos e sistemas. (Referência: Laboratório de Engenharia de Polímeros e Compósitos da UFMG - http://www.demet.ufmg.br/ docentes/rodrigo/ compositos.htm).
[04] Com isso é possível projetar um material tendo em vista a sua necessidade de utilização, ou seja, se for desejado obter um produto compósito com características de resistência estrutural e isolamento termo-acústico, pode-se então reunir materiais que somados em um produto compósito externem tais características.
[05] Um ponto importante no que tange aos compósitos é que possibilitam agregar materiais que gerados a partir de descarte de outros processos industriais, por exemplo, resíduos de serrarias, podem ser reconduzidos a um processo produtivo na forma de carga; papel e papelão descartados podem ser transformados em polpa novamente e moldados na forma de outros produtos que vão desde estruturas modulares para móveis até proporcionar fibras para estruturas de painéis compósitos. Então, uma característica importante para os materiais compósitos é a reciclagem.
[06] O estado da técnica proporciona uma série de ensinamentos relacionados ao campo tecnológico dos compósitos, conforme se pode observar nas revelações mostradas nas buscas de patentes brasileiras PI0103654-8, PI0402485-0, das patentes estadunidenses US5516472, US6210616, US6479002 e US2010319144 e das patentes européias EP2216365 e CN101698750, anexadas ao pedido de patente brasileiro BR 10 2012 004500 1 com deposito estendido nos EUA 13/410,565 do mesmo inventor.
[07] As anterioridades reveladas apresentam desvantagens, limitações e inconvenientes de maior custo de formulação por usar mais plástico e menos madeira, necessita de grande proporção para garantir boa durabilidade das peças, fugir da aparência de madeira e não aproveitar recursos renováveis.
[08] "FORMULAÇÃO DE COMPÓSITO DE
RESÍDUOS DE MADEIRA E TERMOPLÁSTICO RECICLADO COM ADITIVOS NANOMÉTRICOS E PRODUTO RESULTANTE", objetos da presente patente foram desenvolvidos para superar os inconvenientes, limitações e desvantagens das composições e produtos atuais, pois apresenta aperfeiçoamentos em compósito termoplástico e nos produtos resultantes que obtém produtos para aplicação como estrutura e/ou acabamento através de introdução de componentes em tamanho nanométrico, trazendo vantagens de melhorar a resistência a bactérias e fungos e consequentemente obter formulação otimizada com maior quantidade de resíduos de madeira mantendo a mesma resistência mecânica, a mesma resistência a intempéries e o mesmo prazo de validade, produto com durabilidade equivalente, material tão duro e resistente quanto a madeira natural, material reciclado com a beleza da madeira natural, com tecnologia de nanopartículas amplamente utilizado e aprovada pelo FDA (autoridade sanitária americana).
[09] As soluções atuais apresentam os seguintes problemas técnicos que foram resolvidos da seguinte maneira:
[010] a) As composições atuais não resistem às bactérias e consequentemente a madeira se degrada exigindo com isto uma menor parcela de resíduos de madeira e maior parcela de termoplástico, resolvido pela presente formulação através de colocação de prata nanométrica na composição; [011] b) As composições atuais não resistem aos fungos e consequentemente a madeira se degrada exigindo com isto uma menor parcela de resíduos de madeira e maior parcela de termoplástico, resolvido pela presente formulação através de colocação de zinco nanométrico na composição; e
[012] c) As peças produzidas com WPC atuais necessitam de maiores percentagens de termoplástico em sua composição para melhorar a resistência mecânica e às intempéries e para compensar o baixo prazo de validade dos resíduos de madeira que são atacados por fungos e bactérias, resolvido pela composição da presente patente através do uso de menor quantidade de plástico e maiores quantidades de madeira dentro do mesmo prazo de validade dos atuais WPC.
[013] Os aditivos de nanopartículas de prata possuem um tamanho que não apresenta riscos para a saúde e foram adicionados à fórmula original, juntamente com zinco para encher os pequenos espaços entre as fibras de madeira e plástico. As nanopartículas oferecem a vantagem de aderir e destruir as células de bactérias.
[014] Os aperfeiçoamentos através do uso de prata e zinco em tamanho nanométrico na formulação de compósito de madeira e plástico trazem uma proteção microbiológica contra bactérias e fungos, permitindo a resistência a intempéries, durabilidade do plástico com alto percentual de madeira na composição, com elevada resistência mecânica e uso de maior quantidade de madeira na composição.
[015] Os aditivos na forma metálica formando ilhas ou partículas de Ag ou Zn, onde a prata tem o efeito bactericida e o zinco fungicida, portanto a combinação deles potencializa as propriedades do produto. [016] Após incessantes pesquisas obteve-se a seguinte faixa de componentes para obtenção dos resultados da composição aperfeiçoada:
[017] - Master Protetivo (Nanopartículas com Anti- UV e Antioxidante): 1% a 3%
[018] - Lubrificante interno: 1 % a 4%
[019] - Lubrificante externo: 2% a 8%
[020] - PEAD reciclado: 26% a 43%
[021] - Carga Mineral: 13% a 20%
[022] - Farinha de Madeira: 30% a 54%
[023] - Pigmento: 3% a 5%
[024] O Master Protetivo é composto por: 6 partes de
Nanopartículas (sendo metade prata, metade zinco) de marca Nanox Clean ou similar, 5 partes de Anti-UV, 3 partes de Antioxidante, 10 partes de Polietileno de Alta Densidade (PEAD) Cristal. Essas proporções foram obtidas através da análise teórica sobre as características desejáveis no produto e as especificações técnicas de cada componente. A utilização variou entre 1% e 3% dependendo do grau de resistência a intempéries desejada, levando em consideração a concentração de madeira na composição. Quanto maior a quantidade de madeira, maior a necessidade de Master Protetivo para garantir boa durabilidade do material. O mínimo estabelecido foi derivado dos testes. Em menor quantidade o produto não faz o efeito esperado, enquanto mais do que a dosagem estipulada resulta em desperdício de material, não mudando o comportamento do agente.
[025] O Lubrificante interno escolhido foi a composição de Mistura do complexo de éster de ácidos graxos modificados com ponto de gota de 71 a 86 ° C da marca comercial Straktol TPW-113® ou equivalente. O lubrificante interno é quimicamente compatível com o polímero e trabalha a nível molecular. Sua função é a de reduzir a fricção entre as moléculas do polímero e as forças de van der Waals. Isso resulta numa redução do consumo de energia necessário para o processamento e principalmente promove a redução da viscosidade do compósito no interior da máquina. O mínimo estabelecido foi derivado dos testes. Se aplicado menos que o mínimo estipulado, obtêm-se as peças com rachaduras e velocidade de produção baixa e produto não homogéneo. Se aplicado mais do que o estipulado do máximo, ocorre desperdício de material.
[026] O Lubrificante externo escolhido foi a escama de polietileno com ponto de fusão de 95 a 105 ° C . O lubrificante externo age criando uma interface entre o grânulo do polímero e a superfície metálica do equipamento, reduzindo a fricção. Sua função é atrasar a fusão do material extrusado e controlar a fluidez da massa fundida. Os melhores resultados empíricos de processabilidade do material foram obtidos quando a dosagem de lubrificante externo foi o dobro da quantidade de lubrificante interno. Quanto menor o percentual de lubrificante externo na formulação, mais lento e dificultoso é o processamento do material. O mínimo estabelecido foi derivado dos testes. Se aplicado menos que o estipulado, as peças saem estufadas e cai a produção. Se aplicado mais que o estipulado do máximo, obtêm-se manchas de processo nas peças, sendo esteticamente reprovado.
[027] O PEAD (Polietileno de Alta Densidade) utilizado foi sempre reciclado, portanto não foi utilizado PEAD virgem. O PEAD foi preparado com uma blenda de PEAD de aparas industriais (homogéneo) e PEAD de resíduos pós-consumo (heterogéneo). A proporção de PEAD homogéneo variou de 12% a 30% do total de PEAD, sendo o restante (para completar 100%) completado com PEAD heterogéneo (pós-consumo). O uso de maior concentração de PEAD homogéneo foi usado quando a qualidade do PEAD heterogéneo era mais baixa ou quando havia uma heterogeneidade muito grande (muita variação de qualidade). O uso do PEAD em maior concentração no composto torna o material mais flexível, enquanto uma menor concentração torna o material mais rígido e consequentemente mais quebradiço, de forma que os melhores resultados obtidos na formulação foram na faixa apontada. O mínimo estabelecido foi derivado dos testes. Se aplicado menos que o estipulado, a formulação não homogeniza. Se aplicado mais que o estipulado, ocorre variação na dilatação do material.
[028] A Farinha de Madeira utilizada foi de misturas de pó de madeira de pinus e/ou eucalipto, e/ou madeira pós-consumo (espécies indeterminadas) provenientes de restos de bobinas, paletes, armários e/ou mobiliários em madeira. O mínimo estabelecido foi derivado dos testes. Se aplicado menos que o estipulado, ocorre muita variação na dilatação. Se aplicado mais que o estipulado, não homogeniza o material.
[029] A Carga Mineral utilizada foi talco e/ou silicato de magnésio e/ou carbonato de cálcio. O mínimo estabelecido foi derivado dos testes. Se aplicado menos que o estipulado, cai a resistência da peça. Se aplicado mais que o estipulado, a peça fica muito quebradiça e o desgaste é muito grande na rosca da máquina.
[030] Opcionalmente, pode ser agregado à composição: agente de acoplamento, que é anidrido maleico enxertado (graftizado) em polímero poliolefínico; uma mistura de éster complexo modificado de ácido graxo; agente fotoprotetivo adicional como fotoestabilizador do tipo amina; outros agentes antioxidantes primários e secundários, como por exemplo estabilizantes de processo do tipo fosfonitos, compostos fenólicos bloqueados, aminas aromáticas secundárias, aminas aromáticas, co-estabilizantes contendo enxofre ou desativadores de metais. Adicionalmente, a composição poderá utilizar aditivos retardantes de chama, agente expansor e agente dessecante, retorno de processo (peças defeituosas recicladas) entre outros.
[031] O pigmento é um agente colorante
("masterbatch"), que pode ser um composto de pigmentos orgânicos e inorgânicos e pode ser retirado completamente da formulação caso a peça seja para aplicação estrutural sem a necessidade estética de cor.
[032] As pesquisas e desenvolvimentos obtiveram a seguinte formulação da presente patente como preferencial:
[033] - Master Protetivo (Nanopartículas com Anti-
UV e Antioxidante): 1% a 2%
[034] - Lubrificante interno: 1% a 3%
[035] - Lubrificante externo: 2% a 6%
[036] - PEAD reciclado: 30% a 40%
[037] - Carga Mineral: 13% a 18%
[038] - Farinha de Madeira: 40% a 50%
[039] - Pigmento: 3% a 5%
[040] A sequência de adição de componentes da formulação do invento, na fabricação do produto, é toda no conjunto ao mesmo tempo, pois se trata de um dosador que mistura a massa com todos os componentes da formulação juntos, tal como uma massa de bolo. [041] Com as composições da presente patente obteve-se madeira plástica com as seguintes propriedades físicas:
[042] Durabilidade: estimada em 50 anos.
[043] Garantia: 10 anos contra ataque de fungos e pragas.
[044] Manutenção: limpeza com água e sabão neutro. Não é necessário pintar nem envernizar o material.
[045] Resistência ao Fogo: reação ao fogo análoga à madeira dura de lei.
[046] Resistência ao Impacto: possui boa resistência a impacto.
[047] Resistência UV e Desbotamento: após 2000 horas de intensa exposição aos raios UV em câmara de Xenon, o delta-E não atingiu 6, o que corresponde a um bom resultado. Já no teste de UVB, após 2000 horas de exposição, o delta-E não atingiu 1, o que corresponde a um excelente resultado.
[048] Absorção de Água: quase nula (0,6% em massa no teste ABNT, 24h submerso), o que significa que o produto pode ser aplicado até submerso.
[049] Determinação do coeficiente de atrito (COF):
[050] Avaliação realizada em Máquina Universal de
Ensaios EMIC com velocidade de afastamento do través móvel de 150 mm/min e intervalo de medição de 100 mm. O ensaio foi realizado em dois conjuntos de corpos de prova das amostras "Tábua Aitá" e "Tábua Tefé", sendo um conjunto condicionado a 23 + 2°C e 50 + 5% U.R., e outro conjunto ensaiado aplicando- se uma fina camada de água sobre cada corpo de prova. A avaliação foi realizada na superfície dos corpos de prova, utilizando-se placas de borracha como recobrimento do dispositivo de arraste. Ensaio baseado na norma ASTM D 1894 - Ι ΐεΐ, equipamentos de ensaio conforme modelo C da norma. Peso do dispositivo de arraste: 200 gf.
[051] Resultados:
[052] Amostras: Tábua Tefé
[053] Coeficiente de Atrito Estático: Médio de 5 corpos de provas, 1,24
[054] Coeficiente de Atrito Dinâmico: Médio de 5 corpos de provas 1,16
[055] Amostras: Tábua Tefé com Adição de Água
[056] Coeficiente de Atrito Estático: Médio de 5 corpos de provas, 1,19
[057] Coeficiente de Atrito Dinâmico: Médio de 5 corpos de provas, 1,14
[058] Amostras: Tábua Aitá
[059] Coeficiente de Atrito Estático: Médio de 5 corpos de provas, 1,16
[060] Coeficiente de Atrito Dinâmico: Médio de 5 corpos de provas, 1,12
[061] Amostras: Tábua Aitá com Adição de Água
[062] Coeficiente de Atrito Estático: Médio de 5 corpos de provas, 1,29
[063] Coeficiente de Atrito Dinâmico: Médio de 5 corpos de provas, 1,28
[064] Resistência ao Cisalhamento: [065] Ensaio de avaliação da resistência ao cisalhamento em materiais plásticos, conforme norma NBR 7190: 1997. Avaliação realizada em Máquina Universal de Ensaios EMIC com taxa de aplicação de carga de 2,5 MPa/min. O ensaio foi realizado em dois conjuntos de corpos de prova da amostra "Tábua Aitá",sendo um conjunto condicionado a 23 + 2°C e 50 + 5% U.R., e outro em condicionamento de umidade saturada até massa constante.
[066] Resultados:
[067] Amostras Tábua Aitá
[068] Tensão Máxima (MPa): Média de 5 corpos de prova, 15,76
[069] Amostras: Tábua Aitá em condição saturada
[070] Tensão Máxima (MPa): Média de 5 corpos de prova, 14,47.
[071] Outros Ensaios Físicos em Condições
Ambientais do Laboratório de Ensaios: Temperatura: 23±2°C e Umidade Relativa: 50+5%:
[072] Dureza Shore D, ASTM D2240-05:
Resultado: Dureza Shore D, mediana 64
[073] Resistência à Tração em Plásticos, ASTM
D638-10: Resultado: Módulo de Elasticidade em Tração, Mpa: 3848
[074] Tensão na Ruptura, MPa: 13
[075] Alongamento no Escoamento, % :0,6
[076] Resistência a Flexão em Plástico, ISO
178:2010 - Método A: Resultado: Tensão na Máxima Flexão, MPa (média) 33
[077] Módulo de Elasticidade, MPa (média) 3820 [078] Determinação da Temperatura de Deflexão,
ISO 75:2004 (E) - Parte 1 - Método A - Horizontal e Equipamento CEAST HDT VICAT Serial 18774. Condições de ensaio: Temperatura inicial do teste: 30°C em banho de silicone. Taxa de aquecimento: 120°C/h. Carga de teste solicitada pelo cliente: 1,80 MPa. Span utilizado: 64 mm:
[079] Resultado: Temperatura de Deflexão - HDT :
53,08 °C
[080] Determinação da Temperatura de
Amolecimento em Plásticos, ASTM Dl 525-09 e Equipamento CEAST HDT VICAT Serial 18774 Temperatura inicial do teste: 30°C em banho de silicone.
[081] Carga de teste solicitada pelo cliente: 10 N. A taxa de aquecimento utilizada: 120°C/h - Taxa B:
[082] Resultado: Temperatura de Amolecimento -
VICAT; 123,4 °C
[083] Intemperismo acelerado (Xenon Test) e
Determinação da Variação de Cor após 500, 1.000, 1.500 e 2.000 horas ASTM D2565-99 (Reap. 2008), ASTM G155 -Ciclo 1. Câmara de Intemperismo Q- Sun Xe-3-HS n° de série 16-06-81-47 X3HS:
[084] Resultados: Intemperismo Acelerado - Xenon
Test
[085] Determinação da Variação da Cor ASTM
D2244-11 :
[086] Tábua Jatobá L* a* b* delta L* delta a* delta b* delta E*
[087] S em exposição (Média) 45,20 9,56 [088] Após 500h de exposição (Média) 47,99
11,36 10,50 2,79 1,80 -3,22 4,62
[089] Após l.OOOh de exposição (Média) 49,65
12,05 11,02 4,45 2,49 -2,70 5,77
[090] Após 1.500h de exposição (Média) 49,13
12,38 10,96 3,93 2,82 -2,76 5,57
[091] Após 2.000h de exposição (Média) 49,22
12,35 10,96 4,02 2,79 -2,76 5,62
[092] Avaliação Visual: Houve alteração visual significativa da cor após 500 horas de exposição ao intemperismo, e esta se manteve similar nos demais períodos de exposição (1.000, 1.500 e 2.000 horas).
[093] Ensaios de avaliação das cargas de ruptura de perfis de diferentes geometrias e comprimentos em ensaios de flexão e de compressão.
[094] Metodologia: Ensaios em peças estruturais de pilares em compressão, vigas em flexão e lambris em flexão.
[095] Resultados das cargas de ruptura (cargas de ruptura ou perda de estabilidade) em Kgf:
[096] Pilar Pilar Pilar
[097] 150 220 300 cm
[098] Médias:
[099] 6618 5713 3903
[0100] Palanque Palanque Palanque
[0101] Longo Longo Longo
[0102] Lixado Lixado Lixado
[0103] 150cm 220cm 300cm [0104] Médias:
[0105] 5265 4809 2908
[0106] Viga Viga Viga
[0107] Longa Longa Longa
[0108] Lixada Lixada com Lixada
[0109] Reforço
[0110] 300cm 300cm 300cm
[0111] Médias:
[0112] 330 404 513
[0113] Pilar Pilar
[0114] Robusto Robusto
[0115] Longo Longo
[0116] 220cm 300cm
[0117] Médias:
[0118] 15.386 8080
[0119] Pilar Pilar
[0120] Refinado Refinado
[0121] Lixado Lixado
[0122] 220cm 300cm
[0123] Médias:
[0124] 8899 7042
[0125] Lambri Lambri
[0126] 100cm 50cm
[0127] Médias:
[0128] 12 24 [0129] Ensaios Microbiológicos de Resistência a
Bactérias através de Técnicas de Disco Difusão em Ágar de avaliação com Inoculo: 4,5 x IO6 UFC/ml de Escherichia coli. Concluiu-se com o ensaio que as amostras apresentaram um maior halo de inibição tanto para a superfície desgastada (lixada) quanto para a superfície não desgastada. Para as amostras atestou-se que o antimicrobiano utilizado também foi eficiente acima de 99,99 %, mesmo com concentrações reduzidas de aplicação. Não foi observado após as 48 horas, difusão de halo.
[0130] Ensaios Microbiológicos de Resistência a
Bactérias através de Técnicas de Disco Difusão em Ágar de avaliação com Inoculo: IO4 UFC/ml de pool de fungos. Concluiu-se com o presente ensaio que as amostras apresentaram uma maior inibição para o pool de fungos inoculada, não apresentando crescimento sobre sua superfície com eficiência acima de 99,99 %.

Claims

REIVINDICAÇÕES
1. "FORMULAÇÃO DE COMPÓSITO DE RESÍDUOS DE MADEIRA E TERMOPLÁSTICO RECICLADO COM ADITIVOS NANOMÉTRICOS", caracterizado por, os seguintes constituintes:
- Master Protetivo composto por 6 partes de Nanopartículas (sendo metade prata e metade zinco), 5 partes de Anti-UV, 3 partes de Antioxidante elO partes de Polietileno de Alta Densidade Cristal: 1% a 3%;
- Lubrificante interno composto por mistura do complexo de éster de ácidos graxos modificados com ponto de gota de 71 a 86 ° C: 1% a 4%;
- Lubrificante externo composto por a escama de polietileno com ponto de fusão de 95 a 105 ° C: 2% a 8%;
- Polietileno de alta densidade reciclado: 26% a 43%;
- Carga Mineral composta por um ou mais dos seguintes componentes: talco, silicato de magnésio e carbonato de cálcio: 13% a 20%; - Farinha de Madeira composta por pó de madeira: 30% a 54%; e - Pigmentos orgânicos e inorgânicos: 3% a 5%.
2. "FORMULAÇÃO DE COMPÓSITO DE RESÍDUOS DE MADEIRA E TERMOPLÁSTICO RECICLADO COM ADITIVOS NANOMÉTRICOS E PRODUTO RESULTANTE", de acordo com a reivindicação 1 , caracterizado por, alternativamente a Farinha de Madeira ser escolhida de um grupo com um ou mais tipos entre pinus, eucalipto e madeira pós-consumo.
3. "COMPÓSITO DE RESÍDUOS DE MADEIRA E TERMOPLÁSTICO RECICLADO COM ADITIVOS NANOMETRICOS", de acordo com a reivindicação 1, caracterizado por, conter até 54 % de madeira e resistência a bactérias com eficiência acima de 99,99 % e resistência a bactérias com eficiência acima de 99,99 %.
4. "FORMULAÇÃO DE COMPÓSITO DE RESÍDUOS DE MADEIRA E TERMOPLÁSTICO RECICLADO COM
ADITIVOS NANOMETRICOS", caracterizado por, por formulação principal com os seguintes constituintes:
- Master Protetivo (Nanopartículas com Anti-
UV e Antioxidante): 1% a 2%
- Lubrificante interno: 1% a 3%
- Lubrificante externo: 2% a 6%
- PEAD reciclado: 30% a 40%
- Carga Mineral: 13% a 18%
- Farinha de Madeira: 40% a 50%
- Pigmento: 3% a 5%
PCT/BR2016/050233 2015-11-09 2016-09-20 Formulação de compósito de resíduos de madeira e termoplástico reciclado com aditivos nanométricos e produto resultante WO2017079815A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020150282168 2015-11-09
BR102015028216-8A BR102015028216B1 (pt) 2015-11-09 2015-11-09 Formulação de compósito de resíduos de madeira e termoplástico reciclado com aditivos nanométricos e produto resultante

Publications (1)

Publication Number Publication Date
WO2017079815A1 true WO2017079815A1 (pt) 2017-05-18

Family

ID=58694470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/050233 WO2017079815A1 (pt) 2015-11-09 2016-09-20 Formulação de compósito de resíduos de madeira e termoplástico reciclado com aditivos nanométricos e produto resultante

Country Status (2)

Country Link
BR (1) BR102015028216B1 (pt)
WO (1) WO2017079815A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927878A (zh) * 2018-08-04 2018-12-04 滁州晶田新型装饰材料有限公司 一种防滑易施工wpc地板生产工艺
RU2707260C1 (ru) * 2019-03-27 2019-11-26 Общество с ограниченной ответственностью Научно-производственное объединение "Инновации" Комплексный способ получения композиционных шпал путем переработки древесных и полимерных отходов

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104689A1 (en) * 2005-03-24 2006-10-05 3M Innovative Properties Company Polymer nanocomposite having surface modified nanoparticles and methods of preparing same
CN101457024A (zh) * 2009-01-07 2009-06-17 东南大学 一种制备木塑复合材料的方法及制得的复合材料
WO2010053232A1 (en) * 2008-11-04 2010-05-14 Kiss Products Korea Co.,Ltd. Method for manufacturing artificial nail having antimicrobial and colorless function with nano metal particles treated
JP2010284837A (ja) * 2009-06-10 2010-12-24 Teijin Fibers Ltd 産業資材用膜材
CN101974245A (zh) * 2010-09-29 2011-02-16 北京化工大学 一种高透明紫外阻隔节能膜及其溶液相转移制备方法
KR20140107119A (ko) * 2013-02-27 2014-09-04 제일모직주식회사 전자파 차폐 특성이 우수한 열가소성 수지 조성물
CN104488727A (zh) * 2014-11-25 2015-04-08 芜湖悠派卫生用品有限公司 一种纳米颗粒吸附型猫砂及其制备方法
KR20150048592A (ko) * 2013-10-28 2015-05-07 (주)대웅 장섬유계 필러를 함유하는 폐플라스틱의 재활용 방법
JP2015151521A (ja) * 2014-02-18 2015-08-24 東京応化工業株式会社 接着剤積層体及びその利用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104689A1 (en) * 2005-03-24 2006-10-05 3M Innovative Properties Company Polymer nanocomposite having surface modified nanoparticles and methods of preparing same
WO2010053232A1 (en) * 2008-11-04 2010-05-14 Kiss Products Korea Co.,Ltd. Method for manufacturing artificial nail having antimicrobial and colorless function with nano metal particles treated
CN101457024A (zh) * 2009-01-07 2009-06-17 东南大学 一种制备木塑复合材料的方法及制得的复合材料
JP2010284837A (ja) * 2009-06-10 2010-12-24 Teijin Fibers Ltd 産業資材用膜材
CN101974245A (zh) * 2010-09-29 2011-02-16 北京化工大学 一种高透明紫外阻隔节能膜及其溶液相转移制备方法
KR20140107119A (ko) * 2013-02-27 2014-09-04 제일모직주식회사 전자파 차폐 특성이 우수한 열가소성 수지 조성물
KR20150048592A (ko) * 2013-10-28 2015-05-07 (주)대웅 장섬유계 필러를 함유하는 폐플라스틱의 재활용 방법
JP2015151521A (ja) * 2014-02-18 2015-08-24 東京応化工業株式会社 接着剤積層体及びその利用
CN104488727A (zh) * 2014-11-25 2015-04-08 芜湖悠派卫生用品有限公司 一种纳米颗粒吸附型猫砂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927878A (zh) * 2018-08-04 2018-12-04 滁州晶田新型装饰材料有限公司 一种防滑易施工wpc地板生产工艺
RU2707260C1 (ru) * 2019-03-27 2019-11-26 Общество с ограниченной ответственностью Научно-производственное объединение "Инновации" Комплексный способ получения композиционных шпал путем переработки древесных и полимерных отходов

Also Published As

Publication number Publication date
BR102015028216A2 (pt) 2017-05-09
BR102015028216B1 (pt) 2022-01-18

Similar Documents

Publication Publication Date Title
Srivabut et al. Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber
Pérez et al. Tensile and fracture behaviour of PP/wood flour composites
Ayrilmis Combined effects of boron and compatibilizer on dimensional stability and mechanical properties of wood/HDPE composites
Leong et al. Characterization of talc/calcium carbonate filled polypropylene hybrid composites weathered in a natural environment
Devaraju et al. Mechanical properties of polymer composites with ZnO nano-particle
EP2358819B1 (de) Lagerstabile zweikomponentige siliconkleb- und dichtstoffe mit verlängerter mischeroffenzeit
Cataldi et al. Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration
Chakrabarti et al. Physical, mechanical, and thermal properties of PVC/PMMA blends in relation to their morphologies
Croitoru et al. Calcium carbonate and wood reinforced hybrid PVC composites
WO2017079815A1 (pt) Formulação de compósito de resíduos de madeira e termoplástico reciclado com aditivos nanométricos e produto resultante
CN108794931A (zh) 一种阻燃型pvc板材用纳米碳酸钙的改性方法及其应用
Müller et al. Thermal degradation of ethanolamine treated poly (vinyl chloride)/wood flour composites
CN106317755A (zh) 一种长效抗菌防霉abs功能性材料及其制备方法
WO2009044042A3 (fr) Composition d'ensimage sous forme de gel physique pour fils de verre, fils de verre obtenus et composites comprenant lesdits fils
CN102093663A (zh) 一种abs阻燃材料及其制备方法
Zhu et al. Effect of polymer matrix/montmorillonite compatibility on morphology and melt rheology of polypropylene nanocomposites
US9475941B1 (en) Formulation of wood waste and recycled thermoplastic composite with nanometric additives and resulting product
Vijayasekaran et al. Enhancement of natural fiber-reinforced plastics by polyester and seaweed waste fibers
Englund et al. Flexure and water sorption properties of wood thermoplastic composites made with polymer blends
Awad et al. Modification of the resistance of two epoxy resins to accelerated weathering using calcium sulfate as a photostabilizer
Chen et al. A Study on the Morphology and Mechanical Properties of PVC/nano‐SiO2 Composites
CN105038096A (zh) 一种含abs树脂的白色高光耐候材料及其制备方法
CN101074314B (zh) 一种玻璃纤维增强阻燃性聚碳酸酯树脂组成物
Linares et al. Pro-degradant effect of talc nanoparticles on polypropylene films
JP2010150457A (ja) 分子量低下の少ない帯電防止性ポリカーボネート樹脂組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863248

Country of ref document: EP

Kind code of ref document: A1