WO2017078566A1 - Procédé de formation d'une image à plans multiples et afficheur stéréoscopique à foyers multiples - Google Patents

Procédé de formation d'une image à plans multiples et afficheur stéréoscopique à foyers multiples Download PDF

Info

Publication number
WO2017078566A1
WO2017078566A1 PCT/RU2015/000956 RU2015000956W WO2017078566A1 WO 2017078566 A1 WO2017078566 A1 WO 2017078566A1 RU 2015000956 W RU2015000956 W RU 2015000956W WO 2017078566 A1 WO2017078566 A1 WO 2017078566A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
microdisplay
lens
stereoscopic display
curvature
Prior art date
Application number
PCT/RU2015/000956
Other languages
English (en)
Russian (ru)
Inventor
Василий Станиславович БАРТОШ
Игорь Викторович БЕЛАГО
Евгений Владимирович ВЛАСОВ
Юрий Леонидович КРАВЧЕНКО
Дмитрий Владимирович ОГОРОДНИКОВ
Original Assignee
Общество С Ограниченной Ответственностью "Софтлаб-Нск"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Софтлаб-Нск" filed Critical Общество С Ограниченной Ответственностью "Софтлаб-Нск"
Publication of WO2017078566A1 publication Critical patent/WO2017078566A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/60Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images involving reflecting prisms and mirrors only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof

Definitions

  • the invention relates to means for displaying information, to optoelectronic systems with imaginary images of spatial objects, namely to personal three-dimensional displays. Its application makes it possible to provide natural stereoscopic vision in the range from 1 m to infinity, as well as coordinated stimuli of accommodation and convergence of the eyes. This is achieved by constructing two image plans for each eye.
  • a cardinal solution to the problem is to ensure the correspondence between convergence and accommodation of the eyes, or the construction of a multi-faceted stereo display.
  • Visualization (of data): Converting digital data into an image that is readable by a person or a special device.
  • Source
  • the field of view is a space, all points of which are simultaneously visible with a fixed gaze. Big Medical Encyclopedia. 1970.
  • Accommodation from lat. Accommodatio - adaptation - adaptation), in biology and medicine, a term close to the term "adaptation" and used in certain cases.
  • excitable tissues to the action of a stimulus that slowly grows in strength
  • the multifocal stereo display is made with two channels, each of which uses three plans, which are combined using beam splitters.
  • the distance between the plans ⁇ 0.67 diopters.
  • the volume of accommodation 1, 34 diopters.
  • Image depth 0.31+ 0.54 m.
  • Field of view 6.1 ° * 4.4 °.
  • the main idea is to filter and interpolate the intensity of the images in depth between adjacent plans.
  • SUBSTITUTE SHEET (RULE 26)
  • the image source is a CRT monitor with a frame rate of 180 g.
  • the frequency of regeneration of 4-focal stereo images is 22.5 Hz.
  • the disadvantages of the known technical solution are the lack of a positioning system, a low frame rate of 22.5 Hz, the use of two CRT monitors as an image source (desktop version only), a shallow image depth formed by four image plans with diopter focuses 5.09D, 5.69D, 6.29D, 6.89 D (image depth 14.5cm - 19.6cm).
  • a technical solution is known, presented in a multifocal stereo display (Patent RF Ns2201610 “Multifocal stereo display”, IPC G02B27 / 22, published March 27, 2003), consisting of two display channels connected to a video controller and containing a fiber-optic light source, a focusing lens and a two-coordinate a scanner, as well as a multifocal eyepiece, composed of an extender of light beams, a beam splitter plate and two spherical concave mirrors located on different sides, each of which contains two nfocal reflective layer.
  • a disadvantage of the known technical solution is the low contrast of the combined image, the lack of a positioning system, the large nonlinearity of the accommodation stimulus (deviations of the generated accommodation stimulus from the real one more than 19%).
  • SUBSTITUTE SHEET (RULE 26) beam splitting cube.
  • the volumetric image is represented by four SVGA-images.
  • the eyepiece contains two flat images P1 and P2, and with the help of lens L forms their imaginary image. Thanks to the beam splitting cube S, the imaginary images P1 and P2 turn out to be coaxial and perpendicular to the visual axis OZ.
  • the radiation of the image elements P1, P2 is focused by the lens of the eye into the light spots of the images p1 and p2 so that the maximum of the total energy is in the fovea q region.
  • the resulting images are composed by interpolating the intensity in depth.
  • the interpolation process itself is as follows:
  • a disadvantage of the known technical solution is the presence of contrast dips in the combined image, a small angle of the field of view, the absence of a positioning system, and a large nonlinearity of the accommodation stimulus.
  • the authors were tasked with developing a method of forming a multi-faceted image in the form of a combination of two two-dimensional images spaced in depth along the visual axis of the eye and a mobile multifocal stereoscopic display that provides stereoscopic vision in the range from 1 m to infinity.
  • a multifocal stereoscopic display comprising a power supply, a housing, an image processing and forming unit located therein, which is made by a connected cable to the controller; two parallel identical optical channels, each of which contains an optically coupled eyepiece, made containing, along its optical axis, a first doublet consisting of a biconcave lens and
  • SUBSTITUTE SHEET (RULE 26) a biconvex lens, a second doublet, consisting of a biconvex lens and a biconcave lens, the first collective lens, beam splitting cube, the first microdisplay, the second microdisplay; moreover, the first microdisplay is installed along the face of the beam splitting cube, which is parallel to the optical axis of the eyepiece, and the second microdisplay is installed along the face of the perpendicular optical axis of the eyepiece, the microdisplay is in the subject plane of the eyepiece; and the implementation of the following steps a) preparing static data for further visualization of the images through the processing and control unit for each optical channel; b) the construction of two plans for temporary images for each of the optical channels; c) transferring plans of temporary images via cables to the controller and reformatting by means of the last temporary images to the format required by the microdisplay; d) obtaining an optical image on the microdisplay screen; e) a combination of two optical images by means of
  • g De l (x, y) - image; PSFA (z) is the axial distribution of light intensity; Zn, Zf - depth of plans P1, P2 in diopters; (x, y) - the relative position of the point on the interval [ZnZf], combining the plans of temporary images into a single temporary image, consisting of at least four sections, each of which corresponds to a specific optical channel and a specific plan of a single temporary image, transmitting a single temporary image to controller using an HDMI cable, dividing a single temporary image into at least 4 separate image sections using a controller, and individual image sections are reformatted to the desired microdisplays the format for output to the corresponding microdisplays, moreover, the multifocal stereoscopic display is configured to be connected to an external power source, the power supply is made as a constant voltage source, then the beam splitting cube is made with an edge, the length of which is 14.99 - 15.01 mm, a doublet consisting of a biconcave lens and a
  • SUBSTITUTE SHEET (RULE 26) information received from the image recorder or a dynamic image is performed with the possibility of forming a sequence of digital information in a three-dimensional virtual world, while the image recorder is performed in the form of a 3D camera, either in the form of a stereoscopic camera or in the form of a camera with depth information.
  • the method is implemented using a multifocal stereoscopic display, which contains a power supply, a housing, a processing and imaging unit located in it, which is made by a cable connected to the controller; two parallel identical optical channels, each of which contains an optically coupled eyepiece, made containing, along its optical axis, a first doublet consisting of a biconcave lens and a biconvex lens, a second doublet consisting of a biconvex lens and a biconcave lens; first collective lens; beam splitting cube; first microdisplay; second microdisplay; moreover, the first microdisplay is installed along the face of the beam-splitting cube, which is parallel to the optical axis of the eyepiece, and the second microdisplay is installed along the face of the perpendicular optical axis of the eyepiece, the microdisplay is in the subject plane of the eyepiece while it is additionally equipped with an inertial positioning system sensor that tracks the location and orientation of the case space, with each optical channel additionally equipped with a
  • the technical effect of the claimed technical solution consists in increasing the angular field of view to 45 degrees, increasing the contrast of the image, increasing the depth of the sharply displayed space, reducing the deviation of the generated incentive for eye accommodation from the real one by no more than 5%, as well as simplifying the design and expanding the range of tools for this purpose .
  • the inventive method of forming a multi-faceted image is implemented using a multifocal stereoscopic display, the device of which is illustrated in the block diagram shown in Fig. 1, where 1 is a body, 2 optical channel, 3 is an eyepiece, 4 is a first doublet consisting of a biconcave lens and a biconvex lens 5 - the second doublet consisting of a biconvex lens and a biconcave lens, 6 - a beam splitting cube, 7 - the first collective lens, 8 - the first microdisplay, 9 - the second collective lens, 10 - the second microdisplay, 1 1 - processing unit and imaging, 12 - positioning system sensor, 13 - controller, 14 - power supply.
  • SUBSTITUTE SHEET (RULE 26) In figure 2. a stimulus of accommodation of the human eye formed by a multifocal stereoscopic display is presented.
  • Fig. 3 shows the images obtained by the camera from one eyepiece, a) the camera focus is set to 1 m, b) the camera focus is focused on infinity.
  • a multifocal stereoscopic display consists of a housing 1 containing two identical optical channels 2, with one optical channel being implemented for the left eye and the other optical channel being implemented for the right eye, respectively.
  • the image processing and imaging unit 1 1 implements visualization of the image from the prepared static image data or from the dynamic image data, or by combining the static and dynamic image data taking into account data on the position and orientation of the body in space by means of a positioning system sensor 12.
  • the dynamic the image is visualized from a prepared sequence of digital information, or from a sequence of digital information obtained from image recorder, or with the possibility of forming a sequence of digital information in a three-dimensional virtual world.
  • the image recorder can be used as a stereoscopic camera, or a 3D camera, or a camera with depth information.
  • l (x.y.z) l (x, y) [PSFA (z - Zn) (1 - ⁇ ( ⁇ , ⁇ )) + PSFA (z - Zf) ⁇ ( ⁇ , ⁇ )],
  • ⁇ ( ⁇ ) PSFA (z - Zn) k1 ' + PSFA (z - Zf) k2 ' , (3)
  • SUBSTITUTE SHEET (RULE 26) It is convenient to store nonlinear functions kV and ⁇ 2 'in the image processing system either in tabular form or in the form of polynomials of degree 3. Also, as a result of increasing the contrast of a single image, the linearity of the stimulus of accommodation of the eye in Fig. 2 increases, deviations from the real do not exceed 5%.
  • controller 13 is performed comprising four outputs, where the first output is connected to the first microdisplay 8 of the first optical channel, the second output is connected to the second microdisplay 10 of the first optical channel, the third output is connected to the first microdisplay 8 of the second optical channel, the fourth output is connected to the second microdisplay 10 of the second optical channel.
  • the controller 13 splits a single temporary image into at least 4 separate image sections and the individual image sections are reformatted to the format required by the microdisplays for output to the corresponding microdisplays.
  • the optical image on the microdisplay screen is combined by means of the face of the beam splitting cube 6 for each optical channel 2. And in this way a multifaceted combined optical image is formed by the eyepiece 3 for each optical channel2.
  • the housing 1 of the multifocal stereoscopic display is made in the form of a headband, and the power supply 14, made in the form of a constant voltage source. It is also possible to connect the device to an external power source.
  • a multifocal stereoscopic display with two eyepieces was developed.
  • Each eyepiece forms imaginary images of two microdisplays, which are combined using a beam splitter cube.
  • the combined three-dimensional image is represented by four planes of images, two for each eye and providing stereoscopic vision in the range from 1 m to infinity.
  • contrast losses were calculated and eliminated, which made their changes to the image construction formula for image plans.
  • the fact that the claimed multifocal stereoscopic display corresponds to the natural visual perception is shown in Fig. 2.
  • the stimulus of accommodation of the human eye formed by the display (shown by the solid line) has a deviation from the real stimulus of accommodation (shown by the dashed line) not more than 5%.
  • the multifocal stereoscopic display provides direct and indirect signs of depth, allowing you to naturally evaluate the distances and sizes of objects.
  • Direct signs of depth stimulate close to correct accommodation of the eyes, their convergence and stereoscopic disparity.
  • Indirect features are supported by software and include occlusions and auto occlusions, a multivariate perspective, a change in the contrast and gradient of the texture, motor parallax, etc.
  • the claimed invention can be used to develop new generation simulators, visual systems for remote control of robotic devices, robotic manipulators.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

L'invention concerne des moyens d'affichage d'informations, des systèmes optoélectroniques à images virtuelles d'objets spatiaux et plus particulièrement des afficheurs personnels en trois dimensions. Son utilisation permettent d'assurer la possibilité d'une vision stéréoscopique naturelle dans une gamme de 1 m et jusqu'à l'infini et de fournir des stimuli accordés d'accommodation et de convergence des yeux. On parvient à ce résultat grâce à la formation par un oculaire à foyers multiples de deux plans d'images pour chaque oeil. On a calculé les pertes de contraste et on les a éliminées, ce qui a eu pour effet des changements dans la formule de formation d'images pour les plans d'images. Lors de l'utilisation de coefficients non linéaires dans la formule pour établir des plans d'images on parvient à obtenir une suppression considérable de la perte de contraste dans une image combinée, ce qui résout également le problème de linéarité du stimulus d'accommodation de l'eau dans la gamme de profondeur obtenue. Le résultat technique de la solution proposée consiste à augmenter le champ visuel angulaire jusqu'à 45 degrés, à augmenter le degré de contraste de l'image, à améliorer la profondeur de l'espace affiché avec netteté, à réduire la déviation du stimulus obtenu d'accommodation de l'oeil par rapport à celui réel pour au maximum 5 %, et à simplifier la conception et élargir la gamme de produits ayant cet usage. L'invention peut être utilisée pour la mise au point de simulateurs de nouvelle génération, de systèmes de vision de commande à distance d'appareils robotiques ainsi que de robots manipulateurs. L'invention comporte 2 revendications indépendantes et 24 revendications dépendantes.
PCT/RU2015/000956 2015-11-05 2015-12-30 Procédé de formation d'une image à plans multiples et afficheur stéréoscopique à foyers multiples WO2017078566A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2015147672 2015-11-05
RU2015147672A RU2609285C9 (ru) 2015-11-05 2015-11-05 Способ формирования многопланового изображения и мультифокальный стереоскопический дисплей

Publications (1)

Publication Number Publication Date
WO2017078566A1 true WO2017078566A1 (fr) 2017-05-11

Family

ID=58457419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2015/000956 WO2017078566A1 (fr) 2015-11-05 2015-12-30 Procédé de formation d'une image à plans multiples et afficheur stéréoscopique à foyers multiples

Country Status (2)

Country Link
RU (1) RU2609285C9 (fr)
WO (1) WO2017078566A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681254C1 (ru) * 2018-04-23 2019-03-05 Василий Александрович ЕЖОВ Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306768A (en) * 1979-04-13 1981-12-22 Taito America Corporation Creation of multiplanular images
WO1983002169A1 (fr) * 1981-12-07 1983-06-23 Anthony Charles Rackham Images stereoscopiques
RU2201610C2 (ru) * 2001-06-07 2003-03-27 Институт автоматики и электрометрии СО РАН Мультифокальный стереодисплей
US8692738B2 (en) * 2011-06-10 2014-04-08 Disney Enterprises, Inc. Advanced Pepper's ghost projection system with a multiview and multiplanar display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306768A (en) * 1979-04-13 1981-12-22 Taito America Corporation Creation of multiplanular images
WO1983002169A1 (fr) * 1981-12-07 1983-06-23 Anthony Charles Rackham Images stereoscopiques
RU2201610C2 (ru) * 2001-06-07 2003-03-27 Институт автоматики и электрометрии СО РАН Мультифокальный стереодисплей
US8692738B2 (en) * 2011-06-10 2014-04-08 Disney Enterprises, Inc. Advanced Pepper's ghost projection system with a multiview and multiplanar display

Also Published As

Publication number Publication date
RU2609285C1 (ru) 2017-02-01
RU2609285C9 (ru) 2017-05-17

Similar Documents

Publication Publication Date Title
JP7102382B2 (ja) ウェアラブル3d拡張現実ディスプレイ
Rolland et al. Multifocal planes head-mounted displays
JP7094266B2 (ja) 単一深度追跡型の遠近調節-両眼転導ソリューション
Johnson et al. Dynamic lens and monovision 3D displays to improve viewer comfort
Hu et al. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics
JP7185331B2 (ja) インテグラルイメージング方式のライトフィールドディスプレイ用にライトフィールド画像をレンダリングする方法
US9191659B2 (en) Collimated stereo display system
WO2018074528A1 (fr) Dispositif de préparation d'image, procédé de préparation d'image, programme de préparation d'image, procédé de conception de verre de lunettes et procédé de fabrication de verre de lunettes
US20140002587A1 (en) Wide field-of-view stereo vision platform with dynamic control of immersive or heads-up display operation
CN109445107B (zh) 可单目立体显示的增强现实显示装置及其显示方法
EP3067730A1 (fr) Dispositif vidéomicroscope en 3d
CA2857691A1 (fr) Plateforme de vision stereoscopique tridimensionnelle (3d) a large champ de vision ayant une commande dynamique d'operation d'affichage immersif ou d'affichage tete haute
WO2012175939A1 (fr) Appareil et procédé d'affichage d'images
JP2020514811A (ja) インテグラルイメージングおよび導波路プリズムを用いたヘッドマウント・ライトフィールド・ディスプレイ
WO2020008804A1 (fr) Lunettes stéréoscopiques, procédé destiné à la conception d'un verre de lunettes utilisée dans celles-ci et procédé destiné à l'observation d'image stéréoscopique
JP2020514810A (ja) 拡大視野を伴う自由曲面プリズムおよびヘッドマウントディスプレイ
JP6577421B2 (ja) 表示装置
Hua Past and future of wearable augmented reality displays and their applications
RU2609285C1 (ru) Способ формирования многопланового изображения и мультифокальный стереоскопический дисплей
EP2408217A2 (fr) Procédé pour la présentation d'images 3D et appareil pour la présentation d'images 3D virtuelles
Zhang Design of Head mounted displays
JP2017098596A (ja) 画像生成方法及び画像生成装置
Hua et al. Near-eye displays: state-of-the-art and emerging technologies
US20060152580A1 (en) Auto-stereoscopic volumetric imaging system and method
Hua Advances in Head‐Mounted Light‐Field Displays for Virtual and Augmented Reality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907895

Country of ref document: EP

Kind code of ref document: A1