RU2681254C1 - Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений - Google Patents

Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений Download PDF

Info

Publication number
RU2681254C1
RU2681254C1 RU2018114987A RU2018114987A RU2681254C1 RU 2681254 C1 RU2681254 C1 RU 2681254C1 RU 2018114987 A RU2018114987 A RU 2018114987A RU 2018114987 A RU2018114987 A RU 2018114987A RU 2681254 C1 RU2681254 C1 RU 2681254C1
Authority
RU
Russia
Prior art keywords
liquid crystal
decoding
polarization
axis
crystal layer
Prior art date
Application number
RU2018114987A
Other languages
English (en)
Inventor
Василий Александрович ЕЖОВ
Original Assignee
Василий Александрович ЕЖОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Василий Александрович ЕЖОВ filed Critical Василий Александрович ЕЖОВ
Priority to RU2018114987A priority Critical patent/RU2681254C1/ru
Application granted granted Critical
Publication of RU2681254C1 publication Critical patent/RU2681254C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Изобретение относится к технике наблюдения стереоизображений трехмерных сцен c полноэкранным разрешением в каждом ракурсе без использования стереоочков. Технический результат – повышение качества стереоизображения. Технический результат достигается увеличением контраста сепарации ракурсных изображений за счет взаимной компенсации остаточных эффектов двупреломления и оптической активности в жидкокристаллических слоях матричного поляризационного кодировщика изображений и поляризационно-декодирующего бинокулярного фильтра. При этом обеспечивается широкая (ограниченная только апертурой поляризационно-декодирующего фильтра) область наблюдения стереоизображения за счет возможности сдвига вертикальной границы между двумя зонами сепарации синхронно со смещением центров окон наблюдения (центров зрачков глаз наблюдателя). 4 з.п. ф-лы, 10 ил.

Description

Изобретение относится к стереоскопической видеотехнике, точнее - к технике наблюдения стереоизображений трехмерных (3D) сцен c полноэкранным разрешением в каждом ракурсе без использования стереоочков (или иных зрительных приспособлений, крепящихся к лицу наблюдателя) при отсутствии мерцаний наблюдаемого стереоизображения даже при минимальной (60 Гц) кадровой частоте, и может быть использовано для создания плоскопанельных стереоскопических компьютерных мониторов и телевизоров с использованием жидкокристаллических матриц практически любого типа.
Известен стереоскопический дисплей [1] с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений, содержащий источник стереовидеосигнала, функциональный блок и последовательно оптически связанные источник светового потока, матрично-адресуемый амплитудный сумматор изображений (АСИ), поляризационный кодировщик отношения изображений (ПКОИ) с матрично- адресуемым жидкокристаллическим (ЖК) экраном и статический фазо-поляризационный параллаксный барьер (ФППБ), два выхода которого оптически связаны с двумя зонами наблюдения, при этом информационный выход источника стереовидеосигнала соединен с входом функционального блока, выход суммирующей секции которого подключен к электронному входу АСИ, а выход делительной секции функционального блока подключен к электронному входу ПКОИ, причем соединенные вместе входы суммирующей и делительной секций являются входом функционального блока.
Известный дисплей обеспечивает безочковое наблюдение стереоизображений без мерцаний даже при минимальной (60 Гц) кадровой частоте с полноэкранным разрешением в каждом из двух ракурсных изображений за счет использования амплитудно-поляризационного формирователя, состоящего из АСИ и ПКОИ, в комбинации с статическим ФППБ.
Недостатком известного дисплея является узкая область наблюдения стереоизображений, состоящая из двух щелеобразных зон наблюдения двух ракурсных изображений 3D сцены, в центрах которых должны располагаться центры зрачков пользователя. Область уверенного восприятия стереоизображения (максимально допустимое отклонение центров зрачков двух глаз наблюдателя от центров двух соответствующих зон наблюдения) не превышает нескольких миллиметров по горизонтали (вдоль направления бинокулярного параллакса).
Наиболее близким по технической сущности к заявляемому устройству (прототипом) является стереоскопический дисплей [2] с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений, содержащий источник стереовидеосигнала, функциональный блок и последовательно оптически связанные источник светового потока, матрично-адресуемый АСИ, ПКОИ с матрично-адресуемым ЖК экраном, содержащим входной линейный поляризатор и информационный ЖК слой, и по крайней мере одни пассивные стереоочки, в первом и втором окнах которых расположены первый и второй раздельные линейные поляризаторы с взаимно ортогональными осями поляризации, выходы которых оптически сопряжены с двумя окнами наблюдения, при этом информационный выход источника стереовидеосигнала соединен с входом функционального блока, выход суммирующей секции которого подключен к электронному входу АСИ, а выход делительной секции функционального блока подключен к электронному входу ПКОИ, причем соединенные вместе входы суммирующей и делительной секций являются входом функционального блока.
Наблюдатель воспринимает два ракурсных изображения сквозь два линейных поляризатора в окнах стереоочков. Ширина области наблюдения стереоизображения ограничена только угловыми характеристиками ЖК экрана, поскольку закрепленные на голове наблюдателя стереоочки всегда обеспечивают автоматическое совпадение центров зон сепарации ракурсных изображений (окон стереоочков) с центрами зрачков наблюдателя.
Недостатками известного устройства является недостаточно высокий контраст сепарации ракурсных изображений, ведущий к значительным кросс-помехам между двумя окнами наблюдения (к частичному прониканию леворакурсного изображения в правое окно наблюдения и наоборот), а также создание неудобства для наблюдателя в необходимости носить стереоочки.
Контраст сепарации снижен по двум основным причинам. Первая причина - информационный ЖК слой ЖК экрана ПКОИ характеризуется наличием остаточного двупреломления (остаточного фазового сдвига) даже при самом высоком уровне электрического напряжения, определяемого амплитудой стереовидеосигнала, а изначально закрученный (наиболее часто - на 90°) информационный ЖК слой характеризуется в том числе остаточной оптической активностью (ведущей к нежелательному повороту вектора или эллипса поляризации проходящего света даже при самом высоком уровне электрического напряжения), что ведет к заметному прониканию света сквозь скрещенные (с взаимно ортогональными осями линейной поляризации) входной линейный поляризатор и один из линейных поляризаторов стереоочков (например, расположенный в левом окне стереоочков), т.е. к прониканию перекрестного (праворакурсного) изображения в левое окно наблюдения.
Вторая причина - входной линейный поляризатор совместно с другим линейным поляризатором, расположенным в правом окне стереоочков, имеют взаимно параллельные оси поляризации, что ведет к необходимости работы информационного ЖК слоя при фазовой задержке π (или при начальном угле 90° оптической активности) с целью режекции перекрестного (леворакурсного) изображения из правого окна наблюдения. ЖК слой при максимальной фазовой задержке π или при угле 90° оптической активности (получаемых при минимальной или нулевой амплитуде электрического управляющего напряжения) имеет максимальную неопределенность в начальной угловой ориентации ЖК молекул вследствие несовершенства ориентирующих покрытий на оптических подложках, примыкающих к ЖК слою, или из-за недостаточно точного действия оптически-активной добавки (агента) в составе ЖК для закрутки ЖК молекул по толщине ЖК слоя на заданный начальный угол, что ведет в заметному прониканию перекрестного (леворакурсного) изображения в правое окно наблюдения.
Задачей изобретения является повышение качества стереоизображения при сохранении широкой (расширенной) области наблюдения стереоизображения без использования зрительных приспособлений, крепящихся к лицу наблюдателя (стереоочков).
Поставленная задача в стереоскопическом дисплее с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений, содержащем источник стереовидеосигнала, функциональный блок и последовательно оптически связанные источник светового потока, матрично-адресуемый АСИ, ПДОИ с матрично-адресуемым ЖК экраном, и по крайней мере один поляризационно-декодирующий фильтр (ПДФ), две зоны сепарации которого оптически сопряжены с двумя окнами наблюдения, при этом информационный выход источника стереовидеосигнала соединен с входом функционального блока, выход суммирующей секции которого подключен к электронному входу АСИ, а выход делительной секции функционального блока подключен к электронному входу ПКОИ, причем соединенные вместе входы суммирующей и делительной секций являются входом функционального блока, решается тем, что, поляризационный декодирующий фильтр выполнен в виде бинокулярного поляризационно-декодирующего фильтра (БПДФ), содержащего блок управления и последовательно оптически связанные декодирующий ЖК слой и выходной линейный поляризатор, ось поляризации которого ортогональна оси поляризации входного линейного поляризатора, декодирующий ЖК слой снабжен группой адресных прозрачных электродов, электрические входы которых подключены к выходу блока управления, а суммарная апертура группы адресных прозрачных электродов равна суммарной апертуре пары смежных зон сепарации, вертикальная граница между которыми определена вертикальной границей между соответствующими смежными адресными прозрачными электродами, при этом остаточная оптическая анизотропия декодирующего ЖК слоя равна по абсолютной величине и противоположна по знаку остаточной диэлектрической анизотропии информационного ЖК слоя.
В одном примере конкретного выполнения каждый из ЖК слоев выполнен с закруткой ЖК молекул на 90° или 270°, при этом направление закрутки в информационном ЖК слое противоположно направлению закрутки в декодирующем ЖК слое, ось для обыкновенного (необыкновенного) луча на выходе информационного ЖК слоя ортогональна оси для обыкновенного (необыкновенного) луча на входе декодирующего ЖК слоя, а ось поляризации выходного поляризатора направлена вдоль оси для обыкновенного (необыкновенного) луча декодирующего ЖК слоя.
В другом примере конкретного выполнения информационный ЖК слой и декодирующий ЖК слой выполнены с гомогенной ориентацией ЖК молекул, при этом ось для обыкновенного (необыкновенного) луча информационного ЖК слоя ортогональна оси для обыкновенного (необыкновенного) луча декодирующего ЖК слоя, а ось поляризации выходного поляризатора направлена под углом 45° к оси для обыкновенного (необыкновенного) луча декодирующего ЖК слоя.
Повышение качества стереоизображения в устройстве обеспечивается достижением двух основных технических результатов. Первый технический результат состоит в увеличении контраста сепарации ракурсных изображений за счет компенсации остаточного фазового сдвига (вызванного остаточным двупреломлением) и остаточного угла закрутки (обусловленного остаточной оптической активностью) в информационном ЖК слое ПДОИ за счет противоположных по знаку остаточного фазового сдвига и остаточного угла закрутки в декодирующем ЖК слое каждого БПДФ.
Второй технический результат состоит в обеспечении одинаково высокого (максимального) контраста
Figure 00000001
сепарации ракурсных изображений для каждого (левого и правого) окон наблюдения за счет работы в скрещенных (с взаимно ортогональными осями поляризации) входном и выходном поляризаторах для каждого из окон наблюдения, что обеспечивает минимальные перекрестные помехи между двумя окнами наблюдения. При этом разброс в величине фазового сдвига π (вследствие несовершенства начальной ориентации ЖК молекул) или в величине поворота вектора поляризации на 90° (вследствие неточной работы оптически-активной добавки) во второй области декодирующего ЖК слоя никак не влияет на величину контраста
Figure 00000001
сепарации ракурсных изображений в обеих зонах сепарации, поскольку они соответствуют открытым состояниям обоих окон сепарации при работе декодирующего ЖК слоя.
При этом предложенное устройство, как и известное устройство [1] с ФППБ, обеспечивает наблюдение стереоизображения без использования стереоочков или иных зрительных приспособлений, крепящихся к лицам наблюдателей.
В первом частном варианте устройства группа адресных прозрачных электродов выполнена в виде первого и второго адресных прозрачных электродов, апертуры которых равны апертура первой и второй зон сепарации. Здесь обеспечивается расширенная (порядка нескольких сантиметров) область наблюдения стереоизображений в силу соответствующей ширины зон сепарации БПДФ.
Во втором частном варианте выполнения устройства блок управления выполнен с позиционным сенсором для отслеживания текущего положения окон наблюдения (центров зрачков глаз наблюдателя) по горизонтали, а группа адресных прозрачных электродов выполнена в виде группы столбцовых адресных прозрачных электродов, период расположения задает шаг горизонтального позиционирования вертикальной границы между двумя зонами сепарации. Здесь достигается широкая область наблюдения стереоизображения по горизонтали, ограниченная только размером апертуры БПДФ, без возникновения перекрестных помех в районе вертикальной границы при любом горизонтальном положении окон наблюдения (зрачков глаз наблюдателя) относительно апертуры БПДФ. Наличие позиционного сенсора обеспечивает синхронный горизонтальный сдвиг вертикальной границы в положение, соответствующее текущему положению средней линии между двумя окнами наблюдения (между центрами зрачков двух глаз наблюдателя).
Изобретение поясняется с помощью чертежей, на фигурах которых представлены:
Фиг. 1 - общая схема устройства.
Фиг. 2, 3 - конкретные примеры выполнения информационного и декодирующего жидкокристаллических слоев.
Фиг. 4, 5 - конкретные примеры выполнения бинокулярного поляризационно-декодирующего фильтра.
Фиг. 6, 7 - пояснения к физическим условиям сепарации ракурсных изображений.
Фиг. 8-10 - пояснения к работе частных вариантов выполнения устройства.
Устройство содержит (фиг. 1) источник 1 стереовидеосигнала, функциональный блок 2, блок 3 управления и последовательно оптически связанные источник 4 светового потока, матрично-адресуемый амплитудный сумматор изображений (АСИ) 5 и поляризационный кодировщик отношения изображений (ПКОИ) 6 с матрично-адресуемым жидкокристаллическим (ЖК) экраном, содержащим входной поляризатор 7 и информационный ЖК слой 8, выход которого сопряжен с оптическим входом по меньшей мере одного бинокулярного поляризационно-декодирующего фильтра (БПДФ) 9, содержащего последовательно оптически связанные декодирующий ЖК слой 10 и выходной поляризатор 11, ось pout поляризации (фиг. 2) которого ортогональна оси pin поляризации входного линейного поляризатора 7. Первая и вторая смежные зоны 101 и 102 сепарации, находящиеся в апертуре БПДФ 9, оптически сопряжены соответственно с левым
Figure 00000002
и правым
Figure 00000003
окнами наблюдения, положение центров которых соответствуют положениям центров зрачков левого
Figure 00000004
и правого
Figure 00000005
глаз наблюдателя. Декодирующий ЖК слой 10 снабжен группой 12 или 13 адресных прозрачных электродов, суммарная апертура которых равна суммарной апертуре двух смежных зон 101, 102 сепарации. При этом вертикальная граница (10Г или 12Г) между соответствующими смежными адресными прозрачными электродами (соответственно между 121 и 122 или между 13i-1 и 13i-1), ортогональна направлению бинокулярного параллакса на экранах АСИ 5 и ПКОИ 6. Электрические входы групп 12 или 13 адресных прозрачных электродов подключены к выходу блока 3 управления. Выход суммирующей секции 21 и выход делительной секции 22 функционального блока 2 подключены к электронным входам соответственно АСИ 5 и ПКОИ 6. Соединенные вместе входы суммирующей секции 21 и делительной секции 22 функционального блока 2 подключены к информационному выходу источника 1 стереовидеосигнала.
В первом частном варианте устройства группа адресных прозрачных электродов выполнена в виде первого 121 и второго 122 адресных прозрачных электродов, апертуры которых равны апертурам первой 101 и второй 101 зонам сепарации.
Во втором частном варианте устройства блок 2 управления выполнен с позиционным сенсором 31, а группа адресных прозрачных электродов выполнена в виде группы 13 столбцовых адресных прозрачных электродов, период расположения которых задан шагом горизонтального позиционирования вертикальной границы 13Г между двумя зонами сепарации.
Остаточная оптическая анизотропия декодирующего ЖК слоя 10 равна по абсолютной величине и противоположна по знаку остаточной диэлектрической анизотропии информационного ЖК слоя 8. Остаточная оптическая анизотропия соответствует сумме остаточного двупреломления
Figure 00000006
и остаточному углу закрутки (остаточной оптической активности)
Figure 00000007
в каждом из ЖК слоев 8, 10 после подачи на адресные прозрачные электроды максимально высокого значения Uhigh управляющего напряжения с выхода блока 2 управления. Остаточное двупреломление
Figure 00000006
вызывает остаточный фазовый сдвиг
Figure 00000008
между необыкновенным и обыкновенным лучами. Остаточная оптическая активность
Figure 00000007
вызывает соответствующий остаточный поворот вектора (или эллипса) поляризации проходящего света.
Противоположные знаки остаточного фазового сдвига
Figure 00000009
для закрученных информационного 8 и декодирующего 10 ЖК слоев обеспечиваются взаимно ортогональным расположением оси для необыкновенного (обыкновенного) луча на входе (в входной плоскости) декодирующего ЖК слоя 10 относительно оси для необыкновенного (обыкновенного) луча на выходе (в выходной плоскости) информационного ЖК слоя 8. Противоположные знаки остаточной оптической активности
Figure 00000007
для закрученных информационного 8 и декодирующего 10 ЖК слоев обеспечиваются взаимно противоположными направлениями закрутки ЖК молекул в информационном 8 и декодирующем 10 ЖК слоях. Противоположные знаки остаточного фазового сдвига
Figure 00000009
для информационного 8 и декодирующего 10 ЖК слоев с гомогенной ориентацией ЖК молекул обеспечиваются взаимно ортогональным расположением оси для необыкновенного (обыкновенного) луча декодирующего ЖК слоя 10 относительно оси для необыкновенного (обыкновенного) луча информационного ЖК слоя 8.
В первом примере конкретного выполнения БПДФ 9 (фиг. 2) информационный ЖК слой 8 и декодирующий ЖК слой 10 выполнены с закруткой ЖК молекул на величину 90° или 270°, причем предпочтительно - 90-градусной закруткой ЖК молекул, поскольку при этом достигается минимальное значение остаточной оптический анизотропии (максимальный контраст в скрещенных линейных поляризаторах 7, 11) при оптимальной величине управляющего напряжения (около 5В) в каждом ЖК слое. Направление 141 закрутки ЖК молекул 8i в информационном жидкокристаллическом слое 8 противоположно направлению 142 закрутки ЖК молекул 10i в декодирующем ЖК слое, а ось для необыкновенного
Figure 00000010
(обыкновенного
Figure 00000011
) луча на выходе информационного ЖК слоя 8 ортогональна оси для необыкновенного
Figure 00000012
(обыкновенного
Figure 00000013
) луча на входе декодирующего ЖК слоя 10.
Во втором примере конкретного выполнения БПДФ 9 (фиг. 3) информационный ЖК слой 8 и декодирующий ЖК слой 10 выполнены с гомогенной ориентацией ЖК молекул, при этом ось для обыкновенного
Figure 00000014
(необыкновенного
Figure 00000015
) луча информационного ЖК слоя ортогональна оси для обыкновенного
Figure 00000016
(необыкновенного
Figure 00000017
) луча декодирующего ЖК слоя, а ось поляризации выходного поляризатора направлена под углом 45° к оси для обыкновенного (необыкновенного) луча декодирующего ЖК слоя.
В первом частном варианте устройства декодирующий ЖК слой 10 с одной своей стороны снабжен двумя смежными адресными прозрачными электродами 121 и 122, нанесенными на оптическую подложку 15 (фиг. 4), а с другой стороны снабжен общим прозрачным электродом Э1, нанесенным на оптическую подложку 16 и электрически соединенным с общим проводом («землей»). Электронным входом 17 БПДФ 9 являются раздельные электрические входы адресных прозрачных электродов 121 и 122.
Во втором частном варианте устройства декодирующий ЖК слой 10 с одной своей стороны снабжен группой смежных адресных прозрачных электродов 131…13i…12N (фиг. 5), нанесенными на оптическую подложку 17, а с другой стороны снабжен общим прозрачным электродом Э2, нанесенным на оптическую подложку 18 и соединенным с общим проводом. Электронным входом 18 БПДФ 9 служат раздельные электрические входы адресных прозрачных электродов 131…13i…12N.
Устройство работает следующим образом. В каждом кадре стереоскопический видеосигнал поступает от источника 1 стереовидеосигнала на входы суммирующей секции 21 и делительной секции 22 функционального блока 2, с выходов которых преобразованный видеосигнал поступает на электронные входы АСИ 5 и ПКОИ 6.
Световой поток от источника 4 модулируется по интенсивности
Figure 00000018
с помощью АСИ 5 в соответствии с суммой яркостей
Figure 00000019
+
Figure 00000020
mn-х элементов леворакурсного и праворакурсного изображений (соответствующий электронный сигнал формируется в суммирующей секции 21)
Figure 00000021
=
Figure 00000022
+
Figure 00000023
,
(1)
где
Figure 00000024
и
Figure 00000025
- величины интенсивности света, соответствующие mn-м элементам леворакурсного и праворакурсного изображений в левом
Figure 00000026
и правом
Figure 00000027
окнах наблюдения, m = 1, 2, …, M; n = 1, …, N, при этом M и N - число строк и столбцов матричной адресации АСИ 5 и ЖК экрана ПКОИ 6.
Поляризация светового потока модулируется с помощью ПКОИ 6 в соответствии с выражением
Figure 00000028
=
Figure 00000029
/
Figure 00000030
.
(2)
Для выполнения условия (2) при работе с вектором Emn линейной поляризации света угол его поворота, равный текущему углу закрутки
Figure 00000031
информационного ЖК слоя 8 (под действием электрического напряжения, повторяющего форму амплитуды видеосигнала), определяется выражением
Figure 00000032
.
(3)
Поляризационно-кодирующая функция, определенная выражением (3), вычисляется делительной секцией 22 блока 2 управления. Детальный вывод выражения (3) приведен в [2] в виде соответствующего решения общего уравнения эллиптической поляризации света с граничными условиями, заданными выражениями (1) и (2). Физический смысл одновременного воспроизведения двух элементов
Figure 00000033
и
Figure 00000034
ракурсных изображений с помощью поляризационного кодирования в соответствии с выражением (3) поясняется с помощью фиг. 6. Источником векторного линейно-поляризованного оптического поля
Figure 00000035
является mn-й пиксель ЖК экрана ПКОИ 6. Проекции
Figure 00000035
на оси x и y равны амплитудам электрических оптических полей
Figure 00000036
и
Figure 00000037
, интенсивности которых пропорциональны яркостям
Figure 00000033
и
Figure 00000034
. Поскольку интенсивность
Figure 00000038
светового потока, соответствующего полю
Figure 00000035
, равна сумме
Figure 00000022
+
Figure 00000023
в соответствии с выражением (1), то интенсивность
Figure 00000039
светового потока, описываемого полем
Figure 00000035
и прошедшего линейный поляризатор 21 с осью поляризации x, параллельной оси x, и интенсивность
Figure 00000039
светового потока, описываемого полем
Figure 00000035
и прошедшего линейный поляризатор 22 с осью поляризации, параллельной оси y, будет описываться выражением
Figure 00000040
;
Figure 00000041
.
(4)
Для обеспечения одновременной сепарации двух ракурсных изображений в соответствии с выражением (4) с помощью единственного выходного линейного поляризатора 11, на одну его часть (для определенности, на правую часть - см. фиг. 7), соответствующую одной (правой) зоне сепарации, подается парциальный световой поток, описываемый исходным оптическим полем
Figure 00000035
, а на другую (левую) часть выходного линейного поляризатора 11 подается световой поток, который описывается оптическим полем
Figure 00000042
, соответствующим повернутому (на угол 90°) вектору линейной поляризации, исходная ориентация которого соответствует исходному полю
Figure 00000035
. Поворот на 90° осуществляется соответствующей (левой) частью декодирующего ЖК слоя 10 за счет эффекта оптической активности (при выполнении декодирующего ЖК слоя 10 в виде закрученной на угол 90° или 270° ЖК структуры), либо за счет эффекта двупреломления (при выполнении декодирующего ЖК слоя 10 в виде ЖК структуры с гомогенной ориентацией, обеспечивающей фазовую задержку π).
После поступления на оптический вход БПДФ 9 светового потока, модулированного по интенсивности в соответствии с выражением (1) и по поляризации в соответствии с выражением (2), в результате действия (иллюстрируемого с помощью фиг. 7) декодирующего ЖК слоя 10 и выходного линейного поляризатора 11, на выходах двух зон 101, 102 сепарации БПДФ 9 (в паре окон
Figure 00000043
,
Figure 00000044
наблюдения) формируется пара парциальных световых потоков, соответствующих соотношениям (4). Это означает, что величины интенсивности света
Figure 00000045
и
Figure 00000046
в окнах
Figure 00000047
и
Figure 00000048
наблюдения соответствуют величинам яркости mn-х элементов
Figure 00000049
и
Figure 00000050
левого и правого ракурсных изображений отображаемой 3D сцены, например, при работе первого частного варианта устройства (фиг. 8) с фиксированной вертикальной границей 10Г между двумя зонами 101 и 102 сепарации, когда с выхода блока 2 управления подаются управляющие напряжения на электрический вход 17 пары адресных прозрачных электродов 121, 122 (фиг. 4).
Для второго частного варианта устройства с вертикальной границей 10Г, имеющей возможность горизонтального перемещения (синхронно с горизонтальным сдвигом окон наблюдения) каждый из первого и второго наблюдателей будет воспринимать mn-х элементы
Figure 00000049
и
Figure 00000050
ракурсных изображений в широкой области наблюдения стереоизображений (фиг. 9, 10), поскольку соответствующие первый и второй БПДФ 9 снабжены первым и вторым позиционными сенсорами
Figure 00000051
и
Figure 00000052
, обеспечивающими измерение отклонения положения центров пар окон
Figure 00000047
,
Figure 00000048
наблюдения от центральной линии O апертуры каждого БПДФ 9, и подающими соответствующие позиционирующие сигналы в блок 3 управления, который обеспечивает установку вертикальной границы 10Г в апертурах первого и второго БПДФ 9 в соответствующие положения
Figure 00000053
и
Figure 00000054
), обеспечивая их симметричное расположение относительно центров соответствующих пар
Figure 00000055
,
Figure 00000056
и
Figure 00000057
,
Figure 00000058
окон наблюдения (центров зрачков глаз
Figure 00000059
,
Figure 00000060
и
Figure 00000061
,
Figure 00000062
первого и второго наблюдателей соответственно) за счет подачи с выхода блока 3 управления управляющих напряжений на электрический вход 20 столбцовых электродов 131…13i…13N (фиг. 5), период расположения которых задан требуемым шагом горизонтального позиционирования вертикальной границы 10Г между двумя зонами сепарации.
Улучшение качества стереоизображения обусловлено увеличением контраста сепарации ракурсных изображений вследствие полной взаимной компенсации действий остаточных эффектов двупреломления и оптической активности в информационном ЖК слое 8 и декодирующем ЖК слое 10. Действительно, результатом действия остаточного двупреломления в информационном 8 и декодирующем 10 ЖК слоях являются остаточные фазовые сдвиги одинаковой абсолютной величины и разного знака
Figure 00000063
и
Figure 00000064
, которые в сумме дают нулевой суммарный фазовый сдвиг
Figure 00000065
=
Figure 00000066
Figure 00000067
= 0. Результатом действия остаточной оптической активности в информационном 8 и декодирующем 10 ЖК слоях являются остаточные углы поворота эллипса (вектора) света
Figure 00000068
и
Figure 00000069
одинаковой абсолютной величины и разного знака, которые в сумме дают нулевой суммарный угол поворота
Figure 00000070
=
Figure 00000068
Figure 00000071
Figure 00000069
= 0. В результате обеспечивается максимальное значение контраста
Figure 00000072
сепарации ракурсных изображений в скрещенных входном 7 и выходном 11 линейных поляризаторах (близкого к величине собственного контраста скрещенных линейных поляризаторов 7 и 11).
Качество изображения дополнительно улучшается также за счет получения непрерывного пространства наблюдения стереоизображения (без разрыва в середине поля зрения) вследствие непрерывности сплошного ЖК слоя БПДФ 9 и примыкания друг к другу двух смежных зон сепарации в апертуре БПДФ 9, ведущего к отсутствию светонепроницаемой перегородки в поле зрения между глазами (неизменно присутствующей в стереоочках с двумя раздельными окнами наблюдения и раздельными поляризационными фильтрами).
Наблюдение стереоизображений с полноэкранным разрешением в каждом ракурсном изображении отображаемой 3D сцены обеспечивается без мерцаний даже при минимальной (для ЖК экранов) кадровой частоте 60 Гц, поскольку сепарация левого и правого ракурсных изображений происходит одновременно в двух зонах сепарации БПДФ 9 за счет статического поляризационного декодирования двух ракурсных изображений, совместно представленных в едином световом потоке за счет комбинации модуляции интенсивности и поляризации светового потока.
При этом для выполнения матрично-адресуемого АСИ 5 и матрично-адресуемого ЖК экрана ПКОИ 6 можно использовать ЖК матрицы практически любого типа, поскольку функцию поляризационного кодирования возможно определить в том числе измерительно-калибровочным методом [3] без знания физического механизма работы (структуры ЖК слоя) пикселя конкретных ЖК матриц и без соответствующего аналитического вычисления требуемой функции поляризационного кодирования. Измерительно-калибровочный метод позволяет при этом автоматически учесть все нелинейности передаточных функций оптоэлектронных каналов передачи информации от электронного выхода источника стереовидеосигнала до оптических выходов обеих зон сепарации.
АСИ 5 также может быть выполнен в виде матрицы любого типа, осуществляющей формирование изображение путем модуляции интенсивности света (например, в виде OLED-экрана).
ЛИТЕРАТУРА
1. Ежов В.А. Способ наблюдения стереоизображений с полным разрешением для каждого ракурса и устройство для его реализации // Патент РФ № 2377623, приоритет 20.04. 2007, опублик. 27.12.2009.
2. Ежов В.А. Способ наблюдения стереоизображений с объединенным предъявлением ракурсов и устройство для его реализации // Патент РФ № 2306680, приоритет 13.03.06, опублик. 20.09.2007 (прототип).
3. Ежов В.А. Способ формирования и наблюдения стереоизображений с максимальным пространственным разрешением и устройство для его реализации (варианты) // Патент РФ № 2408163, приоритет 25.12.2008, опублик. 27.12.2010.

Claims (5)

1. Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений, содержащий источник стереовидеосигнала, функциональный блок и последовательно оптически связанные источник светового потока, матрично-адресуемый амплитудный сумматор изображений, поляризационный кодировщик отношения изображений, снабженный матрично-адресуемым жидкокристаллическим экраном, и по меньшей мере один поляризационный декодирующий фильтр, две зоны сепарации которого оптически сопряжены с двумя окнами наблюдения, при этом информационный выход источника стереовидеосигнала соединен с входом функционального блока, выход суммирующей секции которого подключен к электронному входу амплитудного сумматора изображений, а выход делительной секции функционального блока подключен к электронному входу поляризационного кодировщика отношения изображений, причем соединенные вместе входы суммирующей и делительной секций являются входом функционального блока, а жидкокристаллический экран поляризационного кодировщика отношения изображений содержит последовательно оптически связанные входной линейный поляризатор и информационный жидкокристаллический слой, отличающийся тем, что каждый поляризационный декодирующий фильтр выполнен в виде бинокулярного поляризационно-декодирующего фильтра, содержащего блок управления и последовательно оптически связанные декодирующий жидкокристаллический слой и выходной линейный поляризатор, ось поляризации которого ортогональна оси поляризации входного линейного поляризатора жидкокристаллического экрана, декодирующий жидкокристаллический слой снабжен группой адресных прозрачных электродов, электрические входы которых подключены к выходу блока управления, а суммарная апертура группы адресных прозрачных электродов равна суммарной апертуре пары смежных зон сепарации, вертикальная граница между которыми соответствует вертикальной границе между соответствующими смежными адресными прозрачными электродами, при этом остаточная оптическая анизотропия декодирующего жидкокристаллического слоя равна по абсолютной величине и противоположна по знаку остаточной диэлектрической анизотропии информационного жидкокристаллического слоя.
2. Дисплей по п. 1, отличающийся тем, что каждый из жидкокристаллических слоев выполнен с закруткой жидкокристаллических молекул на 90° или 270°, при этом направление закрутки в информационном жидкокристаллическом слое противоположно направлению закрутки в декодирующем жидкокристаллическом слое, ось для обыкновенного (необыкновенного) луча на выходе информационного жидкокристаллического слоя ортогональна оси для обыкновенного (необыкновенного) луча на входе декодирующего жидкокристаллического слоя, а ось поляризации выходного линейного поляризатора параллельна оси для обыкновенного (необыкновенного) луча декодирующего жидкокристаллического слоя.
3. Дисплей по п. 1, отличающийся тем, что информационный жидкокристаллический слой и декодирующий жидкокристаллический слой выполнены с гомогенной ориентацией жидкокристаллических молекул, при этом ось для обыкновенного (необыкновенного) луча информационного жидкокристаллического слоя ортогональна оси для обыкновенного (необыкновенного) луча декодирующего жидкокристаллического слоя, а ось поляризации выходного линейного поляризатора направлена под углом 45° к оси для обыкновенного (необыкновенного) луча декодирующего жидкокристаллического слоя.
4. Дисплей по п. 1, или 2, или 3, отличающийся тем, что группа адресных прозрачных электродов выполнена в виде первого и второго адресных прозрачных электродов, апертуры которых равны апертурам первой и второй зон сепарации.
5. Дисплей по п. 1, или 2, или 3, отличающийся тем, что блок управления выполнен с позиционным сенсором, а группа адресных прозрачных электродов выполнена в виде группы столбцовых адресных прозрачных электродов, период расположения которых задан шагом горизонтального позиционирования вертикальной границы между двумя зонами сепарации.
RU2018114987A 2018-04-23 2018-04-23 Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений RU2681254C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018114987A RU2681254C1 (ru) 2018-04-23 2018-04-23 Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018114987A RU2681254C1 (ru) 2018-04-23 2018-04-23 Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений

Publications (1)

Publication Number Publication Date
RU2681254C1 true RU2681254C1 (ru) 2019-03-05

Family

ID=65632775

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018114987A RU2681254C1 (ru) 2018-04-23 2018-04-23 Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений

Country Status (1)

Country Link
RU (1) RU2681254C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836145A (ja) * 1994-05-18 1996-02-06 Sanyo Electric Co Ltd 光学フィルタ及びこれを用いる立体表示装置
RU2306680C1 (ru) * 2006-03-13 2007-09-20 Василий Александрович ЕЖОВ Способ наблюдения стереоизображений с объединенным предъявлением ракурсов и устройство для его реализации
RU2604210C2 (ru) * 2015-04-20 2016-12-10 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН) Безочковая стереоскопическая видеосистема с дистанционным бинокулярным фильтром
RU2609285C9 (ru) * 2015-11-05 2017-05-17 Общество с ограниченной ответственностью "СофтЛаб-НСК" (ООО "СофтЛаб-НСК") Способ формирования многопланового изображения и мультифокальный стереоскопический дисплей

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836145A (ja) * 1994-05-18 1996-02-06 Sanyo Electric Co Ltd 光学フィルタ及びこれを用いる立体表示装置
RU2306680C1 (ru) * 2006-03-13 2007-09-20 Василий Александрович ЕЖОВ Способ наблюдения стереоизображений с объединенным предъявлением ракурсов и устройство для его реализации
RU2604210C2 (ru) * 2015-04-20 2016-12-10 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН) Безочковая стереоскопическая видеосистема с дистанционным бинокулярным фильтром
RU2609285C9 (ru) * 2015-11-05 2017-05-17 Общество с ограниченной ответственностью "СофтЛаб-НСК" (ООО "СофтЛаб-НСК") Способ формирования многопланового изображения и мультифокальный стереоскопический дисплей

Similar Documents

Publication Publication Date Title
KR101015846B1 (ko) 전자 영상 기기
US8284335B2 (en) Electronic display device
EP2464132B1 (en) Stereoscopic display device with subpixel structures
US8350899B2 (en) Stereoscopic display device
KR101255710B1 (ko) 영상표시장치
US10048506B2 (en) Stereoscopic 3D display device
KR100477638B1 (ko) 2d/3d 겸용 디스플레이
TWI482999B (zh) 立體顯示裝置
US9772500B2 (en) Double-layered liquid crystal lens and 3D display apparatus
KR20100019447A (ko) 각각의 앵글에서 최대 해상도의 입체 화상을 시청하기 위한 방법과 상기 방법을 실행하기 위한 장치
KR101679076B1 (ko) 영상표시장치
CN101893788B (zh) 自动立体显示装置
KR20120042688A (ko) 입체 디스플레이 시스템과 그 시스템에 사용되는 안경 및 그 디스플레이 방법
CN102928906A (zh) 彩色滤光片及使用该彩色滤光片的液晶显示装置
GB2405516A (en) Multiple view display
RU2306680C1 (ru) Способ наблюдения стереоизображений с объединенным предъявлением ракурсов и устройство для его реализации
CN107728363A (zh) 立体显示装置及其控制方法
US20130201091A1 (en) Three-dimensional display
WO2016117325A1 (ja) 表示装置
KR20060101463A (ko) 디스플레이 장치, 디스플레이 방법, 컴퓨터 프로그램 제품및 컴퓨터 프로그램
RU2681254C1 (ru) Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений
US20120086707A1 (en) 3-dimension display device
KR100879298B1 (ko) 전자 영상 기기
US11508327B2 (en) Liquid crystal display device
RU2189619C1 (ru) Очки для наблюдения цветных стереотелевизионных изображений