WO2017078187A1 - Array antenna - Google Patents

Array antenna Download PDF

Info

Publication number
WO2017078187A1
WO2017078187A1 PCT/KR2015/011712 KR2015011712W WO2017078187A1 WO 2017078187 A1 WO2017078187 A1 WO 2017078187A1 KR 2015011712 W KR2015011712 W KR 2015011712W WO 2017078187 A1 WO2017078187 A1 WO 2017078187A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating
power
array antenna
array
radiating elements
Prior art date
Application number
PCT/KR2015/011712
Other languages
French (fr)
Korean (ko)
Inventor
백정우
Original Assignee
주식회사 에스원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스원 filed Critical 주식회사 에스원
Priority to GB1807149.8A priority Critical patent/GB2558492B/en
Priority to JP2018522751A priority patent/JP2019505106A/en
Publication of WO2017078187A1 publication Critical patent/WO2017078187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present invention relates to an array antenna in which radiating elements are arranged in series.
  • Patch array antennas in the form of printed microstrips are commonly used in radar detectors for the 24 GHz Industrial, Scientific and Medical (ISM) band.
  • ISM Industrial, Scientific and Medical
  • the Chebyshev, binomial, and taylor Complex structures such as taylor
  • a complex feeding circuit is required for feeding each radiating element. The design and performance optimization of array antennas with complex feed circuits takes a long time.
  • the patch array antenna for the 24 GHz band is designed to uniformly input the magnitude and phase of the current into each patch.
  • array antennas with a uniform magnitude and phase of the current input into the patch exhibit high sidelobe level characteristics, resulting in a very uneven detection area.
  • the detection area of the radar detector is very narrow, the side lobe level of the beam generated by the array antenna is high, so that it is difficult to generate a narrow and uniform beam only by the radar algorithm.
  • An array antenna having high gain and low side lobe level characteristics is provided.
  • a power distribution for distributing the power provided from the feeder at a first rate to the at least one radiating part comprising a plurality of radiating elements, a feed line connecting the plurality of radiating elements, and at least one radiating part.
  • An array antenna is provided comprising a portion.
  • the first ratio in the array antenna may be determined based on an array function related to the side lobe level in the first direction that is perpendicular to the direction in which the plurality of radiating elements are arranged.
  • the conductance of the first radiating element located in the center of the radiating part of the plurality of radiating elements may be greater than the conductance of at least one second radiating element located at the edge of the radiating part of the plurality of radiating elements.
  • the conductance of the plurality of radiating elements in the array antenna may be reduced at a second rate in a second direction from the first radiating element to the at least one second radiating element.
  • the second ratio in the array antenna may be a ratio determined based on an array function related to the side lobe levels in the second direction.
  • the array function in the array antenna may be a chebyshev array function.
  • the size of the plurality of radiating elements in the array antenna may be reduced at a second rate in a second direction from the first radiating element to the at least one second radiating element.
  • the second ratio in the array antenna may be a ratio of the feed factor determined based on the array factor function of the array antenna and the array function related to the side lobe level in the second direction.
  • the feeding coefficient in the array antenna may be a coefficient determined by comparing the coefficients of the array factor function and the array function.
  • the array antenna may further include a dielectric substrate on which at least one radiating part is printed in a patch form.
  • the feed line may control the phase of the current input to the plurality of radiating elements.
  • a feed line may connect a plurality of radiating elements in series.
  • the power divider may match the impedance of the at least one radiator with respect to the feeder.
  • the power divider may include at least one radiator, at least one first power divider providing power distributed at a first rate, and at least one first power divider to share the power provided from the feeder. It may include a second power distribution to provide in size.
  • the impedance of the first power divider in the array antenna may be determined according to the first ratio and a predetermined impedance constant.
  • uniform sensing performance in the horizontal and vertical directions may be secured by implementing a sub-level (-20 dB) or less in the horizontal and vertical directions based on the Chebyshev arrangement function.
  • a beam having various inclinations may be formed in a forward direction, and the width of the beam may be adjusted by adjusting the number of radiating elements. Can be controlled.
  • FIG. 1A is a diagram illustrating a plan view of an array antenna according to an exemplary embodiment
  • FIG. 1B is a diagram illustrating a perspective view.
  • FIG. 2 is a diagram illustrating a radiator included in an array antenna according to an exemplary embodiment.
  • FIG. 3 is a diagram illustrating a power distribution unit according to an exemplary embodiment.
  • FIG. 1A is a diagram illustrating a plan view of an array antenna according to an exemplary embodiment
  • FIG. 1B is a diagram illustrating a perspective view.
  • the array antenna 100 includes a radiating unit 110, a power distribution unit 120, and a power feeding unit 130.
  • the radiating unit 110, the power distribution unit 120, and the power feeding unit 130 of the array antenna 100 may be arranged on the dielectric substrate 200 and the ground plane 300.
  • the radiator 110 includes a plurality of radiating elements 111 and a feed line 112 connecting the plurality of radiating elements in series, and the array antenna 100 according to an embodiment includes a plurality of radiating parts 110.
  • the radiator 110 may be printed in the form of a micro strip, and the radiation conductance (G R ) of each radiating element 111 may be adjusted according to various requirements regarding antenna design such as gain and side lobe level characteristics. have.
  • the feed line 112 of the radiating unit 110 may control the inclination of the beam to be emitted by adjusting the phase of the current input to each radiating element 111.
  • the feed line 112 may be a line having an impedance of a predetermined magnitude, and the impedance of the line according to an embodiment may be 100 ohm.
  • the power divider 120 includes a first power divider 121, a second power divider 122, and a third power divider 123.
  • the power distributor 120 may transfer the power provided from the power supply unit 130 to the radiator 110.
  • the first power divider 121 operates as an equal power divider having a constant output power ratio (for example, -3 dB)
  • the second power divider 122 and the third power divider 123 are each
  • the radiator 110 may operate as an uneven power divider for distributing power of different sizes.
  • the second power distributor 122 and the third power distributor 123 may match the impedance of the radiator 110 with respect to the power supply unit 130.
  • an equal Wilkinson power divider may be used as the first power divider 121 and an uneven Wilkinson power divider as the second power divider 122 and the third power divider 123. Can be used.
  • the power supply unit 130 may transmit power to be provided to the radiator to the power distribution unit 120.
  • the power supply unit 130 may be changed into various types of power supply such as a coaxial line or a coplanar wavequide (CPW) using a transition structure.
  • CPW coplanar wavequide
  • FIG. 2 is a diagram illustrating a radiator included in an array antenna according to an exemplary embodiment.
  • the plurality of radiating elements 111 included in the radiating unit 110 according to an exemplary embodiment are arranged in series in the y direction, and the largest radiating element positioned at the center of the plurality of radiating elements 111 has the largest size and the center. At both ends, the size of the radiating element decreases.
  • the size of each radiating element 111 may be determined according to the radiating conductance. That is, a large radiating element may have a large radiating conductance compared to a small radiating element.
  • the array antenna according to an embodiment may be manufactured in a form printed on a dielectric substrate, each radiating element may be sized as a plane having an x-direction length (width) and a y-direction length (length).
  • the radiator 110 according to an exemplary embodiment includes nine radiating elements E1 to E9, and the number of radiating elements may be determined according to the purpose of using the array antenna according to an exemplary embodiment. have.
  • Radiation conductance of the plurality of radiating elements 111 included in the radiating unit 110 may be determined according to an array function having low side lobe level characteristics.
  • the Chebyshev array function with a y direction (vertical) side lobe level of -20 dB was used to determine the radiated conductance.
  • the angle at which the beam is inclined for the forward (+ z direction) directivity characteristic of the array antenna 100 may be designed to 0 degrees with respect to the z axis.
  • Equation 1 is an array factor (AF) of the array antenna 100 according to an embodiment, and the magnitude of the current applied to each of the radiating elements 111 may be calculated through Equation 1 and the Chebyshev array function. Can be.
  • Equation 1 i is a current applied to each radiating element 111, and AF is a function of ⁇ . Equation 2 represents ⁇ . If Equation 1 is developed, 15 terms may be calculated as in Equation 3 below.
  • the phase of the current input to each radiating element is 0 degrees, the phase of the current in each radiating element can be adjusted according to the radiation angle of the beam required according to the use environment.
  • the number, gain or beam width of the radiating elements can also be adjusted as appropriate. Equation 4 below is an expression of the expansion of Equation 1, and Equation 5 is an 8th order Chebyshev array function.
  • equation (6) By comparing the coefficients of the cos term in equations (4) and (5), equation (6) can be obtained.
  • i 0n , i 1n , i 2n , i 3n, and i 4n represent current magnitudes normalized based on the current magnitude of i 0 .
  • the current magnitude normalized for each radiating element 111 is a vertical power feeding coefficient.
  • Table 1 below shows the power supply coefficient of each radiating element 111 and the conductance of each radiating element 111 according to an embodiment calculated based on the array argument function defined in Equation 1 below.
  • the feed coefficient of each radiating element may be calculated by comparing coefficients between the coefficient of the cos term of the array argument function of Equation 1 and the coefficient of the Chebyshev array function, and the conductance based on the feed coefficient a n . Can be calculated.
  • Equation 9 represents the sum of conductances of all radiating elements included in the radiating unit 110.
  • the total radiating conductance G t may be calculated based on the constant of proportionality K and the feed coefficient a n of each radiating element 111, and in one embodiment, each radiating element The sum of the proportionality constant and the power feeding coefficient of 111 is one.
  • a proportionality constant is obtained based on each power supply coefficient (a n ) calculated by Equation 1 below.
  • the normalized radiation conductance of each radiating element 111 may be defined as in Equation 11 below.
  • the characteristic impedance of each feed line 112 was determined to be 100 [ ⁇ ], so the normalized impedence of the feed line 112 was also set to 100 [ ⁇ ].
  • the radiating element according to an embodiment has been optimized in width and length to increase the gain of the array antenna.
  • FIG. 3 is a diagram illustrating a power distribution unit according to an exemplary embodiment.
  • the power distribution unit 120 may distribute power of different sizes to each of the radiation units 110.
  • the Chebyshev arrangement having the side lobe level of -30 dB in the horizontal direction is the amount of power distributed from the second power distributor 122 and the third power distributor 123 of the power distributor 120 to the radiator 110 in the horizontal direction. It can be calculated based on a function. At this time, the side lobe level in the horizontal direction may be determined as a size that can improve the detection performance in the horizontal direction.
  • the power divider 120 includes a first power divider 121, a second power divider 122, and a third power divider 123-1, 123-2, 123-3, 123-4).
  • the power distributor 120 may distribute the power provided from the power supply unit 130 to apply currents i x1 to i x8 to each radiator 110 of the array antenna 100.
  • the first power divider 121 may operate as an equal power divider that outputs a constant power using the resistor R 0 .
  • the second power distributor 122 may output different power to each of the third power distributors 123-1, 123-2, 123-3, and 123-4.
  • the third power distributors 123-1, 123-2, 123-3, and 123-4 may operate as non-uniform power dividers for distributing power of different sizes to the radiators 110.
  • the third power distributors 123-1, 123-2, 123-3, and 123-4 are resistors R 1 to R 4 and symmetrically arranged impedances Z 1R , Z ' 1R , Z 1L. , Z ' 1L , Z 2R , Z' 2R , Z 2L , Z ' 2L , Z 3R , Z' 3R , Z 3L , Z 4R , Z' 4R , Z 4L , Z ' 4L ) .
  • the n th unit 123-n of the third power divider is connected to the n th unit 123-n using the resistors R- n and impedances Z nR , Z ' nR , Z nL, and Z' nL .
  • Power may be provided to the quadrant 110.
  • the magnitude of the current applied to each of the radiating parts 110 in the horizontal direction (that is, the horizontal feeding coefficient) is calculated.
  • a horizontal power feeding coefficient may be obtained as shown in Equation 13.
  • the feed coefficients for the respective radiating elements included in the array antenna 100 according to an embodiment which are calculated using the vertical feed coefficient of Equation 8 and the horizontal feed coefficient of Equation 13, are shown in Table 2 below. same.
  • the feed coefficients of the respective radiating elements 111 are shown, the normalized vertical feed coefficient of Equation 8 is applied to the vertical direction, and the horizontal feed coefficient of Equation 13 is applied to the horizontal direction.
  • the feeding factor 0.5194 of the radiating element corresponding to E1 in three rows is 0.6014 times the feeding factor 0.8637 of the radiating element corresponding to E5 in three columns, and the feeding coefficient of the radiating element in eight rows among the radiating elements corresponding to E5 in each row.
  • 0.2910 is 0.1750 / 0.6014 times the feed coefficient of the radiating element of one row.
  • the third power distribution unit 123 distributes power having different sizes in the horizontal direction according to Equation 13, and impedances Z iR , Z iL , and Z of the elements included in the third power distribution unit 123.
  • ' iR , Z' iL and R may be calculated based on Equation 14 below.
  • Z 0 is a predetermined impedance constant, and k represents a ratio of non-uniform power. In one embodiment Z 0 is set to 50 ohms.
  • K and impedance of the third power distribution unit 123 according to an embodiment are shown in Table 3 (k and impedance of the first third power distribution unit 123-1), Table 4 (second third power distribution unit) K and impedance of 123-2), Table 5 (k and impedance of the third third power distribution unit 123-3), and k of Table 6 (fourth third power distribution unit 123-4) And impedance).
  • the array antenna according to an embodiment achieves low sidelobe levels (-30 dB and -20 dB, respectively) in the horizontal and vertical directions based on the Chebyshev array function to ensure uniform sensing performance in the horizontal and vertical directions. can do.
  • a beam having various inclinations may be formed in all directions, and the width of the beam is controlled by adjusting the number of radiating elements. can do.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

The present invention provides an array antenna having the properties of high gain and a low side lobe level with respect to horizontal and vertical directions on the basis of Chebyshev array functions. The array antenna comprises: a plurality of radiation elements; at least one radiation unit comprising a feeder line for connecting the plurality of radiation elements; and a power distribution unit for distributing, at a first ratio, power supplied from a feeding unit to the at least one radiation unit.

Description

배열 안테나Array antenna
본 발명은 방사 소자가 직렬로 배열된 배열 안테나에 관한 것이다. The present invention relates to an array antenna in which radiating elements are arranged in series.
인쇄형(printed) 마이크로스트립(micro strip) 형태의 패치 배열 안테나(patch array antenna)는 24GHz ISM(Industrial, Scientific and Medical) 대역용 레이더 감지기에 주로 사용되고 있다. 이때, 안테나의 이득(gain)을 높여야 하거나, 또는 부엽 레벨(side lobe level, SLL)을 낮출 필요가 있는 등 안테나의 특별한 특성을 위해서, 체비쇼프(chebyshev), 바이노미얼(binomial), 테일러(taylor) 등 복잡한 구조가 배열 안테나에 적용될 필요가 있는데, 이때, 각 방사소자에 대한 급전을 위해 복잡한 급전 회로가 필요하다. 복잡한 급전 회로를 가진 배열 안테나의 설계 및 성능 최적화에는 긴 시간이 소요되는 단점이 있다.Patch array antennas in the form of printed microstrips are commonly used in radar detectors for the 24 GHz Industrial, Scientific and Medical (ISM) band. In this case, for the special characteristics of the antenna, such as increasing the gain of the antenna or lowering the side lobe level (SLL), the Chebyshev, binomial, and taylor ( Complex structures such as taylor) need to be applied to the array antenna. In this case, a complex feeding circuit is required for feeding each radiating element. The design and performance optimization of array antennas with complex feed circuits takes a long time.
24GHz 대역용 패치 배열 안테나는 설계의 복잡성으로 인한 위와 같은 문제점을 해결하기 위하여, 전류의 크기 및 위상이 각 패치로 균일하게 입력되도록 설계되고 있다. 하지만 패치로 입력되는 전류의 크기 및 위상이 균일한 배열 안테나는 높은 부엽 레벨 특성을 보이고 있으며, 이로 인해 감지 영역이 매우 불균일하다. 또한, 레이더 감지기의 감지 영역이 매우 좁은 경우, 배열 안테나에서 생성되는 빔의 부엽 레벨이 높아서 레이더 알고리즘만으로 좁고 균일한 폭의 빔을 생성하기 어렵다.In order to solve the above problems due to the complexity of the design, the patch array antenna for the 24 GHz band is designed to uniformly input the magnitude and phase of the current into each patch. However, array antennas with a uniform magnitude and phase of the current input into the patch exhibit high sidelobe level characteristics, resulting in a very uneven detection area. In addition, when the detection area of the radar detector is very narrow, the side lobe level of the beam generated by the array antenna is high, so that it is difficult to generate a narrow and uniform beam only by the radar algorithm.
고이득 및 낮은 부엽 레벨 특성을 갖는 배열 안테나가 제공된다.An array antenna having high gain and low side lobe level characteristics is provided.
한 실시예에 따르면, 복수의 방사 소자와, 복수의 방사 소자를 연결하는 급전선을 포함하는 적어도 하나의 방사부, 그리고 적어도 하나의 방사부로, 급전부로부터 제공된 전력을 제1 비율로 분배하는 전력 분배부를 포함하는 배열 안테나가 제공된다. According to one embodiment, a power distribution for distributing the power provided from the feeder at a first rate to the at least one radiating part comprising a plurality of radiating elements, a feed line connecting the plurality of radiating elements, and at least one radiating part. An array antenna is provided comprising a portion.
상기 배열 안테나에서 제1 비율은, 복수의 방사 소자가 배열된 방향에 대해 직각 방향인 제1 방향의 부엽 레벨과 관련된 배열 함수를 바탕으로 결정될 수 있다.The first ratio in the array antenna may be determined based on an array function related to the side lobe level in the first direction that is perpendicular to the direction in which the plurality of radiating elements are arranged.
상기 배열 안테나에서, 복수의 방사 소자 중 방사부의 중앙에 위치한 제1 방사 소자의 컨덕턴스는 복수의 방사 소자 중 방사부의 가장자리에 위치한 적어도 하나의 제2 방사 소자의 컨덕턴스보다 클 수 있다.In the array antenna, the conductance of the first radiating element located in the center of the radiating part of the plurality of radiating elements may be greater than the conductance of at least one second radiating element located at the edge of the radiating part of the plurality of radiating elements.
상기 배열 안테나에서 복수의 방사 소자의 컨덕턴스는, 제1 방사 소자에서 적어도 하나의 제2 방사 소자로 향하는 제2 방향으로 제2 비율로 감소할 수 있다.The conductance of the plurality of radiating elements in the array antenna may be reduced at a second rate in a second direction from the first radiating element to the at least one second radiating element.
상기 배열 안테나에서 제2 비율은, 제2 방향의 부엽 레벨과 관련된 배열 함수를 바탕으로 결정된 비율일 수 있다.The second ratio in the array antenna may be a ratio determined based on an array function related to the side lobe levels in the second direction.
상기 배열 안테나에서 배열 함수는, 체비쇼프(chebyshev) 배열 함수일 수 있다.The array function in the array antenna may be a chebyshev array function.
상기 배열 안테나에서 복수의 방사 소자의 크기는, 제1 방사 소자에서 적어도 하나의 제2 방사 소자로 향하는 제2 방향으로 제2 비율로 감소할 수 있다.The size of the plurality of radiating elements in the array antenna may be reduced at a second rate in a second direction from the first radiating element to the at least one second radiating element.
상기 배열 안테나에서 제2 비율은, 배열 안테나의 배열 인수 함수 및 제2 방향의 부엽 레벨과 관련된 배열 함수를 바탕으로 결정된 급전 계수의 비율일 수 있다.The second ratio in the array antenna may be a ratio of the feed factor determined based on the array factor function of the array antenna and the array function related to the side lobe level in the second direction.
상기 배열 안테나에서 급전 계수는, 배열 인수 함수 및 배열 함수의 계수 비교를 통해 결정된 계수일 수 있다.The feeding coefficient in the array antenna may be a coefficient determined by comparing the coefficients of the array factor function and the array function.
상기 배열 안테나는, 적어도 하나의 방사부가 패치 형태로 인쇄된 유전체 기판을 더 포함할 수 있다.The array antenna may further include a dielectric substrate on which at least one radiating part is printed in a patch form.
상기 배열 안테나에서 급전선은, 복수의 방사 소자로 입력되는 전류의 위상을 제어할 수 있다.In the array antenna, the feed line may control the phase of the current input to the plurality of radiating elements.
상기 배열 안테나에서 급전선은, 복수의 방사 소자를 직렬로 연결할 수 있다.In the array antenna, a feed line may connect a plurality of radiating elements in series.
상기 배열 안테나에서 전력 분배부는, 급전부에 대하여 적어도 하나의 방사부의 임피던스를 정합시킬 수 있다.In the array antenna, the power divider may match the impedance of the at least one radiator with respect to the feeder.
상기 배열 안테나에서 전력 분배부는, 적어도 하나의 방사부로, 제1 비율로 분배된 전력을 제공하는 적어도 하나의 제1 전력 분배부, 그리고 적어도 하나의 제1 전력 분배부로, 급전부로부터 제공된 전력을 같은 크기로 제공하는 제2 전력 분배부를 포함할 수 있다.In the array antenna, the power divider may include at least one radiator, at least one first power divider providing power distributed at a first rate, and at least one first power divider to share the power provided from the feeder. It may include a second power distribution to provide in size.
상기 배열 안테나에서 제1 전력 분배부의 임피던스는, 제1 비율 및 미리 결정된 임피던스 상수에 따라 결정될 수 있다.The impedance of the first power divider in the array antenna may be determined according to the first ratio and a predetermined impedance constant.
한 실시 예에 따르면, 높은 이득과 좁은 3dB 방사각 특성(HPBW3dB=4.0˚)을 통해 빔을 날카롭게 형성하여 특정 감지 영역에 대한 집중 감시를 수행할 수 있다. 또한, 체비쇼프 배열 함수를 바탕으로 수평 방향 및 수직 방향에서 낮은 부엽 레벨(-20dB) 이하 성능을 구현함으로써 수평 및 수직 방향에 대해 균일한 감지 성능이 확보될 수 있다. 한 실시 예에 따른 배열 안테나(100)에서 각 방사 소자로 입력되는 전류의 위상이 조절됨으로써 전방향(boresight)으로 다양한 기울기를 갖는 빔이 형성될 수 있고, 방사 소자의 개수를 조절함으로써 빔의 폭도 제어할 수 있다. 또한, 다양한 함수를 기반으로 각 방사 소자에 대한 급전을 용이하게 할 수 있고, 인쇄형 구조이므로 대량 생산에도 이점이 있다. According to an embodiment of the present disclosure, the beam is sharply formed through the high gain and the narrow 3dB radiation angle characteristic (HPBW 3dB = 4.0 °) to perform centralized monitoring on a specific sensing area. In addition, uniform sensing performance in the horizontal and vertical directions may be secured by implementing a sub-level (-20 dB) or less in the horizontal and vertical directions based on the Chebyshev arrangement function. By adjusting the phase of the current input to each radiating element from the array antenna 100 according to an embodiment, a beam having various inclinations may be formed in a forward direction, and the width of the beam may be adjusted by adjusting the number of radiating elements. Can be controlled. In addition, it is possible to facilitate feeding of each radiating element based on various functions, and there is an advantage in mass production because of the printed structure.
도 1a은 한 실시 예에 따른 배열 안테나의 평면도를 나타낸 도면이고, 도 1b는 사시도를 나타낸 도면이다.1A is a diagram illustrating a plan view of an array antenna according to an exemplary embodiment, and FIG. 1B is a diagram illustrating a perspective view.
도 2는 한 실시 예에 따른 배열 안테나에 포함된 방사부를 나타낸 도면이다.2 is a diagram illustrating a radiator included in an array antenna according to an exemplary embodiment.
도 3은 한 실시 예에 따른 전력 분배부를 나타낸 도면이다.3 is a diagram illustrating a power distribution unit according to an exemplary embodiment.
아래에서는 첨부한 도면을 참고로 하여 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
도 1a은 한 실시 예에 따른 배열 안테나의 평면도를 나타낸 도면이고, 도 1b는 사시도를 나타낸 도면이다.1A is a diagram illustrating a plan view of an array antenna according to an exemplary embodiment, and FIG. 1B is a diagram illustrating a perspective view.
도 1a 및 도 1b를 참조하면, 한 실시 예에 따른 배열 안테나(100)는, 방사부(110), 전력 분배부(120), 그리고 급전부(130)를 포함한다. 그리고, 배열 안테나(100)의 방사부(110), 전력 분배부(120), 그리고 급전부(130)는, 유전체 기판(200) 및 접지면(300) 위에 배열될 수 있다.1A and 1B, the array antenna 100 according to an embodiment includes a radiating unit 110, a power distribution unit 120, and a power feeding unit 130. The radiating unit 110, the power distribution unit 120, and the power feeding unit 130 of the array antenna 100 may be arranged on the dielectric substrate 200 and the ground plane 300.
방사부(110)는, 복수의 방사 소자(111) 및 복수의 방사 소자를 직렬로 연결하는 급전선(112)을 포함하고, 한 실시 예에 따른 배열 안테나(100)는 방사부(110)를 복수 개 포함할 수 있다. 방사부(110)는 마이크로 스트립 형태로 인쇄될 수 있고, 이득 및 부엽 레벨 특성 등 안테나 설계에 관한 다양한 요구 사항에 맞추어 각 방사 소자(111)의 방사 컨덕턴스(radiation conductance, GR)가 조절될 수 있다. 방사부(110)의 급전선(112)은, 각 방사 소자(111)로 입력되는 전류의 위상을 조절하여 방사되는 빔의 기울기를 제어할 수 있다. 급전선(112)은, 미리 결정된 크기의 임피던스를 갖는 선로가 될 수 있으며, 한 실시 예에 따른 선로의 임피던스는 100옴(ohm)이 될 수 있다. The radiator 110 includes a plurality of radiating elements 111 and a feed line 112 connecting the plurality of radiating elements in series, and the array antenna 100 according to an embodiment includes a plurality of radiating parts 110. Can contain dogs. The radiator 110 may be printed in the form of a micro strip, and the radiation conductance (G R ) of each radiating element 111 may be adjusted according to various requirements regarding antenna design such as gain and side lobe level characteristics. have. The feed line 112 of the radiating unit 110 may control the inclination of the beam to be emitted by adjusting the phase of the current input to each radiating element 111. The feed line 112 may be a line having an impedance of a predetermined magnitude, and the impedance of the line according to an embodiment may be 100 ohm.
전력 분배부(120)는, 제1 전력 분배부(121), 제2 전력 분배부(122) 및 제3 전력 분배부(123)를 포함한다. 전력 분배부(120)는 급전부(130)로부터 제공된 전력을 방사부(110)에 전달할 수 있다. 이때, 제1 전력 분배부(121)는 일정한 출력 전력비(예를 들어, -3dB)를 가진 균등 전력 분배기로서 동작하고, 제2 전력 분배부(122) 및 제3 전력 분배부(123)는 각 방사부(110)로 서로 다른 크기의 전력을 분배하는 비균등 전력 분배기로서 동작할 수 있다. 또한, 제2 전력 분배부(122) 및 제3 전력 분배부(123)는, 급전부(130)에 대하여 방사부(110)의 임피던스를 정합(impedance matching)시킬 수 있다. 한 실시 예에 따르면, 제1 전력 분배부(121)로서 균등 윌킨슨(Wilkinson) 전력 분배기가 사용될 수 있고, 제2 전력 분배부(122) 및 제3 전력 분배부(123)로서 비균등 윌킨슨 전력 분배기가 사용될 수 있다.The power divider 120 includes a first power divider 121, a second power divider 122, and a third power divider 123. The power distributor 120 may transfer the power provided from the power supply unit 130 to the radiator 110. In this case, the first power divider 121 operates as an equal power divider having a constant output power ratio (for example, -3 dB), and the second power divider 122 and the third power divider 123 are each The radiator 110 may operate as an uneven power divider for distributing power of different sizes. In addition, the second power distributor 122 and the third power distributor 123 may match the impedance of the radiator 110 with respect to the power supply unit 130. According to one embodiment, an equal Wilkinson power divider may be used as the first power divider 121 and an uneven Wilkinson power divider as the second power divider 122 and the third power divider 123. Can be used.
급전부(130)는, 전력 분배부(120)로 방사부에 제공할 전력을 전달할 수 있다. 한 실시 예에서 급전부(130)는, 트랜지션(transition) 구조를 이용하여 동축 선로 또는 코플라나 전송선(coplanar wavequide, CPW)과 같이 다양한 급전 형태로 변경될 수 있다.The power supply unit 130 may transmit power to be provided to the radiator to the power distribution unit 120. In one embodiment, the power supply unit 130 may be changed into various types of power supply such as a coaxial line or a coplanar wavequide (CPW) using a transition structure.
도 2는 한 실시 예에 따른 배열 안테나에 포함된 방사부를 나타낸 도면이다.2 is a diagram illustrating a radiator included in an array antenna according to an exemplary embodiment.
한 실시 예에 따른 방사부(110)에 포함된 복수의 방사 소자(111)는, y 방향으로 직렬로 배열되어 있고, 복수의 방사 소자(111) 중 중앙에 위치한 방사 소자의 크기가 가장 크고 중앙에서 양 끝으로 갈수록 방사 소자의 크기가 작아진다. 이때, 각 방사 소자(111)의 크기는 방사 컨덕턴스에 따라서 결정될 수 있다. 즉, 크기가 큰 방사 소자는 크기가 작은 방사 소자에 비해 큰 방사 컨덕턴스를 가질 수 있다. 한 실시 예에 따른 배열 안테나는 유전체 기판에 프린트되는 형식으로 제작될 수 있기 때문에, 각 방사 소자는 x방향 길이(폭) 및 y방향 길이(길이)를 갖는 면으로 크기가 정의될 수 있다. 도 2를 참조하면, 한 실시 예에 따른 방사부(110)는 9개의 방사 소자(E1 내지 E9)를 포함하고 있고, 방사 소자의 개수는 한 실시 예에 따른 배열 안테나의 사용 목적에 따라 결정될 수 있다.The plurality of radiating elements 111 included in the radiating unit 110 according to an exemplary embodiment are arranged in series in the y direction, and the largest radiating element positioned at the center of the plurality of radiating elements 111 has the largest size and the center. At both ends, the size of the radiating element decreases. In this case, the size of each radiating element 111 may be determined according to the radiating conductance. That is, a large radiating element may have a large radiating conductance compared to a small radiating element. Since the array antenna according to an embodiment may be manufactured in a form printed on a dielectric substrate, each radiating element may be sized as a plane having an x-direction length (width) and a y-direction length (length). Referring to FIG. 2, the radiator 110 according to an exemplary embodiment includes nine radiating elements E1 to E9, and the number of radiating elements may be determined according to the purpose of using the array antenna according to an exemplary embodiment. have.
한 실시 예에 따른 방사부(110)에 포함된 복수의 방사 소자(111)의 방사 컨덕턴스는, 낮은 부엽 레벨 특성을 갖는 배열 함수에 따라 결정될 수 있다. 한 실시 예에서는 방사 컨덕턴스를 결정하기 위해 y방향(수직방향) 부엽 레벨이 -20dB인 체비쇼프 배열 함수가 사용되었다. 이때, 배열 안테나(100)의 전방(+z 방향) 지향 특성을 위하여 빔이 기울어진 각도는 z축에 대하여 0도로 설계될 수 있다. Radiation conductance of the plurality of radiating elements 111 included in the radiating unit 110 according to an embodiment may be determined according to an array function having low side lobe level characteristics. In one embodiment, the Chebyshev array function with a y direction (vertical) side lobe level of -20 dB was used to determine the radiated conductance. In this case, the angle at which the beam is inclined for the forward (+ z direction) directivity characteristic of the array antenna 100 may be designed to 0 degrees with respect to the z axis.
수학식 1은 한 실시 예에 따른 배열 안테나(100)의 배열 인수(array factor, AF)이며, 수학식 1 및 체비쇼프 배열 함수를 통해 각 방사 소자(111)로 인가되는 전류의 크기가 계산될 수 있다.Equation 1 is an array factor (AF) of the array antenna 100 according to an embodiment, and the magnitude of the current applied to each of the radiating elements 111 may be calculated through Equation 1 and the Chebyshev array function. Can be.
Figure PCTKR2015011712-appb-M000001
Figure PCTKR2015011712-appb-M000001
Figure PCTKR2015011712-appb-M000002
Figure PCTKR2015011712-appb-M000002
수학식 1에서 i는 각 방사 소자(111)로 인가되는 전류이고, AF는 Ψ의 함수이다. 수학식 2는 Ψ를 나타낸다. 수학식 1을 전개하면 아래 수학식 3과 같이 15개항이 계산될 수 있다.In Equation 1, i is a current applied to each radiating element 111, and AF is a function of Ψ. Equation 2 represents Ψ. If Equation 1 is developed, 15 terms may be calculated as in Equation 3 below.
Figure PCTKR2015011712-appb-M000003
Figure PCTKR2015011712-appb-M000003
수학식 2에서 k는 빔의 파수(k=2π/λ)이고, d는 방사 소자(111) 간의 간격으로서, 빔의 파장의 1/2로 정의될 수 있다(d=λ/2). 따라서, 각 방사 소자를 연결하는 급전선(마이크로스트립 선로)(112)의 길이는, 빔의 반파장(λ/2)으로 설계될 수 있다. 이때, 각 방사 소자로 입력되는 전류의 위상은 0˚이지만, 사용환경에 따라 요구되는 빔의 방사 각도에 따라 각 방사 소자에서 전류의 위상이 조절될 수 있다. 또한, 방사 소자의 개수, 이득 또는 빔 폭 또한 적절히 조절될 수 있다. 아래 수학식 4는 수학식 1의 전개식이 정리된 식이고, 수학식 5는 8차 체비쇼프 배열 함수이다.In Equation 2, k is the wave number of the beam (k = 2π / λ), and d is an interval between the radiating elements 111 and may be defined as 1/2 of the wavelength of the beam (d = λ / 2). Accordingly, the length of the feed line (microstrip line) 112 connecting each radiating element may be designed to be a half wavelength (λ / 2) of the beam. At this time, the phase of the current input to each radiating element is 0 degrees, the phase of the current in each radiating element can be adjusted according to the radiation angle of the beam required according to the use environment. In addition, the number, gain or beam width of the radiating elements can also be adjusted as appropriate. Equation 4 below is an expression of the expansion of Equation 1, and Equation 5 is an 8th order Chebyshev array function.
Figure PCTKR2015011712-appb-M000004
Figure PCTKR2015011712-appb-M000004
Figure PCTKR2015011712-appb-M000005
Figure PCTKR2015011712-appb-M000005
수학식 4 및 5에서 cos 항의 계수를 비교하면, 수학식 6을 얻을 수 있다.By comparing the coefficients of the cos term in equations (4) and (5), equation (6) can be obtained.
Figure PCTKR2015011712-appb-M000006
Figure PCTKR2015011712-appb-M000006
이때, 수학식 5에서 x0는, 방사 소자의 개수 M(M=2N+1, 한 실시 예에서 N=4)과 부엽 레벨에 따라 결정될 수 있는 계수 R(R=10- SLL /20, 한 실시 예에서 수직 방향에 적용된 부엽 레벨은 -20dB이므로 R=10-(-20)/20=10)에 의해 아래 수학식 7에 따라 결정될 수 있다. In this case, x 0 in Equation 5 is a coefficient R (R = 10 - SLL / 20 , one that can be determined according to the number of radiating elements M (M = 2N + 1, N = 4 in one embodiment) and the side lobe level. In the embodiment, since the side lobe level applied in the vertical direction is -20 dB, it may be determined according to Equation 7 below by R = 10 -(-20) / 20 = 10).
Figure PCTKR2015011712-appb-M000007
Figure PCTKR2015011712-appb-M000007
수학식 6을 참조하면, 한 실시 예에서 M=9, R=10이므로 x0는 1.0708이다. 마지막으로 x0를 수학식 5에 대입하면 각 방사 소자(111)로 인가되는 전류의 크기가 수학식 8과 같이 계산될 수 있다.Referring to Equation 6, since M = 9 and R = 10 in one embodiment, x 0 is 1.0708. Finally, if x 0 is substituted into Equation 5, the magnitude of the current applied to each radiating element 111 may be calculated as Equation 8.
Figure PCTKR2015011712-appb-M000008
Figure PCTKR2015011712-appb-M000008
수학식 8에서 i0n, i1n, i2n, i3n 및 i4n은, i0의 전류 크기를 기준으로 정규화된 전류 크기를 나타내고 있다. 이때, 한 실시 예에서, 각 방사 소자(111)에 대해 정규화된 전류 크기는, 수직 방향 급전 계수이다.In Equation 8, i 0n , i 1n , i 2n , i 3n, and i 4n represent current magnitudes normalized based on the current magnitude of i 0 . At this time, in one embodiment, the current magnitude normalized for each radiating element 111 is a vertical power feeding coefficient.
아래 표 1은 수학식 1에 정의된 배열 인수 함수를 바탕으로 계산된 한 실시 예에 따른 각 방사 소자(111)의 급전 계수와 각 방사 소자(111)의 컨덕턴스를 나타낸다. 한 실시 예에서 각 방사 소자의 급전 계수는 수학식 1의 배열 인수 함수의 cos 항에 대한 계수와 체비쇼프 배열 함수의 계수 간의 계수 비교를 통해 계산될 수 있고, 컨덕턴스는 급전 계수 an을 바탕으로 계산될 수 있다. 수학식 9는 방사부(110)에 포함된 모든 방사 소자의 컨덕턴스 합을 나타낸다.Table 1 below shows the power supply coefficient of each radiating element 111 and the conductance of each radiating element 111 according to an embodiment calculated based on the array argument function defined in Equation 1 below. In one embodiment, the feed coefficient of each radiating element may be calculated by comparing coefficients between the coefficient of the cos term of the array argument function of Equation 1 and the coefficient of the Chebyshev array function, and the conductance based on the feed coefficient a n . Can be calculated. Equation 9 represents the sum of conductances of all radiating elements included in the radiating unit 110.
Figure PCTKR2015011712-appb-M000009
Figure PCTKR2015011712-appb-M000009
수학식 9에서, 총 방사 컨덕턴스(Gt)는 각 방사 소자(111)의 비례상수(constant of proportionality, K) 및 급전계수 an을 바탕으로 계산될 수 있고, 한 실시 예에서, 각 방사 소자(111)의 비례상수 및 급전 계수의 합은 1이다. 수학식 1을 통해 계산된 각 급전계수(an)를 바탕으로 비례상수를 구하면 아래 수학식 10과 같다.In Equation 9, the total radiating conductance G t may be calculated based on the constant of proportionality K and the feed coefficient a n of each radiating element 111, and in one embodiment, each radiating element The sum of the proportionality constant and the power feeding coefficient of 111 is one. A proportionality constant is obtained based on each power supply coefficient (a n ) calculated by Equation 1 below.
Figure PCTKR2015011712-appb-M000010
Figure PCTKR2015011712-appb-M000010
그리고, 비례상수 K(0.1784)를 이용하면 각 방사 소자(111)의 정규화된(normalized) 방사 컨덕턴스는 아래 수학식 11과 같이 정의될 수 있다.In addition, when the proportional constant K (0.1784) is used, the normalized radiation conductance of each radiating element 111 may be defined as in Equation 11 below.
Figure PCTKR2015011712-appb-M000011
Figure PCTKR2015011712-appb-M000011
한 실시예에서, 각 급전선(112)의 특성 임피던스는 100[Ω]으로 결정되었고, 따라서 급전선(112)의 정규 임피던스(normalized impedence)도 100[Ω]으로 설정되었다. In one embodiment, the characteristic impedance of each feed line 112 was determined to be 100 [Ω], so the normalized impedence of the feed line 112 was also set to 100 [Ω].
소자device 급전 계수(an)Feed Factor (a n ) 정규화된 컨덕턴스Normalized conductance 계산값Calculated Value 최적값Optimal value
폭(mm)Width (mm) 길이(mm)Length (mm) 폭(mm)Width (mm) 길이(mm)Length (mm)
E1E1 0.60140.6014 0.06450.0645 1.1231.123 3.1823.182 1.5231.523 3.1823.182
E2E2 0.61530.6153 0.06750.0675 1.1731.173 3.1733.173 1.5731.573 3.1733.173
E3E3 0.81210.8121 0.11760.1176 1.9981.998 3.0653.065 2.3982.398 3.0653.065
E4E4 0.95030.9503 0.16110.1611 2.7032.703 3.0113.011 3.5033.503 3.0113.011
E5E5 1.00001.0000 0.17840.1784 2.9822.982 2.9942.994 4.5824.582 2.9942.994
E6E6 0.95030.9503 0.16110.1611 2.7032.703 3.0113.011 2.9032.903 3.0113.011
E7E7 0.81210.8121 0.11760.1176 1.9981.998 3.0653.065 1.7981.798 3.0653.065
E8E8 0.61530.6153 0.06750.0675 1.1731.173 3.1733.173 0.9730.973 3.1733.173
E9E9 0.60140.6014 0.06450.0645 1.1231.123 3.1823.182 0.9230.923 3.1823.182
표 1을 참조하면, 한 실시 예에 따른 방사 소자는 배열 안테나의 이득을 높이기 위해, 폭과 길이가 최적화 되었다. Referring to Table 1, the radiating element according to an embodiment has been optimized in width and length to increase the gain of the array antenna.
도 3은 한 실시 예에 따른 전력 분배부를 나타낸 도면이다.3 is a diagram illustrating a power distribution unit according to an exemplary embodiment.
한 실시 예에 따른 전력 분배부(120)는, 각 방사부(110)에 각각 다른 크기의 전력을 분배할 수 있다. 전력 분배부(120)의 제2 전력 분배부(122) 및 제3 전력 분배부(123)에서 방사부(110)에 분배하는 전력의 크기는 수평 방향으로 -30dB의 부엽 레벨을 갖는 체비쇼프 배열 함수를 바탕으로 계산될 수 있다. 이때 수평 방향의 부엽 레벨은 수평 방향의 감지 성능을 향상시킬 수 있는 크기로 결정될 수 있다.The power distribution unit 120 according to an embodiment may distribute power of different sizes to each of the radiation units 110. The Chebyshev arrangement having the side lobe level of -30 dB in the horizontal direction is the amount of power distributed from the second power distributor 122 and the third power distributor 123 of the power distributor 120 to the radiator 110 in the horizontal direction. It can be calculated based on a function. At this time, the side lobe level in the horizontal direction may be determined as a size that can improve the detection performance in the horizontal direction.
도 3을 참조하면, 전력 분배부(120)는, 제1 전력 분배부(121), 제2 전력 분배부(122) 및 제3 전력 분배부(123-1, 123-2, 123-3, 123-4)를 포함한다. 전력 분배부(120)는 급전부(130)로부터 제공된 전력을 분배하여 배열 안테나(100)의 각 방사부(110)로 전류(ix1 내지 ix8)를 인가할 수 있다.Referring to FIG. 3, the power divider 120 includes a first power divider 121, a second power divider 122, and a third power divider 123-1, 123-2, 123-3, 123-4). The power distributor 120 may distribute the power provided from the power supply unit 130 to apply currents i x1 to i x8 to each radiator 110 of the array antenna 100.
제1 전력 분배부(121)의 저항(R0)을 이용하여 일정한 전력을 출력하는 균등 전력 분배기로 동작할 수 있다. The first power divider 121 may operate as an equal power divider that outputs a constant power using the resistor R 0 .
제2 전력 분배부(122)는 각 제3 전력 분배부(123-1, 123-2, 123-3, 123-4)로 서로 다른 전력을 출력할 수 있다.The second power distributor 122 may output different power to each of the third power distributors 123-1, 123-2, 123-3, and 123-4.
제3 전력 분배부(123-1, 123-2, 123-3, 123-4)는 각 방사부(110)로 서로 다른 크기의 전력을 분배하는 비균등 전력 분배기로서 동작할 수 있다. 이때, 제3 전력 분배부(123-1, 123-2, 123-3, 123-4)는 저항(R1 내지 R4) 및 대칭적으로 배치된 임피던스(Z1R, Z'1R, Z1L, Z'1L, Z2R, Z'2R, Z2L, Z'2L, Z3R, Z'3R, Z3L, Z'3L, Z4R, Z'4R, Z4L, Z'4L)를 포함한다. 즉, 제3 전력 분배부의 n번째 유닛(123-n)은, 저항 R-n과 임피던스 ZnR, Z'nR, ZnL 및 Z'nL를 이용하여 n번째 유닛(123-n)에 연결된 방사부(110)로 전력을 제공할 수 있다. The third power distributors 123-1, 123-2, 123-3, and 123-4 may operate as non-uniform power dividers for distributing power of different sizes to the radiators 110. In this case, the third power distributors 123-1, 123-2, 123-3, and 123-4 are resistors R 1 to R 4 and symmetrically arranged impedances Z 1R , Z ' 1R , Z 1L. , Z ' 1L , Z 2R , Z' 2R , Z 2L , Z ' 2L , Z 3R , Z' 3R , Z 3L , Z ' 3L , Z 4R , Z' 4R , Z 4L , Z ' 4L ) . That is, the n th unit 123-n of the third power divider is connected to the n th unit 123-n using the resistors R- n and impedances Z nR , Z ' nR , Z nL, and Z' nL . Power may be provided to the quadrant 110.
수직 방향으로 배열된 각 방사 소자(111)로 인가되는 전류의 크기를 계산한 방법과 동일한 방법으로 수평 방향의 각 방사부(110)로 인가되는 전류의 크기(즉, 수평 방향 급전 계수)를 수학식 12을 이용하여 계산하면 수학식 13와 같이 수평 방향 급전 계수를 얻을 수 있다.In the same manner as the method of calculating the magnitude of the current applied to each of the radiating elements 111 arranged in the vertical direction, the magnitude of the current applied to each of the radiating parts 110 in the horizontal direction (that is, the horizontal feeding coefficient) is calculated. When the calculation is performed using Equation 12, a horizontal power feeding coefficient may be obtained as shown in Equation 13.
Figure PCTKR2015011712-appb-M000012
Figure PCTKR2015011712-appb-M000012
Figure PCTKR2015011712-appb-M000013
Figure PCTKR2015011712-appb-M000013
그리고, 수학식 8의 수직 방향 급전 계수와 수학식 13의 수평 방향 급전 계수를 이용하여 계산된, 한 실시 예에 따른 배열 안테나(100)에 포함된 각 방사 소자에 대한 급전 계수는 아래 표 2와 같다.In addition, the feed coefficients for the respective radiating elements included in the array antenna 100 according to an embodiment, which are calculated using the vertical feed coefficient of Equation 8 and the horizontal feed coefficient of Equation 13, are shown in Table 2 below. same.
E9E9 0.17500.1750 0.19080.1908 0.27410.2741 0.36190.3619 0.44650.4465 0.51940.5194 0.57300.5730 0.60140.6014
E8E8 0.17910.1791 0.19520.1952 0.28040.2804 0.37030.3703 0.45680.4568 0.53140.5314 0.58630.5863 0.61530.6153
E7E7 0.23630.2363 0.25770.2577 0.37010.3701 0.48870.4887 0.60290.6029 0.70140.7014 0.77380.7738 0.81210.8121
E6E6 0.27650.2765 0.30150.3015 0.43300.4330 0.57180.5718 0.70550.7055 0.82070.8207 0.90540.9054 0.95030.9503
E5E5 0.29100.2910 0.31730.3173 0.45570.4557 0.60180.6018 0.74240.7424 0.86370.8637 0.95280.9528 1.00001.0000
E4E4 0.27650.2765 0.30150.3015 0.43300.4330 0.57180.5718 0.70550.7055 0.82070.8207 0.90540.9054 0.95030.9503
E3E3 0.23630.2363 0.25770.2577 0.37010.3701 0.48870.4887 0.60290.6029 0.70140.7014 0.77380.7738 0.81210.8121
E2E2 0.17910.1791 0.19520.1952 0.28040.2804 0.37030.3703 0.45680.4568 0.53140.5314 0.58630.5863 0.61530.6153
E1E1 0.17500.1750 0.19080.1908 0.27410.2741 0.36190.3619 0.44650.4465 0.51940.5194 0.57300.5730 0.60140.6014
88 77 66 55 44 33 22 1One
표 2를 참조하면, 각 방사 소자(111)의 급전 계수가 나타나 있으며, 수직 방향에 대해서는 수학식 8의 정규화된 수직 방향 급전 계수가 적용되고, 수평 방향에 대해서는 수학식 13의 수평 방향 급전 계수가 적용되었다. 예를 들어, 3열의 E1에 해당하는 방사 소자의 급전 계수 0.5194는, 3열의 E5에 해당하는 방사 소자의 급전 계수 0.8637의 0.6014배이고, 각 열의 E5에 해당하는 방사 소자 중 8열의 방사 소자의 급전 계수 0.2910은 1열의 방사 소자의 급전 계수의 0.1750/0.6014배이다. Referring to Table 2, the feed coefficients of the respective radiating elements 111 are shown, the normalized vertical feed coefficient of Equation 8 is applied to the vertical direction, and the horizontal feed coefficient of Equation 13 is applied to the horizontal direction. Applied. For example, the feeding factor 0.5194 of the radiating element corresponding to E1 in three rows is 0.6014 times the feeding factor 0.8637 of the radiating element corresponding to E5 in three columns, and the feeding coefficient of the radiating element in eight rows among the radiating elements corresponding to E5 in each row. 0.2910 is 0.1750 / 0.6014 times the feed coefficient of the radiating element of one row.
그리고, 제3 전력 분배부(123)는 수학식 13에 따라 수평 방향으로 서로 다른 크기의 전력을 분배하는데, 제3 전력 분배부(123)에 포함된 소자의 임피던스(ZiR, ZiL, Z'iR, Z'iL 및 R)는 아래 수학식 14를 바탕으로 계산될 수 있다. In addition, the third power distribution unit 123 distributes power having different sizes in the horizontal direction according to Equation 13, and impedances Z iR , Z iL , and Z of the elements included in the third power distribution unit 123. ' iR , Z' iL and R) may be calculated based on Equation 14 below.
Figure PCTKR2015011712-appb-M000014
Figure PCTKR2015011712-appb-M000014
수학식 14를 참조하면, Z0는 미리 결정된 임피던스 상수이며, k는 비균등 전력의 비율(ratio)을 나타낸다. 한 실시 예에서 Z0는 50옴으로 설정되었다. 한 실시 예에 따른 제3 전력 분배부(123)의 k 및 임피던스는 아래 표 3(첫 번째 제3 전력 분배부(123-1)의 k 및 임피던스), 표 4(두 번째 제3 전력 분배부(123-2)의 k 및 임피던스), 표 5(세 번째 제3 전력 분배부(123-3)의 k 및 임피던스) 그리고, 표 6(네 번째 제3 전력 분배부(123-4)의 k 및 임피던스)에 나타나 있다.Referring to Equation 14, Z 0 is a predetermined impedance constant, and k represents a ratio of non-uniform power. In one embodiment Z 0 is set to 50 ohms. K and impedance of the third power distribution unit 123 according to an embodiment are shown in Table 3 (k and impedance of the first third power distribution unit 123-1), Table 4 (second third power distribution unit) K and impedance of 123-2), Table 5 (k and impedance of the third third power distribution unit 123-3), and k of Table 6 (fourth third power distribution unit 123-4) And impedance).
kk 1.02451.0245
Z1R Z 1R 69.03 [Ω]69.03 [Ω]
Z1L Z 1L 49.40 [Ω]49.40 [Ω]
Z'1R Z ' 1R 72.45 [Ω]72.45 [Ω]
Z'1L Z ' 1L 50.61 [Ω]50.61 [Ω]
R1 R 1 100.03 [Ω]100.03 [Ω]
kk 1.07861.0786
Z2R Z 2R 65.65 [Ω]65.65 [Ω]
Z2L Z 2L 48.14 [Ω]48.14 [Ω]
Z'2R Z ' 2R 76.37 [Ω]76.37 [Ω]
Z'2L Z ' 2L 51.93 [Ω]51.93 [Ω]
R2 R 2 100.29 [Ω]100.29 [Ω]
kk 1.14911.1491
Z3R Z 3R 61.84 [Ω]61.84 [Ω]
Z3L Z 3L 46.64 [Ω]46.64 [Ω]
Z'3R Z ' 3R 81.64 [Ω]81.64 [Ω]
Z'3L Z ' 3L 53.60 [Ω]53.60 [Ω]
R3 R 3 100.97 [Ω]100.97 [Ω]
kk 1.04421.0442
Z4R Z 4R 67.75 [Ω]67.75 [Ω]
Z4L Z 4L 48.93 [Ω]48.93 [Ω]
Z'4R Z ' 4R 73.87 [Ω]73.87 [Ω]
Z'4L Z ' 4L 51.09 [Ω]51.09 [Ω]
R4 R 4 100.09 [Ω]100.09 [Ω]
한 실시 예에 따른 배열 안테나(100)는, 높은 이득과 좁은 3dB 방사각 특성(HPBW3dB=4.0˚)을 통해 빔을 날카롭게 형성함으로써 특정 감지 영역에 대한 집중 감시를 수행할 수 있다. 또한, 한 실시 예에 따른 배열 안테나는 체비쇼프 배열 함수를 바탕으로 수평 방향 및 수직 방향에 대해 낮은 부엽 레벨(각각 -30dB 및 -20dB)을 달성함으로써 수평 및 수직 방향에 대해 균일한 감지 성능을 확보할 수 있다. 한 실시 예에 따른 배열 안테나(100)에서 각 방사 소자로 입력되는 전류의 위상가 조절됨으로써 전방향(boresight)으로 다양한 기울기를 갖는 빔이 형성될 수 있고, 방사 소자의 개수를 조절함으로써 빔의 폭도 제어할 수 있다. 또한, 다양한 함수를 기반으로 각 방사 소자에 대한 급전을 용이하게 할 수 있고, 인쇄형 구조이므로 대량 생산에도 이점이 있다. The array antenna 100 according to an exemplary embodiment may perform centralized monitoring on a specific sensing area by sharply forming a beam through a high gain and a narrow 3dB radiation angle characteristic (HPBW 3dB = 4.0 °). In addition, the array antenna according to an embodiment achieves low sidelobe levels (-30 dB and -20 dB, respectively) in the horizontal and vertical directions based on the Chebyshev array function to ensure uniform sensing performance in the horizontal and vertical directions. can do. By adjusting the phase of the current input to each radiating element from the array antenna 100 according to an embodiment, a beam having various inclinations may be formed in all directions, and the width of the beam is controlled by adjusting the number of radiating elements. can do. In addition, it is possible to facilitate feeding of each radiating element based on various functions, and there is an advantage in mass production because of the printed structure.
이상에서 본 발명의 실시 예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (15)

  1. 복수의 방사 소자와, 상기 복수의 방사 소자를 연결하는 급전선을 포함하는 적어도 하나의 방사부, 그리고At least one radiating part including a plurality of radiating elements and a feed line connecting the plurality of radiating elements, and
    상기 적어도 하나의 방사부로, 급전부로부터 제공된 전력을 제1 비율로 분배하는 전력 분배부A power distribution unit for distributing power provided from a feeder at a first rate to the at least one radiating unit
    를 포함하는 배열 안테나.Array antenna comprising a.
  2. 제1항에서,In claim 1,
    상기 제1 비율은, 상기 복수의 방사 소자가 배열된 방향에 대해 직각 방향인 제1 방향의 부엽 레벨과 관련된 배열 함수를 바탕으로 결정되는 배열 안테나.And the first ratio is determined based on an array function associated with a side lobe level in a first direction that is perpendicular to the direction in which the plurality of radiating elements are arranged.
  3. 제1항에서,In claim 1,
    상기 복수의 방사 소자 중 상기 방사부의 중앙에 위치한 제1 방사 소자의 컨덕턴스가 상기 복수의 방사 소자 중 상기 방사부의 가장자리에 위치한 적어도 하나의 제2 방사 소자의 컨덕턴스보다 큰 배열 안테나.And an conductance of a first radiating element located at the center of the radiating part of the plurality of radiating elements is greater than a conductance of at least one second radiating element located at an edge of the radiating part of the plurality of radiating elements.
  4. 제3항에서,In claim 3,
    상기 복수의 방사 소자의 컨덕턴스는, 상기 제1 방사 소자에서 상기 적어도 하나의 제2 방사 소자로 향하는 제2 방향으로 제2 비율로 감소하는 배열 안테나.And conductance of the plurality of radiating elements decreases at a second rate in a second direction from the first radiating element to the at least one second radiating element.
  5. 제4항에서,In claim 4,
    상기 제2 비율은, 상기 제2 방향의 부엽 레벨과 관련된 배열 함수를 바탕으로 결정된 비율인 배열 안테나.And the second ratio is a ratio determined based on an array function related to the side lobe levels in the second direction.
  6. 제2항에서, In claim 2,
    상기 배열 함수는, 체비쇼프(chebyshev) 배열 함수인 배열 안테나.And the array function is a chebyshev array function.
  7. 제1항에서,In claim 1,
    상기 복수의 방사 소자의 크기는, 상기 제1 방사 소자에서 상기 적어도 하나의 제2 방사 소자로 향하는 제2 방향으로 제2 비율로 감소하는 배열 안테나.And the sizes of the plurality of radiating elements decrease at a second rate in a second direction from the first radiating element to the at least one second radiating element.
  8. 제7항에서,In claim 7,
    상기 제2 비율은, 상기 배열 안테나의 배열 인수 함수 및 상기 제2 방향의 부엽 레벨과 관련된 배열 함수를 바탕으로 결정된 급전 계수의 비율인 배열 안테나.And the second ratio is a ratio of a feed factor determined based on an array factor function of the array antenna and an array function related to the side lobe level in the second direction.
  9. 제8항에서,In claim 8,
    상기 급전 계수는, 상기 배열 인수 함수 및 상기 배열 함수의 계수 비교를 통해 결정된 계수인 배열 안테나.The power feeding coefficient is an array antenna determined by comparing coefficients between the array function and the array function.
  10. 제1항에서,In claim 1,
    상기 적어도 하나의 방사부가 패치 형태로 인쇄된 유전체 기판A dielectric substrate having the at least one radiating portion printed in a patch form
    을 더 포함하는 배열 안테나.Array antenna further comprising a.
  11. 제1항에서,In claim 1,
    상기 급전선은, 상기 복수의 방사 소자로 입력되는 전류의 위상을 제어하는 배열 안테나.The feed line, the array antenna for controlling the phase of the current input to the plurality of radiating elements.
  12. 제1항에서,In claim 1,
    상기 급전선은, 상기 복수의 방사 소자를 직렬로 연결하는 배열 안테나.The feed line is an array antenna for connecting the plurality of radiating elements in series.
  13. 제1항에서,In claim 1,
    상기 전력 분배부는, 상기 급전부에 대하여 상기 적어도 하나의 방사부의 임피던스를 정합시키는 배열 안테나.And the power distribution unit matches an impedance of the at least one radiation unit with respect to the power supply unit.
  14. 제1항에서,In claim 1,
    상기 전력 분배부는,The power distribution unit,
    상기 적어도 하나의 방사부로, 상기 제1 비율로 분배된 전력을 제공하는 적어도 하나의 제1 전력 분배부, 그리고At least one first power distribution unit providing power distributed at the first ratio to the at least one radiating unit, and
    상기 적어도 하나의 제1 전력 분배부로, 상기 급전부로부터 제공된 전력을 같은 크기로 제공하는 제2 전력 분배부A second power divider configured to provide the same amount of power provided from the feeder to the at least one first power divider;
    를 포함하는 배열 안테나.Array antenna comprising a.
  15. 제1항에서,In claim 1,
    상기 제1 전력 분배부의 임피던스는 상기 제1 비율 및 미리 결정된 임피던스 상수에 따라 결정되는 배열 안테나.The impedance of the first power divider is determined in accordance with the first ratio and a predetermined impedance constant.
PCT/KR2015/011712 2015-11-02 2015-11-03 Array antenna WO2017078187A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1807149.8A GB2558492B (en) 2015-11-02 2015-11-03 Array antenna
JP2018522751A JP2019505106A (en) 2015-11-02 2015-11-03 Array antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0153377 2015-11-02
KR1020150153377A KR101735782B1 (en) 2015-11-02 2015-11-02 Array antenna

Publications (1)

Publication Number Publication Date
WO2017078187A1 true WO2017078187A1 (en) 2017-05-11

Family

ID=58662805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011712 WO2017078187A1 (en) 2015-11-02 2015-11-03 Array antenna

Country Status (4)

Country Link
JP (1) JP2019505106A (en)
KR (1) KR101735782B1 (en)
GB (1) GB2558492B (en)
WO (1) WO2017078187A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623192A (en) * 2017-08-23 2018-01-23 湖南纳雷科技有限公司 A kind of combination and the micro-strip crossfeed array antenna for presenting power division network
CN107645066A (en) * 2017-08-03 2018-01-30 东莞市云通通讯科技有限公司 Improve the communication base station antenna that secondary lobe suppresses
CN111276784A (en) * 2020-03-23 2020-06-12 深圳市豪恩汽车电子装备股份有限公司 Microstrip array antenna and microstrip power divider thereof
CN114094322A (en) * 2020-08-24 2022-02-25 智易科技股份有限公司 Antenna for suppressing gain of side lobes
CN114566795A (en) * 2022-03-10 2022-05-31 国网陕西省电力有限公司电力科学研究院 Flat-top directional diagram millimeter wave radar antenna and system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658558A (en) * 2017-09-15 2018-02-02 集美大学 A kind of 24GHz car radars array antenna
KR102063467B1 (en) * 2018-01-10 2020-01-08 (주)스마트레이더시스템 Antenna and radar apparatus having different beam tilt for each frequency
KR101900839B1 (en) 2018-02-12 2018-09-20 주식회사 에이티코디 Array antenna
KR102422664B1 (en) * 2018-10-05 2022-07-18 동우 화인켐 주식회사 Antenna structure and display device including the same
US11923625B2 (en) 2019-06-10 2024-03-05 Atcodi Co., Ltd Patch antenna and array antenna comprising same
KR102345362B1 (en) * 2020-10-26 2021-12-29 연세대학교 산학협력단 Center-fed Array Antenna using Unequal Power divider

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076760A (en) * 2000-08-25 2002-03-15 Toyota Central Res & Dev Lab Inc Antenna apparatus
US20120019414A1 (en) * 2010-07-22 2012-01-26 Georgia Tech Research Corporation Microwave antenna
KR101166851B1 (en) * 2005-09-02 2012-07-19 삼성전자주식회사 Array antenna system
KR101470581B1 (en) * 2013-08-05 2014-12-08 주식회사 에스원 Array antenna and array antenna of radar detection system
KR20150018697A (en) * 2013-08-08 2015-02-24 주식회사 에스원 Array antenna with self isolation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180817A (en) * 1976-05-04 1979-12-25 Ball Corporation Serially connected microstrip antenna array
DE2632772C2 (en) * 1976-07-21 1983-12-29 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Microwave group antenna in stripline technology
US4730193A (en) * 1986-03-06 1988-03-08 The Singer Company Microstrip antenna bulk load
US4875024A (en) * 1988-12-05 1989-10-17 Ford Aerospace Corporation Low loss power splitter
JPH04121111U (en) * 1991-04-12 1992-10-29 日立化成工業株式会社 planar antenna
JPH05107335A (en) * 1991-10-19 1993-04-27 Nec Corp Active phased array radar aerial device
JPH0629719A (en) * 1992-07-06 1994-02-04 Toyo Commun Equip Co Ltd Phased array antenna
JP3304019B2 (en) * 1994-05-16 2002-07-22 株式会社日立製作所 ARRAY ANTENNA, RECEIVER HAVING THE SAME, AND METHOD OF DETERMINING DIRECTIVITY CHARACTERISTICS IN ARRAY ANTENNA
JPH08167812A (en) * 1994-12-13 1996-06-25 Toshiba Corp Array antenna system
JP3310643B2 (en) * 2000-01-14 2002-08-05 電気興業株式会社 Power distribution circuit
KR200369140Y1 (en) * 2004-09-20 2004-12-03 진일전자산업(주) Led blub light
JP5776625B2 (en) * 2012-05-11 2015-09-09 日立金属株式会社 Power distribution synthesizer
TWI505546B (en) * 2013-01-23 2015-10-21 Wistron Neweb Corp Power divider and radio-frequency transceiver system
JP5937994B2 (en) * 2013-03-22 2016-06-22 株式会社豊田中央研究所 antenna
US20140375518A1 (en) * 2013-06-19 2014-12-25 Radio Frequency Systems, Inc. Amplitude tapered switched beam antenna systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076760A (en) * 2000-08-25 2002-03-15 Toyota Central Res & Dev Lab Inc Antenna apparatus
KR101166851B1 (en) * 2005-09-02 2012-07-19 삼성전자주식회사 Array antenna system
US20120019414A1 (en) * 2010-07-22 2012-01-26 Georgia Tech Research Corporation Microwave antenna
KR101470581B1 (en) * 2013-08-05 2014-12-08 주식회사 에스원 Array antenna and array antenna of radar detection system
KR20150018697A (en) * 2013-08-08 2015-02-24 주식회사 에스원 Array antenna with self isolation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645066A (en) * 2017-08-03 2018-01-30 东莞市云通通讯科技有限公司 Improve the communication base station antenna that secondary lobe suppresses
CN107623192A (en) * 2017-08-23 2018-01-23 湖南纳雷科技有限公司 A kind of combination and the micro-strip crossfeed array antenna for presenting power division network
CN111276784A (en) * 2020-03-23 2020-06-12 深圳市豪恩汽车电子装备股份有限公司 Microstrip array antenna and microstrip power divider thereof
CN114094322A (en) * 2020-08-24 2022-02-25 智易科技股份有限公司 Antenna for suppressing gain of side lobes
CN114566795A (en) * 2022-03-10 2022-05-31 国网陕西省电力有限公司电力科学研究院 Flat-top directional diagram millimeter wave radar antenna and system

Also Published As

Publication number Publication date
GB201807149D0 (en) 2018-06-13
GB2558492B (en) 2022-02-02
KR20170051046A (en) 2017-05-11
KR101735782B1 (en) 2017-05-15
GB2558492A (en) 2018-07-11
JP2019505106A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2017078187A1 (en) Array antenna
US7986280B2 (en) Multi-element broadband omni-directional antenna array
US20230370173A1 (en) Antenna arrays for testing wireless devices
KR100841152B1 (en) Array antenna including a monolithic antenna feed assembly and related methods
KR101762401B1 (en) Array antenna and radar detector including the same
JP7126563B2 (en) Cavity back antenna element and array antenna device
WO2015174621A1 (en) Antenna device
WO2012161512A2 (en) Radar array antenna using open stubs
US3868695A (en) Conformal array beam forming network
NO315628B1 (en) Double polarizing antenna with common aperture
WO2019156281A1 (en) Array antenna
BR112015031224B1 (en) Two-port three-card line/waveguide converter
WO2012118312A2 (en) Multi-array antenna
WO2015111932A1 (en) Antenna device of radar system
IT8320039A1 (en) ANTENNA WITH AT LEAST ONE DIPOLE
WO2010095820A2 (en) Mimo antenna system comprising an isolation unit made of a metamaterial
SE515092C2 (en) Double band antenna device
KR20100095799A (en) Broadband antenna and radiation device included in the same
WO2012096544A2 (en) Antenna comprising an unplated emitter
WO2023080529A1 (en) High-output slot waveguide array antenna
WO2018151484A1 (en) Beam forming apparatus and antenna system having same
TWI705616B (en) Antenna apparatus, communication apparatus and steering adjustment method thereof
TWI696314B (en) Multi-beam phased antenna structure and controlling method thereof
WO2017014593A1 (en) Asymmetric coplanar waveguide antenna using composite left/right handed transmission line and ground surface
WO2011065706A2 (en) N-port feeding system using slow-wave structure and feeding device included in same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201807149

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151103

WWE Wipo information: entry into national phase

Ref document number: 2018522751

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907850

Country of ref document: EP

Kind code of ref document: A1