WO2017078059A1 - Electrowetting device, method for manufacturing same, and droplet injection method - Google Patents

Electrowetting device, method for manufacturing same, and droplet injection method Download PDF

Info

Publication number
WO2017078059A1
WO2017078059A1 PCT/JP2016/082553 JP2016082553W WO2017078059A1 WO 2017078059 A1 WO2017078059 A1 WO 2017078059A1 JP 2016082553 W JP2016082553 W JP 2016082553W WO 2017078059 A1 WO2017078059 A1 WO 2017078059A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
droplet
hydrophobic
electrode
hole
Prior art date
Application number
PCT/JP2016/082553
Other languages
French (fr)
Japanese (ja)
Inventor
知子 寺西
昊 李
Original Assignee
シャープ マイクロフルイディック ソリューションズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ マイクロフルイディック ソリューションズ リミテッド filed Critical シャープ マイクロフルイディック ソリューションズ リミテッド
Publication of WO2017078059A1 publication Critical patent/WO2017078059A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting

Definitions

  • the present invention relates to an electrowetting device, a manufacturing method thereof, and a droplet injection method.
  • Electrowetting is the application of an electric field to a droplet placed on a dielectric layer that has been subjected to a hydrophobic treatment (water repellent treatment) provided on an electrode.
  • a hydrophobic treatment water repellent treatment
  • the droplet is enclosed in a micro flow channel (micro flow channel) surrounded by the lower substrate and the upper substrate in the electrowetting apparatus.
  • the droplet (fluid) enclosed in the channel is torn into a predetermined amount of finer droplets as required by applying an appropriate voltage.
  • Japanese Patent Publication Japanese Unexamined Patent Publication No. 2013-128920 (released on July 4, 2013)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2012-17697 (published on September 13, 2012)” US Patent Application Publication No. 201200282608 (published on November 11, 2010) US Pat. No. 5,096,669 (registered March 17, 1992)
  • the liquid droplets sealed in the flow path are injected into the flow path using a fluid injection mechanism for forcibly feeding a fluid (droplet) into the flow path and a storage mechanism for a target liquid amount.
  • FIGS. 18A to 18C and FIGS. 19A and 19B are cross-sectional views showing the problems of the conventional electrowetting device.
  • FIG. 19A is a perspective view showing a problem of the electrowetting device shown in FIG. 18A
  • FIG. 19B is an electrowetting shown in FIG. It is a figure which shows the photograph of the principal part of a ting apparatus (namely, electrowetting apparatus shown to (a) of FIG. 18).
  • the electrowetting device by applying a voltage to a droplet placed on a dielectric layer that has been subjected to hydrophobic treatment provided on an electrode, the droplet is deformed, for example, Displace (move).
  • the droplet 40 (fluid) in the flow path 30 surrounded by the lower substrate 10 and the upper substrate 20 in the electrowetting apparatus comes into contact.
  • Hydrophobic layers 15 and 23 are formed on the interface by applying a hydrophobic treatment.
  • the droplet 40 injected into the flow path 30 is torn into a predetermined amount of finer droplets as necessary by applying an appropriate voltage.
  • the lower substrate 10 and the upper substrate 20 are subjected to hydrophobic treatment in order to perform hydrophobic treatment in the flow path 30.
  • the liquid droplet 40 passes through the gap 30 between the lower substrate 10 and the upper substrate 20 at the edge of the electrowetting device, or from the through-hole 25 provided as a liquid droplet injection port in the upper substrate 20 into the flow path 30. Injected into.
  • a sealing material 31 is provided in the gap between the lower substrate 10 and the upper substrate 20 at the edge of the electrowetting device.
  • the through hole 25 is preferably formed in the upper substrate 20.
  • the through hole 25 is formed in the upper substrate 20
  • the entire upper substrate 20 is formed by, for example, a dip coating method. Therefore, in this case, the hydrophobic layer 23 is also formed in the through hole 25 as shown in FIGS.
  • the conventional electrowetting device shown in FIGS. 18A and 18B has not only very little familiarity between the hydrophobic layers 15 and 23 and the droplets 40 in the flow path 30.
  • simply dropping the droplet 40 into the through-hole 25, as shown in FIGS. 18 (a) and (b) and FIGS. 19 (a) and (b), in the electrowetting device that is, The droplets 40 do not naturally flow into the cells made up of the lower substrate 10 and the upper substrate 20 bonded together.
  • the contact surface with the droplet 40 in the path from the through hole 25 in the upper substrate 20 to the flow path 30 is shown.
  • the capillary phenomenon occurs regardless of whether or not the hydrophobic layer 23 is formed on the upper surface of the upper substrate 20 (that is, the surface of the upper substrate 20 opposite to the surface facing the lower substrate 10). Does not occur well, and the droplet 40 is ejected from the through hole 25 due to the surface tension.
  • the droplet 40 dropped on the through hole 25 is formed on the dielectric layer 14 provided on the electrode 13 and covered with the hydrophobic layer 15 in the lower substrate 10 (that is, the lower substrate 10 in the flow path 30).
  • a special fluid injection mechanism is required to perform the electrowetting operation.
  • the hydrophobic layers 15 and 23 are formed only at the interface in contact with the liquid droplet 40 in the flow path 30, and the upper substrate 20
  • the droplet 40 dropped on the through-hole 25 has a force that always spreads and spreads on the upper surface of the upper substrate 20. Therefore, in this case, even if the droplet 40 dropped on the through-hole 25 reaches the surface of the lower substrate 10 in the flow channel 30, the droplet 40 is drawn into the flow channel 30 by the electrowetting operation. It is difficult to go.
  • the hydrophobic layers 15 and 23 are formed only on the opposing surfaces of the lower substrate 10 and the upper substrate 20 by using a spin coat method or the like after the through hole 25 is formed in the upper substrate 20, the cell The droplet 40 does not naturally flow into the inside.
  • a special fluid injection mechanism is required to draw the droplet 40 into the cell and perform the electrowetting operation.
  • Patent Document 1 discloses a metering fluid loading system formed integrally with an electrowetting device as a fluid injection mechanism.
  • the metering fluid loading system includes a reservoir having an inflow channel, and moves or expands the fluid or gas in the reservoir so that a part of the fluid in the inflow channel of the reservoir is transferred to the electrowetting device.
  • an appropriate voltage is applied to the electrodes to cause individually metered volumes of droplets (fluids) to flow out. This forcibly injects droplets (fluid) into the gap between the upper substrate and the lower substrate in the electrowetting device.
  • Patent Document 2 includes an upper substrate provided with an opening and a lower substrate, and an electrowetting device that sends fluid from the opening to a flow path formed between the upper substrate and the lower substrate. A gating device is disclosed. However, Patent Document 2 does not disclose how the fluid is fed into the electrowetting device.
  • Patent Document 3 discloses an electrowetting device in which droplets are sealed in a gap between an upper substrate and a lower substrate, but a method for injecting droplets into the electrowetting device is also disclosed. Not.
  • Patent Document 4 discloses a system used for an apparatus for analyzing a droplet sample.
  • an opening provided at one end of a second conduit having an opening for receiving the fluid at one end and a capillary opening at the other end is used as a fluid used for measurement.
  • the fluid fills the second conduit, and then the opening is sealed. Thereafter, air is pushed out from the cavity functioning as an air bag by the fourth conduit toward the second conduit.
  • the fluid in the second conduit is extruded from the second conduit to the third conduit connected to the capillary port of the second conduit, and the extruded fluid reaches the sensor. Measurement is performed.
  • the present invention has been made in view of the above problems, and an object thereof is an electrowetting device capable of injecting droplets into an electrowetting device without requiring a complicated fluid injection mechanism, and its It is an object to provide a manufacturing method and a droplet injection method.
  • an electrowetting device includes a lower substrate having a first electrode and an upper substrate having a second electrode, which are bonded to each other with a gap.
  • the upper substrate has an injection port for injecting a droplet into the gap, and the first electrode is provided in a region including a region immediately below the injection port, and on the upper surface of the upper substrate, A hydrophobic layer is provided in each of the region where the droplet contacts and the region where the droplet contacts in the lower substrate, and a hydrophilic layer having a higher surface tension than the hydrophobic layer is provided in the inlet. ing.
  • a droplet injection method is a method of injecting a droplet into an electrowetting device according to an aspect of the present invention, wherein the droplet is injected into the injection port.
  • a method for manufacturing an electrowetting device includes a lower substrate forming step of forming a lower substrate on which a first electrode is formed, and a second electrode.
  • an electrowetting device that can inject droplets into an electrowetting device without requiring a complicated fluid injection mechanism, a manufacturing method thereof, and a droplet injection method are provided. can do.
  • (A) is a disassembled perspective view which shows schematic structure of the principal part of the electrowetting apparatus concerning Embodiment 1 of this invention
  • (b) is the fluid of the electrowetting apparatus concerning Embodiment 1 of this invention. It is sectional drawing which expands and shows the structure of the injection hole vicinity. It is sectional drawing which shows schematic structure of a pair of array element in the electrowetting apparatus concerning Embodiment 1 of this invention. It is a top view which shows an example of schematic structure of the thin film electronic circuit in the electrowetting apparatus concerning Embodiment 1 of this invention.
  • (A)-(d) is a figure which shows a part of manufacturing process of the upper board
  • (A)-(d) is a figure which shows the surface treatment process of the upper board
  • (A)-(e) is sectional drawing which shows in order a mode that a droplet is drawn in in the electrowetting apparatus concerning Embodiment 1 of this invention.
  • (A)-(c) is a perspective view which shows sequentially a mode that a droplet is drawn in in the electrowetting apparatus concerning Embodiment 1 of this invention.
  • (A) is a perspective view which shows a mode that a droplet is drawn in in the electrowetting apparatus concerning Embodiment 1 of this invention,
  • (b) is a principal part of the electrowetting apparatus shown to (a).
  • FIG. 1 It is a figure which shows a photograph. It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity of the electrowetting apparatus concerning Embodiment 2 of this invention.
  • (A)-(c) is sectional drawing which shows the process of forming a resist pattern in the area
  • (A)-(e) is sectional drawing which shows sequentially a mode that a droplet is drawn in the electrowetting apparatus concerning Embodiment 2 of this invention. It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity of the electrowetting apparatus concerning Embodiment 3 of this invention.
  • (A)-(f) is a figure which shows an example of the manufacturing process of the upper board
  • (A)-(f) is a figure which shows an example of the manufacturing process of the upper board
  • FIG. 18 It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity of the electrowetting apparatus concerning Embodiment 6 of this invention.
  • FIG. 18 is sectional drawing which shows the problem of the conventional electrowetting apparatus.
  • A) is a perspective view which shows the problem of the electrowetting apparatus shown to (a) of FIG. 18,
  • (b) is a figure which shows the one part photograph of the electrowetting apparatus shown to (a). is there.
  • Embodiment 1 An embodiment of the present invention will be described below mainly with reference to FIGS.
  • EWOD Electrowetting-On-Dielectric (dielectric electrowetting)
  • TFT thin film transistor
  • AM-EWOD active-matrix-type dielectric electrowetting-active-on-dielectric
  • FIG. 1A is an exploded perspective view showing a schematic configuration of a main part of an electrowetting device 1 according to the present embodiment
  • FIG. 1B is an electrowetting device 1 according to the present embodiment. It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity.
  • FIG. 1B in order to show the configuration of the through hole 25, the ratio of each component, particularly the ratio of the through hole 25 is changed. For simplification, only one through hole 25 is shown.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a pair of array elements in the electrowetting device 1 according to the present embodiment.
  • FIG. 3 is a plan view showing an example of a schematic configuration of the thin film electronic circuit 12 in the electrowetting device 1 according to the present embodiment.
  • the electrowetting apparatus 1 includes a pair of substrates including a lower substrate 10 and an upper substrate 20 that are arranged to face each other.
  • the lower substrate 10 is a thin film in which a plurality of electrodes 13 (for example, the electrodes 13a and 13b shown in FIG. 2) are formed on a support substrate 11.
  • the electronic circuit 12 and the dielectric layer 14 are stacked in this order.
  • the surface of the lower substrate 10 is covered with a hydrophobic layer 15.
  • a hydrophobic layer 15 is formed only on the surface facing the upper substrate 20 (that is, the upper surface) is shown as an example.
  • the present embodiment is not limited to this, and the entire surface of the lower substrate 10 may be covered with the hydrophobic layer 15.
  • the plurality of electrodes 13 can be realized by patterning the uppermost layer of the support substrate 11 (which can also be interpreted as a part of the layers constituting the thin film electronic circuit 12). Such a configuration is called an electrowetting drive element. Note that both the electrode 13 associated with a specific array element and the node of the electric circuit directly connected to the electrode 13 may be referred to as an electrowetting drive element.
  • the thin film electronic circuit 12 is configured to drive each electrode 13.
  • Each electrode 13 is an AM (active matrix) electrode (array element electrode) and constitutes a part of the electrode array 16. As shown in FIGS. 1A and 3, the electrode array 16 has M ⁇ N array elements (M and N are arbitrary numbers).
  • the dielectric layer 14 is disposed on the support substrate 11 so as to cover the plurality of electrodes 13.
  • the dielectric layer 14 separates the electrode 13 from the hydrophobic layer 15 provided on the surface of the lower substrate 10 facing the upper substrate 20.
  • the upper substrate 20 has a configuration in which an electrode 22 is provided on the side of the support substrate 21 facing the lower substrate 10.
  • the electrode 22 is covered with a hydrophobic layer 23.
  • the lower substrate 10 and the upper substrate 20 are bonded to each other by a sealing material 31 provided at the peripheral edge thereof to form a cell.
  • the gap between the lower substrate 10 and the upper substrate 20 may be held at a constant gap by the spacer 32.
  • the droplet 40 used for electrowetting is injected into a minute channel 30 (microchannel) formed by the gap between the lower substrate 10 and the upper substrate 20.
  • a part of the upper substrate 20 has an upper portion serving as a first liquid injection port (injection port) for injecting a droplet 40 (fluid) into a flow path 30 formed by a gap between the lower substrate 10 and the upper substrate 20.
  • a plurality of through holes 25 penetrating the substrate 20 are provided.
  • the present embodiment is not limited to this, and it is sufficient that at least one through hole 25 is provided.
  • the electrowetting device 1 includes an active region 2 and a frame region 3 (inactive region) provided outside the active region 2 as shown in FIG.
  • the active region 2 is an AM (active matrix) electrode area in which a conductive film is patterned as the electrode 13 to form a two-dimensional array.
  • the through hole 25 is provided near the boundary with the frame region 3 in the active region 2 of the upper substrate 20 as an example.
  • the present embodiment is not limited to this, and the through hole 25 may be provided in the frame region 3.
  • the hydrophobic layer 23 covers the surface of the upper substrate 20 except for the opening wall 25a in the through-hole 25 as shown in FIG.
  • FIG. 1B as an example, a case where the entire surface of the upper substrate 20 excluding the opening wall 25a is covered with the hydrophobic layer 23 is shown as an example.
  • the present embodiment is not limited to this, and the hydrophobic layer 23 is formed on the upper substrate 20 on the surface facing the lower substrate 10 (that is, the lower surface) and on the upper surface that is the opposite surface. What is necessary is just to be formed in the area
  • the opening wall 25a in the through hole 25 is formed of a hydrophilic layer 24 having a higher surface tension than the hydrophobic layer 15 in the lower substrate 10 and the hydrophobic layer 23 in the upper substrate 20.
  • the through hole 25 has a distance between the lower substrate 10 and the upper substrate 20 (distance between the opposing surfaces) as g1, and an opening diameter (diameter) of the through hole 25. Is preferably g2, g2> g1, more preferably g2 ⁇ g1. Thereby, the droplet 40 injected from the through-hole 25 can be reliably brought into contact with the surface of the lower substrate 10 (that is, the surface of the dielectric layer 14 covered with the hydrophobic layer 23).
  • a conductive liquid such as an ionic liquid or a polar liquid is used.
  • liquid such as water, electrolytic solution (aqueous solution of electrolyte), alcohols, various ionic liquids can be used.
  • the droplet 40 include, for example, a whole blood specimen, a bacterial cell suspension, a protein or antibody solution, and various buffer solutions.
  • a non-conductive liquid 42 that is immiscible with the droplets 40 may be injected into the flow path 30.
  • the volume not occupied by the droplets 40 in the flow path 30 may be filled with the non-conductive liquid 42.
  • a part of the electrowetting device 1 has a second liquid inlet (non-conductive liquid inlet) (not shown) as a fluid inlet for injecting the non-conductive liquid 42 into the flow path 30. It may be provided.
  • the second liquid inlet may be provided, for example, in a part of the frame region 3 in the upper substrate 20, and an opening is provided in a part of the sealing material 31 and is provided so as to extend from the opening. It may be.
  • nonconductive liquid 42 a nonpolar liquid (nonionic liquid) having a surface tension smaller than that of the droplet 40 can be used.
  • non-conductive liquid 42 include, for example, hydrocarbon solvents (low molecular hydrocarbon solvents) such as decane, dodecane, hexadecane, and undecane, oils such as silicone oil, and fluorocarbon solvents.
  • oils such as silicone oil, and fluorocarbon solvents.
  • silicone oil include dimethylpolysiloxane. Note that only one type of non-conductive liquid 42 may be used, or a plurality of types may be appropriately mixed and used.
  • the non-conductive liquid 42 a liquid having a specific gravity smaller than the specific gravity of the droplet 40 is selected.
  • the specific gravity of the droplet 40 and the specific gravity of the non-conductive liquid 42 are not particularly limited as long as the relationship of the specific gravity of the non-conductive liquid 42 ⁇ the specific gravity of the droplet 40 is satisfied.
  • the specific gravity of the droplet 40 is substantially the same as the specific gravity of water ( ⁇ 1.0), and the non-conductive liquid 42 has a specific gravity of 1 such as silicone oil. Less than 0 liquid is used.
  • the droplet 40 and the non-conductive liquid 42 have low viscosity.
  • the droplet 40 may be diluted with water or the like so as to have a predetermined viscosity.
  • the droplet 40 contacts the hydrophobic layer 23 at a contact angle ⁇ .
  • the liquid is the droplet 40 and the solid is the hydrophobic layer 23.
  • the relative surface tension (ie, ⁇ SG, ⁇ SL, and ⁇ LG) of related substances may be a numerical value such that the right side of the above equation (2) is smaller than ⁇ 1. This can typically occur when the volume not occupied by the droplets 40 in the flow path 30 is filled with, for example, oil as the non-conductive liquid 42.
  • the droplet 40 is not in contact with the hydrophobic layers 15 and 23 (hydrophobic surfaces), and the thin film of the nonconductive liquid 42 is interposed between the droplet 40 and the hydrophobic layers 15 and 23. Can be formed.
  • the droplet 40 that is a liquid As shown in FIG. 2, when the volume not occupied by the droplet 40 in the flow path 30 is filled with a non-conductive liquid 42 (for example, oil), the droplet 40 that is a liquid (Liquid) Assuming that the surface tension on the interface with the non-conductive liquid 42 that is the surrounding oil (Oil) is ⁇ LO, in the above formula (2), ⁇ LG and ⁇ SG can be replaced by ⁇ LO and ⁇ SO, respectively.
  • a non-conductive liquid 42 for example, oil
  • the droplet 40 that is a liquid (Liquid) Assuming that the surface tension on the interface with the non-conductive liquid 42 that is the surrounding oil (Oil) is ⁇ LO, in the above formula (2), ⁇ LG and ⁇ SG can be replaced by ⁇ LO and ⁇ SO, respectively.
  • the contact angle ⁇ is a measure of the hydrophobicity of the surface. It can be defined that the surface is hydrophilic when ⁇ ⁇ 90 degrees and the surface is hydrophobic when ⁇ > 90 degrees. The degree of hydrophobicity or hydrophilicity is defined according to the difference between the contact angle ⁇ and 90 degrees.
  • FIG. 1B shows a droplet 40 that is in contact with the surface of the hydrophobic layer 23 having a hydrophobic surface at a contact angle ⁇ in a static equilibrium state.
  • an EW drive voltage for example, VT, V0, and V00 shown in FIG. 2
  • V0, and V00 shown in FIG. 2 an EW drive voltage
  • V0, and V00 shown in FIG. 2 an EW drive voltage
  • V0, and V00 shown in FIG. 2 an EW drive voltage
  • the hydrophobicity of the hydrophobic layers 15 and 23 is effectively controlled by the electric force generated by the voltage application.
  • the droplet 40 moves horizontally toward a region with higher hydrophilicity (in other words, a region with lower hydrophobicity).
  • the droplet 40 is allowed to flow between the lower substrate 10 and the upper substrate 20 with each other. Can be moved laterally along the opposite surfaces (surfaces of the hydrophobic layers 15 and 23).
  • a transparent insulating substrate is used for the support substrates 11 and 21.
  • the support substrates 11 and 21 can be formed of, for example, a glass substrate.
  • a substrate such as a plastic substrate or a ceramic substrate is used as the support substrate 11 or 21, respectively. May be.
  • the hydrophobic layers 15 and 23 and the hydrophilic layer 24 can be formed by using an appropriate surface coating method such as a dipping method, a spin coating method, a CVD method, or an electrodeposition method.
  • the droplet 40 drawn into the gap between the lower substrate 10 and the upper substrate 20 is given to each electrode 13 constituting the electrode array 16 in the active region 2 (region where the electrode array 16 is an AM electrode formation area).
  • a predetermined voltage is applied in the sequence.
  • a part of the droplet 40 (a predetermined amount of smaller droplets 41 and minute droplets shown in FIGS. 2 and 3) is torn off (separated) and carried to the predetermined flow path 30. It is.
  • a plurality of droplets 41 may be disposed between the lower substrate 10 and the upper substrate 20.
  • Each array element of the electrode array 16 includes an array element circuit 17 in order to control the potential of the corresponding electrode 13.
  • the thin film electronic circuit 12 is also provided with an integrated row driving circuit 51 and column driving circuit 52.
  • the row drive circuit 51 and the column drive circuit 52 supply control signals to the array element circuit 17.
  • the thin film electronic circuit 12 may include a serial interface 53 that processes a serial input data stream and writes a necessary voltage to the electrode array 16.
  • the thin film electronic circuit 12 may include a voltage supply interface 54 that supplies a corresponding supply voltage, a drive voltage for the upper substrate 20, and other required voltages. Since the thin film electronic circuit 12 includes the serial interface 53 and the voltage supply interface 54, even when the size of the electrode array 16 is large, a connection wire 55 between the lower substrate 10 and an external drive electronic circuit (not shown). And the number of power supplies and the like can be made relatively small.
  • the array element circuit 17 may additionally include a sensor function.
  • the array element circuit 17 includes a mechanism for detecting the presence of the droplet 41 at the position of each array element in the electrode array 16 and detecting the size of the droplet 41. Also good.
  • the thin film electronic circuit 12 may include a column detection circuit (not shown) for reading sensor data from each array element and integrating the data into one or more serial output signals.
  • the serial output signal may be given via the serial interface 53 and output from the electrowetting device 1 by one or more connection wires 55.
  • the array element circuit 17 is configured so that the droplet driving voltage VEW can be applied to the droplet 40, and may include a memory element, an inverting circuit, and the like (not shown).
  • the memory elements include, for example, a column write line extending from the column driving circuit 52 (may be common to array elements in the same column), a row selection line extending from the row driving circuit 51 (to the array elements in the same row). May be included), a capacitive memory device, a DC (direct current) supply voltage Vref, a switch transistor, and the like.
  • the inversion circuit may include a plurality of analog switches, supply voltages V1 and V2 (may be common to all array elements), an inverter, and the like.
  • EWOD In the EWOD operating mechanism, the contact angle of the droplet with respect to the hard surface depends on the square of the operating voltage, and the direction of the applied voltage is not uniquely important. Therefore, EWOD can be carried out by any of the AC (alternating current) drive method and the DC drive method.
  • the voltage VT is applied to the electrode 22 of the upper substrate 20 as shown in FIG. For simplification, it is assumed that the upper substrate 20 is grounded.
  • the electrode 13 forming the EWOD drive electrode is set to a low level, the voltage VT is also applied to the EWOD drive electrode.
  • the EWOD drive electrode is set high, the voltage V1 is applied to the EWOD drive electrode.
  • V1 is a rectangular waveform with an amplitude of 2VA, where the high level is + VA and the low level is -VA.
  • electrowetting drive voltages such as VT, V0, and V00 may be applied to the electrode 13a and the electrode 13b, respectively.
  • the hydrophobicity of the hydrophobic layer 15 can be controlled, and the movement of the lateral droplets 40 and 41 in the flow path 30 between the lower substrate 10 and the upper substrate 20 becomes easy.
  • 4A to 4D are diagrams showing a part of the manufacturing process of the upper substrate 20 in the electrowetting apparatus 1 according to the present embodiment in the order of processes.
  • a plurality of mother substrates 61 provided with a solid conductive film are bonded together with a temporary fixing adhesive 62 and cured, so that the mother substrate 61
  • the adhesive body 60 in which a plurality of sheets are bonded together is formed.
  • a large-sized glass substrate having a thickness of 0.7 mm in which an ITO (indium tin oxide) film is provided in a solid form on the entire surface of one main surface is used as the mother substrate 61.
  • the temporary fixing adhesive 62 is made by Denki Kagaku Kogyo Co., Ltd. (DENKA), which can be easily cured with warm water (recommended temperature: 80 to 90 ° C) without using an organic solvent.
  • TEMPLOC registered trademark
  • a protective sheet 63 is attached to the upper surface of the uppermost mother board 61 and the lower surface of the lowermost mother board 61.
  • a dummy substrate for example, a dummy glass substrate
  • the dummy substrate is attached to the mother substrate 61 using the same temporary fixing adhesive as the temporary fixing adhesive for attaching the mother substrates 61 to each other.
  • a predetermined number of through holes 60a having a predetermined opening diameter g2 are provided at predetermined positions of the adhesive body 60 in a state where the protective sheet 63 is provided. It is formed so as to penetrate the bottom surface from the top surface.
  • the through hole 60a is formed using a precision drill or a laser drill dedicated to glass.
  • the adhesive body 60 in which the through-hole 60a was formed is divided
  • the adhesive body 60 divided into one chip size is referred to as an adhesive body 60A.
  • the mother substrate 61 divided into one chip size is referred to as a chip 61A.
  • the adhesive body 60A cut out to one chip size is immersed in a container 64 filled with the resist solution 65, and includes the inside of the through hole 60a.
  • the whole 60 is covered with a resist solution 65.
  • a diluted solution obtained by diluting a positive resist “TFR1000” (trade name) manufactured by Tokyo Ohka Kogyo Co., Ltd. with a predetermined solvent is used, but is not limited thereto.
  • the adhesive 60A coated with the resist liquid 65 is taken out from the container 64, and the adhesive 60A is heated at 110 ° C. for 3 minutes to cure the resist liquid 65 to obtain a resist layer 65A.
  • the temperature and time for curing the resist solution 65 are not limited to the above temperature and time, and may be appropriately modified according to the type of the resist solution 65, and are not particularly limited.
  • the protective sheet 63 is peeled off from the adhesive 60A having the through-hole 60a and having the resist layer 65A formed on the surface.
  • the adhesive 60A from which the protective sheet 63 has been peeled is immersed in warm water of about 80 to 90 ° C., and the chips 61A in the adhesive 60A are bonded.
  • the fixing adhesive 62 is dissolved to separate the mother substrates 61. Thereby, the chip 61A having the through hole 60a and having the through hole 60a covered with the resist layer 65A is formed.
  • the chip 61A thus obtained is subjected to the surface treatment shown in FIGS. 5A to 5D, and finally becomes the upper substrate 20.
  • 5A to 5D are views showing the surface treatment process of the upper substrate 20 in the order of the processes.
  • a mother substrate 61 (chip 61A) provided with a solid conductive film (ITO film) and divided into one chip size is used as an electrode made of the conductive film.
  • the support substrate 21 provided with 22 will be described.
  • the through hole 60a will be described as the through hole 25.
  • the individual chips 61A separated in FIG. 4D are cleaned by ultrasonic cleaning and plasma ashing, and chipping pieces generated during processing of the through hole 60a used as the through hole 25 are removed. Remove.
  • the surface of the chip 61A where the electrode 22 is formed is subjected to a hydrophobic treatment.
  • a 1 wt% diluted solution of “CYTOP (registered trademark) -CTL107MK” (trade name) manufactured by AGC Asahi Glass Co., Ltd., which is a perfluoroamorphous resin, is used as a hydrophobic treatment agent.
  • the hydrophobic treatment agent is dip-coated on the support substrate 21 by immersing the chip 61A shown in the hydrophobic treatment agent.
  • the support substrate 21 provided with the electrode 22 is immersed in a container (not shown) filled with the hydrophobic treatment agent at an immersion speed of 5 mm / sec, an immersion time of 60 sec, and a lifting speed of 1 mm / sec.
  • a hydrophobic layer 23 (Cytop film) having a thickness of 50 nm is formed on the entire surface of the chip 61A including the resist layer 65A inside the through hole 25.
  • the above-mentioned chip 61A on which the hydrophobic layer 23 is formed is immersed in “SPX” (trade name, 2-aminoethanol) manufactured by Hayashi Junyaku Kogyo Co., Ltd., and subjected to ultrasonic waves for 5 minutes at room temperature.
  • SPX trade name, 2-aminoethanol
  • the resist layer 65A in the through hole 25 and the hydrophobic layer 23 on the resist layer 65A are peeled off. Thereby, as shown in FIG. 5C, the tip 61A is in a state where the hydrophobic layer 23 is not formed only in the through hole 25.
  • a hydrophilic layer 24 is formed on the opening wall 25a of the through-hole 25 where the hydrophobic layer 23 is not formed.
  • a betaine group-containing hydrophilic polymer having a terminal silanol group which is diluted with water so as to have a predetermined viscosity as a hydrophilic polymer aqueous solution inside the through-hole 25.
  • LAMBIC-500WP trade name
  • the liquid droplet 40 is not only quickly taken into the through hole 25 but also a fluid (droplet) of a specimen or a reagent. ) Can be prevented from being directly adsorbed on the surface of the support substrate 21, for example, a glass surface.
  • the lower substrate 10 can be formed in the same manner as before. That is, each layer (each component) in the lower substrate 10 can be formed by a known method.
  • the through hole 25 is provided in the active area 2.
  • the through hole 25 may be provided in the frame area 3.
  • a lead-in electrode connected to the electrode 13 in the active region 2 is provided from directly below the through-hole 25.
  • the lower substrate 10 may include a high resolution electrode array and a low resolution electrode array.
  • a high resolution electrode array is formed in the active region 2.
  • the low resolution electrode array (including electrode pads larger than the high resolution electrode array) can be used to draw and control the relatively large droplets 40 injected into the cell from the through holes 25 into the flow path 30.
  • the electrode 13 provides a straight path (flow path) for tearing (separating) a smaller droplet 41 from a relatively large droplet 40 injected into the cell from the through hole 25, Then, the active region 2 is moved to the active region 2 provided with the main electrode array 16 composed of a high resolution electrode array.
  • the high-resolution electrode array (including an electrode pad smaller than the low-resolution electrode array) splits a relatively large droplet 40 injected from the through-hole 25 into smaller droplets 41 for subsequent operations (chemical analysis, etc.). ).
  • a 1 wt% diluted solution of “Cytop CTL107MK” as a hydrophobic treatment agent is added to the lower substrate 10 on which the dielectric layer 14 is formed and before the hydrophobic layer 15 is formed.
  • a hydrophobic layer 15 (cytop film) can be formed on the dielectric layer 14 by slit coating or spin coating on the formation surface of the body layer 14.
  • a 1 wt% diluted solution of “Cytop CTL107MK” for example, as the hydrophobic treatment agent is dip coated in the same manner as the upper substrate 20, so that the hydrophobic layer 15 similar to the hydrophobic layer 23 is formed on the surface of the lower substrate 10. (Cytop film) may be formed.
  • the lower substrate 10 and the upper substrate 20 are bonded together with a sealing material 31 so that the electrode 13 and the electrode 22 face each other.
  • the electrowetting device 1 (the cell) according to the present embodiment is manufactured.
  • FIGS. 7A to 7C are perspective views sequentially showing how the droplets 40 are drawn into the electrowetting device 1.
  • a predetermined amount of droplet 40 is dropped into the through-hole 25 of the upper substrate 20 by a pipette or the like.
  • a hydrophobic layer 23 is formed on the upper surface of the upper substrate 20 to which the dropped droplet 40 is grounded (contacted), while the through-hole 25 is formed.
  • a hydrophilic layer 24 is formed by superhydrophilic coating. For this reason, the dropped droplet 40 naturally enters the through-hole 25 by its own weight.
  • Hydrophobic layers 15 and 23 are formed on the opposing surfaces of the lower substrate 10 and the upper substrate 20, respectively. For this reason, the dropped liquid droplet 40 fills the through-hole 25 with the liquid droplet 40, and after the liquid droplet 40 that has entered the through-hole 25 comes into contact with the surface of the lower substrate 10, no more. , Will not enter the cell.
  • the droplet 40 that has come into contact with the upper surface of the upper substrate 20 wets and spreads on the upper surface of the upper substrate 20. Since the force to rip off always works, it is difficult to draw the droplet 40 into the flow path 30 by the electrowetting operation.
  • the droplet 40 is grounded by its own weight on the surface of the lower substrate 10, and the hydrophobic layer 23 is provided on the upper surface of the upper substrate 20. For this reason, the droplet 40 does not spread on the upper substrate 20 and tries to keep the surface area as small as possible.
  • the electrode 13 covered with the dielectric layer 14 having the hydrophobic layer 15 on the surface is present immediately below the droplet 40 grounded by its own weight. For this reason, by sequentially applying a voltage to the plurality of electrodes 13 immediately below the ground plane of the droplet 40 on the lower substrate 10, the droplet 40 is effectively drawn in a predetermined direction by electrowetting.
  • the liquid droplet 40 that is grounded to the lower substrate 10 has a hydrophilic layer 24 formed on the surface of the opening wall 25 a in the through hole 25, so that the liquid 40 located in the through hole 25 is included in the liquid droplet 40.
  • the volume of the drop 40b is always maintained.
  • the droplet 40 c positioned below the through-hole 25, which has reached the channel 30, moves in the channel 30 along the surface of the lower substrate 10 by electrowetting.
  • the volume of the droplet 40a that protrudes outside the through-hole 25 of the upper substrate 20 is reduced. Decrease gradually. Then, when all of the droplets 40a protruding outside the through-hole 25 of the upper substrate 20 disappear as shown in FIGS. 6D and 7B, the drawing by electrowetting stops.
  • the amount of the droplet 40 dropped into the through-hole 25 is set so that a part of the droplet 40 protrudes from the surface of the upper substrate 20 when the penetration of the droplet 40 stops in the cell as described above. Is set.
  • the protruding portion of the droplet 40 is brought into contact with the hydrophobic layer 23 at a high contact angle ⁇ by the hydrophobic layer 23 formed on the upper surface of the upper substrate 20.
  • the drop amount of the droplet 40 to the through-hole 25 is at least the amount of the droplet that needs to be drawn into the cell + the amount of the droplet in the through-hole 25 (that is, the volume amount of the droplet 40b) + the penetration. It is sufficient that the droplet protruding from the mouth 25 has a volume equal to or larger than the volume indicated by the amount of droplet required for grounding the lower substrate 10 (that is, the volume of the droplet 40c).
  • the droplets 40 dropped onto the through-hole 25 naturally enter the hydrophilic region (that is, the formation region of the hydrophilic layer 24) in the through-hole 25 in the hydrophilic region.
  • a certain amount of liquid is stored according to the volume (for example, when all the opening walls 25a of the through-hole 25 are the hydrophilic layer 24 as described above, the volume of the through-hole 25).
  • the droplets 40 need only be appropriately dropped or continuously flowed from above the through hole 25, and no complicated fluid (droplet) injection mechanism is required.
  • the droplet 40 can be injected into the flow path 30 (that is, the electrowetting device 1) without requiring a complicated fluid (droplet) injection mechanism. .
  • steps from (d) in FIG. 6 to (e) in FIG. 6 are performed using the electrowetting operation of the electrode 13 as an AM electrode in these drawings.
  • This operation does not necessarily have to be performed on the AM electrode.
  • the steps up to the step shown in FIG. 6D can be performed using the lead-in electrode. Good.
  • the non-conductive liquid 42 is injected into the cell from a second liquid injection port (not shown) separately provided in the electrowetting device 1 after the droplet 40 is injected into the cell by the above method. Note that before injecting the droplet 40 into the cell by the above-described method, the non-conductive liquid 42 may be injected from a second liquid inlet (not shown) so as to fill the channel 30.
  • FIG. 8A is a perspective view illustrating a state in which the droplet 40 is drawn into the electrowetting device 1 according to the present embodiment
  • FIG. 8B is illustrated in FIG. It is a figure which shows the photograph of the principal part of the electrowetting apparatus. 8A and 8B and FIG. 19A and FIG. 19B show the comparison results under the same conditions.
  • the droplets 40 are conventionally placed in the through-hole 25 as in FIGS.
  • the liquid droplet 40 is not drawn into the electrowetting device by simply dropping the liquid.
  • the contact surface with the droplet 40 in the path from the through hole 25 into the flow path 30 is all hydrophobic. In the case of a surface, the droplet 40 is ejected from the through hole 25.
  • the droplet 40 can be injected into the cell without providing a special droplet (fluid) injection mechanism. It became.
  • the electrowetting device 1 is used for various applications in which the user needs to inject the droplet 40 into the electrowetting device 1 from the through hole 25, for example, molecular nucleic acid coefficient, fluid viscosity, pH, chemistry. It can be particularly suitably used for various measuring devices and analytical devices such as binding coefficient and enzyme reaction kinetics. Examples of other application examples of the electrowetting device 1 include, for example, analysis through capillary electrophoresis, isoelectric focusing, immunoassay, enzyme measurement, flow cytometry, and mass spectrometry. Protein sample injection, PCR amplification, DNA analysis, cell manipulation, cell separation, cell pattern formation, chemical gradient formation, and the like. Many of these applications are effective for clinical diagnostic methods.
  • FIG. 9 is an enlarged cross-sectional view showing the configuration in the vicinity of the fluid injection hole of the electrowetting device 1 according to the present embodiment.
  • the electrowetting device 1 As shown in FIG. 9, in the electrowetting device 1 according to the present embodiment, not only the opening wall 25a of the through hole 25 but also the region connected from the through hole 25 to the facing surface (lower surface) of the lower substrate 10 is a hydrophilic surface. Except for this point, it is the same as the electrowetting device 1 according to the first embodiment.
  • the electrowetting device 1 has a hydrophobic layer 15 in a certain area around the through hole 25 in the through hole 25 of the upper substrate 20 and on the lower surface of the upper substrate 20. -The hydrophilic layer 24 whose surface tension is higher than 23 is formed.
  • a hydrophobic layer 23 is formed in a region other than the region where the hydrophilic layer 24 is formed on the lower surface of the upper substrate 20 and in a region where the droplets 40 and 41 are in contact with each other.
  • the formation region of the hydrophilic layer 24 around the through hole 25 on the lower surface of the upper substrate 20 is a concentric area centering on the through hole 25 in plan view.
  • a surface area facing the lower substrate 10 having a diameter (g3) larger than the opening diameter (g2, diameter) of the through-hole 25 by a predetermined amount is a hydrophilic surface.
  • the manufacturing method of the electrowetting device 1 is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment except for the manufacturing process of the upper substrate 20.
  • the manufacturing method of the upper substrate 20 is substantially the same as the manufacturing method of the upper substrate 20 according to the first embodiment. However, in the manufacturing process of the upper substrate 20, as described above, the upper substrate 20 is finally formed on the upper substrate 20. This is different from the first embodiment in that a process for expanding the hydrophilic surface is newly added.
  • the newly added process is a concentric circle centering on the formation position of the through-hole 60a on the conductive film forming surface side of the mother substrate 61 before forming the adhesive body 60 in the first embodiment, and is a through-hole to be formed.
  • a region having a diameter larger than the mouth 60a by a predetermined amount is subjected to hydrophilic treatment.
  • the through hole 60a (through hole 25) is scheduled to be formed on the conductive film forming surface of the mother substrate 61 (that is, the surface corresponding to the inside of the cell, which is the electrode 22 forming surface of the upper substrate 20).
  • a circular resist pattern 71a (see FIG. 10C) having a predetermined diameter larger than the diameter of the through hole 60a (through hole 25) is formed in a concentric area centering on the area.
  • the through hole formation scheduled region shows a region where the through hole 60a is to be formed on the solid conductive film (not shown) of the mother substrate 61 which will eventually become the electrode 22 (hereinafter referred to as “the through hole formation scheduled region”).
  • a resist layer 71 is formed on a conductive film (not shown) of the mother substrate 61 that will eventually become the electrode 22.
  • a resist solution made of a photosensitive resist is spin-coated on a conductive film (not shown) of the mother substrate 61 so that the resist layer 71 to be formed has a thickness of less than 1 ⁇ m.
  • a dilute solution obtained by diluting a positive resist “TFR1000” (trade name) manufactured by Tokyo Ohka Kogyo Co., Ltd. with a predetermined solvent is used as the resist solution, and the rotational speed is 1000 to 2000 rpm and the temperature is 110 ° C. Spin coating was performed for 3 minutes.
  • the resist layer 71 is applied to the solid substrate (not shown) of the mother substrate 61 using a photomask 72.
  • i-line ultraviolet light having a wavelength of 365 nm, enhancement condition: 100 mJ / cm 2 ) was used.
  • TMAH tetramethylammonium hydroxide
  • a rinse solution or pure water was used for cleaning the mother substrate 61 after development.
  • a resist pattern 71a composed of the resist layer 71 was formed in the region 61b.
  • a positive resist is used as the photosensitive resist
  • a negative resist may be used as the photosensitive resist.
  • the exposed portion is cured and removed when the unexposed portion is developed.
  • a photomask 72 having a shape different from that in FIG.
  • a plurality of mother substrates 61 in which a resist pattern 71a is formed in a concentric region 61b having a diameter g3 centering on the through-hole formation planned region 61a on the solid conductive film of the mother substrate 61 are provided. Then, as in the first embodiment, the adhesive body 60 is formed.
  • the inside of the through hole 60a is covered with the resist layer 65A, and the above-described through hole is formed on the lower surface of the chip 61A.
  • a region 61c between the mouth 60a and the region 61b (see FIG. 10C, a through-hole 60a is formed in the through-hole formation scheduled region 61a, and a region 61c between the through-hole 60a and the region 61b).
  • the chip 61A on which the resist pattern 71a is formed is formed.
  • the inside of the through hole 25 of the upper substrate 20 and the upper portion A constant region around the through hole 25 on the lower surface of the substrate 20 (that is, a region corresponding to the region 61c, specifically, a concentric circle having a diameter larger than that of the through hole 25 centered on the through hole 25).
  • the upper substrate 20 in which the hydrophilic layer 24 is formed in the region can be formed.
  • the upper substrate 20 is bonded to the lower substrate 10 in the same manner as in the first embodiment, whereby the electrowetting device 1 according to the present embodiment is manufactured.
  • FIG. 11 are cross-sectional views sequentially showing how the droplets 40 are drawn into the electrowetting device 1 according to the present embodiment.
  • the method for injecting the droplet 40 and the non-conductive liquid 42 into the electrowetting device 1 is the same as that in the first embodiment.
  • the hydrophilic layer 24 is formed around the through hole 25 on the lower surface of the upper substrate 20, so that the through hole is formed as shown in FIG.
  • the droplet 40 that has entered the through-hole 25 by its own weight due to the hydrophilic layer 24 in the layer 25 wets and spreads along the hydrophilic layer 24 on the lower surface of the upper substrate 20. Therefore, according to the present embodiment, as shown in FIGS.
  • the same effects as those of the first embodiment can be obtained, and the effect of suppressing the occurrence of a problem that the liquid droplet 40 injected into the through-hole 25 does not enter the flow path 30 is high. .
  • the hydrophilic layer 24 is provided around the through hole 25 on the lower surface of the upper substrate 20, and the droplets 40 are actively wetted and spread on the lower surface of the upper substrate 20.
  • the droplet 40 is reliably grounded (contacted) with the surface of the lower substrate 10.
  • the same combination as in the first embodiment can be selected for the droplet 40 and the non-conductive liquid 42.
  • the specific gravity of the non-conductive liquid 42 is less than the specific gravity of the droplet 40. There is no need to have a relationship. For this reason, according to this embodiment, the freedom degree of the material selection concerning the combination of the droplet 40 and the nonelectroconductive liquid 42 can be improved.
  • FIG. 12 is an enlarged cross-sectional view showing the configuration near the fluid injection hole of the electrowetting device 1 according to the present embodiment.
  • the support substrate 21 is a hydrophobic substrate 21A made of a hydrophobic base material, has a hydrophobic surface, and the hydrophobic substrate 21A itself. Is the same configuration as the electrowetting device 1 according to the first embodiment except that is a hydrophobic layer on the upper surface of the upper substrate 20.
  • the upper surface of the upper substrate 20, that is, the upper surface of the support substrate 21 is not separately subjected to hydrophobic treatment. That is, the coating layer made of the hydrophobic treatment agent is not formed on the upper surface of the support substrate 21.
  • the hydrophobic layer 23 is not provided on the upper surface of the support substrate 21, and the hydrophobic layer 23 is provided on the lower surface of the upper substrate 20 (that is, the electrode 22 of the upper substrate 20 located in the cell). Are formed only on the formation surface).
  • hydrophobic base material for example, a plastic base material is preferably used, but is not limited thereto.
  • the hydrophobic substrate 21A is preferably a hydrophobic substrate having a contact angle ⁇ of the droplet 40 of 80 degrees or more, more preferably 90 degrees or more.
  • the water contact angle ⁇ is 80 degrees or more, more preferably 90 degrees or more.
  • a hydrophobic substrate is 80 degrees or more, more preferably 90 degrees or more.
  • hydrophobic base material used for the hydrophobic substrate 21A examples include plastic base materials made of plastics such as silicon rubber, polytetrafluoroethylene, polypropylene, polytetrafluoroethylene, polyethylene, and polystyrene.
  • plastics such as silicon rubber, polytetrafluoroethylene, polypropylene, polytetrafluoroethylene, polyethylene, and polystyrene.
  • silicon rubber, polytetrafluoroethylene, polypropylene, and polytetrafluoroethylene are preferable.
  • the contact angle ⁇ of water at 20 ° C. and / or the surface tension at 20 ° C. of the plastic substrate is shown.
  • Silicon rubber (contact angle ⁇ : 90 deg), polytetrafluoroethylene (contact angle ⁇ : 104 deg), polypropylene (contact angle ⁇ : 91 deg, surface tension: 31 dyne / cm), polytetrafluoroethylene (contact angle ⁇ : 114 deg) Surface tension: 18.5 dyne / cm), polyethylene (when density is 0.92, contact angle ⁇ : 81 deg, surface tension: 32 dyne / cm), polystyrene (contact angle ⁇ : 84 deg, surface tension: 33 dyne / cm)
  • the hydrophobic substrate 21A is formed by resin injection molding
  • the through hole 25 can be formed simultaneously with the molding of the hydrophobic substrate 21A.
  • a plastic substrate having a through hole 25 provided in advance is used as the hydrophobic substrate 21A.
  • the manufacturing method of the electrowetting device 1 according to the present embodiment is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment, except for the manufacturing process of the upper substrate 20. Therefore, only the method for manufacturing the upper substrate 20 will be described below.
  • FIGS. 13A to 13F are diagrams showing an example of the manufacturing process of the upper substrate 20 in the electrowetting apparatus 1 according to the present embodiment in the order of processes.
  • a resin (plastic) hydrophobic substrate 21 ⁇ / b> A provided with a predetermined through-hole 25 is formed by injection molding as the support substrate 21.
  • a perforated substrate made of polypropylene resin having a low surface tension of the material itself is formed as the hydrophobic substrate 21A.
  • the electrode 22 is formed on one surface (surface disposed on the cell inner side) of the hydrophobic substrate 21A.
  • “Denatron” (registered trademark), which is a coating-type electrode material manufactured by Nagase ChemteX Corporation, is printed on the one surface of the hydrophobic substrate 21A in a solid shape by screen printing. Form.
  • a hydrophilic layer 24 is formed on the entire surface of the hydrophobic substrate 21A on which the electrode 22 is formed by a dip coating method.
  • the hydrophobic substrate 21A on which the electrode 22 is formed is a water-soluble photosensitive resin-coated hydrophilic coating material such as “BIOSURFINE (registered trademark) -AWP” (manufactured by Toyo Gosei Co., Ltd.).
  • the hydrophilic layer 24 is formed by dipping the whole in an aqueous solution and dip-coating the whole.
  • the hydrophobic substrate 21 ⁇ / b> A is masked with a photomask 72 that shields light other than the through-hole 25, and the through-hole 25 is irradiated with ultraviolet rays to irradiate the through-hole.
  • the hydrophilized coating material (hydrophilic layer 24) in 25 is gelled.
  • the hydrophobic substrate 21A is washed with water, and the non-gelled coating portion (hydrophilic layer 24) is dissolved and peeled off. Thereby, the gel-like hydrophilic layer 24 remains only in the through hole 25.
  • a hydrophobic layer 23 (Cytop film) having a thickness of 50 nm is formed only on the electrode surface.
  • the process described above forms the hydrophilic layer 24 composed of a gelled layer of the hydrophilic coating material only in the through-hole 25, and not only the droplet 40 is quickly taken into the through-hole 25,
  • the gelled layer By preferentially adsorbing moisture to the gelled layer, it is possible to prevent the electrolyte and solute components contained in the fluid (droplet) of the specimen or reagent from being directly adsorbed to the hydrophobic substrate 21A. it can.
  • the support substrate 21 is the hydrophobic substrate 21A, and the support substrate 21 itself has hydrophobicity (water repellency).
  • the step of hydrophobizing (the surface facing the outside of the cell) becomes unnecessary. This simplifies the entire process.
  • the molded hydrophobic substrate 21A has the through-hole 25 from the beginning by forming the through-hole 25 at the time of molding the support substrate 21 by injection molding. .
  • the hole making process through hole forming process
  • the number of processes can be reduced correspondingly.
  • the present embodiment is not limited to this, and the electrowetting device 1 having the structure shown in FIG. 9 is formed by forming the through hole 25 in the plate-like support substrate 21 made of a hydrophobic base material. Needless to say, it may be manufactured.
  • FIG. 14 is an enlarged cross-sectional view showing the configuration in the vicinity of the fluid injection hole of the electrowetting device 1 according to the present embodiment.
  • the electrowetting device 1 according to the present embodiment is not limited to the opening wall 25a of the through-hole 25 but also from the through-hole 25a to the lower substrate, similarly to the electrowetting device 1 according to the second embodiment.
  • 10 is the same as the electrowetting device 1 according to the third embodiment except that the region connected to the facing surface (lower surface) 10 is a hydrophilic surface.
  • the electrowetting device 1 includes an electrode of the upper substrate 20 located in the through hole 25 of the upper substrate 20 and the lower surface of the upper substrate 20 (that is, in the cell).
  • the hydrophilic layer 24 having a surface tension higher than that of the hydrophobic layers 15 and 23 is formed in a certain region around the through-hole 25 in the surface 22).
  • the support substrate 21 is a hydrophobic substrate 21A made of a hydrophobic base material, and has a hydrophobic surface.
  • the hydrophobic substrate 21 ⁇ / b> A itself is a hydrophobic layer on the upper surface of the upper substrate 20.
  • the hydrophobic layer 23 is not provided on the upper surface of the support substrate 21, and the hydrophobic layer 23 is a region other than the region where the hydrophilic layer 24 is formed on the lower surface of the upper substrate 20. It is formed in the contact area.
  • the formation region of the hydrophilic layer 24 around the through hole 25 on the lower surface of the upper substrate 20 is a concentric area centering on the through hole 25 in plan view.
  • a surface region facing the lower substrate 10 having a diameter (g3) larger by a predetermined amount than the opening diameter (g2, diameter) of the mouth 25 is a hydrophilic surface.
  • the manufacturing method of the electrowetting device 1 according to the present embodiment is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment, except for the manufacturing process of the upper substrate 20. Therefore, only the method for manufacturing the upper substrate 20 will be described below.
  • the upper substrate 20 in the electrowetting device 1 according to the present embodiment can be easily manufactured by combining, for example, the methods described in the second and third embodiments. For this reason, in this embodiment, illustration of a manufacturing process is abbreviate
  • the hydrophobic substrate 21A provided with the electrodes 22 for example, a glass substrate having a thickness of 0.7 mm having a predetermined size in which an ITO film is provided in a solid form on the entire main surface is used as shown in FIG.
  • a resist is formed on a concentric region having a diameter g3 centering on a region where the through hole 25 is to be formed on the surface on which the electrode 22 is formed in the hydrophobic substrate 21A.
  • a pattern 71a is formed.
  • the hydrophobic treatment agent is coated on the surface of the hydrophobic substrate 21A on which the electrode 22 is formed by a slit coater, so that the hydrophobic layer 23 (cytotop, for example, having a thickness of 50 nm is formed on the resist pattern 71a and the electrode 22. Film).
  • the resist pattern 71a and the hydrophobic layer 23 on the resist pattern 71a are removed in the same manner as in the second embodiment.
  • the hydrophobic layer 23 is formed in “SPX” (trade name, 2-aminoethanol) manufactured by Hayashi Junyaku Kogyo Co., Ltd. in the same manner as in the step shown in FIG.
  • the support substrate 21 is immersed, and ultrasonic waves are applied for 5 minutes at room temperature, whereby the resist pattern 71a and the hydrophobic layer 23 on the resist pattern 71a are peeled off.
  • the region where the through hole 25 is to be formed on the lower surface of the hydrophobic substrate 21A and the surface of the electrode 22 around it are partially exposed.
  • the through hole 25 having a predetermined opening diameter g2 is formed on the hydrophobic substrate 21A using, for example, a precision drill or a laser drill dedicated to glass.
  • a photomask that shields the region where the hydrophobic layer 23 is formed on the lower surface of the hydrophobic substrate 21A is used as the photomask 72.
  • the hydrophobic substrate 21A is masked, and ultraviolet rays are irradiated from the surface of the hydrophobic substrate 21A on which the electrode 22 is formed to the through hole 25 and a concentric area having a diameter g3 with the through hole 25 as the center.
  • the hydrophilic coating material (hydrophilic layer 24) in the concentric region having a diameter g3 centered on the through hole 25 and in the through hole 25 is gelled.
  • the hydrophobic substrate 21A is washed with water, and the non-gelled coating portion (hydrophilic layer 24) is dissolved and peeled off.
  • the gel-like hydrophilic layer 24 remains only in the concentric region having a diameter g3 with the through-hole 25 and the through-hole 25 on the surface where the electrode 22 is formed in the hydrophobic substrate 21A as the center.
  • the hydrophilic layer 24 is formed around the through hole 25 on the lower surface of the upper substrate 20, the same effect as in the second embodiment can be obtained.
  • the hydrophilic layer 24 made of a gelling layer of a hydrophilic coating material is formed in a concentric region having a diameter g3 around the through hole 25 and the through hole 25 on the lower surface of the upper substrate 20.
  • the support substrate 21 is the hydrophobic substrate 21A, and the support substrate 21 itself has hydrophobicity (water repellency), so that the upper surface of the upper substrate 20 (on the outside of the cell).
  • the process of hydrophobizing the facing surface) becomes unnecessary. For this reason, compared with Example 2, for example, a process can be simplified.
  • FIG. 15 is an enlarged cross-sectional view showing a configuration near the fluid injection hole of the electrowetting device 1 according to the present embodiment.
  • the electrowetting device 1 according to the present embodiment has the same configuration as the electrowetting device 1 according to the first embodiment except that the upper substrate 20 has the following configuration. have.
  • the upper substrate made of a hydrophobic base material is formed on the support substrate 21. 26 is provided.
  • the upper substrate 20 has an electrode 22 on the lower surface side of the support substrate 21 and a hydrophobic layer 23 covering the electrode 22, and a hydrophobic layer on the surface on the upper surface side of the support substrate 21.
  • the upper substrate 26 is made of a hydrophobic base material, and the hydrophilic layer 24 is provided on the surface of the support substrate 21 in the through hole 25.
  • a hydrophilic layer 24 is formed between the upper surface of the support substrate 21 and the upper substrate 26 and on the side surfaces of the support substrate 21 by performing hydrophilic treatment on the support substrate 21 as shown in FIG. May be.
  • the through hole 25 is provided so as to penetrate the upper substrate 20 provided with the upper surface substrate 26 in the vertical direction. Yes. Therefore, the upper surface substrate 26 is provided with a through hole 25 ⁇ / b> A that is a part of the through hole 25 as the through hole 25.
  • the opening wall 26a of the upper surface substrate 26 in the through hole 25 is formed to be inclined so as to have an inversely tapered shape in which the opening diameter becomes smaller toward the support substrate 21 side.
  • the opening diameter (diameter) of the support substrate 21 is g2
  • the opening diameter (diameter) at the lower end of the upper substrate 26 is g2
  • the opening diameter (diameter) at the upper end of the upper substrate 26 is It is formed larger than g2.
  • the hydrophilic layer 24 is protruded from the other layers, but the hydrophilic layer 24 is a hydrophilic treatment agent. The end surface of each layer is formed to be substantially flush with each other.
  • the opening wall 26a of the upper surface substrate 26 in the through hole 25 has a gradient of the opening wall 26a (an angle formed between the opening wall 26a and the normal direction of the upper surface substrate 26) as ⁇ ′, and the droplet 40 with respect to the opening wall 26a.
  • hydrophobic base material used for the upper substrate 26 a base material similar to the hydrophobic base material used for the hydrophobic substrate 21A in the third embodiment can be used.
  • the top substrate 26 is also preferably a hydrophobic substrate having a contact angle ⁇ of the droplet 40 of 80 degrees or more, more preferably 90 degrees or more.
  • a hydrophobic substrate include: Further, a hydrophobic substrate having a water contact angle ⁇ of 80 degrees or more, more preferably 90 degrees or more can be mentioned.
  • the manufacturing method of the electrowetting device 1 according to the present embodiment is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment, except for the manufacturing process of the upper substrate 20. Therefore, only the method for manufacturing the upper substrate 20 will be described below.
  • FIGS. 16A to 16F are views showing an example of the manufacturing process of the upper substrate 20 in the electrowetting apparatus 1 according to the present embodiment in the order of processes.
  • an ITO film is provided in a solid shape on the entire surface of one main surface and has a predetermined size of 0.7 mm in thickness.
  • a hydrophobic treatment agent for example, “Cytop (registered) manufactured by AGC Asahi Glass Co., Ltd., which is a perfluoroamorphous resin.
  • a 1 wt% diluted solution of “trademark) -CTL809A” is spin-coated at, for example, a rotation speed of 3000 rpm for 20 seconds.
  • a hydrophobic layer 23 (Cytop film) having a thickness of 50 nm, for example, is formed on the electrode surface.
  • a predetermined position of the support substrate 21 on which the hydrophobic layer 23 is formed is finally formed into a part of the through hole 25 of the upper substrate 20 by, for example, a laser drill.
  • a predetermined size (opening diameter g2) and a predetermined number of through holes 25A are formed.
  • the support substrate 21 in which the through hole 25 is formed is immersed in, for example, a hydrophilic treatment agent.
  • a hydrophilic treatment agent for example, a betaine group-containing hydrophilic polymer having a terminal silanol group (“LAMBIC-500WP”, trade name) manufactured by Osaka Organic Chemical Industry Co., Ltd.) is used as the hydrophilic treatment agent so as to have a predetermined viscosity.
  • LAMBIC-500WP trade name
  • a hydrophilic polymer aqueous solution diluted with water was used, and the support substrate 21 having the through-holes 25A formed therein was immersed in the hydrophilic polymer aqueous solution.
  • Hydrophilic treatment agent is not coated on the hydrophobic surface. For this reason, only the area
  • the upper surface substrate 26 a predetermined size and a predetermined number of penetrations are formed at predetermined positions by injection molding.
  • An upper substrate 26 made of resin (plastic) provided with the opening 25B is formed.
  • the predetermined position indicates a position where the through hole 25A and the through hole 25B overlap when the upper surface substrate 26 and the support substrate 21 are bonded together.
  • the predetermined number indicates a number that matches the number of the through holes 25A.
  • the predetermined size means that the opening diameter of the opening end on the one surface (surface to be bonded to the support substrate 21) side of the upper substrate 26 is bonded to the upper substrate 26 as shown in FIG. The size substantially coincides with the opening diameter of the substrate 21.
  • a perforated substrate having an inversely tapered opening wall 26a made of polypropylene resin having a low surface tension of the material itself is formed as the upper surface substrate 26, a perforated substrate having an inversely tapered opening wall 26a made of polypropylene resin having a low surface tension of the material itself is formed.
  • the gradient ⁇ ′ of the opening wall 26a was a contact angle ⁇ -90 degrees.
  • the support substrate 21 formed with the hydrophilic layer 24 shown in FIG. 16D and the top substrate 26 shown in FIG. Bonding is performed with a predetermined adhesive so that the central axes of the opening 25A and the through-hole 25B coincide with each other (the opening wall 25a of the through-hole 25A and the opening wall 26a of the through-hole 25B are flush with each other).
  • the upper substrate 20 provided with the through hole 25 including the through hole 25A and the through hole 25B communicating with each other is completed.
  • the upper surface of the support substrate 21 may be a hydrophilic surface (for example, the hydrophilic layer 24). Therefore, in the present embodiment, a mask (photo) required to form a hydrophilic surface in the through-hole 25 while making the contact region with the droplet 40 around the through-hole 25 on the upper surface of the upper substrate 20 a hydrophobic surface. No mask processing using a mask or a resist pattern is required, and the process is further simplified as compared with Examples 1 and 3, for example, in which the hydrophilic layer 24 is not provided on the lower surface of the upper substrate 20 as in the present embodiment. be able to.
  • a mask photo
  • FIG. 17 is an enlarged cross-sectional view showing the configuration in the vicinity of the fluid injection hole of the electrowetting device 1 according to the present embodiment.
  • the electrowetting device 1 according to the present embodiment is not limited to the opening wall 25 a of the through-hole 25, but also from the through-hole 25 a to the lower substrate, similarly to the electrowetting device 1 according to the second embodiment.
  • 10 is the same as the electrowetting device 1 according to the fifth embodiment except that the region connected to the facing surface (lower surface) 10 is a hydrophilic surface.
  • the formation region of the hydrophilic layer 24 around the through hole 25 on the lower surface of the upper substrate 20 is a concentric area centering on the through hole 25 in plan view.
  • a surface region facing the lower substrate 10 having a diameter (g3) larger than the opening diameter (g2, diameter) of the through hole 25 by a predetermined amount is a hydrophilic surface.
  • the manufacturing method of the electrowetting device 1 according to the present embodiment is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment, except for the manufacturing process of the upper substrate 20. Therefore, only the method for manufacturing the upper substrate 20 will be described below.
  • the upper substrate 20 in the electrowetting device 1 according to the present embodiment can be easily manufactured by combining the methods described in the above-described embodiments including the second embodiment and the fifth embodiment, for example. For this reason, in this embodiment, illustration of a manufacturing process is abbreviate
  • an ITO film is provided in a solid shape on the entire surface of one main surface and has a predetermined size of 0.7 mm in thickness.
  • the hydrophobic treatment agent is used to coat the surface of the support substrate 21 on which the electrode 22 is formed with a slit coater, so that the hydrophobic layer 23 (cytop film, for example, having a thickness of 50 nm is formed on the resist pattern 71a and the electrode 22. ).
  • the resist pattern 71a and the hydrophobic layer 23 on the resist pattern 71a are removed in the same manner as in the second embodiment.
  • the hydrophobic layer 23 is formed in “SPX” (trade name, 2-aminoethanol) manufactured by Hayashi Junyaku Kogyo Co., Ltd. in the same manner as in the step shown in FIG.
  • the support substrate 21 is immersed, and ultrasonic waves are applied for 5 minutes at room temperature, whereby the resist pattern 71a and the hydrophobic layer 23 on the resist pattern 71a are peeled off.
  • the surface of the electrode 22 in the region where the through hole 25 is to be formed on the lower surface of the support substrate 21 and the diameter g3 centering on the region where the through hole 25 is to be formed is partially exposed.
  • the through hole 25 having a predetermined opening diameter g2 is formed on the support substrate 21 using a precision drill or a laser drill dedicated to glass.
  • a predetermined size (opening diameter g2), which becomes a part of the through hole 25 of the upper substrate 20 at a predetermined position of the support substrate 21, is predetermined.
  • a number of through holes 25A are formed.
  • the support substrate 21 in which the through-hole 25A is formed is, for example, a betaine group-containing hydrophilic polymer having a terminal silanol group (manufactured by Osaka Organic Chemical Industries, Ltd. LAMBIC-500WP "(trade name) is immersed in a hydrophilic treatment agent comprising a hydrophilic polymer aqueous solution diluted with water so as to have a predetermined viscosity, thereby removing the formation region of the hydrophobic layer 23 on the support substrate 21.
  • a hydrophilic layer 24 is formed in the region.
  • a resin (plastic) upper surface substrate in which a predetermined size and a predetermined number of through holes 25B are provided at predetermined positions by injection molding. 26 is formed.
  • the predetermined position refers to a position where the through hole 25A and the through hole 25B overlap when the upper surface substrate 26 and the support substrate 21 are bonded together.
  • the predetermined number indicates a number that matches the number of the through holes 25A.
  • the predetermined size means that the opening diameter of the opening end on the one surface (surface to be bonded to the support substrate 21) side of the upper surface substrate 26 substantially matches the opening diameter of the support substrate 21 to be bonded to the upper surface substrate 26. Indicates the size.
  • a perforated substrate having an inversely tapered opening wall 26a made of, for example, polypropylene resin whose surface tension is low is formed as the upper substrate 26.
  • the gradient ⁇ ′ of the opening wall 26a was a contact angle ⁇ -90 degrees.
  • the hydrophilic layer 24 is formed around the through hole 25 on the lower surface of the upper substrate 20, the same effect as in the second embodiment can be obtained.
  • the upper surface of the support substrate 21 may be a hydrophilic surface (for example, the hydrophilic layer 24). Therefore, in this embodiment as well as in the fifth embodiment, the contact area of the upper surface of the upper substrate 20 with the droplets 40 around the through-hole 25 is a hydrophobic surface and a hydrophilic surface is formed in the through-hole 25. This eliminates the need for the necessary mask. For this reason, compared with Example 2, for example, a process can be simplified.
  • the electrowetting device 1 includes a lower substrate 10 having a first electrode (electrode 13) and an upper substrate 20 having a second electrode (electrode 22) that are bonded to each other with a gap.
  • the upper substrate 20 has an injection port (through port 25) for injecting the droplet 40 into the gap, and the first electrode is provided in a region including a region immediately below the injection port.
  • a hydrophobic layer (for example, a hydrophobic layer 15, a hydrophobic layer 23, a hydrophobic layer) is formed in a region where the droplet 40 contacts on the upper surface of the upper substrate 20 and a region where the droplet 40 contacts on the lower substrate 10. 21A and a top substrate 26), and a hydrophilic layer 24 having a surface tension higher than that of the hydrophobic layer is provided in the injection port.
  • the droplet 40 dropped on the injection port naturally has a volume of the hydrophilic region (for example, the injection port) in the hydrophilic region (that is, the formation region of the hydrophilic layer 24) in the injection port.
  • the hydrophilic region for example, the injection port
  • the hydrophilic region that is, the formation region of the hydrophilic layer 24
  • the droplet 40 is naturally fixed in the gap (microchannel) by simply dropping an appropriate amount of the droplet 40 to the injection port provided in the upper substrate 20. The amount is sucked.
  • the electrowetting capable of injecting the droplet 40 into the gap that is, the electrowetting device 1 without requiring a complicated fluid (droplet) injection mechanism. 1 can be provided.
  • the distance (g1) between the lower substrate 10 and the upper substrate 20 is larger than the opening diameter (g2) of the injection port. It is desirable.
  • the droplet 40 injected from the injection port can be reliably brought into contact with the surface of the lower substrate 10 in the gap and drawn into the gap by electrowetting phenomenon.
  • Aspect 3 of the present invention is the electrowetting device 1 according to the aspect 1 or 2, wherein the upper substrate 20 has a support substrate 21 that supports the second electrode, and the liquid on the upper surface of the support substrate 21 It is desirable that the hydrophobic layer (for example, the hydrophobic layer 23, the upper surface substrate 26) is provided in a region where the droplet 40 contacts, and the hydrophilic layer 24 is provided on the surface of the support substrate 21 in the inlet. .
  • the electrowetting device 1 according to aspect 4 of the present invention is the electrowetting device 1 according to aspect 3, wherein the hydrophobic layer on the upper surface of the upper substrate 20 is provided on the support substrate 21 and made of a hydrophobic base material. It is desirable that
  • the contact area of the upper surface of the upper substrate 20 with the droplets 40 around the injection port is a hydrophobic surface, and a mask necessary for forming a hydrophilic surface in the injection port is unnecessary. Yes, the process can be simplified.
  • the opening wall 26a of the upper surface substrate 26 in the injection port has an inversely tapered shape whose opening diameter becomes smaller toward the support substrate 21 side. It is desirable that
  • the droplet 40 can be easily injected into the injection port.
  • the contact angle of the droplet 40 with respect to the upper surface substrate 26 is ⁇
  • the droplet 40 can easily enter the formation region of the hydrophilic layer 24 in the injection port simply by dropping a suitable amount of the droplet 40 in the injection port. For this reason, the droplet 40 injected from the injection port can be brought into more reliable contact with the surface of the lower substrate 10 in the gap and drawn into the gap by electrowetting phenomenon.
  • the electrowetting device 1 according to aspect 7 of the present invention is the electrowetting device 1 according to aspect 1 or 2, wherein the upper substrate 20 is a support substrate (hydrophobic substrate 21A) made of a hydrophobic base material that supports the second electrode.
  • the hydrophobic layer on the upper surface of the upper substrate 20 is the support substrate, and the hydrophilic layer 24 is preferably provided on the surface of the support substrate in the inlet.
  • the step of hydrophobizing the upper surface of the upper substrate 20 is not necessary. This simplifies the entire process.
  • the hydrophobic substrate is preferably a plastic substrate.
  • the hydrophobic base material can be injection-molded, and it is not necessary to separately form the injection port, so that the number of steps can be reduced.
  • the surface tension of the electrowetting device 1 according to any one of the first to eighth aspects is higher than that of the hydrophobic layer 23 in a certain region around the injection port on the lower surface of the upper substrate 20. It is desirable that the high hydrophilic layer 24 is formed, and the hydrophobic layer 23 is formed in a region where the droplet 40 contacts in a region other than the region where the hydrophilic layer 24 is formed on the lower surface of the upper substrate 20.
  • a liquid droplet injection method is a liquid droplet injection method for injecting liquid droplets 40 into the electrowetting device 1 according to any one of aspects 1 to 9, wherein a liquid is injected into the injection port.
  • a voltage is applied to the first electrode and the second electrode to move the droplet 40. In this way, the droplet 40 is drawn into the gap.
  • the same effect as in the first aspect can be obtained. Therefore, according to the above configuration, a droplet that can inject the droplet 40 into the gap (that is, the electrowetting device 1) without requiring a complicated fluid (droplet) injection mechanism.
  • An injection method can be provided.
  • the lower substrate forming step for forming the lower substrate 10 on which the first electrode (electrode 13) is formed, and the second electrode (electrode 22) are formed.
  • the forming step includes a step of forming the first electrode in a region including a region immediately below the injection port, and a step of forming a lower substrate hydrophobic layer in which the hydrophobic layer 15 is formed in a region in contact with the droplet 40. It is the method of including.
  • the electrowetting capable of injecting the droplet 40 into the gap that is, the electrowetting device 1 without requiring a complicated fluid (droplet) injection mechanism.
  • a manufacturing method of the marking device 1 can be provided.
  • Electrowetting apparatus Active area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

An electrowetting device (1) is provided with a lower substrate (10) that has an electrode (13) and an upper substrate (20) that has an electrode (22). The upper substrate (20) has through-holes (25), and the electrode (13) is provided in an area including the area directly below the through-holes (25). A hydrophobic layer (23) is provided on the upper surface of the upper substrate (20), a hydrophobic layer (15) is provided on the upper surface of the lower substrate (10), and a hydrophilic layer (24) is provided inside the through-holes (25).

Description

エレクトロウェッティング装置およびその製造方法並びに液滴注入方法Electrowetting device, manufacturing method thereof, and droplet injection method
 本発明は、エレクトロウェッティング装置およびその製造方法並びに液滴注入方法に関する。 The present invention relates to an electrowetting device, a manufacturing method thereof, and a droplet injection method.
 マイクロ流体工学等の分野では、例えばサブマイクロリットルといった小規模の流体の操作および正確な制御が必要とされる。そこで、電場の印加によって液滴を操作するエレクトロウェッティングが注目されている。 In the field of microfluidics and the like, operation and accurate control of small-scale fluids such as sub-microliters are required. Therefore, attention has been paid to electrowetting for manipulating droplets by applying an electric field.
 エレクトロウェッティングとは、電極上に設けられた、疎水処理(撥水処理)が施された誘電体層上に置かれた液滴に電場を印加することにより、電極と液滴との間に形成されるキャパシタの静電エネルギー分、誘電体層の表面エネルギーが変化することで、固液界面エネルギーが変化し、誘電膜表面に対する液滴の接触角が変化する現象である。 Electrowetting is the application of an electric field to a droplet placed on a dielectric layer that has been subjected to a hydrophobic treatment (water repellent treatment) provided on an electrode. This is a phenomenon in which the surface energy of the dielectric layer is changed by the electrostatic energy of the capacitor to be formed, so that the solid-liquid interface energy is changed and the contact angle of the droplet with respect to the dielectric film surface is changed.
 近年、このようなエレクトロウェッティングを利用したエレクトロウェッティング装置(微小流体装置あるいは液滴装置とも称される)の開発が進められている(例えば、特許文献1~3参照)。 In recent years, development of electrowetting devices (also referred to as microfluidic devices or droplet devices) using such electrowetting has been underway (see, for example, Patent Documents 1 to 3).
 多くの場合、液滴は、蒸発等による損失を防ぐため、エレクトロウェッティング装置における、下部基板と上部基板とで囲まれた微小な流路(マイクロ流路)内に封入される。 In many cases, in order to prevent loss due to evaporation or the like, the droplet is enclosed in a micro flow channel (micro flow channel) surrounded by the lower substrate and the upper substrate in the electrowetting apparatus.
 上記流路内に封入された液滴(流体)は、適切な電圧を印加することによって、必要に応じて、所定量の、より微小な液滴に引きちぎられる。 The droplet (fluid) enclosed in the channel is torn into a predetermined amount of finer droplets as required by applying an appropriate voltage.
日本国公開特許公報「特開2013-128920号公報(2013年7月4日公開)」Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2013-128920 (released on July 4, 2013)” 日本国公開特許公報「特開2012-176397号公報(2012年9月13日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2012-17697 (published on September 13, 2012)” 米国特許出願公開第20100282608号明細書(2010年11月11日公開)US Patent Application Publication No. 201200282608 (published on November 11, 2010) 米国特許第5096669号明細書(1992年3月17日登録)US Pat. No. 5,096,669 (registered March 17, 1992)
 上記流路内に封入される液滴は、上記流路内に流体(液滴)を強制的に送り込む流体注入機構および目的液量の貯蔵機構を用いて上記流路内に注入される。 The liquid droplets sealed in the flow path are injected into the flow path using a fluid injection mechanism for forcibly feeding a fluid (droplet) into the flow path and a storage mechanism for a target liquid amount.
 この理由を、図18の(a)~(c)および図19の(a)・(b)を参照して以下に説明する。図18の(a)~(c)は、従来のエレクトロウェッティング装置の問題点を示す断面図である。また、図19の(a)は、図18の(a)に示すエレクトロウェッティング装置の問題点を示す斜視図であり、図19の(b)は、図19の(a)に示すエレクトロウェッティング装置(すなわち、図18の(a)に示すエレクトロウェッティング装置)の要部の写真を示す図である。 The reason for this will be described below with reference to FIGS. 18A to 18C and FIGS. 19A and 19B. 18 (a) to 18 (c) are cross-sectional views showing the problems of the conventional electrowetting device. FIG. 19A is a perspective view showing a problem of the electrowetting device shown in FIG. 18A, and FIG. 19B is an electrowetting shown in FIG. It is a figure which shows the photograph of the principal part of a ting apparatus (namely, electrowetting apparatus shown to (a) of FIG. 18).
 エレクトロウェッティング装置では、前述したように、電極上に設けられた、疎水処理が施された誘電体層上に置かれた液滴に電圧を印加することで、該液滴を、例えば変形、変位(移動)させる。 In the electrowetting device, as described above, by applying a voltage to a droplet placed on a dielectric layer that has been subjected to hydrophobic treatment provided on an electrode, the droplet is deformed, for example, Displace (move).
 このため、図18の(a)~(c)に示すように、エレクトロウェッティング装置における、下部基板10と上部基板20とで囲まれた流路内30内における液滴40(流体)が接する界面には、疎水処理が施されることで、疎水層15・23が形成されている。図示はしないが、流路内30内に注入された液滴40は、適切な電圧が印加されることで、必要に応じて、所定量の、より微小な液滴に引きちぎられる。 Therefore, as shown in FIGS. 18A to 18C, the droplet 40 (fluid) in the flow path 30 surrounded by the lower substrate 10 and the upper substrate 20 in the electrowetting apparatus comes into contact. Hydrophobic layers 15 and 23 are formed on the interface by applying a hydrophobic treatment. Although not shown, the droplet 40 injected into the flow path 30 is torn into a predetermined amount of finer droplets as necessary by applying an appropriate voltage.
 エレクトロウェッティング装置では、上記流路30内を疎水処理するため、下部基板10および上部基板20には、それぞれ疎水処理が施される。 In the electrowetting device, the lower substrate 10 and the upper substrate 20 are subjected to hydrophobic treatment in order to perform hydrophobic treatment in the flow path 30.
 液滴40は、エレクトロウェッティング装置のエッジにおける、下部基板10と上部基板20との間の隙間、もしくは、上部基板20に設けられた、液滴注入口としての貫通口25から流路内30内に注入される。 The liquid droplet 40 passes through the gap 30 between the lower substrate 10 and the upper substrate 20 at the edge of the electrowetting device, or from the through-hole 25 provided as a liquid droplet injection port in the upper substrate 20 into the flow path 30. Injected into.
 しかしながら、エレクトロウェッティング装置のエッジにおける、下部基板10と上部基板20との間の隙間には、シール材31が設けられる。このため、好適には、上部基板20に貫通口25が形成される。 However, a sealing material 31 is provided in the gap between the lower substrate 10 and the upper substrate 20 at the edge of the electrowetting device. For this reason, the through hole 25 is preferably formed in the upper substrate 20.
 上部基板20に貫通口25を形成する場合、一般的に、貫通口25形成後に、例えばディップコート法等により、上部基板20全体に行われる。したがって、この場合、疎水層23は、図18の(a)・(b)に示すように、貫通口25内にも形成されている。 When the through hole 25 is formed in the upper substrate 20, generally, after the through hole 25 is formed, the entire upper substrate 20 is formed by, for example, a dip coating method. Therefore, in this case, the hydrophobic layer 23 is also formed in the through hole 25 as shown in FIGS.
 このため、図18の(a)・(b)に示す、従来のエレクトロウェッティング装置は、流路内30内での疎水層15・23と液滴40との馴染みが極端に少ないだけでなく、そもそも、液滴40が流路30内に入り難い状況にある。このため、液滴40を貫通口25に滴下するだけでは、図18の(a)・(b)および図19の(a)・(b)に示すように、エレクトロウェッティング装置内(すなわち、互いに貼り合わされた下部基板10および上部基板20からなるセル内)に液滴40が自然に流入することはない。 For this reason, the conventional electrowetting device shown in FIGS. 18A and 18B has not only very little familiarity between the hydrophobic layers 15 and 23 and the droplets 40 in the flow path 30. In the first place, it is difficult for the droplet 40 to enter the flow path 30. For this reason, simply dropping the droplet 40 into the through-hole 25, as shown in FIGS. 18 (a) and (b) and FIGS. 19 (a) and (b), in the electrowetting device (that is, The droplets 40 do not naturally flow into the cells made up of the lower substrate 10 and the upper substrate 20 bonded together.
 図18の(a)・(b)および図19の(a)・(b)に示すように、上部基板20における貫通口25から流路30内に至る経路における液滴40との接触面が全て疎水面である場合、上部基板20の上面(すなわち、上部基板20における下部基板10との対向面とは反対側の面)に疎水層23が形成されているか否かに拘らず、毛細管現象がうまく起こらず、表面張力の関係で、貫通口25から液滴40がはじき出される。 As shown in FIGS. 18A and 18B and FIGS. 19A and 19B, the contact surface with the droplet 40 in the path from the through hole 25 in the upper substrate 20 to the flow path 30 is shown. When all of the surfaces are hydrophobic, the capillary phenomenon occurs regardless of whether or not the hydrophobic layer 23 is formed on the upper surface of the upper substrate 20 (that is, the surface of the upper substrate 20 opposite to the surface facing the lower substrate 10). Does not occur well, and the droplet 40 is ejected from the through hole 25 due to the surface tension.
 このため、貫通口25に滴下した液滴40が、下部基板10における、電極13上に設けられた、疎水層15で覆われた誘電体層14上(すなわち、流路30内における下部基板10の表面)に到達し、エレクトロウェッティング動作を行うには、特別な流体注入機構が必要となる。 For this reason, the droplet 40 dropped on the through hole 25 is formed on the dielectric layer 14 provided on the electrode 13 and covered with the hydrophobic layer 15 in the lower substrate 10 (that is, the lower substrate 10 in the flow path 30). A special fluid injection mechanism is required to perform the electrowetting operation.
 また、本願発明者らの検討によれば、図18の(c)に示すように、流路内30内における液滴40が接する界面にのみ疎水層15・23が形成され、上部基板20の上面には疎水層23が形成されていない場合、貫通口25に滴下した液滴40には、上部基板20の上面に常に塗れ広がろうとする力が働く。このため、この場合、貫通口25に滴下した液滴40が、流路30内における下部基板10の表面に到達したとしても、エレクトロウェッティング動作で上記液滴40を流路30内に引き込んでいくことは困難である。 Further, according to the study by the inventors of the present application, as shown in FIG. 18C, the hydrophobic layers 15 and 23 are formed only at the interface in contact with the liquid droplet 40 in the flow path 30, and the upper substrate 20 When the hydrophobic layer 23 is not formed on the upper surface, the droplet 40 dropped on the through-hole 25 has a force that always spreads and spreads on the upper surface of the upper substrate 20. Therefore, in this case, even if the droplet 40 dropped on the through-hole 25 reaches the surface of the lower substrate 10 in the flow channel 30, the droplet 40 is drawn into the flow channel 30 by the electrowetting operation. It is difficult to go.
 このため、たとえ、上部基板20に貫通口25を形成した後、スピンコート法等を用いて下部基板10および上部基板20における互いの対向面にのみ疎水層15・23を形成したとしても、セル内に液滴40が自然に流入することはない。 Therefore, even if the hydrophobic layers 15 and 23 are formed only on the opposing surfaces of the lower substrate 10 and the upper substrate 20 by using a spin coat method or the like after the through hole 25 is formed in the upper substrate 20, the cell The droplet 40 does not naturally flow into the inside.
 したがって、何れにしても、セル内に液滴40を引き込み、エレクトロウェッティング動作を行うには、特別な流体注入機構が必要となる。 Therefore, in any case, a special fluid injection mechanism is required to draw the droplet 40 into the cell and perform the electrowetting operation.
 なお、例えば、特許文献1には、流体注入機構として、エレクトロウェッティング装置と一体的に形成された計量流体ローディングシステムが開示されている。 For example, Patent Document 1 discloses a metering fluid loading system formed integrally with an electrowetting device as a fluid injection mechanism.
 上記計量流体ローディングシステムは、流入流路を有するリザーバを含み、リザーバの中で、流体あるいは気体を、移動あるいは膨張させて、リザーバの流入流路内の流体の一部を、エレクトロウェッティング装置に押し出し、エレクトロウェッティング装置において、電極に適切な電圧を印加することによって、個別に計量された容積の液滴(流体)を流れ出させる。これにより、エレクトロウェッティング装置における上部基板と下部基板との間の間隙に液滴(流体)を強制的に注入する。 The metering fluid loading system includes a reservoir having an inflow channel, and moves or expands the fluid or gas in the reservoir so that a part of the fluid in the inflow channel of the reservoir is transferred to the electrowetting device. In an extrusion and electrowetting device, an appropriate voltage is applied to the electrodes to cause individually metered volumes of droplets (fluids) to flow out. This forcibly injects droplets (fluid) into the gap between the upper substrate and the lower substrate in the electrowetting device.
 このように、エレクトロウェッティング装置における上部基板と下部基板との間の間隙(マイクロ流路)内に液滴(流体)を送り込むためには、特別な流体注入機構が必要であり、構成が複雑化する。 As described above, in order to send a droplet (fluid) into the gap (microchannel) between the upper substrate and the lower substrate in the electrowetting device, a special fluid injection mechanism is required, and the configuration is complicated. Turn into.
 また、特許文献2には、開口部が設けられた上部基板と、下部基板とを備え、上記開口部から、上記上部基板と下部基板との間に形成される流路に流体を送り込むエレクトロウェッティング装置が開示されている。しかしながら特許文献2には、どのようにして流体がエレクトロウェッティング装置内に送り込まれるかについて開示されていない。 Further, Patent Document 2 includes an upper substrate provided with an opening and a lower substrate, and an electrowetting device that sends fluid from the opening to a flow path formed between the upper substrate and the lower substrate. A gating device is disclosed. However, Patent Document 2 does not disclose how the fluid is fed into the electrowetting device.
 同様に、特許文献3も、上部基板と下部基板との間隙に液滴が封入されたエレクトロウェッティング装置を開示しているが、液滴をエレクトロウェッティング装置内に注入する方法については開示されていない。 Similarly, Patent Document 3 discloses an electrowetting device in which droplets are sealed in a gap between an upper substrate and a lower substrate, but a method for injecting droplets into the electrowetting device is also disclosed. Not.
 なお、流体流入機構として、例えば、特許文献4には、液滴サンプルの分析装置に使用されるシステムが開示されている。 In addition, as a fluid inflow mechanism, for example, Patent Document 4 discloses a system used for an apparatus for analyzing a droplet sample.
 特許文献4では、一端部に上記流体を受容する開口部を有し、他端部に毛細管口を有する第2の導管の上記一端部に設けられた開口部を、測定に供される流体に接触させて、毛細管現象により、上記第2の導管内に引き込み、上記流体が上記第2の導管を満たした後、上記開口部を封止する。その後、空気袋として機能するキャビティから第4の導管により、上記第2の導管に向かって空気を押し出す。これにより、上記第2の導管内の流体を、上記第2の導管から、上記第2の導管の毛細管口に連結された第3の導管に押し出し、押し出された流体がセンサに到達することで測定が行われる。 In Patent Document 4, an opening provided at one end of a second conduit having an opening for receiving the fluid at one end and a capillary opening at the other end is used as a fluid used for measurement. In contact and drawn by capillary action into the second conduit, the fluid fills the second conduit, and then the opening is sealed. Thereafter, air is pushed out from the cavity functioning as an air bag by the fourth conduit toward the second conduit. As a result, the fluid in the second conduit is extruded from the second conduit to the third conduit connected to the capillary port of the second conduit, and the extruded fluid reaches the sensor. Measurement is performed.
 しかしながら、上記システムは、構成が複雑であることに加えて、流体の個別の液滴をシステム内にどのように注入するかについて、開示がない。 However, in addition to the complexity of the system, there is no disclosure of how individual droplets of fluid are injected into the system.
 本発明は、上記問題点に鑑みなされたものであり、その目的は、複雑な流体注入機構を必要とすることなくエレクトロウェッティング装置内に液滴を注入することができるエレクトロウェッティング装置およびその製造方法並びに液滴注入方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is an electrowetting device capable of injecting droplets into an electrowetting device without requiring a complicated fluid injection mechanism, and its It is an object to provide a manufacturing method and a droplet injection method.
 上記の課題を解決するために、本発明の一態様にかかるエレクトロウェッティング装置は、間隙を有して互いに貼り合わされた、第1電極を有する下部基板と、第2電極を有する上部基板とを備え、上記上部基板は、上記間隙に液滴を注入する注入口を有し、上記第1電極は、上記注入口の直下の領域を含む領域に設けられており、上記上部基板の上面における、上記液滴が接触する領域、および上記下部基板における、上記液滴が接触する領域にそれぞれ疎水層が設けられており、上記注入口内に、上記疎水層よりも表面張力が高い親水層が設けられている。 In order to solve the above problems, an electrowetting device according to one embodiment of the present invention includes a lower substrate having a first electrode and an upper substrate having a second electrode, which are bonded to each other with a gap. The upper substrate has an injection port for injecting a droplet into the gap, and the first electrode is provided in a region including a region immediately below the injection port, and on the upper surface of the upper substrate, A hydrophobic layer is provided in each of the region where the droplet contacts and the region where the droplet contacts in the lower substrate, and a hydrophilic layer having a higher surface tension than the hydrophobic layer is provided in the inlet. ing.
 上記の課題を解決するために、本発明の一態様にかかる液滴注入方法は、本発明の一態様にかかるエレクトロウェッティング装置内に液滴を注入する方法であって、上記注入口に液滴を滴下する工程と、上記注入口に滴下した液滴が上記下部基板に接触した状態で、上記第1電極および上記第2電極に電圧を印加して上記液滴を移動させることで、上記液滴を、上記間隙に引き込む。 In order to solve the above problems, a droplet injection method according to an aspect of the present invention is a method of injecting a droplet into an electrowetting device according to an aspect of the present invention, wherein the droplet is injected into the injection port. A step of dropping a droplet, and in a state where the droplet dropped to the injection port is in contact with the lower substrate, applying a voltage to the first electrode and the second electrode to move the droplet, The droplet is drawn into the gap.
 上記の課題を解決するために、本発明の一態様にかかるエレクトロウェッティング装置の製造方法は、第1電極が形成された下部基板を形成する下部基板形成工程と、第2電極が形成された上部基板を形成する上部基板形成工程と、上記上部基板と上記下部基板とを、互いに間隙を有して貼り合わせる貼合工程と、を備え、上記上部基板形成工程は、上記間隙に液滴を注入する注入口を形成する注入口形成工程と、上記上部基板の上面における、上記液滴が接触する領域に疎水層を形成する上部基板疎水層形成工程と、上記注入口内に、上記疎水層よりも表面張力が高い親水層を形成する親水層形成工程と、を含み、上記下部基板形成工程は、上記第1電極を、上記注入口の直下の領域を含む領域に形成する工程と、上記液滴が接触する領域に疎水層を形成する下部基板疎水層形成工程と、を含む。 In order to solve the above-described problems, a method for manufacturing an electrowetting device according to one aspect of the present invention includes a lower substrate forming step of forming a lower substrate on which a first electrode is formed, and a second electrode. An upper substrate forming step of forming an upper substrate; and a bonding step of bonding the upper substrate and the lower substrate with a gap between each other, wherein the upper substrate forming step drops droplets into the gap. An injection hole forming step for forming an injection hole to be injected; an upper substrate hydrophobic layer forming step for forming a hydrophobic layer in a region where the droplet contacts on the upper surface of the upper substrate; and Forming a hydrophilic layer having a high surface tension, wherein the lower substrate forming step includes forming the first electrode in a region including a region immediately below the inlet, and the liquid The area where the drop comes into contact To include a lower substrate hydrophobic layer forming step of forming a hydrophobic layer.
 本発明の一態様によれば、複雑な流体注入機構を必要とすることなくエレクトロウェッティング装置内に液滴を注入することができるエレクトロウェッティング装置およびその製造方法並びに液滴注入方法を提供することができる。 According to one aspect of the present invention, an electrowetting device that can inject droplets into an electrowetting device without requiring a complicated fluid injection mechanism, a manufacturing method thereof, and a droplet injection method are provided. can do.
(a)は、本発明の実施形態1にかかるエレクトロウェッティング装置の要部の概略構成を示す分解斜視図であり、(b)は、本発明の実施形態1にかかるエレクトロウェッティング装置の流体注入孔近傍の構成を拡大して示す断面図である。(A) is a disassembled perspective view which shows schematic structure of the principal part of the electrowetting apparatus concerning Embodiment 1 of this invention, (b) is the fluid of the electrowetting apparatus concerning Embodiment 1 of this invention. It is sectional drawing which expands and shows the structure of the injection hole vicinity. 本発明の実施形態1にかかるエレクトロウェッティング装置における一対のアレイ素子の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a pair of array element in the electrowetting apparatus concerning Embodiment 1 of this invention. 本発明の実施形態1にかかるエレクトロウェッティング装置における薄膜電子回路の概略構成の一例を示す平面図である。It is a top view which shows an example of schematic structure of the thin film electronic circuit in the electrowetting apparatus concerning Embodiment 1 of this invention. (a)~(d)は、本発明の実施形態1にかかるエレクトロウェッティング装置における上部基板の製造工程の一部を工程順に示す図である。(A)-(d) is a figure which shows a part of manufacturing process of the upper board | substrate in the electrowetting apparatus concerning Embodiment 1 of this invention in order of a process. (a)~(d)は、本発明の実施形態1にかかるエレクトロウェッティング装置における上部基板の表面処理工程を、工程順に示す図である。(A)-(d) is a figure which shows the surface treatment process of the upper board | substrate in the electrowetting apparatus concerning Embodiment 1 of this invention in order of a process. (a)~(e)は、本発明の実施形態1にかかるエレクトロウェッティング装置内に液滴が引き込まれる様子を順に示す断面図である。(A)-(e) is sectional drawing which shows in order a mode that a droplet is drawn in in the electrowetting apparatus concerning Embodiment 1 of this invention. (a)~(c)は、本発明の実施形態1にかかるエレクトロウェッティング装置内に液滴が引き込まれる様子を順に示す斜視図である。(A)-(c) is a perspective view which shows sequentially a mode that a droplet is drawn in in the electrowetting apparatus concerning Embodiment 1 of this invention. (a)は、本発明の実施形態1にかかるエレクトロウェッティング装置内に液滴が引き込まれる様子を示す斜視図であり、(b)は、(a)に示すエレクトロウェッティング装置の要部の写真を示す図である。(A) is a perspective view which shows a mode that a droplet is drawn in in the electrowetting apparatus concerning Embodiment 1 of this invention, (b) is a principal part of the electrowetting apparatus shown to (a). It is a figure which shows a photograph. 本発明の実施形態2にかかるエレクトロウェッティング装置の流体注入孔近傍の構成を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity of the electrowetting apparatus concerning Embodiment 2 of this invention. (a)~(c)は、マザー基板の貫通口の形成予定領域の周囲の領域にレジストパターンを形成する工程を示す断面図である。(A)-(c) is sectional drawing which shows the process of forming a resist pattern in the area | region around the formation scheduled area | region of the through-hole of a mother substrate. (a)~(e)は、本発明の実施形態2にかかるエレクトロウェッティング装置内に液滴が引き込まれる様子を順に示す断面図である。(A)-(e) is sectional drawing which shows sequentially a mode that a droplet is drawn in the electrowetting apparatus concerning Embodiment 2 of this invention. 本発明の実施形態3にかかるエレクトロウェッティング装置の流体注入孔近傍の構成を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity of the electrowetting apparatus concerning Embodiment 3 of this invention. (a)~(f)は、本発明の実施形態3にかかるエレクトロウェッティング装置における上部基板の製造工程の一例を工程順に示す図である。(A)-(f) is a figure which shows an example of the manufacturing process of the upper board | substrate in the electrowetting apparatus concerning Embodiment 3 of this invention in order of a process. 本発明の実施形態4にかかるエレクトロウェッティング装置の流体注入孔近傍の構成を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity of the electrowetting apparatus concerning Embodiment 4 of this invention. 本発明の実施形態5にかかるエレクトロウェッティング装置の流体注入孔近傍の構成を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity of the electrowetting apparatus concerning Embodiment 5 of this invention. (a)~(f)は、本発明の実施形態5にかかるエレクトロウェッティング装置における上部基板の製造工程の一例を工程順に示す図である。(A)-(f) is a figure which shows an example of the manufacturing process of the upper board | substrate in the electrowetting apparatus concerning Embodiment 5 of this invention in order of a process. 本発明の実施形態6にかかるエレクトロウェッティング装置の流体注入孔近傍の構成を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity of the electrowetting apparatus concerning Embodiment 6 of this invention. (a)~(c)は、従来のエレクトロウェッティング装置の問題点を示す断面図である。(A)-(c) is sectional drawing which shows the problem of the conventional electrowetting apparatus. (a)は、図18の(a)に示すエレクトロウェッティング装置の問題点を示す斜視図であり、(b)は、(a)に示すエレクトロウェッティング装置の一部の写真を示す図である。(A) is a perspective view which shows the problem of the electrowetting apparatus shown to (a) of FIG. 18, (b) is a figure which shows the one part photograph of the electrowetting apparatus shown to (a). is there.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 〔実施形態1〕
 本発明の実施の一形態について、主に図1~図8に基づいて説明すれば以下の通りである。
Embodiment 1
An embodiment of the present invention will be described below mainly with reference to FIGS.
 本実施形態では、本実施形態にかかるエレクトロウェッティング装置として、薄膜トランジスタ(TFT)を使用してアクティブマトリクス配列内で液滴駆動(EWOD;Electrowetting-On-Dielectric(誘電体エレクトロウェッティング))を実施するアクティブマトリクス型誘電体エレクトロウェッティング(Active Matrix Electrowetting-On-Dielectric;AM-EWOD)装置を例に挙げて説明する。 In this embodiment, as an electrowetting device according to this embodiment, droplet driving (EWOD; Electrowetting-On-Dielectric (dielectric electrowetting)) is performed in an active matrix array using a thin film transistor (TFT). An active-matrix-type dielectric electrowetting-active-on-dielectric (AM-EWOD) apparatus will be described as an example.
 以下、背景技術で説明した部材と同じ機能を有する部材については、同じ符号を付記して説明を行うものとする。 Hereinafter, members having the same functions as those described in the background art will be described by adding the same reference numerals.
 <エレクトロウェッティング装置1の概略構成>
 図1の(a)は、本実施形態にかかるエレクトロウェッティング装置1の要部の概略構成を示す分解斜視図であり、図1の(b)は、本実施形態にかかるエレクトロウェッティング装置1の流体注入孔近傍の構成を拡大して示す断面図である。図1の(b)では、貫通口25の構成を示すため、各構成要素の比率、特に貫通口25の比率を変更して示している。また、簡略化のため、貫通口25を一つのみ図示している。図2は、本実施形態にかかるエレクトロウェッティング装置1における一対のアレイ素子の概略構成を示す断面図である。図3は、本実施形態にかかるエレクトロウェッティング装置1における薄膜電子回路12の概略構成の一例を示す平面図である。
<Schematic configuration of electrowetting device 1>
FIG. 1A is an exploded perspective view showing a schematic configuration of a main part of an electrowetting device 1 according to the present embodiment, and FIG. 1B is an electrowetting device 1 according to the present embodiment. It is sectional drawing which expands and shows the structure of the fluid injection hole vicinity. In FIG. 1B, in order to show the configuration of the through hole 25, the ratio of each component, particularly the ratio of the through hole 25 is changed. For simplification, only one through hole 25 is shown. FIG. 2 is a cross-sectional view showing a schematic configuration of a pair of array elements in the electrowetting device 1 according to the present embodiment. FIG. 3 is a plan view showing an example of a schematic configuration of the thin film electronic circuit 12 in the electrowetting device 1 according to the present embodiment.
 エレクトロウェッティング装置1は、図1の(a)・(b)および図2に示すように、互いに対向配置された下部基板10および上部基板20からなる一対の基板を備えている。 As shown in FIGS. 1A and 1B and FIG. 2, the electrowetting apparatus 1 includes a pair of substrates including a lower substrate 10 and an upper substrate 20 that are arranged to face each other.
 図1の(a)・(b)~図3に示すように、下部基板10は、支持基板11上に、複数の電極13(例えば、図2に示す電極13a・13b)が形成された薄膜電子回路12、誘電体層14が、この順に積層された構成を有している。 As shown in FIGS. 1A and 1B to FIG. 3, the lower substrate 10 is a thin film in which a plurality of electrodes 13 (for example, the electrodes 13a and 13b shown in FIG. 2) are formed on a support substrate 11. The electronic circuit 12 and the dielectric layer 14 are stacked in this order.
 下部基板10の表面は、疎水層15で覆われている。なお、図1の(b)では、一例として、上部基板20との対向面(すなわち、上面)にのみ疎水層15が形成されている場合を例に挙げて示している。しかしながら、本実施形態は、これに限定されるものではなく、下部基板10の表面全面が疎水層15で覆われていてもよい。 The surface of the lower substrate 10 is covered with a hydrophobic layer 15. In FIG. 1B, as an example, the case where the hydrophobic layer 15 is formed only on the surface facing the upper substrate 20 (that is, the upper surface) is shown as an example. However, the present embodiment is not limited to this, and the entire surface of the lower substrate 10 may be covered with the hydrophobic layer 15.
 複数の電極13は、支持基板11の最上部の層(薄膜電子回路12を構成する層の一部と解釈することもできる)をパターン化することで実現できる。このような構成は、エレクトロウェッティング駆動素子と称される。なお、特定のアレイ素子に関連付けられた電極13、および、この電極13に直接接続された電気回路のノードとの両方を指してエレクトロウェッティング駆動素子と称する場合もある。 The plurality of electrodes 13 can be realized by patterning the uppermost layer of the support substrate 11 (which can also be interpreted as a part of the layers constituting the thin film electronic circuit 12). Such a configuration is called an electrowetting drive element. Note that both the electrode 13 associated with a specific array element and the node of the electric circuit directly connected to the electrode 13 may be referred to as an electrowetting drive element.
 薄膜電子回路12は、各電極13を駆動するように構成されている。 The thin film electronic circuit 12 is configured to drive each electrode 13.
 各電極13は、AM(アクティブマトリクス)電極(アレイ素子電極)であり、電極アレイ16の一部を構成している。図1の(a)および図3に示すように、電極アレイ16は、M×Nのアレイ素子(MおよびNは任意の数)を有する。 Each electrode 13 is an AM (active matrix) electrode (array element electrode) and constitutes a part of the electrode array 16. As shown in FIGS. 1A and 3, the electrode array 16 has M × N array elements (M and N are arbitrary numbers).
 誘電体層14は、図1の(b)および図2に示すように、上記複数の電極13を覆うように支持基板11上に配置されている。誘電体層14は、電極13を、下部基板10における、上部基板20との対向面に設けられた疎水層15から分離する。 As shown in FIG. 1B and FIG. 2, the dielectric layer 14 is disposed on the support substrate 11 so as to cover the plurality of electrodes 13. The dielectric layer 14 separates the electrode 13 from the hydrophobic layer 15 provided on the surface of the lower substrate 10 facing the upper substrate 20.
 上部基板20は、支持基板21における下部基板10との対向面側に、電極22が設けられた構成を有している。電極22は、疎水層23で覆われている。 The upper substrate 20 has a configuration in which an electrode 22 is provided on the side of the support substrate 21 facing the lower substrate 10. The electrode 22 is covered with a hydrophobic layer 23.
 下部基板10と上部基板20とは、それらの周縁部に設けられたシール材31によって互いに貼り合わされることでセルを形成している。 The lower substrate 10 and the upper substrate 20 are bonded to each other by a sealing material 31 provided at the peripheral edge thereof to form a cell.
 下部基板10と上部基板20との間隙は、スペーサ32によって一定の間隙に保持されていてもよい。 The gap between the lower substrate 10 and the upper substrate 20 may be held at a constant gap by the spacer 32.
 エレクトロウェッティングに供される液滴40は、上記下部基板10と上部基板20との間隙によって形成される微小な流路30(マイクロ流路)内に注入される。 The droplet 40 used for electrowetting is injected into a minute channel 30 (microchannel) formed by the gap between the lower substrate 10 and the upper substrate 20.
 上部基板20の一部には、上記下部基板10と上部基板20との間隙からなる流路30内に液滴40(流体)を注入するための第1液体注入口(注入口)として、上部基板20を貫通する貫通口25が、複数設けられている。但し、本実施形態はこれに限定されるものではなく、貫通口25は、少なくとも1つ設けられていればよい。 A part of the upper substrate 20 has an upper portion serving as a first liquid injection port (injection port) for injecting a droplet 40 (fluid) into a flow path 30 formed by a gap between the lower substrate 10 and the upper substrate 20. A plurality of through holes 25 penetrating the substrate 20 are provided. However, the present embodiment is not limited to this, and it is sufficient that at least one through hole 25 is provided.
 エレクトロウェッティング装置1は、図1の(a)に示すように、アクティブ領域2と、アクティブ領域2の外側に設けられた額縁領域3(非アクティブ領域)とを備えている。アクティブ領域2とは、2次元アレイを形成するために電極13として導電膜がパターン化されたAM(アクティブマトリクス)電極エリアである。 The electrowetting device 1 includes an active region 2 and a frame region 3 (inactive region) provided outside the active region 2 as shown in FIG. The active region 2 is an AM (active matrix) electrode area in which a conductive film is patterned as the electrode 13 to form a two-dimensional array.
 本実施形態では、貫通口25が、上部基板20のアクティブ領域2における、額縁領域3との境界付近に設けられている場合を例に挙げて説明する。しかしながら、本実施形態は、これに限定されるものではなく、貫通口25は、額縁領域3に設けられていてもよい。 In the present embodiment, a case where the through hole 25 is provided near the boundary with the frame region 3 in the active region 2 of the upper substrate 20 will be described as an example. However, the present embodiment is not limited to this, and the through hole 25 may be provided in the frame region 3.
 疎水層23は、図1の(b)に示すように、貫通口25内の開口壁25aを除く上部基板20の表面を覆っている。なお、図1の(b)では、一例として、開口壁25aを除く上部基板20の表面全面が疎水層23で覆われている場合を例に挙げて示している。しかしながら、本実施形態は、これに限定されるものではなく、疎水層23は、上部基板20における下部基板10との対向面(すなわち、下面)、および、その反対側の面である上面における、液滴40が接触する領域に形成されていればよい。 The hydrophobic layer 23 covers the surface of the upper substrate 20 except for the opening wall 25a in the through-hole 25 as shown in FIG. In FIG. 1B, as an example, a case where the entire surface of the upper substrate 20 excluding the opening wall 25a is covered with the hydrophobic layer 23 is shown as an example. However, the present embodiment is not limited to this, and the hydrophobic layer 23 is formed on the upper substrate 20 on the surface facing the lower substrate 10 (that is, the lower surface) and on the upper surface that is the opposite surface. What is necessary is just to be formed in the area | region which the droplet 40 contacts.
 上記貫通口25内の開口壁25aは、下部基板10における疎水層15および上部基板20における疎水層23よりも表面張力が高い親水層24で形成されている。 The opening wall 25a in the through hole 25 is formed of a hydrophilic layer 24 having a higher surface tension than the hydrophobic layer 15 in the lower substrate 10 and the hydrophobic layer 23 in the upper substrate 20.
 貫通口25は、図1の(b)に示すように、下部基板10と上部基板20との間の距離(互いの対向面間の距離)をg1とし、貫通口25の開口径(直径)をg2とすると、g2>g1であることが好ましく、g2≧g1であることがより好ましい。これにより、貫通口25から注入した液滴40を、下部基板10の表面(すなわち、疎水層23で覆われた誘電体層14の表面)に、確実に接触させることができる。 As shown in FIG. 1B, the through hole 25 has a distance between the lower substrate 10 and the upper substrate 20 (distance between the opposing surfaces) as g1, and an opening diameter (diameter) of the through hole 25. Is preferably g2, g2> g1, more preferably g2 ≧ g1. Thereby, the droplet 40 injected from the through-hole 25 can be reliably brought into contact with the surface of the lower substrate 10 (that is, the surface of the dielectric layer 14 covered with the hydrophobic layer 23).
 液滴40には、イオン性液体または極性液体等の、導電性液体が使用される。液滴40としては、例えば、水、電解液(電解質の水溶液)、アルコール類、各種イオン性液体等の液体を用いることができる。液滴40の一例としては、例えば、全血検体、細菌性細胞懸濁液、タンパク質あるいは抗体溶液、および種々の緩衝液、等が挙げられる。 As the droplet 40, a conductive liquid such as an ionic liquid or a polar liquid is used. As the droplet 40, for example, liquid such as water, electrolytic solution (aqueous solution of electrolyte), alcohols, various ionic liquids can be used. Examples of the droplet 40 include, for example, a whole blood specimen, a bacterial cell suspension, a protein or antibody solution, and various buffer solutions.
 また、流路30内には、液滴40と混和されない非導電性液体42が注入されてもよい。例えば、流路30内の液滴40によって占有されない容積は、非導電性液体42で満たされていてもよい。 Also, a non-conductive liquid 42 that is immiscible with the droplets 40 may be injected into the flow path 30. For example, the volume not occupied by the droplets 40 in the flow path 30 may be filled with the non-conductive liquid 42.
 したがって、エレクトロウェッティング装置1の一部には、上記流路30内に非導電性液体42を注入するための流体注入口として、図示しない第2液体注入口(非導電性液体注入口)が設けられていてもよい。 Therefore, a part of the electrowetting device 1 has a second liquid inlet (non-conductive liquid inlet) (not shown) as a fluid inlet for injecting the non-conductive liquid 42 into the flow path 30. It may be provided.
 第2液体注入口は、例えば、上記上部基板20における額縁領域3の一部に設けられていてもよく、シール材31の一部に開口部を設け、該開口部から延設して設けられていてもよい。 The second liquid inlet may be provided, for example, in a part of the frame region 3 in the upper substrate 20, and an opening is provided in a part of the sealing material 31 and is provided so as to extend from the opening. It may be.
 非導電性液体42には、液滴40よりも表面張力が小さい、無極性液体(非イオン性液体)を用いることができる。非導電性液体42の一例としては、例えば、デカン、ドデカン、ヘキサデカン、ウンデカン等の炭化水素系溶媒(低分子炭化水素系溶媒)、シリコーンオイル等のオイル、フルオロカーボン系溶媒などが挙げられる。シリコーンオイルとしては、ジメチルポリシロキサン等が挙げられる。なお、非導電性液体42は、一種類のみを使用してもよく、適宜複数種類を混合して用いてもよい。 As the nonconductive liquid 42, a nonpolar liquid (nonionic liquid) having a surface tension smaller than that of the droplet 40 can be used. Examples of the non-conductive liquid 42 include, for example, hydrocarbon solvents (low molecular hydrocarbon solvents) such as decane, dodecane, hexadecane, and undecane, oils such as silicone oil, and fluorocarbon solvents. Examples of the silicone oil include dimethylpolysiloxane. Note that only one type of non-conductive liquid 42 may be used, or a plurality of types may be appropriately mixed and used.
 非導電性液体42には、液滴40の比重よりも比重が小さい液体が選択される。液滴40の比重および非導電性液体42の比重は、非導電性液体42の比重<液滴40の比重の関係を満足していれば、特に限定されない。 As the non-conductive liquid 42, a liquid having a specific gravity smaller than the specific gravity of the droplet 40 is selected. The specific gravity of the droplet 40 and the specific gravity of the non-conductive liquid 42 are not particularly limited as long as the relationship of the specific gravity of the non-conductive liquid 42 <the specific gravity of the droplet 40 is satisfied.
 例えば、液滴40が電解質水溶液である場合、液滴40の比重は、ほぼ水の比重と同じ(≒1.0)であり、非導電性液体42には、例えばシリコーンオイル等、比重が1.0未満の液体が使用される。 For example, when the droplet 40 is an aqueous electrolyte solution, the specific gravity of the droplet 40 is substantially the same as the specific gravity of water (≈1.0), and the non-conductive liquid 42 has a specific gravity of 1 such as silicone oil. Less than 0 liquid is used.
 また、液滴40および非導電性液体42は、粘度が低いことが好ましい。液滴40は、所定の粘度となるように、水等で希釈調整されていてもよい。 Further, it is preferable that the droplet 40 and the non-conductive liquid 42 have low viscosity. The droplet 40 may be diluted with water or the like so as to have a predetermined viscosity.
 液滴40は、図1の(b)に示すように、接触角θで疎水層23に接触する。接触角θは、固体表面が液体および気体と接触しているときに、この3相の接触する境界線において液体面が固体面となす角度で示され、固体-液体間の表面張力(界面エネルギー)をγSLとし、液体-気体間の表面張力をγLGとし、固体-気体間の表面張力をγSGとすると、各界面間の表面張力の成分の釣り合いにより、ヤングの法則により、次式(1)
 cosθ=(γSG-γSL)/γLG ‥(1)
で決定される。
As shown in FIG. 1B, the droplet 40 contacts the hydrophobic layer 23 at a contact angle θ. The contact angle θ is indicated by the angle between the liquid surface and the solid surface at the boundary line where the solid surface is in contact with the liquid and gas, and the surface tension between the solid and the liquid (interface energy). ) Is γSL, the surface tension between the liquid and gas is γLG, and the surface tension between the solid and gas is γSG, the following equation (1)
cos θ = (γSG−γSL) / γLG (1)
Determined by
 ここで、液体は液滴40であり、固体は疎水層23である。同様に、電極13・22への電圧無印加時(ゼロ電圧)における液滴40と疎水層15との接触角(初期接触角)をθとすると、cosθは、次式(2)
 cosθ=(γSG-γSL)/γLG ‥(2)
で定義される。
Here, the liquid is the droplet 40 and the solid is the hydrophobic layer 23. Similarly, when the time no voltage is applied to the electrodes 13 and 22 and the contact angle between the droplet 40 and the hydrophobic layer 15 in (zero voltage) (initial contact angle) and theta 0, cos [theta] 0, the following equation (2)
cos θ 0 = (γSG−γSL) / γLG (2)
Defined by
 なお、ある状況では、関連する物質の相対的な表面張力(すなわち、γSG、γSL、およびγLG)は、上記式(2)の右辺が-1よりも小さくなるような数値となる場合がある。これは、流路30内の液滴40によって占有されない容積が、非導電性液体42として例えばオイルが満たされている場合に通常起こり得る。 In some situations, the relative surface tension (ie, γSG, γSL, and γLG) of related substances may be a numerical value such that the right side of the above equation (2) is smaller than −1. This can typically occur when the volume not occupied by the droplets 40 in the flow path 30 is filled with, for example, oil as the non-conductive liquid 42.
 このような状況においては、液滴40は、疎水層15・23(疎水面)と接触しない状態となり、非導電性液体42の薄膜が、液滴40と、疎水層15・23との間に形成され得る。 In such a situation, the droplet 40 is not in contact with the hydrophobic layers 15 and 23 (hydrophobic surfaces), and the thin film of the nonconductive liquid 42 is interposed between the droplet 40 and the hydrophobic layers 15 and 23. Can be formed.
 図2に示すように、流路30内の液滴40によって占有されない容積が、非導電性液体42(例えばオイル)で満たされている場合、液体(Liquid)である液滴40と、それを囲うオイル(Oil)である非導電性液体42との界面に関する表面張力をγLOとすると、上記式(2)において、γLG、γSGは、それぞれγLO、γSOで置き換えることができる。 As shown in FIG. 2, when the volume not occupied by the droplet 40 in the flow path 30 is filled with a non-conductive liquid 42 (for example, oil), the droplet 40 that is a liquid (Liquid) Assuming that the surface tension on the interface with the non-conductive liquid 42 that is the surrounding oil (Oil) is γLO, in the above formula (2), γLG and γSG can be replaced by γLO and γSO, respectively.
 一方、印加された液滴駆動電圧VEWを受ける液滴40の接触角θの依存性は、Lippmannの式から、上記ゼロ電圧における液滴40の初期接触角をθとし、液滴40とそれを囲う非導電性液体42のとの界面に関する表面張力をγLOとすると、次式(3)
 cosθ=cosθ+CVEW/2γLO ‥(3)
で示される。
On the other hand, dependence of the contact angle theta of the droplet 40 which is supplied with droplets drive voltage VEW from equation Lippmann, the initial contact angle of the droplet 40 in the zero voltage and theta 0, it droplet 40 When the surface tension related to the interface with the non-conductive liquid 42 surrounding the surface is γLO, the following equation (3)
cos θ = cos θ 0 + CVEW 2 / 2γLO (3)
Indicated by
 このように、接触角θは、表面の疎水性の尺度である。θ<90度の場合は表面が親水性であり、θ>90度の場合は表面が疎水性であるとして定義され得る。そして、接触角θと90度との差に従って、疎水性または親水性の程度が定義される。図1の(b)は、表面が疎水性である疎水層23の表面に対し、静的平衡状態において接触角θで接している液滴40を示す。 Thus, the contact angle θ is a measure of the hydrophobicity of the surface. It can be defined that the surface is hydrophilic when θ <90 degrees and the surface is hydrophobic when θ> 90 degrees. The degree of hydrophobicity or hydrophilicity is defined according to the difference between the contact angle θ and 90 degrees. FIG. 1B shows a droplet 40 that is in contact with the surface of the hydrophobic layer 23 having a hydrophobic surface at a contact angle θ in a static equilibrium state.
 エレクトロウェッティング装置1の駆動時において、異なる電極(例えば、電極13a・13b)のそれぞれに対して、EW駆動電圧(例えば、図2に示すVT、V0、およびV00)が印加されることで、電圧印加によって生じた電気的な力によって、疎水層15・23の疎水性が有効に制御される。液滴40は、親水性がより大きい領域(言い換えれば、疎水性がより小さい領域)に向かって水平に動く。 When the electrowetting device 1 is driven, an EW drive voltage (for example, VT, V0, and V00 shown in FIG. 2) is applied to each of different electrodes (for example, the electrodes 13a and 13b). The hydrophobicity of the hydrophobic layers 15 and 23 is effectively controlled by the electric force generated by the voltage application. The droplet 40 moves horizontally toward a region with higher hydrophilicity (in other words, a region with lower hydrophobicity).
 異なるEW駆動電圧(例えば、V0およびV00)が印加されるように、異なる電極(電極13a・13b)を配置することにより、液滴40を、下部基板10と上部基板20との間で、互いの対向面(疎水層15・23の表面)に沿って横方向に移動させることができる。 By disposing different electrodes ( electrodes 13a and 13b) such that different EW driving voltages (for example, V0 and V00) are applied, the droplet 40 is allowed to flow between the lower substrate 10 and the upper substrate 20 with each other. Can be moved laterally along the opposite surfaces (surfaces of the hydrophobic layers 15 and 23).
 支持基板11・21には、透明な絶縁性基板が使用される。支持基板11・21は、例えば、ガラス基板で構成することができる。但し、本実施形態では、支持基板11・21の表面に疎水層15・23、親水層24を形成することから、上記支持基板11・21としては、プラスチック基板、セラミック基板等の基板を使用してもよい。 A transparent insulating substrate is used for the support substrates 11 and 21. The support substrates 11 and 21 can be formed of, for example, a glass substrate. However, in this embodiment, since the hydrophobic layers 15 and 23 and the hydrophilic layer 24 are formed on the surfaces of the support substrates 11 and 21, a substrate such as a plastic substrate or a ceramic substrate is used as the support substrate 11 or 21, respectively. May be.
 疎水層15・23、親水層24は、ディッピング法、スピンコート法、CVD法、電着法等の適当な表面被覆法を用いて形成することができる。 The hydrophobic layers 15 and 23 and the hydrophilic layer 24 can be formed by using an appropriate surface coating method such as a dipping method, a spin coating method, a CVD method, or an electrodeposition method.
 下部基板10と上部基板20との間隙に引き込まれた液滴40は、アクティブ領域2(AM電極形成エリアである電極アレイ16の形成領域)で、電極アレイ16を構成する各電極13に所定のシーケンスで所定の電圧が印加される。これにより、上記液滴40から、その一部(図2および図3に示す、所定量のより微小な液滴41、微小液滴)が引きちぎられ(分離され)、所定の流路30に運ばれる。 The droplet 40 drawn into the gap between the lower substrate 10 and the upper substrate 20 is given to each electrode 13 constituting the electrode array 16 in the active region 2 (region where the electrode array 16 is an AM electrode formation area). A predetermined voltage is applied in the sequence. As a result, a part of the droplet 40 (a predetermined amount of smaller droplets 41 and minute droplets shown in FIGS. 2 and 3) is torn off (separated) and carried to the predetermined flow path 30. It is.
 なお、図3では、1つの液滴41のみを図示しているが、下部基板10と上部基板20との間には、複数の液滴41が配置されていてもよい。 Although only one droplet 41 is illustrated in FIG. 3, a plurality of droplets 41 may be disposed between the lower substrate 10 and the upper substrate 20.
 電極アレイ16の各アレイ素子は、対応する電極13の電位を制御するために、アレイ素子回路17を含んでいる。 Each array element of the electrode array 16 includes an array element circuit 17 in order to control the potential of the corresponding electrode 13.
 薄膜電子回路12には、集積された行駆動回路51および列駆動回路52も備えられている。行駆動回路51および列駆動回路52は、アレイ素子回路17に制御信号を供給する。 The thin film electronic circuit 12 is also provided with an integrated row driving circuit 51 and column driving circuit 52. The row drive circuit 51 and the column drive circuit 52 supply control signals to the array element circuit 17.
 また、薄膜電子回路12は、シリアル入力のデータストリームを処理し、電極アレイ16に必要な電圧を書き込むシリアルインターフェース53を備えていてもよい。また、薄膜電子回路12は、対応する供給電圧、上部基板20の駆動電圧、および、他の必要とされる電圧を供給する電圧供給インターフェース54を備えていてもよい。薄膜電子回路12が、これらシリアルインターフェース53や電圧供給インターフェース54を備えることで、電極アレイ16のサイズが大きい場合であっても、下部基板10と図示しない外部駆動電子回路との間の接続ワイヤ55の数および電源等の数を、比較的少なくすることができる。 Further, the thin film electronic circuit 12 may include a serial interface 53 that processes a serial input data stream and writes a necessary voltage to the electrode array 16. In addition, the thin film electronic circuit 12 may include a voltage supply interface 54 that supplies a corresponding supply voltage, a drive voltage for the upper substrate 20, and other required voltages. Since the thin film electronic circuit 12 includes the serial interface 53 and the voltage supply interface 54, even when the size of the electrode array 16 is large, a connection wire 55 between the lower substrate 10 and an external drive electronic circuit (not shown). And the number of power supplies and the like can be made relatively small.
 また、アレイ素子回路17は、センサ機能を追加的に含んでいてもよい。例えば、アレイ素子回路17は、電極アレイ16におけるそれぞれのアレイ素子の位置において液滴41が存在していることを検出し、かつ、当該液滴41のサイズを検出するための機構を備えていてもよい。 The array element circuit 17 may additionally include a sensor function. For example, the array element circuit 17 includes a mechanism for detecting the presence of the droplet 41 at the position of each array element in the electrode array 16 and detecting the size of the droplet 41. Also good.
 このため、薄膜電子回路12は、各アレイ素子からセンサデータを読み出し、当該データを1つ以上のシリアル出力信号に統合するための図示しない列検出回路を備えていてもよい。当該シリアル出力信号は、シリアルインターフェース53を介して与えられ、1つ以上の接続ワイヤ55によって、エレクトロウェッティング装置1から出力されてもよい。 For this reason, the thin film electronic circuit 12 may include a column detection circuit (not shown) for reading sensor data from each array element and integrating the data into one or more serial output signals. The serial output signal may be given via the serial interface 53 and output from the electrowetting device 1 by one or more connection wires 55.
 アレイ素子回路17は、液滴40に液滴駆動電圧VEWを印加できるように構成されており、図示しないメモリ素子や反転回路等を備えていてもよい。上記メモリ素子には、例えば、列駆動回路52から伸びる列書込ライン(同じ列内のアレイ素子に共通であってもよい)、行駆動回路51から伸びる行選択ライン(同じ行内のアレイ素子に共通であってもよい)、容量性記憶装置、DC(直流電流)供給電圧Vref、スイッチトランジスタ等が含まれていてもよい。また、上記反転回路には、複数のアナログスイッチ、供給電圧V1・V2(全てのアレイ素子に共通であってもよい)、インバータ等が含まれていてもよい。 The array element circuit 17 is configured so that the droplet driving voltage VEW can be applied to the droplet 40, and may include a memory element, an inverting circuit, and the like (not shown). The memory elements include, for example, a column write line extending from the column driving circuit 52 (may be common to array elements in the same column), a row selection line extending from the row driving circuit 51 (to the array elements in the same row). May be included), a capacitive memory device, a DC (direct current) supply voltage Vref, a switch transistor, and the like. The inversion circuit may include a plurality of analog switches, supply voltages V1 and V2 (may be common to all array elements), an inverter, and the like.
 EWODの作動メカニズムにおいて、硬い面に対する液滴の接触角は、作動電圧の二乗に依存し、印加した電圧の向きは、一義的には重要ではない。そのため、AC(交流電流)駆動方式またはDC駆動方式の何れの方式でも、EWODを実施することが可能である。 In the EWOD operating mechanism, the contact angle of the droplet with respect to the hard surface depends on the square of the operating voltage, and the direction of the applied voltage is not uniquely important. Therefore, EWOD can be carried out by any of the AC (alternating current) drive method and the DC drive method.
 AC駆動方式を使用する場合、電圧VTは、図2に示すように上部基板20の電極22に印加される。なお、簡略化のため、上部基板20は接地されているものとする。EWOD駆動電極を形成する電極13が低に設定されている場合、該EWOD駆動電極にも電圧VTが印加される。EWOD駆動電極が高に設定されている場合、電圧V1がEWOD駆動電極に印加される。V1は、高いレベルが+VAであり低いレベルが-VAである振幅2VAの矩形波形である。AC波形の周波数が、液滴40・41の伝導度によって決まる固有の液滴反応周波数よりも低い場合、液滴駆動電圧VEWは、V1からVTまでの電圧差(=VA)の二乗平均平方根(rms)で与えられる。 When the AC driving method is used, the voltage VT is applied to the electrode 22 of the upper substrate 20 as shown in FIG. For simplification, it is assumed that the upper substrate 20 is grounded. When the electrode 13 forming the EWOD drive electrode is set to a low level, the voltage VT is also applied to the EWOD drive electrode. When the EWOD drive electrode is set high, the voltage V1 is applied to the EWOD drive electrode. V1 is a rectangular waveform with an amplitude of 2VA, where the high level is + VA and the low level is -VA. When the frequency of the AC waveform is lower than the intrinsic droplet reaction frequency determined by the conductivity of the droplets 40 and 41, the droplet driving voltage VEW is the root mean square of the voltage difference (= VA) from V1 to VT (= VA). rms).
 なお、薄膜電子回路12の適切な構成および作動により、例えばVT、V0およびV00等のエレクトロウェッティング駆動電圧が、例えば、電極13aと電極13bとにそれぞれ印加されてもよい。これにより、疎水層15の疎水性の高さを制御することができ、下部基板10と上部基板20との間の流路30における横方向の液滴40・41の移動が容易になる。 Note that, by appropriate configuration and operation of the thin film electronic circuit 12, for example, electrowetting drive voltages such as VT, V0, and V00 may be applied to the electrode 13a and the electrode 13b, respectively. Thereby, the hydrophobicity of the hydrophobic layer 15 can be controlled, and the movement of the lateral droplets 40 and 41 in the flow path 30 between the lower substrate 10 and the upper substrate 20 becomes easy.
 <エレクトロウェッティング装置1の製造方法>
 次に、本実施形態にかかるエレクトロウェッティング装置1の製造方法について、図1の(a)・(b)ないし図5の(a)~(d)を参照して説明する。
<Method of manufacturing electrowetting device 1>
Next, a method for manufacturing the electrowetting device 1 according to the present embodiment will be described with reference to FIGS. 1 (a) and 1 (b) to FIGS. 5 (a) to 5 (d).
 図4の(a)~(d)は、本実施形態にかかるエレクトロウェッティング装置1における上部基板20の製造工程の一部を工程順に示す図である。 4A to 4D are diagrams showing a part of the manufacturing process of the upper substrate 20 in the electrowetting apparatus 1 according to the present embodiment in the order of processes.
 まず、図4の(a)に示すように、図示しないベタ状の導電膜が設けられた複数枚のマザー基板61を、仮固定用接着剤62で貼り合わせて硬化することで、マザー基板61を複数枚貼り合わせた接着体60を形成する。本実施形態では、一例として、マザー基板61に、ITO(インジウムスズ酸化物)膜が、一方の主面全面にベタ状に設けられた、厚み0.7mmの大判ガラス基板を使用した。また、仮固定用接着剤62には、紫外線で短時間で硬化し、有機溶剤を使用せずに温水(推奨温度80~90℃)で容易に剥離可能な電気化学工業株式会社(DENKA)製の仮固定用接着剤「テンプロック」(TEMPLOC、登録商標)を使用した。 First, as shown in FIG. 4A, a plurality of mother substrates 61 provided with a solid conductive film (not shown) are bonded together with a temporary fixing adhesive 62 and cured, so that the mother substrate 61 The adhesive body 60 in which a plurality of sheets are bonded together is formed. In the present embodiment, as an example, a large-sized glass substrate having a thickness of 0.7 mm in which an ITO (indium tin oxide) film is provided in a solid form on the entire surface of one main surface is used as the mother substrate 61. In addition, the temporary fixing adhesive 62 is made by Denki Kagaku Kogyo Co., Ltd. (DENKA), which can be easily cured with warm water (recommended temperature: 80 to 90 ° C) without using an organic solvent. TEMPLOC (registered trademark) was used.
 次に、上記接着体60の最表面を保護するために、上記接着体60の最上層のマザー基板61の上面と、最下層のマザー基板61の下面とに保護シート63を貼り付ける。なお、保護シート63の代わりに、ダミー基板(例えばダミーのガラス基板)を用いてもよい。この場合には、マザー基板61同士を貼り付ける仮固定用接着剤と同じ仮固定用接着剤を用いてダミー基板をマザー基板61に貼り付ける。これにより、マザー基板61同士を剥離する工程で、ダミー基板も剥がすことができるため、保護シート63のみを剥がすための別工程が不要となる。 Next, in order to protect the outermost surface of the adhesive 60, a protective sheet 63 is attached to the upper surface of the uppermost mother board 61 and the lower surface of the lowermost mother board 61. Instead of the protective sheet 63, a dummy substrate (for example, a dummy glass substrate) may be used. In this case, the dummy substrate is attached to the mother substrate 61 using the same temporary fixing adhesive as the temporary fixing adhesive for attaching the mother substrates 61 to each other. Thereby, since the dummy substrate can be peeled off in the step of peeling the mother substrates 61 from each other, a separate step for removing only the protective sheet 63 becomes unnecessary.
 続いて、保護シート63が設けられた状態の接着体60の所定の位置に、所定の開口径g2(図1の(b)参照)を有する所定個数の貫通口60aを、上記接着体60の最上面から最下面を貫くように形成する。この場合の貫通口60aは、ガラス専用精密ドリルもしくはレーザドリルを用いて形成する。そして、貫通口60aが形成された接着体60を、所定の1チップサイズに分断する。以下、1チップサイズに分断された接着体60を、接着体60Aと称する。また、1チップサイズに分断されたマザー基板61を、チップ61Aと称する。 Subsequently, a predetermined number of through holes 60a having a predetermined opening diameter g2 (see FIG. 1B) are provided at predetermined positions of the adhesive body 60 in a state where the protective sheet 63 is provided. It is formed so as to penetrate the bottom surface from the top surface. In this case, the through hole 60a is formed using a precision drill or a laser drill dedicated to glass. And the adhesive body 60 in which the through-hole 60a was formed is divided | segmented into predetermined 1 chip size. Hereinafter, the adhesive body 60 divided into one chip size is referred to as an adhesive body 60A. Further, the mother substrate 61 divided into one chip size is referred to as a chip 61A.
 次に、図4の(b)に示すように、1チップサイズに切り出された接着体60Aを、レジスト液65が満たされた容器64に浸漬し、貫通口60aの内部を含めて、接着体60全体をレジスト液65で被覆する。ここで使用するレジスト液65としては、東京応化工業株式会社製のポジ型レジスト「TFR1000」(商品名)を所定の溶媒で希釈した希釈液を用いるが、これに限定されるものではない。 Next, as shown in FIG. 4 (b), the adhesive body 60A cut out to one chip size is immersed in a container 64 filled with the resist solution 65, and includes the inside of the through hole 60a. The whole 60 is covered with a resist solution 65. As the resist solution 65 used here, a diluted solution obtained by diluting a positive resist “TFR1000” (trade name) manufactured by Tokyo Ohka Kogyo Co., Ltd. with a predetermined solvent is used, but is not limited thereto.
 続いて、容器64からレジスト液65が塗布された接着体60Aを取り出し、上記接着体60Aを110℃で3分間加熱して、レジスト液65を硬化させ、レジスト層65Aとする。 Subsequently, the adhesive 60A coated with the resist liquid 65 is taken out from the container 64, and the adhesive 60A is heated at 110 ° C. for 3 minutes to cure the resist liquid 65 to obtain a resist layer 65A.
 なお、レジスト液65を硬化させる温度および時間は、上記温度および時間に限定されるものではなく、レジスト液65の種類に応じて適宜変形すればよく、特に限定されない。 It should be noted that the temperature and time for curing the resist solution 65 are not limited to the above temperature and time, and may be appropriately modified according to the type of the resist solution 65, and are not particularly limited.
 その後、図4の(c)に示すように、貫通口60aを有し、表面にレジスト層65Aが形成された接着体60Aから保護シート63を剥がす。 Thereafter, as shown in FIG. 4C, the protective sheet 63 is peeled off from the adhesive 60A having the through-hole 60a and having the resist layer 65A formed on the surface.
 次に、図4の(d)に示すように、保護シート63が剥がされた接着体60Aを、約80~90℃の温水に浸漬し、接着体60Aにおける各チップ61Aを接着している仮固定用接着剤62を溶解させて、各マザー基板61を分離する。これにより、貫通口60aを有し、かつ、貫通口60a内がレジスト層65Aで被覆されたチップ61Aが形成される。 Next, as shown in FIG. 4D, the adhesive 60A from which the protective sheet 63 has been peeled is immersed in warm water of about 80 to 90 ° C., and the chips 61A in the adhesive 60A are bonded. The fixing adhesive 62 is dissolved to separate the mother substrates 61. Thereby, the chip 61A having the through hole 60a and having the through hole 60a covered with the resist layer 65A is formed.
 なお、保護シート63の代わりにダミー基板を用いて接着体60Aの最表面を保護する場合には、図4の(c)に示す処理が不要となり、図4の(d)に示す処理において、チップ61Aとともに、ダミー基板が分離される。 When the outermost surface of the adhesive 60A is protected using a dummy substrate instead of the protective sheet 63, the process shown in FIG. 4C is unnecessary, and in the process shown in FIG. The dummy substrate is separated together with the chip 61A.
 このようにして得られたチップ61Aは、図5の(a)~(d)に示す表面処理が施され、最終的に上部基板20となる。 The chip 61A thus obtained is subjected to the surface treatment shown in FIGS. 5A to 5D, and finally becomes the upper substrate 20.
 図5の(a)~(d)は、上部基板20の表面処理工程を、工程順に示す図である。 5A to 5D are views showing the surface treatment process of the upper substrate 20 in the order of the processes.
 以下では、図5の(a)に示すように、ベタ状の導電膜(ITO膜)が設けられた、1チップサイズに分断されたマザー基板61(チップ61A)を、上記導電膜からなる電極22が設けられた支持基板21として説明する。また、貫通口60aを、貫通口25として説明する。 In the following, as shown in FIG. 5A, a mother substrate 61 (chip 61A) provided with a solid conductive film (ITO film) and divided into one chip size is used as an electrode made of the conductive film. The support substrate 21 provided with 22 will be described. Further, the through hole 60a will be described as the through hole 25.
 図4の(d)で分離された個々のチップ61Aは、超音波洗浄、プラズマアッシングによって、チップ61Aの表面を清浄し、貫通口25として用いられる貫通口60aの加工時に生じたチッピング片等を除去する。 The individual chips 61A separated in FIG. 4D are cleaned by ultrasonic cleaning and plasma ashing, and chipping pieces generated during processing of the through hole 60a used as the through hole 25 are removed. Remove.
 次いで、上記チップ61Aにおける電極22の形成面に、疎水処理を施す。 Next, the surface of the chip 61A where the electrode 22 is formed is subjected to a hydrophobic treatment.
 例えば、疎水処理剤として例えば、パーフルオロアモルファス樹脂であるAGC旭硝子株式会社製の「サイトップ(登録商標)-CTL107MK」(商品名)の1wt%希釈液を使用し、図5の(a)に示すチップ61Aを、上記疎水処理剤に浸漬することで、上記支持基板21に、上記疎水処理剤をディップコートする。 For example, a 1 wt% diluted solution of “CYTOP (registered trademark) -CTL107MK” (trade name) manufactured by AGC Asahi Glass Co., Ltd., which is a perfluoroamorphous resin, is used as a hydrophobic treatment agent. The hydrophobic treatment agent is dip-coated on the support substrate 21 by immersing the chip 61A shown in the hydrophobic treatment agent.
 具体的には、上記疎水処理剤が満たされた図示しない容器に、上記電極22が設けられた支持基板21を、浸漬速度5mm/sec、浸漬時間60sec、引揚速度1mm/secで浸漬する。これにより、図5の(b)に示すように、貫通口25の内部のレジスト層65Aを含めて、チップ61Aの表面全体に、50nm厚の疎水層23(サイトップ膜)を形成する。 Specifically, the support substrate 21 provided with the electrode 22 is immersed in a container (not shown) filled with the hydrophobic treatment agent at an immersion speed of 5 mm / sec, an immersion time of 60 sec, and a lifting speed of 1 mm / sec. Thereby, as shown in FIG. 5B, a hydrophobic layer 23 (Cytop film) having a thickness of 50 nm is formed on the entire surface of the chip 61A including the resist layer 65A inside the through hole 25.
 次に、林純薬工業株式会社製「SPX」(商品名、2-アミノエタノール)中に、疎水層23が形成された上記チップ61Aを浸漬し、室温で5分間超音波をかけることにより、貫通口25内のレジスト層65Aと、該レジスト層65A上の疎水層23とを剥離する。これにより、上記チップ61Aは、図5の(c)に示すように、貫通口25内のみが、疎水層23が形成されていない状態となる。 Next, the above-mentioned chip 61A on which the hydrophobic layer 23 is formed is immersed in “SPX” (trade name, 2-aminoethanol) manufactured by Hayashi Junyaku Kogyo Co., Ltd., and subjected to ultrasonic waves for 5 minutes at room temperature. The resist layer 65A in the through hole 25 and the hydrophobic layer 23 on the resist layer 65A are peeled off. Thereby, as shown in FIG. 5C, the tip 61A is in a state where the hydrophobic layer 23 is not formed only in the through hole 25.
 続いて、図5の(d)に示すように、疎水層23が形成されていない貫通口25の開口壁25aに親水層24を形成する。これにより、本実施形態にかかる上部基板20が完成する。 Subsequently, as shown in FIG. 5D, a hydrophilic layer 24 is formed on the opening wall 25a of the through-hole 25 where the hydrophobic layer 23 is not formed. Thereby, the upper substrate 20 according to the present embodiment is completed.
 上記図5の(d)に示す工程では、例えば、貫通口25の内部に、親水性ポリマー水溶液として、所定粘度となるように水で希釈調整した、末端シラノール基を有するベタイン基含有親水性ポリマー(大阪有機化学工業株式会社製「LAMBIC-500WP」、商品名)を滴下する。これにより、上記チップ61Aにおける、開口壁25a以外の疎水層23が形成されている部分には、上記親水性ポリマーが付着せず、開口壁25aのみに親水層24が形成される。すなわち、上記開口壁25aは、親水性コーティングが施された状態になる。 In the step shown in FIG. 5D, for example, a betaine group-containing hydrophilic polymer having a terminal silanol group, which is diluted with water so as to have a predetermined viscosity as a hydrophilic polymer aqueous solution inside the through-hole 25. (Osaka Organic Chemical Co., Ltd. “LAMBIC-500WP”, trade name) is added dropwise. Thereby, the hydrophilic polymer 24 does not adhere to the portion of the chip 61A where the hydrophobic layer 23 other than the opening wall 25a is formed, and the hydrophilic layer 24 is formed only on the opening wall 25a. That is, the opening wall 25a is in a state where a hydrophilic coating is applied.
 このように、上部基板20の貫通口25の開口壁25aに親水層24が形成されていると、液滴40がすばやく貫通口25内に取り込まれるだけでなく、検体や試薬の流体(液滴)内に含まれる電解質や溶質成分が、例えばガラス面である、支持基板21の表面に直接吸着されることを、防ぐことができる。 As described above, when the hydrophilic layer 24 is formed on the opening wall 25a of the through hole 25 of the upper substrate 20, the liquid droplet 40 is not only quickly taken into the through hole 25 but also a fluid (droplet) of a specimen or a reagent. ) Can be prevented from being directly adsorbed on the surface of the support substrate 21, for example, a glass surface.
 下部基板10は、従来と同様にして形成することができる。すなわち、下部基板10における各層(各構成要素)は、公知の方法により形成することができる。 The lower substrate 10 can be formed in the same manner as before. That is, each layer (each component) in the lower substrate 10 can be formed by a known method.
 なお、本実施形態では、貫通口25を、アクティブ領域2に設けたが、前述したように、貫通口25は、額縁領域3に設けてもよい。貫通口25を、額縁領域3に設ける場合、電極13の形成工程において、貫通口25の直下から、アクティブ領域2(AM電極エリア)の電極13に連結する、引き込み用の電極が設けられる。 In the present embodiment, the through hole 25 is provided in the active area 2. However, as described above, the through hole 25 may be provided in the frame area 3. When the through-hole 25 is provided in the frame region 3, in the step of forming the electrode 13, a lead-in electrode connected to the electrode 13 in the active region 2 (AM electrode area) is provided from directly below the through-hole 25.
 また、下部基板10は、高分解能電極アレイと低分解能電極アレイとを備えていてもよい。この場合、アクティブ領域2には、高分解能電極アレイが形成される。低分解能電極アレイ(高分解能電極アレイよりも大きい電極パッドを含む)は、貫通口25からセル内に注入される比較的大きい液滴40の流路30内への引き込みおよび制御に利用され得る。 Further, the lower substrate 10 may include a high resolution electrode array and a low resolution electrode array. In this case, a high resolution electrode array is formed in the active region 2. The low resolution electrode array (including electrode pads larger than the high resolution electrode array) can be used to draw and control the relatively large droplets 40 injected into the cell from the through holes 25 into the flow path 30.
 電極13は、貫通口25からセル内に注入された比較的大きい液滴40から、より小さな液滴41を引きちぎる(分離する)ための直線通路(流路)を提供し、該液滴41を、高分解能電極アレイからなる主要な電極アレイ16が設けられたアクティブ領域2に移動させる。 The electrode 13 provides a straight path (flow path) for tearing (separating) a smaller droplet 41 from a relatively large droplet 40 injected into the cell from the through hole 25, Then, the active region 2 is moved to the active region 2 provided with the main electrode array 16 composed of a high resolution electrode array.
 高分解能電極アレイ(低分解能電極アレイよりも小さい電極パッドを含む)は、貫通口25から注入された比較的大きな液滴40を、より小さな液滴41に分裂させ、次の操作(化学分析等)を実行するために用いられる。 The high-resolution electrode array (including an electrode pad smaller than the low-resolution electrode array) splits a relatively large droplet 40 injected from the through-hole 25 into smaller droplets 41 for subsequent operations (chemical analysis, etc.). ).
 下部基板10は、誘電体層14が形成された、疎水層15の形成前の下部基板10に、疎水処理剤として例えば上記「サイトップCTL107MK」の1wt%希釈液を、上記下部基板10における誘電体層14の形成面上に、スリットコートまたはスピンコートすることで、上記誘電体層14上に、疎水層15(サイトップ膜)を形成することができる。勿論、上記疎水処理剤として例えば上記「サイトップCTL107MK」の1wt%希釈液を、上記上部基板20と同様にディップコートすることで、下部基板10の表面に、疎水層23と同様の疎水層15(サイトップ膜)を形成してもよい。 In the lower substrate 10, for example, a 1 wt% diluted solution of “Cytop CTL107MK” as a hydrophobic treatment agent is added to the lower substrate 10 on which the dielectric layer 14 is formed and before the hydrophobic layer 15 is formed. A hydrophobic layer 15 (cytop film) can be formed on the dielectric layer 14 by slit coating or spin coating on the formation surface of the body layer 14. Of course, a 1 wt% diluted solution of “Cytop CTL107MK”, for example, as the hydrophobic treatment agent is dip coated in the same manner as the upper substrate 20, so that the hydrophobic layer 15 similar to the hydrophobic layer 23 is formed on the surface of the lower substrate 10. (Cytop film) may be formed.
 その後、図1の(b)に示すように、上記下部基板10と上部基板20とを、電極13と電極22とが対向するようにシール材31で貼り合わせる。これにより、本実施形態にかかるエレクトロウェッティング装置1(前記セル)が製造される。 Thereafter, as shown in FIG. 1B, the lower substrate 10 and the upper substrate 20 are bonded together with a sealing material 31 so that the electrode 13 and the electrode 22 face each other. Thereby, the electrowetting device 1 (the cell) according to the present embodiment is manufactured.
 <液滴注入方法>
 次に、上記エレクトロウェッティング装置1に液滴40および非導電性液体42を注入する方法について、図1の(b)、図6の(a)~(e)および図7の(a)~(c)を参照して以下に説明する。
<Droplet injection method>
Next, regarding the method of injecting the droplet 40 and the non-conductive liquid 42 into the electrowetting device 1, FIG. 1 (b), FIG. 6 (a) to (e) and FIG. 7 (a) to FIG. This will be described below with reference to (c).
 図6の(a)~(e)は、エレクトロウェッティング装置1内に液滴40が引き込まれる様子を順に示す断面図である。また、図7の(a)~(c)は、エレクトロウェッティング装置1内に液滴40が引き込まれる様子を順に示す斜視図である。 6 (a) to 6 (e) are cross-sectional views sequentially showing how the droplets 40 are drawn into the electrowetting device 1. FIG. FIGS. 7A to 7C are perspective views sequentially showing how the droplets 40 are drawn into the electrowetting device 1.
 まず、例えばピペット等により、図1の(b)、図6の(a)および図7の(a)に示すように、上部基板20の貫通口25に、所定量の液滴40を滴下する。図1の(b)および図6の(a)に示すように、滴下した液滴40が接地(接触)する上部基板20の上面には、疎水層23が形成されている一方、貫通口25の開口壁25aの表面には、超親水コーティングによる親水層24が形成されている。このため、滴下された液滴40は、自重で、自然に貫通口25内に侵入する。 First, as shown in FIG. 1B, FIG. 6A, and FIG. 7A, for example, a predetermined amount of droplet 40 is dropped into the through-hole 25 of the upper substrate 20 by a pipette or the like. . As shown in FIGS. 1B and 6A, a hydrophobic layer 23 is formed on the upper surface of the upper substrate 20 to which the dropped droplet 40 is grounded (contacted), while the through-hole 25 is formed. On the surface of the opening wall 25a, a hydrophilic layer 24 is formed by superhydrophilic coating. For this reason, the dropped droplet 40 naturally enters the through-hole 25 by its own weight.
 下部基板10および上部基板20の互いの対向面には、それぞれ疎水層15・23が形成されている。このため、滴下された液滴40は、貫通口25内が液滴40で満たされ、貫通口25内に侵入した液滴40が下部基板10の表面に接地(接触)した以降は、それ以上、セル内に侵入していくことはない。 Hydrophobic layers 15 and 23 are formed on the opposing surfaces of the lower substrate 10 and the upper substrate 20, respectively. For this reason, the dropped liquid droplet 40 fills the through-hole 25 with the liquid droplet 40, and after the liquid droplet 40 that has entered the through-hole 25 comes into contact with the surface of the lower substrate 10, no more. , Will not enter the cell.
 図18の(c)に示したように、上部基板20の上面に疎水層23が形成されていない場合、上部基板20の上面に接触した液滴40には、上部基板20の上面に濡れ広がろうとする力が常に働くため、エレクトロウェッティング動作で液滴40を流路30内に引き込んでいくことは困難である。 As shown in FIG. 18C, when the hydrophobic layer 23 is not formed on the upper surface of the upper substrate 20, the droplet 40 that has come into contact with the upper surface of the upper substrate 20 wets and spreads on the upper surface of the upper substrate 20. Since the force to rip off always works, it is difficult to draw the droplet 40 into the flow path 30 by the electrowetting operation.
 これに対し、本実施形態では、液滴40は、下部基板10の表面に自重により接地しており、かつ、上部基板20の上面に疎水層23が設けられている。このため、液滴40は、上部基板20上で濡れ広がらず、極力小さな表面積を保とうとする。そして、自重で接地した液滴40の直下には、表面に疎水層15を有する誘電体層14で覆われた電極13が存在する。このため、下部基板10における液滴40の接地面直下の複数の電極13に順次電圧を印加することにより、エレクトロウェッティングによって、所定の方向に液滴40が効果的に引き込まれる。 In contrast, in the present embodiment, the droplet 40 is grounded by its own weight on the surface of the lower substrate 10, and the hydrophobic layer 23 is provided on the upper surface of the upper substrate 20. For this reason, the droplet 40 does not spread on the upper substrate 20 and tries to keep the surface area as small as possible. The electrode 13 covered with the dielectric layer 14 having the hydrophobic layer 15 on the surface is present immediately below the droplet 40 grounded by its own weight. For this reason, by sequentially applying a voltage to the plurality of electrodes 13 immediately below the ground plane of the droplet 40 on the lower substrate 10, the droplet 40 is effectively drawn in a predetermined direction by electrowetting.
 このとき、下部基板10に接地した液滴40は、貫通口25内の開口壁25aの表面に親水層24が形成されていることで、液滴40のうち、貫通口25内に位置する液滴40bの体積分は、常に保持されている。 At this time, the liquid droplet 40 that is grounded to the lower substrate 10 has a hydrophilic layer 24 formed on the surface of the opening wall 25 a in the through hole 25, so that the liquid 40 located in the through hole 25 is included in the liquid droplet 40. The volume of the drop 40b is always maintained.
 したがって、エレクトロウェッティングにより、液滴40のうち、流路30内に到達した、貫通口25よりも下方に位置する液滴40cが、下部基板10の表面に沿って流路30内を移動し、所定方向に引き込まれていくことで、図6の(b)・(c)に示すように、液滴40のうち、上部基板20の貫通口25の外部にはみ出した液滴40aの体積が徐々に減っていく。そして、上部基板20の貫通口25の外部にはみ出した液滴40aが、図6の(d)および図7の(b)に示すように全て無くなったところで、エレクトロウェッティングによる引込みが停止する。 Therefore, of the droplets 40, the droplet 40 c positioned below the through-hole 25, which has reached the channel 30, moves in the channel 30 along the surface of the lower substrate 10 by electrowetting. As shown in FIGS. 6B and 6C, the volume of the droplet 40a that protrudes outside the through-hole 25 of the upper substrate 20 is reduced. Decrease gradually. Then, when all of the droplets 40a protruding outside the through-hole 25 of the upper substrate 20 disappear as shown in FIGS. 6D and 7B, the drawing by electrowetting stops.
 貫通口25への液滴40の滴下量は、液滴40の侵入が上述したようにセル内で停止した時点で、液滴40の一部が上部基板20の表面からはみ出す状態となるように設定される。はみ出した部分の液滴40は、上部基板20の上面に形成されている疎水層23により、該疎水層23に、高い接触角θで接触する。 The amount of the droplet 40 dropped into the through-hole 25 is set so that a part of the droplet 40 protrudes from the surface of the upper substrate 20 when the penetration of the droplet 40 stops in the cell as described above. Is set. The protruding portion of the droplet 40 is brought into contact with the hydrophobic layer 23 at a high contact angle θ by the hydrophobic layer 23 formed on the upper surface of the upper substrate 20.
 貫通口25への液滴40の滴下量は、少なくともセル内に引き込む必要がある液滴の量+貫通口25内の体積分の液滴の量(すなわち、液滴40bの体積量)+貫通口25から突出した液滴が下部基板10に接地するために必要な液滴の量(すなわち、液滴40cの体積量)で示される体積以上であればよい。 The drop amount of the droplet 40 to the through-hole 25 is at least the amount of the droplet that needs to be drawn into the cell + the amount of the droplet in the through-hole 25 (that is, the volume amount of the droplet 40b) + the penetration. It is sufficient that the droplet protruding from the mouth 25 has a volume equal to or larger than the volume indicated by the amount of droplet required for grounding the lower substrate 10 (that is, the volume of the droplet 40c).
 図6の(d)および図7の(b)に示すように液滴40の引き込みが停止した後、図6の(e)および図7の(b)に示すように、アクティブ領域2で、AM電極である所定の電極13に所定の電圧を印加することで、引き込まれた液滴40から所定量の微小な液滴41を分離させて、所定の流路30に移動させる。 After the drawing of the droplet 40 is stopped as shown in FIG. 6 (d) and FIG. 7 (b), as shown in FIG. 6 (e) and FIG. By applying a predetermined voltage to the predetermined electrode 13 which is an AM electrode, a predetermined amount of minute droplets 41 are separated from the drawn droplets 40 and moved to the predetermined flow path 30.
 以上のように、本実施形態によれば、上記貫通口25に滴下した液滴40は、自然に、貫通口25内における親水領域(すなわち、親水層24の形成領域)に、該親水領域の体積(例えば上述したように上記貫通口25の開口壁25aが全て親水層24である場合、該貫通口25の体積)に応じて、一定量の液量が貯蔵される。 As described above, according to the present embodiment, the droplets 40 dropped onto the through-hole 25 naturally enter the hydrophilic region (that is, the formation region of the hydrophilic layer 24) in the through-hole 25 in the hydrophilic region. A certain amount of liquid is stored according to the volume (for example, when all the opening walls 25a of the through-hole 25 are the hydrophilic layer 24 as described above, the volume of the through-hole 25).
 このため、本実施形態によれば、上記貫通口25に、上記液滴40を適量滴下するだけで、上記流路30(マイクロ流路)内に自然に液滴40が一定量吸い込まれる。 For this reason, according to the present embodiment, just by dropping an appropriate amount of the droplet 40 into the through-hole 25, a certain amount of the droplet 40 is naturally sucked into the channel 30 (microchannel).
 このため、本実施形態によれば、液滴40を上記貫通口25の上から適宜滴下または連続流入するだけでよく、一切の複雑な流体(液滴)注入機構を必要としない。 For this reason, according to the present embodiment, the droplets 40 need only be appropriately dropped or continuously flowed from above the through hole 25, and no complicated fluid (droplet) injection mechanism is required.
 したがって、本実施形態によれば、複雑な流体(液滴)注入機構を必要とすることなく上記流路30内(すなわち、上記エレクトロウェッティング装置1)内に液滴40を注入することができる。 Therefore, according to the present embodiment, the droplet 40 can be injected into the flow path 30 (that is, the electrowetting device 1) without requiring a complicated fluid (droplet) injection mechanism. .
 なお、図6の(d)から図6の(e)に至る一連の動作(工程)は、これらの図では、AM電極としての電極13のエレクトロウェッティング動作を利用して行っているが、必ずしもこの動作がAM電極上で行われる必要はない。例えば、アクティブ領域2(AM電極エリア)のAM電極に連結する、引き込み用の電極を設けることで、図6の(d)に示す工程までは、上記引き込み用の電極を用いて行われてもよい。 Note that a series of operations (steps) from (d) in FIG. 6 to (e) in FIG. 6 are performed using the electrowetting operation of the electrode 13 as an AM electrode in these drawings. This operation does not necessarily have to be performed on the AM electrode. For example, by providing a lead-in electrode connected to the AM electrode in the active region 2 (AM electrode area), the steps up to the step shown in FIG. 6D can be performed using the lead-in electrode. Good.
 非導電性液体42は、上記方法でセル内に液滴40を注入した後で、上記エレクトロウェッティング装置1に別途設けられた図示しない第2液体注入口からセル内に注入される。なお、上述した手法でセル内に液滴40を注入する前に、図示しない第2液体注入口から、非導電性液体42を、流路30内を満たすように注入しても構わない。 The non-conductive liquid 42 is injected into the cell from a second liquid injection port (not shown) separately provided in the electrowetting device 1 after the droplet 40 is injected into the cell by the above method. Note that before injecting the droplet 40 into the cell by the above-described method, the non-conductive liquid 42 may be injected from a second liquid inlet (not shown) so as to fill the channel 30.
 図8の(a)は、本実施形態にかかるエレクトロウェッティング装置1内に液滴40が引き込まれる様子を示す斜視図であり、図8の(b)は、図8の(a)に示すエレクトロウェッティング装置1の要部の写真を示す図である。なお、図8の(a)・(b)と図19の(a)・(b)とは、同じ条件での比較結果を示している。 FIG. 8A is a perspective view illustrating a state in which the droplet 40 is drawn into the electrowetting device 1 according to the present embodiment, and FIG. 8B is illustrated in FIG. It is a figure which shows the photograph of the principal part of the electrowetting apparatus. 8A and 8B and FIG. 19A and FIG. 19B show the comparison results under the same conditions.
 図18の(a)~(c)および図19の(a)・(b)に示したように、従来は、図8の(a)・(b)と同様に貫通口25に液滴40を滴下しただけでは、エレクトロウェッティング装置内に液滴40が引き込まれない。特に、図18の(a)・(b)および図19の(a)・(b)に示すように、貫通口25から流路30内に至る経路における液滴40との接触面が全て疎水面である場合、貫通口25から液滴40がはじき出されてしまう。 As shown in FIGS. 18 (a) to 18 (c) and FIGS. 19 (a) and 19 (b), the droplets 40 are conventionally placed in the through-hole 25 as in FIGS. The liquid droplet 40 is not drawn into the electrowetting device by simply dropping the liquid. In particular, as shown in FIGS. 18 (a) and 18 (b) and FIGS. 19 (a) and 19 (b), the contact surface with the droplet 40 in the path from the through hole 25 into the flow path 30 is all hydrophobic. In the case of a surface, the droplet 40 is ejected from the through hole 25.
 しかしながら、本実施形態によれば、図19の(a)・(b)に示すように、特別な液滴(流体)注入機構を別途設けることなく、セル内への液滴40の注入が可能となった。 However, according to the present embodiment, as shown in FIGS. 19A and 19B, the droplet 40 can be injected into the cell without providing a special droplet (fluid) injection mechanism. It became.
 <用途>
 本実施形態にかかるエレクトロウェッティング装置1は、ユーザが貫通口25から当該エレクトロウェッティング装置1内に液滴40を注入する必要がある各種用途、例えば、分子核酸係数、流体粘度、pH、化学結合係数、酵素反応速度論等の、種々の測定装置、分析装置に、特に好適に使用することができる。また、エレクトロウェッティング装置1の他の適用例の一例としては、例えば、キャピラリー電気泳動法、等電点電気泳動法、免疫測定法、酵素測定法、フローサイトメトリー、質量分析法を介して分析されるタンパク質の試料注入、PCR増幅、DNA分析、細胞操作、細胞分離、細胞パターン形成、および化学勾配形成等が挙げられる。これらの適用例の多くは臨床診断法に対して有効である。
<Application>
The electrowetting device 1 according to the present embodiment is used for various applications in which the user needs to inject the droplet 40 into the electrowetting device 1 from the through hole 25, for example, molecular nucleic acid coefficient, fluid viscosity, pH, chemistry. It can be particularly suitably used for various measuring devices and analytical devices such as binding coefficient and enzyme reaction kinetics. Examples of other application examples of the electrowetting device 1 include, for example, analysis through capillary electrophoresis, isoelectric focusing, immunoassay, enzyme measurement, flow cytometry, and mass spectrometry. Protein sample injection, PCR amplification, DNA analysis, cell manipulation, cell separation, cell pattern formation, chemical gradient formation, and the like. Many of these applications are effective for clinical diagnostic methods.
 〔実施形態2〕
 本実施形態について、図9~図11に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態1との相違点について説明するものとし、実施形態1で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
[Embodiment 2]
The present embodiment will be described below with reference to FIGS. In the present embodiment, differences from the first embodiment will be described, and components having the same functions as those used in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. .
 <エレクトロウェッティング装置1の概略構成>
 図9は、本実施形態にかかるエレクトロウェッティング装置1の流体注入孔近傍の構成を拡大して示す断面図である。
<Schematic configuration of electrowetting device 1>
FIG. 9 is an enlarged cross-sectional view showing the configuration in the vicinity of the fluid injection hole of the electrowetting device 1 according to the present embodiment.
 図9に示すように、本実施形態にかかるエレクトロウェッティング装置1は、貫通口25の開口壁25aだけでなく、貫通口25から下部基板10との対向面(下面)に繋がる領域が親水面である点を除けば、実施形態1にかかるエレクトロウェッティング装置1と同じである。 As shown in FIG. 9, in the electrowetting device 1 according to the present embodiment, not only the opening wall 25a of the through hole 25 but also the region connected from the through hole 25 to the facing surface (lower surface) of the lower substrate 10 is a hydrophilic surface. Except for this point, it is the same as the electrowetting device 1 according to the first embodiment.
 すなわち、本実施形態にかかるエレクトロウェッティング装置1は、図9に示すように、上部基板20の貫通口25内および該上部基板20の下面における貫通口25の周囲の一定領域に、疎水層15・23よりも表面張力が高い親水層24が形成されている。 That is, as shown in FIG. 9, the electrowetting device 1 according to the present embodiment has a hydrophobic layer 15 in a certain area around the through hole 25 in the through hole 25 of the upper substrate 20 and on the lower surface of the upper substrate 20. -The hydrophilic layer 24 whose surface tension is higher than 23 is formed.
 上記上部基板20の下面における親水層24が形成された領域以外の領域で、液滴40・41が接触する領域には、疎水層23が形成されている。 A hydrophobic layer 23 is formed in a region other than the region where the hydrophilic layer 24 is formed on the lower surface of the upper substrate 20 and in a region where the droplets 40 and 41 are in contact with each other.
 上部基板20の下面における貫通口25の周囲の親水層24の形成領域は、平面視で、貫通口25を中心とした同心円状の領域である。 The formation region of the hydrophilic layer 24 around the through hole 25 on the lower surface of the upper substrate 20 is a concentric area centering on the through hole 25 in plan view.
 本実施形態では、上記貫通口25の開口径(g2、直径)よりも所定分だけ大きい直径(g3)の下部基板10に対向する面領域が、親水面となっている。 In the present embodiment, a surface area facing the lower substrate 10 having a diameter (g3) larger than the opening diameter (g2, diameter) of the through-hole 25 by a predetermined amount is a hydrophilic surface.
 <エレクトロウェッティング装置1の製造方法>
 エレクトロウェッティング装置1の製造方法は、上部基板20の製造工程を除けば、実施形態1にかかるエレクトロウェッティング装置1の製造方法と同じである。上記上部基板20の製造方法は、実施形態1にかかる上部基板20の製造方法とほぼ同じであるが、上部基板20の製造工程において、上述したように、上部基板20に最終的に形成される親水面を広げるための工程が新たに追加されている点で、実施形態1と異なっている。
<Method of manufacturing electrowetting device 1>
The manufacturing method of the electrowetting device 1 is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment except for the manufacturing process of the upper substrate 20. The manufacturing method of the upper substrate 20 is substantially the same as the manufacturing method of the upper substrate 20 according to the first embodiment. However, in the manufacturing process of the upper substrate 20, as described above, the upper substrate 20 is finally formed on the upper substrate 20. This is different from the first embodiment in that a process for expanding the hydrophilic surface is newly added.
 新たに追加される工程は、実施形態1において接着体60を形成する前のマザー基板61の導電膜形成面側の貫通口60aの形成位置を中心とした同心円状であって、形成予定の貫通口60aよりも所定分だけ大きい直径の領域を親水処理する工程である。 The newly added process is a concentric circle centering on the formation position of the through-hole 60a on the conductive film forming surface side of the mother substrate 61 before forming the adhesive body 60 in the first embodiment, and is a through-hole to be formed. In this step, a region having a diameter larger than the mouth 60a by a predetermined amount is subjected to hydrophilic treatment.
 本実施では、最初に、マザー基板61の導電膜形成面(すなわち、上部基板20の電極22の形成面となる、セル内に相当する面)における、貫通口60a(貫通口25)の形成予定領域を中心とする同心円状の領域に、該貫通口60a(貫通口25)の直径よりも大きな所定の直径を有する、平面視で円状のレジストパターン71a(図10の(c)参照)を設けておくことで、親水層24の形成領域を広げる。 In this embodiment, first, the through hole 60a (through hole 25) is scheduled to be formed on the conductive film forming surface of the mother substrate 61 (that is, the surface corresponding to the inside of the cell, which is the electrode 22 forming surface of the upper substrate 20). A circular resist pattern 71a (see FIG. 10C) having a predetermined diameter larger than the diameter of the through hole 60a (through hole 25) is formed in a concentric area centering on the area. By providing, the formation area of the hydrophilic layer 24 is expanded.
 以下に、図10の(a)~(c)を参照して、より具体的に説明する。 Hereinafter, a more specific description will be given with reference to (a) to (c) of FIG.
 図10の(a)~(c)は、最終的に電極22となる、マザー基板61の図示しないベタ状の導電膜上における、貫通口60aの形成予定領域(以下、「貫通口形成予定領域61a」と称する)を中心とした、直径g3(g3>g2)の同心円状の領域61bに、レジストパターン71aを形成する工程を示している。 10 (a) to 10 (c) show a region where the through hole 60a is to be formed on the solid conductive film (not shown) of the mother substrate 61 which will eventually become the electrode 22 (hereinafter referred to as “the through hole formation scheduled region”). This shows a step of forming a resist pattern 71a in a concentric region 61b having a diameter g3 (g3> g2) centering around 61a ”.
 まず、図10の(a)に示すように、最終的に電極22となる、マザー基板61の図示しない導電膜上に、レジスト層71を形成する。 First, as shown in FIG. 10A, a resist layer 71 is formed on a conductive film (not shown) of the mother substrate 61 that will eventually become the electrode 22.
 具体的には、感光性レジストからなるレジスト液を、形成されるレジスト層71の厚みが1μm未満となるように、マザー基板61の図示しない導電膜上に、スピンコートする。本実施形態では、上記レジスト液に、東京応化工業株式会社製のポジ型レジスト「TFR1000」(商品名)を所定の溶媒で希釈した希釈液を使用し、回転速度1000~2000rpm、温度110℃で、3分間、スピンコートを行った。 Specifically, a resist solution made of a photosensitive resist is spin-coated on a conductive film (not shown) of the mother substrate 61 so that the resist layer 71 to be formed has a thickness of less than 1 μm. In this embodiment, a dilute solution obtained by diluting a positive resist “TFR1000” (trade name) manufactured by Tokyo Ohka Kogyo Co., Ltd. with a predetermined solvent is used as the resist solution, and the rotational speed is 1000 to 2000 rpm and the temperature is 110 ° C. Spin coating was performed for 3 minutes.
 次に、図10の(b)に示すように、上記マザー基板61におけるレジスト層71の上面側から、該レジスト層71を、フォトマスク72を用いて、マザー基板61の図示しないベタ状の導電膜上における、貫通口形成予定領域61aを中心とした、直径g3の同心円状の領域61b以外の領域を露光する。露光には、i線(波長365nmの紫外線、強調条件:100mJ/cm)を用いた。 Next, as shown in FIG. 10B, from the upper surface side of the resist layer 71 in the mother substrate 61, the resist layer 71 is applied to the solid substrate (not shown) of the mother substrate 61 using a photomask 72. An area on the film other than the concentric area 61b having a diameter g3, which is centered on the through-hole formation scheduled area 61a, is exposed. For exposure, i-line (ultraviolet light having a wavelength of 365 nm, enhancement condition: 100 mJ / cm 2 ) was used.
 次いで、上記レジスト層71を現像することにより、露光されたレジスト層71を溶解除去した。現像には、現像剤として、2.38%に希釈されたTMAH(テトラメチルアンモニウムハイドロオキサイド)を使用し、室温で100分間行った。現像後のマザー基板61の洗浄には、リンス液または純水を使用した。 Next, by developing the resist layer 71, the exposed resist layer 71 was dissolved and removed. For development, TMAH (tetramethylammonium hydroxide) diluted to 2.38% was used as a developer, and the development was performed at room temperature for 100 minutes. A rinse solution or pure water was used for cleaning the mother substrate 61 after development.
 これにより、上記領域61bに、上記レジスト層71からなるレジストパターン71aを形成した。なお、ここでは、感光性レジストとしてポジ型レジストを用いた場合を例に挙げて説明したが、上記感光性レジストとしてネガ型レジストを用いてもよいことは言うまでもない。ネガ型レジストを用いた場合、露光された部分が硬化し、露光されていない部分が現像された際に除去される。このため、図10の(b)とは異なる形状のフォトマスク72が用いられる。 Thereby, a resist pattern 71a composed of the resist layer 71 was formed in the region 61b. Here, the case where a positive resist is used as the photosensitive resist has been described as an example, but it goes without saying that a negative resist may be used as the photosensitive resist. When a negative resist is used, the exposed portion is cured and removed when the unexposed portion is developed. For this reason, a photomask 72 having a shape different from that in FIG.
 このようにして、マザー基板61のベタ状の導電膜上における、貫通口形成予定領域61aを中心とした、直径g3の同心円状の領域61bにレジストパターン71aが形成されたマザー基板61を複数枚形成し、実施形態1と同様に、接着体60を形成する。 In this way, a plurality of mother substrates 61 in which a resist pattern 71a is formed in a concentric region 61b having a diameter g3 centering on the through-hole formation planned region 61a on the solid conductive film of the mother substrate 61 are provided. Then, as in the first embodiment, the adhesive body 60 is formed.
 その後、実施形態1における図4の(a)~(d)に示す処理と同じ処理を行うことで、貫通口60a内がレジスト層65Aで被覆されているとともに、チップ61Aの下面における、上記貫通口60aと上記領域61bとの間の領域61c(図10の(c)参照、貫通口形成予定領域61aに貫通口60aが形成され、この貫通口60aと領域61bとの間の領域61c)に、レジストパターン71aが形成されたチップ61Aが形成される。 Thereafter, by performing the same processing as that shown in FIGS. 4A to 4D in the first embodiment, the inside of the through hole 60a is covered with the resist layer 65A, and the above-described through hole is formed on the lower surface of the chip 61A. A region 61c between the mouth 60a and the region 61b (see FIG. 10C, a through-hole 60a is formed in the through-hole formation scheduled region 61a, and a region 61c between the through-hole 60a and the region 61b). Then, the chip 61A on which the resist pattern 71a is formed is formed.
 次いで、上記チップ61Aを用いて図5の(a)~(d)に示す処理と同様の処理を行うことで、図9に示すように、上部基板20の貫通口25内、および、該上部基板20の下面における、上記貫通口25の周囲の一定領域(すなわち、上記領域61cに対応する領域、具体的には、上記貫通口25を中心とする、上記貫通口25よりも直径が大きい同心円状の領域)に親水層24が形成された上部基板20を形成することができる。 Next, by performing the same processing as the processing shown in FIGS. 5A to 5D using the chip 61A, as shown in FIG. 9, the inside of the through hole 25 of the upper substrate 20 and the upper portion A constant region around the through hole 25 on the lower surface of the substrate 20 (that is, a region corresponding to the region 61c, specifically, a concentric circle having a diameter larger than that of the through hole 25 centered on the through hole 25). The upper substrate 20 in which the hydrophilic layer 24 is formed in the region) can be formed.
 その後、実施形態1と同様に上記上部基板20を下部基板10と貼り合わせることで、本実施形態にかかるエレクトロウェッティング装置1が製造される。 Thereafter, the upper substrate 20 is bonded to the lower substrate 10 in the same manner as in the first embodiment, whereby the electrowetting device 1 according to the present embodiment is manufactured.
 <液滴注入方法>
 図11の(a)~(e)は、本実施形態にかかるエレクトロウェッティング装置1内に液滴40が引き込まれる様子を順に示す断面図である。
<Droplet injection method>
(A) to (e) of FIG. 11 are cross-sectional views sequentially showing how the droplets 40 are drawn into the electrowetting device 1 according to the present embodiment.
 上記エレクトロウェッティング装置1に液滴40および非導電性液体42を注入する方法は、実施形態1と同じである。 The method for injecting the droplet 40 and the non-conductive liquid 42 into the electrowetting device 1 is the same as that in the first embodiment.
 しかしながら、本実施形態では、上述したように、上部基板20の下面における、上記貫通口25の周囲に親水層24が形成されていることで、図11の(a)に示すように、貫通口25内の親水層24によって自重で該貫通口25内に侵入した液滴40は、上記上部基板20の下面の親水層24に沿って濡れ広がる。このため、本実施形態によれば、図9および図11の(a)~(c)に示すように、上記貫通口25に滴下した液滴40が、より多くセル内に引き込まれ、下部基板10の表面に確実に接地(接触)するとともに、上記液滴40の上部基板20に対する接触面積(直径g3の円の面積に略等しい)および下部基板10への接触面積(接地面積)が大きくなる。 However, in this embodiment, as described above, the hydrophilic layer 24 is formed around the through hole 25 on the lower surface of the upper substrate 20, so that the through hole is formed as shown in FIG. The droplet 40 that has entered the through-hole 25 by its own weight due to the hydrophilic layer 24 in the layer 25 wets and spreads along the hydrophilic layer 24 on the lower surface of the upper substrate 20. Therefore, according to the present embodiment, as shown in FIGS. 9 and 11A to 11C, more droplets 40 dropped into the through hole 25 are drawn into the cell, and the lower substrate 10 is reliably grounded (contacted) with the surface of the substrate 10, and the contact area of the droplet 40 with the upper substrate 20 (approximately equal to the area of a circle with a diameter g3) and the contact area with the lower substrate 10 (grounding area) are increased. .
 このため、本実施形態によれば、実施形態1と同様の効果を得ることができるとともに、貫通口25に注入した液滴40が流路30内に侵入しないといった不具合の発生の抑制効果が高い。 For this reason, according to the present embodiment, the same effects as those of the first embodiment can be obtained, and the effect of suppressing the occurrence of a problem that the liquid droplet 40 injected into the through-hole 25 does not enter the flow path 30 is high. .
 なお、本実施形態では、上述したように、上部基板20の下面における貫通口25の周囲に親水層24を設け、上記上部基板20の下面で液滴40を積極的に濡れ広がらせることで、上述したように液滴40が、下部基板10の表面に確実に接地(接触)する。このため、本実施形態でも、液滴40および非導電性液体42に、実施形態1と同様の組み合わせを選択することができるが、必ずしも、非導電性液体42の比重<液滴40の比重の関係を有している必要はない。このため、本実施形態によれば、液滴40および非導電性液体42の組み合わせにかかる材料選択の自由度を向上させることができる。 In the present embodiment, as described above, the hydrophilic layer 24 is provided around the through hole 25 on the lower surface of the upper substrate 20, and the droplets 40 are actively wetted and spread on the lower surface of the upper substrate 20. As described above, the droplet 40 is reliably grounded (contacted) with the surface of the lower substrate 10. For this reason, in this embodiment, the same combination as in the first embodiment can be selected for the droplet 40 and the non-conductive liquid 42. However, the specific gravity of the non-conductive liquid 42 is less than the specific gravity of the droplet 40. There is no need to have a relationship. For this reason, according to this embodiment, the freedom degree of the material selection concerning the combination of the droplet 40 and the nonelectroconductive liquid 42 can be improved.
 〔実施形態3〕
 本実施形態について、図12および図13の(a)~(f)に基づいて説明すれば、以下の通りである。なお、本実施形態では、主に、実施形態1との相違点について説明するものとし、実施形態1で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
[Embodiment 3]
This embodiment will be described below with reference to FIGS. 12 and 13 (a) to (f). In the present embodiment, differences from the first embodiment will be mainly described, and components having the same functions as the components used in the first embodiment are denoted by the same reference numerals, and the description thereof will be given. Is omitted.
 <エレクトロウェッティング装置1の概略構成>
 図12は、本実施形態にかかるエレクトロウェッティング装置1の流体注入孔近傍の構成を拡大して示す断面図である。
<Schematic configuration of electrowetting device 1>
FIG. 12 is an enlarged cross-sectional view showing the configuration near the fluid injection hole of the electrowetting device 1 according to the present embodiment.
 図12に示すように、本実施形態にかかるエレクトロウェッティング装置1は、支持基板21が、疎水性基材からなる疎水性基板21Aであり、疎水性表面を有し、該疎水性基板21Aそのものが上部基板20の上面の疎水層である点を除けば、実施形態1にかかるエレクトロウェッティング装置1と同様の構成を有している。 As shown in FIG. 12, in the electrowetting device 1 according to the present embodiment, the support substrate 21 is a hydrophobic substrate 21A made of a hydrophobic base material, has a hydrophobic surface, and the hydrophobic substrate 21A itself. Is the same configuration as the electrowetting device 1 according to the first embodiment except that is a hydrophobic layer on the upper surface of the upper substrate 20.
 すなわち、本実施形態にかかるエレクトロウェッティング装置1は、上部基板20の上面、すなわち、支持基板21の上面に、別途、疎水処理が施されていない。つまり、支持基板21の上面に、疎水処理剤からなるコーティング層が形成されていない。このため、本実施形態では、支持基板21の上面に、疎水層23が設けられておらず、疎水層23は、上部基板20の下面(すなわち、セル内に位置する、上部基板20の電極22の形成面)にのみ設けられている。 That is, in the electrowetting device 1 according to this embodiment, the upper surface of the upper substrate 20, that is, the upper surface of the support substrate 21 is not separately subjected to hydrophobic treatment. That is, the coating layer made of the hydrophobic treatment agent is not formed on the upper surface of the support substrate 21. For this reason, in this embodiment, the hydrophobic layer 23 is not provided on the upper surface of the support substrate 21, and the hydrophobic layer 23 is provided on the lower surface of the upper substrate 20 (that is, the electrode 22 of the upper substrate 20 located in the cell). Are formed only on the formation surface).
 上記疎水性基材としては、例えば、プラスチック基材が好適に使用されるが、これに限定されるものではない。 As the hydrophobic base material, for example, a plastic base material is preferably used, but is not limited thereto.
 上記疎水性基板21Aは、液滴40の接触角θが80度以上、より好ましくは90度以上の疎水性基板が好ましく、例えば、水の接触角θが80度以上、より好ましくは90度以上の疎水性基板が挙げられる。 The hydrophobic substrate 21A is preferably a hydrophobic substrate having a contact angle θ of the droplet 40 of 80 degrees or more, more preferably 90 degrees or more. For example, the water contact angle θ is 80 degrees or more, more preferably 90 degrees or more. And a hydrophobic substrate.
 上記疎水性基板21Aに使用される疎水性基材としては、例えば、シリコンゴム、ポリテトラフロロエチレン、ポリプロピレン、ポリ四フッ化エチレン、ポリエチレン、ポリスチレン等のプラスチックからなるプラスチック基材が挙げられる。そのなかでも、例えば、シリコンゴム、ポリテトラフロロエチレン、ポリプロピレン、ポリ四フッ化エチレンが好ましい。 Examples of the hydrophobic base material used for the hydrophobic substrate 21A include plastic base materials made of plastics such as silicon rubber, polytetrafluoroethylene, polypropylene, polytetrafluoroethylene, polyethylene, and polystyrene. Among these, for example, silicon rubber, polytetrafluoroethylene, polypropylene, and polytetrafluoroethylene are preferable.
 以下に、一例として、上記プラスチック基材の20℃での水の接触角θおよび/または20℃での表面張力を示す。 Hereinafter, as an example, the contact angle θ of water at 20 ° C. and / or the surface tension at 20 ° C. of the plastic substrate is shown.
 シリコンゴム(接触角θ:90deg)、ポリテトラフロロエチレン(接触角θ:104deg)、ポリプロピレン(接触角θ:91deg、表面張力:31dyne/cm)、ポリ四フッ化エチレン(接触角θ:114deg、表面張力:18.5dyne/cm)、ポリエチレン(密度0.92の場合、接触角θ:81deg、表面張力:32dyne/cm)、ポリスチレン(接触角θ:84deg、表面張力:33dyne/cm)
 以下、本実施形態では、上記疎水性基板21Aを、樹脂の射出成型によって形成する場合を例に挙げて説明する。
Silicon rubber (contact angle θ: 90 deg), polytetrafluoroethylene (contact angle θ: 104 deg), polypropylene (contact angle θ: 91 deg, surface tension: 31 dyne / cm), polytetrafluoroethylene (contact angle θ: 114 deg) Surface tension: 18.5 dyne / cm), polyethylene (when density is 0.92, contact angle θ: 81 deg, surface tension: 32 dyne / cm), polystyrene (contact angle θ: 84 deg, surface tension: 33 dyne / cm)
Hereinafter, in this embodiment, the case where the hydrophobic substrate 21A is formed by resin injection molding will be described as an example.
 疎水性基板21Aを、樹脂の射出成型によって形成する場合、貫通口25を、疎水性基板21Aの成型と同時に形成することができる。本実施形態では、疎水性基板21Aとして、予め貫通口25が設けられているプラスチック基板を使用する。 When the hydrophobic substrate 21A is formed by resin injection molding, the through hole 25 can be formed simultaneously with the molding of the hydrophobic substrate 21A. In the present embodiment, a plastic substrate having a through hole 25 provided in advance is used as the hydrophobic substrate 21A.
 <エレクトロウェッティング装置1の製造方法>
 本実施形態にかかるエレクトロウェッティング装置1の製造方法は、上部基板20の製造工程を除けば、実施形態1にかかるエレクトロウェッティング装置1の製造方法と同じである。そこで、以下では、上記上部基板20の製造方法についてのみ説明する。
<Method of manufacturing electrowetting device 1>
The manufacturing method of the electrowetting device 1 according to the present embodiment is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment, except for the manufacturing process of the upper substrate 20. Therefore, only the method for manufacturing the upper substrate 20 will be described below.
 図13の(a)~(f)は、本実施形態にかかるエレクトロウェッティング装置1における上部基板20の製造工程の一例を工程順に示す図である。 FIGS. 13A to 13F are diagrams showing an example of the manufacturing process of the upper substrate 20 in the electrowetting apparatus 1 according to the present embodiment in the order of processes.
 本実施形態では、まず、図13の(a)に示すように、支持基板21として、射出成型により、所定の貫通口25が設けられた、樹脂(プラスチック)製の疎水性基板21Aを形成する。なお、本実施形態では、上記疎水性基板21Aとして、材質自体の表面張力が低い、ポリプロピレン樹脂からなる穴開き基板を形成した。 In this embodiment, first, as shown in FIG. 13A, a resin (plastic) hydrophobic substrate 21 </ b> A provided with a predetermined through-hole 25 is formed by injection molding as the support substrate 21. . In the present embodiment, a perforated substrate made of polypropylene resin having a low surface tension of the material itself is formed as the hydrophobic substrate 21A.
 次いで、図13の(b)に示すように、上記疎水性基板21Aにおける一方の面(セル内部側に配置する面)上に、電極22を形成する。 Next, as shown in FIG. 13B, the electrode 22 is formed on one surface (surface disposed on the cell inner side) of the hydrophobic substrate 21A.
 例えば、上記疎水性基板21Aにおける上記一方の面上に、ナガセケムテックス株式会社製の塗布型電極材料である「デナトロン」(登録商標)を、スクリーン印刷によりベタ状に印刷することで、電極22を形成する。 For example, “Denatron” (registered trademark), which is a coating-type electrode material manufactured by Nagase ChemteX Corporation, is printed on the one surface of the hydrophobic substrate 21A in a solid shape by screen printing. Form.
 その後、図13の(c)に示すように、ディップコーティング法により、上記電極22が形成された疎水性基板21Aの表面全面に親水層24を形成する。 Thereafter, as shown in FIG. 13C, a hydrophilic layer 24 is formed on the entire surface of the hydrophobic substrate 21A on which the electrode 22 is formed by a dip coating method.
 具体的には、上記電極22が形成された疎水性基板21Aを、水溶性感光性樹脂塗布型の親水化コーティング材料である例えば「BIOSURFINE(登録商標)-AWP」(東洋合成工業株式会社製)の水溶液に浸漬し、全体をディップコートすることで、上記親水層24を形成する。 Specifically, the hydrophobic substrate 21A on which the electrode 22 is formed is a water-soluble photosensitive resin-coated hydrophilic coating material such as “BIOSURFINE (registered trademark) -AWP” (manufactured by Toyo Gosei Co., Ltd.). The hydrophilic layer 24 is formed by dipping the whole in an aqueous solution and dip-coating the whole.
 次いで、図13の(d)に示すように、上記貫通口25以外の部分を遮光するフォトマスク72で、上記疎水性基板21Aをマスキングし、上記貫通口25に紫外線を照射して上記貫通口25内の親水化コーティング材料(親水層24)をゲル化する。 Next, as shown in FIG. 13D, the hydrophobic substrate 21 </ b> A is masked with a photomask 72 that shields light other than the through-hole 25, and the through-hole 25 is irradiated with ultraviolet rays to irradiate the through-hole. The hydrophilized coating material (hydrophilic layer 24) in 25 is gelled.
 その後、図13の(e)に示すように、上記疎水性基板21Aを水で洗浄し、ゲル化していないコーティング部分(親水層24)を溶解して剥離する。これにより、貫通口25内にのみ、ゲル状の親水層24が残存する。 Thereafter, as shown in FIG. 13 (e), the hydrophobic substrate 21A is washed with water, and the non-gelled coating portion (hydrophilic layer 24) is dissolved and peeled off. Thereby, the gel-like hydrophilic layer 24 remains only in the through hole 25.
 最後に、疎水処理を行うことで、図13の(f)に示すように、上記貫通口25内に親水層24が設けられた疎水性基板21Aにおける電極22の形成面(すなわち、セル内側の面となる電極面)上に、疎水層23を形成する。 Finally, by performing hydrophobic treatment, as shown in FIG. 13 (f), the surface on which the electrode 22 is formed on the hydrophobic substrate 21A in which the hydrophilic layer 24 is provided in the through hole 25 (that is, inside the cell). The hydrophobic layer 23 is formed on the electrode surface).
 なお、本実施形態では、疎水処理剤に、パーフルオロアモルファス樹脂であるAGC旭硝子株式会社製の「サイトップ(登録商標)-CTL809A」の1wt%希釈液を使用し、上記疎水処理剤を、上記疎水性基板21Aにおける電極22の形成面上にスリットコーターによりコーティングすることで、上記電極面上のみに、50nm厚の疎水層23(サイトップ膜)を形成した。 In this embodiment, a 1 wt% diluted solution of “Cytop (registered trademark) -CTL809A” manufactured by AGC Asahi Glass Co., Ltd., which is a perfluoroamorphous resin, is used as the hydrophobic treatment agent. By coating the surface of the hydrophobic substrate 21A on which the electrode 22 is formed with a slit coater, a hydrophobic layer 23 (Cytop film) having a thickness of 50 nm is formed only on the electrode surface.
 本実施形態によれば、上記プロセスにより、貫通口25内のみに親水化コーティング材料のゲル化層からなる親水層24が形成され、液滴40が素早く貫通口25内に取り込まれるだけではなく、上記ゲル化層に水分が優先的に吸着することによって、検体や試薬の流体(液滴)内に含まれる電解質や溶質成分が、直接上記疎水性基板21Aに吸着されることを、防ぐことができる。 According to the present embodiment, the process described above forms the hydrophilic layer 24 composed of a gelled layer of the hydrophilic coating material only in the through-hole 25, and not only the droplet 40 is quickly taken into the through-hole 25, By preferentially adsorbing moisture to the gelled layer, it is possible to prevent the electrolyte and solute components contained in the fluid (droplet) of the specimen or reagent from being directly adsorbed to the hydrophobic substrate 21A. it can.
 また、本実施形態によれば、上述したように、支持基板21が、疎水性基板21Aであり、支持基板21自体が疎水性(撥水)を有していることで、上部基板20の上面(セルの外側に向く面)を疎水化する工程が不要となる。このため、プロセス全体が簡易となる。 Further, according to the present embodiment, as described above, the support substrate 21 is the hydrophobic substrate 21A, and the support substrate 21 itself has hydrophobicity (water repellency). The step of hydrophobizing (the surface facing the outside of the cell) becomes unnecessary. This simplifies the entire process.
 また、上述したように、本実施形態では、射出成型により、支持基板21の成型時に貫通口25を形成することで、成型された疎水性基板21Aは、最初から貫通口25を有している。このため、本実施形態によれば、上記疎水性基板21Aを支持基板21として使用することで、後から貫通口25を形成する必要がない。したがって、穴開け工程(貫通口形成工程)が不要であり、その分、工程数を削減することができる。 Further, as described above, in this embodiment, the molded hydrophobic substrate 21A has the through-hole 25 from the beginning by forming the through-hole 25 at the time of molding the support substrate 21 by injection molding. . For this reason, according to this embodiment, by using the hydrophobic substrate 21 </ b> A as the support substrate 21, it is not necessary to form the through hole 25 later. Therefore, the hole making process (through hole forming process) is unnecessary, and the number of processes can be reduced correspondingly.
 但し、本実施形態は、これに限定されるものではなく、疎水性基材からなる板状の支持基板21に貫通口25を形成することで図9に示す構造を有するエレクトロウェッティング装置1を製造してもよいことは、言うまでもない。 However, the present embodiment is not limited to this, and the electrowetting device 1 having the structure shown in FIG. 9 is formed by forming the through hole 25 in the plate-like support substrate 21 made of a hydrophobic base material. Needless to say, it may be manufactured.
 〔実施形態4〕
 本実施形態について、図14に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態3との相違点について説明するものとし、実施形態3で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
[Embodiment 4]
This embodiment will be described below with reference to FIG. In the present embodiment, differences from the third embodiment will be described. Components having the same functions as those used in the third embodiment are denoted by the same reference numerals, and description thereof is omitted. .
 <エレクトロウェッティング装置1の概略構成>
 図14は、本実施形態にかかるエレクトロウェッティング装置1の流体注入孔近傍の構成を拡大して示す断面図である。
<Schematic configuration of electrowetting device 1>
FIG. 14 is an enlarged cross-sectional view showing the configuration in the vicinity of the fluid injection hole of the electrowetting device 1 according to the present embodiment.
 図14に示すように、本実施形態にかかるエレクトロウェッティング装置1は、実施形態2にかかるエレクトロウェッティング装置1と同様に、貫通口25の開口壁25aだけでなく、貫通口25aから下部基板10との対向面(下面)に繋がる領域が親水面である点を除けば、実施形態3にかかるエレクトロウェッティング装置1と同じである。 As shown in FIG. 14, the electrowetting device 1 according to the present embodiment is not limited to the opening wall 25a of the through-hole 25 but also from the through-hole 25a to the lower substrate, similarly to the electrowetting device 1 according to the second embodiment. 10 is the same as the electrowetting device 1 according to the third embodiment except that the region connected to the facing surface (lower surface) 10 is a hydrophilic surface.
 すなわち、本実施形態にかかるエレクトロウェッティング装置1は、図14に示すように、上部基板20の貫通口25内および該上部基板20の下面(すなわち、セル内に位置する、上部基板20の電極22の形成面)における貫通口25の周囲の一定領域に、疎水層15・23よりも表面張力が高い親水層24が形成されている。 That is, as shown in FIG. 14, the electrowetting device 1 according to the present embodiment includes an electrode of the upper substrate 20 located in the through hole 25 of the upper substrate 20 and the lower surface of the upper substrate 20 (that is, in the cell). The hydrophilic layer 24 having a surface tension higher than that of the hydrophobic layers 15 and 23 is formed in a certain region around the through-hole 25 in the surface 22).
 本実施形態にかかるエレクトロウェッティング装置1は、実施形態3にかかるエレクトロウェッティング装置1同様、支持基板21が、疎水性基材からなる疎水性基板21Aであり、疎水性表面を有し、該疎水性基板21Aそのものが上部基板20の上面の疎水層である。 In the electrowetting device 1 according to the present embodiment, like the electrowetting device 1 according to the third embodiment, the support substrate 21 is a hydrophobic substrate 21A made of a hydrophobic base material, and has a hydrophobic surface. The hydrophobic substrate 21 </ b> A itself is a hydrophobic layer on the upper surface of the upper substrate 20.
 このため、支持基板21の上面に、疎水層23は設けられておらず、疎水層23は、上部基板20の下面における親水層24が形成された領域以外の領域で、液滴40・41が接触する領域に形成されている。 For this reason, the hydrophobic layer 23 is not provided on the upper surface of the support substrate 21, and the hydrophobic layer 23 is a region other than the region where the hydrophilic layer 24 is formed on the lower surface of the upper substrate 20. It is formed in the contact area.
 本実施形態でも、実施形態2同様、上部基板20の下面における貫通口25の周囲の親水層24の形成領域は、平面視で、貫通口25を中心とした同心円状の領域であり、上記貫通口25の開口径(g2、直径)よりも所定分だけ大きい直径(g3)の下部基板10に対向する面領域が、親水面となっている。 Also in the present embodiment, as in the second embodiment, the formation region of the hydrophilic layer 24 around the through hole 25 on the lower surface of the upper substrate 20 is a concentric area centering on the through hole 25 in plan view. A surface region facing the lower substrate 10 having a diameter (g3) larger by a predetermined amount than the opening diameter (g2, diameter) of the mouth 25 is a hydrophilic surface.
 <エレクトロウェッティング装置1の製造方法>
 本実施形態にかかるエレクトロウェッティング装置1の製造方法は、上部基板20の製造工程を除けば、実施形態1にかかるエレクトロウェッティング装置1の製造方法と同じである。そこで、以下では、上記上部基板20の製造方法についてのみ説明する。
<Method of manufacturing electrowetting device 1>
The manufacturing method of the electrowetting device 1 according to the present embodiment is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment, except for the manufacturing process of the upper substrate 20. Therefore, only the method for manufacturing the upper substrate 20 will be described below.
 本実施形態にかかるエレクトロウェッティング装置1における上部基板20は、例えば、実施形態2および実施形態3に記載の方法を組み合わせることで容易に製造することができる。このため、本実施形態では、製造工程の図示を省略する。 The upper substrate 20 in the electrowetting device 1 according to the present embodiment can be easily manufactured by combining, for example, the methods described in the second and third embodiments. For this reason, in this embodiment, illustration of a manufacturing process is abbreviate | omitted.
 以下に、上記上部基板20の製造方法の一例について説明する。 Hereinafter, an example of a method for manufacturing the upper substrate 20 will be described.
 まず、電極22が設けられた疎水性基板21Aとして、例えば、ITO膜が、一方の主面全面にベタ状に設けられた所定サイズの厚み0.7mmのガラス基板を使用し、図10の(a)~(c)に示す工程と同様にして、上記疎水性基板21Aにおける、電極22の形成面に、貫通口25の形成予定領域を中心とした、直径g3の同心円状の領域に、レジストパターン71aを形成する。 First, as the hydrophobic substrate 21A provided with the electrodes 22, for example, a glass substrate having a thickness of 0.7 mm having a predetermined size in which an ITO film is provided in a solid form on the entire main surface is used as shown in FIG. In the same manner as the steps shown in a) to (c), a resist is formed on a concentric region having a diameter g3 centering on a region where the through hole 25 is to be formed on the surface on which the electrode 22 is formed in the hydrophobic substrate 21A. A pattern 71a is formed.
 続いて、例えば図13の(f)で示す工程と同様に、例えば疎水処理剤としてパーフルオロアモルファス樹脂であるAGC旭硝子株式会社製の「サイトップ(登録商標)-CTL809A」の1wt%希釈液を使用し、上記疎水処理剤を、上記疎水性基板21Aにおける電極22の形成面上にスリットコーターによりコーティングすることで、上記レジストパターン71aおよび電極22上に、例えば50nm厚の疎水層23(サイトップ膜)を形成する。 Subsequently, for example, similarly to the step shown in FIG. 13 (f), a 1 wt% diluted solution of “CYTOP (registered trademark) -CTL809A” manufactured by AGC Asahi Glass Co., Ltd., which is a perfluoroamorphous resin as a hydrophobic treatment agent, is used. The hydrophobic treatment agent is coated on the surface of the hydrophobic substrate 21A on which the electrode 22 is formed by a slit coater, so that the hydrophobic layer 23 (cytotop, for example, having a thickness of 50 nm is formed on the resist pattern 71a and the electrode 22. Film).
 その後、実施形態2と同様にして、上記レジストパターン71aおよび該レジストパターン71a上の疎水層23を剥離する。具体的には、例えば、図5の(c)に示す工程と同様に、林純薬工業株式会社製「SPX」(商品名、2-アミノエタノール)中に、上記疎水層23が形成された支持基板21を浸漬し、室温で5分間超音波をかけることにより、上記レジストパターン71aおよび該レジストパターン71a上の疎水層23を剥離する。これにより、上記疎水性基板21Aの下面における貫通口25の形成予定領域およびその周囲の電極22の表面を、部分的に露出させる。 Thereafter, the resist pattern 71a and the hydrophobic layer 23 on the resist pattern 71a are removed in the same manner as in the second embodiment. Specifically, for example, the hydrophobic layer 23 is formed in “SPX” (trade name, 2-aminoethanol) manufactured by Hayashi Junyaku Kogyo Co., Ltd. in the same manner as in the step shown in FIG. The support substrate 21 is immersed, and ultrasonic waves are applied for 5 minutes at room temperature, whereby the resist pattern 71a and the hydrophobic layer 23 on the resist pattern 71a are peeled off. As a result, the region where the through hole 25 is to be formed on the lower surface of the hydrophobic substrate 21A and the surface of the electrode 22 around it are partially exposed.
 その後、上記疎水性基板21Aに、例えばガラス専用精密ドリルもしくはレーザドリルを用いて、所定の開口径g2を有する貫通口25を形成する。 Thereafter, the through hole 25 having a predetermined opening diameter g2 is formed on the hydrophobic substrate 21A using, for example, a precision drill or a laser drill dedicated to glass.
 続いて、図13の(c)に示す工程と同様に、例えば、水溶性感光性樹脂塗布型の親水化コーティング材料である「BIOSURFINE(登録商標)-AWP」(東洋合成工業株式会社製)の水溶液に、上記疎水性基板21Aを浸漬し、全体をディップコートすることで、上記貫通口25の内部を含む上記疎水性基板21Aの表面全面に親水層24を形成する。 Subsequently, as in the step shown in FIG. 13C, for example, “BIOSURFINE (registered trademark) -AWP” (manufactured by Toyo Gosei Co., Ltd.), which is a water-soluble photosensitive resin-coated hydrophilic coating material. By immersing the hydrophobic substrate 21A in an aqueous solution and dip-coating the whole, the hydrophilic layer 24 is formed on the entire surface of the hydrophobic substrate 21A including the inside of the through hole 25.
 次いで、図13の(d)に示す工程において、フォトマスク72として、上記疎水性基板21Aの下面の疎水層23が形成された領域を遮光するフォトマスクを使用し、該フォトマスク72で、上記疎水性基板21Aをマスキングし、該疎水性基板21Aにおける電極22の形成面側から、上記貫通口25および該貫通口25を中心とした直径g3の同心円状の領域に紫外線を照射する。これにより、上記貫通口25内および上記貫通口25を中心とした直径g3の同心円状の領域の親水化コーティング材料(親水層24)をゲル化する。 Next, in the step shown in FIG. 13D, a photomask that shields the region where the hydrophobic layer 23 is formed on the lower surface of the hydrophobic substrate 21A is used as the photomask 72. The hydrophobic substrate 21A is masked, and ultraviolet rays are irradiated from the surface of the hydrophobic substrate 21A on which the electrode 22 is formed to the through hole 25 and a concentric area having a diameter g3 with the through hole 25 as the center. As a result, the hydrophilic coating material (hydrophilic layer 24) in the concentric region having a diameter g3 centered on the through hole 25 and in the through hole 25 is gelled.
 その後、図13の(e)に示す工程と同様に、上記疎水性基板21Aを水で洗浄し、ゲル化していないコーティング部分(親水層24)を溶解して剥離する。これにより、上記貫通口25内および上記疎水性基板21Aにおける電極22の形成面側の貫通口25を中心とした直径g3の同心円状の領域にのみ、ゲル状の親水層24が残存する。 Thereafter, similarly to the step shown in FIG. 13 (e), the hydrophobic substrate 21A is washed with water, and the non-gelled coating portion (hydrophilic layer 24) is dissolved and peeled off. As a result, the gel-like hydrophilic layer 24 remains only in the concentric region having a diameter g3 with the through-hole 25 and the through-hole 25 on the surface where the electrode 22 is formed in the hydrophobic substrate 21A as the center.
 本実施形態によれば、上述したように、上部基板20の下面における、上記貫通口25の周囲に親水層24が形成されていることで、実施形態2と同様の効果を得ることができる。 According to the present embodiment, as described above, since the hydrophilic layer 24 is formed around the through hole 25 on the lower surface of the upper substrate 20, the same effect as in the second embodiment can be obtained.
 また、上記のプロセスによれば、上記貫通口25内および上部基板20の下面の貫通口25を中心とした直径g3の同心円状の領域に親水化コーティング材料のゲル化層からなる親水層24が形成されていることで、実施形態3と同様の効果を得ることができる。 Further, according to the above process, the hydrophilic layer 24 made of a gelling layer of a hydrophilic coating material is formed in a concentric region having a diameter g3 around the through hole 25 and the through hole 25 on the lower surface of the upper substrate 20. By being formed, the same effect as in the third embodiment can be obtained.
 また、本実施形態によれば、支持基板21が、疎水性基板21Aであり、支持基板21自体が疎水性(撥水)を有していることで、上部基板20の上面(セルの外側に向く面)を疎水化する工程が不要となる。このため、例えば実施例2と比較して、プロセスを簡易化することができる。 Further, according to the present embodiment, the support substrate 21 is the hydrophobic substrate 21A, and the support substrate 21 itself has hydrophobicity (water repellency), so that the upper surface of the upper substrate 20 (on the outside of the cell). The process of hydrophobizing the facing surface) becomes unnecessary. For this reason, compared with Example 2, for example, a process can be simplified.
 〔実施形態5〕
 本実施形態について、図15および図16に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態1との相違点について説明するものとし、実施形態1で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
[Embodiment 5]
The present embodiment will be described below with reference to FIGS. 15 and 16. In the present embodiment, differences from the first embodiment will be described, and components having the same functions as those used in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. .
 <エレクトロウェッティング装置1の概略構成>
 図15は、本実施形態にかかるエレクトロウェッティング装置1の流体注入孔近傍の構成を拡大して示す断面図である。
<Schematic configuration of electrowetting device 1>
FIG. 15 is an enlarged cross-sectional view showing a configuration near the fluid injection hole of the electrowetting device 1 according to the present embodiment.
 本実施形態にかかるエレクトロウェッティング装置1は、図15に示すように、上部基板20が以下の構成を有していることを除けば、実施形態1にかかるエレクトロウェッティング装置1と同様の構成を有している。 As shown in FIG. 15, the electrowetting device 1 according to the present embodiment has the same configuration as the electrowetting device 1 according to the first embodiment except that the upper substrate 20 has the following configuration. have.
 本実施形態では、上部基板20に、支持基板21の上面を疎水処理することで支持基板21の上面に疎水層23を形成する代わりに、支持基板21上に、疎水性基材からなる上面基板26が設けられている。 In the present embodiment, instead of forming the hydrophobic layer 23 on the upper surface of the support substrate 21 by subjecting the upper surface of the upper substrate 20 to hydrophobic treatment, the upper substrate made of a hydrophobic base material is formed on the support substrate 21. 26 is provided.
 すなわち、本実施形態にかかる上部基板20は、支持基板21の下面側に、電極22と、該電極22を覆う疎水層23とを有し、支持基板21の上面側の表面に、疎水層として、疎水性基材からなる上面基板26を有し、貫通口25内の支持基板21の表面に、親水層24を有している。 That is, the upper substrate 20 according to the present embodiment has an electrode 22 on the lower surface side of the support substrate 21 and a hydrophobic layer 23 covering the electrode 22, and a hydrophobic layer on the surface on the upper surface side of the support substrate 21. The upper substrate 26 is made of a hydrophobic base material, and the hydrophilic layer 24 is provided on the surface of the support substrate 21 in the through hole 25.
 なお、支持基板21の上面と上面基板26との間、並びに、支持基板21の側面には、支持基板21に親水処理を施すことで、図15に示すように、親水層24が形成されていてもよい。 Note that a hydrophilic layer 24 is formed between the upper surface of the support substrate 21 and the upper substrate 26 and on the side surfaces of the support substrate 21 by performing hydrophilic treatment on the support substrate 21 as shown in FIG. May be.
 本実施形態では、上記したように上部基板20が上記上面基板26を備えていることで、上記上面基板26が設けられた上部基板20を上下方向に貫通するように貫通口25が設けられている。したがって、上記上面基板26には、貫通口25として、該貫通口25の一部である貫通口25Aが設けられている。 In the present embodiment, since the upper substrate 20 includes the upper surface substrate 26 as described above, the through hole 25 is provided so as to penetrate the upper substrate 20 provided with the upper surface substrate 26 in the vertical direction. Yes. Therefore, the upper surface substrate 26 is provided with a through hole 25 </ b> A that is a part of the through hole 25 as the through hole 25.
 貫通口25における上面基板26の開口壁26aは、支持基板21側ほど開口径が小さくなる逆テーパ形状を有するように傾斜して形成されている。 The opening wall 26a of the upper surface substrate 26 in the through hole 25 is formed to be inclined so as to have an inversely tapered shape in which the opening diameter becomes smaller toward the support substrate 21 side.
 すなわち、実施形態1同様、支持基板21の開口径(直径)をg2とすると、上面基板26の下端の開口径(直径)はg2であり、上面基板26の上端の開口径(直径)は、g2よりも大きく形成されている。なお、図15では、他の実施形態と同様に、各層を強調して示しているため、親水層24が他の層よりも突出して記載されているが、親水層24は、親水性処理剤を用いた表面処理によって形成されており、各層の端面は、ほぼ面一に形成されている。 That is, as in the first embodiment, when the opening diameter (diameter) of the support substrate 21 is g2, the opening diameter (diameter) at the lower end of the upper substrate 26 is g2, and the opening diameter (diameter) at the upper end of the upper substrate 26 is It is formed larger than g2. In addition, in FIG. 15, since each layer is emphasized and shown similarly to other embodiment, the hydrophilic layer 24 is protruded from the other layers, but the hydrophilic layer 24 is a hydrophilic treatment agent. The end surface of each layer is formed to be substantially flush with each other.
 上記貫通口25における上面基板26の開口壁26aは、該開口壁26aの勾配(開口壁26aと上面基板26の法線方向とがなす角度)をθ’とし、該開口壁26aに対する液滴40の接触角(20℃での接触角)をθとすると、θ’=θ-90度となるように形成されていることが好ましい。上記開口壁26aが、上述したように逆テーパ形状を有していることで、上記貫通口25内に液滴40を注入し易くなる。また、上記開口壁26aが上記勾配を有していることで、上記貫通口25に適量の液滴40を垂らすだけで、上記貫通口25内における、親水層24で囲まれた領域(親水層24の形成領域)に液滴40が侵入し易くなる。このため、貫通口25から注入した液滴40を、下部基板10の表面(すなわち、疎水層23で覆われた誘電体層14の表面)に、より確実に接触させることができる。 The opening wall 26a of the upper surface substrate 26 in the through hole 25 has a gradient of the opening wall 26a (an angle formed between the opening wall 26a and the normal direction of the upper surface substrate 26) as θ ′, and the droplet 40 with respect to the opening wall 26a. The contact angle (contact angle at 20 ° C.) is preferably θ ′ = θ−90 degrees. Since the opening wall 26a has the inversely tapered shape as described above, the droplet 40 can be easily injected into the through-hole 25. In addition, since the opening wall 26a has the gradient, a region surrounded by the hydrophilic layer 24 (hydrophilic layer) in the through-hole 25 can be obtained simply by dropping an appropriate amount of the droplet 40 into the through-hole 25. 24), the droplet 40 is likely to enter. For this reason, the droplet 40 injected from the through-hole 25 can be brought into more reliable contact with the surface of the lower substrate 10 (that is, the surface of the dielectric layer 14 covered with the hydrophobic layer 23).
 上記上面基板26に用いられる疎水性基材としては、実施形態3における疎水性基板21Aに使用される疎水性基材と同様の基材を用いることができる。 As the hydrophobic base material used for the upper substrate 26, a base material similar to the hydrophobic base material used for the hydrophobic substrate 21A in the third embodiment can be used.
 上面基板26もまた、疎水性基板21A同様、液滴40の接触角θが80度以上、より好ましくは90度以上の疎水性基板であることが好ましく、このような疎水性基板としては、例えば、水の接触角θが80度以上、より好ましくは90度以上の疎水性基板が挙げられる。 Similarly to the hydrophobic substrate 21A, the top substrate 26 is also preferably a hydrophobic substrate having a contact angle θ of the droplet 40 of 80 degrees or more, more preferably 90 degrees or more. Examples of such a hydrophobic substrate include: Further, a hydrophobic substrate having a water contact angle θ of 80 degrees or more, more preferably 90 degrees or more can be mentioned.
 上記上面基板26に、射出成型によって形成される樹脂(プラスチック)製の穴開き基板を使用することで、疎水性基板21A同様、上面基板26に後から別途貫通口25を形成する必要がなくなり、プロセスを簡略化することができる。 By using a perforated substrate made of resin (plastic) formed by injection molding for the upper surface substrate 26, it is not necessary to separately form a through-hole 25 later on the upper surface substrate 26, like the hydrophobic substrate 21A. The process can be simplified.
 <エレクトロウェッティング装置1の製造方法>
 本実施形態にかかるエレクトロウェッティング装置1の製造方法は、上部基板20の製造工程を除けば、実施形態1にかかるエレクトロウェッティング装置1の製造方法と同じである。そこで、以下では、上記上部基板20の製造方法についてのみ説明する。
<Method of manufacturing electrowetting device 1>
The manufacturing method of the electrowetting device 1 according to the present embodiment is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment, except for the manufacturing process of the upper substrate 20. Therefore, only the method for manufacturing the upper substrate 20 will be described below.
 図16の(a)~(f)は、本実施形態にかかるエレクトロウェッティング装置1における上部基板20の製造工程の一例を工程順に示す図である。 FIGS. 16A to 16F are views showing an example of the manufacturing process of the upper substrate 20 in the electrowetting apparatus 1 according to the present embodiment in the order of processes.
 まず、図16の(a)に示すように、電極22が設けられた支持基板21として、例えば、ITO膜が、一方の主面全面にベタ状に設けられた所定サイズの厚み0.7mmのガラス基板を準備する。 First, as shown in FIG. 16A, as the support substrate 21 provided with the electrodes 22, for example, an ITO film is provided in a solid shape on the entire surface of one main surface and has a predetermined size of 0.7 mm in thickness. Prepare a glass substrate.
 次いで、上記支持基板21における電極22の形成面(すなわち、セル内側の面となる電極面)に、疎水処理剤として、例えば、パーフルオロアモルファス樹脂であるAGC旭硝子株式会社製の「サイトップ(登録商標)-CTL809A」の1wt%希釈液を、例えば回転速度3000rpmで20秒間スピンコートする。これにより、図16の(b)に示すように、上記電極面上に、例えば50nm厚の疎水層23(サイトップ膜)を形成する。 Next, on the surface of the support substrate 21 where the electrode 22 is formed (that is, the electrode surface that is the inner surface of the cell), as a hydrophobic treatment agent, for example, “Cytop (registered) manufactured by AGC Asahi Glass Co., Ltd., which is a perfluoroamorphous resin. A 1 wt% diluted solution of “trademark) -CTL809A” is spin-coated at, for example, a rotation speed of 3000 rpm for 20 seconds. Thereby, as shown in FIG. 16B, a hydrophobic layer 23 (Cytop film) having a thickness of 50 nm, for example, is formed on the electrode surface.
 その後、図16の(c)に示すように、上記疎水層23が形成された支持基板21の所定位置に、例えばレーザドリルにより、最終的に上部基板20の貫通口25の一部となる、所定サイズ(開口径g2)、所定個数の貫通口25Aを形成する。 After that, as shown in FIG. 16C, a predetermined position of the support substrate 21 on which the hydrophobic layer 23 is formed is finally formed into a part of the through hole 25 of the upper substrate 20 by, for example, a laser drill. A predetermined size (opening diameter g2) and a predetermined number of through holes 25A are formed.
 次いで、上記貫通口25が形成された支持基板21を、例えば親水性処理剤に浸漬する。本実施形態では、例えば、上記親水性処理剤として、末端シラノール基を有するベタイン基含有親水性ポリマー(大阪有機化学工業株式会社製「LAMBIC-500WP」、商品名)を、所定粘度となるように水で希釈調整した親水性ポリマー水溶液を使用し、該親水性ポリマー水溶液に、上記貫通口25Aが形成された支持基板21を浸漬した。 Next, the support substrate 21 in which the through hole 25 is formed is immersed in, for example, a hydrophilic treatment agent. In the present embodiment, for example, a betaine group-containing hydrophilic polymer having a terminal silanol group (“LAMBIC-500WP”, trade name) manufactured by Osaka Organic Chemical Industry Co., Ltd.) is used as the hydrophilic treatment agent so as to have a predetermined viscosity. A hydrophilic polymer aqueous solution diluted with water was used, and the support substrate 21 having the through-holes 25A formed therein was immersed in the hydrophilic polymer aqueous solution.
 親水性処理剤は、疎水面にはコーティングされない。このため、上記処理を行うことで、上記支持基板21における、疎水層23が形成されていない領域のみが親水コートされる。したがって、上記処理を行うことで、図16の(d)に示すように、上記支持基板21における、疎水層23の形成領域を除く領域に、親水層24が形成される。 Hydrophilic treatment agent is not coated on the hydrophobic surface. For this reason, only the area | region in which the hydrophobic layer 23 is not formed in the said support substrate 21 is hydrophilic-coated by performing the said process. Therefore, by performing the above processing, as shown in FIG. 16D, a hydrophilic layer 24 is formed in a region of the support substrate 21 excluding the region where the hydrophobic layer 23 is formed.
 一方、図16の(a)~(d)に示す工程とは別に、図16の(e)に示すように、上面基板26として、射出成型により、所定位置に、所定サイズ、所定個数の貫通口25Bが設けられた、樹脂(プラスチック)製の上面基板26を形成する。 On the other hand, apart from the steps shown in FIGS. 16A to 16D, as shown in FIG. 16E, as the upper surface substrate 26, a predetermined size and a predetermined number of penetrations are formed at predetermined positions by injection molding. An upper substrate 26 made of resin (plastic) provided with the opening 25B is formed.
 なお、ここで、所定位置とは、上面基板26と支持基板21とを貼り合わせたときに、貫通口25Aと貫通口25Bとが重畳する位置を示す。また、所定個数とは、貫通口25Aの数と一致する数を示す。また、所定サイズとは、上面基板26の一方の面(支持基板21に貼り合わせる面)側の開口端の開口径が、該上面基板26に貼り合わされる、図16の(d)に示す支持基板21の開口径にほぼ一致する大きさを示す。 Here, the predetermined position indicates a position where the through hole 25A and the through hole 25B overlap when the upper surface substrate 26 and the support substrate 21 are bonded together. The predetermined number indicates a number that matches the number of the through holes 25A. In addition, the predetermined size means that the opening diameter of the opening end on the one surface (surface to be bonded to the support substrate 21) side of the upper substrate 26 is bonded to the upper substrate 26 as shown in FIG. The size substantially coincides with the opening diameter of the substrate 21.
 なお、本実施形態では、上記上面基板26として、材質自体の表面張力が低い、ポリプロピレン樹脂からなる、逆テーパ状の開口壁26aを有する穴開き基板を形成した。また、上記開口壁26aの勾配θ’は、接触角θ-90度とした。 In this embodiment, as the upper surface substrate 26, a perforated substrate having an inversely tapered opening wall 26a made of polypropylene resin having a low surface tension of the material itself is formed. The gradient θ ′ of the opening wall 26a was a contact angle θ-90 degrees.
 その後、図16の(f)に示すように、図16の(d)に示す、上記親水層24が形成された支持基板21と、図16の(e)に示す上面基板26とを、貫通口25Aおよび貫通口25Bの中心軸が互いに一致する(貫通口25Aの開口壁25aと貫通口25Bの開口壁26aとが面一になる)ように、所定の接着剤で貼り合わせる。これにより、互いに連通する貫通口25Aおよび貫通口25Bからなる貫通口25が設けられた上部基板20が完成する。 Thereafter, as shown in FIG. 16F, the support substrate 21 formed with the hydrophilic layer 24 shown in FIG. 16D and the top substrate 26 shown in FIG. Bonding is performed with a predetermined adhesive so that the central axes of the opening 25A and the through-hole 25B coincide with each other (the opening wall 25a of the through-hole 25A and the opening wall 26a of the through-hole 25B are flush with each other). Thereby, the upper substrate 20 provided with the through hole 25 including the through hole 25A and the through hole 25B communicating with each other is completed.
 本実施形態によれば、上述したように、支持基板21の上面は、親水面(例えば親水層24)であっても構わない。したがって、本実施形態では、上部基板20の上面における、貫通口25の周囲の液滴40との接触領域を疎水面とするとともに貫通口25内に親水面を形成するために必要なマスク(フォトマスクあるいはレジストパターン等によるマスク処理)が不要であり、本実施形態と同じく上部基板20の下面に親水層24を設けていない、例えば実施例1、3と比較して、さらにプロセスを簡易化することができる。 According to the present embodiment, as described above, the upper surface of the support substrate 21 may be a hydrophilic surface (for example, the hydrophilic layer 24). Therefore, in the present embodiment, a mask (photo) required to form a hydrophilic surface in the through-hole 25 while making the contact region with the droplet 40 around the through-hole 25 on the upper surface of the upper substrate 20 a hydrophobic surface. No mask processing using a mask or a resist pattern is required, and the process is further simplified as compared with Examples 1 and 3, for example, in which the hydrophilic layer 24 is not provided on the lower surface of the upper substrate 20 as in the present embodiment. be able to.
 〔実施形態6〕
 本実施形態について、図17に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態5との相違点について説明するものとし、実施形態5で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
[Embodiment 6]
The present embodiment will be described below with reference to FIG. Note that in this embodiment, differences from the fifth embodiment will be described, and components having the same functions as the components used in the fifth embodiment will be denoted by the same reference numerals, and description thereof will be omitted. .
 <エレクトロウェッティング装置1の概略構成>
 図17は、本実施形態にかかるエレクトロウェッティング装置1の流体注入孔近傍の構成を拡大して示す断面図である。
<Schematic configuration of electrowetting device 1>
FIG. 17 is an enlarged cross-sectional view showing the configuration in the vicinity of the fluid injection hole of the electrowetting device 1 according to the present embodiment.
 図17に示すように、本実施形態にかかるエレクトロウェッティング装置1は、実施形態2にかかるエレクトロウェッティング装置1と同様に、貫通口25の開口壁25aだけでなく、貫通口25aから下部基板10との対向面(下面)に繋がる領域が親水面である点を除けば、実施形態5にかかるエレクトロウェッティング装置1と同じである。 As shown in FIG. 17, the electrowetting device 1 according to the present embodiment is not limited to the opening wall 25 a of the through-hole 25, but also from the through-hole 25 a to the lower substrate, similarly to the electrowetting device 1 according to the second embodiment. 10 is the same as the electrowetting device 1 according to the fifth embodiment except that the region connected to the facing surface (lower surface) 10 is a hydrophilic surface.
 なお、本実施形態でも、実施形態2同様、上部基板20の下面における貫通口25の周囲の親水層24の形成領域は、平面視で、貫通口25を中心とした同心円状の領域であり、上記貫通口25の開口径(g2、直径)よりも所定分だけ大きい直径(g3)の下部基板10に対向する面領域が、親水面となっている。 In the present embodiment, as in the second embodiment, the formation region of the hydrophilic layer 24 around the through hole 25 on the lower surface of the upper substrate 20 is a concentric area centering on the through hole 25 in plan view. A surface region facing the lower substrate 10 having a diameter (g3) larger than the opening diameter (g2, diameter) of the through hole 25 by a predetermined amount is a hydrophilic surface.
 <エレクトロウェッティング装置1の製造方法>
 本実施形態にかかるエレクトロウェッティング装置1の製造方法は、上部基板20の製造工程を除けば、実施形態1にかかるエレクトロウェッティング装置1の製造方法と同じである。そこで、以下では、上記上部基板20の製造方法についてのみ説明する。
<Method of manufacturing electrowetting device 1>
The manufacturing method of the electrowetting device 1 according to the present embodiment is the same as the manufacturing method of the electrowetting device 1 according to the first embodiment, except for the manufacturing process of the upper substrate 20. Therefore, only the method for manufacturing the upper substrate 20 will be described below.
 本実施形態にかかるエレクトロウェッティング装置1における上部基板20は、例えば、実施形態2および実施形態5をはじめとする上述した各実施形態に記載の方法を組み合わせることで容易に製造することができる。このため、本実施形態では、製造工程の図示を省略する。 The upper substrate 20 in the electrowetting device 1 according to the present embodiment can be easily manufactured by combining the methods described in the above-described embodiments including the second embodiment and the fifth embodiment, for example. For this reason, in this embodiment, illustration of a manufacturing process is abbreviate | omitted.
 以下に、上記上部基板20の製造方法の一例について説明する。 Hereinafter, an example of a method for manufacturing the upper substrate 20 will be described.
 まず、図16の(a)に示すように、電極22が設けられた支持基板21として、例えば、ITO膜が、一方の主面全面にベタ状に設けられた所定サイズの厚み0.7mmのガラス基板を準備する。 First, as shown in FIG. 16A, as the support substrate 21 provided with the electrodes 22, for example, an ITO film is provided in a solid shape on the entire surface of one main surface and has a predetermined size of 0.7 mm in thickness. Prepare a glass substrate.
 その後、図10の(a)~(c)に示す工程と同様にして、上記支持基板21における、電極22の形成面に、貫通口25の形成予定領域を中心とした、直径g3の同心円状の領域に、レジストパターン71aを形成する。 Thereafter, in the same manner as the steps shown in FIGS. 10A to 10C, a concentric circle having a diameter g3 centering on a region where the through hole 25 is to be formed on the surface of the support substrate 21 where the electrode 22 is to be formed. In this region, a resist pattern 71a is formed.
 続いて、例えば図13の(f)で示す工程と同様に、例えば疎水処理剤としてパーフルオロアモルファス樹脂であるAGC旭硝子株式会社製の「サイトップ(登録商標)-CTL809A」の1wt%希釈液を使用し、上記疎水処理剤を、上記支持基板21における電極22の形成面上にスリットコーターによりコーティングすることで、上記レジストパターン71aおよび電極22上に、例えば50nm厚の疎水層23(サイトップ膜)を形成する。 Subsequently, for example, similarly to the step shown in FIG. 13 (f), a 1 wt% diluted solution of “CYTOP (registered trademark) -CTL809A” manufactured by AGC Asahi Glass Co., Ltd., which is a perfluoroamorphous resin as a hydrophobic treatment agent, is used. The hydrophobic treatment agent is used to coat the surface of the support substrate 21 on which the electrode 22 is formed with a slit coater, so that the hydrophobic layer 23 (cytop film, for example, having a thickness of 50 nm is formed on the resist pattern 71a and the electrode 22. ).
 その後、実施形態2と同様にして、上記レジストパターン71aおよび該レジストパターン71a上の疎水層23を剥離する。具体的には、例えば、図5の(c)に示す工程と同様に、林純薬工業株式会社製「SPX」(商品名、2-アミノエタノール)中に、上記疎水層23が形成された支持基板21を浸漬し、室温で5分間超音波をかけることにより、上記レジストパターン71aおよび該レジストパターン71a上の疎水層23を剥離する。これにより、上記支持基板21の下面における貫通口25の形成予定領域および該貫通口25の形成予定領域を中心とする直径g3の領域内の電極22の表面を、部分的に露出させる。 Thereafter, the resist pattern 71a and the hydrophobic layer 23 on the resist pattern 71a are removed in the same manner as in the second embodiment. Specifically, for example, the hydrophobic layer 23 is formed in “SPX” (trade name, 2-aminoethanol) manufactured by Hayashi Junyaku Kogyo Co., Ltd. in the same manner as in the step shown in FIG. The support substrate 21 is immersed, and ultrasonic waves are applied for 5 minutes at room temperature, whereby the resist pattern 71a and the hydrophobic layer 23 on the resist pattern 71a are peeled off. Thereby, the surface of the electrode 22 in the region where the through hole 25 is to be formed on the lower surface of the support substrate 21 and the diameter g3 centering on the region where the through hole 25 is to be formed is partially exposed.
 その後、上記支持基板21に、ガラス専用精密ドリルもしくはレーザドリルを用いて、所定の開口径g2を有する貫通口25を形成する。 Thereafter, the through hole 25 having a predetermined opening diameter g2 is formed on the support substrate 21 using a precision drill or a laser drill dedicated to glass.
 これにより、図16の(c)に示す工程と同様に、上記支持基板21の所定位置に、最終的に上部基板20の貫通口25の一部となる、所定サイズ(開口径g2)、所定個数の貫通口25Aを形成する。 As a result, similarly to the step shown in FIG. 16C, a predetermined size (opening diameter g2), which becomes a part of the through hole 25 of the upper substrate 20 at a predetermined position of the support substrate 21, is predetermined. A number of through holes 25A are formed.
 次いで、図16の(d)に示す工程と同様に、上記貫通口25Aが形成された支持基板21を、例えば、末端シラノール基を有するベタイン基含有親水性ポリマー(大阪有機化学工業株式会社製「LAMBIC-500WP」、商品名)を所定粘度となるように水で希釈調整した親水性ポリマー水溶液からなる親水性処理剤に浸漬することで、上記支持基板21における、疎水層23の形成領域を除く領域に、親水層24を形成する。 Next, similarly to the step shown in FIG. 16D, the support substrate 21 in which the through-hole 25A is formed is, for example, a betaine group-containing hydrophilic polymer having a terminal silanol group (manufactured by Osaka Organic Chemical Industries, Ltd. LAMBIC-500WP "(trade name) is immersed in a hydrophilic treatment agent comprising a hydrophilic polymer aqueous solution diluted with water so as to have a predetermined viscosity, thereby removing the formation region of the hydrophobic layer 23 on the support substrate 21. A hydrophilic layer 24 is formed in the region.
 一方、図16の(e)に示す工程と同様に、上面基板26として、射出成型により、所定位置に、所定サイズ、所定個数の貫通口25Bが設けられた、樹脂(プラスチック)製の上面基板26を形成する。 On the other hand, as in the step shown in FIG. 16 (e), as the upper surface substrate 26, a resin (plastic) upper surface substrate in which a predetermined size and a predetermined number of through holes 25B are provided at predetermined positions by injection molding. 26 is formed.
 なお、本実施形態でも、所定位置とは、上面基板26と支持基板21とを貼り合わせたときに、貫通口25Aと貫通口25Bとが重畳する位置を示す。また、所定個数とは、貫通口25Aの数と一致する数を示す。また、所定サイズとは、上面基板26の一方の面(支持基板21に貼り合わせる面)側の開口端の開口径が、該上面基板26に貼り合わされる支持基板21の開口径にほぼ一致する大きさを示す。 In the present embodiment, the predetermined position refers to a position where the through hole 25A and the through hole 25B overlap when the upper surface substrate 26 and the support substrate 21 are bonded together. The predetermined number indicates a number that matches the number of the through holes 25A. Further, the predetermined size means that the opening diameter of the opening end on the one surface (surface to be bonded to the support substrate 21) side of the upper surface substrate 26 substantially matches the opening diameter of the support substrate 21 to be bonded to the upper surface substrate 26. Indicates the size.
 なお、本実施形態でも、実施形態5同様、上記上面基板26として、例えば、材質自体の表面張力が低い、ポリプロピレン樹脂からなる、逆テーパ状の開口壁26aを有する穴開き基板を形成した。また、上記開口壁26aの勾配θ’は、接触角θ-90度とした。 In the present embodiment, as in the fifth embodiment, a perforated substrate having an inversely tapered opening wall 26a made of, for example, polypropylene resin whose surface tension is low is formed as the upper substrate 26. The gradient θ ′ of the opening wall 26a was a contact angle θ-90 degrees.
 その後、図16の(f)に示す工程と同様に、上記親水層24が形成された支持基板21と、上記上面基板26とを、貫通口25Aおよび貫通口25Bの中心軸が互いに一致する(貫通口25Aの開口壁25aと貫通口25Bの開口壁26aとが面一になる)ように、所定の接着剤で貼り合わせる。これにより、本実施形態にかかる上部基板20が完成する。 Thereafter, similarly to the step shown in FIG. 16F, the central axes of the through hole 25A and the through hole 25B of the support substrate 21 on which the hydrophilic layer 24 is formed and the upper surface substrate 26 coincide with each other ( Bonding is performed with a predetermined adhesive so that the opening wall 25a of the through hole 25A and the opening wall 26a of the through hole 25B are flush with each other. Thereby, the upper substrate 20 according to the present embodiment is completed.
 本実施形態によれば、上述したように、上部基板20の下面における、上記貫通口25の周囲に親水層24が形成されていることで、実施形態2と同様の効果を得ることができる。 According to the present embodiment, as described above, since the hydrophilic layer 24 is formed around the through hole 25 on the lower surface of the upper substrate 20, the same effect as in the second embodiment can be obtained.
 また、本実施形態によれば、上述したように、支持基板21の上面は、親水面(例えば親水層24)であっても構わない。したがって、本実施形態でも、実施形態5同様、上部基板20の上面における、貫通口25の周囲の液滴40との接触領域を疎水面とするとともに貫通口25の内に親水面を形成するために必要なマスクが不要となる。このため、例えば実施例2と比較して、プロセスを簡易化することができる。 Further, according to the present embodiment, as described above, the upper surface of the support substrate 21 may be a hydrophilic surface (for example, the hydrophilic layer 24). Therefore, in this embodiment as well as in the fifth embodiment, the contact area of the upper surface of the upper substrate 20 with the droplets 40 around the through-hole 25 is a hydrophobic surface and a hydrophilic surface is formed in the through-hole 25. This eliminates the need for the necessary mask. For this reason, compared with Example 2, for example, a process can be simplified.
 〔まとめ〕
 本発明の態様1にかかるエレクトロウェッティング装置1は、間隙を有して互いに貼り合わされた、第1電極(電極13)を有する下部基板10と、第2電極(電極22)を有する上部基板20とを備え、上記上部基板20は、上記間隙に液滴40を注入する注入口(貫通口25)を有し、上記第1電極は、上記注入口の直下の領域を含む領域に設けられており、上記上部基板20の上面における、上記液滴40が接触する領域、および上記下部基板10における、上記液滴40が接触する領域にそれぞれ疎水層(例えば、疎水層15、疎水層23、疎水性基板21A、上面基板26)が設けられており、上記注入口内に、上記疎水層よりも表面張力が高い親水層24が設けられている。
[Summary]
The electrowetting device 1 according to the first aspect of the present invention includes a lower substrate 10 having a first electrode (electrode 13) and an upper substrate 20 having a second electrode (electrode 22) that are bonded to each other with a gap. The upper substrate 20 has an injection port (through port 25) for injecting the droplet 40 into the gap, and the first electrode is provided in a region including a region immediately below the injection port. A hydrophobic layer (for example, a hydrophobic layer 15, a hydrophobic layer 23, a hydrophobic layer) is formed in a region where the droplet 40 contacts on the upper surface of the upper substrate 20 and a region where the droplet 40 contacts on the lower substrate 10. 21A and a top substrate 26), and a hydrophilic layer 24 having a surface tension higher than that of the hydrophobic layer is provided in the injection port.
 上記の構成によれば、上記注入口に滴下した液滴40は、自然に、上記注入口内における親水領域(すなわち、親水層24の形成領域)に、該親水領域の体積(例えば上記注入口の開口壁が全て親水層である場合、該注入口の体積)に応じて、一定量の液量が貯蔵される。 According to the above configuration, the droplet 40 dropped on the injection port naturally has a volume of the hydrophilic region (for example, the injection port) in the hydrophilic region (that is, the formation region of the hydrophilic layer 24) in the injection port. When all the opening walls are hydrophilic layers, a certain amount of liquid is stored according to the volume of the injection port.
 このため、上記の構成によれば、上記上部基板20に設けられた上記注入口に、上記液滴40を適量滴下するだけで、上記間隙(マイクロ流路)内に自然に液滴40が一定量吸い込まれる。 For this reason, according to the above configuration, the droplet 40 is naturally fixed in the gap (microchannel) by simply dropping an appropriate amount of the droplet 40 to the injection port provided in the upper substrate 20. The amount is sucked.
 このため、液滴40を上記注入口の上から適宜滴下または連続流入するだけでよく、一切の複雑な流体(液滴)注入機構を必要としない。 For this reason, it is only necessary to drop or continuously flow the droplet 40 from above the inlet, and no complicated fluid (droplet) injection mechanism is required.
 したがって、上記の構成によれば、複雑な流体(液滴)注入機構を必要とすることなく上記間隙内(すなわち、上記エレクトロウェッティング装置1)内に液滴40を注入することができるエレクトロウェッティング装置1を提供することができる。 Therefore, according to the above configuration, the electrowetting capable of injecting the droplet 40 into the gap (that is, the electrowetting device 1) without requiring a complicated fluid (droplet) injection mechanism. 1 can be provided.
 本発明の態様2にかかるエレクトロウェッティング装置1は、上記態様1において、上記下部基板10と上記上部基板20との間の距離(g1)が、上記注入口の開口径(g2)よりも大きいことが望ましい。 In the electrowetting device 1 according to aspect 2 of the present invention, in the aspect 1, the distance (g1) between the lower substrate 10 and the upper substrate 20 is larger than the opening diameter (g2) of the injection port. It is desirable.
 上記の構成によれば、上記注入口から注入した液滴40を、上記間隙内における上記下部基板10の表面に確実に接触させ、エレクトロウェッティング現象により、上記間隙内に引き込むことができる。 According to the above configuration, the droplet 40 injected from the injection port can be reliably brought into contact with the surface of the lower substrate 10 in the gap and drawn into the gap by electrowetting phenomenon.
 本発明の態様3かかるエレクトロウェッティング装置1は、上記態様1または2において、上記上部基板20は、上記第2電極を支持する支持基板21を有し、上記支持基板21の上面における、上記液滴40が接触する領域に上記疎水層(例えば、疎水層23、上面基板26)が設けられており、上記注入口内の上記支持基板21の表面に上記親水層24が設けられていることが望ましい。 Aspect 3 of the present invention is the electrowetting device 1 according to the aspect 1 or 2, wherein the upper substrate 20 has a support substrate 21 that supports the second electrode, and the liquid on the upper surface of the support substrate 21 It is desirable that the hydrophobic layer (for example, the hydrophobic layer 23, the upper surface substrate 26) is provided in a region where the droplet 40 contacts, and the hydrophilic layer 24 is provided on the surface of the support substrate 21 in the inlet. .
 上記の構成によれば、上記態様1に記載の効果を得ることができる。 According to the above configuration, the effect described in the first aspect can be obtained.
 本発明の態様4にかかるエレクトロウェッティング装置1は、上記態様3において、上記上部基板20の上面の上記疎水層は、上記支持基板21上に設けられた、疎水性基材からなる上面基板26であることが望ましい。 The electrowetting device 1 according to aspect 4 of the present invention is the electrowetting device 1 according to aspect 3, wherein the hydrophobic layer on the upper surface of the upper substrate 20 is provided on the support substrate 21 and made of a hydrophobic base material. It is desirable that
 上記の構成によれば、上部基板20の上面における、上記注入口の周囲の液滴40との接触領域を疎水面とするとともに上記注入口内に親水面を形成するために必要なマスクが不要であり、プロセスを簡易化することができる。 According to the above configuration, the contact area of the upper surface of the upper substrate 20 with the droplets 40 around the injection port is a hydrophobic surface, and a mask necessary for forming a hydrophilic surface in the injection port is unnecessary. Yes, the process can be simplified.
 本発明の態様5にかかるエレクトロウェッティング装置1は、上記態様4において、上記注入口における上記上面基板26の開口壁26aは、上記支持基板21側ほど開口径が小さくなる逆テーパ形状を有していることが望ましい。 In the electrowetting device 1 according to the aspect 5 of the present invention, in the aspect 4, the opening wall 26a of the upper surface substrate 26 in the injection port has an inversely tapered shape whose opening diameter becomes smaller toward the support substrate 21 side. It is desirable that
 上記の構成によれば、上記注入口内に液滴40を注入し易くなる。 According to the above configuration, the droplet 40 can be easily injected into the injection port.
 本発明の態様6にかかるエレクトロウェッティング装置1は、上記態様5において、上記上面基板26に対する上記液滴40の接触角をθとし、上記注入口における上記上面基板26の開口壁26aの勾配をθ’とすると、θ’=θ-90度であることが望ましい。 In the electrowetting device 1 according to the sixth aspect of the present invention, in the fifth aspect, the contact angle of the droplet 40 with respect to the upper surface substrate 26 is θ, and the gradient of the opening wall 26a of the upper surface substrate 26 at the inlet is as follows. Assuming that θ ′, θ ′ = θ−90 degrees is desirable.
 上記の構成によれば、上記注入口に適量の液滴40を垂らすだけで、上記注入口内における、上記親水層24の形成領域に液滴40が侵入し易くなる。このため、上記注入口から注入した液滴40を、上記間隙における上記下部基板10の表面に、より確実に接触させ、エレクトロウェッティング現象により上記間隙内に引き込むことができる。 According to the above configuration, the droplet 40 can easily enter the formation region of the hydrophilic layer 24 in the injection port simply by dropping a suitable amount of the droplet 40 in the injection port. For this reason, the droplet 40 injected from the injection port can be brought into more reliable contact with the surface of the lower substrate 10 in the gap and drawn into the gap by electrowetting phenomenon.
 本発明の態様7にかかるエレクトロウェッティング装置1は、上記態様1または2において、上記上部基板20は、上記第2電極を支持する、疎水性基材からなる支持基板(疎水性基板21A)を有し、上記上部基板20の上面の疎水層は、上記支持基板であり、上記注入口内の上記支持基板の表面に上記親水層24が設けられていることが望ましい。 The electrowetting device 1 according to aspect 7 of the present invention is the electrowetting device 1 according to aspect 1 or 2, wherein the upper substrate 20 is a support substrate (hydrophobic substrate 21A) made of a hydrophobic base material that supports the second electrode. Preferably, the hydrophobic layer on the upper surface of the upper substrate 20 is the support substrate, and the hydrophilic layer 24 is preferably provided on the surface of the support substrate in the inlet.
 上記の構成によれば、上記上部基板20の上面を疎水化する工程が不要となる。このため、プロセス全体が簡易となる。 According to the above configuration, the step of hydrophobizing the upper surface of the upper substrate 20 is not necessary. This simplifies the entire process.
 本発明の態様8にかかるエレクトロウェッティング装置1は、上記態様4~7の何れかにおいて、上記疎水性基材はプラスチック基材であることが望ましい。 In the electrowetting device 1 according to the eighth aspect of the present invention, in any of the fourth to seventh aspects, the hydrophobic substrate is preferably a plastic substrate.
 上記の構成によれば、上記疎水性基材を射出成型することが可能であり、上記注入口を別途形成する必要がないので、工程数を削減することができる。 According to the above configuration, the hydrophobic base material can be injection-molded, and it is not necessary to separately form the injection port, so that the number of steps can be reduced.
 本発明の態様9にかかるエレクトロウェッティング装置1は、上記態様1~8の何れかにおいて、上記上部基板20の下面における上記注入口の周囲の一定領域に、上記疎水層23よりも表面張力が高い親水層24が形成され、上記上部基板20の下面における上記親水層24が形成された領域以外の領域で上記液滴40が接触する領域に、疎水層23が形成されていることが望ましい。 In the electrowetting device 1 according to the ninth aspect of the present invention, the surface tension of the electrowetting device 1 according to any one of the first to eighth aspects is higher than that of the hydrophobic layer 23 in a certain region around the injection port on the lower surface of the upper substrate 20. It is desirable that the high hydrophilic layer 24 is formed, and the hydrophobic layer 23 is formed in a region where the droplet 40 contacts in a region other than the region where the hydrophilic layer 24 is formed on the lower surface of the upper substrate 20.
 上記の構成によれば、上記注入口に滴下した液滴40が、より多く上記間隙内に引き込まれ、上記間隙内の下部基板10の表面に確実に接地(接触)するとともに、上記液滴40の上部基板20および上記下部基板10のそれぞれに対する接触面積が大きくなる。 According to the above configuration, more droplets 40 dropped into the injection port are drawn into the gap, and are reliably grounded (contacted) with the surface of the lower substrate 10 in the gap. The contact area with respect to each of the upper substrate 20 and the lower substrate 10 increases.
 そのため、上記構成によれば、上記注入口に注入した液滴40が上記間隙内に侵入しないといった不具合の発生を、より抑制することができる。 Therefore, according to the above configuration, it is possible to further suppress the occurrence of a problem that the droplet 40 injected into the injection port does not enter the gap.
 本発明の態様10にかかる液滴注入方法は、態様1~9の何れかにかかるエレクトロウェッティング装置1内に液滴40を注入する液滴注入方法であって、上記注入口に液滴40を滴下する工程と、上記注入口に滴下した液滴40が上記下部基板10に接触した状態で、上記第1電極および上記第2電極に電圧を印加して上記液滴40を移動させることで、上記液滴40を、上記間隙に引き込む方法である。 A liquid droplet injection method according to aspect 10 of the present invention is a liquid droplet injection method for injecting liquid droplets 40 into the electrowetting device 1 according to any one of aspects 1 to 9, wherein a liquid is injected into the injection port. In the state where the droplet 40 is dropped and the droplet 40 dropped on the inlet is in contact with the lower substrate 10, a voltage is applied to the first electrode and the second electrode to move the droplet 40. In this way, the droplet 40 is drawn into the gap.
 上記の方法によれば、上記態様1と同様の効果を得ることができる。したがって、上記の構成によれば、複雑な流体(液滴)注入機構を必要とすることなく上記間隙内(すなわち、上記エレクトロウェッティング装置1)内に液滴40を注入することができる液滴注入方法を提供することができる。 According to the above method, the same effect as in the first aspect can be obtained. Therefore, according to the above configuration, a droplet that can inject the droplet 40 into the gap (that is, the electrowetting device 1) without requiring a complicated fluid (droplet) injection mechanism. An injection method can be provided.
 本発明の態様11にかかるエレクトロウェッティング装置1の製造方法は、第1電極(電極13)が形成された下部基板10を形成する下部基板形成工程と、第2電極(電極22)が形成された上部基板20を形成する上部基板形成工程と、上記上部基板20と上記下部基板10とを、互いに間隙を有して貼り合わせる貼合工程と、を備え、上記上部基板形成工程は、上記間隙に液滴40を注入する注入口(貫通口25)を形成する注入口形成工程と、上記上部基板20の上面における、上記液滴40が接触する領域に疎水層(例えば、疎水層23、疎水性基板21A、上面基板26)を形成する上部基板疎水層形成工程と、上記注入口内に、上記疎水層よりも表面張力が高い親水層24を形成する親水層形成工程と、を含み、上記下部基板形成工程は、上記第1電極を、上記注入口の直下の領域を含む領域に形成する工程と、上記液滴40が接触する領域に疎水層15を形成する下部基板疎水層形成工程と、を含む方法である。 In the manufacturing method of the electrowetting device 1 according to the aspect 11 of the present invention, the lower substrate forming step for forming the lower substrate 10 on which the first electrode (electrode 13) is formed, and the second electrode (electrode 22) are formed. An upper substrate forming step for forming the upper substrate 20; and a bonding step for bonding the upper substrate 20 and the lower substrate 10 with a gap between each other. A step of forming an injection port (through port 25) for injecting the droplet 40 into the surface, and a hydrophobic layer (for example, a hydrophobic layer 23, a hydrophobic layer in a region of the upper surface of the upper substrate 20 that contacts the droplet 40; The upper substrate hydrophobic layer forming step for forming the conductive substrate 21A and the upper substrate 26), and the hydrophilic layer forming step for forming the hydrophilic layer 24 having a surface tension higher than that of the hydrophobic layer in the inlet. Base The forming step includes a step of forming the first electrode in a region including a region immediately below the injection port, and a step of forming a lower substrate hydrophobic layer in which the hydrophobic layer 15 is formed in a region in contact with the droplet 40. It is the method of including.
 上記の方法によれば、上記態様1と同様の効果を得ることができる。したがって、上記の構成によれば、複雑な流体(液滴)注入機構を必要とすることなく上記間隙内(すなわち、上記エレクトロウェッティング装置1)内に液滴40を注入することができるエレクトロウェッティング装置1の製造方法を提供することができる。 According to the above method, the same effect as in the first aspect can be obtained. Therefore, according to the above configuration, the electrowetting capable of injecting the droplet 40 into the gap (that is, the electrowetting device 1) without requiring a complicated fluid (droplet) injection mechanism. A manufacturing method of the marking device 1 can be provided.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 1  エレクトロウェッティング装置
 2  アクティブ領域
 3  額縁領域
10  下部基板
11、21  支持基板
12  薄膜電子回路
13、13a、13b、22  電極
14  誘電体層
15、23  疎水層
16  電極アレイ
17  アレイ素子回路
20  上部基板
21A 疎水性基板
24  親水層
25、25A、25B、60a  貫通口(注入口)
25a、26a  開口壁
26  上面基板
30  流路
31  シール材
32  スペーサ
40、40a、40b、40c、41  液滴
42  非導電性液体
51  行駆動回路
52  列駆動回路
53  シリアルインターフェース
54  電圧供給インターフェース
55  接続ワイヤ
60、60A  接着体
61  マザー基板
61A  チップ
61a 貫通口形成予定領域
61b、61c  領域
62  仮固定用接着剤
63  保護シート
64  容器
65  レジスト液
65A、71 レジスト層
71a  レジストパターン
72  フォトマスク
DESCRIPTION OF SYMBOLS 1 Electrowetting apparatus 2 Active area | region 3 Frame area | region 10 Lower board | substrate 11, 21 Support board | substrate 12 Thin film electronic circuit 13, 13a, 13b, 22 Electrode 14 Dielectric layer 15, 23 Hydrophobic layer 16 Electrode array 17 Array element circuit 20 Upper board | substrate 21A Hydrophobic substrate 24 Hydrophilic layers 25, 25A, 25B, 60a Through-hole (injection port)
25a, 26a Opening wall 26 Upper surface substrate 30 Flow path 31 Sealing material 32 Spacer 40, 40a, 40b, 40c, 41 Droplet 42 Non-conductive liquid 51 Row drive circuit 52 Column drive circuit 53 Serial interface 54 Voltage supply interface 55 Connection wire 60, 60A Adhesive body 61 Mother substrate 61A Chip 61a Through-hole formation planned area 61b, 61c Area 62 Temporary fixing adhesive 63 Protective sheet 64 Container 65 Resist liquid 65A, 71 Resist layer 71a Resist pattern 72 Photomask

Claims (11)

  1.  間隙を有して互いに貼り合わされた、第1電極を有する下部基板と、第2電極を有する上部基板とを備え、
     上記上部基板は、上記間隙に液滴を注入する注入口を有し、
     上記第1電極は、上記注入口の直下の領域を含む領域に設けられており、
     上記上部基板の上面における、上記液滴が接触する領域、および上記下部基板における、上記液滴が接触する領域にそれぞれ疎水層が設けられており、
     上記注入口内に、上記疎水層よりも表面張力が高い親水層が設けられていることを特徴とするエレクトロウェッティング装置。
    A lower substrate having a first electrode and an upper substrate having a second electrode, which are bonded to each other with a gap;
    The upper substrate has an inlet for injecting droplets into the gap,
    The first electrode is provided in a region including a region directly below the injection port,
    A hydrophobic layer is provided in each of the upper surface of the upper substrate in a region where the droplet contacts and a region in the lower substrate where the droplet contacts,
    An electrowetting device, wherein a hydrophilic layer having a surface tension higher than that of the hydrophobic layer is provided in the injection port.
  2.  上記下部基板と上記上部基板との間の距離が、上記注入口の開口径よりも大きいことを特徴とする請求項1に記載のエレクトロウェッティング装置。 The electrowetting device according to claim 1, wherein a distance between the lower substrate and the upper substrate is larger than an opening diameter of the injection port.
  3.  上記上部基板は、上記第2電極を支持する支持基板を有し、
     上記支持基板の上面における、上記液滴が接触する領域に上記疎水層が設けられており、
     上記注入口内の上記支持基板の表面に上記親水層が設けられていることを特徴とする請求項1または2に記載のエレクトロウェッティング装置。
    The upper substrate has a support substrate that supports the second electrode,
    The hydrophobic layer is provided on the upper surface of the support substrate in a region where the droplet contacts,
    The electrowetting device according to claim 1 or 2, wherein the hydrophilic layer is provided on a surface of the support substrate in the injection port.
  4.  上記上部基板の上面の上記疎水層は、上記支持基板上に設けられた、疎水性基材からなる上面基板であることを特徴とする請求項3に記載のエレクトロウェッティング装置。 The electrowetting device according to claim 3, wherein the hydrophobic layer on the upper surface of the upper substrate is an upper substrate made of a hydrophobic base material provided on the support substrate.
  5.  上記注入口における上記上面基板の開口壁は、上記支持基板側ほど開口径が小さくなる逆テーパ形状を有していることを特徴とする請求項4に記載のエレクトロウェッティング装置。 5. The electrowetting device according to claim 4, wherein the opening wall of the upper surface substrate at the inlet has an inversely tapered shape in which the opening diameter decreases toward the support substrate.
  6.  上記上面基板に対する上記液滴の接触角をθとし、上記注入口における上記上面基板の開口壁の勾配をθ’とすると、θ’=θ-90度であることを特徴とする請求項5に記載のエレクトロウェッティング装置。 6. The relationship according to claim 5, wherein θ ′ = θ−90 degrees, where θ is a contact angle of the droplet with respect to the upper surface substrate, and θ ′ is a gradient of the opening wall of the upper surface substrate at the inlet. The electrowetting device described.
  7.  上記上部基板は、上記第2電極を支持する、疎水性基材からなる支持基板を有し、
     上記上部基板の上面の疎水層は、上記支持基板であり、
     上記注入口内の上記支持基板の表面に上記親水層が設けられていることを特徴とする請求項1または2に記載のエレクトロウェッティング装置。
    The upper substrate has a support substrate made of a hydrophobic base material that supports the second electrode,
    The hydrophobic layer on the upper surface of the upper substrate is the support substrate,
    The electrowetting device according to claim 1 or 2, wherein the hydrophilic layer is provided on a surface of the support substrate in the injection port.
  8.  上記疎水性基材はプラスチック基材であることを特徴とする請求項4~7の何れか1項に記載のエレクトロウェッティング装置。 The electrowetting device according to any one of claims 4 to 7, wherein the hydrophobic substrate is a plastic substrate.
  9.  上記上部基板の下面における上記注入口の周囲の一定領域に、上記疎水層よりも表面張力が高い親水層が形成され、上記上部基板の下面における上記親水層が形成された領域以外の領域で上記液滴が接触する領域に、疎水層が形成されていることを特徴とする請求項1~8の何れか1項に記載のエレクトロウェッティング装置。 A hydrophilic layer having a surface tension higher than that of the hydrophobic layer is formed in a certain region around the inlet on the lower surface of the upper substrate, and the region other than the region where the hydrophilic layer is formed on the lower surface of the upper substrate. The electrowetting device according to any one of claims 1 to 8, wherein a hydrophobic layer is formed in a region where the droplet contacts.
  10.  請求項1~9の何れか1項に記載のエレクトロウェッティング装置内に液滴を注入する液滴注入方法であって、
     上記注入口に液滴を滴下する工程と、
     上記注入口に滴下した液滴が上記下部基板に接触した状態で、上記第1電極および上記第2電極に電圧を印加して上記液滴を移動させることで、上記液滴を、上記間隙に引き込むことを特徴とする液滴注入方法。
    A droplet injection method for injecting droplets into the electrowetting device according to any one of claims 1 to 9,
    Dropping droplets into the inlet;
    In the state where the liquid droplet dropped on the injection port is in contact with the lower substrate, a voltage is applied to the first electrode and the second electrode to move the liquid droplet, thereby bringing the liquid droplet into the gap. A method of injecting a droplet, which is drawn.
  11.  第1電極が形成された下部基板を形成する下部基板形成工程と、
     第2電極が形成された上部基板を形成する上部基板形成工程と、
     上記上部基板と上記下部基板とを、互いに間隙を有して貼り合わせる貼合工程と、を備え、
     上記上部基板形成工程は、
     上記間隙に液滴を注入する注入口を形成する注入口形成工程と、
     上記上部基板の上面における、上記液滴が接触する領域に疎水層を形成する上部基板疎水層形成工程と、
     上記注入口内に、上記疎水層よりも表面張力が高い親水層を形成する親水層形成工程と、を含み、
     上記下部基板形成工程は、
     上記第1電極を、上記注入口の直下の領域を含む領域に形成する工程と、
     上記液滴が接触する領域に疎水層を形成する下部基板疎水層形成工程と、を含むことを特徴とするエレクトロウェッティング装置の製造方法。
    A lower substrate forming step of forming a lower substrate on which the first electrode is formed;
    An upper substrate forming step of forming an upper substrate on which the second electrode is formed;
    A bonding step in which the upper substrate and the lower substrate are bonded together with a gap therebetween,
    The upper substrate forming step includes
    An inlet forming step for forming an inlet for injecting droplets into the gap;
    An upper substrate hydrophobic layer forming step of forming a hydrophobic layer in a region where the droplet contacts on the upper surface of the upper substrate;
    Forming a hydrophilic layer having a higher surface tension than the hydrophobic layer in the inlet, and a hydrophilic layer forming step,
    The lower substrate forming step includes
    Forming the first electrode in a region including a region directly below the inlet;
    And a lower substrate hydrophobic layer forming step of forming a hydrophobic layer in a region where the droplet contacts.
PCT/JP2016/082553 2015-11-06 2016-11-02 Electrowetting device, method for manufacturing same, and droplet injection method WO2017078059A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218927 2015-11-06
JP2015-218927 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017078059A1 true WO2017078059A1 (en) 2017-05-11

Family

ID=58662170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082553 WO2017078059A1 (en) 2015-11-06 2016-11-02 Electrowetting device, method for manufacturing same, and droplet injection method

Country Status (1)

Country Link
WO (1) WO2017078059A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010637A (en) * 2017-05-30 2019-01-24 シャープ ライフ サイエンス (イーユー) リミテッド Micro fluid device having temperature zones, and reinforced temperature control
CN109308880A (en) * 2017-07-27 2019-02-05 夏普生命科学(欧洲)有限公司 With the microfluidic device for inputting upper drop precharge
JP2019018197A (en) * 2017-07-12 2019-02-07 シャープ ライフ サイエンス (イーユー) リミテッド Spacer for side loaded ewod device
CN109718878A (en) * 2019-01-08 2019-05-07 京东方科技集团股份有限公司 The preparation method of pole plate, micro-fluidic chip and pole plate
CN112466800A (en) * 2021-01-25 2021-03-09 武汉大学 Electrowetting transfer printing head, transfer printing head array and micro LED (light emitting diode) mass transfer method
US20210339256A1 (en) * 2018-10-19 2021-11-04 Hitachi High-Tech Corporation Biochemical cartridge and biochemical analysis device
US11397315B2 (en) 2019-01-28 2022-07-26 Sharp Kabushiki Kaisha Electrowetting device and method for manufacturing electrowetting device
US11442264B2 (en) 2019-03-27 2022-09-13 Sharp Kabushiki Kaisha Electrowetting device
US11577245B2 (en) 2018-09-06 2023-02-14 Sharp Kabushiki Kaisha Electrowetting device
GB2621844A (en) * 2022-08-23 2024-02-28 Lightcast Discovery Ltd Improvements in or relating to a composite wall of a device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119724A (en) * 2007-11-15 2009-06-04 Seiko Epson Corp Silicon-made nozzle substrate, liquid droplet discharge head having silicon-made nozzle substrate, liquid droplet discharge apparatus equipped with liquid droplet discharge head, and method for manufacturing silicon-made nozzle substrate
JP2011508224A (en) * 2007-12-23 2011-03-10 アドヴァンスト リキッド ロジック インコーポレイテッド Droplet actuator configuration and method for directing droplet motion
US20130017544A1 (en) * 2011-07-11 2013-01-17 Advanced Liquid Logic Inc High Resolution Melting Analysis on a Droplet Actuator
WO2013179835A1 (en) * 2012-06-01 2013-12-05 株式会社日立製作所 Liquid analysis device, liquid analysis system and liquid analysis method
WO2015031849A1 (en) * 2013-08-30 2015-03-05 Illumina, Inc. Manipulation of droplets on hydrophilic or variegated-hydrophilic surfaces
JP2015192945A (en) * 2014-03-31 2015-11-05 日本電信電話株式会社 Liquid supply method and micro-passage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119724A (en) * 2007-11-15 2009-06-04 Seiko Epson Corp Silicon-made nozzle substrate, liquid droplet discharge head having silicon-made nozzle substrate, liquid droplet discharge apparatus equipped with liquid droplet discharge head, and method for manufacturing silicon-made nozzle substrate
JP2011508224A (en) * 2007-12-23 2011-03-10 アドヴァンスト リキッド ロジック インコーポレイテッド Droplet actuator configuration and method for directing droplet motion
US20130017544A1 (en) * 2011-07-11 2013-01-17 Advanced Liquid Logic Inc High Resolution Melting Analysis on a Droplet Actuator
WO2013179835A1 (en) * 2012-06-01 2013-12-05 株式会社日立製作所 Liquid analysis device, liquid analysis system and liquid analysis method
WO2015031849A1 (en) * 2013-08-30 2015-03-05 Illumina, Inc. Manipulation of droplets on hydrophilic or variegated-hydrophilic surfaces
JP2015192945A (en) * 2014-03-31 2015-11-05 日本電信電話株式会社 Liquid supply method and micro-passage device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010637A (en) * 2017-05-30 2019-01-24 シャープ ライフ サイエンス (イーユー) リミテッド Micro fluid device having temperature zones, and reinforced temperature control
JP2020189289A (en) * 2017-05-30 2020-11-26 シャープ ライフ サイエンス (イーユー) リミテッド Microfluidic device with multiple temperature zones and enhanced temperature control
JP2019018197A (en) * 2017-07-12 2019-02-07 シャープ ライフ サイエンス (イーユー) リミテッド Spacer for side loaded ewod device
CN109308880A (en) * 2017-07-27 2019-02-05 夏普生命科学(欧洲)有限公司 With the microfluidic device for inputting upper drop precharge
JP2019025476A (en) * 2017-07-27 2019-02-21 シャープ ライフ サイエンス (イーユー) リミテッド Microfluidic device with droplet pre-charge on input
US10369570B2 (en) 2017-07-27 2019-08-06 Sharp Life Science (Eu) Limited Microfluidic device with droplet pre-charge on input
CN109308880B (en) * 2017-07-27 2022-10-04 夏普生命科学(欧洲)有限公司 Microfluidic device with on-input droplet pre-charging
US11577245B2 (en) 2018-09-06 2023-02-14 Sharp Kabushiki Kaisha Electrowetting device
US20210339256A1 (en) * 2018-10-19 2021-11-04 Hitachi High-Tech Corporation Biochemical cartridge and biochemical analysis device
US12064767B2 (en) * 2018-10-19 2024-08-20 Hitachi High-Tech Corporation Biochemical cartridge and biochemical analysis device
CN109718878A (en) * 2019-01-08 2019-05-07 京东方科技集团股份有限公司 The preparation method of pole plate, micro-fluidic chip and pole plate
US11759778B2 (en) 2019-01-08 2023-09-19 Boe Technology Group Co., Ltd. Electrode plate, microfluidic chip and method of manufacturing electrode plate
US11397315B2 (en) 2019-01-28 2022-07-26 Sharp Kabushiki Kaisha Electrowetting device and method for manufacturing electrowetting device
US11442264B2 (en) 2019-03-27 2022-09-13 Sharp Kabushiki Kaisha Electrowetting device
CN112466800A (en) * 2021-01-25 2021-03-09 武汉大学 Electrowetting transfer printing head, transfer printing head array and micro LED (light emitting diode) mass transfer method
CN112466800B (en) * 2021-01-25 2024-02-09 武汉大学 Electrowetting transfer printing head, transfer printing head array and micro-LED mass transfer method
GB2621844A (en) * 2022-08-23 2024-02-28 Lightcast Discovery Ltd Improvements in or relating to a composite wall of a device

Similar Documents

Publication Publication Date Title
WO2017078059A1 (en) Electrowetting device, method for manufacturing same, and droplet injection method
US11123729B2 (en) Directing motion of droplets using differential wetting
JP5964881B2 (en) Apparatus and method for operating droplets on a printed circuit board
US20100120130A1 (en) Droplet Actuator with Droplet Retention Structures
US20130018611A1 (en) Systems and Methods of Measuring Gap Height
JPWO2007094254A1 (en) Microchannel chip and manufacturing method thereof
Arango et al. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics
US10596568B2 (en) Fluid loading into a microfluidic device
US20200319135A1 (en) Microfluidic chip and manufacturing method thereof and integrated microfluidic chip system
CN108885379B (en) Electrowetting device and manufacturing method of electrowetting device
US11656218B2 (en) Liquid tank formation method, measurement device, and analysis device
US10724981B2 (en) Microfluidic chip and manufacturing method thereof and integrated microfluidic chip system
US20210316301A1 (en) Microfluidic apparatus and manufacturing method thereof
JP4383446B2 (en) Method for bonding microstructured substrates
JP2009047438A (en) Micro flow-path chip
US11442264B2 (en) Electrowetting device
JP2008309642A (en) Microchip and analytical method using the same
JP4590542B2 (en) Micro droplet transport device
JP7337760B2 (en) Methods for analyzing biomolecules
CN117680214A (en) Active electrowetting microfluidic chip and manufacturing device thereof
CN115151342B (en) Substrate, microfluidic device, driving method, and manufacturing method
Wakebe et al. Direct fabrication of SU‐8 microchannel across an embedded chip for potentiometric bilayer lipid membrane sensor
JP3640089B2 (en) Pipette manufacturing method
Wang et al. Solid-state ISFET flow meter fabricated with a planar packaging process for integrating microfluidic channel with CMOS IC chip
JP2023115041A (en) Microwell array and micro fluid device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862119

Country of ref document: EP

Kind code of ref document: A1