WO2017077999A1 - Method for detecting tuberculosis complex-derived dna - Google Patents

Method for detecting tuberculosis complex-derived dna Download PDF

Info

Publication number
WO2017077999A1
WO2017077999A1 PCT/JP2016/082390 JP2016082390W WO2017077999A1 WO 2017077999 A1 WO2017077999 A1 WO 2017077999A1 JP 2016082390 W JP2016082390 W JP 2016082390W WO 2017077999 A1 WO2017077999 A1 WO 2017077999A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
primer
probe
mycobacterium tuberculosis
seq
Prior art date
Application number
PCT/JP2016/082390
Other languages
French (fr)
Japanese (ja)
Inventor
昌樹 山本
良太 牛尾
Original Assignee
公立大学法人横浜市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人横浜市立大学 filed Critical 公立大学法人横浜市立大学
Publication of WO2017077999A1 publication Critical patent/WO2017077999A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a primer and probe set for detecting DNA derived from Mycobacterium tuberculosis by digital PCR (hereinafter sometimes referred to as “dPCR”), and DNA derived from Mycobacterium tuberculosis from a blood sample using the set. It relates to the detection method.
  • dPCR digital PCR
  • Non-patent Document 1 Pulmonary tuberculosis is still one of the threatening infectious diseases, and 9 million people develop and 1.5 million people die every year worldwide (Non-patent Document 1). As a diagnostic method for pulmonary tuberculosis, sputum smear and culture tests are the gold standard. However, this test method often has difficulty in diagnosis, and delays in diagnosis may cause problems such as spread of infection and induction of tuberculosis resistance.
  • Non-Patent Documents 2 to 8 Nucleic acid amplification testing methods such as PCR and LAMP have been developed as diagnostic methods to compensate for the drawbacks.
  • a repetitive sequence IS6110, a gyrase subunit B (gyrB) gene, and the like are used as target regions for specifically detecting Mycobacterium tuberculosis (Patent Documents 1 and 2, etc.).
  • specimens usually use sputum in the nucleic acid amplification test method. When collecting sputum samples, careful precautions are required to prevent the spread of pathogens. Sometimes it is difficult to collect sputum, and diagnosis is often difficult. Moreover, since tuberculosis bacteria infect other than respiratory organs, invasive treatment may be necessary to obtain a suitable specimen.
  • Non-Patent Documents 9 to 14 Nucleic acid amplification test methods using urine, peripheral blood mononuclear cells, etc. have been reported as a sample that replaces the minimally invasive sputum. However, these examination methods have not yet been clinically used in terms of sensitivity.
  • An object of the present invention is to provide means capable of accurately and promptly diagnosing Mycobacterium tuberculosis infection using a sample that is minimally invasive, has a low risk of infection spread, and can be collected stably.
  • M. tuberculosis DNA Due to the fact that M. tuberculosis DNA is detected in the urine, the present inventors may have a very low concentration of cell-free free M. tuberculosis DNA in the plasma of patients infected with M. tuberculosis. I thought that there was sex. Focusing on the recently developed digital PCR technology that can demonstrate high sensitivity in detecting extremely low copy number DNA, we aim to establish a method to detect M. tuberculosis-derived DNA in plasma by digital PCR. As a result of diligent research on the design of primers and probes capable of detecting various strains of, and the conditions of digital PCR, plasma of tuberculosis patients was obtained by digital PCR using specific primer and probe sets targeting IS6110 and gyrB. The present invention was completed by successfully detecting M. tuberculosis group-derived DNA at a level of several copies / 20 ⁇ L reaction solution.
  • the present invention is a digital PCR primer for detecting Mycobacterium tuberculosis group IS6110, comprising a forward primer having the base sequence shown in SEQ ID NO: 1, a reverse primer having the base sequence shown in SEQ ID NO: 2, and a probe having the base sequence shown in SEQ ID NO: 3. And a probe set.
  • the present invention also relates to a digital PCR primer for detecting Mycobacterium tuberculosis group gyrB, comprising a forward primer having the base sequence shown in SEQ ID NO: 4, a reverse primer having the base sequence shown in SEQ ID NO: 5, and a probe having the base sequence shown in SEQ ID NO: 6. And a probe set.
  • the present invention comprises a tuberculosis group comprising DNA PCR extracted from a blood sample isolated from a subject and performing digital PCR using at least one of the primer and probe set of the present invention.
  • a method for detecting a derived DNA is provided.
  • the present invention provides a tuberculosis group-derived DNA detection reagent or kit for digital PCR, comprising at least one of the primer and probe set of the present invention.
  • a means for specifically detecting a tuberculosis group-derived DNA by distinguishing it from non-tuberculous mycobacteria from a plasma sample to enable detection of M. tuberculosis group infection and the like is provided.
  • M. tuberculosis group-derived DNA can be detected even with a low copy number of less than 10 copies per reaction solution, and the detection sensitivity is extremely high.
  • Blood samples can be obtained stably, and samples can be obtained from subjects such as children who are difficult to collect respiratory-derived samples such as sputum and endoscope washing liquid. Even in cases infected with respiratory organs, blood samples can be collected with minimal invasiveness.
  • a minute amount of DNA derived from Mycobacterium tuberculosis group contained in the plasma of a patient infected with Mycobacterium tuberculosis group is detected by digital PCR.
  • Digital PCR is a technique in which a PCR reaction solution is divided into a large number of small compartments, PCR is performed, and target DNA is detected and quantified based on the number of small compartments in which amplification is detected.
  • tuberculosis group includes Mycobaterium tuberculosis (MTB), M. bovis, M. ⁇ africanum, M. microti, M. canettii, M. caprae, and M. pinnipedii. Of these, the one that causes tuberculosis in humans is primarily M. tuberculosis. Since the gene region targeted in the present invention is conserved in the above-mentioned Mycobacterium belonging to the Mycobacterium group, various strains of the Mycobacterium group can be detected. In the present invention, the term “detection” includes qualitative detection, quantitative detection, and semi-quantitative detection.
  • One of the digital PCR primers and probe sets for detecting Mycobacterium tuberculosis is targeted at the repetitive sequence IS6110 (GenBank accession number X17348 etc.) present in the Mycobacterium tuberculosis complex genome.
  • the nucleotide sequences of the forward primer, reverse primer, and probe for detecting IS6110 are shown in SEQ ID NOs: 1 to 3, respectively.
  • This set for detecting IS6110 targets the region from position 311 to position 381 in the base sequence shown in SEQ ID NO: 11.
  • SEQ ID NO: 11 is a part of the IS6110 sequence of Mycobacterium tuberculosis M. tuberculosis, and is a region adopted as a DNA standard for IS6110 in the following examples.
  • Another digital PCR primer and probe set for detecting Mycobacterium tuberculosis group targets genes encoding gyrase subunit B (gyrB, GenBank accession number AL123456.3, etc.).
  • the base sequences of gyrB detection forward primer, reverse primer and probe are shown in SEQ ID NOs: 4 to 6, respectively.
  • This set for detecting gyrB targets the region at positions 217 to 334 in the base sequence shown in SEQ ID NO: 12.
  • SEQ ID NO: 12 is a part of the gyrB sequence of Mycobacterium tuberculosis M. tuberculosis and is a region adopted as a DNA standard for gyrB in the following examples.
  • the dPCR probe can basically adopt the same principle as the real-time PCR probe.
  • the dPCR probe for detecting IS6110 and the dPCR probe for detecting gyrB may detect amplification by any of the intercalator method, TaqMan (registered trademark) probe method, and cycling probe method, but TaqMan (registered trademark) )
  • the probe method can be preferably employed.
  • a fluorescent dye as a reporter substance is bound to one end of the probe, and a quencher substance is bound to the other end.
  • a reporter substance is bound to the 5 ′ end and a quencher substance is bound to the 3 ′ end.
  • Various fluorescent dyes and quencher substances are known.
  • any fluorescent dye and quencher substance can be used for the dPCR probe for IS6110 detection and the dPCR probe for gyrB detection as long as the quenching of fluorescence before probe decomposition and the generation of fluorescence after probe decomposition occur appropriately. May be.
  • a PCR reaction solution is divided and injected into a very small reaction well.
  • the technique of performing is known. Any digital PCR may be used in the present invention.
  • the former method is called a droplet method, and the latter method is called a microwell method.
  • droplets formed in oil correspond to “small compartments”
  • reaction wells into which PCR reaction solutions are dividedly injected correspond to “small compartments”.
  • a very small amount of free (cell-free) Mycobacterium tuberculosis group-derived DNA present in the blood of a subject infected with M. tuberculosis group It can be detected with sensitivity.
  • the Mycobacterium spp. That cause diseases by infecting mammals such as humans include a group of bacteria collectively called non-tuberculous mycobacteria in addition to the Mycobacterium tuberculosis group. According to dPCR, it is possible to specifically detect the Mycobacterium tuberculosis group in distinction from nontuberculous mycobacteria.
  • each step of the method for detecting DNA derived from Mycobacterium tuberculosis by dPCR using the primer and probe set of the present invention will be described. It should be noted that at least one of IS6110 detection primer and probe set and gyrB detection primer and probe set may be used for detection of DNA derived from Mycobacterium tuberculosis group. If each assay is performed using two sets for one specimen, the accuracy of detection of Mycobacterium tuberculosis group can be further increased.
  • DNA used as a dPCR sample is prepared from a blood sample isolated from a subject.
  • the subject is a mammal, typically a human.
  • the term blood sample includes whole blood, plasma, and serum.
  • DNA may be extracted from serum, it is convenient and preferable to separate plasma from a whole blood sample and extract DNA from plasma to obtain a dPCR sample. Extraction of plasma DNA can be easily performed using a commercially available kit or the like. Methods for detecting M. tuberculosis-specific DNA in peripheral blood mononuclear cells are known (Condos R, et al. Lancet 1996, 347 (9008), p.1082-5 .; Taci N, et al.
  • the dPCR reaction solution can be prepared using a commercially available dPCR reagent containing a heat-resistant polymerase.
  • the primer concentration is preferably about 700 nM to 1100 nM, for example, about 800 nM to 1000 nM, and the probe concentration is about 100 nM to 150 nM, for example, 110 nM to 135 nM. . If the concentration of the primer is lower than this, the intensity of the fluorescence signal from each small section after the amplification reaction is greatly reduced, which is not desirable.
  • the probe concentration is higher than this, it is easy to generate false positives or gray zone subdivisions (called rain drops in the droplet method) that show intermediate fluorescence intensities that are difficult to determine as either positive or negative. Is not desirable.
  • the amount of the subject DNA sample when the total amount of the reaction solution is 20 ⁇ L, DNA corresponding to about 20 ⁇ L of plasma may be used.
  • the dPCR reaction solution is divided into a large number of small compartments.
  • the dPCR reaction solution is divided into a large number of small droplets in oil to form an emulsion.
  • the dPCR reaction solution is dividedly injected into a microreaction well on the chip.
  • division into small sections can be performed using a commercially available dedicated device.
  • the dPCR reaction solution may be divided so that the target DNA has a concentration of about 1 to 2 copies or less in a small compartment, and is not particularly limited, but the PCR reaction solution containing the subject DNA sample with the above total DNA amount What is necessary is just to divide 20 microliters into about tens of thousands, for example, about 10,000 to 30,000 small sections.
  • the amplification reaction After dividing into small sections, perform an amplification reaction using an appropriate PCR device.
  • the number of samples that can be processed simultaneously in a single run of an amplification reaction varies depending on the dPCR system used, but it is usually preferable to perform the amplification reaction immediately after the division of the dPCR reaction solution (particularly in the case of the droplet method). Divide the dPCR reaction solution as much as can be processed in one run.
  • the temperature of annealing and extension reaction it is desirable that the temperature of annealing and extension reaction be about 52 ° C. to 55 ° C. in both the IS6110 detection system and the gyrB detection system. When an annealing and extension reaction is performed at this temperature, a high fluorescence signal can be obtained after the amplification reaction.
  • the fluorescence signal from each small compartment is detected with an appropriate fluorescence reader.
  • a commercially available fluorescence reader dedicated to the dPCR system used may be used. Since the fluorescence signal is generated in the small compartment where the amplification has occurred, the number is counted with the small compartment producing the fluorescence as the positive small compartment.
  • the tuberculosis group-derived DNA is present in the blood of the subject, Therefore, it can be determined that the subject is infected with the Mycobacterium tuberculosis group.
  • the method of the present invention detects the infection of Mycobacterium tuberculosis group. In addition, it can also be used for monitoring tuberculosis group infection or the disease state of tuberculosis, evaluating the risk of developing tuberculosis, and determining the therapeutic effect of tuberculosis group infection or tuberculosis. That is, the method of the present invention can be performed to assist these actions by the physician.
  • the threshold can be set by dPCR using an appropriate DNA standard as a template.
  • a target gene region partial fragment containing the amplified region of the dPCR primer may be used.
  • a DNA standard for the IS6110 detection system a DNA fragment having the base sequence shown in SEQ ID NO: 11 is used, and as a DNA standard for the gryB detection system, a DNA fragment having the base sequence shown in SEQ ID NO: 12 is used. be able to.
  • Such a DNA fragment can be obtained by amplification by PCR using the genomic DNA of the Mycobacterium tuberculosis group (for example, M.
  • tubatuberculosis standard strain as a template.
  • the DNA standard is used as a template in the form of a linear DNA fragment, not in the form of circular DNA incorporated into plasmid DNA. By using it in a straight chain, the occurrence of gray zone small sections called rain drops in the droplet method can be greatly reduced, and an appropriate threshold value can be set.
  • the DNA standard reaction may be performed at least once per run of amplification reaction.
  • the dPCR reaction solution after dividing into small compartments is transferred to a 24-well plate or a 96-well plate and an amplification reaction is performed, it is sufficient to provide at least one well of the DNA standard reaction per plate.
  • at least one DNA standard microwell chip may be added to one run.
  • the fluorescence signal of each subcompartment is detected by the fluorescence reader in the same way as the subject sample, and the positive and negative subcompartments are appropriately determined by cluster analysis of the signal intensity of each subcompartment.
  • the threshold value to be divided is determined.
  • the cluster analysis is preferably performed by the nearest neighbor method. For example, the known k-nearest neighbor algorithm “definetherain” (Jones M, et al. J Virol Methods 2014; 202: 46-53.) Is preferably used. Can do.
  • the determined threshold value is applied to the subject sample that has been amplified simultaneously with the DNA standard. For example, when the amplification reaction of a large number of subject-derived samples is performed twice on two plates, the DNA standard added to the same first plate for the sample on the first plate Apply the threshold determined from the dPCR result of the sample, and apply the threshold determined from the dPCR result of the DNA standard added to the second plate to the second plate sample. Judgment of positive / negative of a small section of a sample derived from a person. A small compartment with a signal intensity exceeding the threshold is judged positive. In order to check for false positives, dPCR may also be performed as a negative control for the reaction solution without addition of template DNA.
  • the above-mentioned primers and probe sets for detecting DNA derived from Mycobacterium tuberculosis can be provided as a DNA detection reagent or kit for Mycobacterium tuberculosis for dPCR. Only one of the two types of primers and probe sets may be included, or both may be included.
  • the primer and probe may be in a dried form, in a form dissolved in a buffer solution or the like, or in a form in which the dried primer and probe are combined with a buffer solution or the like.
  • the reagent or kit may be in the form of a set of the linear DNA standards described above. Furthermore, the reagent or kit may be in the form of a set of other reagents necessary for dPCR.
  • Reagents other than primers and probes necessary for dPCR are well known.
  • a buffer solution for preparing a dPCR reaction solution, a heat resistant polymerase, or a dPCR containing a heat resistant polymerase and dNTPs in the buffer solution examples include a premix solution for preparing a reaction solution. Instructions for use are usually attached to the reagent or kit.
  • Pulmonary tuberculosis (PTB) patients were patients who were diagnosed with sputum smear positive pulmonary tuberculosis and were isolated and treated at Yokohama City University Hospital. PTB was diagnosed by a conventional nucleic acid amplification test using sputum specimens that were positive for acid-fast bacteria. Healthy controls were selected from the health care workers at the hospital. Regarding healthy controls, it was confirmed that there was no MTB infection history by a commercially available ELISPOT assay (T-SPOT.TB).
  • Non-tuberculous mycobacteria (NTM) patients were patients who met the diagnostic criteria of the American Thoracic Society and the American Infectious Diseases Society (Gutierrez-Aguirre I, et al. Methods Mol Biol 2015, 1302, p. 331-47.). Eleven strains of NTM obtained from sputum or bronchial lavage fluid of NTM patients (M. abscessus, M. avium, M. chelonae, M. fortuitum, M. gordonae, M. intracellulare, M. kansasii, M. marinum, M. scrofulaceum, M. szulgai, M. terrae).
  • Sample preparation Peripheral blood was collected from each subject using a vacutainer blood collection tube (Terumo) containing ETDA-2Na. Whole blood was centrifuged at 1500 rpm for 10 minutes to obtain a plasma sample. Total DNA was extracted from 200 ⁇ L of each plasma sample using Qiagen DNeasy Blood and Tissue Kit (Qiagen). The kit was basically used according to the attached instructions except that the amount of Buffer AE used during elution was reduced to 40 ⁇ L. All samples were processed within 8 hours after collection. Genomic DNA of each NTM strain was extracted from colonies on an egg-based solid medium (Ogawa medium) using the Qiagen DNeasy Blood and Tissue Kit. The extracted DNA sample was stored at ⁇ 80 ° C. until analysis.
  • Qiagen DNeasy Blood and Tissue Kit Qiagen DNeasy Blood and Tissue Kit
  • dPCR Primers and Probes Two sets of primers and probes were designed for detection of MTB specific genomic DNA sequences. One targeted the insertion sequence 6110 (IS6110; GenBank accession number X17348). This insertion sequence is conserved within the Mycobacterium tuberculosis group including M. tuberculosis (MTB), M. bovis, M. africanum, M. microti, M. canettii, M. caprae, and M. pinnipedii (Thierry D , et al. J Clin Microbiol 1990, 28 (12), p.2668-73.). The base sequences of primers and probes used for amplification of IS6110 are shown below.
  • the probe was bound with 6-carboxyfluorescein (FAM) as a reporter dye at the 5 'end and black hole quencher (BHQ-1) as a quencher dye at the 3' end.
  • FAM 6-carboxyfluorescein
  • BHQ-1 black hole quencher
  • Gyrase subunit B (gyrB; GenBank accession number AL123456.3). gyrB is also conserved within the Mycobacterium tuberculosis group (Kasai H, et al. J Clin Microbiol 2000, 38 (1), p.301-8; Niemann S, et al. J Clin Microbiol 2000, 38 (9), p.3231-4.). The base sequences of primers and probes used for amplification are shown below. The dye was bound to the probe in the same manner as the IS6110 probe.
  • gyrB forward AAGGACCGCAAGCTACTGAA (SEQ ID NO: 4)
  • gyrB reverse GTGTTGCCCAACTTGGTCTT (SEQ ID NO: 5)
  • gyrB probe [FAM] -ACCTCACCGGTGACGATATC- [BHQ-1] (SEQ ID NO: 6)
  • the double-stranded DNA fragment containing the region to be detected is the MTB standard strain (JATA KK11-291) genomic DNA as a template, and the primer set is IS6110 PC-F (AACGGCTGATGACCAAACTC, SEQ ID NO: 7) And IS6110 PC-R (GATCGTCTCGGCTAGTGCAT, SEQ ID NO: 8), or gyrB PC-F (CAAGAACGCGATTCATAGCA, SEQ ID NO: 9) and gyrB PC-R (TGGGTCAGCTGTTCGTTACA, SEQ ID NO: 10).
  • Each fragment was ligated into pCR-Blunt II TOPO vector (Invitrogen) and introduced into E.
  • coli DH5 ⁇ TOYOBO. Recombinant clones were selected on LB agar medium containing kanamycin (KM) and cultured in LB liquid medium containing KM. Plasmids were isolated using HighSpeed Plasmid Midi Kit (Qiagen) according to manufacturer's instructions. The concentration of plasmid DNA was calculated based on the molecular weight of the DNA, and the DNA solution was diluted with Tris-EDTA Buffer (Sigma-Aldrich) to 1.0 ⁇ 10 4 copies / ⁇ L.
  • Tris-EDTA Buffer Sigma-Aldrich
  • dPCR reaction solution for clinical specimen assay was prepared as follows; mix 10 ⁇ L dPCR Probe Supermix (BioRad), 900 nM each primer, 125 nM probe, 4 ⁇ L sample. DNase and RNase-free ultrapure water was used to make 20 ⁇ L.
  • the reaction solution was loaded on a QX200 Droplet Generator (BioRad) to generate microdroplets. The produced emulsion of droplets was transferred to a 96-well PCR plate (Eppendorf), sealed with a foil heat seal (Eppendorf), and heated at 180 ° C. for 5 seconds. Subsequently, amplification reaction was performed using C1000 touch thermal cycler (BioRad). The reaction conditions were 95 ° C.
  • the temperature gradient rate was set to 2.0 ° C./second.
  • the emulsion produced by the Droplet Generator was immediately subjected to an amplification reaction, and the endpoint fluorescence signal from each droplet in the emulsion was measured using a QX200 Droplet Reader (BioRad). Each sample and each target assay was performed in duplicate. To avoid contamination inside the QX200 Droplet Reader, the standard fluorescence was analyzed last.
  • the fluorescence intensity data after amplification reaction of each droplet was exported as a csv file from QuantaSoft droplet reader software (version 1.7.4, BioRad).
  • the threshold for selecting positive droplets depends on the fluorescence intensity of the standard droplets applied to the k-nearest neighbor algorithm “definetherain” (Jones M, et al. J Virol Methods 2014, 202, p.46-53.). Were determined.
  • ⁇ Result> 1 Optimization of dPCR conditions (1) Examination of annealing temperature The dPCR reaction conditions were optimized using DNA standards prepared for each of the two target genes. First, gradient PCR amplification was performed in the range of 50 ° C. to 60 ° C. in order to determine the annealing temperature. As a result, all of the IS6110 detection primer and the gyrB detection primer had Tm values of about 60 ° C., but the fluorescence intensity was highest at 54 ° C. in any assay (FIG. 1). Therefore, the temperature of annealing and extension reaction in dPCR of clinical specimens was set to 54 ° C.
  • FIG. 2 shows the result of dPCR using the DNA standard prepared above as a template at a concentration of 10 4 to 10 9 and an annealing and extension reaction temperature of 54 ° C. Drop was recognized. Since it is not possible to define an appropriate threshold value as it is, measures for this rain drop were examined.
  • the plasmid was cleaved on both sides of the insert by EcoRI digestion, and dPCR was performed using the linearized insert fragment as a template. As a result, as shown in FIG. 3, raindrops were significantly reduced. This makes it possible to accurately define the threshold value.
  • the recommended manufacturer concentration of primers and probes is 900 nM for the primer and 250 nM for the probe.
  • the primer and probe for IS6110 were subjected to dPCR using EcoRI-digested standard DNA as a template and the primer and probe concentrations varied.
  • the primer concentration was 450 nM and 900 nM
  • the probe concentration was 125 nM and 250 nM. The results are shown in FIG. When the primer concentration was 450 nM, the fluorescence intensity was significantly reduced. Therefore, it was considered that the primer should be 900 nM.
  • the probe concentration was compared between 125 nM and 250 nM in both the IS6110 detection system and the gyrB detection system. The results are shown in FIG. At a probe concentration of 250 nM, one false positive droplet was observed in the IS6110 detection system. Also, 250nM had more raindrops than 125nM. The purpose of this study was to detect low copy number of DNA, so the appropriate probe concentration was 125 nM with few false positives.
  • Detectability of plasma DNA in PTB patients was evaluated by receiver operating characteristic (ROC) analysis (FIG. 7).
  • the sensitivity of IS6110 detection is 83% and the specificity is 93% at the DNA concentration of the 1.5 copy / 20 ⁇ L reaction solution, and the sensitivity of gyrB detection is 58% and the specificity at the DNA concentration of the 0.35 copy / 20 ⁇ L reaction solution.
  • ROC receiver operating characteristic
  • the IS6110 detection assay was 36 copies / 20 ⁇ L and the gyrB detection assay was 6.3 copies / 20 ⁇ L.
  • the IS6110 detection assay was over 2000 copies / 20 ⁇ L (2430 and 2260 copies / 20 ⁇ L, respectively). One of the two had very severe clinical symptoms and died 3 weeks after starting standard treatment.
  • NTM strains showed a maximum of 2 positive droplets per assay and were evaluated as false positives as above.
  • the dPCR assay system established here was able to detect cell-free M. tuberculosis group DNA present in minute amounts in the blood of patients infected with M. tuberculosis group. Even less than 10 copies per reaction solution can be quantified, confirming that the detection sensitivity is very high.
  • qPCR quantitative real-time PCR
  • dPCR assay system established by the present inventors using blood samples from 24 patients with sputum smear-positive pulmonary tuberculosis .
  • qPCR uses the same primers and probes used in dPCR, including 10 ⁇ L TaqMan Fast Advanced Master Mix (Applied Biosystems, USA Foster City), 900 nM each primer, 125 nM probe, 4 ⁇ L template DNA The reaction was performed in 20 ⁇ L of the reaction solution. Reaction solutions were prepared in duplicate for each sample, and the reaction was performed in a 96-well reaction plate using StepOnePlus Real-Time PCR System (Applied Biosystems).
  • reaction conditions were 95 ° C. for 20 seconds and 60 ° C. for 20 seconds for 40 cycles.
  • a 10-fold serial dilution series of plasmid DNA standards of IS6110 and gyrB was prepared in duplicate and included in each plate, and these were measured to create a standard curve.
  • the patient was a 63-year-old male who was severely immunocompromised due to hematopoietic stem cell transplantation for the treatment of acute myeloid leukemia. Fever and inflammation continued, with pancytopenia and abnormal clotting.
  • Whole body CT scan revealed many granular shadows throughout the lung, suggesting disseminated MTB infection.
  • anti-acid staining, culture and conventional MTB real-time PCR test Cobas TaqMan MTB, Roche Diagnostics, Basel, Switzerland
  • T-SPOT. TB test (Oxford Immunotec, Oxford UK) are all negative. Met.
  • the urine Mycobacterium culture was positive, but the real-time PCR test (Cobas TaqMan MTB / MAI, Roche Diagnostics) for MTB and MAC (Mycobacterium avium complex) was negative. It was not possible to identify what was cultured. A biopsy of the liver or bone marrow for further examination was infeasible due to bleeding characteristics.
  • circulating MTB-DNA in plasma was detected using the blood sample of the patient by the dPCR assay system targeting the IS6110 gene established by the inventors of the present invention as described above.
  • the conditions for dPCR were such that the primer concentration was 900 nM, the probe concentration was 125 nM, and the annealing and extension reaction temperatures were 54 ° C.
  • the threshold was determined manually, and droplets exceeding the threshold were considered positive.
  • the DNA standard the plasmid DNA containing the IS6110 gene fragment constructed above was digested with EcoRI and linearized. The results of repeated analysis were all positive (16.4 copies / well, 9.8 copies / well), and MTB infection was detected (FIG. 8).

Abstract

As a result of in-depth research of primary and probe designs, digital PCR conditions, and the like with which the various bacterial strains of tuberculosis complex can be detected in order to establish a method for detecting tuberculosis complex-derived DNA in plasma by digital PCR, the inventors of the present invention established a method with which tuberculosis complex-derived DNA can be detected from the plasma of a tuberculosis patient on a level of several copies/20 µL reaction solution by digital PCR using a specific primer and probe targeting IS6110 and gyrB.

Description

結核菌群由来DNAの検出方法Method for detecting DNA derived from Mycobacterium tuberculosis
 本発明は、デジタルPCR(以下、「dPCR」と記載することがある)により結核菌群由来DNAを検出するためのプライマー及びプローブセット、並びに該セットを用いた血液試料からの結核菌群由来DNAの検出方法に関する。 The present invention relates to a primer and probe set for detecting DNA derived from Mycobacterium tuberculosis by digital PCR (hereinafter sometimes referred to as “dPCR”), and DNA derived from Mycobacterium tuberculosis from a blood sample using the set. It relates to the detection method.
 肺結核は現在においても脅威的な感染症の一つであり、世界中で毎年900万人が発症し、150万人が死亡している(非特許文献1)。肺結核の診断法としては、喀痰の塗抹・培養検査がゴールドスタンダードである。しかしながら、当該検査法では診断に苦慮することが少なくなく、診断の遅れによって感染の拡大や結核菌の耐性化の誘導などが問題となることがある。 Pulmonary tuberculosis is still one of the threatening infectious diseases, and 9 million people develop and 1.5 million people die every year worldwide (Non-patent Document 1). As a diagnostic method for pulmonary tuberculosis, sputum smear and culture tests are the gold standard. However, this test method often has difficulty in diagnosis, and delays in diagnosis may cause problems such as spread of infection and induction of tuberculosis resistance.
 その欠点を補う診断方法として発達してきたのが、PCRやLAMPなどの核酸増幅検査法である(非特許文献2~8)。核酸増幅検査法による診断では、結核菌を特異的に検出するためのターゲット領域として、反復配列IS6110、ジャイレースサブユニットB(gyrB)遺伝子などが用いられている(特許文献1、2など)。しかしながら、核酸増幅検査法においても検体は通常喀痰を使用している。喀痰検体の採取時には病原体の拡散を防ぐために慎重な予防手段が必要とされる。喀痰を採取しにくい場合もあり、診断に苦慮することが少なくない。また結核菌は呼吸器以外にも感染するため、好適な検体を得るために侵襲的な処置が必要となることもある。 Nucleic acid amplification testing methods such as PCR and LAMP have been developed as diagnostic methods to compensate for the drawbacks (Non-Patent Documents 2 to 8). In the diagnosis by the nucleic acid amplification test method, a repetitive sequence IS6110, a gyrase subunit B (gyrB) gene, and the like are used as target regions for specifically detecting Mycobacterium tuberculosis (Patent Documents 1 and 2, etc.). However, specimens usually use sputum in the nucleic acid amplification test method. When collecting sputum samples, careful precautions are required to prevent the spread of pathogens. Sometimes it is difficult to collect sputum, and diagnosis is often difficult. Moreover, since tuberculosis bacteria infect other than respiratory organs, invasive treatment may be necessary to obtain a suitable specimen.
 低侵襲で入手可能な喀痰に替わる検体として、尿や末梢血単核球などを用いた核酸増幅検査法が報告されている(非特許文献9~14)。しかしながら、これらの検査法も、感度などの点から臨床的に使用されるまでには至っていない。 Nucleic acid amplification test methods using urine, peripheral blood mononuclear cells, etc. have been reported as a sample that replaces the minimally invasive sputum (Non-Patent Documents 9 to 14). However, these examination methods have not yet been clinically used in terms of sensitivity.
米国特許出願第2013/0164756号公報US Patent Application No. 2013/0164756 特開平11-290079号公報Japanese Patent Laid-Open No. 11-290079
 本発明は、低侵襲で感染拡大のリスクが少なく、かつ安定して採取可能な検体を利用して、正確かつ迅速に結核菌感染を診断することができる手段を提供することを目的とする。 An object of the present invention is to provide means capable of accurately and promptly diagnosing Mycobacterium tuberculosis infection using a sample that is minimally invasive, has a low risk of infection spread, and can be collected stably.
 本願発明者らは、尿中に結核菌のDNAが検出されるという事実から、結核菌感染患者の血漿中には細胞フリーの遊離の結核菌DNAが極低濃度ではあるが存在している可能性があると考えた。そして、極低コピー数のDNAの検出に高い感度を発揮できる、近年開発されたデジタルPCR技術に着目し、デジタルPCRにより血漿中の結核菌由来DNAを検出する手法の確立を目指し、結核菌群の各種菌株を検出可能なプライマー及びプローブの設計、デジタルPCRの条件等について鋭意に研究した結果、IS6110及びgyrBを標的とする特定のプライマー及びプローブのセットを用いたデジタルPCRにより、結核患者の血漿から結核菌群由来DNAを数コピー/20μL反応液というレベルで検出することに成功し、本願発明を完成した。 Due to the fact that M. tuberculosis DNA is detected in the urine, the present inventors may have a very low concentration of cell-free free M. tuberculosis DNA in the plasma of patients infected with M. tuberculosis. I thought that there was sex. Focusing on the recently developed digital PCR technology that can demonstrate high sensitivity in detecting extremely low copy number DNA, we aim to establish a method to detect M. tuberculosis-derived DNA in plasma by digital PCR. As a result of diligent research on the design of primers and probes capable of detecting various strains of, and the conditions of digital PCR, plasma of tuberculosis patients was obtained by digital PCR using specific primer and probe sets targeting IS6110 and gyrB. The present invention was completed by successfully detecting M. tuberculosis group-derived DNA at a level of several copies / 20 μL reaction solution.
 すなわち、本発明は、配列番号1に示す塩基配列のフォワードプライマー、配列番号2に示す塩基配列のリバースプライマー、及び配列番号3に示す塩基配列のプローブを含む、結核菌群IS6110検出用デジタルPCRプライマー及びプローブセットを提供する。また、本発明は、配列番号4に示す塩基配列のフォワードプライマー、配列番号5に示す塩基配列のリバースプライマー、及び配列番号6に示す塩基配列のプローブを含む、結核菌群gyrB検出用デジタルPCRプライマー及びプローブセットを提供する。さらに、本発明は、被検者から分離された血液試料より抽出されたDNAを鋳型とし、上記本発明のプライマー及びプローブセットの少なくともいずれかを用いてデジタルPCRを行なうことを含む、結核菌群由来DNAの検出方法を提供する。さらに、本発明は、上記本発明のプライマー及びプローブセットの少なくともいずれかを含む、デジタルPCR用の結核菌群由来DNA検出試薬又はキットを提供する。 That is, the present invention is a digital PCR primer for detecting Mycobacterium tuberculosis group IS6110, comprising a forward primer having the base sequence shown in SEQ ID NO: 1, a reverse primer having the base sequence shown in SEQ ID NO: 2, and a probe having the base sequence shown in SEQ ID NO: 3. And a probe set. The present invention also relates to a digital PCR primer for detecting Mycobacterium tuberculosis group gyrB, comprising a forward primer having the base sequence shown in SEQ ID NO: 4, a reverse primer having the base sequence shown in SEQ ID NO: 5, and a probe having the base sequence shown in SEQ ID NO: 6. And a probe set. Furthermore, the present invention comprises a tuberculosis group comprising DNA PCR extracted from a blood sample isolated from a subject and performing digital PCR using at least one of the primer and probe set of the present invention. Provided is a method for detecting a derived DNA. Furthermore, the present invention provides a tuberculosis group-derived DNA detection reagent or kit for digital PCR, comprising at least one of the primer and probe set of the present invention.
 本発明により、血漿サンプルから非結核性抗酸菌と区別して結核菌群由来DNAを特異的に検出し、結核菌群感染の検出等を可能にする手段が初めて提供される。本発明によれば、反応液当たり10コピー未満という低コピー数でも結核菌群由来DNAを検出可能であり、検出感度は極めて高い。血液検体は安定して入手可能であり、喀痰や内視鏡洗浄液などの呼吸器由来検体の採取が難しい小児等の被検者からも検体を得ることができる。呼吸器以外に感染している症例においても、血液検体であれば低侵襲で採取できる。また喀痰検体の採取のように病原体を拡散するリスクがない。血漿中の結核菌群由来DNAを定量的に検出することで、結核菌群感染の検出のみならず、結核菌群感染症ないしは結核症の病勢のモニター、結核症発症リスクの評価、結核菌群感染症ないしは結核症の治療効果の判定等も可能になる。 According to the present invention, for the first time, a means for specifically detecting a tuberculosis group-derived DNA by distinguishing it from non-tuberculous mycobacteria from a plasma sample to enable detection of M. tuberculosis group infection and the like is provided. According to the present invention, M. tuberculosis group-derived DNA can be detected even with a low copy number of less than 10 copies per reaction solution, and the detection sensitivity is extremely high. Blood samples can be obtained stably, and samples can be obtained from subjects such as children who are difficult to collect respiratory-derived samples such as sputum and endoscope washing liquid. Even in cases infected with respiratory organs, blood samples can be collected with minimal invasiveness. There is no risk of spreading pathogens like collecting sputum samples. Quantitative detection of Mycobacterium tuberculosis group-derived DNA in plasma not only detects Mycobacterium tuberculosis infection, but also monitors Mycobacterium tuberculosis infection or disease status, evaluates the risk of developing Mycobacterium tuberculosis, It is possible to determine the therapeutic effect of infectious disease or tuberculosis.
構築したDNAスタンダードを鋳型として用いてIS6110検出用dPCRプライマー及びgyrB検出用dPCRプライマーのアニーリング温度を検討した結果である。It is the result of examining the annealing temperature of the dPCR primer for IS6110 detection and the dPCR primer for gyrB detection using the constructed DNA standard as a template. 構築したDNAスタンダードを図示した濃度で鋳型とし、アニーリング及び伸長反応の温度を54℃としてdPCRを行なった結果である。It is the result of performing dPCR using the constructed DNA standard as a template at the concentration shown in the figure, and the annealing and extension reaction temperature at 54 ° C. プラスミドDNAの状態のDNAスタンダード(消化前)、及び制限酵素により切り出したインサートDNA(消化後)を鋳型としてdPCRを行なった結果である。It is the result of performing dPCR using a DNA standard in the state of plasmid DNA (before digestion) and an insert DNA excised with a restriction enzyme (after digestion) as a template. IS6110検出系を用いてプライマー及びプローブの使用濃度を検討した結果である。It is the result of examining the use concentration of a primer and a probe using IS6110 detection system. IS6110検出系及びgyrB検出系の両者において、プローブ濃度を125nMと250nMで比較検討した結果である。It is the result of comparing and examining the probe concentration at 125 nM and 250 nM in both the IS6110 detection system and the gyrB detection system. PTB患者、コントロール、及びNTM患者の血液サンプルをdPCRにより解析した結果である。20μLのdPCR反応液中にインプットしたMTBのDNAの濃度はポアソン分布により算出した。2回のdPCRアッセイの結果の平均数をプロットした。水平バーは2回のアッセイの中央値及び標準偏差を示す。It is the result of having analyzed the blood sample of PTB patient, control, and NTM patient by dPCR. The concentration of MTB DNA input into 20 μL of dPCR reaction solution was calculated by Poisson distribution. The average number of results from two dPCR assays was plotted. The horizontal bar shows the median and standard deviation of the two assays. ROC解析により各dPCRアッセイのPTB患者血漿中MTB由来DNAの検出能を評価した結果である。It is the result of evaluating the detectability of MTB-derived DNA in PTB patient plasma of each dPCR assay by ROC analysis. 従来の検査法ではMTB感染を診断できなかった播種性MTB感染症例について、dPCR IS6110検出系により血漿中のMTB DNAを検出した結果である。NTC: 鋳型非添加のネガティブコントロール。This is the result of detecting MTB DNA in plasma by a dPCR IS6110 detection system for disseminated MTB infection cases for which MTB infection could not be diagnosed by conventional testing methods. NTC: Negative control with no addition of mold.
 本発明では、結核菌群感染患者の血漿中に含まれる微小量の結核菌群由来DNAをデジタルPCRにより検出する。デジタルPCRとは、PCR反応液を微小量の多数の小区画に分割してPCRを実施し、増幅が検出された小区画の数に基づいてターゲットDNAを検出、定量するという技術である。 In the present invention, a minute amount of DNA derived from Mycobacterium tuberculosis group contained in the plasma of a patient infected with Mycobacterium tuberculosis group is detected by digital PCR. Digital PCR is a technique in which a PCR reaction solution is divided into a large number of small compartments, PCR is performed, and target DNA is detected and quantified based on the number of small compartments in which amplification is detected.
 結核菌群という語には、Mycobaterium tuberculosis(MTB)、M. bovis、M. africanum、M. microti、M. canettii、M. caprae、及びM. pinnipediiが包含される。これらのうち、ヒトに結核症を引き起こすものは主としてM. tuberculosisである。本発明で標的とする遺伝子領域は、結核菌群に分類される上記のマイコバクテリウム属菌において保存されているため、結核菌群の各種株を検出可能である。なお、本発明において、「検出」という語には、定性的検出、定量的検出、及び半定量的検出が包含される。 The term tuberculosis group includes Mycobaterium tuberculosis (MTB), M. bovis, M. 、 africanum, M. microti, M. canettii, M. caprae, and M. pinnipedii. Of these, the one that causes tuberculosis in humans is primarily M. tuberculosis. Since the gene region targeted in the present invention is conserved in the above-mentioned Mycobacterium belonging to the Mycobacterium group, various strains of the Mycobacterium group can be detected. In the present invention, the term “detection” includes qualitative detection, quantitative detection, and semi-quantitative detection.
 結核菌群検出用のデジタルPCRプライマー及びプローブセットの1つは、結核菌群ゲノム中に存在する反復配列IS6110(GenBankアクセッション番号X17348など)をターゲットとする。IS6110検出用のフォワードプライマー、リバースプライマー、及びプローブの塩基配列をそれぞれ配列番号1~3に示す。IS6110検出用の当該セットは、配列番号11に示す塩基配列中の311位~381位の領域をターゲットとする。なお、配列番号11は、結核菌M. tuberculosisのIS6110配列の一部であり、下記実施例でIS6110用のDNAスタンダードに採用した領域である。 One of the digital PCR primers and probe sets for detecting Mycobacterium tuberculosis is targeted at the repetitive sequence IS6110 (GenBank accession number X17348 etc.) present in the Mycobacterium tuberculosis complex genome. The nucleotide sequences of the forward primer, reverse primer, and probe for detecting IS6110 are shown in SEQ ID NOs: 1 to 3, respectively. This set for detecting IS6110 targets the region from position 311 to position 381 in the base sequence shown in SEQ ID NO: 11. SEQ ID NO: 11 is a part of the IS6110 sequence of Mycobacterium tuberculosis M. tuberculosis, and is a region adopted as a DNA standard for IS6110 in the following examples.
 結核菌群検出用デジタルPCRプライマー及びプローブセットのもう1つは、ジャイレースのサブユニットBをコードする遺伝子(gyrB、GenBankアクセッション番号AL123456.3など)をターゲットとする。gyrB検出用のフォワードプライマー、リバースプライマー、及びプローブの塩基配列をそれぞれ配列番号4~6に示す。gyrB検出用の当該セットは、配列番号12に示す塩基配列中の217位~334位の領域をターゲットとする。なお、配列番号12は、結核菌M. tuberculosisのgyrB配列の一部であり、下記実施例でgyrB用のDNAスタンダードに採用した領域である。 Another digital PCR primer and probe set for detecting Mycobacterium tuberculosis group targets genes encoding gyrase subunit B (gyrB, GenBank accession number AL123456.3, etc.). The base sequences of gyrB detection forward primer, reverse primer and probe are shown in SEQ ID NOs: 4 to 6, respectively. This set for detecting gyrB targets the region at positions 217 to 334 in the base sequence shown in SEQ ID NO: 12. SEQ ID NO: 12 is a part of the gyrB sequence of Mycobacterium tuberculosis M. tuberculosis and is a region adopted as a DNA standard for gyrB in the following examples.
 dPCRプローブは、基本的には、リアルタイムPCRプローブと同様の原理を採用できる。IS6110検出用のdPCRプローブ、及びgyrB検出用のdPCRプローブも、インターカレーター法、TaqMan(登録商標)プローブ法、サイクリングプローブ法のいずれで増幅を検出するものであってもよいが、TaqMan(登録商標)プローブ法を好ましく採用できる。TaqMan(登録商標)プローブ法では、プローブの片方の末端にレポーター物質として蛍光色素を、他方の末端にクエンチャー物質を結合させる。5'末端にレポーター物質を、3'末端にクエンチャー物質を結合させるのが一般的である。蛍光色素及びクエンチャー物質は各種のものが知られている。IS6110検出用dPCRプローブ、及びgyrB検出用dPCRプローブには、プローブ分解前の蛍光のクエンチングとプローブ分解後の蛍光の発生が適切に生じる組み合わせであれば、いずれの蛍光色素及びクエンチャー物質を用いてもよい。 The dPCR probe can basically adopt the same principle as the real-time PCR probe. The dPCR probe for detecting IS6110 and the dPCR probe for detecting gyrB may detect amplification by any of the intercalator method, TaqMan (registered trademark) probe method, and cycling probe method, but TaqMan (registered trademark) ) The probe method can be preferably employed. In the TaqMan (registered trademark) probe method, a fluorescent dye as a reporter substance is bound to one end of the probe, and a quencher substance is bound to the other end. Generally, a reporter substance is bound to the 5 ′ end and a quencher substance is bound to the 3 ′ end. Various fluorescent dyes and quencher substances are known. Any fluorescent dye and quencher substance can be used for the dPCR probe for IS6110 detection and the dPCR probe for gyrB detection as long as the quenching of fluorescence before probe decomposition and the generation of fluorescence after probe decomposition occur appropriately. May be.
 デジタルPCRの手法としては、オイル中に微小体積のPCR反応液のドロップレットを形成させ、エマルジョン中で増幅反応を行なう手法の他、極微小な反応ウェルにPCR反応液を分割注入してPCR反応を行なうという手法が知られている。本発明におけるデジタルPCRはいずれでもよい。本明細書では、便宜上、前者の手法をドロップレット法、後者の手法を微小ウェル法と呼ぶ。ドロップレット法では、オイル中に形成されたドロップレットが「小区画」に該当し、微小ウェル法では、PCR反応液を分割注入する反応ウェルが「小区画」に該当する。 As a method of digital PCR, in addition to a method of forming a droplet of a PCR reaction solution of a small volume in oil and performing an amplification reaction in an emulsion, a PCR reaction solution is divided and injected into a very small reaction well. The technique of performing is known. Any digital PCR may be used in the present invention. In this specification, for convenience, the former method is called a droplet method, and the latter method is called a microwell method. In the droplet method, droplets formed in oil correspond to “small compartments”, and in the microwell method, reaction wells into which PCR reaction solutions are dividedly injected correspond to “small compartments”.
 上記のプライマー及びプローブセットを用いてdPCRを行なえば、結核菌群に感染している被検者の血中に存在する微小量の遊離の(細胞フリーの)結核菌群由来DNAを非常に高い感度で検出することができる。ヒトなどの哺乳類に感染して疾患を引き起こすマイコバクテリウム属菌には、結核菌群の他に非結核性抗酸菌と総称される細菌群があるが、上記のプライマー及びプローブセットを用いたdPCRによれば、非結核性抗酸菌とは区別して結核菌群を特異的に検出できる。 When dPCR is performed using the above primer and probe set, a very small amount of free (cell-free) Mycobacterium tuberculosis group-derived DNA present in the blood of a subject infected with M. tuberculosis group It can be detected with sensitivity. The Mycobacterium spp. That cause diseases by infecting mammals such as humans include a group of bacteria collectively called non-tuberculous mycobacteria in addition to the Mycobacterium tuberculosis group. According to dPCR, it is possible to specifically detect the Mycobacterium tuberculosis group in distinction from nontuberculous mycobacteria.
 以下、本発明のプライマー及びプローブセットを用いたdPCRによる結核菌群由来DNAの検出方法の各工程について説明する。なお、結核菌群由来DNAの検出には、IS6110検出用プライマー及びプローブセット並びにgyrB検出用プライマー及びプローブセットの少なくともいずれかを用いればよい。1検体について2つのセットを用いて各アッセイを行なえば、結核菌群の検出の精度をより高めることができる。 Hereinafter, each step of the method for detecting DNA derived from Mycobacterium tuberculosis by dPCR using the primer and probe set of the present invention will be described. It should be noted that at least one of IS6110 detection primer and probe set and gyrB detection primer and probe set may be used for detection of DNA derived from Mycobacterium tuberculosis group. If each assay is performed using two sets for one specimen, the accuracy of detection of Mycobacterium tuberculosis group can be further increased.
 dPCRのサンプルとなるDNAは、被検者から分離された血液試料から調製される。被検者は哺乳動物であり、典型的にはヒトである。血液試料という語には、全血、血漿、及び血清が包含される。血清からDNAを抽出してもよいが、全血試料から血漿を分離し、血漿からDNAを抽出してdPCRサンプルとすることが簡便で好ましい。血漿中DNAの抽出は市販のキット等を用いて容易に行うことができる。末梢血単核球中の結核菌特異的DNAを検出する手法は公知であるが(Condos R, et al. Lancet 1996, 347(9008), p.1082-5.; Taci N, et al. Respir Med 2003, 97(6), p.676-81.; Ahmed N, et al. J Clin Microbiol 1998, 36(10), p.3094-5.)、本発明では血中に存在する細胞フリーの結核菌群DNAをターゲットとしているので、全血から末梢血単核球を分離するための処理工程や、DNA精製に用いる細胞数の調整などの煩雑な工程は不要である。 DNA used as a dPCR sample is prepared from a blood sample isolated from a subject. The subject is a mammal, typically a human. The term blood sample includes whole blood, plasma, and serum. Although DNA may be extracted from serum, it is convenient and preferable to separate plasma from a whole blood sample and extract DNA from plasma to obtain a dPCR sample. Extraction of plasma DNA can be easily performed using a commercially available kit or the like. Methods for detecting M. tuberculosis-specific DNA in peripheral blood mononuclear cells are known (Condos R, et al. Lancet 1996, 347 (9008), p.1082-5 .; Taci N, et al. Respir Med 2003, 97 (6), p.676-81 .; Ahmed N, et al. J Clin Microbiol 1998, 36 (10), p.3094-5. Since M. tuberculosis group DNA is targeted, complicated steps such as a treatment step for separating peripheral blood mononuclear cells from whole blood and adjustment of the number of cells used for DNA purification are unnecessary.
 dPCR反応液は、耐熱性ポリメラーゼを含む市販のdPCR用試薬を用いて調製できる。IS6110検出系、gyrB検出系のいずれも、プライマーの使用濃度はフォワード、リバースそれぞれ700nM~1100nM程度、例えば800nM~1000nM程度、プローブの使用濃度は100nM~150nM程度、例えば110nM~135nMとすることが好ましい。プライマーの濃度がこれよりも低いと、増幅反応後の各小区画からの蛍光シグナルの強度が大きく低下してしまうため、望ましくない。また、プローブの濃度がこれよりも高いと、偽陽性や、陽性とも陰性とも判断し難い中間の蛍光強度を示すグレーゾーンの小区画(ドロップレット法ではレインドロップと呼ばれる)が発生しやすくなるため、望ましくない。被検者DNAサンプルの量は、反応液の総量を20μLとする場合、血漿20μL程度相当のDNAを用いればよい。 The dPCR reaction solution can be prepared using a commercially available dPCR reagent containing a heat-resistant polymerase. In both the IS6110 detection system and the gyrB detection system, the primer concentration is preferably about 700 nM to 1100 nM, for example, about 800 nM to 1000 nM, and the probe concentration is about 100 nM to 150 nM, for example, 110 nM to 135 nM. . If the concentration of the primer is lower than this, the intensity of the fluorescence signal from each small section after the amplification reaction is greatly reduced, which is not desirable. Also, if the probe concentration is higher than this, it is easy to generate false positives or gray zone subdivisions (called rain drops in the droplet method) that show intermediate fluorescence intensities that are difficult to determine as either positive or negative. Is not desirable. As for the amount of the subject DNA sample, when the total amount of the reaction solution is 20 μL, DNA corresponding to about 20 μL of plasma may be used.
 次いで、dPCR反応液を多数の小区画に分割する。ドロップレット法では、dPCR反応液を微小体積の多数のドロップレットとしてオイル中に分割し、エマルジョンを形成させる。微小ウェル法では、チップ上の微小な反応ウェルにdPCR反応液を分割注入する。いずれの手法でも、小区画への分割は市販の専用の装置を用いて実施することができる。dPCR反応液は、ターゲットDNAが小区画中に1~2コピー程度以下の濃度となるように分割すればよく、特に限定されないが、上記の総DNA量で被検者DNAサンプルを含むPCR反応液20μLを数万個程度、例えば1万~3万個程度の小区画に分割すればよい。 Next, the dPCR reaction solution is divided into a large number of small compartments. In the droplet method, the dPCR reaction solution is divided into a large number of small droplets in oil to form an emulsion. In the microwell method, the dPCR reaction solution is dividedly injected into a microreaction well on the chip. In any method, division into small sections can be performed using a commercially available dedicated device. The dPCR reaction solution may be divided so that the target DNA has a concentration of about 1 to 2 copies or less in a small compartment, and is not particularly limited, but the PCR reaction solution containing the subject DNA sample with the above total DNA amount What is necessary is just to divide 20 microliters into about tens of thousands, for example, about 10,000 to 30,000 small sections.
 小区画に分割後、適当なPCR装置を用いて増幅反応を行なう。増幅反応の1回のランで同時に処理できるサンプル数は使用するdPCRシステムにより異なるが、dPCR反応液の分割後は速やかに増幅反応に付すことが通常好ましいので(特にドロップレット法の場合)、1回のランで処理できる分だけdPCR反応液の分割を行なうようにする。増幅反応の条件は、IS6110検出系、gyrB検出系のいずれも、アニーリング及び伸長反応の温度を52℃~55℃程度とすることが望ましい。この温度でアニーリング及び伸長反応を行なうと、増幅反応後に高い蛍光シグナルを得ることができる。 After dividing into small sections, perform an amplification reaction using an appropriate PCR device. The number of samples that can be processed simultaneously in a single run of an amplification reaction varies depending on the dPCR system used, but it is usually preferable to perform the amplification reaction immediately after the division of the dPCR reaction solution (particularly in the case of the droplet method). Divide the dPCR reaction solution as much as can be processed in one run. As conditions for the amplification reaction, it is desirable that the temperature of annealing and extension reaction be about 52 ° C. to 55 ° C. in both the IS6110 detection system and the gyrB detection system. When an annealing and extension reaction is performed at this temperature, a high fluorescence signal can be obtained after the amplification reaction.
 増幅反応後、適当な蛍光リーダーにより各小区画からの蛍光シグナルを検出する。使用したdPCRシステム専用の市販の蛍光リーダーを用いればよい。増幅が生じた小区画では蛍光シグナルが生じるので、蛍光を生じた小区画を陽性小区画として数をカウントする。被検者サンプルで数個以上(例えば3個以上、4個以上、又は5個以上)の陽性小区画が検出された場合、該被検者の血中に結核菌群由来DNAが存在し、従って該被検者は結核菌群に感染していると判断することができる。また、陽性小区画の数は血中の結核菌群由来DNAの量を、ひいては被検者体内の結核菌群の増殖量を反映することから、本発明の方法は、結核菌群感染の検出の他、結核菌群感染症ないしは結核症の病勢のモニター、結核症発症リスクの評価、結核菌群感染症ないしは結核症の治療効果の判定等にも利用することができる。すなわち、本発明の方法は、医師によるこれらの行為を補助するために行なうことができる。 After the amplification reaction, the fluorescence signal from each small compartment is detected with an appropriate fluorescence reader. A commercially available fluorescence reader dedicated to the dPCR system used may be used. Since the fluorescence signal is generated in the small compartment where the amplification has occurred, the number is counted with the small compartment producing the fluorescence as the positive small compartment. When several or more (for example, 3 or more, 4 or more, or 5 or more) positive subcompartments are detected in the subject sample, the tuberculosis group-derived DNA is present in the blood of the subject, Therefore, it can be determined that the subject is infected with the Mycobacterium tuberculosis group. In addition, since the number of positive subdivisions reflects the amount of DNA derived from Mycobacterium tuberculosis group in the blood, and hence the amount of Mycobacterium tuberculosis group in the body of the subject, the method of the present invention detects the infection of Mycobacterium tuberculosis group. In addition, it can also be used for monitoring tuberculosis group infection or the disease state of tuberculosis, evaluating the risk of developing tuberculosis, and determining the therapeutic effect of tuberculosis group infection or tuberculosis. That is, the method of the present invention can be performed to assist these actions by the physician.
 小区画の陽性・陰性を適切に判別するためには、陽性小区画の判別のための閾値を設定することが望ましい。閾値は、適当なDNAスタンダードを鋳型として用いたdPCRにより設定することができる。DNAスタンダードは、dPCRプライマーの増幅領域を含む対象遺伝子領域部分断片を用いればよい。例えば、IS6110検出系のためのDNAスタンダードとしては、配列番号11に示す塩基配列のDNA断片を、gryB検出系のためのDNAスタンダードとしては、配列番号12に示す塩基配列のDNA断片を、それぞれ用いることができる。そのようなDNA断片は、結核菌群(例えば結核菌M. tuberculosis標準株)のゲノムDNAを鋳型としたPCRにより増幅して得ることができる。DNAスタンダードは、プラスミドDNAに組み込んだ環状DNAの形態ではなく、直鎖状のDNA断片の形態で鋳型として用いる。直鎖状で用いることにより、ドロップレット法においてレインドロップと呼ばれるグレーゾーンの小区画の発生を大幅に低減し、適切な閾値の設定が可能になる。 In order to discriminate between positive and negative of a small block appropriately, it is desirable to set a threshold for determining a positive small block. The threshold can be set by dPCR using an appropriate DNA standard as a template. As the DNA standard, a target gene region partial fragment containing the amplified region of the dPCR primer may be used. For example, as a DNA standard for the IS6110 detection system, a DNA fragment having the base sequence shown in SEQ ID NO: 11 is used, and as a DNA standard for the gryB detection system, a DNA fragment having the base sequence shown in SEQ ID NO: 12 is used. be able to. Such a DNA fragment can be obtained by amplification by PCR using the genomic DNA of the Mycobacterium tuberculosis group (for example, M. tubatuberculosis standard strain) as a template. The DNA standard is used as a template in the form of a linear DNA fragment, not in the form of circular DNA incorporated into plasmid DNA. By using it in a straight chain, the occurrence of gray zone small sections called rain drops in the droplet method can be greatly reduced, and an appropriate threshold value can be set.
 DNAスタンダードの反応は、増幅反応の1回のラン当たり最低1反応行なえばよい。小区画に分割後のdPCR反応液を24ウェルプレート又は96ウェルプレートに移して増幅反応を実施する場合には、プレート1枚にDNAスタンダードの反応を最低1ウェル設ければよい。微小ウェル法では、1回のランにDNAスタンダードの微小ウェルチップを最低1枚加えればよい。 The DNA standard reaction may be performed at least once per run of amplification reaction. When the dPCR reaction solution after dividing into small compartments is transferred to a 24-well plate or a 96-well plate and an amplification reaction is performed, it is sufficient to provide at least one well of the DNA standard reaction per plate. In the microwell method, at least one DNA standard microwell chip may be added to one run.
 DNAスタンダードの増幅反応後、被検者サンプルと同様に、蛍光リーダーにより各小区画の蛍光シグナルを検出し、各小区画のシグナル強度のクラスター分析により、陽性の小区画と陰性の小区画を適切に分ける閾値を決定する。この際のクラスター分析は、最近接法による分析が好ましく、例えば、公知のk-最近接アルゴリズム「definetherain」(Jones M, et al. J Virol Methods 2014; 202: 46-53.)を好ましく用いることができる。 After the amplification reaction of the DNA standard, the fluorescence signal of each subcompartment is detected by the fluorescence reader in the same way as the subject sample, and the positive and negative subcompartments are appropriately determined by cluster analysis of the signal intensity of each subcompartment. The threshold value to be divided is determined. In this case, the cluster analysis is preferably performed by the nearest neighbor method. For example, the known k-nearest neighbor algorithm “definetherain” (Jones M, et al. J Virol Methods 2014; 202: 46-53.) Is preferably used. Can do.
 決定した閾値は、そのDNAスタンダードと同時に増幅反応を行なった被検者サンプルに対して適用する。例えば、多数の被検者由来サンプルの増幅反応を2枚のプレートで2回に分けて実施した場合、1枚目のプレートのサンプルに対しては、同じ1枚目のプレートに加えたDNAスタンダードのdPCR結果から決定した閾値を適用し、2枚目のプレートのサンプルに対しては、同じ2枚目のプレートに加えたDNAスタンダードのdPCR結果から決定した閾値を適用して、それぞれの被検者由来サンプルの小区画の陽性・陰性を判断する。閾値を超えるシグナル強度の小区画が陽性と判断される。偽陽性のチェックのため、鋳型DNA非添加の反応液についてもネガティブコントロールとしてdPCRを行なってよい。 The determined threshold value is applied to the subject sample that has been amplified simultaneously with the DNA standard. For example, when the amplification reaction of a large number of subject-derived samples is performed twice on two plates, the DNA standard added to the same first plate for the sample on the first plate Apply the threshold determined from the dPCR result of the sample, and apply the threshold determined from the dPCR result of the DNA standard added to the second plate to the second plate sample. Judgment of positive / negative of a small section of a sample derived from a person. A small compartment with a signal intensity exceeding the threshold is judged positive. In order to check for false positives, dPCR may also be performed as a negative control for the reaction solution without addition of template DNA.
 上記した結核菌群由来DNAの検出のためのプライマー及びプローブセットは、dPCR用の結核菌群由来DNA検出試薬又はキットとして提供することができる。2種類のプライマー及びプローブセットのいずれか一方のみを含んでいてもよいし、両者を含んでいてもよい。プライマー及びプローブは、乾燥させた形態でもよいし、緩衝液等に溶解させた形態であってもよく、乾燥させたプライマー及びプローブと緩衝液等とをセットにした形態であってもよい。また、該試薬又はキットは、上記した直鎖状のDNAスタンダードをセットにした形態であってもよい。さらにまた、該試薬又はキットは、dPCRに必要な他の試薬類をセットにした形態であってもよい。dPCRに必要なプライマー及びプローブ以外の他の試薬類は周知であり、例えば、dPCR反応液を調製するための緩衝液、耐熱性ポリメラーゼ、あるいは緩衝液中に耐熱性ポリメラーゼ及びdNTPs等を含んだdPCR反応液調製用のプレミックス液等を挙げることができる。該試薬又はキットには、通常、使用説明書が添付される。 The above-mentioned primers and probe sets for detecting DNA derived from Mycobacterium tuberculosis can be provided as a DNA detection reagent or kit for Mycobacterium tuberculosis for dPCR. Only one of the two types of primers and probe sets may be included, or both may be included. The primer and probe may be in a dried form, in a form dissolved in a buffer solution or the like, or in a form in which the dried primer and probe are combined with a buffer solution or the like. The reagent or kit may be in the form of a set of the linear DNA standards described above. Furthermore, the reagent or kit may be in the form of a set of other reagents necessary for dPCR. Reagents other than primers and probes necessary for dPCR are well known. For example, a buffer solution for preparing a dPCR reaction solution, a heat resistant polymerase, or a dPCR containing a heat resistant polymerase and dNTPs in the buffer solution. Examples include a premix solution for preparing a reaction solution. Instructions for use are usually attached to the reagent or kit.
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
<材料及び方法>
被験者及び細菌系統
 肺結核(PTB)患者は、喀痰スミア陽性の肺結核と診断され、横浜市立大学病院にて隔離治療されている患者を対象とした。PTBの診断は、抗酸菌検査陽性の喀痰標本を用いた従来法の核酸増幅検査により行なわれた。健常コントロールは、同病院の健康な医療従事者から選択した。健常コントロールについては、市販のELISPOTアッセイ(T-SPOT. TB)によりMTB感染歴がないことを確認した。肺非結核性抗酸菌(NTM)患者は、米国胸部学会及び米国感染症学会の診断基準を満たした患者を対象とした(Gutierrez-Aguirre I, et al. Methods Mol Biol 2015, 1302, p.331-47.)。NTM患者の喀痰又は気管支洗浄液から得られた11系統のNTM(M. abscessus、M. avium、M. chelonae、M. fortuitum、M. gordonae、M. intracellulare、M. kansasii、M. marinum、M. scrofulaceum、M. szulgai、M. terrae)を対象とした。本研究は横浜市立大学医学部の独立した倫理委員会の承認の下に実施され、大学病院医療情報ネットワーク臨床試験登録システム(UMIN-CTR)に登録された(no. UMIN000016464)。試験への登録に先立ち、全ての症例から書面によるインフォームドコンセントを得た。
<Materials and methods>
Subjects and bacterial strains Pulmonary tuberculosis (PTB) patients were patients who were diagnosed with sputum smear positive pulmonary tuberculosis and were isolated and treated at Yokohama City University Hospital. PTB was diagnosed by a conventional nucleic acid amplification test using sputum specimens that were positive for acid-fast bacteria. Healthy controls were selected from the health care workers at the hospital. Regarding healthy controls, it was confirmed that there was no MTB infection history by a commercially available ELISPOT assay (T-SPOT.TB). Non-tuberculous mycobacteria (NTM) patients were patients who met the diagnostic criteria of the American Thoracic Society and the American Infectious Diseases Society (Gutierrez-Aguirre I, et al. Methods Mol Biol 2015, 1302, p. 331-47.). Eleven strains of NTM obtained from sputum or bronchial lavage fluid of NTM patients (M. abscessus, M. avium, M. chelonae, M. fortuitum, M. gordonae, M. intracellulare, M. kansasii, M. marinum, M. scrofulaceum, M. szulgai, M. terrae). This study was conducted with the approval of an independent ethics committee at the Yokohama City University School of Medicine and was registered in the University Hospital Medical Information Network Clinical Trial Registration System (UMIN-CTR) (no. UMIN000016464). Prior to enrollment in the study, written informed consent was obtained from all cases.
サンプル調製
 ETDA-2Naを含むバキュテナー採血管(テルモ社)を用いて各被検者より末梢血を採取した。全血を10分間1500 rpmで遠心して血漿サンプルを得た。各血漿サンプル200μLよりQiagen DNeasy Blood and Tissue Kit(キアゲン社)を使用して全DNAを抽出した。キットは、溶出時のBuffer AEの使用量を40μLに減らした他は基本的に添付の指示書に従い使用した。全てのサンプルは採取後8時間以内に処理した。NTM各系統のゲノムDNAは、卵ベースの固形培地(小川培地)上のコロニーからQiagen DNeasy Blood and Tissue Kitを用いて抽出した。抽出したDNAサンプルは解析まで-80℃で保存した。
Sample preparation Peripheral blood was collected from each subject using a vacutainer blood collection tube (Terumo) containing ETDA-2Na. Whole blood was centrifuged at 1500 rpm for 10 minutes to obtain a plasma sample. Total DNA was extracted from 200 μL of each plasma sample using Qiagen DNeasy Blood and Tissue Kit (Qiagen). The kit was basically used according to the attached instructions except that the amount of Buffer AE used during elution was reduced to 40 μL. All samples were processed within 8 hours after collection. Genomic DNA of each NTM strain was extracted from colonies on an egg-based solid medium (Ogawa medium) using the Qiagen DNeasy Blood and Tissue Kit. The extracted DNA sample was stored at −80 ° C. until analysis.
dPCRプライマー及びプローブ
 MTB特異的ゲノムDNA配列の検出のため、プライマー及びプローブを2セット設計した。1つは挿入配列6110(IS6110; GenBank accession number X17348)をターゲットとした。この挿入配列は、M. tuberculosis(MTB)、M. bovis、M. africanum、M. microti、M. canettii、M. caprae、及びM. pinnipediiを含む結核菌群内で保存されている(Thierry D, et al. J Clin Microbiol 1990, 28(12), p.2668-73.)。IS6110の増幅に用いたプライマー及びプローブの塩基配列を下記に示す。プローブには、レポーター色素として6-カルボキシフルオレセイン(FAM)を5'末に、クエンチャー色素としてブラックホールクエンチャー(BHQ-1)を3'末にそれぞれ結合させた。
IS6110 forward: GGCGTACTCGACCTGAAAGA(配列番号1)
IS6110 reverse: CTGAACCGGATCGATGTGTA(配列番号2)
IS6110 probe: [FAM]-CCACCATACGGATAGGGGAT-[BHQ-1](配列番号3)
dPCR Primers and Probes Two sets of primers and probes were designed for detection of MTB specific genomic DNA sequences. One targeted the insertion sequence 6110 (IS6110; GenBank accession number X17348). This insertion sequence is conserved within the Mycobacterium tuberculosis group including M. tuberculosis (MTB), M. bovis, M. africanum, M. microti, M. canettii, M. caprae, and M. pinnipedii (Thierry D , et al. J Clin Microbiol 1990, 28 (12), p.2668-73.). The base sequences of primers and probes used for amplification of IS6110 are shown below. The probe was bound with 6-carboxyfluorescein (FAM) as a reporter dye at the 5 'end and black hole quencher (BHQ-1) as a quencher dye at the 3' end.
IS6110 forward: GGCGTACTCGACCTGAAAGA (SEQ ID NO: 1)
IS6110 reverse: CTGAACCGGATCGATGTGTA (SEQ ID NO: 2)
IS6110 probe: [FAM] -CCACCATACGGATAGGGGAT- [BHQ-1] (SEQ ID NO: 3)
 もう1つは、ジャイレースのサブユニットB(gyrB; GenBank accession number AL123456.3)をターゲットとした。gyrBも結核菌群内で保存されている(Kasai H, et al. J Clin Microbiol 2000, 38(1), p.301-8; Niemann S, et al. J Clin Microbiol 2000, 38(9), p.3231-4.)。増幅に用いたプライマー及びプローブの塩基配列を下記に示す。プローブにはIS6110 probeと同様に色素を結合させた。
gyrB forward: AAGGACCGCAAGCTACTGAA(配列番号4)
gyrB reverse: GTGTTGCCCAACTTGGTCTT(配列番号5)
gyrB probe: [FAM]-ACCTCACCGGTGACGATATC-[BHQ-1](配列番号6)
The other target was Gyrase subunit B (gyrB; GenBank accession number AL123456.3). gyrB is also conserved within the Mycobacterium tuberculosis group (Kasai H, et al. J Clin Microbiol 2000, 38 (1), p.301-8; Niemann S, et al. J Clin Microbiol 2000, 38 (9), p.3231-4.). The base sequences of primers and probes used for amplification are shown below. The dye was bound to the probe in the same manner as the IS6110 probe.
gyrB forward: AAGGACCGCAAGCTACTGAA (SEQ ID NO: 4)
gyrB reverse: GTGTTGCCCAACTTGGTCTT (SEQ ID NO: 5)
gyrB probe: [FAM] -ACCTCACCGGTGACGATATC- [BHQ-1] (SEQ ID NO: 6)
 上記のプライマー及びプローブは、いずれも公知の変異領域(A. Salah Eldin NMM, S.I. Mostafac. Egyptian Journal of Chest Diseases and Tuberculosis 2012, 61(4), p.349-53.; Long Q, et al. Int J Antimicrob Agents 2012, 39(6), p.486-9.; Aryan E, et al. Microbiol Res 2010, 165(3), p.211-20.)を避けて設計した。プライマー及びプローブが結核菌群に特異的であり、NTM系統には特異的ではないことは、BLASTソフトウェア(www.ncbi.nlm.nih.gov/BLAST)を用いてインシリコで確認した(表1、2)。プライマー及びプローブに用いたオリゴヌクレオチドはSigma-Aldrich社に委託して合成した。 All of the above primers and probes are known mutation regions (A. Salah Eldin NMM, SI Mostafac. Egyptian Journal of Chest Diseases and Tuberculosis 2012, 61 (4), p.349-53 .; Long Q, et al. Int J Antimicrob Agents 2012, 39 (6), p.486-9 .; Aryan E, et al. Microbiol Res 2010, 165 (3), p.211-20.) It was confirmed in silico using BLAST software (www.ncbi.nlm.nih.gov/BLAST) that the primers and probes are specific for the Mycobacterium tuberculosis group and not the NTM strain (Table 1, 2). Oligonucleotides used for primers and probes were synthesized by Sigma-Aldrich.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
IS6110及びgyrBに対するスタンダードの構築
 検出対象の領域を含む二本鎖DNA断片は、MTB標準株(JATA KK11-291)のゲノムDNAを鋳型とし、プライマーセットはIS6110 PC-F (AACGGCTGATGACCAAACTC、配列番号7) 及びIS6110 PC-R (GATCGTCTCGGCTAGTGCAT、配列番号8)、又はgyrB PC-F (CAAGAACGCGATTCATAGCA、配列番号9) 及びgyrB PC-R (TGGGTCAGCTGTTCGTTACA、配列番号10) を用いて増幅した。各断片をpCR-Blunt II TOPOベクター(Invitrogen社)にライゲーションし、大腸菌DH5α (TOYOBO社)中に導入した。カナマイシン(KM)を含むLB寒天培地で組換えクローンを選択し、KMを含むLB液体培地中で培養した。HighSpeed Plasmid Midi Kit (Qiagen社)を製造者の指示書に従い使用してプラスミドを単離した。DNAの分子量に基づいてプラスミドDNAの濃度を算出し、DNA溶液をTris-EDTA Buffer (Sigma-Aldrich社)で1.0×104コピー/μLに希釈した。
Construction of standards for IS6110 and gyrB The double-stranded DNA fragment containing the region to be detected is the MTB standard strain (JATA KK11-291) genomic DNA as a template, and the primer set is IS6110 PC-F (AACGGCTGATGACCAAACTC, SEQ ID NO: 7) And IS6110 PC-R (GATCGTCTCGGCTAGTGCAT, SEQ ID NO: 8), or gyrB PC-F (CAAGAACGCGATTCATAGCA, SEQ ID NO: 9) and gyrB PC-R (TGGGTCAGCTGTTCGTTACA, SEQ ID NO: 10). Each fragment was ligated into pCR-Blunt II TOPO vector (Invitrogen) and introduced into E. coli DH5α (TOYOBO). Recombinant clones were selected on LB agar medium containing kanamycin (KM) and cultured in LB liquid medium containing KM. Plasmids were isolated using HighSpeed Plasmid Midi Kit (Qiagen) according to manufacturer's instructions. The concentration of plasmid DNA was calculated based on the molecular weight of the DNA, and the DNA solution was diluted with Tris-EDTA Buffer (Sigma-Aldrich) to 1.0 × 10 4 copies / μL.
dPCR及び反応条件の最適化
 臨床検体のアッセイのためのdPCR反応液は次の通りに調製した; 10 μL dPCR Probe Supermix (BioRad社), 900 nM各プライマー、125 nMプローブ、4 μLサンプルを混合し、DNase及びRNaseフリーの超純水で20μLとした。反応液をQX200 Droplet Generator (BioRad社)にロードして微小ドロップレットを生成した。生成されたドロップレットのエマルジョンを96ウェルPCRプレート(Eppendorf社)に移し、ホイルヒートシール(Eppendorf社)で密封して180℃、5秒間加熱した。次いで、C1000 touch thermal cycler (BioRad社)を用いて増幅反応を行なった。反応条件は、95℃10分→(94℃30秒の熱変性→54℃90秒の伸長反応)を40サイクル→98℃10分とした。温度勾配速度は2.0℃/秒に設定した。Droplet Generatorで作製したエマルジョンは直ちに増幅反応に付し、QX200 Droplet Reader (BioRad社)を用いてエマルジョン中の各ドロップレットからのエンドポイント蛍光シグナルを測定した。各サンプル及び各ターゲットのアッセイは2回反復して行なった。QX200 Droplet Reader内部でのコンタミネーションを避けるため、スタンダードの蛍光は最後に解析した。
Optimization of dPCR and reaction conditions dPCR reaction solution for clinical specimen assay was prepared as follows; mix 10 μL dPCR Probe Supermix (BioRad), 900 nM each primer, 125 nM probe, 4 μL sample. DNase and RNase-free ultrapure water was used to make 20 μL. The reaction solution was loaded on a QX200 Droplet Generator (BioRad) to generate microdroplets. The produced emulsion of droplets was transferred to a 96-well PCR plate (Eppendorf), sealed with a foil heat seal (Eppendorf), and heated at 180 ° C. for 5 seconds. Subsequently, amplification reaction was performed using C1000 touch thermal cycler (BioRad). The reaction conditions were 95 ° C. for 10 minutes → (thermal denaturation at 94 ° C. for 30 seconds → extension reaction at 54 ° C. for 90 seconds), 40 cycles → 98 ° C. for 10 minutes. The temperature gradient rate was set to 2.0 ° C./second. The emulsion produced by the Droplet Generator was immediately subjected to an amplification reaction, and the endpoint fluorescence signal from each droplet in the emulsion was measured using a QX200 Droplet Reader (BioRad). Each sample and each target assay was performed in duplicate. To avoid contamination inside the QX200 Droplet Reader, the standard fluorescence was analyzed last.
データ解析
 各ドロップレットの増幅反応後の蛍光強度データは、QuantaSoft droplet reader software (version 1.7.4, BioRad)からcsvファイルとしてエクスポートした。陽性ドロップレットを選択するための閾値は、k-最近接アルゴリズム「definetherain」(Jones M, et al. J Virol Methods 2014, 202, p.46-53.)に適用したスタンダードドロップレットの蛍光強度によって決定した。
Data analysis The fluorescence intensity data after amplification reaction of each droplet was exported as a csv file from QuantaSoft droplet reader software (version 1.7.4, BioRad). The threshold for selecting positive droplets depends on the fluorescence intensity of the standard droplets applied to the k-nearest neighbor algorithm “definetherain” (Jones M, et al. J Virol Methods 2014, 202, p.46-53.). Were determined.
<結果>
1.dPCR条件の最適化
(1) アニーリング温度の検討
 2つの対象遺伝子についてそれぞれ作製したDNAスタンダードを用いてdPCRの反応条件の最適化を行なった。まずアニーリングの温度を決定するため、50℃~60℃の範囲でグラジエントPCR増幅を行なった。その結果、IS6110検出プライマー、gyrB検出プライマーは全てTm値が60℃程度であるが、いずれのアッセイでも54℃で最も蛍光強度が高かった(図1)。従って、臨床検体のdPCRにおけるアニーリング及び伸長反応の温度は54℃とした。
<Result>
1. Optimization of dPCR conditions
(1) Examination of annealing temperature The dPCR reaction conditions were optimized using DNA standards prepared for each of the two target genes. First, gradient PCR amplification was performed in the range of 50 ° C. to 60 ° C. in order to determine the annealing temperature. As a result, all of the IS6110 detection primer and the gyrB detection primer had Tm values of about 60 ° C., but the fluorescence intensity was highest at 54 ° C. in any assay (FIG. 1). Therefore, the temperature of annealing and extension reaction in dPCR of clinical specimens was set to 54 ° C.
(2) 閾値の設定
 dPCRでは、「レインドロップ」と呼ばれる、陽性とも陰性とも判断し難い中間的な蛍光強度を示すドロップレットがしばしば認められる。図2は、上記で作製したDNAスタンダードを104~109濃度で鋳型とし、アニーリング及び伸長反応の温度を54℃としてdPCRを行なった結果であるが、dPCRの定量範囲内になると顕著なレインドロップが認められた。このままでは適切な閾値を規定することができないため、このレインドロップの対策を検討した。
(2) Setting of threshold value In dPCR, a droplet called “rain drop”, which shows an intermediate fluorescence intensity that is difficult to judge as positive or negative, is often observed. Figure 2 shows the result of dPCR using the DNA standard prepared above as a template at a concentration of 10 4 to 10 9 and an annealing and extension reaction temperature of 54 ° C. Drop was recognized. Since it is not possible to define an appropriate threshold value as it is, measures for this rain drop were examined.
 DNAスタンダードはプラスミドDNAに組み込まれた状態であるため、EcoRI消化によりインサートの両側でプラスミドを切断し、リニア化した挿入断片を鋳型としてdPCRを行なった。その結果、図3に示す通り、レインドロップは著明に減少した。これにより閾値を正確に規定することが可能になった。 Since the DNA standard is incorporated in the plasmid DNA, the plasmid was cleaved on both sides of the insert by EcoRI digestion, and dPCR was performed using the linearized insert fragment as a template. As a result, as shown in FIG. 3, raindrops were significantly reduced. This makes it possible to accurately define the threshold value.
(3) プライマー及びプローブの濃度の最適化
 プライマーとプローブのメーカー推奨濃度は、プライマーが各900nM、プローブが250nMである。今回開発したプライマー及びプローブの濃度の最適化をめざし、まずはIS6110用のプライマー及びプローブについて、EcoRI消化したスタンダードDNAを鋳型とし、プライマー及びプローブの濃度を変えてdPCRを行なった。プライマー濃度は450nMと900nM、プローブ濃度は125nMと250nMで検討した。結果を図4に示す。プライマー濃度を各450nMとすると蛍光強度が顕著に低下してしまうため、本プライマーは各900nMとする方が適切であると考えられた。
(3) Optimization of primer and probe concentrations The recommended manufacturer concentration of primers and probes is 900 nM for the primer and 250 nM for the probe. With the aim of optimizing the concentration of the primer and probe developed this time, first, the primer and probe for IS6110 were subjected to dPCR using EcoRI-digested standard DNA as a template and the primer and probe concentrations varied. The primer concentration was 450 nM and 900 nM, and the probe concentration was 125 nM and 250 nM. The results are shown in FIG. When the primer concentration was 450 nM, the fluorescence intensity was significantly reduced. Therefore, it was considered that the primer should be 900 nM.
 次に、IS6110検出系及びgyrB検出系の両者において、プローブ濃度を125nMと250nMで比較した。結果を図5に示す。プローブ濃度250nMでは、IS6110検出系で偽陽性のドロップレットが1つ認められた。また、250nMでは125nMよりもレインドロップの数が多かった。今回は低コピー数のDNA検出を目的としているため、プローブの濃度は偽陽性が少ない125nMが適切であると考えられた。 Next, the probe concentration was compared between 125 nM and 250 nM in both the IS6110 detection system and the gyrB detection system. The results are shown in FIG. At a probe concentration of 250 nM, one false positive droplet was observed in the IS6110 detection system. Also, 250nM had more raindrops than 125nM. The purpose of this study was to detect low copy number of DNA, so the appropriate probe concentration was 125 nM with few false positives.
 以上の結果から、今回開発したアッセイ系では、プライマー濃度は各900nM、プローブ濃度は125nMで用いることとした。 Based on the above results, in the assay system developed this time, it was decided to use a primer concentration of 900 nM and a probe concentration of 125 nM.
2.血液検体でのIS6110遺伝子及びgyrB遺伝子の検出
(1) 患者の特徴
 被検者43名の全血サンプルは、2015年1月~8月の期間に得た。被検者の特徴を表3に示す。被検者43名中、PTB患者は24名、肺NTM患者は4名、コントロール被検者は15名であった。PTB患者は全てHIV感染が無いことをHIV Ag/Ab combo test (Abbott Laboratories社)により確認した。PTB患者24名中8名がダイレクトサンプリング又は画像検査所見により肺外MTB病変を有すると診断された。NTM患者4名中、3名がM. aviumに感染しており、うち1名がM. abscessusに重複感染していた。残りの1名はM. intracellulareに感染していた。
2. Detection of IS6110 and gyrB genes in blood samples
(1) Patient characteristics Whole blood samples of 43 subjects were obtained from January to August 2015. The characteristics of the subject are shown in Table 3. Of the 43 subjects, 24 were PTB patients, 4 were lung NTM patients, and 15 were control subjects. All PTB patients were confirmed to have no HIV infection by HIV Ag / Ab combo test (Abbott Laboratories). Eight out of 24 patients with PTB were diagnosed as having extrapulmonary MTB lesions by direct sampling or imaging findings. Of the 4 NTM patients, 3 were infected with M. avium, one of which was superinfected with M. abscessus. The remaining one was infected with M. intracellulare.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(2) 血液検体のdPCR結果
 dPCR反応液20μL中にインプットしたMTB DNAの濃度はポアソン分布により算出した。2回反復したdPCRアッセイの全てで良好な再現性を得た(IS6110, p = 0.0001, r = 0.71; gyrB, p < 0.0001, r = 0.84, スピアマンの相関)。反復したアッセイの平均数に関するデータを図6及び表4、表5に示す。IS6110及びgyrBをターゲットとした各アッセイの結果は有意に相関した (p = 0.011, r = 0.51, スピアマンの相関)。PTB患者サンプルでは、健常コントロール被検者と比較して有意に異なる高コピー数のIS6110が検出された。同様の結果はgyrBターゲットアッセイにおいても観察され、PTB患者とコントロール被検者との間で有意差があった。
(2) dPCR result of blood sample The concentration of MTB DNA input in 20 μL of the dPCR reaction solution was calculated by Poisson distribution. Good reproducibility was obtained with all dPCR assays repeated twice (IS6110, p = 0.0001, r = 0.71; gyrB, p <0.0001, r = 0.84, Spearman correlation). Data on the average number of replicated assays is shown in FIG. The results of each assay targeting IS6110 and gyrB were significantly correlated (p = 0.011, r = 0.51, Spearman correlation). In PTB patient samples, a significantly different high copy number of IS6110 was detected compared to healthy control subjects. Similar results were observed in the gyrB target assay, with significant differences between PTB patients and control subjects.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 PTB患者における血漿中DNAの検出能は、受信者動作特性(ROC)解析により評価した(図7)。ROC曲線のAUCは、IS6110検出アッセイでは0.87 (95% CI, 0.76 to 0.99; P = 0.0001)、gyrB検出アッセイでは0.77 (95% CI, 0.62 to 0.91; P= 0.0056)であった。また、1.5コピー/20μL反応液のDNA濃度では、IS6110検出の感度が83%、特異度が93%であり、0.35コピー/20μL反応液のDNA濃度では、gyrB検出の感度が58%、特異度が93%であった。 Detectability of plasma DNA in PTB patients was evaluated by receiver operating characteristic (ROC) analysis (FIG. 7). The AUC of the ROC curve was 0.87 (95% CI, 0.76 to 0.99; P = 0.0001) for the IS6110 detection assay, and 0.77 (95% CI, 0.62 to 0.91; P = 0.0056) for the gyrB detection assay. In addition, the sensitivity of IS6110 detection is 83% and the specificity is 93% at the DNA concentration of the 1.5 copy / 20 μL reaction solution, and the sensitivity of gyrB detection is 58% and the specificity at the DNA concentration of the 0.35 copy / 20 μL reaction solution. Was 93%.
 コントロール被検者及び肺NTM患者のサンプルは全て、アッセイ当たりの陽性ドロップレットが最大でも1個であったが(1.6~2.2コピー/20μL、ポアソン分布により算出)、ネガティブコントロール(サンプル非添加の反応液)で陽性ドロップレットの頻度が同様であったことからこれは偽陽性と推察された。性別(IS6110; p = 0.089, gyrB; p = 0.51)、年齢(IS6110; p = 0.83, gyrB; p = 0.68)、肺病変の分布(片側性又は両側性)(IS6110; p = 0.89, gyrB; p = 0.10)、空洞の有無(IS6110; p = 0.13, gyrB; p = 0.47)、肺外病変の有無(IS6110; p = 0.37, gyrB; p = 0.99)に関しては、マン・ホイットニーのU検定でコピー数に統計学的有意差は認められなかった。播種性結核患者ではIS6110検出アッセイで36コピー/20μL、gyrB検出アッセイで6.3コピー/20μLであった。PTB患者2名では、IS6110検出アッセイで2000コピー/20μLを超える数値であった(それぞれ2430及び2260コピー/20μL)。この2名のうち1名は臨床症状が極めて重篤であり、標準的治療の開始後3週間で死亡した。 All samples from control subjects and lung NTM patients had at most one positive droplet per assay (1.6-2.2 copies / 20 μL, calculated by Poisson distribution), but negative control (no sample response) This was presumed to be a false positive because the frequency of positive droplets was the same in liquid. Gender (IS6110; p = 0.089, gyrB; p = 0.51), age (IS6110; p = 0.83, gyrB; p = 0.68), lung lesion distribution (unilateral or bilateral) (IS6110; p = 0.89, gyrB; p = 0.10), presence / absence of cavity (IS6110; p = 0.13, gyrB; p = 、 0.47), presence of extrapulmonary lesions (IS6110; p = 0.37, gyrB; p = 0.99) There was no statistically significant difference in copy number. In patients with disseminated tuberculosis, the IS6110 detection assay was 36 copies / 20 μL and the gyrB detection assay was 6.3 copies / 20 μL. In 2 patients with PTB, the IS6110 detection assay was over 2000 copies / 20 μL (2430 and 2260 copies / 20 μL, respectively). One of the two had very severe clinical symptoms and died 3 weeks after starting standard treatment.
 NTMの系統はアッセイ当たり最大で2個の陽性ドロップレットを示し、上記と同様に偽陽性と評価した。 NTM strains showed a maximum of 2 positive droplets per assay and were evaluated as false positives as above.
 以上の通り、ここで確立したdPCRアッセイ系により、結核菌群に感染している患者の血液中に微小量存在する細胞フリーの結核菌群DNAを検出することができた。反応液当たり10コピー未満でも定量可能であり、検出感度は非常に高いことが確認された。 As described above, the dPCR assay system established here was able to detect cell-free M. tuberculosis group DNA present in minute amounts in the blood of patients infected with M. tuberculosis group. Even less than 10 copies per reaction solution can be quantified, confirming that the detection sensitivity is very high.
3.dPCRとリアルタイムPCRの検出感度の比較
 喀痰スミア陽性の肺結核患者24名の血液検体を用いて、定量リアルタイムPCR(qPCR)と本願発明者らが確立したdPCRアッセイ系との間で検出感度を比較した。qPCRは、dPCRで使用したプライマー及びプローブと同一のものを使用し、10μLのTaqMan Fast Advanced Master Mix (Applied Biosystems社, 米国Foster City)、900 nM各プライマー、125 nMプローブ、4μLの鋳型DNAを含む20μLの反応液にて実施した。各検体につき反応液を重複して作製し、StepOnePlus Real-Time PCR System (Applied Biosystems社)を使用して96ウェル反応プレート中で反応を行なった。反応条件は、95℃20秒及び60℃20秒を40サイクルとした。IS6110及びgyrBのプラスミドDNAスタンダードの10倍段階希釈系列をそれぞれ重複して作製して各プレートに含め、これらを測定して標準曲線を作成した。
3. Comparison of detection sensitivity between dPCR and real-time PCR Detection sensitivity was compared between quantitative real-time PCR (qPCR) and the dPCR assay system established by the present inventors using blood samples from 24 patients with sputum smear-positive pulmonary tuberculosis . qPCR uses the same primers and probes used in dPCR, including 10 μL TaqMan Fast Advanced Master Mix (Applied Biosystems, USA Foster City), 900 nM each primer, 125 nM probe, 4 μL template DNA The reaction was performed in 20 μL of the reaction solution. Reaction solutions were prepared in duplicate for each sample, and the reaction was performed in a 96-well reaction plate using StepOnePlus Real-Time PCR System (Applied Biosystems). The reaction conditions were 95 ° C. for 20 seconds and 60 ° C. for 20 seconds for 40 cycles. A 10-fold serial dilution series of plasmid DNA standards of IS6110 and gyrB was prepared in duplicate and included in each plate, and these were measured to create a standard curve.
 データを表6に示す。qPCRでは陰性となってしまう検体の多くでdPCRの結果が陽性となっており、dPCRの方が検出感度が良好であることが確認された。 Data is shown in Table 6. Many of the samples that were negative in qPCR had positive dPCR results, confirming that dPCR had better detection sensitivity.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
4.デジタルPCRによるMTB感染の診断例
 血漿中のMTB DNAのdPCR検出によってのみ診断可能であった、播種性のMTB感染症例について報告する。
4). Diagnosis of MTB infection by digital PCR We report a case of disseminated MTB infection that could be diagnosed only by dPCR detection of MTB DNA in plasma.
 患者は63歳男性、急性骨髄性白血病の治療で造血幹細胞移植を行なったため重度の免疫不全状態であった。発熱と炎症が続き、汎血球減少症と凝血異常が見られた。全身CTスキャンでは肺全体に顆粒状の陰影を多数認め、播種性MTB感染が示唆された。しかしながら、喀痰検体の抗酸染色、培養及び従来のMTBリアルタイムPCR検査(コバスTaqMan MTB, Roche Diagnostics社, スイス国バーゼル)、並びにT-SPOT. TB検査(Oxford Immunotec社, 英国オックスフォード)はいずれも陰性であった。尿のMycobacterium培養は陽性であったが、MTBとMAC(Mycobacterium avium complex)についてのリアルタイムPCR検査(コバスTaqMan MTB/MAI, Roche Diagnostics社)は陰性であった。何が培養されたかを同定することができなかった。さらなる検査を行うための肝臓ないしは骨髄の生検は、出血性素質のために実施不能であった。 The patient was a 63-year-old male who was severely immunocompromised due to hematopoietic stem cell transplantation for the treatment of acute myeloid leukemia. Fever and inflammation continued, with pancytopenia and abnormal clotting. Whole body CT scan revealed many granular shadows throughout the lung, suggesting disseminated MTB infection. However, anti-acid staining, culture and conventional MTB real-time PCR test (Cobas TaqMan MTB, Roche Diagnostics, Basel, Switzerland) and T-SPOT. TB test (Oxford Immunotec, Oxford UK) are all negative. Met. The urine Mycobacterium culture was positive, but the real-time PCR test (Cobas TaqMan MTB / MAI, Roche Diagnostics) for MTB and MAC (Mycobacterium avium complex) was negative. It was not possible to identify what was cultured. A biopsy of the liver or bone marrow for further examination was infeasible due to bleeding characteristics.
 そこで、本願発明者らが上記の通りに確立した、IS6110遺伝子を標的としたdPCRアッセイ系により、当該患者の血液検体を用いて血漿中の循環MTB DNAの検出を行なった。dPCRの条件は、上記で構築した通り、プライマー濃度を各900nM、プローブ濃度を125nMとし、アニーリング及び伸長反応の温度は54℃とした。閾値はマニュアルで決定し、閾値を超えるドロップレットを陽性とした。DNAスタンダードは、上記で構築したIS6110遺伝子断片を含むプラスミドDNAをEcoRI消化しリニア化して用いた。反復解析した結果はいずれも陽性であり(16.4コピー/ウェル、9.8コピー/ウェル)、MTB感染が検出された(図8)。 Therefore, circulating MTB-DNA in plasma was detected using the blood sample of the patient by the dPCR assay system targeting the IS6110 gene established by the inventors of the present invention as described above. As constructed above, the conditions for dPCR were such that the primer concentration was 900 nM, the probe concentration was 125 nM, and the annealing and extension reaction temperatures were 54 ° C. The threshold was determined manually, and droplets exceeding the threshold were considered positive. As the DNA standard, the plasmid DNA containing the IS6110 gene fragment constructed above was digested with EcoRI and linearized. The results of repeated analysis were all positive (16.4 copies / well, 9.8 copies / well), and MTB infection was detected (FIG. 8).
 患者の死亡後に行なった剖検により、肝臓、腎臓及び左肺に抗酸染色陽性桿菌を伴う乾酪性肉芽腫が多数確認された。Mycobacterium培養は陰性であったが、肝臓のホルマリン固定パラフィン包埋組織切片のリアルタイムPCR検査(コバスTaqMan MTB, Roche Diagnostics社)の結果は陽性であり、播種性MTB感染と確定診断された。全てのリアルタイムPCR検査及びT-SPOT. TB検査はSRL(日本国東京)に委託して実施した。 An autopsy performed after the death of the patient confirmed a large number of dry buty granuloma with an acid-acid-positive gonococci in the liver, kidney and left lung. Although the Mycobacterium culture was negative, the results of real-time PCR (Cobas TaqMan MTB, Roche Diagnostics) on formalin-fixed paraffin-embedded tissue sections of the liver were positive, and the diagnosis was confirmed as disseminated MTB infection. All real-time PCR tests and T-SPOT. TB tests were commissioned to SRL (Tokyo, Japan).

Claims (9)

  1.  配列番号1に示す塩基配列のフォワードプライマー、配列番号2に示す塩基配列のリバースプライマー、及び配列番号3に示す塩基配列のプローブを含む、結核菌群IS6110検出用デジタルPCRプライマー及びプローブセット。 A digital PCR primer and probe set for detecting Mycobacterium tuberculosis group IS6110, comprising a forward primer of the base sequence shown in SEQ ID NO: 1, a reverse primer of the base sequence shown in SEQ ID NO: 2, and a probe of the base sequence shown in SEQ ID NO: 3.
  2.  配列番号4に示す塩基配列のフォワードプライマー、配列番号5に示す塩基配列のリバースプライマー、及び配列番号6に示す塩基配列のプローブを含む、結核菌群gyrB検出用デジタルPCRプライマー及びプローブセット。 A digital PCR primer and probe set for detecting Mycobacterium tuberculosis group gyrB, comprising a forward primer having the base sequence shown in SEQ ID NO: 4, a reverse primer having the base sequence shown in SEQ ID NO: 5, and a probe having the base sequence shown in SEQ ID NO: 6.
  3.  被検者から分離された血液試料より抽出されたDNAを鋳型とし、請求項1及び2に記載のプライマー及びプローブセットの少なくともいずれかを用いてデジタルPCRを行なうことを含む、結核菌群由来DNAの検出方法。 A DNA derived from Mycobacterium tuberculosis, which comprises performing DNA PCR using at least one of the primer and probe set according to claim 1 using DNA extracted from a blood sample isolated from a subject as a template. Detection method.
  4.  前記血液試料が血漿又は血清である、請求項3記載の方法。 The method according to claim 3, wherein the blood sample is plasma or serum.
  5.  各プライマーの使用濃度が700nM~1100nMであり、プローブの使用濃度が100nM~150nMである、請求項3又は4記載の方法。 The method according to claim 3 or 4, wherein the concentration used for each primer is 700 nM to 1100 nM and the concentration used for the probe is 100 nM to 150 nM.
  6.  デジタルPCRプライマーの増幅対象領域を含む結核菌群遺伝子の部分領域を含む直鎖状のDNAであるDNAスタンダードを鋳型としてデジタルPCRを行ない、該DNAスタンダードの各小区画のシグナル強度のクラスター分析により、陽性小区画の判別のための閾値を決定することをさらに含む、請求項3ないし5のいずれか1項に記載の方法。 Digital PCR is performed using a DNA standard that is a linear DNA containing a partial region of the Mycobacterium tuberculosis group gene including the amplification target region of the digital PCR primer as a template, and by cluster analysis of the signal intensity of each small section of the DNA standard, The method according to any one of claims 3 to 5, further comprising determining a threshold value for discrimination of a positive sub-compartment.
  7.  IS6110検出系のためのDNAスタンダードは、配列番号11に示す塩基配列を含み、gyrB検出系のためのDNAスタンダードは、配列番号12に示す塩基配列を含む、請求項6記載の方法。 The method according to claim 6, wherein the DNA standard for the IS6110 detection system contains the base sequence shown in SEQ ID NO: 11, and the DNA standard for the gyrB detection system contains the base sequence shown in SEQ ID NO: 12.
  8.  結核菌群感染の検出、結核菌群感染症若しくは結核症の病勢のモニター、結核症発症リスクの評価、又は結核菌群感染症若しくは結核症の治療効果の判定を補助するために行なわれる、請求項3ないし7のいずれか1項に記載の方法。 Requested to assist in detection of Mycobacterium tuberculosis infection, monitoring of Mycobacterium tuberculosis infection or disease status, evaluation of the risk of developing Mycobacterium tuberculosis, or determining the therapeutic effect of Mycobacterium tuberculosis infection or Mycobacterium tuberculosis. Item 8. The method according to any one of Items 3 to 7.
  9.  請求項1及び2に記載のプライマー及びプローブセットの少なくともいずれかを含む、デジタルPCR用の結核菌群由来DNA検出試薬又はキット。 A tuberculosis group-derived DNA detection reagent or kit for digital PCR, comprising at least one of the primer and probe set according to claim 1 and 2.
PCT/JP2016/082390 2015-11-06 2016-11-01 Method for detecting tuberculosis complex-derived dna WO2017077999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218146 2015-11-06
JP2015-218146 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017077999A1 true WO2017077999A1 (en) 2017-05-11

Family

ID=58661983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082390 WO2017077999A1 (en) 2015-11-06 2016-11-01 Method for detecting tuberculosis complex-derived dna

Country Status (1)

Country Link
WO (1) WO2017077999A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022451A (en) * 2018-08-08 2020-02-13 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Method for detecting mycobacterium and kit thereof
CN112725475A (en) * 2021-01-05 2021-04-30 四川大学华西医院 Mycobacterium tuberculosis detection primer, probe composition, kit and application
US11174520B2 (en) 2018-02-27 2021-11-16 Delta Electronics, Inc. Method for detecting presence or absence of Mycobacterium and kit thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129419A2 (en) * 2007-04-19 2008-10-30 Institut Pasteur Method for detecting and/or isolating mycobacteria
JP2013055947A (en) * 2012-10-26 2013-03-28 Bio-Rad Innovations Use of both rd9 and is6110 as nucleic acid targets for diagnosis of tuberculosis, and provision of multiplex-compliant is6110 and rd9 targets
JP2014510538A (en) * 2011-04-01 2014-05-01 オッカム・バイオラブズ・インコーポレイテッド Method and kit for detecting cell-free pathogen-specific nucleic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129419A2 (en) * 2007-04-19 2008-10-30 Institut Pasteur Method for detecting and/or isolating mycobacteria
JP2014510538A (en) * 2011-04-01 2014-05-01 オッカム・バイオラブズ・インコーポレイテッド Method and kit for detecting cell-free pathogen-specific nucleic acid
JP2013055947A (en) * 2012-10-26 2013-03-28 Bio-Rad Innovations Use of both rd9 and is6110 as nucleic acid targets for diagnosis of tuberculosis, and provision of multiplex-compliant is6110 and rd9 targets

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide 13 November 2009 (2009-11-13), "DEFFINITION: Mycobacterium microti gyrB gene for DNA gyrase B subunit, partial cds, strain T 901", XP055380128, Database accession no. AB014205 *
DEVONSHIRE, ALISON S. ET AL.: "Highly Reproducible Absolute Quantification of Mycobacterium tuberculos Complex by Digital PCR", ANAL. CHEM., vol. 87, 3 February 2015 (2015-02-03), pages 3706 - 3713, XP055354256 *
EIKEN CHEMICAL CO., LTD.: "Mycobacterium Kakusan Kit, Mycobacterium Kakusan Kit Tenpu Bunsho", August 2014 (2014-08-01), pages 1 - 4 *
PAVSIC, JERNEJ ET AL.: "Standardization of Nucleic Acid Tests for Clinical Measurements of Bacteria and Viruses", J. CLIN. MICROBIOL., vol. 53, no. 7, July 2015 (2015-07-01), pages 2008 - 2014, XP055380084 *
PHOLWAT, SUPORN ET AL.: "Digital PCR to Detect and Quantify Heteroresistance in Drug Resistant Mycobacterium tuberculosis", PLOS ONE, vol. 8, no. 2, February 2013 (2013-02-01), pages 1 - 10, XP055380124 *
USHIO, RYOTA ET AL.: "Digital PCR assay detection of circulating Mycobacterium tuberculosis DNA in pulmonary tuberculosis patient plasma", TUBERCULOSIS, vol. 99, 15 April 2016 (2016-04-15), pages 47 - 53, XP029651925 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174520B2 (en) 2018-02-27 2021-11-16 Delta Electronics, Inc. Method for detecting presence or absence of Mycobacterium and kit thereof
JP2020022451A (en) * 2018-08-08 2020-02-13 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Method for detecting mycobacterium and kit thereof
CN112725475A (en) * 2021-01-05 2021-04-30 四川大学华西医院 Mycobacterium tuberculosis detection primer, probe composition, kit and application

Similar Documents

Publication Publication Date Title
JP6448715B2 (en) Primer and probe for detecting Mycobacterium avium, and method for detecting Mycobacterium abium using the same
Shipitsyna et al. Evaluation of polymerase chain reaction assays for the diagnosis of Trichomonas vaginalis infection in Russia
Oren et al. Polymerase chain reaction-based detection of Pneumocystis jirovecii in bronchoalveolar lavage fluid for the diagnosis of pneumocystis pneumonia
Sharma et al. Real-time PCR followed by high-resolution melting curve analysis: a rapid and pragmatic approach for screening of multidrug-resistant extrapulmonary tuberculosis
EP2011871A1 (en) Primer and probe for detection of mycobacterium intracellulare, and method for detection of mycobacterium intracellulare by using the primer and probe
WO2017077999A1 (en) Method for detecting tuberculosis complex-derived dna
EP2623597A1 (en) Primer and probe for use in detection of mycobacterium kansasii and method for detection of mycobacterium kansasii using the same
RU2619258C2 (en) Method for determination of mycobacterium tuberculosis resistance to rifampicin and isoniazid
EP2853594B1 (en) Primer and probe for detection of Mycobacterium intracellulare, and method for detection of Mycobacterium intracellulare using the primer or the probe
Munir et al. Diagnosis of tuberculosis: molecular versus conventional method
KR101425149B1 (en) Improved method for diagnosing Mycobacterium tuberculosis using one-tube nested real-time PCR
WO2018123764A1 (en) Reagent for use in assessment of remaining very small lesion of neuroblastoma; and method for analyzing biological sample using same
KR101765677B1 (en) Primer set for detection of mycobacterium tuberculosis and non-Tuberculosis mycobacteria and use thereof
Qin et al. Combined use of real-time PCR and nested sequence-based typing in survey of human Legionella infection
RU2715625C1 (en) Set of oligonucleotide primers and a fluorescence-labeled probe for identifying a west nile virus 1 genotype
Wu et al. Identification of rifampin-resistant genotypes in Mycobacterium tuberculosis by PCR-reverse dot blot hybridization
RU2639498C1 (en) Set of oligonucleotide primers and fluorescence marked probes for identifying of blastomycesis dermatitis irritant
Dundar et al. Routine using pattern and performance of diagnostic tests for tuberculosis on a university hospital
RU2770803C1 (en) Method for detecting the dna of the bacterium mycobacterium tuberculosis for the diagnosis of tuberculosis
WO2015083056A2 (en) Genetic markers for diagnosis of tuberculosis caused by mycobacterium tuberculosis
Khosla et al. DIAGNOSTIC EVALUATION OF 38 kDa GENE BASED PCR ASSAY IN DIAGNOSING SMEAR NEGATIVE PULMONARY TUBERCULOSIS
Obaidy The Yield of Genexpert in Pulmonary Tuberculosis & Rifampicin Resistance.
KR20210079428A (en) Primer, probe and kit for diagnosing tuberculosis using urine sample and uses thereof
Yurdakul et al. Molecular Methods for Detection of Invasive Fungal Infections and Mycobacteria and Their Clinical Significance in Hematopoietic Stem Cell Transplantation
Kim et al. The use of molecular methods to determine the cause of mycobacterial infections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP