WO2017077996A1 - Bolometer type terahertz wave detector - Google Patents

Bolometer type terahertz wave detector Download PDF

Info

Publication number
WO2017077996A1
WO2017077996A1 PCT/JP2016/082382 JP2016082382W WO2017077996A1 WO 2017077996 A1 WO2017077996 A1 WO 2017077996A1 JP 2016082382 W JP2016082382 W JP 2016082382W WO 2017077996 A1 WO2017077996 A1 WO 2017077996A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
absorption
absorption film
bolometer
terahertz wave
Prior art date
Application number
PCT/JP2016/082382
Other languages
French (fr)
Japanese (ja)
Inventor
晴次 倉科
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017548763A priority Critical patent/JP6834974B2/en
Publication of WO2017077996A1 publication Critical patent/WO2017077996A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details

Definitions

  • the present invention relates to a detector for detecting electromagnetic waves in the terahertz frequency band, and more particularly to a bolometer type terahertz wave detector.
  • the bolometer-type terahertz wave detector has a structure in which a reflection film that reflects terahertz waves is formed on a circuit board, and a temperature detection unit (diaphragm) including the bolometer thin film is held in a state of being floated from the substrate by a support unit. Yes. Further, both end portions of the bolometer thin film are connected to a readout circuit mounted on the substrate via electric wiring built in the support portion.
  • Patent Documents 1 to 3 disclose techniques related to a bolometer-type terahertz wave detector.
  • Patent Document 1 discloses a bolometer-type terahertz wave detection in which an absorption film that absorbs terahertz waves is formed on the front surface, back surface, or inside of a temperature detection unit, and a dielectric that is transparent to terahertz waves is formed on a reflection film.
  • a vessel is disclosed.
  • the film thickness of the dielectric is set so that the distance between the upper surface of the dielectric and the lower surface of the temperature detection unit is less than 8 micrometers.
  • an optical resonance structure formed by the reflection film and the absorption film is appropriately set.
  • Patent Document 2 is provided with an electromagnetic wave resonance structure on the substrate and the temperature detection unit, and the electromagnetic wave resonance structure is configured to transmit an electromagnetic wave having a specific wavelength in a traveling direction and a vertical direction orthogonal to the traveling direction. Resonate.
  • the technique disclosed in Patent Document 2 converts electromagnetic waves having a specific wavelength into heat, and transmits the converted heat to the temperature detection unit.
  • Patent Document 3 discloses a bolometer-type terahertz wave detector in which a dielectric cover made of a dielectric material for efficiently collecting terahertz waves is added to the upper part of the temperature detection unit.
  • An object of the present invention is to provide a bolometer type terahertz wave detector capable of improving the uniformity of the terahertz absorption rate in the frequency band of the terahertz wave.
  • the bolometer-type terahertz wave detector of the present invention includes a reflective film that reflects terahertz waves, first and second absorption films that absorb the terahertz waves and are arranged in parallel to the reflective film, and the first and second A bolometer film that detects a temperature change of the second absorption film, and an interval between the first and second absorption films is an optical resonance effect between the reflection film and the first or second absorption film. This is an interval for forming an optical resonant structure for a terahertz wave having a frequency different from that of a certain terahertz wave.
  • the uniformity of the terahertz absorption rate in the frequency band of the terahertz wave can be improved.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a first embodiment including two absorption films.
  • FIG. 2 is a cross-sectional view showing a configuration of the second embodiment including three absorption films.
  • FIG. 3 is a diagram illustrating simulation results of the terahertz absorption rate of FIGS. 1 and 2.
  • FIG. 4 is a diagram illustrating a simulation result of the terahertz absorption rate of the modification of FIG.
  • FIG. 5 is a cross-sectional view showing the configuration of the third embodiment.
  • FIG. 6 is a cross-sectional view showing the configuration of the fourth embodiment.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a first embodiment including two absorption films.
  • FIG. 2 is a cross-sectional view showing a configuration of the second embodiment including three absorption films.
  • the reflective film 11 is formed on the circuit board 21.
  • the bolometer-type terahertz wave detector 1 includes a reflective film 11 that reflects terahertz waves and two absorption films 12 and 13 that absorb terahertz waves, as shown in FIG.
  • the bolometer-type terahertz wave detector 2 of the second embodiment includes a reflection film 11 that reflects terahertz waves and three absorption films 12, 13, and 14 that absorb terahertz waves, as shown in FIG. ing.
  • the reflection film 11 is formed on the circuit board 21 as shown in FIG.
  • a first support portion 22 is formed on the circuit board 21 to hold the first absorption film 12 in parallel with the reflection film 11 in a state of floating from the circuit board 21.
  • the first absorption film 12 is formed on the first support portion 22 on the surface opposite to the reflection film 11.
  • the first support portion 22 incorporates a bolometer thin film 201 that detects a temperature change of the absorption film 12 whose temperature has changed by absorbing the terahertz wave. Note that the portion of the support 22 in which the bolometer thin film 201 is built is referred to as a temperature detection unit 20.
  • a reading circuit is formed on the circuit board 21, and an end portion of the bolometer thin film 201 and a reading circuit formed on the circuit board 21 are connected by electrode wiring formed in the support portion 22.
  • a second support portion 23 is formed on the first support portion 22 to hold the second absorption film 13 in a state of floating from the first support portion 22 in parallel with the reflective film 11.
  • the second absorption film 13 is formed on the second support portion 23 on the surface opposite to the reflection film 11.
  • the third absorption film 14 is held on the second support portion 23 in a state of floating from the second support portion 23 in parallel with the reflective film 11.
  • the third absorbing film 14 is formed on the third supporting part 24 on the surface opposite to the reflective film 11.
  • the distance between the first absorption film 12 and the reflection film 11 is set to have an optical resonance structure so that the terahertz wave can be efficiently absorbed. Further, since the sheet resistance of the first absorption film 12 affects the absorption rate, the sheet resistance of the first absorption film 12 is set so as to efficiently absorb the terahertz wave. Taking 3 THz (100 ⁇ m) as an example, the absorption rate can be maximized when the distance between the reflective film 11 and the first absorption film 12 is 25 ⁇ m and the sheet resistance is 377 (120 ⁇ ⁇ ) ⁇ / ⁇ .
  • the absorptance decreases for terahertz waves that are separated from 3 THz.
  • a plurality of absorption films that absorb terahertz waves are provided, and the optical resonance of only one absorption film is caused by the distance between the first absorption film 12 and the second absorption film 13.
  • An optical resonant structure is formed for a frequency different from the effective terahertz wave. For example, when the distance between the first absorption film 12 and the second absorption film 13 is 25 ⁇ m, an optical resonance structure is formed at 1.5 THz, for example.
  • an optical resonant structure is formed at 4.5 THz by the distance from the second absorption film 13 to the first absorption film 12 via the reflection film 11.
  • the sheet resistances of the first absorption film 12 and the second absorption film 13 are set so as to balance the plurality of optical resonance effects and to improve the decrease in the absorption rate for the terahertz wave separated from 3 THz. This makes it possible to widen the frequency range with uniform absorption.
  • FIG. 3 is a diagram showing a simulation result of the terahertz absorption rate of FIGS. 1 and 2.
  • the sheet resistance of the absorption film 12 is 337 ⁇ / ⁇
  • the sheet resistance of the absorption film 13 is 754 ⁇ , which is twice the sheet resistance 337 ⁇ / ⁇ of the absorption film 12.
  • the distance between the second absorption film 13 and the third absorption film 14 is, for example, the distance between the first absorption film 12 and the second absorption film 13.
  • the sheet resistance of the third absorption film 14 is set to 3 times the sheet resistance 337 ⁇ / ⁇ of the first absorption film 12, as shown by the solid line in FIG. The uniform range becomes even wider.
  • a plurality of absorption films that absorb terahertz waves are provided, and an optical resonance structure is formed for terahertz waves that is different from the structure of the reflection film and one absorption film, depending on the distance between the absorption films.
  • the sheet resistance of the plurality of absorption films is set so as to balance the effects of the plurality of optical resonance structures depending on the distance between the reflection film and the plurality of absorption films. As a result, it is possible to prevent a decrease in the terahertz absorption rate at a frequency where the absorption rate generated by the structure having only one absorption film is away from the peak frequency, and to widen the uniform range of the terahertz absorption rate.
  • a large drop in absorption rate occurs at 6 THz.
  • FIG. 4 is a diagram showing the terahertz absorption rate of the modification of FIG.
  • the number of absorption films is two as in the first embodiment, and the distance between the reflection film 12 and the first absorption film 12 and the distance between the first absorption film 12 and the second absorption film 13 are set. For example, it is 12.5 ⁇ m, which is half of the first embodiment.
  • an optical resonant structure is formed for 6 THz (200 ⁇ m) where a large drop in the absorption rate (notch) occurs in the first embodiment.
  • the distance between the first absorption film 12 and the second absorption film 13 is 12.5 ⁇ m, for example, an optical resonance structure is formed at, for example, 3 THz and 9 THz. Furthermore, the first absorption film 12 and the first absorption film 12 and the first absorption film 12 and the first absorption film 12 and the first absorption film 12 and the first absorption film 12 and 13 are balanced so that the absorptance is uniform over a wide range.
  • the sheet resistance of the second absorption film 13 is set. For example, when the sheet resistance of the first absorption film 12 is 337 ⁇ / ⁇ and the sheet resistance of the second absorption film 13 is 754 ⁇ / ⁇ , which is twice that of the first absorption film 12, as shown in FIG. The notch at 6 THz can be greatly improved.
  • FIG. 5 is a cross-sectional view showing the configuration of the third embodiment of the present invention.
  • the bolometer-type terahertz wave detector 3 of the present embodiment includes a reflective film 31 that reflects terahertz waves and a plurality of absorption films 32 and 33 that absorb terahertz waves, as in the first embodiment.
  • the second absorption film 33 is built in a ridge 43 formed so as to extend inward and outward from the peripheral edge of the temperature detection unit 40, and the first and second embodiments. Different.
  • the reflection film 31 is formed on, for example, a circuit board 41 as shown in FIG.
  • a reading circuit 411 is formed in the circuit board 41 as shown in FIG.
  • a contact 412 for connecting to the readout circuit 411 is formed on the circuit board 41.
  • a first protective film 413 is formed on the reflective film 31 and the contact 412.
  • a first support portion 42 that holds the absorption film 32 is formed in parallel with the reflective film 31 with the air gap 37 floating from the circuit board 41.
  • the first support portion 42 incorporates a bolometer thin film 401 that detects a temperature change of the first and second absorption films 32 and 33 whose temperature has been changed by absorbing the terahertz wave.
  • a portion in which the bolometer thin film 401 is built is referred to as a temperature detection unit 40.
  • the temperature detection unit 40 of the support unit 42 includes a second protective film 402 formed on the surface of the bolometer thin film 401 on the reflective film 31 side, and a third protective film 403 formed on the surface opposite to the reflective film 31.
  • the thin film 401 is protected.
  • a second protective film 402 and a third protective film 403 are laminated on the side surface portion of the support portion 42, and electrode wiring 421 is formed on the outer surface (opposite side of the reflective film 31) of the third protective film 403. It has a structure. Both end portions of the bolometer thin film 401 and contacts 412 for connecting to the readout circuit 411 are connected by the electrode wiring 421.
  • a fourth protective film 404 is formed outside the electrode wiring 421 and the third protective film 403 so that the electrode wiring 421 is protected.
  • an absorption film 32 is formed outside the fourth protective film 404
  • a fifth protective film 405 is formed outside the absorption film 32 so that the absorption film 32 is protected.
  • a ridge 43 containing the absorption film 33 is formed in parallel with the reflective film 31 in a state of floating from the temperature detection unit 40 (support unit 42) with an air gap 38.
  • the detailed structure of the eaves 43 includes a sixth protective film 431 formed on the surface of the absorption film 33 on the reflective film 31 side, and a seventh protective film 432 formed on the surface opposite to the reflective film 31. It has a protective structure.
  • the gap 35 between the first absorption film 32 and the reflection film 31, the gap 36 between the first absorption film 32 and the second absorption film 33, and the sheet resistance between the absorption film 32 and the absorption film 33 are the first and second. It may be set similarly to the embodiment.
  • an optical resonance structure is formed for a plurality of terahertz waves different from the structure of one absorption film, and the effects of the plurality of optical resonance structures are balanced.
  • the sheet resistance of a plurality of absorption films is set.
  • the collar 43 containing the absorption film 33 is formed so as to extend inward and outward from the peripheral edge of the temperature detection unit 40 containing the bolometer film, so that it absorbs terahertz waves widely including the periphery of the temperature detection unit 40. It is possible to improve the overall terahertz absorption rate.
  • FIG. 6 is a cross-sectional view showing the configuration of the fourth embodiment of the present invention.
  • the bolometer-type terahertz wave detector 4 of this embodiment includes three layers of absorption films 32, 33, and 34 that absorb terahertz waves.
  • a ridge 44 formed so as to extend in parallel with the reflective film 31 is installed on the ridge 43 of the third embodiment, and the third absorption film 34 is built in the ridge 44. Is done.
  • the structures of the reflective film 31, the circuit board 41, the readout circuit 411, the contact 412, the first protective film 413, the first absorption film 32, the first support part 42, the temperature detection part 40, and the flange 43 are the third embodiment. It is the same.
  • a ridge 44 is formed which has the air gap 45 and incorporates the absorption film 34 in a state of floating from the ridge 43 in parallel with the reflective film 31.
  • the flange 44 may be formed to extend inward and outward from a flange 43 that extends outward from the peripheral edge of the temperature detection unit 40.
  • the detailed structure of the flange 44 is such that an eighth protective film 441 is formed on the surface of the absorption film 34 on the reflective film 31 side, and a ninth protective film 442 is formed on the surface opposite to the reflective film 31. It has a protective structure.
  • the gap 35 between the first absorption film 32 and the reflection film 31, the gap 36 between the first absorption film 32 and the second absorption film 33, and the sheet resistance between the absorption film 32 and the absorption film 33 are the first and second. It may be set similarly to the embodiment. Further, the gap 39 between the second absorption film 33 and the third absorption film 34 is set in the same manner as the distance between the first absorption film 32 and the second absorption film 33 as in the second embodiment. Good.
  • the sheet resistance of the third absorption film 34 may be three times the sheet resistance of the first absorption film 32.
  • an optical resonance structure is formed for a plurality of terahertz waves different from the structure of one absorption film, and the effects of the plurality of optical resonance structures are balanced.
  • the sheet resistance of the plurality of absorbing films is set.
  • the flange 44 containing the third absorption film 34 is formed so as to extend inward and outward from the peripheral portion of the temperature detector 40 incorporating the bolometer film, so that the temperature detector 40 and the flange 43 are surrounded. It is possible to absorb terahertz waves widely and to improve the overall terahertz absorption rate.
  • the absorption films 12, 13, and 14 that absorb terahertz waves have been described as being formed on the surfaces of the support portions 22, 23, and 24 opposite to the reflection film 11. It is not limited, and it may be formed on the surface on the reflective film 11 side or inside the support portions 22, 23, 24.

Abstract

In order to make it possible to improve terahertz absorption rate uniformity in a terahertz wave frequency band, a bolometer type terahertz wave detector 1 includes: a reflective film 11 which reflects terahertz waves; a first absorption film 12 and a second absorption film 13 which absorb terahertz waves and are disposed parallel to the reflective film 11; and a bolometer thin film 201 which detects changes in the temperature of the first absorption film 12 and the second absorption film 13; wherein the distance between the first absorption film 12 and the second absorption film 13 is a distance which forms an optical resonance structure for terahertz waves having a frequency that is different from that of terahertz waves giving rise to an optical resonance effect between the reflective film 11 and the first absorption film 12 or the second absorption film 13.

Description

ボロメータ型テラヘルツ波検出器Bolometer type terahertz wave detector
 本発明は、テラヘルツ周波数帯の電磁波を検出する検出器に関し、特に、ボロメータ型テラヘルツ波検出器に関する。 The present invention relates to a detector for detecting electromagnetic waves in the terahertz frequency band, and more particularly to a bolometer type terahertz wave detector.
 ボロメータ型テラヘルツ波検出器は、回路基板上にテラヘルツ波を反射する反射膜が形成され、ボロメータ薄膜を含む温度検出部(ダイアフラム)が支持部により基板から浮いた状態で保持された構造となっている。またボロメータ薄膜の両端部が支持部に内蔵された電気配線を介して基板に実装される読出回路に接続される構成となっている。 The bolometer-type terahertz wave detector has a structure in which a reflection film that reflects terahertz waves is formed on a circuit board, and a temperature detection unit (diaphragm) including the bolometer thin film is held in a state of being floated from the substrate by a support unit. Yes. Further, both end portions of the bolometer thin film are connected to a readout circuit mounted on the substrate via electric wiring built in the support portion.
 特許文献1から3に、ボロメータ型テラヘルツ波検出器に関連する技術が開示されている。例えば特許文献1には、温度検出部の表面、裏面あるいは内部にテラヘルツ波を吸収する吸収膜が形成され、反射膜上にテラヘルツ波に対して透明な誘電体が形成されたボロメータ型テラヘルツ波検出器が開示されている。特許文献1のボロメータ型テラヘルツ波検出器では、誘電体の上面と温度検出部の下面との間隔が8マイクロメートル未満となるように、誘電体の膜厚が設定されている。またテラヘルツ波を効率的に吸収するため反射膜と吸収膜とで形成される光学的共振構造が適切に設定されている。 Patent Documents 1 to 3 disclose techniques related to a bolometer-type terahertz wave detector. For example, Patent Document 1 discloses a bolometer-type terahertz wave detection in which an absorption film that absorbs terahertz waves is formed on the front surface, back surface, or inside of a temperature detection unit, and a dielectric that is transparent to terahertz waves is formed on a reflection film. A vessel is disclosed. In the bolometer type terahertz wave detector of Patent Document 1, the film thickness of the dielectric is set so that the distance between the upper surface of the dielectric and the lower surface of the temperature detection unit is less than 8 micrometers. Moreover, in order to efficiently absorb the terahertz wave, an optical resonance structure formed by the reflection film and the absorption film is appropriately set.
 また特許文献2に開示される技術は、基板と温度検出部とに電磁波共振構造を設け、電磁波共振構造は、特定の波長の電磁波を、その進行方向と該進行方向に直交する垂直方向とにおいて共振させる。また、特許文献2に開示される技術は、特定の波長の電磁波を熱に変換して、変換した熱を温度検出部に伝える。 The technique disclosed in Patent Document 2 is provided with an electromagnetic wave resonance structure on the substrate and the temperature detection unit, and the electromagnetic wave resonance structure is configured to transmit an electromagnetic wave having a specific wavelength in a traveling direction and a vertical direction orthogonal to the traveling direction. Resonate. The technique disclosed in Patent Document 2 converts electromagnetic waves having a specific wavelength into heat, and transmits the converted heat to the temperature detection unit.
 また特許文献3には、温度検出部の上部にテラヘルツ波を効率良く集めるための誘電体材料からなる誘電体カバーを追加したボロメータ型テラヘルツ波検出器が開示されている。 Patent Document 3 discloses a bolometer-type terahertz wave detector in which a dielectric cover made of a dielectric material for efficiently collecting terahertz waves is added to the upper part of the temperature detection unit.
特開2012-194080号公報JP 2012-194080 A 特開2014-190783号公報JP 2014-190783 A 特開2008-241439号公報JP 2008-241439 A
 特許文献1に記載の構造のボロメータ型テラヘルツ波検出器では、1対の反射膜と吸収膜とで光学的共振構造が形成されている。このため、光学的共振の効果のある周波数帯域については吸収率が高いが、光学的共振の効果が得られない周波数帯域では吸収率がない無吸収帯域が発生してしまう。 In the bolometer-type terahertz wave detector having the structure described in Patent Document 1, an optical resonance structure is formed by a pair of reflection film and absorption film. For this reason, although the absorptance is high in a frequency band having an optical resonance effect, a non-absorption band having no absorptivity is generated in a frequency band in which the optical resonance effect is not obtained.
 本発明は、テラヘルツ波の周波数帯域でのテラヘルツ吸収率の均一性を向上することができるボロメータ型テラヘルツ波検出器を提供することを目的とする。 An object of the present invention is to provide a bolometer type terahertz wave detector capable of improving the uniformity of the terahertz absorption rate in the frequency band of the terahertz wave.
 本発明のボロメータ型テラヘルツ波検出器は、テラヘルツ波を反射する反射膜と、前記テラヘルツ波を吸収し、前記反射膜に平行に配置された第1及び第2の吸収膜と、前記第1及び第2の吸収膜の温度変化を検出するボロメータ膜とを有し、前記第1及び第2の吸収膜の間隔は、前記反射膜と第1又は第2の吸収膜との光学的共振効果のあるテラヘルツ波と異なる周波数のテラヘルツ波について光学的な共振構造を形成する間隔である。 The bolometer-type terahertz wave detector of the present invention includes a reflective film that reflects terahertz waves, first and second absorption films that absorb the terahertz waves and are arranged in parallel to the reflective film, and the first and second A bolometer film that detects a temperature change of the second absorption film, and an interval between the first and second absorption films is an optical resonance effect between the reflection film and the first or second absorption film. This is an interval for forming an optical resonant structure for a terahertz wave having a frequency different from that of a certain terahertz wave.
 本発明によれば、テラヘルツ波の周波数帯域でのテラヘルツ吸収率の均一性を向上することができる。 According to the present invention, the uniformity of the terahertz absorption rate in the frequency band of the terahertz wave can be improved.
図1は、2つの吸収膜を備える第1の実施形態の構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration of a first embodiment including two absorption films. 図2は、3つの吸収膜を備える第2の実施形態の構成を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of the second embodiment including three absorption films. 図3は、図1及び図2のテラヘルツ吸収率のシミュレーション結果を示す図である。FIG. 3 is a diagram illustrating simulation results of the terahertz absorption rate of FIGS. 1 and 2. 図4は、図1の変形例のテラヘルツ吸収率のシミュレーション結果を示す図である。FIG. 4 is a diagram illustrating a simulation result of the terahertz absorption rate of the modification of FIG. 図5は、第3の実施形態の構成を示す断面図である。FIG. 5 is a cross-sectional view showing the configuration of the third embodiment. 図6は、第4の実施形態の構成を示す断面図である。FIG. 6 is a cross-sectional view showing the configuration of the fourth embodiment.
 以下、本発明の実施形態の構成について、図面を参照して説明する。図1は、2つの吸収膜を備える第1の実施形態の構成を示す断面図である。図2は、3つの吸収膜を備える第2の実施形態の構成を示す断面図である。 Hereinafter, the configuration of the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view illustrating a configuration of a first embodiment including two absorption films. FIG. 2 is a cross-sectional view showing a configuration of the second embodiment including three absorption films.
 反射膜11は、回路基板21上に形成されている。 The reflective film 11 is formed on the circuit board 21.
 第1の実施形態のボロメータ型テラヘルツ波検出器1は、図1に示すように、テラヘルツ波を反射する反射膜11と、テラヘルツ波を吸収する2枚の吸収膜12、13を備えている。また第2の実施形態のボロメータ型テラヘルツ波検出器2は、図2に示すように、テラヘルツ波を反射する反射膜11と、テラヘルツ波を吸収する3枚の吸収膜12、13、14を備えている。 The bolometer-type terahertz wave detector 1 according to the first embodiment includes a reflective film 11 that reflects terahertz waves and two absorption films 12 and 13 that absorb terahertz waves, as shown in FIG. The bolometer-type terahertz wave detector 2 of the second embodiment includes a reflection film 11 that reflects terahertz waves and three absorption films 12, 13, and 14 that absorb terahertz waves, as shown in FIG. ing.
 反射膜11は、図2に示すように、回路基板21上に形成されている。 The reflection film 11 is formed on the circuit board 21 as shown in FIG.
 回路基板21上に回路基板21から浮いた状態で反射膜11と平行に第1の吸収膜12を保持する第1の支持部22が形成されている。第1の吸収膜12は、第1の支持部22上に、反射膜11と反対側の面に形成されている。 A first support portion 22 is formed on the circuit board 21 to hold the first absorption film 12 in parallel with the reflection film 11 in a state of floating from the circuit board 21. The first absorption film 12 is formed on the first support portion 22 on the surface opposite to the reflection film 11.
 第1の支持部22は、テラヘルツ波を吸収して温度が変化した吸収膜12の温度変化を検出するボロメータ薄膜201を内蔵する。なお支持部22のボロメータ薄膜201を内蔵する部分を温度検出部20という。 The first support portion 22 incorporates a bolometer thin film 201 that detects a temperature change of the absorption film 12 whose temperature has changed by absorbing the terahertz wave. Note that the portion of the support 22 in which the bolometer thin film 201 is built is referred to as a temperature detection unit 20.
 回路基板21には、読出回路が形成され、支持部22内に形成された電極配線によってボロメータ薄膜201の端部と回路基板21に形成された読出回路とが接続されるよう構成されている。 A reading circuit is formed on the circuit board 21, and an end portion of the bolometer thin film 201 and a reading circuit formed on the circuit board 21 are connected by electrode wiring formed in the support portion 22.
 また、第1の支持部22上に反射膜11に平行に第1の支持部22から浮いた状態で第2の吸収膜13を保持する第2の支持部23が形成されている。第2の吸収膜13は、第2の支持部23上に、反射膜11と反対側の面に、形成されている。さらに第2の実施形態では、図2に示すように第2の支持部23上に反射膜11に平行に第2の支持部23から浮いた状態で第3の吸収膜14を保持する第3の支持部24が形成され、第3の吸収膜14が第3の支持部24上に、反射膜11と反対側の面に、に形成されている。 Further, a second support portion 23 is formed on the first support portion 22 to hold the second absorption film 13 in a state of floating from the first support portion 22 in parallel with the reflective film 11. The second absorption film 13 is formed on the second support portion 23 on the surface opposite to the reflection film 11. Further, in the second embodiment, as shown in FIG. 2, the third absorption film 14 is held on the second support portion 23 in a state of floating from the second support portion 23 in parallel with the reflective film 11. The third absorbing film 14 is formed on the third supporting part 24 on the surface opposite to the reflective film 11.
 第1の吸収膜12と反射膜11の間隔は、テラヘルツ波を効率的に吸収できるよう光学的な共振構造となるよう設定される。また第1の吸収膜12のシート抵抗が吸収率を左右するため、第1の吸収膜12のシート抵抗は、テラヘルツ波を効率的に吸収できるよう設定される。3THz(100μm)を例にとると、反射膜11と第1の吸収膜12の間隔を25μm、シート抵抗を377(120×π)Ω/□とすると最も吸収率を高くすることが出来る。 The distance between the first absorption film 12 and the reflection film 11 is set to have an optical resonance structure so that the terahertz wave can be efficiently absorbed. Further, since the sheet resistance of the first absorption film 12 affects the absorption rate, the sheet resistance of the first absorption film 12 is set so as to efficiently absorb the terahertz wave. Taking 3 THz (100 μm) as an example, the absorption rate can be maximized when the distance between the reflective film 11 and the first absorption film 12 is 25 μm and the sheet resistance is 377 (120 × π) Ω / □.
 しかし、上述のように間隔及びシート抵抗を設定した第1の吸収膜1枚のみの構造では3THzから離れるテラヘルツ波に対しては吸収率が低下してくる。第1、第2の実施形態では、テラヘルツ波を吸収する複数の吸収膜を備え、第1の吸収膜12と第2の吸収膜13の間隔により、吸収膜が1枚のみの光学的共振の効果のあるテラヘルツ波と異なる周波数について光学的な共振構造が形成される。例えば、第1の吸収膜12と第2の吸収膜13の間隔を、25μmとすると、例えば1.5THzについて光学的な共振構造が形成される。また他にも例えば第2の吸収膜13から反射膜11を経由して第1の吸収膜12までの間隔により4.5THzについて光学的な共振構造が形成される。またこれらの複数の光学的共振効果のバランスをとり3THzから離れるテラヘルツ波に対する吸収率の低下を改善するよう第1の吸収膜12と第2の吸収膜13のシート抵抗を設定する。このことで吸収率の均一な周波数の範囲を広くすることができる。 However, in the structure of only one first absorption film in which the interval and the sheet resistance are set as described above, the absorptance decreases for terahertz waves that are separated from 3 THz. In the first and second embodiments, a plurality of absorption films that absorb terahertz waves are provided, and the optical resonance of only one absorption film is caused by the distance between the first absorption film 12 and the second absorption film 13. An optical resonant structure is formed for a frequency different from the effective terahertz wave. For example, when the distance between the first absorption film 12 and the second absorption film 13 is 25 μm, an optical resonance structure is formed at 1.5 THz, for example. In addition, for example, an optical resonant structure is formed at 4.5 THz by the distance from the second absorption film 13 to the first absorption film 12 via the reflection film 11. In addition, the sheet resistances of the first absorption film 12 and the second absorption film 13 are set so as to balance the plurality of optical resonance effects and to improve the decrease in the absorption rate for the terahertz wave separated from 3 THz. This makes it possible to widen the frequency range with uniform absorption.
 図3は、図1及び図2のテラヘルツ吸収率のシミュレーション結果を示す図である。吸収膜が1枚、すなわち第2の吸収膜13がなく、第1の吸収膜1枚のみの構造では、図3に破線で示すように、3THzから離れると吸収率が低下してくる。これに対し吸収膜が2枚の第1の実施形態については、吸収膜12のシート抵抗を337Ω/□とし、吸収膜13のシート抵抗を吸収膜12のシート抵抗337Ω/□の2倍の754Ω/□のシート抵抗とすると、図3に一点鎖線で示すように、吸収膜1枚と比較して吸収率の均一な範囲が広くなる。 FIG. 3 is a diagram showing a simulation result of the terahertz absorption rate of FIGS. 1 and 2. In a structure having one absorption film, that is, no second absorption film 13 and only one first absorption film, as shown by a broken line in FIG. On the other hand, in the first embodiment having two absorption films, the sheet resistance of the absorption film 12 is 337Ω / □, and the sheet resistance of the absorption film 13 is 754Ω, which is twice the sheet resistance 337Ω / □ of the absorption film 12. When the sheet resistance is / □, as shown by a one-dot chain line in FIG.
 また、吸収膜が3枚の第2の実施形態については、第2の吸収膜13と第3の吸収膜14の間隔を、例えば第1の吸収膜12と第2の吸収膜13の間隔と同じく25μmとし、第3の吸収膜14のシート抵抗を第1の吸収膜12のシート抵抗337Ω/□の3倍とすると、図3に実線で示すように、吸収膜2枚と比較して、均一な範囲がさらに広くなる。 For the second embodiment having three absorption films, the distance between the second absorption film 13 and the third absorption film 14 is, for example, the distance between the first absorption film 12 and the second absorption film 13. Similarly, when the sheet resistance of the third absorption film 14 is set to 3 times the sheet resistance 337Ω / □ of the first absorption film 12, as shown by the solid line in FIG. The uniform range becomes even wider.
 このようにテラヘルツ波を吸収する複数の吸収膜を備え、吸収膜の間隔により、反射膜と1枚の吸収膜の構造と異なるテラヘルツ波について光学的な共振構造を形成する。さらに反射膜と複数の吸収膜の間隔による複数の光学的共振構造の効果のバランスをとるよう複数の吸収膜のシート抵抗を設定する。このことにより、吸収膜が1枚のみの構造で発生する吸収率がピークの周波数から離れた周波数でのテラヘルツ吸収率の低下を防ぎ、テラヘルツ吸収率の均一な範囲を広くすることができる。 Thus, a plurality of absorption films that absorb terahertz waves are provided, and an optical resonance structure is formed for terahertz waves that is different from the structure of the reflection film and one absorption film, depending on the distance between the absorption films. Further, the sheet resistance of the plurality of absorption films is set so as to balance the effects of the plurality of optical resonance structures depending on the distance between the reflection film and the plurality of absorption films. As a result, it is possible to prevent a decrease in the terahertz absorption rate at a frequency where the absorption rate generated by the structure having only one absorption film is away from the peak frequency, and to widen the uniform range of the terahertz absorption rate.
 なお第1及び第2の実施形態において、図3に示すように、いずれも6THzで大きな吸収率の落ち込み(ノッチ)が生じている。 In the first and second embodiments, as shown in FIG. 3, a large drop in absorption rate (notch) occurs at 6 THz.
 この吸収率の落ち込みを改善する変形例について説明する。図4は、図1の変形例のテラヘルツ吸収率を示す図である。変形例は、吸収膜を第1の実施形態と同様に2枚とし、反射膜12と第1の吸収膜12の間隔、及び、第1の吸収膜12と第2の吸収膜13の間隔を、例えば、第1の実施形態の半分の12.5μmとする。このことにより、第1の実施形態で大きな吸収率の落ち込み(ノッチ)が生じている6THz(200μm)について光学的共振構造が形成される。また、第1の吸収膜12と第2の吸収膜13の間隔を、例えば12.5μmとすると、例えば3THz及び9THzについて光学的な共振構造が形成される。さらに反射膜11、第1及び第2の吸収膜12、13の間隔による複数の光学的共振構造の効果のバランスをとり広い範囲で吸収率が均一となるよう、第1の吸収膜12及び第2の吸収膜13のシート抵抗を設定する。例えば、第1の吸収膜12のシート抵抗を、337Ω/□、第2の吸収膜13のシート抵抗を、第1の吸収膜12の2倍の754Ω/□とすると、図4に示すように、6THzにおけるノッチを大幅に改善することが可能となる。 A modification that improves the drop in absorption rate will be described. FIG. 4 is a diagram showing the terahertz absorption rate of the modification of FIG. In the modification, the number of absorption films is two as in the first embodiment, and the distance between the reflection film 12 and the first absorption film 12 and the distance between the first absorption film 12 and the second absorption film 13 are set. For example, it is 12.5 μm, which is half of the first embodiment. As a result, an optical resonant structure is formed for 6 THz (200 μm) where a large drop in the absorption rate (notch) occurs in the first embodiment. Further, when the distance between the first absorption film 12 and the second absorption film 13 is 12.5 μm, for example, an optical resonance structure is formed at, for example, 3 THz and 9 THz. Furthermore, the first absorption film 12 and the first absorption film 12 and the first absorption film 12 and the first absorption film 12 and the first absorption film 12 and the first absorption film 12 and 13 are balanced so that the absorptance is uniform over a wide range. The sheet resistance of the second absorption film 13 is set. For example, when the sheet resistance of the first absorption film 12 is 337Ω / □ and the sheet resistance of the second absorption film 13 is 754Ω / □, which is twice that of the first absorption film 12, as shown in FIG. The notch at 6 THz can be greatly improved.
 次に第3の実施形態について説明する。図5は、本発明の第3の実施形態の構成を示す断面図である。 Next, a third embodiment will be described. FIG. 5 is a cross-sectional view showing the configuration of the third embodiment of the present invention.
 本実施形態のボロメータ型テラヘルツ波検出器3は、第1の実施形態と同様、テラヘルツ波を反射する反射膜31と、テラヘルツ波を吸収する複数の吸収膜32、33とを備えているが、第2の吸収膜33は、図5に示すように、温度検出部40の周縁部から内側及び外側に延びるように形成された庇43に内蔵される点で第1、第2の実施形態と異なる。 The bolometer-type terahertz wave detector 3 of the present embodiment includes a reflective film 31 that reflects terahertz waves and a plurality of absorption films 32 and 33 that absorb terahertz waves, as in the first embodiment. As shown in FIG. 5, the second absorption film 33 is built in a ridge 43 formed so as to extend inward and outward from the peripheral edge of the temperature detection unit 40, and the first and second embodiments. Different.
 反射膜31は、図5に示すように、例えば、回路基板41上に形成されている。回路基板41内には、図5に示すように読出回路411が形成される。回路基板41上には、読出回路411に接続するためのコンタクト412が形成される。反射膜31及びコンタクト412の上には、第1保護膜413が形成されている。 The reflection film 31 is formed on, for example, a circuit board 41 as shown in FIG. A reading circuit 411 is formed in the circuit board 41 as shown in FIG. A contact 412 for connecting to the readout circuit 411 is formed on the circuit board 41. A first protective film 413 is formed on the reflective film 31 and the contact 412.
 第1保護膜413上に反射膜31と平行に、エアギャップ37をもって回路基板41から浮いた状態で、吸収膜32を保持する第1の支持部42が形成されている。第1の支持部42には、テラヘルツ波を吸収して温度が変化した第1、第2の吸収膜32、33の温度変化を検出するボロメータ薄膜401を内蔵する。ボロメータ薄膜401を内蔵する部分を温度検出部40という。 On the first protective film 413, a first support portion 42 that holds the absorption film 32 is formed in parallel with the reflective film 31 with the air gap 37 floating from the circuit board 41. The first support portion 42 incorporates a bolometer thin film 401 that detects a temperature change of the first and second absorption films 32 and 33 whose temperature has been changed by absorbing the terahertz wave. A portion in which the bolometer thin film 401 is built is referred to as a temperature detection unit 40.
 第1の支持部42及び庇43の詳細構造について説明する。支持部42の温度検出部40は、ボロメータ薄膜401の反射膜31側の面に第2保護膜402が形成され、反射膜31と反対側の面に第3保護膜403が形成され、それぞれボロメータ薄膜401を保護する構造となっている。また支持部42の側面部分は、内側に第2保護膜402及び第3保護膜403が積層され、第3保護膜403の外側(反射膜31と反対側)の面に電極配線421が形成された構造となっている。電極配線421によってボロメータ薄膜401の両端部と、読出回路411に接続するためのコンタクト412とが接続される。電極配線421及び第3保護膜403の外側には、第4保護膜404が形成され、電極配線421が保護される構造となっている。また第4保護膜404の外側には、吸収膜32が形成され、さらに吸収膜32の外側に第5保護膜405が形成され、吸収膜32が保護される構造となっている。また第5保護膜405上に反射膜31と平行に、エアギャップ38をもって温度検出部40(支持部42)から浮いた状態で、吸収膜33を内蔵する庇43が形成されている。庇43の詳細構造は、吸収膜33の反射膜31側の面に第6保護膜431が形成され、反射膜31と反対側の面に第7保護膜432が形成され、それぞれ吸収膜33を保護する構造となっている。 The detailed structure of the 1st support part 42 and the collar 43 is demonstrated. The temperature detection unit 40 of the support unit 42 includes a second protective film 402 formed on the surface of the bolometer thin film 401 on the reflective film 31 side, and a third protective film 403 formed on the surface opposite to the reflective film 31. The thin film 401 is protected. In addition, a second protective film 402 and a third protective film 403 are laminated on the side surface portion of the support portion 42, and electrode wiring 421 is formed on the outer surface (opposite side of the reflective film 31) of the third protective film 403. It has a structure. Both end portions of the bolometer thin film 401 and contacts 412 for connecting to the readout circuit 411 are connected by the electrode wiring 421. A fourth protective film 404 is formed outside the electrode wiring 421 and the third protective film 403 so that the electrode wiring 421 is protected. In addition, an absorption film 32 is formed outside the fourth protective film 404, and a fifth protective film 405 is formed outside the absorption film 32 so that the absorption film 32 is protected. Further, on the fifth protective film 405, a ridge 43 containing the absorption film 33 is formed in parallel with the reflective film 31 in a state of floating from the temperature detection unit 40 (support unit 42) with an air gap 38. The detailed structure of the eaves 43 includes a sixth protective film 431 formed on the surface of the absorption film 33 on the reflective film 31 side, and a seventh protective film 432 formed on the surface opposite to the reflective film 31. It has a protective structure.
 また第1の吸収膜32と反射膜31のギャップ35、第1の吸収膜32と第2の吸収膜33のギャップ36、及び吸収膜32と吸収膜33のシート抵抗は、第1、第2の実施形態と同様に設定してよい。 In addition, the gap 35 between the first absorption film 32 and the reflection film 31, the gap 36 between the first absorption film 32 and the second absorption film 33, and the sheet resistance between the absorption film 32 and the absorption film 33 are the first and second. It may be set similarly to the embodiment.
 本実施形態においても、複数の吸収膜を備えることにより吸収膜1枚の構造と異なる複数のテラヘルツ波について光学的な共振構造を形成し、さらに複数の光学的共振構造の効果のバランスをとるよう複数の吸収膜のシート抵抗を設定する。このことにより、第1、第2の実施形態と同様の効果が得られる。また吸収膜33を内蔵する庇43がボロメータ膜を内蔵する温度検出部40の周縁部から内側及び外側に延びるように形成されていることにより、温度検出部40の周囲を含め広くテラヘルツ波を吸収することができ、テラヘルツ吸収率を全体的に向上させることが可能である。 Also in this embodiment, by providing a plurality of absorption films, an optical resonance structure is formed for a plurality of terahertz waves different from the structure of one absorption film, and the effects of the plurality of optical resonance structures are balanced. The sheet resistance of a plurality of absorption films is set. As a result, the same effects as those of the first and second embodiments can be obtained. Further, the collar 43 containing the absorption film 33 is formed so as to extend inward and outward from the peripheral edge of the temperature detection unit 40 containing the bolometer film, so that it absorbs terahertz waves widely including the periphery of the temperature detection unit 40. It is possible to improve the overall terahertz absorption rate.
 次に第4の実施形態について説明する。図6は、本発明の第4の実施形態の構成を示す断面図である。 Next, a fourth embodiment will be described. FIG. 6 is a cross-sectional view showing the configuration of the fourth embodiment of the present invention.
 本実施形態のボロメータ型テラヘルツ波検出器4は、テラヘルツ波を吸収する3層の吸収膜32、33、34を備える。ボロメータ型テラヘルツ波検出器4は、第3の実施形態の庇43上に、さらに反射膜31と平行に延びるように形成された庇44が設置され、庇44に第3の吸収膜34が内蔵される。 The bolometer-type terahertz wave detector 4 of this embodiment includes three layers of absorption films 32, 33, and 34 that absorb terahertz waves. In the bolometer-type terahertz wave detector 4, a ridge 44 formed so as to extend in parallel with the reflective film 31 is installed on the ridge 43 of the third embodiment, and the third absorption film 34 is built in the ridge 44. Is done.
 反射膜31、回路基板41、読出回路411、コンタクト412、第1保護膜413、第1の吸収膜32、第1の支持部42、温度検出部40、庇43の構造は第3の実施形態と同様である。 The structures of the reflective film 31, the circuit board 41, the readout circuit 411, the contact 412, the first protective film 413, the first absorption film 32, the first support part 42, the temperature detection part 40, and the flange 43 are the third embodiment. It is the same.
 本実施形態では、庇43の第7保護膜432上に反射膜31と平行に、庇43から浮いた状態で、エアギャップ45をもって吸収膜34を内蔵する庇44が形成されている。庇44は、図6に示すように、温度検出部40の周縁部から外側に延びた庇43から、内側及び外側に延びるように形成されてよい。庇44の詳細構造は、吸収膜34の反射膜31側の面に第8保護膜441が形成され、反射膜31と反対側の面に第9保護膜442が形成され、それぞれ吸収膜34を保護する構造となっている。 In this embodiment, on the seventh protective film 432 of the ridge 43, a ridge 44 is formed which has the air gap 45 and incorporates the absorption film 34 in a state of floating from the ridge 43 in parallel with the reflective film 31. As shown in FIG. 6, the flange 44 may be formed to extend inward and outward from a flange 43 that extends outward from the peripheral edge of the temperature detection unit 40. The detailed structure of the flange 44 is such that an eighth protective film 441 is formed on the surface of the absorption film 34 on the reflective film 31 side, and a ninth protective film 442 is formed on the surface opposite to the reflective film 31. It has a protective structure.
 また第1の吸収膜32と反射膜31のギャップ35、第1の吸収膜32と第2の吸収膜33のギャップ36、及び吸収膜32と吸収膜33のシート抵抗は、第1、第2の実施形態と同様に設定してよい。また、第2の吸収膜33と第3の吸収膜34のギャップ39は、第2の実施形態と同様に、第1の吸収膜32と第2の吸収膜33の間隔と同様に設定してよい。また第3の吸収膜34のシート抵抗を第1の吸収膜32のシート抵抗の3倍としてよい。 In addition, the gap 35 between the first absorption film 32 and the reflection film 31, the gap 36 between the first absorption film 32 and the second absorption film 33, and the sheet resistance between the absorption film 32 and the absorption film 33 are the first and second. It may be set similarly to the embodiment. Further, the gap 39 between the second absorption film 33 and the third absorption film 34 is set in the same manner as the distance between the first absorption film 32 and the second absorption film 33 as in the second embodiment. Good. The sheet resistance of the third absorption film 34 may be three times the sheet resistance of the first absorption film 32.
 本実施形態においても、3層の吸収膜を備えることにより吸収膜1枚の構造と異なる複数のテラヘルツ波について光学的な共振構造を形成し、さらに複数の光学的共振構造の効果のバランスをとるよう複数の吸収膜のシート抵抗を設定する。このことにより、第1、第2、第3の実施形態と同様の効果が得られる。また第3の吸収膜34を内蔵する庇44がボロメータ膜を内蔵する温度検出部40の周縁部から内側及び外側に延びるように形成されていることにより、温度検出部40及び庇43の周囲を含め広くテラヘルツ波を吸収することができ、テラヘルツ吸収率を全体的に向上させることが可能である。 Also in the present embodiment, by providing a three-layer absorption film, an optical resonance structure is formed for a plurality of terahertz waves different from the structure of one absorption film, and the effects of the plurality of optical resonance structures are balanced. The sheet resistance of the plurality of absorbing films is set. As a result, the same effects as those of the first, second, and third embodiments can be obtained. Further, the flange 44 containing the third absorption film 34 is formed so as to extend inward and outward from the peripheral portion of the temperature detector 40 incorporating the bolometer film, so that the temperature detector 40 and the flange 43 are surrounded. It is possible to absorb terahertz waves widely and to improve the overall terahertz absorption rate.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 例えば、図2の説明では、テラヘルツ波を吸収する吸収膜12、13、14が、支持部22、23、24の、反射膜11と反対側の面に形成されるものとして説明したがこれに限られるものでなく、反射膜11側の面に形成されても構わないし、支持部22、23、24の内部にあっても構わない。 For example, in the description of FIG. 2, the absorption films 12, 13, and 14 that absorb terahertz waves have been described as being formed on the surfaces of the support portions 22, 23, and 24 opposite to the reflection film 11. It is not limited, and it may be formed on the surface on the reflective film 11 side or inside the support portions 22, 23, 24.
 また、例えば、ボロメータ型テラヘルツ波検出器3の温度検出部40の周縁部から内側及び外側に延びるものとして説明したが、内側のみに延びるように形成されたものでも構わない。 In addition, for example, although it has been described that it extends inward and outward from the peripheral edge of the temperature detector 40 of the bolometer-type terahertz wave detector 3, it may be formed so as to extend only inward.
 この出願は、2015年11月4日に出願された日本出願特願2015-216781を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-216781 filed on Nov. 4, 2015, the entire disclosure of which is incorporated herein.
 1、2、3、4  ボロメータ型テラヘルツ波検出器
 11、31  反射膜
 12、13、14、32、33、34  吸収膜
 20、40  温度検出部
 201、401  ボロメータ薄膜
 21、41  回路基板
 22、23、24、42  支持部
 35  ギャップ
 402  第2保護膜
 403  第3保護膜
 404  第4保護膜
 405  第5保護膜
 411  読出回路
 412  コンタクト
 413  第1保護膜
 421  電極配線
 43、44  庇
 431  第6保護膜
 432  第7保護膜
 441  第8保護膜
 442  第9保護膜
1, 2, 3, 4 Bolometer type terahertz wave detector 11, 31 Reflective film 12, 13, 14, 32, 33, 34 Absorbing film 20, 40 Temperature detector 201, 401 Bolometer thin film 21, 41 Circuit board 22, 23 , 24, 42 Support part 35 Gap 402 Second protective film 403 Third protective film 404 Fourth protective film 405 Fifth protective film 411 Read circuit 412 Contact 413 First protective film 421 Electrode wiring 43, 44 43 431 Sixth protective film 432 7th protective film 441 8th protective film 442 9th protective film

Claims (7)

  1.  テラヘルツ波を反射する反射膜と、
     前記テラヘルツ波を吸収し、前記反射膜に平行に配置された第1及び第2の吸収膜と、
     前記第1及び第2の吸収膜の温度変化を検出するボロメータ膜と、
     を有し、
     前記第1及び第2の吸収膜の間隔は、前記反射膜と第1又は第2の吸収膜との光学的共振効果のあるテラヘルツ波と異なる周波数のテラヘルツ波について光学的な共振構造を形成する間隔である、
     ボロメータ型テラヘルツ波検出器。
    A reflective film that reflects terahertz waves;
    First and second absorption films that absorb the terahertz wave and are arranged in parallel to the reflection film;
    A bolometer film for detecting a temperature change of the first and second absorption films;
    Have
    The distance between the first and second absorption films forms an optical resonance structure for terahertz waves having a frequency different from that of the terahertz wave having an optical resonance effect between the reflection film and the first or second absorption film. Interval,
    Bolometer type terahertz wave detector.
  2.  前記第1及び第2の吸収膜のシート抵抗は、前記反射膜、前記第1及び第2の吸収膜の間隔による複数の光学的共振効果に基づき設定された抵抗値である、
     請求項1に記載のボロメータ型テラヘルツ波検出器。
    The sheet resistance of the first and second absorption films is a resistance value set based on a plurality of optical resonance effects due to the distance between the reflection film and the first and second absorption films.
    The bolometer-type terahertz wave detector according to claim 1.
  3.  前記反射膜を有する回路基板と、
     前記回路基板に設けられ、前記第1の吸収膜を前記反射膜と平行に支持する第1の支持部と、
     前記第1の支持部に設けられ、前記第2の吸収膜を前記反射膜と平行に支持する第2の支持部を有し、
     前記ボロメータ膜は、前記第1の支持部に形成される、
     請求項1又は2に記載のボロメータ型テラヘルツ波検出器。
    A circuit board having the reflective film;
    A first support provided on the circuit board and supporting the first absorption film in parallel with the reflection film;
    A second support portion provided on the first support portion and supporting the second absorption film in parallel with the reflective film;
    The bolometer film is formed on the first support part.
    The bolometer type terahertz wave detector according to claim 1 or 2.
  4.  前記第1の吸収膜と前記第2の吸収膜の間隔は、前記反射膜と前記第1の吸収膜の間隔と等しく、
     前記第2の吸収膜のシート抵抗が前記第1の吸収膜のシート抵抗の2倍である、
     請求項3に記載のボロメータ型テラヘルツ波検出器。
    The distance between the first absorption film and the second absorption film is equal to the distance between the reflection film and the first absorption film,
    The sheet resistance of the second absorption film is twice the sheet resistance of the first absorption film,
    The bolometer type terahertz wave detector according to claim 3.
  5.  前記第2の支持部に設けられ、前記テラヘルツ波を吸収する第3の吸収膜を前記反射膜と平行に支持する第3の支持部を有し、
     前記第1の吸収膜と前記第2の吸収膜の間隔及び前記第2の吸収膜と前記第3の吸収膜の間隔は、前記反射膜と前記第1の吸収膜の間隔と等しく、
     前記第2の吸収膜のシート抵抗が前記第1の吸収膜のシート抵抗の2倍であり、
     前記第3の吸収膜のシート抵抗が前記第1の吸収膜のシート抵抗の3倍である、
     請求項3に記載のボロメータ型テラヘルツ波検出器。
    A third support that is provided on the second support and supports a third absorption film that absorbs the terahertz wave in parallel with the reflective film;
    The distance between the first absorption film and the second absorption film and the distance between the second absorption film and the third absorption film are equal to the distance between the reflection film and the first absorption film,
    The sheet resistance of the second absorption film is twice the sheet resistance of the first absorption film;
    The sheet resistance of the third absorption film is three times the sheet resistance of the first absorption film;
    The bolometer type terahertz wave detector according to claim 3.
  6.  前記反射膜を形成する回路基板と、
     前記回路基板に設けられ、前記第1の吸収膜を前記反射膜と平行に支持する第1の支持部と、
     前記第2の吸収膜を含み前記第1の支持部から前記ボロメータ膜に平行に延びる庇と、
     を有する請求項1又は2に記載のボロメータ型テラヘルツ波検出器。
    A circuit board for forming the reflective film;
    A first support provided on the circuit board and supporting the first absorption film in parallel with the reflection film;
    A ridge including the second absorption film and extending in parallel to the bolometer film from the first support portion;
    The bolometer-type terahertz wave detector according to claim 1 or 2.
  7.  前記第1の支持部は、前記ボロメータ薄膜を内蔵し、
     前記庇は、前記第1の支持部の前記ボロメータ薄膜を内蔵する部分の周縁部から内側及び外側に延びるように形成される、請求項6に記載のボロメータ型テラヘルツ波検出器。
    The first support part incorporates the bolometer thin film,
    The bolometer-type terahertz wave detector according to claim 6, wherein the flange is formed so as to extend inward and outward from a peripheral portion of a portion in which the bolometer thin film is built in the first support portion.
PCT/JP2016/082382 2015-11-04 2016-11-01 Bolometer type terahertz wave detector WO2017077996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017548763A JP6834974B2 (en) 2015-11-04 2016-11-01 Bolometer type terahertz wave detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-216781 2015-11-04
JP2015216781 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017077996A1 true WO2017077996A1 (en) 2017-05-11

Family

ID=58662056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082382 WO2017077996A1 (en) 2015-11-04 2016-11-01 Bolometer type terahertz wave detector

Country Status (2)

Country Link
JP (1) JP6834974B2 (en)
WO (1) WO2017077996A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739950A (en) * 2019-03-19 2020-10-02 国家纳米科学中心 Terahertz photoelectric detector
KR20210128552A (en) * 2020-04-16 2021-10-27 한국생산기술연구원 Microbolometer sensor with dual resonant structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294523A (en) * 2002-04-03 2003-10-15 Mitsubishi Electric Corp Infrared detector, its manufacturing method and infrared solid imaging device
JP2009025306A (en) * 2007-07-20 2009-02-05 Ulis Electromagnetic radiation detector, and manufacturing method for the detector
JP2012154685A (en) * 2011-01-24 2012-08-16 Seiko Epson Corp Thermal photodetector, thermal photodetection device, electronic instrument, and method of manufacturing thermal photodetector
JP2012194080A (en) * 2011-03-17 2012-10-11 Nec Corp Bolometer type thz wave detector
JP2013164364A (en) * 2012-02-13 2013-08-22 Seiko Epson Corp Terahertz camera and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294523A (en) * 2002-04-03 2003-10-15 Mitsubishi Electric Corp Infrared detector, its manufacturing method and infrared solid imaging device
JP2009025306A (en) * 2007-07-20 2009-02-05 Ulis Electromagnetic radiation detector, and manufacturing method for the detector
JP2012154685A (en) * 2011-01-24 2012-08-16 Seiko Epson Corp Thermal photodetector, thermal photodetection device, electronic instrument, and method of manufacturing thermal photodetector
JP2012194080A (en) * 2011-03-17 2012-10-11 Nec Corp Bolometer type thz wave detector
JP2013164364A (en) * 2012-02-13 2013-08-22 Seiko Epson Corp Terahertz camera and electronic apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, SANGWOOK ET AL.: "Multilayer Fabry-Perot Microbolometers for Infrared Wavelength Selective Detection", PROC. OF SPIE, vol. 6206, 2006, pages 62061G *
KIM, HOO ET AL.: "Three Dimensional Dual-band Microbolometer Design using resistive dipoles and slots", PROC. OF SPIE, vol. 8704, 2013, pages 870419, XP055382215 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739950A (en) * 2019-03-19 2020-10-02 国家纳米科学中心 Terahertz photoelectric detector
KR20210128552A (en) * 2020-04-16 2021-10-27 한국생산기술연구원 Microbolometer sensor with dual resonant structure
KR102376711B1 (en) * 2020-04-16 2022-03-23 한국생산기술연구원 Microbolometer sensor with dual resonant structure

Also Published As

Publication number Publication date
JPWO2017077996A1 (en) 2018-08-23
JP6834974B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
KR101972196B1 (en) Infrared sensor
WO2011078004A1 (en) Infrared sensor
WO2011046163A1 (en) Infrared sensor and circuit substrate equipped therewith
EP2813826B1 (en) Infrared sensor and infrared sensor device
WO2012132342A1 (en) Infrared sensor
WO2017077996A1 (en) Bolometer type terahertz wave detector
JP2012068115A (en) Infrared sensor
JP6292297B2 (en) Terahertz wave detector
CN110023725B (en) Light detector
US10852194B2 (en) Light detector
US20200249084A1 (en) Light detector
JP6477058B2 (en) Infrared sensor
US11519785B2 (en) Light detector
JP2017181031A (en) Infrared sensor
JP5720999B2 (en) Infrared sensor and circuit board having the same
JP2020148469A (en) Infrared sensor
JP2018169191A (en) Infrared sensor
JP2010185708A (en) Bolometer type infrared sensor
JP2017181129A (en) Temperature sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862056

Country of ref document: EP

Kind code of ref document: A1