WO2017077686A1 - 基地局装置、無線端末装置および無線通信方法 - Google Patents

基地局装置、無線端末装置および無線通信方法 Download PDF

Info

Publication number
WO2017077686A1
WO2017077686A1 PCT/JP2016/004489 JP2016004489W WO2017077686A1 WO 2017077686 A1 WO2017077686 A1 WO 2017077686A1 JP 2016004489 W JP2016004489 W JP 2016004489W WO 2017077686 A1 WO2017077686 A1 WO 2017077686A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
base station
txop
beacon
txop period
Prior art date
Application number
PCT/JP2016/004489
Other languages
English (en)
French (fr)
Inventor
誠隆 入江
マイケル ホン チェン シム
ヤオ ハン ガイアス ウィー
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680059692.4A priority Critical patent/CN108141769A/zh
Priority to JP2017548630A priority patent/JP6785453B2/ja
Priority to EP16861764.5A priority patent/EP3373631B1/en
Publication of WO2017077686A1 publication Critical patent/WO2017077686A1/ja
Priority to US15/970,274 priority patent/US10660125B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to a base station device, a wireless terminal device, and a wireless communication method that perform wireless communication conforming to IEEE 802.11.
  • IEEE 802.11 wireless LAN systems can be roughly classified into two types according to the radio frequency.
  • DMG is an abbreviation for Directional Multi-Gigabit.
  • DMG devices used in the millimeter-wave band suppress the compression of the effective band due to interference by using techniques such as beam forming technology and spatial multiplexing due to the high straightness of radio waves used, and the high throughput exceeding 1 Gbps with effective throughput. It is expected to provide a wireless network.
  • a series of communication by wireless LAN is generally performed in the order of scan, connection authentication, data communication, and disconnection.
  • the rate of scanning and connection authentication in the time required for the entire communication increases.
  • the time required for data communication is a total of 3.35 seconds, and the time required for scanning and connection authentication is data communication. It accounts for about 1/6 of the total.
  • the time required for scanning and connection authentication does not change even when the data communication speed is doubled, that is, 4 Gbps, the time required for scanning and connection authentication occupies about 1/3 of the entire data communication. For this reason, shortening of the time required for scanning and connection authentication is desired.
  • Scan is an operation of searching for a connection destination (for example, a base station device such as an access point) with which the wireless terminal device communicates.
  • the time required for scanning depends on the transmission period of a beacon frame that is a kind of management frame that is periodically transmitted by the base station apparatus.
  • the transmission period of the Beacon frame is 100 milliseconds, but it may be set to a shorter transmission period.
  • increasing the transmission frequency of a Beacon frame that does not carry data means reducing the effective bandwidth, that is, reducing the effective throughput.
  • the directivity of the transmission beam is strong in DMG, if the transmission frequency of the Beacon frame is increased, interference between wireless communication devices (wireless terminal devices and base station devices) may occur, and the effective bandwidth may be impaired. is there.
  • the present disclosure provides a base station device, a wireless terminal device, and a wireless communication method capable of suppressing a reduction in effective bandwidth due to transmission of a Beacon frame and interference between wireless communication devices and performing scanning in a short time.
  • the base station apparatus is a base station apparatus that performs wireless communication conforming to IEEE 802.11 with respect to a plurality of wireless terminal apparatuses, and the TXOP period with one of the plurality of wireless terminal apparatuses has ended. Adding a Beacon element including information on the base station device to information indicating that the frame generation unit generates one or more first frames, and generates the one or more first frames as the plurality of first frames. And a transmission unit for transmitting to the wireless terminal device.
  • a wireless terminal device of the present disclosure is a wireless terminal device that performs wireless communication with a base station device in conformity with IEEE 802.11, a determination unit that determines whether the media is clear, and a probe for the base station device.
  • a frame generation unit that generates a Request frame, a transmission unit that transmits the Probe Request frame when it is determined to be clear, and a first timer that counts a first predetermined time from the transmission of the Probe Request frame;
  • the transmitting unit includes a TXOP period of the base station apparatus. Indicates the end of the TXOP period sent at the end of To broadcast, to one or more of the first frame Beacon element containing information relating to the base station apparatus is added is transmitted, and waits for transmission of the next frame.
  • the wireless communication method of the present disclosure is a wireless communication method in a wireless communication system having a base station device that performs wireless communication in conformity with IEEE 802.11 to a plurality of wireless terminal devices, wherein the base station device Generating one or more first frames by adding a Beacon element including information on the base station device to information indicating that a TXOP period with one of a plurality of wireless terminal devices has ended; The one or more first frames are transmitted to the plurality of wireless terminal devices.
  • the present disclosure it is possible to suppress the reduction of the effective band due to the transmission of the Beacon frame and the interference between the wireless communication devices, and to perform the scanning in a short time.
  • FIG. 1 is a sequence diagram when one access point AP and three wireless terminal apparatuses STA1 to STA3 perform wireless LAN communication in a conventional DMG.
  • FIG. 2 is a block diagram showing an example of the configuration of the access point AP as an example of the PCP / AP.
  • FIG. 3A is a diagram for explaining a basic frame format used for communication in a wireless LAN system compliant with IEEE 802.11.
  • FIG. 3B is a diagram for explaining the structure of Frame Control in the MAC header shown in FIG. 3A.
  • FIG. 4 is a diagram illustrating an example of a configuration of a STA as an example of a non-PCP / AP STA.
  • FIG. 1 is a sequence diagram when one access point AP and three wireless terminal apparatuses STA1 to STA3 perform wireless LAN communication in a conventional DMG.
  • FIG. 2 is a block diagram showing an example of the configuration of the access point AP as an example of the PCP / AP.
  • FIG. 5 is a sequence diagram for explaining a specific example of a communication sequence between an AP and STA1 to STA3 according to the first embodiment.
  • FIG. 6A is a sequence diagram illustrating an example of transmitting a CF-END + Beacon frame including a CF-END frame and a Beacon element at the rear end of the TXOP period of the AP.
  • FIG. 6B is a sequence diagram illustrating an example in which a CF-END frame and a frame including a Beacon element are sequentially transmitted sequentially at the rear end portion of the TXOP of the AP.
  • FIG. 6A is a sequence diagram illustrating an example of transmitting a CF-END + Beacon frame including a CF-END frame and a Beacon element at the rear end of the TXOP period of the AP.
  • FIG. 6B is a sequence diagram illustrating an example in which a CF-END frame and a frame including a Beacon element are sequentially transmitted sequentially at the
  • FIG. 6C is a sequence diagram illustrating an example in which a plurality of CF-END + Beacon frames having different beam directions are transmitted at the rear end portion of the TXOP of the AP.
  • FIG. 6D is a sequence diagram illustrating an example in which a frame including a plurality of Beacon elements having different beam directions is transmitted following the CF-END frame at the rear end of the TXOP of the AP.
  • FIG. 7A is a sequence diagram illustrating an example in which a CF-END frame is transmitted at the end of the TXOP of the AP and a frame including a Beacon element is transmitted after the end of the TXOP period.
  • FIG. 7B is a sequence diagram illustrating an example in which only a frame including a Beacon element is transmitted after expiration of the TXOP of the AP.
  • FIG. 7C is a sequence diagram illustrating an example in which a frame including a plurality of Beacon elements having different beam directions is transmitted after the end of the TXOP period after the CF-END frame is transmitted at the end of the TXOP of the AP.
  • FIG. 7D is a sequence diagram illustrating an example of transmitting a frame including a plurality of Beacon elements each having a different beam direction when the TXOP of the AP expires.
  • FIG. 8A is a sequence diagram illustrating an example of transmitting a CF-END + Beacon frame with a plurality of trailers added at the rear end of the TXOP of the AP.
  • FIG. 8B is a sequence diagram illustrating an example of transmitting a frame including a Beacon element to which a plurality of trailers are added after transmitting a CF-END frame at the rear end of the TXOP of the AP.
  • FIG. 8C is a sequence diagram illustrating an example of transmitting a frame including a Beacon element to which a plurality of trailers are added after the CF-END frame is transmitted at the end of the TXOP of the AP and after the end of the TXOP period.
  • FIG. 8A is a sequence diagram illustrating an example of transmitting a CF-END + Beacon frame with a plurality of trailers added at the rear end of the TXOP of the AP.
  • FIG. 8B is a sequence diagram illustrating an example of transmitting
  • FIG. 8D is a sequence diagram illustrating an example of transmitting a frame including a Beacon element to which a plurality of trailers are added after the expiration of the TXOP period of the AP.
  • FIG. 9 is a sequence diagram for explaining a specific example of a communication sequence between the AP and the STA1 to STA3 according to the second embodiment.
  • FIG. 10A is a sequence diagram illustrating an example in which the AP transmits a CF-END + Beacon frame including a CF-END frame and a Beacon element at the rear end portion of the TXOP period using the CF-END frame from STA1 as a trigger.
  • FIG. 10A is a sequence diagram illustrating an example in which the AP transmits a CF-END + Beacon frame including a CF-END frame and a Beacon element at the rear end portion of the TXOP period using the CF-END frame from STA1 as a trigger.
  • FIG. 10B is a sequence diagram showing an example in which the CF-END frame from the STA1 is used as a trigger, and the AP sequentially transmits the CF-END frame and the frame including the Beacon element at the rear end of the TXOP period.
  • FIG. 10C is a sequence diagram illustrating an example of transmitting a plurality of CF-END + Beacon frames having different beam directions, triggered by reception of a CF-END frame from STA1, at the rear end of the TXOP period of STA1. .
  • FIG. 10C is a sequence diagram showing an example in which the CF-END frame from the STA1 is used as a trigger, and the AP sequentially transmits the CF-END frame and the frame including the Beacon element at the rear end of the TXOP period.
  • FIG. 10C is a sequence diagram illustrating an example of transmitting a plurality of CF-END + Beacon frames having different beam directions, triggered by reception of a CF-END frame from S
  • FIG. 10D includes, at the rear end of the TXOP period of STA1, a plurality of Beacon elements each having a different beam direction following the CF-END frame transmitted by itself when triggered by reception of the CF-END frame from STA1. It is the sequence diagram which showed the example which transmits a flame
  • FIG. 11A is a sequence showing an example in which the AP transmits a CF-END frame at the end of the TXOP using the CF-END frame transmitted from the STA1, and transmits a frame including the Beacon element after the end of the TXOP period.
  • FIG. 11B is a sequence diagram illustrating an example in which the expiration of the TXOP is grasped by receiving the CF-END frame from the STA1, and the AP transmits only the frame including the Beacon element after the TXOP expires.
  • FIG. 11C is a sequence diagram illustrating an example in which the AP transmits only a frame including the Beacon element after the STA1 TXOP expires.
  • FIG. 11D uses the CF-END frame transmitted from STA1 as a trigger, the AP transmits a CF-END frame at the end of TXOP, and includes a plurality of Beacon elements each having a different beam direction after the end of the TXOP period. It is the sequence diagram which showed the example which transmits a flame
  • FIG. 11E shows an example in which the expiration of the TXOP is grasped by receiving the CF-END frame from the STA1, and the AP transmits a frame including a plurality of Beacon elements having different beam directions after the TXOP expires.
  • FIG. 11F is a sequence diagram illustrating an example in which the AP transmits a frame including a plurality of Beacon elements having different beam directions after the expiration of TXOP of STA1.
  • FIG. 12A is a sequence diagram showing an example of transmitting a CF-END + Beacon frame with a plurality of trailers triggered by the AP receiving a CF-END frame from STA1.
  • FIG. 12B shows a frame including a Beacon element to which a plurality of trailers are added after transmitting a CF-END frame triggered by the AP receiving a CF-END frame from STA1 at the rear end of TXOP of STA1. It is the sequence diagram which showed the example which transmits.
  • the AP transmits a CF-END frame at the end of TXOP, and transmits a frame including a Beacon element with a plurality of trailers added after the end of the TXOP period. It is the sequence diagram which showed the example to do.
  • FIG. 12C shows a frame including a Beacon element to which a plurality of trailers are added after transmitting a CF-END frame triggered by the AP receiving a CF-END frame from STA1 at the rear end of TXOP of STA1. It is the sequence diagram which showed the example which transmits.
  • FIG. 12C with the CF-END frame transmitted from STA1 as a trigger, the AP transmits
  • FIG. 12D is a sequence diagram illustrating an example in which the expiration of the TXOP is grasped by receiving the CF-END frame from the STA1, and the AP transmits a frame including a Beacon element to which a plurality of trailers are added after the expiration of the TXOP. It is.
  • FIG. 12E is a sequence diagram illustrating an example in which, after the expiration of TXOP of STA1, the AP transmits only a frame including a Beacon element to which a plurality of trailers are added.
  • FIG. 13 is a flowchart showing an operation example of the STA2 according to the third embodiment.
  • FIG. 14 is a flowchart illustrating a modified example of the operation of the STA2 according to the third embodiment.
  • IBSS Independent Basic Service Set
  • BSS Basic Service Set
  • PBSS Personal Basic Service Set
  • PCP PCP Control Point
  • non-AP STA STAtion
  • non-PCP STA wireless communication devices corresponding to wireless terminal devices connected to the base station device.
  • PBSS and PCP are not defined in non-DMG. Therefore, in the present embodiment, when describing the operation of non-DMG, the wireless communication device is referred to as non- (PCP /) AP STA or (PCP /) It may be described using parentheses such as AP.
  • a series of communications in a wireless LAN system compliant with IEEE 802.11 is generally performed in the order of scanning, connection authentication, communication (data transfer), and disconnection. In some cases, a scan for searching for the next connection destination or a handover for switching to the next connection destination may be performed during communication.
  • the Scan is an operation of searching for a PCP / AP that is a wireless communication device to be connected or a PBSS / BSS that is a service of a PCP / AP.
  • the connection authentication includes an operation for requesting and confirming connection to the PCP / AP determined to be connected by the non-PCP / AP STA, and an operation for performing a series of procedures mainly related to encryption authentication.
  • Communication (data transfer) is an operation of actually exchanging data.
  • the disconnection is an operation of disconnecting the wireless terminal device from the base station device when it is clear that communication is no longer necessary, and may not be explicitly performed.
  • the passive scan is an operation in which a non-PCP / AP STA receives a Beacon frame transmitted from a PCP / AP and the non-PCP / AP STA confirms a BSSID (Basic Service Set IDentifier).
  • the active scan is an operation in which the non-PCP / AP STA transmits a Probe Request frame that includes the SSID to be connected or does not designate a specific PCP / AP, and is transmitted from the PCP / AP to the non-PCP / AP STA. This is an operation for requesting a response including the BSSID information. Since these operations are slightly different between the procedure in non-DMG and the procedure in DMG, each will be described.
  • the (PCP /) AP periodically notifies the Beacon frame to the non- (PCP /) AP STA that is in a reception state at a time TBTT (Target Beacon Transmission Time).
  • the period of TBTT is set to 100 ms, for example.
  • the non- (PCP /) AP STA that has received the Beacon frame acquires (PCP /) AP and (PBSS /) BSS information from the Beacon frame. Therefore, in the passive scan in non-DMG, the time required for the scan completion depends on the cycle of TBTT.
  • the non- (PCP /) AP STA secures the media according to the wireless media access procedure and then transmits a Probe Request frame.
  • the (PCP /) AP STA receives the Probe Request frame and responds to the non- (PCP /) AP STA with a Probe Response frame as necessary.
  • the non- (PCP /) AP STA receives the Probe Response frame from the (PCP /) AP STA and acquires information on the (PCP /) AP and (PBSS /) BSS.
  • Active scan can be completed in a shorter time compared to passive scan.
  • a situation in which a Probe Request frame is frequently transmitted for scanning often occurs in a dense area of wireless communication devices such as urban areas. Since this situation is a cause of media compression due to induction of inter-frame interference, countermeasures are required.
  • the PCP / AP periodically broadcasts the Beacon frame to the non-PCP / AP STA in the reception standby state at time TBTT.
  • the non-PCP / AP STA that has received the Beacon frame acquires PCP / AP and PBSS / BSS information.
  • the period of TBTT is set to 100 ms, for example. The operation up to this point is the same as the passive scan in non-DMG.
  • non-PCP / AP STA and PCP / AP perform beamforming training using the Beacon frame and SSW (SectoreepSWeep) frame, and beam configuration of PCP / AP and non-PCP / AP STA.
  • the beam forming training is an operation performed prior to the connection authentication in order for the DMG device to make maximum use of the radio wave characteristics of the frequency that has a strong straightness. Even in the passive scan in DMG, the time required to complete the scan depends on the cycle of TBTT.
  • the active scan in DMG mainly describes an environment where two non-PCP / AP STAs exist.
  • One non-PCP / AP STA randomly transmits a Beacon frame.
  • the other non-PCP / AP STA also randomly transmits a Beacon frame.
  • One non-PCP / AP STA that has received the Beacon frame acquires information on the other non-PCP / AP STA and information on PBSS / BSS to be opened.
  • the two non-PCP / AP STAs perform beam forming training using the Beacon frame and the SSW frame, and determine the beam configuration between the two non-PCP / AP STAs.
  • the non-PCP / AP STA that has received the Beacon frame transmits a Probe Request frame, and the non-PCP / AP STA that has received the Probe Request frame responds with a Probe Response frame.
  • the non-PCP / AP STA that has received the Probe Response frame acquires the information of the other non-PCP / AP STA and the PBSS / BSS that is scheduled to be opened.
  • the active scan procedure in the DMG has explained the state in which no wireless communication apparatus is activated as a PCP / AP, that is, a base station apparatus. If one of the wireless communication devices is already activated as a PCP / AP, the scan is completed because the transmission cycle of the Beacon frame is every TBTT cycle as in the non-DMG procedure or the passive scan procedure. The time required for depends on the period of TBTT.
  • the active scan operation in non-DMG can be used in DMG. However, as will be described later, it is not used in the conventional DMG.
  • FIG. 1 is a sequence diagram when one access point AP and three wireless terminal apparatuses STA1 to STA3 perform wireless LAN communication in a conventional DMG.
  • the access point AP is already activated, and STA1 and STA3, which are non-PCP / AP STAs, are already connected to the AP. Then, during communication between the AP and the STA1, the STA2 is activated and starts scanning. In the sequence diagram shown in FIG. 1, communication between the AP and the STA 1 is started by the AP.
  • media access control is performed by CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance).
  • CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • the AP and any of the devices STA1 to STA3 in FIG. 1 perform communication using radio waves having a frequency that is straight or has high directivity, such as millimeter wave communication. For this reason, any device has a function of changing the beam direction by beam forming.
  • the reception antenna is set to Quasi-Omni (pseudo omnidirectional) so as to be able to receive radio waves from the direction, and reception is awaited.
  • the connection destination with which the STA communicates is the AP due to the nature of the BSS, and therefore the STA only needs to direct the beam toward the AP. Therefore, the STA does not have to set to Quasi-Omni when waiting for reception.
  • the communication mode is PBSS, since the arrival direction of the next radio wave (beam) is difficult to predict for each STA, each STA sets the receiving antenna to Quasi-Omni, like the AP in the BSS. Wait for reception.
  • the AP first performs a back-off procedure for preventing data (frame) collision caused by communication performed by a plurality of wireless communication apparatuses almost simultaneously according to CSMA / CA. (Arbitration by coordination function).
  • the AP transmits an RTS (Request to) Send) frame in which the destination address is set to STA1 to STA1 in order to start communication illustrated in FIG.
  • RTS Resource to
  • the RTS frame is transmitted using MCS (Modulation Coding ⁇ Scheme) for control such as Control-PHY set at a low rate (data communication speed).
  • MCS Modulation Coding ⁇ Scheme
  • Control-PHY Control-PHY set at a low rate (data communication speed).
  • the AP since the AP also communicates with the STA3, the AP transmits an RTS frame to the STA3 simultaneously with the STA1.
  • TXOP Transmission OPportunity
  • the TXOP period can be set to a maximum of 32 ms, for example, a few ms.
  • TXOP is a parameter for setting a period during which the wireless communication apparatus occupies the communication channel.
  • the AP recognizes that a transmission opportunity has been acquired for a predetermined period from the time of reception by receiving the CTS frame from the STA1, and sets the transmission and reception beams in the direction of the STA1 in order to improve the communication environment. Note that the AP may set the directivity of the received beam in the direction of STA1 before receiving the CTS reception from STA1 in order to more reliably capture the CTS frame after transmitting the RTS frame.
  • the AP continues to transmit frames within the acquired TXOP period.
  • the STA 1 transmits and receives a response for arrival confirmation using data transmission / reception, and an ACK (Acknoledge) frame and BA (Block Ack) frame as appropriate.
  • ACK Acknoledge
  • BA Block Ack
  • a function such as RD (Reverse-Direction) may be used to temporarily transfer the data transmission opportunity from the AP to the STA1, and the STA1 may perform communication.
  • the AP will release (release) the TXOP by sending a CF-END frame.
  • Declaration and notification are made to STA1 to STA3 existing in.
  • the STA2 is activated during the TXOP period of the AP, and starts scanning the connection destination.
  • the STA 2 transmits a conventional active scan procedure, that is, a probe request (PrbReq) frame in order to complete the scan quickly.
  • the AP since the AP is communicating with the STA1 and the beam is directed toward the STA1, the AP does not respond because it is difficult to receive the PrbReq frame from the STA2 and to correctly demodulate it.
  • the STA 2 since the response from the AP is not returned, the STA 2 continues to retransmit the PrbReq frame. For this reason, the transmission of the PrbReq frame from the STA2 becomes an interference wave with respect to the communication between the AP and the STA1, and the communication may be hindered. Alternatively, there is a possibility that interference with other neighboring BSSs may occur, and wireless communication with other neighboring BSSs may be hindered. On the other hand, since it is difficult for the STA 2 to recognize that the own wireless communication device continues to interfere with communication between other wireless communication devices, the STA 2 continues to generate interference waves.
  • the use of the conventional active scan (used in the non-DMG) for the early completion of the scan may be difficult to complete the early scan. May induce interference with other communication waves and reduce the effective bandwidth of the media. For this reason, the conventional DMG does not use the conventional active scan for the early completion of the scan.
  • the beam directivity is not relatively strong, so that the STA2 performs carrier sense even if it is not directed to its own wireless communication device by the radio wave transmitted by the AP. Is possible. For this reason, even if retransmission of the PrbReq frame is repeated, a situation that causes interference does not occur.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the access point AP.
  • PCP / AP corresponds to the base station apparatus of the present disclosure. That is, the access point AP illustrated in FIG. 2 is an example of the base station device of the present disclosure.
  • FIG. 2 is a block diagram showing an example of the configuration of the access point AP.
  • the AP is a wireless transmitter 101, a wireless receiver 102, a frame determiner 103, a frame generator 104, a discovery timer 105, a TOXP timer 106, a Backoff (CSMA / CA) timer 107, and a TBTT timer 108.
  • CSMA / CA Backoff
  • the wireless transmitter 101 and the wireless receiver 102 perform frame transmission / reception with, for example, a non-PCP / AP STA.
  • the wireless transmitter 101 and the wireless receiver 102 have at least one antenna and a beam deflection function, and can change the beam direction.
  • the frame type of a frame from another non-PCP / AP STA received from the wireless receiver 102 is determined by the frame determination unit 103.
  • the frame determination unit 103 determines a frame type by referring to a field called Frame Control in a MAC header which is a header portion of a MAC (Media Access Control) layer of transmitted data.
  • FIG. 3A is a diagram for explaining a basic frame format used for communication in a wireless LAN system compliant with IEEE 802.11.
  • FIG. 3B is a diagram for explaining the structure of Frame Control in the MAC header shown in FIG. 3A.
  • the field “Frame Control” shown in FIG. 3A indicates the type of frame, the decoding method of each address field, whether the current frame is encrypted, and the like.
  • a field “Duration / ID” illustrated in FIG. 3A indicates a reservation time until frame transmission is completed and a remaining time of the reservation time.
  • a field “Address1” illustrated in FIG. 3A indicates a destination address, that is, a MAC address of a receiving station.
  • the field “Address2” shown in FIG. 3A indicates the source address, that is, the MAC address of the wireless transmission device.
  • a field “Address3” illustrated in FIG. 3A indicates a MAC address (referred to as BSSID or the like) of a PBSS / BSS base station apparatus.
  • BSSID MAC address
  • a field “Address4” illustrated in FIG. 3A is used when communication between base station apparatuses (WDS: Wireless Distribution Service) is performed.
  • a field “Frame Body” shown in FIG. 3A is a main body (contents) of data.
  • the field “FCS” shown in FIG. 3A is an error check field.
  • the field “Type” shown in FIG. 3B indicates a major classification of the frame type.
  • the field “Subtype” illustrated in FIG. 3B indicates a small classification of the frame type.
  • a field “ToDS” illustrated in FIG. 3B indicates whether the destination is a base station device, a wireless communication device, or the like. DS is an abbreviation for DistributionDisService.
  • a field “FromDS” illustrated in FIG. 3B indicates whether the transmission source is a base station device, a wireless communication device, or the like.
  • a field “More Fragments” shown in FIG. 3B indicates whether or not the frame is a fragmented (divided) frame.
  • the field “Retry” shown in FIG. 3B indicates whether or not it is a retransmission frame.
  • the field “Power Management” shown in FIG. 3B indicates whether or not the transmission source is in the power management mode.
  • the field “More data” shown in FIG. 3B is used to indicate the presence of additional data for STAs in power save mode.
  • the field “Protected Frame” shown in FIG. 3B indicates whether or not the data is encrypted.
  • a field “Order” illustrated in FIG. 3B indicates whether or not there is a restriction on the arrival order.
  • the frame type is determined by the combination of the fields “Type” and “Subtype” shown in FIG. 3B.
  • the frame types include, for example, RTS (Request To Send) frames and CTS (Clear To Send) frames used to avoid collisions between wireless communication devices at the start of communication, and surrounding non-PCP / AP STAs.
  • RTS Request To Send
  • CTS Cert To Send
  • the frame determination unit 103 determines the frame type. If the frame determination unit 103 is an RTS frame, a CTS frame, a Probe Request frame, or a CF-END frame, the frame generator 104 and the TXOP timer 106 store information included in these frames. Output for. If it is a Data frame, the frame determiner 103 outputs the Data frame to an upper layer (network layer or higher).
  • the frame generator 104 generates a frame to be transmitted.
  • the types of frames to be transmitted include RTS frames, CTS frames, Data frames, CF-END frames, Probe Response frames that are responses to Probe Request frames, and Beacon frames for notifying surrounding wireless terminal devices of information related to APs themselves.
  • the details include a CF-END + Beacon frame described later.
  • the frame generator 104 generates a CTS frame when the frame type determined by the frame determiner 103 is an RTS frame.
  • the frame generator 104 generates a Probe Response frame when the frame type determined by the frame determiner 103 is a Probe Request frame.
  • the frame generator 104 determines whether or not the Beacon element has been transmitted within a certain period of time by, for example, the discovery timer 105 described later. If it has not been transmitted, a CF-END frame to which a Beacon element (an information element acquired from a Beacon frame when a non-PCP / AP STA is connected) is added is generated. That is, after the TXOP period ends, a Beacon element is added to the CF-END frame transmitted by the AP.
  • the CF-END frame to which the Beacon element is added is referred to as a CF-END + Beacon frame.
  • the frame generator 104 generates a Data frame when data to be communicated is obtained from an upper layer. Apart from these, the frame generator 104 generates a Beacon frame.
  • the discovery timer 105 determines whether or not the Beacon element has been transmitted within a certain period, and the result is a frame generator. To 104. As a result, after the TXOP period ends and the CF-END + Beacon frame is generated and transmitted by the frame generator 104, the frame generator 104 is not connected to the Beacon within a certain period even if the TXOP period may end again. Do not regenerate the frame containing the element. As a result, even when the TXOP period ends shortly, such as when the frame transmitted by the AP ceases, the compression of the effective band can be minimized without excessively transmitting the frame including the Beacon element. become.
  • the TXOP timer 106 is a timer that performs TXOP period measurement and notification of start / end. As described above, TXOP is a period during which the wireless communication apparatus occupies the communication channel. The TXOP timer 106 determines whether or not the TXOP period has started in the local station based on the CTS frame acquired from the counterpart station or the CTS frame generated by the frame generator 104, or whether or not the TXOP has started in the counterpart station. To determine. If a frame such as a CTS frame is received from the wireless communication device of the communication partner or a third wireless communication device (not shown), it is understood that the transmission prohibition period of the own wireless communication device has occurred, and transmission is prohibited. The TXOP timer 106 can be used to measure the period. Note that measurement may be performed using a timer different from the TXOP timer.
  • the TXOP timer 106 determines that the own wireless communication apparatus acquires the TXOP, and when the frame generator 104 generates a CTS frame and transmits it, the communication partner The wireless communication device acquires TXOP, and determines that the wireless communication device is in a transmission prohibited period.
  • the TXOP timer 106 determines whether or not the TXOP period has ended after the TXOP period of the own wireless communication apparatus or the wireless communication apparatus of the communication partner has started. When it is determined that the TXOP period has ended, the switch SW1 is connected, and the CF-END frame generated by the frame generator 104 is transmitted from the wireless transmitter 101 to the surroundings.
  • the wireless transmitter 101 and the wireless receiver 102 switch the beam deflectability. Specifically, within the TXOP period, the wireless transmitter 101 and the wireless receiver 102 are in a state in which the beam is deflected with respect to the connection partner non-PCP / AP STA, and conversely, outside the TXOP period, they are omnidirectional. Omni or quasi-omni beam. Further, when it is determined that it is during the TXOP period, the switch SW3 is connected, and the Data frame is transmitted from the wireless transmitter 101 to the communication partner non-PCP / AP STA.
  • the Backoff (CSMA / CA) timer 107 is a timer that measures back-off (time for avoiding frame collision).
  • CSMA / CA is an abbreviation for Carrier Sense Multiple Access with Collision Avoidance, and is adopted as a communication procedure of IEEE 802.11.
  • the backoff timer 107 determines that the back-off time has ended, when the switch SW2 is connected, the RTS frame, the Probe Request frame, the Probe Response frame, the Data frame, or the like generated by the frame generator 104 is transmitted to the wireless transmitter. 101 is transmitted to the surroundings.
  • the TBTT timer 108 determines whether or not the transmission period of the Beacon frame has come. When it is determined that the transmission period of the Beacon frame has come, the switch SW4 is connected, and the Beacon frame generated by the frame generator 104 is transmitted from the wireless transmitter 101 to the surroundings.
  • the immediate response transmission timer 109 is started after the reception of the Data frame or the RTS frame when performing transmission of the ACK frame after receiving the Data frame or transmission of the CTS frame after receiving the RTS frame. After determining that the specified time has expired, the switch SW5 is connected, and an immediate response frame such as an ACK frame or a CTS frame generated by the frame generator 104 is transmitted from the wireless transmitter 101 to surrounding wireless communication devices.
  • the AP After the TXOP assigned to the AP ends, the AP generates and transmits a CF-END + Beacon frame obtained by adding a Beacon element that is an information element included in the Beacon frame to the CF-END frame.
  • the non-PCP / AP STA existing around the AP can communicate with the surrounding wireless communication devices that the AP is in a communicable state rather than waiting for a Beacon frame with a low transmission frequency.
  • the scanning operation can be terminated by a Beacon element added to the END frame.
  • FIG. 4 is a diagram illustrating an example of a configuration of a STA as an example of a non-PCP / AP STA.
  • the non-PCP / AP STA corresponds to the wireless terminal device of the present disclosure. That is, the STA in the first embodiment is an example of the wireless terminal device of the present disclosure.
  • the STA includes a wireless transmitter 201, a wireless receiver 202, a frame determiner 203, a frame generator 204, a TXOP timer 205, a Backoff (CSMA / CA) timer 207, a PrbReq timer 209, and a TXOP expiration timer. 210, an immediate response transmission timer 211.
  • CSMA / CA Backoff
  • the wireless transmitter 201, the wireless receiver 202, the TXOP timer 205, the Backoff timer 207, and the immediate response timer 211 operate almost the same as the configuration of the same name of the AP described in relation to FIG. Therefore, the description is omitted here.
  • the frame determiner 203 is the same as the frame determiner 103 shown in FIG. 2 in that it determines the type of the frame received by the wireless receiver 202, but the frame type to be determined is different. Specifically, in the same manner as the AP frame determination unit 103, in addition to the RTS frame, CTS frame, CF-END frame, and Data frame, the probe response frame transmitted from the AP, or transmitted from the AP after the TXOP period ends.
  • the CF-END + Beacon frame or the like is determined.
  • the frame generator 204 generates a frame to be transmitted to the AP according to the frame type determined by the frame determiner 203.
  • the types of frames to be transmitted include RTS frames, CTS frames, Data frames, CF-END frames, and Probe Request frames for requesting connection to APs.
  • the frame generator 204 generates a CTS frame when the frame type determined by the frame determiner 203 is an RTS frame. Further, the frame generator 204 starts the Backoff (CSMA / CA) timer 207 using the activation as a trigger when the STA that has not been activated is activated by the activation switch SW6, and the Backoff (CSMA / CA) After expiration of the timer 207, a Probe Request frame is generated and transmitted from the wireless transmitter 201 via the connected switch SW2.
  • CSMA / CA Backoff
  • the frame generator 204 generates a CF-END frame when the frame type determined by the frame determiner 203 is a CF-END frame. In addition, the frame generator 204 generates a Data frame when acquiring data to be communicated from an upper layer.
  • the PrbReq timer 209 When the Probe Request frame is transmitted, the PrbReq timer 209 counts the time, and when the Probe Response frame is received within a predetermined period, the PrbReq timer 209 determines that the STA scan operation is completed, and performs the scan. finish. If the Probe Response frame is not received within the first predetermined period, the TXOP expiration timer 210 is notified accordingly.
  • the TXOP expiration timer 210 is activated when the PrbReq timer 209 expires, that is, when no Probe Response frame is received within the first predetermined period, and counts the time.
  • the timer 210 determines that the STA scan operation has been completed, and ends the scan. If the CF-END + Beacon frame is not received within a predetermined period, an instruction to generate a Probe Request frame is output to the frame generator 204. Prior to the generation of the Probe Request frame, the wireless communication apparatus may change the frequency (channel) to be scanned to a different next channel.
  • the PrbReq timer 209 counts the time from when the Probe Request frame is transmitted, and the TXOP expiration timer 210 passes the first predetermined period after the Probe Request frame is transmitted. Further, when the CF-END + Beacon frame is not received within the second predetermined period, a Probe Request frame is generated and retransmitted.
  • the TXOP expiration timer 210 expires, it means that the AP's TXOP period has expired.
  • FIG. 5 is a sequence diagram for explaining a specific example of a communication sequence between the AP and the STA1 to STA3 according to the first embodiment.
  • the communication sequence assumes a sequence in DMG.
  • STA1 and STA3 are already connected to the AP.
  • the AP communicates with the STA1, but the STA2 is activated during the communication and starts scanning.
  • communication between AP and STA1 is initiated by the AP.
  • the AP performs a back-off procedure (arbitration by coordination function) to prevent frame collision caused by communication performed by a plurality of wireless communication devices almost simultaneously according to CSMA / CA.
  • the AP transmits an RTS (Request to end Send) frame with the destination address set to STA1 to STA1 in order to start communication.
  • RTS Request to end Send
  • the RTS frame is transmitted using MCS (Modulation Coding ⁇ Scheme) for control such as Control-PHY set at a low rate (data communication speed).
  • MCS Modulation Coding ⁇ Scheme
  • STA1 When STA1 receives an RTS frame addressed to itself, it responds to the RTS frame addressed to itself using a CTS (Clear-to-Send) frame.
  • CTS Clear-to-Send
  • the AP When the AP receives the CTS frame from the STA1, the AP acquires a transmission opportunity TXOP (TransmissionTransOPportunity) over a predetermined period.
  • TXOP TransmissionTransOPportunity
  • the AP recognizes that a transmission opportunity has been acquired for a predetermined period from the time of receiving the CTS frame by receiving the CTS frame from the STA1, and directs the transmission and reception beams to the STA1 in order to perform better communication. Note that the AP may direct the beam to the STA1 before receiving the CTS in order to receive the CTS frame more reliably after transmitting the RTS frame.
  • the AP continues to transmit frames within the acquired TXOP period.
  • the STA 1 transmits and receives a response for arrival confirmation using data transmission / reception, and an ACK (Acknoledge) frame and BA (Block Ack) frame as appropriate.
  • ACK Acknoledge
  • BA Block Ack
  • RD Reverse-Direction
  • the AP releases the release (release) of the CFOP-END.
  • the CF-END frame to be transmitted is the CF-END + Beacon frame to which the Beacon element including the information such as the MAC address of the AP described above is added.
  • the STA2 is activated during communication between the AP and the STA1, and transmits a Probe Request frame generated using the activation as a trigger.
  • the AP is communicating with the STA1, and the AP beam is directed toward the STA1, so that the AP receives the PrbReq frame from the STA2 and demodulates correctly. Is difficult and unresponsive.
  • the STA 2 retransmits the Probe Request frame many times.
  • the STA 2 starts up. After sending a Probe Request frame once as a trigger, even if a reply (Probe Response frame) is not returned, a predetermined time (the above-mentioned first predetermined time + second predetermined time) has passed. Until then, the Probe Request frame is not retransmitted.
  • the STA2 since the STA2 receives the CF-END + Beacon frame from the AP before the predetermined time elapses and the STA2 scan operation is completed, the Probe Request frame is retransmitted. However, if the CF-END + Beacon frame has not been received before a predetermined time has elapsed, the STA2 generates a Probe Request frame again and transmits it to the AP. Note that the STA 2 may perform the probe request frame transmission by changing to the next channel different from the frequency (channel) to be scanned.
  • a wireless terminal device waiting for connection such as STA2 waiting for the reception of the Beacon element from the AP has a CF-END frame earlier than waiting for a Beacon frame transmitted with low frequency.
  • the scanning operation can be completed by the Beacon element added to the.
  • the AP transmits the CF-END + Beacon frame to surrounding wireless communication apparatuses with the end of TXOP as a trigger.
  • the CF-END + Beacon frame preferably includes a BSSID (Basic Service Set Identifier) that is an identifier of a wireless LAN network and also includes an SSID (Service Set Identifier) that is an identifier of an AP that is a PCP / AP.
  • BSSID Basic Service Set Identifier
  • SSID Service Set Identifier
  • FIG. 6A is a sequence diagram illustrating an example of transmitting a CF-END + Beacon frame including a CF-END frame and a Beacon element at the rear end of the TXOP period of the AP.
  • the wireless communication device AP can complete two different frames with one, so overhead such as an inter-frame gap can be reduced, and a decrease in effective bandwidth can be minimized. it can.
  • FIG. 6B is a sequence diagram illustrating an example in which a CF-END frame and a frame including a Beacon element are sequentially transmitted sequentially at the rear end portion of the TXOP of the AP.
  • FIG. 6C is a sequence diagram illustrating an example in which a plurality of CF-END + Beacon frames having different beam directions are transmitted at the rear end portion of the TXOP of the AP.
  • FIG. 6D is a sequence diagram illustrating an example in which a frame including a plurality of Beacon elements having different beam directions is transmitted following the CF-END frame at the rear end of the TXOP of the AP.
  • FIG. 7A is a sequence diagram illustrating an example in which a CF-END frame is transmitted at the end of the TXOP of the AP and a frame including a Beacon element is transmitted after the end of the TXOP period.
  • FIG. 7B is a sequence diagram illustrating an example of transmitting a frame including a Beacon element after the expiration of the TXOP of the AP.
  • FIG. 7C is a sequence diagram illustrating an example in which a CF-END frame is transmitted at the end of the TXOP of the AP, and then a frame including a plurality of Beacon elements having different beam directions is transmitted after the end of the TXOP period. It is. Further, FIG. 7D is a sequence diagram illustrating an example of transmitting a frame including a plurality of Beacon elements having different beam directions when the TXOP of the AP expires.
  • FIG. 8 a case will be described in which a part of a BRP (Beam® Refinement Protocol) packet for beamforming training is added as a trailer to the Beacon element.
  • BRP Beam® Refinement Protocol
  • the BRP packet is a packet defined in IEEE802.11ad-2012.
  • the trailer to be added to the Beacon element, that is, a part of the BRP packet is, for example, AGC (Automatic Gain Control) that is a field related to automatic gain control and TRN-R / T that is a field related to training.
  • -R / T means -R or -T, where R is reception (RX) and T is transmission (TX).
  • FIG. 8A is a sequence diagram showing an example of transmitting a CF-END + Beacon frame to which a plurality of trailers are added at the rear end portion of the AP TXOP.
  • FIG. 8B is a sequence diagram showing an example of transmitting a frame including a Beacon element to which a plurality of trailers are added after transmitting a CF-END frame at the rear end of the TXOP of the AP.
  • FIG. 8C is a sequence diagram illustrating an example of transmitting a frame including a Beacon element to which a plurality of trailers are added after the CF-END frame is transmitted at the end of the TXOP of the AP and after the end of the TXOP period.
  • FIG. 8D is a sequence diagram illustrating an example in which a frame including a Beacon element to which a plurality of trailers are added is transmitted after the expiration of the TXOP period of the AP.
  • a plurality of wireless terminal devices non-PCP / AP STA and a base station device (PCP / AP) that performs wireless communication conforming to IEEE 802.11 are used.
  • a Beacon element including information on the own base station device is added to the CF-END frame, and the plurality of wireless terminal devices
  • the wireless communication system including the base station apparatus that transmits the data has been described.
  • an STA that is a wireless terminal device that is waiting to receive a Beacon element from an AP that is a base station device is transmitted from the AP at a low frequency.
  • the scan operation can be completed relatively quickly by receiving the CF-END + Beacon frame transmitted at the end of the TXOP period of the AP, rather than waiting for the Beacon frame.
  • the STA waiting for the Beacon element from the AP can reduce the number of probe request frame transmissions for which the response from the AP is indeterminate, and can avoid a situation where the effective bandwidth is reduced. It becomes like this.
  • a Beacon information element may be placed on a frame (CF_END) for notifying the end of TXOP (hereinafter referred to as a CF_END + Beacon frame) and transmitted at a time by the AP.
  • the AP is the initiator of TXOP, that is, the side that initiates communication.
  • the second embodiment is similar to the first embodiment in that one AP as a PCP / AP and three STA1 to STA3 as non-PCP / AP STAs communicate with each other, but the STA1 This is different from the first embodiment in that TXOP is started.
  • FIG. 9 is a sequence diagram for explaining a specific example of a communication sequence between the AP and the STA1 to STA3 according to the second embodiment.
  • FIG. 9 shows a communication sequence related to DMG.
  • STA1 and STA3 are already connected to the AP.
  • STA1 communicates with the AP, but STA2 is activated during communication, and STA2 starts scanning.
  • communication between STA1 and AP is started by STA1.
  • the STA1 first performs a back-off procedure (arbitration by coordination function) for preventing frame collision caused by communication performed by a plurality of wireless communication apparatuses almost simultaneously according to CSMA / CA.
  • the STA 1 transmits an RTS (Request-to-Send) frame in which the destination address is set to the AP to the AP in order to start the communication illustrated in FIG.
  • RTS Request-to-Send
  • the RTS frame is transmitted using MCS (Modulation Coding ⁇ Scheme) for control such as Control-PHY set at a low rate (data communication speed).
  • MCS Modulation Coding ⁇ Scheme
  • the AP Until the AP receives the RTS frame from the STA 1 and returns the CTS (Clear To Send) frame, the AP makes the antenna of the wireless receiver non-directional or pseudo-omni-directional and waits for reception from other STAs around it. Is going.
  • STA1 acquires a transmission opportunity TXOP over a predetermined period after receiving the CTS frame from the AP.
  • the AP grasps that the STA1 acquires a transmission opportunity for a predetermined period from the time of CTS frame transmission by transmitting the CTS frame to the STA1. Direct transmit and receive beams to STA1.
  • STA1 continues to transmit frames within the acquired TXOP period.
  • the AP transmits / receives a response for arrival confirmation using data transmission / reception, and an ACK (Acknoledge) frame or BA (Block Ack) frame as appropriate.
  • ACK Acknoledge
  • BA Block Ack
  • a function such as RD (Reverse Direction) may be used to temporarily give the STA1 a chance to transmit data to the AP, and the AP may perform communication.
  • the STA1 releases the TXOP by releasing the CF-END frame. Is transmitted to the AP by declaring and informing the AP.
  • the AP that has received the CF-END frame from the STA 1 notifies that the TXOP has been released, and transmits a CF-END + Beacon frame to which a Beacon element including information such as the MAC address of the AP is added.
  • the Beacon element is not added to the CF-END frame declaring the end of TXOP.
  • the AP that has received the CF-END frame from STA1 transmits a CF-END + Beacon frame with the Beacon element added thereto.
  • STA2 is activated during the communication between AP and STA1 and transmits the Probe Request frame generated using the activation as a trigger, as in the sequence diagrams shown in FIGS. .
  • the AP since the AP is communicating with STA1 and the beam is directed toward STA1, it is difficult for the AP to receive the PrbReq frame from STA2 and to demodulate correctly, so it responds to STA2. do not do.
  • the STA 2 retransmits the Probe Request frame many times.
  • the communication sequence shown in FIG. 9 the communication sequence shown in FIG. Similarly, STA2 transmits a Probe Request frame once with an activation as a trigger, and even if a reply (Probe Response frame) is not returned, the STA2 does not return a predetermined time (the above-mentioned first predetermined time + The Probe Request frame is not retransmitted until the second predetermined time) elapses.
  • the STA2 since the STA2 receives the CF-END + Beacon frame from the AP before a predetermined time has elapsed and the scanning operation of the STA2 has been completed, the Probe Request frame has been retransmitted. If no CF-END + Beacon frame is received before a predetermined time elapses, the STA 2 generates a Probe Request frame again and transmits it to the AP.
  • a wireless terminal device waiting for connection such as STA2 waiting for reception of the Beacon element from the AP has a CF-END frame earlier than waiting for a Beacon frame transmitted with low frequency.
  • the scanning operation can be completed by the Beacon element added to the.
  • the sAP uses the CF-END + Beacon frame as a trigger when receiving the CF-END frame from the STA 1 as a trigger. Send to.
  • the CF-END + Beacon frame includes a BSSID (Basic Service Set Identifier) that is an identifier of a wireless LAN network, and an SSID (Service Set Set Identifier) that is an identifier of an AP that is a PCP / AP. Is preferably included.
  • BSSID Basic Service Set Identifier
  • SSID Service Set Set Identifier
  • the STA that wishes to connect to the AP can complete the scan operation using the CF-END + Beacon frame, and thus can perform the scan operation at high speed.
  • CF-END + Beacon frame in the second embodiment, since the AP transmits a CF-END + Beacon frame triggered by the reception of the CF-END frame from STA1, in the following description, from the CF-END frame that STA1 transmits to the AP, In a later sequence diagram, a specific example of the CF-END + Beacon frame is shown.
  • FIG. 10A is a sequence diagram showing an example in which the AP transmits a CF-END + Beacon frame including a CF-END frame and a Beacon element at the rear end portion of the TXOP period using the CF-END frame from STA1 as a trigger.
  • the wireless communication apparatus can complete two different frames with one, so overhead such as an inter-frame gap can be reduced, and a decrease in effective bandwidth can be minimized.
  • the upper side of the line shows the operation of AP, and the lower side shows the operation of STA1. This is the same in FIGS. 10 to 12 described below.
  • FIG. 10B is a sequence diagram showing an example in which the CF-END frame from the STA1 is used as a trigger, and the AP sequentially transmits the CF-END frame and the frame including the Beacon element at the rear end of the TXOP period. .
  • the AP In order to increase the reach distance of the Beacon element in order to increase the reachability of the Beacon element to the non-PCP / AP STA that is predicted to exist around the AP, the AP, in FIG. A plurality of CF-END + Beacon frames in which the direction of is changed may be transmitted with the reception of the CF-END frame from STA1 as a trigger.
  • the AP transmits a plurality of CF-END + Beacon frames each having a different beam direction, triggered by reception of the CF-END frame from STA1 at the rear end of the TXOP period of STA1. Also, in FIG.
  • the AP uses the reception of the CF-END frame from the STA1 as a trigger, and the beam direction follows each CF-END frame transmitted by the AP itself.
  • a frame including a plurality of different Beacon elements is transmitted.
  • FIG. 11A When the AP transmits the CF-END frame before the expiration of the TXOP period, in FIG. 11A, after receiving the CF-END frame from STA1, the AP transmits the CF-END frame at the end of the TXOP period. Transmit a frame containing a Beacon element after the end of the TXOP period.
  • FIG. 11A is a sequence showing an example in which the AP transmits a CF-END frame at the end of the TXOP using the CF-END frame transmitted from the STA1, and transmits a frame including the Beacon element after the end of the TXOP period.
  • the Beacon element can be transmitted in the shortest time.
  • the AP can omit transmission of a CF-END frame for notifying that the TXOP period has ended.
  • a predetermined TXOP period for example, 32 milliseconds or the like
  • the AP recognizes the expiration of the TXOP period by STA1, omits the transmission of the CF-END frame, and sets the Beacon element after the end of the TXOP period. Send the containing frame.
  • the AP when the predetermined TXOP period expires, the AP knows the TXOP period of STA1 in advance, and transmits the CF-END frame from STA1 to AP and from the AP to the surrounding area. Both of the CF-END frame transmission and the frame including the Beacon element may be transmitted after the TXOP period ends.
  • the AP transmits a CF-END frame at the end of the TXOP using the CF-END frame transmitted from the STA1 as a trigger, and after the TXOP period ends, the AP has a plurality of different beam directions.
  • a frame including the Beacon element is transmitted.
  • the AP grasps the expiration of the TXOP by receiving the CF-END frame from the STA1, and after the TXOP expires, the AP transmits a frame including a plurality of Beacon elements having different beam directions. Further, in FIG. 11F, the AP transmits a frame including a plurality of Beacon elements having different beam directions after the expiration of TXOP of STA1.
  • the AP transmits a CF-END + Beacon frame with a plurality of trailers, triggered by the reception of the CF-END frame from STA1.
  • the AP transmits a CF-END frame from the STA1 at the rear end of the TXOP of the STA1 as a trigger and then transmits a Beacon element to which a plurality of trailers are added. Send the containing frame.
  • the AP transmits a CF-END frame at the end of the TXOP using the CF-END frame transmitted from the STA1 as a trigger, and adds a Beacon element to which a plurality of trailers are added after the end of the TXOP period.
  • the AP grasps the expiration of the TXOP by receiving the CF-END frame from the STA1, and transmits the frame including the Beacon element to which a plurality of trailers are added after the expiration of the TXOP.
  • the AP transmits a frame including a Beacon element to which a plurality of trailers are added after the expiration of TXOP of STA1.
  • a plurality of wireless terminal devices non-PCP / AP STA
  • a base station device PCP / AP
  • wireless communication conforming to IEEE 802.11 When one of the plurality of wireless terminal apparatuses acquires a TXOP, and includes a CF-END frame from the wireless terminal apparatus at the end of the TXOP period, information on the own station is included.
  • the wireless communication system including the base station apparatus that adds the Beacon element to the CF-END frame and transmits the frame to the plurality of wireless terminal apparatuses has been described.
  • STA1 which is a wireless terminal device
  • STA2 in the first embodiment
  • the scanning operation can be completed relatively quickly.
  • the STA waiting for the Beacon element from the AP can reduce the number of probe request frame transmissions for which the response from the AP is indeterminate, and can avoid a situation where the effective bandwidth is reduced. It becomes like this.
  • the AP or STA1 acquires the TXOP, and the STA1 or AP and During the communication, the STA2 is activated and starts scanning. Then, the STA2 performs an operation of waiting for reception of the CF_END + Beacon frame from the AP in order to complete the scan.
  • the STA 2 determines whether or not the medium is clear (silent) when it is activated. If the result of this determination is clear, the following three types of states are possible.
  • the first state is a state in which the AP does not have data to transmit and is waiting for reception.
  • the second state is a state in which the AP directs the beam to another STA in order to communicate with another STA or the like.
  • the third state is a state where there is no AP in the transmission area.
  • the STA 2 transmits a Probe Request frame to the AP once after activation.
  • the AP transmits a Probe Response frame to the STA2.
  • the STA2 can complete the scanning operation.
  • the AP does not respond to the Probe Request frame. Since STA2 can grasp that there is no response because "AP is communicating with another wireless communication apparatus", if the AP is waiting in a standby state, the AP can communicate with the other wireless communication apparatus. It can be expected that the CF-END + Beacon frame is transmitted from the AP when it is finished (when the TXOP period is finished).
  • the probe request frame is retransmitted or the same processing as after activation is performed at the next frequency.
  • the transmission of the Probe Request frame by the STA2 is performed after the arbitration by the coordination function (so-called Backoff procedure) is completed under the CSMA / CA, as in the other frames.
  • the TXOP period of the AP may expire and the Beacon element may be received. That is, the Beacon element may be received even when the media is not clear.
  • FIG. 13 is a flowchart showing an operation example of the STA 2 according to the third embodiment.
  • the operation of the STA2 that is a wireless terminal device is described.
  • the AP that communicates with the STA2 is the first embodiment or the second embodiment described above.
  • the same operation as that of the AP which is an example of the base station apparatus described in the embodiment is performed.
  • step S1 the STA2 determines whether or not the media is clear. If it is determined that the medium is clear, the flow proceeds to step S2, and if not, the process proceeds to step S3.
  • step S1 If it is determined in step S1 that the medium is clear, the STA2 transmits a Probe Request frame once in Step S2, and starts a timer that measures the time from the transmission of the Probe Request frame in Step S3.
  • step S4 determines whether or not a Beacon element has been received from the AP. If the Beacon element has been received, the flow proceeds to step S9, otherwise returns to step S1.
  • step S5 the STA2 determines whether or not a response (Probe Response frame) from the AP has been received. If received (first state: AP is in a standby state), the flow proceeds to step S9, otherwise proceeds to step S6.
  • first state AP is in a standby state
  • step S6 the STA2 determines whether or not the timer started in step S3 has expired.
  • This timer corresponds to the PrbReq timer 209 shown in FIG. 4 described above.
  • the AP transmits the Probe Response frame
  • the Probe Response frame reaches STA2. It suffices if it is set in advance to a sufficient time.
  • step S6 when the timer has not expired, for example, every predetermined time shorter than the first predetermined period, the process returns to step S5, and it is repeatedly determined whether or not a response from the AP has been received.
  • step S6 determines whether the timer has expired, that is, if there is no response to the Probe Request frame transmitted in step S2 before the timer expires.
  • the flow proceeds to step S7.
  • the STA2 is in a reception standby state as it is, and waits for the end of the TXOP period of the AP.
  • step S4 When the Beacon element is received in step S4, the response from the AP is received in step S5, or the CF-END + Beacon frame is received from the AP in step S8, the STA2 completes the scanning operation.
  • FIG. 14 is a flowchart illustrating a modified example of the operation of the STA2 according to the third embodiment.
  • the operation of STA2 in steps S1 to S6 and step S9 is the same as that described above, the description thereof will be omitted, and newly added steps S11 to S13 will be described.
  • step S6 when it is determined that a predetermined time has elapsed since the Probe Request frame was transmitted (PrbReq timer 209 has expired), in step S11, STA2 newly starts a timer.
  • the timer corresponds to the TXOP expiration timer 210 shown in FIG. 4 described above.
  • step S12 the STA2 determines whether a CF-END + Beacon frame is received from the AP. If received, the process proceeds to step S9, and if not, the process proceeds to step S13.
  • step S13 it is determined whether or not the timer started in step S11 has expired.
  • the time until the timer expires may be set in advance to a period in which the TXOP of the AP is expected to end, for example, several ms or the maximum TXOP value of 32 ms.
  • the flow returns to step S1. If the timer has not expired, for example, every predetermined time shorter than the second predetermined period, the process returns to step S12, and it is repeatedly determined whether or not a CF-END + Beacon frame has been received. Note that the STA may perform the same processing as after activation at the next frequency.
  • a Beacon including information on the own station is included.
  • a base station device (PCP / AP) that adds an element to a CF-END frame and transmits the frame to the plurality of wireless terminal devices, and at least one wireless terminal device that performs wireless communication compliant with IEEE 802.11. Then, it is determined whether or not the medium is clear.
  • a Probe Request frame is transmitted to the base station apparatus and a first timer is started, and the first timer If there is no response from the base station apparatus to the Probe Request frame before the expiration of Finished XOP period, has been described a radio communication system including a radio terminal apparatus waits until the CF-END frame Beacon element is added containing information about the base station apparatus is transmitted.
  • the AP communicates with another STA that is an example of the wireless terminal device. Even in this case, the STA waiting for the Beacon element from the AP can receive the frame including the Beacon element from the AP by transmitting the Probe Request frame once. For this reason, the STA can avoid a situation in which the effective bandwidth is reduced by repeatedly transmitting the Probe Request frame.
  • the DMG wireless communication system has been described, but the present disclosure is not limited thereto. Even in a non-DMG wireless communication system, for example, the present disclosure can be applied to a wireless communication system in which a beam is directed in a specific direction during TXOP, such as MIMO (Multi-Input Multi-Output). The same effect as the embodiment can be obtained.
  • MIMO Multi-Input Multi-Output
  • the present disclosure can be applied to a base station device, a wireless terminal device, and a wireless communication method that perform wireless communication conforming to IEEE 802.11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

複数の無線端末装置に対してIEEE802.11に準拠した無線通信を行う基地局装置であって、前記複数の無線端末装置のうちの1つとのTXOP期間が終了したことを示す情報に、前記基地局装置に関する情報を含むBeacon要素を付加して、1つ以上の第1フレームを生成するフレーム生成部と、前記生成した1つ以上の第1フレームを前記複数の無線端末装置に対して送信する送信部と、を含む。

Description

基地局装置、無線端末装置および無線通信方法
 本開示は、IEEE802.11に準拠した無線通信を行う基地局装置、無線端末装置および無線通信方法に関する。
 高速な無線データ通信を実現するシステムとして、IEEE(The Institute of Electrical and Electronics Engineers, Inc.)802.11に準拠した無線LAN(Local Area Network)システムが広く使われている。IEEE802.11の無線LANシステムは、無線周波数によって、大きく2種類に分類することができる。
 1つは、IEEE802.11a,b,g,n,ac等、6GHz以下のマイクロ波帯で使用することが想定されたものであって、non-DMGと呼ばれる。もう1つは、IEEE802.11ad等、ミリ波帯で使用することが想定されたものであって、DMGと呼ばれる。なお、DMGとは、Directional Multi Gigabitの略称である。
 ミリ波帯で使用されるDMGデバイスは、使用する電波の直進性の高さから、ビームフォーミング技術や空間多重等の技術により、干渉による有効帯域の圧迫を抑え、有効スループットで1Gbpsを超える高速な無線ネットワークを提供することが期待されている。
IEEE802.11-2012 IEEE802.11ad-2012
 無線LANによる一連の通信は、概ね、スキャン、接続認証、データ通信、切断の順に行われる。データ通信の速度が向上するにつれ、通信全体に要する時間におけるスキャンおよび接続認証の割合が増加する。具体的には、例えば700MByteのデータを実行スループット2Gbpsの無線LAN通信で送信する場合、送信に要する時間は700(MByte)*8(bit/Byte)/2(Gbps)=2.8(秒)である。ここで、例えば、データ通信のためのスキャンに500ミリ秒、接続認証に50ミリ秒を要する場合、データ通信に要する時間は合計3.35秒であり、スキャンおよび接続認証に要する時間がデータ通信全体の約1/6を占める。さらに、例えばデータ通信速度が2倍、すなわち4Gbpsになっても、スキャンおよび接続認証に要する時間が変わらない場合、スキャンおよび接続認証に要する時間はデータ通信全体の約1/3を占める。このため、スキャンおよび接続認証に要する時間の短縮化が要望されている。
 スキャンは、無線端末装置が通信する接続先(例えば、アクセスポイント等の基地局装置)を探索する動作である。スキャンに要する時間は、基地局装置が定期的に発信している管理フレームの一種であるビーコン(Beacon)フレームの送出周期に依存する。Beaconフレームの送信周期は100ミリ秒であるが、より短い送出周期に設定してもよい。しかしながら、データを搬送しないBeaconフレームの送信頻度を増やすことは、有効帯域の削減、すなわち、有効スループットの低下を意味する。また、DMGにおいては、送信ビームの指向性が強いため、Beaconフレームの送信頻度を増やすと、無線通信装置(無線端末装置、基地局装置)同士の干渉が生じ、有効帯域が損なわれる可能性がある。
 本開示は、Beaconフレームの送出や無線通信装置同士の干渉による有効帯域の削減を抑え、スキャンを短時間で行うことができる基地局装置、無線端末装置および無線通信方法を提供する。
 本開示の基地局装置は、複数の無線端末装置に対してIEEE802.11に準拠した無線通信を行う基地局装置であって、前記複数の無線端末装置のうちの1つとのTXOP期間が終了したことを示す情報に、前記基地局装置に関する情報を含むBeacon要素を付加して、1つ以上の第1フレームを生成するフレーム生成部と、前記生成した1つ以上の第1フレームを前記複数の無線端末装置に対して送信する送信部と、を含む。
 本開示の無線端末装置は、基地局装置とIEEE802.11に準拠した無線通信を行う無線端末装置であって、メディアがクリアであるか否かを判定する判断部と、前記基地局装置に対するProbe Requestフレームを生成するフレーム生成部と、クリアであると判定した場合に、前記Probe Requestフレームを送信する送信部と、前記Probe Requestフレームの送信から第1の所定時間をカウントする第1のタイマと、を含み、前記送信部は、前記第1のタイマが前記第1の所定時間をカウント終了するまでに前記Probe Requestフレームに対する前記基地局装置の応答がなかった場合、前記基地局装置のTXOP期間の最後部において送信される、TXOP期間が終了したことを示す情報に、前記基地局装置に関する情報を含むBeacon要素が付加された1つ以上の第1フレームが送信されるまで、次フレームの送信を待機する。
 本開示の無線通信方法は、複数の無線端末装置に対してIEEE802.11に準拠した無線通信を行う基地局装置とを有する無線通信システムにおける無線通信方法であって、前記基地局装置が、前記複数の無線端末装置のうちの1つとのTXOP期間が終了したことを示す情報に、前記基地局装置に関する情報を含むBeacon要素を付加して、1つ以上の第1フレームを生成し、前記生成した1つ以上の第1フレームを前記複数の無線端末装置に対して送信する。
 本開示によれば、Beaconフレームの送出や無線通信装置同士の干渉による有効帯域の削減を抑え、スキャンを短時間で行うことができる。
図1は、従来のDMGにおいて、1つのアクセスポイントAPと3つの無線端末装置STA1~STA3が無線LAN通信を行う場合のシーケンス図である。 図2は、PCP/APの一例としてのアクセスポイントAPの構成の一例を示すブロック図である。 図3Aは、IEEE802.11に準拠した無線LANシステムの通信に使用される基本的なフレームフォーマットについて説明するための図である。 図3Bは、図3Aに示すMACヘッダのうち、Frame Controlの構造について説明するための図である。 図4は、non-PCP/AP STAの一例としてのSTAの構成の一例を示す図である。 図5は、第1の実施の形態に係る、APとSTA1~STA3との通信シーケンスの具体例について説明するためのシーケンス図である。 図6Aは、APのTXOP期間の後端部においてCF-ENDフレームとBeacon要素とを含むCF-END+Beaconフレームを送信する例を示したシーケンス図である。 図6Bは、APのTXOPの後端部においてCF-ENDフレームとBeacon要素を含むフレームとを順に連続して送信する例を示したシーケンス図である。 図6Cは、APのTXOPの後端部において、それぞれビームの方向が異なる複数のCF-END+Beaconフレームを送信する例を示したシーケンス図である。 図6Dは、APのTXOPの後端部において、CF-ENDフレームに続けて、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図7Aは、APのTXOPの最後端においてCF-ENDフレームを送信し、TXOP期間の終了後にBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図7Bは、APのTXOPの満了後にBeacon要素を含むフレームのみを送信する例を示したシーケンス図である。 図7Cは、APのTXOPの最後端においてCF-ENDフレームを送信した後、TXOP期間の終了後に、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図7Dは、APのTXOPが満了した場合に、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図8Aは、APのTXOPの後端部において、複数のトレーラを付加したCF-END+Beaconフレームを送信する例を示したシーケンス図である。 図8Bは、APのTXOPの後端部においてCF-ENDフレームを送信した後、複数のトレーラを付加したBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図8Cは、APのTXOPの最後端においてCF-ENDフレームを送信した後、TXOP期間の終了後に、複数のトレーラを付加したBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図8Dは、APのTXOP期間の満了後に、複数のトレーラを付加したBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図9は、第2の実施の形態に係る、APとSTA1~STA3との通信シーケンスの具体例について説明するためのシーケンス図である。 図10Aは、STA1からのCF-ENDフレームをトリガとして、APがTXOP期間の後端部においてCF-ENDフレームとBeacon要素とを含むCF-END+Beaconフレームを送信する例を示したシーケンス図である。 図10Bは、STA1からのCF-ENDフレームをトリガとして、APがTXOP期間の後端部においてCF-ENDフレームとBeacon要素を含むフレームとを順に連続して送信する例を示したシーケンス図である。 図10Cは、STA1のTXOP期間の後端部において、STA1からのCF-ENDフレームの受信をトリガとして、それぞれビームの方向が異なる複数のCF-END+Beaconフレームを送信する例を示したシーケンス図である。 図10Dは、STA1のTXOP期間の後端部において、STA1からのCF-ENDフレームの受信をトリガとして自らが送信するCF-ENDフレームに続けて、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図11Aは、STA1から送信されたCF-ENDフレームをトリガとして、TXOPの最後端においてAPがCF-ENDフレームを送信し、TXOP期間の終了後にBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図11Bは、STA1からのCF-ENDフレームを受信したことによりTXOPの満了を把握し、TXOPが満了した後にAPがBeacon要素を含むフレームのみを送信する例を示したシーケンス図である。 図11Cは、STA1のTXOPの満了後に、APがBeacon要素を含むフレームのみを送信する例を示したシーケンス図である。 図11Dは、STA1から送信されたCF-ENDフレームをトリガとして、TXOPの最後端においてAPがCF-ENDフレームを送信し、TXOP期間の終了後に、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図11Eは、STA1からのCF-ENDフレームを受信したことによりTXOPの満了を把握し、TXOPが満了した後にAPが、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図11Fは、STA1のTXOPの満了後に、APがそれぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図12Aは、APがSTA1からCF-ENDフレームを受信したことをトリガとして、複数のトレーラを付加したCF-END+Beaconフレームを送信する例を示したシーケンス図である。 図12Bは、STA1のTXOPの後端部において、APがSTA1からCF-ENDフレームを受信したことをトリガとして、CF-ENDフレームを送信した後、複数のトレーラを付加したBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図12Cは、STA1から送信されたCF-ENDフレームをトリガとして、TXOPの最後端においてAPがCF-ENDフレームを送信し、TXOP期間の終了後に複数のトレーラを付加したBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図12Dは、STA1からのCF-ENDフレームを受信したことによりTXOPの満了を把握し、TXOPが満了した後にAPが複数のトレーラを付加したBeacon要素を含むフレームを送信する例を示したシーケンス図である。 図12Eは、STA1のTXOPの満了後に、APが複数のトレーラを付加したBeacon要素を含むフレームのみを送信する例を示したシーケンス図である。 図13は、第3の実施の形態に係るSTA2の動作例を示すフローチャートである。 図14は、第3の実施の形態のSTA2の動作の変形例を示すフローチャートである。
 <本開示の前提事項の説明>
 IEEE802.11では、ネットワークの構成として、主にIBSS(Independent Basic Service Set)、BSS(Basic Service Set)、PBSS(Personal Basic Service Set)等の通信モードがある。IBSSはアドホックモード、BSSはインフラストラクチャモード等と呼ばれている。このうち、BSSあるいはPBSSでは、接続を管理する基地局装置に相当する無線通信装置として、アクセスポイントAP、およびPCP(PBSS Control Point)がそれぞれ定義されている。これらをまとめて、以下PCP/APと記載する。また、基地局装置に接続する無線端末装置に相当する無線通信装置として、non-AP STA(STAtion)およびnon-PCP STAが定義される。これら、無線端末装置に相当する無線通信装置をまとめて、以下non-PCP/AP STAと記載する。
 なお、PBSSおよびPCPについては、non-DMGでは定義されていないので、本実施の形態において、non-DMGの動作を記載する時、上記無線通信装置をnon-(PCP/)AP STAや(PCP/)AP等、括弧を用いて記載することがある。
 IEEE802.11に準拠した無線LANシステムにおける一連の通信は、概ね、スキャン、接続認証、通信(データ転送)、切断の順に行われる。なお、場合によっては、通信中に、次の接続先を探すスキャンや、次の接続先に切り替えるハンドオーバーが実施されることもある。
 スキャンは、これから接続する無線通信装置であるPCP/AP、あるいはPCP/APのサービスであるPBSS/BSSを探索する動作である。また、接続認証は、non-PCP/AP STAが接続すると決定したPCP/APに対して、接続の要求および確認する動作と、主に暗号認証に関する一連の手続きする動作とである。通信(データ転送)は、実際にデータのやりとりをする動作である。切断は、通信の必要性がなくなったことが明らかな場合、基地局装置から無線端末装置を切り離す動作であり、明示的には行われない場合もある。
 以下、スキャン動作時における手続きについて詳細に説明する。スキャン手続きには、パッシブスキャン(Passive Scan)とアクティブスキャン(Active Scan)の2種類が存在する。パッシブスキャンは、PCP/APから送信されるBeaconフレームをnon-PCP/AP STAが受信し、non-PCP/AP STAがBSSID(Basic Service Set IDentifier)を確認する動作である。また、アクティブスキャンは、non-PCP/AP STAが、接続したいSSIDを含む、あるいは特定のPCP/APを指定しないProbe Requestフレームを送信する動作であり、PCP/APからnon-PCP/AP STAへのBSSIDの情報を含む応答を要求する動作である。これらの動作は、non-DMGにおける手続きとDMGにおける手続きとでは、若干異なる手続きとなるため、それぞれについて説明する。
 [non-DMGにおけるパッシブスキャン]
 (PCP/)APは、Beaconフレームを、受信状態であるnon-(PCP/)AP STAに、時刻TBTT(Target Beacon Transmission Time)において周期的に、報知する。TBTTの周期は、例えば100msに設定される。Beaconフレームを受信したnon-(PCP/)AP STAは、Beaconフレームから(PCP/)APならびに(PBSS/)BSSの情報を取得する。従って、non-DMGにおけるパッシブスキャンでは、スキャン完了に要する時間は、TBTTの周期に依存する。
 [non-DMGにおけるアクティブスキャン]
 non-(PCP/)AP STAは、無線メディアアクセス手続きに従い、メディアを確保した後、Probe Requestフレームを送信する。(PCP/)AP STAは、Probe Requestフレームを受信し、必要に応じて、Probe Responseフレームでnon-(PCP/)AP STAへ応答する。non-(PCP/)AP STAは、Probe Responseフレームを(PCP/)AP STAから受信し、(PCP/)APならびに(PBSS/)BSSの情報を取得する。
 アクティブスキャンは、パッシブスキャンと比較して短時間でスキャンを完了することができる。しかし、スキャンのためにProbe Requestフレームを、頻繁に送出する状況が、都市部等の無線通信装置の密集地域においてよく発生している。この状況は、フレーム間干渉の誘発による、メディア圧迫の原因であるため、対処が求められている。
 [DMGにおけるパッシブスキャン]
 一方、DMGにおけるパッシブスキャンでは、以下のような動作が行われる。PCP/APは、Beaconフレームを時刻TBTTにおいて周期的に、受信待ち受け状態のnon-PCP/AP STAに、報知する。Beaconフレームを受信したnon-PCP/AP STAは、PCP/APならびにPBSS/BSSの情報を取得する。TBTTの周期は、例えば、100msに設定されている。ここまでの動作はnon-DMGにおけるパッシブスキャンと同様である。
 さらに、non-PCP/AP STAとPCP/APとは、Beaconフレームおよび、SSW(Sector SWeep)フレームを使用して、ビームフォーミングトレーニングを実施し、PCP/APおよびnon-PCP/AP STAのビームコンフィグレーションを決定する。なお、ビームフォーミングトレーニングとは、DMGデバイスが、直進性の強い周波数の電波特性を最大限活かすため、接続認証に先立って行う動作である。DMGにおけるパッシブスキャンでも、スキャン完了に要する時間は、TBTTの周期に依存する。
 [DMGにおけるアクティブスキャン]
 DMGにおけるアクティブスキャンは、主に、2台のnon-PCP/AP STAが存在する環境について説明する。一方のnon-PCP/AP STAは、ランダムにBeaconフレームを送信する。もう一方のnon-PCP/AP STAも、ランダムにBeaconフレームを送信する。Beaconフレームを受信した一方のnon-PCP/AP STAは、他方のnon-PCP/AP STAの情報および開設する予定のPBSS/BSSの情報を取得する。
 さらに、2台のnon-PCP/AP STAは、Beaconフレームおよび、SSWフレームを使用して、ビームフォーミングトレーニングを実施し、2台のnon-PCP/AP STAの間のビームコンフィグレーションを決定する。Beaconフレームを受信したnon-PCP/AP STAは、Probe Requestフレームを送信し、Probe Requestフレームを受信したnon-PCP/AP STAは、Probe Responseフレームで応答する。Probe Responseフレームを受信したnon-PCP/AP STAは、もう一方のnon-PCP/AP STAの情報および開設する予定のPBSS/BSSの情報を取得する。
 上述したように、DMGにおけるアクティブスキャンの手続きは、いずれの無線通信装置も、PCP/APすなわち基地局装置としては起動していない状態について説明した。一方の無線通信装置がPCP/APとして既に起動している場合には、non-DMGにおける手続き、あるいはパッシブスキャンによる手続きと同様に、Beaconフレームの送信周期はTBTTの周期毎であるため、スキャン完了に要する時間はTBTTの周期に依存する。
 なお、IEEE802.11では、non-DMGにおけるアクティブスキャンの動作をDMGにおいて使用可能である。しかし、後述するように、従来のDMGでは使用されていない。
 [DMGにおけるスキャンの詳細]
 上記では、non-DMGおよびDMGの動作として、それぞれパッシブスキャンおよびアクティブスキャンの動作について説明した。以下では、DMGにおけるスキャンの動作について、より詳細に説明する。図1は、従来のDMGにおいて、1つのアクセスポイントAPと3つの無線端末装置STA1~STA3が無線LAN通信を行う場合のシーケンス図である。
 図1において、アクセスポイントAPは既に起動しており、non-PCP/AP STAであるSTA1とSTA3とは既にAPに接続している。そして、APとSTA1との通信の最中に、STA2が起動し、スキャンを開始する。なお、図1に示すシーケンス図では、APとSTA1との間の通信は、APによって開始される。
 IEEE802.11に準拠した無線LANシステムでは、CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)によってメディアアクセス制御が行われる。図1におけるAPおよびSTA1~STA3のいずれのデバイスも、ミリ波通信を始めとする、直進性あるいは指向性の強い周波数の電波を用いて通信を行う。このため、いずれのデバイスもビームフォーミングにより、ビームの方向を変化させる機能を有する。
 図1に示すように、DMGにおいて、APは、いずれのSTAとも通信をしていない場合、次にどちらの方向のSTAから電波(ビーム)が到達するか予測困難であるため、APは、どの方向からの電波でも受信できるように、受信アンテナをQuasi-Omni(擬似無指向性)に設定して、受信の待ち受けを行う。
 なお、通信モードがBSSである場合、BSSの性質上、STAが通信する接続先はAPであるため、STAはAPの方にビームを向けておけばよい。従って、STAは受信の待ち受け時に、Quasi-Omniに設定しなくてもよい。一方、通信モードがPBSSである場合、各STAは、次の電波(ビーム)の到来方向が予測困難なため、BSSにおけるAPと同様、各STAは、受信アンテナをQuasi-Omniに設定して、受信の待ち受けを行う。
 図1への図示は省略しているが、APは、まず、CSMA/CAに従って、複数の無線通信装置による通信がほぼ同時に行われることによるデータ(フレーム)の衝突を防止するためのバックオフ手順(Coordination functionによる調停)を行う。バックオフ手順を終えると、APは、図1に示す通信を開始するため、宛先アドレスをSTA1に設定したRTS(Request to Send)フレームをSTA1に向けて送信する。RTSフレームは、到達性を高めるために、低いレート(データ通信速度)に設定されたControl-PHY等の制御用のMCS(Modulation Coding Scheme)を使用して送信される。なお、図1においては、APは、STA3とも通信を行うので、STA1と同時にSTA3に対してもRTSフレームを送信している。
 STA1は、自局宛てのRTSフレームを受信した後、CTS(Clear to Send)フレームで応答する。APは、STA1からCTSフレームを受信した後、所定の期間に亘り、送信機会TXOP(Transmission OPportunity)を獲得する。IEEE802.11では、TXOP期間は、最大32msに設定でき、例えば、数msに設定される。TXOPとは、無線通信装置が通信チャネルを占有する期間を設定するためのパラメータである。
 APは、STA1からのCTSフレーム受信によって、受信時から所定の期間、送信機会を獲得したことを把握し、通信環境を向上させるために、送信および受信のビームをSTA1の方向へ設定する。なお、APは、RTSフレームの送信後、CTSフレームをより確実に捉えるために、STA1からのCTS受信の受信前に、受信ビームの指向性をSTA1の方向に設定してもよい。
 APは、獲得したTXOPの期間内において、フレームの送信を継続する。STA1は、APの獲得したTXOPの期間内において、データの送受信や、適宜、ACK(Acknoledge)フレームやBA(Block Ack)フレームによって、到達確認の応答送信を行う。なお、APによって獲得されたTXOP期間中に、RD(Reverse Direction)等の機能を用い、一時的にデータの送信機会をAPからSTA1に明け渡して、STA1が通信を行ってもよい。
 APは、例えTXOP期間の途中でも、TXOPの必要がなくなった場合(例えば、送信するものがなくなった等)には、TXOPの解放(リリース)を、CF-ENDフレームの送信によって、APの周囲に存在するSTA1~STA3に対して、宣言および報知する。
 一方、STA2は、APのTXOP期間の最中に起動し、接続先のスキャンを開始する。ここで、STA2は、早くスキャンを完了するため、従来のアクティブスキャンの手続き、すなわちプローブリクエスト(PrbReq)フレームを送信する。
 しかし、APはSTA1と通信中であり、ビームがSTA1の方向を向いているため、APは、STA2からのPrbReqフレームを受信すること、および、正しく復調することが困難であるため、応答しない。
 ここで、図1に示すように、STA2は、APからの応答が返ってこないため、PrbReqフレームを再送し続ける。このため、STA2からのPrbReqフレームの送信は、APとSTA1との通信に対する干渉波となり、通信を阻害してしまう可能性がある。あるいは、近隣の他BSSへの干渉を発生し、近隣の他BSSでの無線通信を阻害する可能性がある。一方、STA2は、自無線通信装置が他無線通信装置間の通信に干渉を与え続けていることを自覚することは困難であるため、干渉波を生成しつづける。
 このように、DMGでは、スキャンの早期完了のための従来型の(non-DMGにおいて用いられている)アクティブスキャンの使用は、スキャンの早期完了が困難である可能性があり、他無線通信装置の通信波との干渉を誘発し、メディアの有効帯域を減少させる可能性がある。このため、従来技術のDMGでは、スキャンの早期完了のために、従来型のアクティブスキャンの使用は行われない。
 なお、non-DMGの場合は、ビームの指向性が比較的強くないため、APの送信する電波によって、STA2は、それが自無線通信装置に向けたものではなくても、キャリアセンスを行うことが可能である。このため、PrbReqフレームの再送を繰り返しても干渉の原因となる事態は生じない。
 <本開示の第1の実施の形態>
 [PCP/APの構成の一例]
 上述したIEEE802.11に準拠した無線通信システムを踏まえて、以下では、本開示の実施の形態について説明する。以下の実施の形態では、DMGの無線通信システムを例にして説明する。まず、PCP/APとの一例としてのアクセスポイントAPの構成について説明する。図2は、アクセスポイントAPの構成の一例を示すブロック図である。なお、PCP/APは本開示の基地局装置に対応している。すなわち、図2に示すアクセスポイントAPは、本開示の基地局装置の一例である。
 図2はアクセスポイントAPの構成の一例を示すブロック図である。図2に示すように、APは無線送信器101、無線受信器102、フレーム判定器103、フレーム生成器104、、ディスカバリタイマ105、TOXPタイマ106、Backoff(CSMA/CA)タイマ107、TBTTタイマ108、即時応答送信タイマ109を有する。
 無線送信器101および無線受信器102は、例えばnon-PCP/AP STAとフレームの送受信を行う。無線送信器101および無線受信器102は、少なくとも1つのアンテナと、ビーム偏向機能を有し、ビームの方向を変化させることができる。
 無線受信器102から受信された、他のnon-PCP/AP STAからのフレームは、フレーム判定器103によってフレームの種類が判別される。フレーム判定器103は、送信されたデータのMAC(Media Access Control)層のヘッダ部分であるMACヘッダのうち、Frame Controlというフィールドを参照してフレームの種類を判定する。
 図3Aは、IEEE802.11に準拠した無線LANシステムの通信に使用される基本的なフレームフォーマットについて説明するための図である。また、図3Bは、図3Aに示すMACヘッダのうち、Frame Controlの構造について説明するための図である。
 図3Aに示すフィールド「Frame Control」は、図3Bに示すように、フレームの種別や、各アドレスフィールドのデコード方法、現フレームが暗号化されているか等を示す。図3Aに示すフィールド「Duration/ID」は、フレーム送信完了までの予約時間や、予約時間の残り時間を示す。図3Aに示すフィールド「Address1」は、宛先アドレス、すなわち受信局のMACアドレス等を示す。
 図3Aに示すフィールド「Address2」は、送信元アドレス、すなわち無線送信装置のMACアドレス等を示す。図3Aに示すフィールド「Address3」は、PBSS/BSSの基地局装置のMACアドレス(BSSID等と呼ばれる)等を示す。図3Aに示すフィールド「Sequence Control」には、分割位置の表示やシーケンス番号等を示す。図3Aに示すフィールド「Address4」は、基地局装置間通信(WDS:Wireless Distribution Service)を行うときに使用される。図3Aに示すフィールド「Frame Body」は、データの本体(中身)である。図3Aに示すフィールド「FCS」は、エラーチェック用のフィールドである。
 また、図3Bに示すフィールド「Type」は、フレーム種別の大分類を示す。図3Bに示すフィールド「Subtype」は、フレーム種別の小分類を示す。図3Bに示すフィールド「ToDS」は、宛先が基地局装置であるか否か、無線通信装置であるか否か、等を示す。なお、DSはDistribution Serviceの略である。図3Bに示すフィールド「FromDS」は、送信元が基地局装置であるか否か、無線通信装置であるか否か、等を示す。図3Bに示すフィールド「More Fragments」は、フラグメント(分割)されたフレームであるか否かを示す。図3Bに示すフィールド「Retry」は、再送フレームであるか否かを示す。
 図3Bに示すフィールド「Power Management」は、送信元がパワーマネジメントモードであるか否かを示す。図3Bに示すフィールド「More data」は、パワーセーブモードにあるSTAに対して、更なるデータの存在を示すために使用される。図3Bに示すフィールド「Protected Frame」は、暗号化されたデータであるか否かを示す。図3Bに示すフィールド「Order」は、到達順序に制限を設けるか否か等を示す。
 図3Bに示すフィールド「Type」と「Subtype」の組み合わせにより、フレームの種別が判別される。フレームの種類には、例えば、通信開始時に無線通信装置間の衝突を回避するために使用されるRTS(Request To Send)フレームおよびCTS(Clear to Send)フレーム、周囲のnon-PCP/AP STAに対してSSID(Service Set Identifier)を送信して応答を待つためのProbe Requestフレーム、通信内容であるDataフレーム、通信の終了をアナウンスするためのCF-END(Contention Free-End)フレーム等がある。
 このように、フレーム判定器103は、フレーム種別を判定し、RTSフレーム、CTSフレーム、Probe Requestフレーム、CF-ENDフレームであった場合は、これらに含まれる情報をフレーム生成器104およびTXOPタイマ106に対して出力する。また、Dataフレームであった場合は、フレーム判定器103は、当該Dataフレームを上位層(ネットワーク層以上)に出力する。
 フレーム生成器104は、送信するフレームを生成する。送信するフレームの種類は、RTSフレーム、CTSフレーム、Dataフレーム、CF-ENDフレームの他、Probe Requestフレームに対する応答であるProbe Responseフレーム、AP自身に関する情報を周囲の無線端末装置に知らせるためのBeaconフレーム、詳細は後述するCF-END+Beaconフレーム等がある。
 フレーム生成器104は、フレーム判定器103が判定したフレームの種別がRTSフレームであった場合は、CTSフレームを生成する。また、フレーム生成器104は、フレーム判定器103が判定したフレームの種別がProbe Requestフレームであった場合は、Probe Responseフレームを生成する。
 また、フレーム生成器104は、フレーム判定器103が判定したフレームの種別がCF-ENDフレームであった場合は、例えば後述するディスカバリタイマ105により一定の期間内にBeacon要素を送信済みであるか否かの判定を行い、送信済みでない場合にBeacon要素(non-PCP/AP STAが接続に際し、Beaconフレームから取得する情報要素)を追加したCF-ENDフレームを生成する。すなわち、TXOP期間が終了した後、APが送信するCF-ENDフレームには、Beacon要素が付加されている。以下では、Beacon要素が付加されているCF-ENDフレームをCF-END+Beaconフレームと称する。また、フレーム生成器104は、上位層から通信するデータを取得した場合、Dataフレームを生成する。また、これらとは別に、フレーム生成器104は、Beaconフレームを生成する。
 ディスカバリタイマ105は、フレーム判定器103が判定したフレームの種別がCF-ENDフレームであった場合、一定の期間内にBeacon要素を送信済みであるか否かの判定を行い、結果をフレーム生成器104に出力する。これにより、TXOP期間が終了してCF-END+Beaconフレームがフレーム生成器104によって生成され送信された後、一定の期間内は、再度TXOP期間が終了することがあっても、フレーム生成器104はBeacon要素を含むフレームを再度生成しない。これにより、APの送信するフレームが早くなくなった場合等、TXOP期間が短く終わった場合でも、Beacon要素を含むフレームを過度に送信することなく、有効帯域の圧迫を最小限に抑えることができるようになる。
 TXOPタイマ106は、TXOPの期間計測ならびに開始・終了通知を行うタイマである。TXOPは、上述したように、無線通信装置が通信チャネルを占有する期間である。TXOPタイマ106は、相手局から取得したCTSフレーム、あるいはフレーム生成器104が生成したCTSフレームに基づいて、自局においてTXOP期間が開始したか否か、あるいは、相手局においてTXOPが開始したか否か、を判定する。なお、通信相手の無線通信装置あるいは、図示されない第三の無線通信装置から、CTSフレーム等のフレームを受信した場合には、自無線通信装置の送信禁止期間が発生したことを把握し、送信禁止期間の計測を行うために、TXOPタイマ106を用いて計測することができる。なお、TXOPタイマとは別のタイマを用いて計測してもよい。
 なお、TXOPタイマ106は、受信したフレームがCTSフレームであった場合には自無線通信装置がTXOPを取得すると判定し、フレーム生成器104がCTSフレームを生成してこれが送信された場合に通信相手の無線通信装置がTXOPを取得し、自無線通信装置は送信禁止期間であると判定する。
 また、TXOPタイマ106は、上述したように、自無線通信装置または通信相手の無線通信装置のTXOP期間が開始した後、TXOP期間が終了したか否かの終了判定を行う。TXOP期間が終了であると判定された場合、スイッチSW1が接続され、フレーム生成器104により生成されたCF-ENDフレームが無線送信器101から周囲に向かって送信される。
 また、TXOP期間の開始あるいは終了したと判定された場合、無線送信器101および無線受信器102は、ビーム偏向性を切り替える。具体的には、TXOP期間内では、無線送信器101および無線受信器102は、接続相手のnon-PCP/AP STAに対してビームを偏向させた状態とし、反対にTXOP期間外では、無指向性(omni)あるいは疑似無指向性(quasi-omni)のビームとする。さらに、TXOP期間中であると判定された場合、スイッチSW3が接続され、Dataフレームが無線送信器101から通信相手のnon-PCP/AP STAに送信される。
 Backoff(CSMA/CA)タイマ107は、バックオフ(フレームの衝突を回避するための時間)を計測するタイマである。なお、CSMA/CAとは、Carrier Sense Multiple Access with Collision Avoidanceの略であり、IEEE802.11の通信手順として採用されている。Backoffタイマ107がバックオフ時間が終了したと判定した場合、スイッチSW2が接続されると、フレーム生成器104が生成したRTSフレーム、Probe Requestフレーム、Probe Responseフレーム、あるいは、Dataフレーム等が無線送信器101から周囲に送信される。
 TBTTタイマ108は、Beaconフレームの送信周期が訪れたか否かの判定を行う。Beaconフレームの送信周期が訪れたと判定された場合、スイッチSW4が接続され、フレーム生成器104が生成したBeaconフレームが無線送信器101から周囲に送信される。
 即時応答送信タイマ109は、Dataフレームを受信した後のACKフレームの送信、または、RTSフレームを受信をした後のCTSフレームの送信、を行う場合に、DataフレームまたはRTSフレームの受信後に起動され、規定時間が終了したと判定した後に、スイッチSW5を接続し、フレーム生成器104が生成したACKフレームまたはCTSフレーム等の即時応答フレーム等が無線送信機101から周囲の無線通信装置に送信される。
 このように、APは自身に割り当てられたTXOPが終了した後、CF-ENDフレームに、Beaconフレームに含まれる情報要素であるBeacon要素を加えたCF-END+Beaconフレームを生成して送信する。これにより、APの周囲に存在するnon-PCP/AP STAは、送信頻度が低いBeaconフレームを待つよりも、APが通信可能な状態となったことを周囲の無線通信装置に周知するためのCF-ENDフレームに付加されたBeacon要素によって、スキャン動作を終了させることができる。
 [non-PCP/AP STA]
 次に、図4は、non-PCP/AP STAの一例としてのSTAの構成の一例を示す図である。なお、non-PCP/AP STAは、本開示の無線端末装置に対応している。すなわち、第1の実施の形態におけるSTAは、本開示の無線端末装置の一例である。図4に示すように、STAは、無線送信器201、無線受信器202、フレーム判定器203、フレーム生成器204、TXOPタイマ205、Backoff(CSMA/CA)タイマ207、PrbReqタイマ209、TXOP満了タイマ210、即時応答送信タイマ211を有する。
 図4に示す構成のうち、無線送信器201、無線受信器202、TXOPタイマ205、Backoffタイマ207、即時応答タイマ211に関しては、図2に関連づけて説明したAPの同名の構成とほぼ同じ動作をするため、ここでは説明を省略する。
 フレーム判定器203は、無線受信器202の受信したフレームの種別を判定する点では図2に示すフレーム判定器103と同様であるが、判定するフレームの種別が異なっている。具体的には、APのフレーム判定器103と同様にRTSフレーム、CTSフレーム、CF-ENDフレーム、Dataフレームの他、APから送信されたProbe Responseフレームや、TXOP期間が終了した後にAPから送信されたCF-END+Beaconフレーム等の判定を行う。
 フレーム生成器204は、フレーム判定器203の判定したフレーム種別に応じて、APに送信するフレームを生成する。送信するフレームの種類は、RTSフレーム、CTSフレーム、Dataフレーム、CF-ENDフレーム、の他、APに接続を希望するためのProbe Requestフレームがある。
 フレーム生成器204は、フレーム判定器203が判定したフレームの種別がRTSフレームであった場合は、CTSフレームを生成する。また、フレーム生成器204は、起動スイッチSW6により、それまで起動していなかったSTAが起動された場合、起動をトリガとして、Backoff(CSMA/CA)タイマ207を起動し、Backoff(CSMA/CA)タイマ207の満了後、Probe Requestフレームを生成し、接続されたスイッチSW2を介して、無線送信器201から送信する。
 また、フレーム生成器204は、フレーム判定器203が判定したフレームの種別がCF-ENDフレームであった場合は、CF-ENDフレームを生成する。また、フレーム生成器204は、上位層から通信するデータを取得した場合、Dataフレームを生成する。
 PrbReqタイマ209は、Probe Requestフレームの送信が行われた場合、時間をカウントし、所定の期間内にProbe Responseフレームの受信があった場合に、STAのスキャン動作が完了したと判定し、スキャンを終了する。第1の所定の期間内にProbe Responseフレームの受信がなかった場合には、TXOP満了タイマ210にその旨を通知する。
 TXOP満了タイマ210は、PrbReqタイマ209が満了した場合、すなわち第1の所定の期間内にProbe Responseフレームの受信がなかった場合に起動し、時間をカウントする。第2の所定の期間内にタイマ210は、CF-END+Beaconフレームの受信があった場合に、STAのスキャン動作が完了したと判定し、スキャンを終了する。所定の期間内にCF-END+Beaconフレームの受信がなかった場合には、フレーム生成器204に対して、Probe Requestフレームを生成する指示を出力する。無線通信装置は、Probe Requestフレームの生成に先立って、スキャンを行う周波数(チャネル)を異なる次のチャネルに変化させてもよい。
 このような構成により、PrbReqタイマ209が、Probe Requestフレームが送信されてからの時間をカウントし、また、TXOP満了タイマ210が、Probe Requestフレームが送信されてから第1の所定の期間が経過し、さらに第2の所定の期間内にCF-END+Beaconフレームの受信がなかった場合に、Probe Requestフレームを生成して再送信する。第1の所定の期間および第2の所定の期間を適切に調節することによって、non-PCP/AP STAからの複数回に亘るProbe Requestフレームの送信が通信帯域を圧迫する事態を回避することができる。なお、TXOP満了タイマ210が満了した場合、APのTXOP期間が満了したことを意味する。
 <第1の実施の形態における通信シーケンスの具体例>
 以上、PCP/APとしてのAPと、non-PCP/AP STAとしてのSTAの構成の一例について説明した。以下では、本開示の第1の実施の形態として、APと複数のSTAとの通信シーケンスの具体例について説明する。
 図5は、第1の実施の形態に係る、APとSTA1~STA3との通信シーケンスの具体例について説明するためのシーケンス図である。通信シーケンスは、DMGにおけるシーケンスを想定している。通信シーケンスの開始時点において、STA1およびSTA3は、既にAPに接続されている。図5では、APは、STA1と通信を行うが、通信の最中にSTA2が起動し、スキャンを開始する。図5では、APとSTA1間の通信は、APによって開始される。
 APは、まず、CSMA/CAに従って、複数の無線通信装置による通信がほぼ同時に行われることによるフレームの衝突を防止するためのバックオフ手順(Coordination functionによる調停)を行う。バックオフ手順を終えると、APは、通信を開始するために、宛先アドレスをSTA1に設定したRTS(Request to Send)フレームをSTA1に向けて送信する。RTSフレームは、到達性を高めるために、低いレート(データ通信速度)に設定されたControl-PHY等の制御用のMCS(Modulation Coding Scheme)を使用して送信される。
 STA1は、自装置宛てのRTSフレームを受信した場合、自装置宛てのRTSフレームに対してCTS(Clear to Send)フレームを用いて応答する。APは、STA1からCTSフレームを受信した場合、所定の期間に亘り、送信機会TXOP(Transmission OPportunity)を獲得する。
 APは、STA1からのCTSフレーム受信によって、CTSフレームの受信時から所定の期間、送信機会を獲得したことを把握し、より良い通信を行うために、送信および受信のビームをSTA1へ向ける。なお、APは、RTSフレームの送信後、CTSフレームをより確実に受信するために、CTS受信の前に、ビームをSTA1に向けてもよい。
 APは、獲得したTXOPの期間内において、フレームの送信を継続する。STA1は、APの獲得したTXOPの期間内において、データの送受信や、適宜、ACK(Acknoledge)フレームやBA(Block Ack)フレームによって、到達確認の応答送信を行う。なお、APによって獲得されたTXOP期間中に、RD(Reverse Direction)等の機能を用い、一時的にデータの送信機会をAPがSTA1に明け渡して、STA1から送信してもよい。
 APはTXOP期間が満了した場合、あるいは、TXOP期間の残留中に、TXOPの必要がなくなった場合(例えば、送信するものがなくなった等)には、TXOPの解放(リリース)を、CF-ENDフレームの送信によって、APの周囲に存在するSTA1~STA3に対して、宣言ならびに報知する。送信されるCF-ENDフレームは、上記説明した、APのMACアドレス等の情報を含むBeacon要素が付加されたCF-END+Beaconフレームである。
 一方、図5において、STA2は、図1に示すシーケンス図と同様に、APとSTA1との通信中に起動し、起動をトリガとして生成されたProbe Requestフレームを送信する。Probe Requestフレームを送信時では、APとSTA1と通信中であり、APのビームが、STA1の方向を向いているため、APは、STA2からのPrbReqフレームを受信すること、および、正しく復調することは困難であり、応答しない。
 図1に示す従来技術のDMGにおける通信のシーケンス図では、STA2はProbe Requestフレームを何度も再送していたが、図5に示す本開示の第1の実施の形態では、STA2は、起動をトリガとして、1度、Probe Requestフレームを送信した後、例え返信(Probe Responseフレーム)が返ってこない場合でも、所定の時間(上述した第1の所定の時間+第2の所定の時間)が経過するまでは、Probe Requestフレームを再送しない。
 図5に示す通信シーケンスでは、STA2は、所定の時間が経過する前に、APからのCF-END+Beaconフレームを受信し、STA2のスキャン動作が完了しているため、Probe Requestフレームの再送は行われていないが、所定の時間が経過するより前にCF-END+Beaconフレームの受信がなかった場合、STA2は再度Probe Requestフレームを生成してAPに向けて送信する。なお、STA2は、Probe Requestフレームの送信を、スキャンを行う周波数(チャネル)とは異なる次のチャネルに変化して、行ってもよい。
 図5に示す通信シーケンスでは、Beacon要素の受信をAPから待ち受けている、STA2のような接続待ち状態の無線端末装置は、低い頻度によって送信されるBeaconフレームを待つよりも早く、CF-ENDフレームに付加されたBeacon要素によってスキャン動作が完了することができる。
 [CF-END+Beaconフレームの具体例]
 上記説明したように、第1の実施の形態では、図5に示す通信シーケンスのように、APは、TXOPの終了をトリガとしてCF-END+Beaconフレームを周囲の無線通信装置に対して送信する。
 CF-END+Beaconフレームは、無線LANネットワークの識別子であるBSSID(Basic Service Set Identifier)を含み、PCP/APであるAPの識別子であるSSID(Service Set Identifier)も含まれることが望ましい。これによって、APとの接続を希望するSTAは、CF-END+Beaconフレームによってスキャン動作が完了できるため、スキャン動作を高速に行うことができる。
 以下では、CF-END+Beaconフレームの具体的な例について説明する。CF-END+Beaconフレームの一例として、図6Aに示すように、CF-ENDフレームとBeacon要素とを1つのフレーム内に収めたフレームについて説明する。図6Aは、APのTXOP期間の後端部においてCF-ENDフレームとBeacon要素とを含むCF-END+Beaconフレームを送信する例を示したシーケンス図である。図6に示す構成により、無線通信装置(AP)は、異なる2つのフレームを1つで済ませることができるため、フレーム間ギャップ等のオーバーヘッドを削減でき、有効帯域の減少を最小限に抑えることができる。
 但し、本開示は図6Aに限定されるものではない。例えば図6Bに示すように、APのTXOP期間の後端部において、CF-ENDフレームとBeacon要素を含むフレームとを連続して送信するようにしてもよい。図6Bは、APのTXOPの後端部においてCF-ENDフレームとBeacon要素を含むフレームとを順に連続して送信する例を示したシーケンス図である。
 APの周囲に存在すると予見されるnon-PCP/AP STAへBeacon要素の到達可能性を高めるためにBeacon要素の到達距離を広く(長く)とりたい場合には、APは、図6Cに示すように、ビームの方向を様々に変化させた複数CF-END+Beaconフレームを送信してもよい。図6Cは、APのTXOPの後端部において、それぞれビームの方向が異なる複数のCF-END+Beaconフレームを送信する例を示したシーケンス図である。また、図6Dは、APのTXOPの後端部において、CF-ENDフレームに続けて、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。
 なお、TXOP期間の満了より前にAPがCF-ENDフレームを送信する場合に、図7Aに示すように、CF-ENDフレームをTXOP期間の最後端で送信し、Beacon要素を含むフレームをその後、つまりTXOP期間の終了後に送付してもよい。図7Aは、APのTXOPの最後端においてCF-ENDフレームを送信し、TXOP期間の終了後にBeacon要素を含むフレームを送信する例を示したシーケンス図である。これにより、TXOP期間内にBeacon要素を送出する時間が不足する場合に、最短の時間で、Beacon要素を送信することができる。
 さらに、予め定められたTXOP期間(例えば32ミリ秒等)が満了した場合には、APはTXOP期間が終了したことを報知するためのCF-ENDフレームを送信する必要がなくなる。図7Bに示すように、TXOPの満了後に、APはBeacon要素を含むフレームを送信してもよい。図7Bは、APのTXOPの満了後にBeacon要素を含むフレームを送信する例を示したシーケンス図である。
 また、図7Cは、APのTXOPの最後端においてCF-ENDフレームを送信した後、TXOP期間の終了後に、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。さらに、図7Dは、APのTXOPが満了した場合に、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する例を示したシーケンス図である。
 さらに、図8では、Beacon要素に、ビームフォーミングトレーニング用のBRP(Beam Refinement Protocol)パケットの一部をトレーラとして付加する場合について説明する。
 BRPパケットは、IEEE802.11ad-2012にて定義されているパケットである。Beacon要素に付加するトレーラ、すなわちBRPパケットの一部は、例えば、自動利得制御に関するフィールドであるAGC(Automatic Gain Control)と、トレーニングに関するフィールドであるTRN-R/Tである。なお、-R/Tは、-Rまたは-Tの意味であり、Rは受信(RX)、Tは送信(TX)である。これらのフィールドをBeacon要素の後ろにトレーラとして複数付加することで、電波の向きを変えて送信(スイープ)することができるので、ビームフォーミングのトレーニングを一括して行うことが期待でき、トレーラが付加したBeacon要素を送信するAPと、これを受信したnon-PCP/AP STAとの間で、ビームフォーミングトレーニングを最短時間で完了することができる。
 図8Aは、APのTXOPの後端部において、複数のトレーラを付加したCF-END+Beaconフレームを送信する例を示したシーケンス図である。また、図8Bは、APのTXOPの後端部においてCF-ENDフレームを送信した後、複数のトレーラを付加したBeacon要素を含むフレームを送信する例を示したシーケンス図である。
 また、図8Cは、APのTXOPの最後端においてCF-ENDフレームを送信した後、TXOP期間の終了後に、複数のトレーラを付加したBeacon要素を含むフレームを送信する例を示したシーケンス図である。また、図8Dは、APのTXOP期間の満了後に、複数のトレーラを付加したBeacon要素を含むフレームを送信する例を示したシーケンス図である。
 以上のように、本開示に係る第1の実施の形態では、複数の無線端末装置(non-PCP/AP STA)とIEEE802.11に準拠した無線通信を行う基地局装置(PCP/AP)であって、前記複数の無線端末装置のうちの1つとのTXOP期間が終了する時に、自基地局装置に関する情報を含むBeacon要素をCF-ENDフレームに付加して、前記複数の無線端末装置に対して送信する基地局装置を含む無線通信システムについて説明した。
 このような構成により、基地局装置であるAPからのBeacon要素の受信を待ち受けている無線端末装置であるSTA(例えば第1の実施の形態におけるSTA2)にとっては、低い頻度によってAPから発信されるBeaconフレームを待つよりも、APのTXOP期間終了時に送信されるCF-END+Beaconフレームを受信することで、比較的早くスキャン動作を完了することができる。これにより、APからのBeacon要素を待ち受けているSTAは、APからの返答が不確定であるProbe Requestフレームの送信回数を減数することができ、有効帯域が削減される事態を回避することができるようになる。
 また、本開示の第1の実施の形態では、TXOP終了を報知するフレーム(CF_END)にBeaconの情報要素を載せ(以下これをCF_END+Beaconフレームと称する)、APによって一度に送信してもよい。これによれば、別々の2つのフレーム送信を1つで済ませることができることから、フレーム間ギャップ等のオーバーヘッドを削減でき、有効帯域の減少を最小限に抑えることができる。
 <第2の実施の形態>
 上述した第1の実施の形態では、APがTXOPのイニシエータ、すなわち通信の開始を行う側であった。本第2の実施の形態では、PCP/APとしての1つのAPとnon-PCP/AP STAとしての3つのSTA1~STA3とが通信を行う点では第1の実施の形態と同様だが、STA1がTXOPの開始を行う点において第1の実施の形態と異なっている。
 図9は、第2の実施の形態に係る、APとSTA1~STA3との通信シーケンスの具体例について説明するためのシーケンス図である。図9には、DMGに関する通信シーケンスが示されている。図9に示す通信シーケンスの開始時点において、STA1およびSTA3は、既にAPに接続されている。図9に示す通信シーケンスにおいて、STA1は、APと通信を行うが、通信中にSTA2が起動し、STA2がスキャンを開始する。図9に示す通信シーケンスでは、STA1とAPとの間の通信は、STA1によって開始される。
 STA1は、まず、CSMA/CAに従って、複数の無線通信装置による通信がほぼ同時に行われることによるフレームの衝突を防止するためのバックオフ手順(Coordination functionによる調停)を行う。バックオフ手順を終えると、STA1は、図9に示す通信を開始するため、宛先アドレスをAPに設定したRTS(Request to Send)フレームをAPに向けて送信する。RTSフレームは、到達性を高めるために、低いレート(データ通信速度)に設定されたControl-PHY等の制御用のMCS(Modulation Coding Scheme)を使用して送信される。APは、RTSフレームをSTA1から受信し、CTS(Clear To Send)フレームを返すまでは、無線受信器のアンテナを無指向性または疑似無指向性にして、周囲の他のSTAからの受信待ち受けを行っている。
 STA1は、APからCTSフレームを受信した後、所定の期間に亘り、送信機会TXOPを獲得する。APは、STA1へのCTSフレーム送信によって、CTSフレーム送信時から所定の期間は、STA1が送信機会を獲得することを把握し、よりよい通信を行うために(無線環境を向上させるために)、送信および受信のビームをSTA1へ向ける。
 STA1は、獲得したTXOPの期間内において、フレームの送信を継続する。APは、STA1が獲得したTXOPの期間内において、データの送受信や、適宜、ACK(Acknoledge)フレームやBA(Block Ack)フレームによって、到達確認の応答送信を行う。なお、STA1によって獲得されたTXOP期間中に、RD(Reverse Direction)等の機能を用い、一時的にデータの送信機会をSTA1がAPに明け渡して、APが通信を行ってもよい。
 STA1はTXOP期間が満了した場合、あるいは、TXOP期間の残留中、TXOPの必要がなくなった場合(例えば、送信するものがなくなった等)には、TXOPの解放(リリース)を、CF-ENDフレームの送信によって、APに対して宣言ならびに報知する。STA1からのCF-ENDフレームを受信したAPは、TXOPが開放されたこと報知し、APのMACアドレス等の情報を含むBeacon要素が付加されたCF-END+Beaconフレームを送信する。
 すなわち、TXOPがSTA1によって開始された場合、TXOP終了を宣言するCF-ENDフレームには、Beacon要素は付加されない。その後、STA1からのCF-ENDフレームを受信したAPが、Beacon要素を付加したCF-END+Beaconフレームを周囲に対して送信する。
 一方、図9に示すシーケンス図において、STA2は、図1および図5に示すシーケンス図と同様に、APとSTA1との通信中に起動し、起動をトリガとして生成されたProbe Requestフレームを送信する。しかし、APはSTA1と通信中であり、ビームがSTA1の方向を向いているため、APは、STA2からのPrbReqフレームを受信すること、および正しく復調すること、が困難であるため、STA2に応答しない。
 図1に示す従来のDMGにおける通信のシーケンス図では、STA2はProbe Requestフレームを何度も再送していたが、図9に示す本開示の第2の実施の形態では、図5に示す通信シーケンスと同様に、STA2は、起動をトリガとして、1度、Probe Requestフレームを送信した後、例え返信(Probe Responseフレーム)が返ってこない場合でも、所定の時間(上述した第1の所定の時間+第2の所定の時間)が経過するまでは、Probe Requestフレームを再送しない。
 図9に示す通信シーケンスでは、STA2は、所定の時間が経過する前にAPからのCF-END+Beaconフレームを受信し、STA2のスキャン動作が完了しているため、Probe Requestフレームの再送は行われていないが、所定の時間が経過するより前にCF-END+Beaconフレームの受信がなかった場合、STA2は再度Probe Requestフレームを生成してAPに向けて送信する。
 図9に示す通信シーケンスでは、Beacon要素の受信をAPから待ち受けている、STA2のような接続待ち状態の無線端末装置は、低い頻度によって送信されるBeaconフレームを待つよりも早く、CF-ENDフレームに付加されたBeacon要素によってスキャン動作が完了することができる。
 [CF-END+Beaconフレームの具体例]
 上記説明したように、第2の実施の形態では、図9に示す通信シーケンスのように、sAPは、STA1からのCF-ENDフレームの受信をトリガとしてCF-END+Beaconフレームを周囲の無線通信装置に対して送信する。
 CF-END+Beaconフレームには、第1の実施の形態と同様に、無線LANネットワークの識別子であるBSSID(Basic Service Set Identifier)を含み、PCP/APであるAPの識別子であるSSID(Service Set Identifier)も含まれることが望ましい。これによって、APとの接続を希望するSTAは、CF-END+Beaconフレームによってスキャン動作を完了できるため、スキャン動作を高速に行うことができる。
 以下では、第2の実施の形態における、CF-END+Beaconフレームの具体的な例について説明する。第2の実施の形態では、STA1からのCF-ENDフレームの受信をトリガとして、APがCF-END+Beaconフレームを送信するため、以下の説明では、STA1がAPに向けて送信するCF-ENDフレームから後のシーケンス図において、CF-END+Beaconフレームの具体例を示す。
 図10Aは、STA1からのCF-ENDフレームをトリガとして、APがTXOP期間の後端部においてCF-ENDフレームとBeacon要素とを含むCF-END+Beaconフレームを送信する例を示したシーケンス図である。このような構成により、無線通信装置は、異なる2つのフレームを1つで済ませることができるため、フレーム間ギャップ等のオーバーヘッドを削減でき、有効帯域の減少を最小限に抑えることができる。なお、図10Aにおいて、線の上側はAPの動作を、下側はSTA1の動作を、それぞれ示している。これは以降説明する図10から図12において同様である。
 また、例えば図10Bに示すように、STA1からのCF-ENDフレームをトリガとして、APがTXOP期間の後端部においてCF-ENDフレームとBeacon要素を含むフレームとを順に連続して送信するようにしてもよい。図10Bは、STA1からのCF-ENDフレームをトリガとして、APがTXOP期間の後端部においてCF-ENDフレームとBeacon要素を含むフレームとを順に連続して送信する例を示したシーケンス図である。
 APの周囲に存在すると予見されるnon-PCP/AP STAへBeacon要素の到達可能性を高めるためにBeacon予想の到達距離を広く(長く)とりたい場合には、APは、図10Cでは、ビームの方向を様々に変化させた複数のCF-END+Beaconフレームを、STA1からのCF-ENDフレームの受信をトリガとして、送信してもよい。図10Cでは、APは、STA1のTXOP期間の後端部において、STA1からのCF-ENDフレームの受信をトリガとして、それぞれビームの方向が異なる複数のCF-END+Beaconフレームを送信する。また、図10Dでは、APは、STA1のTXOP期間の後端部において、STA1からのCF-ENDフレームの受信をトリガとして、AP自身が送信するCF-ENDフレームに続けて、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する。
 なお、TXOP期間の満了より前にAPがCF-ENDフレームを送信する場合に、図11Aでは、APは、STA1からのCF-ENDフレームの受信後、CF-ENDフレームをTXOP期間の最後端で送信し、Beacon要素を含むフレームをTXOP期間の終了後に送付する。図11Aは、STA1から送信されたCF-ENDフレームをトリガとして、TXOPの最後端においてAPがCF-ENDフレームを送信し、TXOP期間の終了後にBeacon要素を含むフレームを送信する例を示したシーケンス図である。これにより、TXOP期間内にBeacon要素を送出する時間が不足している場合に、最短の時間で、Beacon要素を送信することができる。
 さらに、予め定められたTXOP期間(例えば32ミリ秒等)が満了した場合には、APは、TXOP期間が終了したことを報知するためのCF-ENDフレームの送信を省略できる。図11Bでは、STA1からのCF-ENDフレームをAPが受信することによって、APは、STA1によるTXOP期間の満了を把握し、CF-ENDフレームの送信を省略し、TXOP期間の終了後にBeacon要素を含むフレームを送信する。
 さらに、図11Cでは、予め定められたTXOP期間が満了した場合、APは、STA1のTXOP期間を予め把握しておくことで、STA1からAPへのCF-ENDフレームの送信と、APから周囲へのCF-ENDフレームの送信との両方を省略し、TXOP期間終了後に、Beacon要素を含むフレームを送信してもよい。
 また、図11Dでは、APは、STA1から送信されたCF-ENDフレームをトリガとして、TXOPの最後端において、CF-ENDフレームを送信し、TXOP期間の終了後に、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する。
 図11Eでは、APは、STA1からのCF-ENDフレームを受信したことによりTXOPの満了を把握し、TXOPが満了した後に、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する。さらに、図11Fでは、APは、STA1のTXOPの満了後に、それぞれビームの方向が異なる複数のBeacon要素を含むフレームを送信する。
 さらに、図12のシーケンス図では、Beacon要素に、ビームフォーミングトレーニング用のBRP(Beam Refinement Protocol)パケットの一部をトレーラとして付加する場合について説明する。Beacon要素に付加するトレーラとしてのBRPパケットの一部については、上述した第1の実施の形態と同様であるため、ここでは説明を省略する。
 図12Aでは、APは、STA1からCF-ENDフレームを受信したことをトリガとして、複数のトレーラを付加したCF-END+Beaconフレームを送信する。また、図12Bでは、APは、STA1のTXOPの後端部において、STA1からCF-ENDフレームを受信したことをトリガとして、CF-ENDフレームを送信した後、複数のトレーラを付加したBeacon要素を含むフレームを送信する。
 また、図12Cでは、APは、STA1から送信されたCF-ENDフレームをトリガとして、TXOPの最後端において、CF-ENDフレームを送信し、TXOP期間の終了後に複数のトレーラを付加したBeacon要素を含むフレームを送信する。また、図12Dでは、APは、STA1からのCF-ENDフレームを受信したことによりTXOPの満了を把握し、TXOPが満了した後に、複数のトレーラを付加したBeacon要素を含むフレームを送信する。さらに、図12Eでは、APは、STA1のTXOPの満了後に、複数のトレーラを付加したBeacon要素を含むフレームを送信する。
 以上説明したように、本開示の第2の実施の形態では、複数の無線端末装置(non-PCP/AP STA)とIEEE802.11に準拠した無線通信を行う基地局装置(PCP/AP)であって、前記複数の無線端末装置のうちの1つがTXOPを獲得した場合に、当該TXOP期間の終了時に、当該無線端末装置からのCF-ENDフレームを受信した場合に、自局に関する情報を含むBeacon要素をCF-ENDフレームに付加して、前記複数の無線端末装置に対して送信する、基地局装置を含む無線通信システムについて説明した。
 このような構成により、無線端末装置であるSTA1が通信を開始(TXOPを獲得)した場合でも、第1の実施の形態と同様に、APからのBeacon要素の受信を待ち受けている他の無線端末装置であるSTA(例えば第1の実施の形態におけるSTA2)は、低い頻度によってAPから発信されるBeaconフレームを待つよりも早く、APのTXOP期間終了時に送信されるCF-END+Beaconフレームを受信することで、比較的早くスキャン動作を完了することができる。これにより、APからのBeacon要素を待ち受けているSTAは、APからの返答が不確定であるProbe Requestフレームの送信回数を減数することができ、有効帯域が削減される事態を回避することができるようになる。
 <第3の実施の形態>
 上述した第1および第2の実施の形態では、PCP/APとしてのAPおよびnon-PCP/AP STAとしてのSTA1~STA3が存在する状況において、APあるいはSTA1がTXOPを獲得し、STA1あるいはAPとの通信中に、STA2が起動してスキャンを開始する。そして、STA2は、スキャンを完了するために、APからのCF_END+Beaconフレームの受信を待ち受ける動作を行う。
 この待ち受け動作において、STA2は、起動した時点で、メディアがクリア(サイレント)であるか否かの判定を行う。この判定の結果がクリアである場合、以下の3種類の状態が考えられる。第1の状態は、APが、送信するデータを有しておらず、受信待ち受けている状態である。第2の状態は、APが、他のSTA等と通信を行うためにビームを他のSTAに向けている状態である。第3の状態は、送信エリアにAPが存在しない状態である。
 メディアがクリアである理由が前者であった場合には、APは何ら発信をしないため、STA2は、APのBeacon情報を入手する機会を得ることは困難である。このような事態を回避するため、本第3の実施の形態では、STA2は、起動後に1回、APに向けてProbe Requestフレームを送信する。
 メディアがクリアであった理由が第1の状態、すなわちAPが待ち受け状態であった場合には、APは、STA2に向けてProbe Responseフレームを送信する。これにより、STA2はスキャン動作を完了することができる。
 メディアがクリアであった理由が第2の状態、すなわちAPが他のSTA等と通信を行っていた場合には、APは、Probe Requestフレームに対して応答しない。なお、STA2は「APが他の無線通信装置と通信を行っている」ために応答がないことを把握できるので、待ち受け状態で待機していれば、APが他の無線通信装置との通信を終えた時点(TXOP期間が終了した時点)で、APからCF-END+Beaconフレームが送信されてくることを期待できる。
 メディアがクリアであった理由が第3の状態、すなわちAPが送信エリアに存在しない場合には、Probe Requestフレームを再送する、または、次の周波数で、起動後と同様の処理を行う、を行う。
 以上のことから、スキャンに要する時間を最小限に抑え、STA2がProbe Requestフレームを再送することによる有効帯域の圧迫を最小限に抑制することができる。
 なお、STA2によるProbe Requestフレームの送信は、他のフレームと同様、CSMA/CAのもと、Coordination function(いわゆるBackoff手順)による調停を終えたうえで送信される。Backoff手順によるメディア監視をしている最中に、APのTXOP期間が満了し、Beacon要素を受信することもありうる。すなわち、メディアがクリアでない場合でも、Beacon要素を受信できることがある。
 図13は、第3の実施の形態に係るSTA2の動作例を示すフローチャートである。なお、本第3の実施の形態においては、無線端末装置であるSTA2の動作について説明しているが、STA2と通信を行うAPは、上述した第1の実施の形態、あるいは、第2の実施の形態にて説明した基地局装置の一例であるAPと同様の動作を行う。
 ステップS1において、STA2は、メディアがクリアであるか否かを判定する。メディアがクリアであると判定した場合、フローはステップS2に進み、そうでない場合、ステップS3に進む。
 ステップS1においてメディアがクリアであると判定した場合、STA2は、ステップS2において、Probe Requestフレームを1回送信し、ステップS3において、Probe Requestフレームの送信からの時間を計測するタイマを起動する。
 一方、メディアがクリアであると判定されなかった場合、ステップS4において、APからのBeacon要素を受信したか否かを判定する。Beacon要素を受信した場合、フローはステップS9に進み、そうでない場合、ステップS1に戻る。
 ステップS5において、STA2は、APからの応答(Probe Responseフレーム)を受信したか否かを判定する。受信した場合(第1の状態:APが待ち受け状態)、フローはステップS9に進み、そうでない場合、ステップS6に進む。
 ステップS6において、STA2は、ステップS3で起動したタイマが満了したか否かを判定する。このタイマは、上述した図4に示すPrbReqタイマ209に対応している。タイマが満了するまでの時間、すなわち第1の所定の期間は、例えば、ステップS2において送信したProbe RequestフレームがAPに到達し、APがProbe Responseフレームを送信して、Probe ResponseフレームがSTA2に到達するのに十分な時間に予め設定されていればよい。ステップS6において、タイマが満了していない場合、例えば第1の所定の期間よりも短い所定時間毎に、ステップS5に戻り、APからの応答を受信したか否かの判定を繰り返し行う。
 一方、ステップS6において、タイマが満了したと判定された場合、すなわち、ステップS2で送信したProbe Requestフレームに対する応答がタイマが満了するまでの間になかった場合には、フローはステップS7に進む。Probe Requestフレームに対する応答がない場合、「第2の状態:APが他の無線通信装置と通信を行っている」ために応答がないと推測される。このため、ステップS7において、STA2はそのまま受信待機状態となり、APのTXOP期間が終了するのを待機する。
 APのTXOP期間が終了すれば、APからCF-END+Beaconフレームが送信されるので、ステップS8において、STA2はこれを受信する。
 ステップS4においてBeacon要素を受信した場合、ステップS5においてAPからの応答を受信した場合、あるいは、ステップS8においてAPからCF-END+Beaconフレームを受信した場合、STA2は、スキャン動作を完了する。
 図13にて説明した第3の実施の形態のSTA2の動作の変形例として、STA2は、また、APのTXOP期間が終了するまでの時間を計測するタイマをさらに用意してもよい。図14は、第3の実施の形態のSTA2の動作の変形例を示すフローチャートである。図14において、ステップS1からS6と、ステップS9とにおけるSTA2の動作は、上記説明と同様なので説明を省略し、新規に加わったステップS11からS13について説明する。
 ステップS6において、Probe Requestフレームを送信してから所定時間が経過した(PrbReqタイマ209が満了した)と判定された場合、ステップS11において、STA2は、新たにタイマを起動する。タイマは、上述した図4に示すTXOP満了タイマ210に対応している。
 ステップS12において、STA2は、APからCF-END+Beaconフレームを受信したか否かを判定する。受信した場合は、ステップS9に進み、そうでない場合、ステップS13に進む。
 ステップS13において、ステップS11において起動したタイマが満了したか否かを判定する。タイマが満了するまでの時間、すなわち第2の所定の期間は、APのTXOPが終了すると予測される期間、例えば数msやTXOP最大値の32msに予め設定されればよい。ステップS13において、タイマが満了した場合(第3の状態:APが送信エリアに存在しない)、フローはステップS1に戻る。タイマが満了していない場合、例えば第2の所定の期間よりも短い所定時間毎に、ステップS12に戻り、CF-END+Beaconフレームを受信したか否かの判定を繰り返し行う。なお、STAは、次の周波数で、起動後と同様の処理を行なってもよい。
 以上説明したように、本開示の第3の実施の形態では、複数の無線端末装置(non-PCP/AP STA)のうちの1つとのTXOP期間が終了する時に、自局に関する情報を含むBeacon要素をCF-ENDフレームに付加して、前記複数の無線端末装置に対して送信する基地局装置(PCP/AP)と、IEEE802.11に準拠した無線通信を行う少なくとも1つの無線端末装置であって、メディアがクリアであるか否かを判定し、クリアであると判定した場合に、前記基地局装置に対してProbe Requestフレームを送信するとともに第1のタイマを起動し、前記第1のタイマが満了するまでに前記Probe Requestフレームに対する前記基地局装置の応答がなかった場合には、前記基地局装置のTXOP期間が終了し、前記基地局装置に関する情報を含むBeacon要素が付加されたCF-ENDフレームが送信されるまで待機する無線端末装置を含む無線通信システムについて説明した。
 このような構成により、メディアがクリアである理由が、基地局装置の一例であるAPが受信待ち受け状態であるからである場合でも、APが無線端末装置の一例である他のSTAと通信を行っているからである場合でも、APからのBeacon要素を待っているSTAは、Probe Requestフレームを一度送信することによって、APからのBeacon要素を含むフレームを受信することができる。このため、STAはProbe Requestフレームを何度も送信して有効帯域が削減されてしまう事態を回避することができる。
 なお、上述した第1から第3の実施の形態では、DMGの無線通信システムについて説明したが、本開示はこれに限定されない。non-DMGの無線通信システムでも、例えば、MIMO(Multi Input Multi Output)等、TXOPの最中にビームが特定の方向を向いてしまう無線通信システムには、本開示を適用することで、上述した実施の形態と同様の効果を得ることができる。
 本開示は、IEEE802.11に準拠した無線通信を行う基地局装置、無線端末装置および無線通信方法に適用することができる。
 101 無線送信器
 102 無線受信器
 103 フレーム判定器
 104 フレーム生成器
 105 ディスカバリタイマ
 106 TXOPタイマ
 107 Backoff(CSMA/CA)タイマ
 108 TBTTタイマ
 109 即時応答送信タイマ
 201 無線送信器
 202 無線受信器
 203 フレーム判定器
 204 フレーム生成器
 205 TXOPタイマ
 207 Backoff(CSMA/CA)タイマ
 209 PrbReqタイマ
 210 TXOP満了タイマ
 211 即時応答送信タイマ
 SW2 スイッチ
 SW3 スイッチ
 SW4 スイッチ
 SW5 スイッチ
 SW6 起動スイッチ

Claims (19)

  1.  複数の無線端末装置に対してIEEE802.11に準拠した無線通信を行う基地局装置であって、
     前記複数の無線端末装置のうちの1つとのTXOP期間が終了したことを示す情報に、前記基地局装置に関する情報を含むBeacon要素を付加して、1つ以上の第1フレームを生成するフレーム生成部と、
     前記生成した1つ以上の第1フレームを前記複数の無線端末装置に対して送信する送信部と、
     を含む基地局装置。
  2.  前記フレーム生成部は、前記TXOP期間が終了したことを示す情報と前記Beacon要素とを合成した第2フレームを生成し、
     前記送信部は、前記第2フレームを前記TXOP期間の最後部において送信する、
     請求項1に記載の基地局装置。
  3.  前記フレーム生成部は、前記TXOP期間が終了したことを示す情報から第1CF-ENDフレームを生成し、前記Beacon要素から第1Beacon要素フレームを生成し、
     前記送信部は、前記第1CF-ENDフレームを送信した後に、前記第1Beacon要素フレームを前記TXOP期間の最後部において送信する、
     請求項1に記載の基地局装置。
  4.  前記フレーム生成部は、
    複数の送信ビームの方向に対応した前記TXOP期間が終了したことを示す情報と前記Beacon要素とを合成した複数の第3フレームを生成し、
     前記送信部は、前記合成した複数の第3フレームを前記TXOP期間の最後部において順次送信する、
     請求項1に記載の基地局装置。
  5.  前記フレーム生成部は、
    前記TXOP期間が終了したことを示す情報から第1CF-ENDフレームを生成し、
    前記Beacon要素から複数の送信ビームの方向に対応した複数の第2Beacon要素フレームとして生成し、
     前記送信部は、
    前記CF-ENDフレームを送信した後に、前記複数の第2Beacon要素フレームを前記TXOP期間の最後部において順次送信する、
     請求項1に記載の基地局装置。
  6.  前記フレーム生成部は、TXOP期間が終了したことを示す情報から第1CF-ENDフレームを生成し、前記Beacon要素から第1Beacon要素フレームを生成し、
     前記送信部は、前記第1CF-ENDフレームを前記TXOP期間の最後部において送信し、前記第1Beacon要素フレームを前記TXOP期間の終了後に送信する、
     請求項1に記載の基地局装置。
  7.  前記フレーム生成部は、前記Beacon要素から第1Beacon要素フレームを生成し、
     前記送信部は、前記TXOP期間の終了後に、前記第1Beacon要素フレームを送信する、
     請求項1に記載の基地局装置。
  8.  前記フレーム生成部は、
    前記TXOP期間が終了したことを示す情報から第1CF-ENDフレームを生成し、
    前記Beacon要素から複数の送信ビームの方向に対応した複数の第2Beacon要素フレームとして生成し、
     前記送信部は、
    前記第1CF-ENDフレームを前記TXOP期間の最後部において送信し、
    前記複数の第2Beacon要素フレームを、前記TXOP期間の終了後に、順次送信する、
     請求項1に記載の基地局装置。
  9.  前記フレーム生成部は、前記Beacon要素から複数の送信ビームの方向に対応した複数の第2Beacon要素フレームとして生成し、
     前記送信部は、
    前記TXOP期間の終了後に、前記複数の第2Beacon要素フレームを順次送信する、
     請求項1に記載の基地局装置。
  10.  前記フレーム生成部は、
    前記TXOP期間が終了したことを示す情報と、前記Beacon要素と、前記複数の無線端末装置に対するビームフォーミングトレーニングに用いる複数のフィールドとを合成した第4フレームを生成し、
     前記合成した第4フレームを前記TXOP期間の最後部において送信する、
     請求項1に記載の基地局装置。
  11.  前記フレーム生成部は、TXOP期間が終了したことを示す情報から第1CF-ENDフレームを生成し、前記Beacon要素と、前記複数の無線端末装置に対するビームフォーミングトレーニングに用いる複数のフィールドとを合成した第5フレームを生成し、
     前記送信部は、前記第1CF-ENDフレームの送信後に、前記第5フレームを前記TXOP期間の最後部において送信する、
     請求項1に記載の基地局装置。
  12.  前記フレーム生成部は、TXOP期間が終了したことを示す情報から第1CF-ENDフレームを生成し、前記Beacon要素と、前記複数の無線端末装置に対するビームフォーミングトレーニングに用いる複数のフィールドとを合成した第5フレームを生成し、
     前記送信部は、前記第1CF-ENDフレームを前記TXOP期間の最後部において送信し、前記第5フレームを前記TXOP期間の終了後に送信する、
     請求項1に記載の基地局装置。
  13.  前記フレーム生成部は、前記Beacon要素と、前記複数の無線端末装置に対するビームフォーミングトレーニングに用いる複数のフィールドとを合成した第5フレームを生成し、
     前記送信部は、前記第5フレームを前記TXOP期間の終了後に送信する、
     請求項1に記載の基地局装置。
  14.  前記複数の無線端末装置のうちの1つがTXOPを獲得し、前記無線端末装置から前記TXOP期間の終了を示す情報である第3CF-ENDフレームを受信する受信部を更に含み、
     前記送信部は、前記第3CF-ENDフレームを受信した後に、前記生成した1つ以上の第1フレームを前記複数の無線端末装置に対して送信する、
     請求項1に記載の基地局装置。
  15.  基地局装置とIEEE802.11に準拠した無線通信を行う無線端末装置であって、
     メディアがクリアであるか否かを判定する判断部と、
     前記基地局装置に対するProbe Requestフレームを生成するフレーム生成部と、
     クリアであると判定した場合に、前記Probe Requestフレームを送信する送信部と、
     前記Probe Requestフレームの送信から第1の所定時間をカウントする第1のタイマと、
    を含み、
     前記送信部は、
    前記第1のタイマが前記第1の所定時間をカウント終了するまでに前記Probe Requestフレームに対する前記基地局装置の応答がなかった場合、
    前記基地局装置のTXOP期間の最後部において送信される、TXOP期間が終了したことを示す情報に、前記基地局装置に関する情報を含むBeacon要素が付加された1つ以上の第1フレームが送信されるまで、次フレームの送信を待機する、
     無線端末装置。
  16.  前記第1のタイマが満了するまでに前記Probe Requestフレームに対する前記基地局装置の応答がなかった場合に、第2の所定時間をカウントする第2のタイマを更に含み、
     前記送信部は、
    前記第2のタイマが前記第2の所定時間をカウント終了するまでに、前記1つ以上の第1フレームを前記基地局装置から受信しなかった場合に、再度Probe Requestフレームを送信する、
     請求項15に記載の無線端末装置。
  17.  前記送信部は、
    前記第1のタイマが満了するまでに前記Probe Requestフレームに対する前記基地局装置の応答がなかった場合に、送信周波数を切り替えて、前記基地局装置に対して再度Probe Requestフレームを送信する、
     請求項15に記載の無線端末装置。
  18.  複数の無線端末装置に対してIEEE802.11に準拠した無線通信を行う基地局装置とを有する無線通信システムにおける無線通信方法であって、
     前記基地局装置が、前記複数の無線端末装置のうちの1つとのTXOP期間が終了したことを示す情報に、前記基地局装置に関する情報を含むBeacon要素を付加して、1つ以上の第1フレームを生成し、
     前記生成した1つ以上の第1フレームを前記複数の無線端末装置に対して送信する、
     無線通信方法。
  19.  前記複数の無線端末装置のうちの少なくとも1つの無線端末装置が、メディアがクリアであるか否かを判定し、
     クリアであると判定した場合に、前記基地局装置に対してProbe Requestフレームを送信し、
     前記Probe Requestフレームの送信から第1の所定時間をカウントする第1のタイマを起動し、
     前記第1のタイマが前記第1の所定時間をカウント終了するまでに前記Probe Requestフレームに対する前記基地局装置の応答がなかった場合には、前記1つ以上の第1フレームが送信されるまで、次フレームの送信を待機する、
     請求項18に記載の無線通信方法。
PCT/JP2016/004489 2015-11-05 2016-10-05 基地局装置、無線端末装置および無線通信方法 WO2017077686A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680059692.4A CN108141769A (zh) 2015-11-05 2016-10-05 基站装置、无线终端装置和无线通信方法
JP2017548630A JP6785453B2 (ja) 2015-11-05 2016-10-05 基地局装置、無線端末装置および無線通信方法
EP16861764.5A EP3373631B1 (en) 2015-11-05 2016-10-05 Base station device, wireless terminal device, and wireless communication method
US15/970,274 US10660125B2 (en) 2015-11-05 2018-05-03 Base station apparatus, wireless terminal apparatus, and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-217989 2015-11-05
JP2015217989 2015-11-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/970,274 Continuation US10660125B2 (en) 2015-11-05 2018-05-03 Base station apparatus, wireless terminal apparatus, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2017077686A1 true WO2017077686A1 (ja) 2017-05-11

Family

ID=58663064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004489 WO2017077686A1 (ja) 2015-11-05 2016-10-05 基地局装置、無線端末装置および無線通信方法

Country Status (5)

Country Link
US (1) US10660125B2 (ja)
EP (1) EP3373631B1 (ja)
JP (1) JP6785453B2 (ja)
CN (1) CN108141769A (ja)
WO (1) WO2017077686A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3565137A1 (en) * 2016-12-28 2019-11-06 Panasonic Intellectual Property Corporation of America Communication method for wireless terminal device, communication method for wireless base station device, wireless terminal device, and wireless base station device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574932A (zh) * 2019-03-22 2021-10-29 索尼集团公司 通信控制设备、通信控制方法、通信终端和通信方法
US11451552B2 (en) * 2020-06-04 2022-09-20 Hewlett Packard Enterprise Development Lp Basic service set (BSS) color-based containment and mitigation
US20220248423A1 (en) * 2021-02-02 2022-08-04 Cisco Technology, Inc. Application-based transmission opportunity sharing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314551A (ja) * 2000-11-01 2002-10-25 Texas Instruments Inc ローカルエリアネットワークにおけるサービスの質を支持するための統一チャネルアクセス
US20080267142A1 (en) * 2004-06-18 2008-10-30 Stellaris Ltd. Distributed Antenna Wlan Access-Point System and Method
JP2009522930A (ja) * 2006-01-04 2009-06-11 インターデイジタル テクノロジー コーポレーション Wlanシステムにおいて複数モードの効率的な動作を提供するための方法およびシステム
JP2015512223A (ja) * 2012-03-02 2015-04-23 インターデイジタル パテント ホールディングス インコーポレイテッド ビーコン情報を提供するための方法およびシステム
JP2015523802A (ja) * 2012-06-18 2015-08-13 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいてチャネルアクセス制御方法及び装置
JP2016213760A (ja) * 2015-05-07 2016-12-15 株式会社東芝 無線通信用集積回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058074B2 (en) 2000-11-01 2006-06-06 Texas Instruments Incorporated Unified channel access for supporting quality of service (QoS) in a local area network
US20040264475A1 (en) * 2003-06-30 2004-12-30 The Nature Of The Conveyance Class of high throughput MAC architectures for multi-channel CSMA systems
US9572092B2 (en) * 2012-10-15 2017-02-14 Lg Electronics Inc. Method and apparatus for active scanning in wireless LAN
AU2013332687B2 (en) * 2012-10-18 2016-01-28 Lg Electronics Inc. Method and apparatus for channel access in wireless LAN system
US9408184B2 (en) * 2014-08-01 2016-08-02 Newracom, Inc. Systems and methods for multi-user simultaneous transmissions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314551A (ja) * 2000-11-01 2002-10-25 Texas Instruments Inc ローカルエリアネットワークにおけるサービスの質を支持するための統一チャネルアクセス
US20080267142A1 (en) * 2004-06-18 2008-10-30 Stellaris Ltd. Distributed Antenna Wlan Access-Point System and Method
JP2009522930A (ja) * 2006-01-04 2009-06-11 インターデイジタル テクノロジー コーポレーション Wlanシステムにおいて複数モードの効率的な動作を提供するための方法およびシステム
JP2015512223A (ja) * 2012-03-02 2015-04-23 インターデイジタル パテント ホールディングス インコーポレイテッド ビーコン情報を提供するための方法およびシステム
JP2015523802A (ja) * 2012-06-18 2015-08-13 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいてチャネルアクセス制御方法及び装置
JP2016213760A (ja) * 2015-05-07 2016-12-15 株式会社東芝 無線通信用集積回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373631A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3565137A1 (en) * 2016-12-28 2019-11-06 Panasonic Intellectual Property Corporation of America Communication method for wireless terminal device, communication method for wireless base station device, wireless terminal device, and wireless base station device
EP3565137A4 (en) * 2016-12-28 2019-11-13 Panasonic Intellectual Property Corporation of America COMMUNICATION METHOD FOR WIRELESS DEVICE DEVICE, COMMUNICATION METHOD FOR WIRELESS BASESTATION DEVICE, WIRELESS END DEVICE AND WIRELESS BASESTATION DEVICE
US11595287B2 (en) 2016-12-28 2023-02-28 Panasonic Intellectual Property Corporation Of America Communication method for wireless terminal device, communication method for wireless base station device, wireless terminal device, and wireless base station device

Also Published As

Publication number Publication date
CN108141769A (zh) 2018-06-08
EP3373631A4 (en) 2018-11-07
JP6785453B2 (ja) 2020-11-18
US10660125B2 (en) 2020-05-19
EP3373631B1 (en) 2021-03-03
EP3373631A1 (en) 2018-09-12
JPWO2017077686A1 (ja) 2018-08-23
US20180255571A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP4456637B2 (ja) Wlanにおけるアップリンク伝送のための指向性アンテナを使用したアクセスポイント
US11653348B2 (en) Wireless communication method for uplink multiple-user transmission schedule and wireless communication terminal using the method
US8526887B2 (en) Unscheduled protocols for switched antenna arrays
JP6667169B2 (ja) 基地局装置、無線端末装置および無線通信方法
KR20130038385A (ko) 광대역 채널에서 충돌 해결 방법
JP2007537674A (ja) アクセスポイントのアンテナ構成を選択的に調整して移動局のカバレージを強化する方法
KR102012423B1 (ko) 무선 전력 전송 에너지 하베스팅 시스템에서 무선 랜과 동일한 주파수 대역에서 동작하는 에너지 신호 전송 장치에서의 무선 전력 전송 방법 및 이를 수행하는 에너지 신호 전송 장치
US10660125B2 (en) Base station apparatus, wireless terminal apparatus, and wireless communication method
KR101838080B1 (ko) 하향링크용 채널을 지원하는 무선랜 시스템에서 데이터 송수신 방법 및 이를 위한 장치
WO2015093792A1 (ko) 하향링크용 채널을 지원하는 무선랜 시스템에서 전력절감모드 동작 방법 및 이를 위한 장치
WO2020039290A1 (en) Allocation and directional information distribution in millimeter wave wlan networks
KR20080002296A (ko) 근거리 무선 통신 네트워크에서 프레임을 중계하는 시스템및 방법
Bazan et al. Beamforming Antennas in Wireless Networks: Multihop and Millimeter Wave Communication Networks
Mahmud et al. Two-dimensional cooperation-based asynchronous multichannel directional MAC protocol for wireless networks
JP2005244840A (ja) 無線通信装置及び無線通信方法
US20240147531A1 (en) Txop protection for relay operation
KR102242142B1 (ko) 무선랜 시스템에서 프레임 송수신 방법 및 장치
US20240188135A1 (en) Channel backoff in a wireless network
JP7047719B2 (ja) 無線lanシステムおよび干渉制御方法
WO2021095168A1 (ja) 無線lanシステム、アクセスポイント装置及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016861764

Country of ref document: EP