WO2017076207A1 - 多用户叠加传输方法及装置 - Google Patents

多用户叠加传输方法及装置 Download PDF

Info

Publication number
WO2017076207A1
WO2017076207A1 PCT/CN2016/103433 CN2016103433W WO2017076207A1 WO 2017076207 A1 WO2017076207 A1 WO 2017076207A1 CN 2016103433 W CN2016103433 W CN 2016103433W WO 2017076207 A1 WO2017076207 A1 WO 2017076207A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
group
bit
specific
complex symbol
Prior art date
Application number
PCT/CN2016/103433
Other languages
English (en)
French (fr)
Inventor
戴建强
袁志锋
袁弋非
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017076207A1 publication Critical patent/WO2017076207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a multi-user overlay transmission method and apparatus.
  • NOMA Non-Orthogonal Multiple Access
  • SIC Serial Interference Cancellation
  • superimposing coding on the transmitting side of a broadcasting system means superimposing information of a plurality of users, where "superimposing” is usually a direct addition of power domains.
  • the transmitter transmits the superimposed information to multiple receivers simultaneously. Each receiver solves the information it needs.
  • the superposition coding technique allows each user's information to be transmitted on the "full channel", so that the user information interferes with each other during demodulation.
  • Non-orthogonal multiple access technology can usually be divided into two demodulation methods: the first one, each user carries out interference demodulation with other users, which is simpler to implement, but the performance is lossy.
  • the second is to use interference cancellation technology, that is, multi-user detection technology.
  • the following is a brief description of the SIC process of two users.
  • the multi-user SIC process can be easily promoted by first demodulating the information of user A (using the interference of user B to demodulate the A information). Then, when demodulating the user B information, it is necessary to first subtract the previously demodulated A information (the block level SIC needs to be reconstructed), and then demodulate the user B information. In this way, the user B information can be greatly improved because there can be no interference.
  • Classical literature has demonstrated that the use of superposition coding combined with code-level SIC techniques can achieve multi-user information capacity limits.
  • FIGs 1(a) to (c) it is a QPSK (Quadrature Phase Shift Keying) symbol and a 16QAM (Quadrature Amplitude Modulation) symbol superposition coding scheme, and a QPSK symbol carrying bit information "00" (such as Figure 1 (a) and a 16QAM symbol carrying bit information "1011” (as shown in Figure 1 (b)) are directly added in the power domain to obtain a superimposed carried bit information "001011” Symbol (as shown in Figure 1 (c)).
  • QPSK Quadrature Phase Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • FIGS. 2(a) to (c) in addition to the case of FIG. 1, there is another case, that is, a QPSK symbol carrying bit information "10" (as shown in FIG. 2(a). And a 16QAM symbol carrying bit information "0011” (as shown in FIG. 2(b)) is directly added in the power domain to obtain a symbol carrying bit information "100011” (as shown in FIG. 2(c)). .
  • the 64 constellation points shown by the constellation in Figure 2(c) can be obtained for all possible superpositions.
  • the terminal uses a simple symbol-level SIC to demodulate the composite complex symbol, its demodulation performance will decrease greatly. Therefore, in order to ensure performance, the terminal needs to use a complex code-block-level SIC.
  • the block-level SIC can cause high implementation complexity, power consumption, and latency for the terminal, which is sometimes unacceptable to the terminal.
  • Hierarchical modulation can also be seen as a variant of superposition coding.
  • Hierarchical modulation refers to the combination of a high priority bit stream and a low priority bit stream, and then mapped into a constellation diagram.
  • layered modulation can also combine constellations with Gray mapping attributes, hierarchical modulation is not flexible for different power allocations of different data streams, and its implementation complexity is also high. Different power allocations for different data streams are necessary to achieve downlink multi-user channel capacity.
  • the multi-user information in the related art is superimposed and encoded in the transmitter.
  • the receiver uses a simple symbol-level SIC to demodulate the composite complex symbol, the demodulation performance will decrease greatly.
  • Embodiments of the present invention provide a multi-user superposition transmission method and apparatus, to at least solve the related art, when multi-user information is superimposed and encoded by a transmitter, if the receiver uses a simple symbol-level SIC to demodulate a composite complex symbol, Demodulation performance will drop more problems.
  • a multi-user overlay transmission method including:
  • the transmitter performs bit operations on the first set of bits a(0)a(1)...a(2m-1) to be transmitted, and the second set of bits b(0)b(1)...b(2n-1) Obtaining a third set of bits c(0)c(1)...c(2m-1), wherein m and n are positive integers;
  • the transmitter processes the second group of bits in a 2n-order modulation manner to obtain a second complex symbol, and processes the third group of bits into a 2m-order modulation manner to obtain a third complex symbol;
  • the transmitter uses the square root of the power factor for the second complex symbol Weighting the weighted second complex symbol, and using the third complex symbol Weighting the weighted third complex symbol;
  • bit operation comprises:
  • the partial bits of the second group of bits are ORed to obtain an identical operation result, and then the same operation result is XORed with a specific bit of the first group of bits to obtain the third Group bit
  • the third group of bits is composed of two parts: a first part is obtained by XORing a specific bit of the second group of bits with a specific one of the first group of bits; Bits other than a specific bit of a group of bits remain unchanged;
  • the third group of bits is composed of two parts: the first part is to first perform the same operation result by performing the same operation on some of the second group of bits, and then the same operation result and the first
  • the specific bit in the group bit is subjected to an exclusive OR operation; the second part is obtained by keeping the bits other than the specific bit of the first group of bits unchanged;
  • the specific bit in the first group of bits determines a quadrant of a mapping constellation point corresponding to the first group of bits.
  • denotes an exclusive OR operation
  • denotes an identical OR operation
  • bit operation When m>1, n>1, the bit operation is expressed as:
  • bit operation does not include an AND operation between the second group of bits
  • the bit operation includes the same-OR operation of all odd-bit bits of the second group of bits, and all even-bit bits of the second group of bits are ORed.
  • a specific bit a(0)a(1) of the first group of bits determines a quadrant of a mapping constellation point corresponding to the first group of bits.
  • the 2n-order modulation mode includes at least one of the following: quadrature phase shift keying QPSK, quadrature amplitude modulation 16QAM, quadrature amplitude modulation 64QAM;
  • the 2m order modulation mode includes at least one of the following: quadrature phase shift keying QPSK, quadrature amplitude modulation 16QAM, and quadrature amplitude modulation 64QAM.
  • mapping constellation of the composite complex symbol has a Gray mapping attribute.
  • a multi-user overlay transmission apparatus which is disposed in a transmitter, and includes:
  • An arithmetic module configured to set a first set of bits a(0)a(1)...a(2m-1) to be transmitted, and a second set of bits b(0)b(1)...b(2n-1), Performing a bit operation to obtain a third set of bits c(0)c(1)...c(2m-1); wherein m and n are positive integers;
  • a modulation module configured to process the second group of bits in a 2n-order modulation manner to obtain a second complex symbol, and process the third group of bits into a 2m-order modulation manner to obtain a third complex symbol;
  • a synthesis module configured to add the weighted second complex symbol and the weighted third complex symbol to obtain a composite complex symbol, wherein the weighted second complex symbol uses a square root of the power factor Weighted, the weighted third complex symbol is used Weighted;
  • a transmitting module configured to transmit the synthesized complex symbol forming a transmitting signal
  • bit operation comprises:
  • the partial bits of the second group of bits are ORed to obtain an identical operation result, and then the same operation result is XORed with a specific bit of the first group of bits to obtain the third Group of bits; or,
  • the third group of bits is composed of two parts: a first part is obtained by XORing a specific bit of the second group of bits with a specific one of the first group of bits; Bits other than a specific bit of a group of bits remain unchanged; or,
  • the third group of bits is composed of two parts: the first part is to first perform the same operation result by performing the same operation on some of the second group of bits, and then the same operation result and the first
  • the specific bit in the group bit is subjected to an exclusive OR operation; the second part is obtained by keeping the bits other than the specific bit of the first group of bits unchanged;
  • the specific bit in the first group of bits determines a quadrant of a mapping constellation point corresponding to the first group of bits.
  • denotes an exclusive OR operation
  • denotes an identical OR operation
  • bit operation When m>1, n>1, the bit operation is expressed as:
  • bit operation does not include an AND operation between the second group of bits
  • the bit operation includes the same-OR operation of all odd-bit bits of the second group of bits, and all even-bit bits of the second group of bits are ORed.
  • a specific bit a(0)a(1) of the first group of bits determines a quadrant of a mapping constellation point corresponding to the first group of bits.
  • the 2n-order modulation mode includes at least one of the following: quadrature phase shift keying QPSK, quadrature amplitude modulation 16QAM, quadrature amplitude modulation 64QAM;
  • the 2m order modulation mode includes at least one of the following: quadrature phase shift keying QPSK, quadrature amplitude modulation 16QAM, and quadrature amplitude modulation 64QAM.
  • mapping constellation of the composite complex symbol has a Gray mapping attribute.
  • a computer storage medium is further provided, and the computer storage medium may store an execution instruction for executing the multi-user overlay transmission method in the above embodiment.
  • the first group of bits a(0)a(1)...a(2m-1) to be transmitted and the second group of bits b(0)b(1)...b(2n) are used by the transmitter.
  • -1) performing bit operations to obtain a third set of bits c(0)c(1)...c(2m-1), where m, n are positive integers;
  • the transmitter does 2n of the second set of bits
  • the second modulation symbol is processed by the order modulation method, and the third group of bits is processed in a 2m order modulation manner to obtain a third complex symbol;
  • the transmitter uses the square root of the power factor of the second complex symbol Weighting the weighted second complex symbol, and using the third complex symbol Weighting the weighted third complex symbol;
  • the transmitter adds the weighted second complex symbol and the weighted third complex symbol to obtain a composite complex symbol;
  • the transmitter forms the composite complex symbol to transmit a transmitted signal Going out;
  • the bit operation comprises: XORing a specific bit of the second set of bits with a specific one of the
  • the receiver uses a simple symbol-level SIC to demodulate the synthesized complex symbols, the demodulation performance will be greatly reduced, and the robustness of the receiver to symbol-level SIC can be enhanced by simple and unique design processing. The effect of enhanced access performance under lower complexity receiver conditions.
  • Figure 1 is a schematic diagram (a) of QPSK symbols and 16QAM symbol superposition coding according to the related art
  • Figure 1 (b) is a schematic diagram (b) of QPSK symbols and 16QAM symbol superposition coding according to the related art
  • Figure 1 (c) is a schematic diagram (c) of QPSK symbols and 16QAM symbol superposition coding according to the related art
  • FIG. 2(a) is a schematic diagram 2 (a) of QPSK symbols and 16QAM symbol superposition coding according to the related art
  • 2(b) is a second schematic diagram (b) of QPSK symbols and 16QAM symbol superposition coding according to the related art
  • 2(c) is a schematic diagram (c) of a QPSK symbol and a 16QAM symbol superposition coding according to the related art
  • FIG. 3 is a flow chart of a multi-user overlay transmission method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a multi-user overlay transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a process of processing multi-user information at a transmitter according to an embodiment 1 of the present invention
  • Example 6 is a schematic diagram of constellation mapping of a second set of bits in Example 2 according to the present invention.
  • Example 7 is a schematic diagram of constellation mapping of a first group of bits in Example 2 according to the present invention.
  • FIG. 8 is a schematic diagram showing the formation of a third group of bits in the first case according to the second embodiment of the present invention.
  • Example 9 is a schematic diagram of constellation mapping of third bit information in Example 2 according to the present invention.
  • FIG. 10 is a schematic diagram of forming a third group of bits in a second case according to Embodiment 2 of the present invention.
  • Figure 11 (a) is a superimposed schematic view (a) of the first case in the second embodiment of the present invention.
  • Figure 11 (b) is a superimposed schematic view (b) of the first case in the second embodiment of the present invention.
  • Figure 11 (c) is a superimposed schematic view (c) of the first case in the second embodiment of the present invention.
  • Figure 12 (a) is a superimposed schematic view (a) of the second case in the second embodiment of the present invention.
  • Figure 12 (b) is a superimposed schematic view (b) of the second case in the second embodiment of the present invention.
  • Figure 12 (c) is a superimposed schematic view (c) of the second case in the second embodiment of the present invention.
  • Figure 13 is a comparison of superimposed results of the first and second cases in Example 2 of the present invention.
  • FIG. 3 is in accordance with the present invention.
  • a flowchart of a multi-user overlay transmission method of an embodiment is shown in FIG. 3, and the process includes the following steps:
  • Step S302 the transmitter sets a first group of bits a(0)a(1)...a(2m-1) to be transmitted, and a second group of bits b(0)b(1)...b(2n-1), Performing a bit operation to obtain a third set of bits c(0)c(1)...c(2m-1), where m and n are positive integers;
  • bit operation comprises:
  • the third group of bits is composed of two parts: the first part is obtained by XORing a specific bit of the second group of bits with a specific bit of the first group of bits; Bits other than a particular bit of the first set of bits remain unchanged;
  • the third group of bits is composed of two parts: the first part is: first, the partial bits of the second group of bits are ORed to obtain a result of the same operation, and then the result of the same OR operation is The specific bit of the first set of bits is XORed; the second part is obtained by the bits other than the specific bit of the first set of bits;
  • Step S304 the transmitter processes the second group of bits in a 2n-order modulation manner to obtain a second complex symbol, and processes the third group of bits into a 2m-order modulation manner to obtain a third complex symbol.
  • Step S306 the transmitter uses the square root of the power factor ⁇ of the second complex symbol Weighting the weighted second complex symbol, and using the third complex symbol Weighting the weighted third complex symbol;
  • Step S308 the transmitter adds the weighted second complex symbol and the weighted third complex symbol to obtain a composite complex symbol
  • Step S310 the transmitter transmits the synthesized complex symbol forming transmission signal.
  • the specific bit in the first group of bits determines a quadrant of a mapping constellation point corresponding to the first group of bits.
  • the specific bit of the second group of bits may be selected according to the corresponding third group of bits. For example, when calculating the odd bits of the third group of bits, all the bits of the second group of bits may be selected as the specific bit. While calculating the even bits of the third group of bits, the bits of all the even bits of the second group of bits may be selected as the specific bits.
  • the transmitter obtains the synthesized complex symbol by using the above unique processing manner, and forms the transmitted complex signal to transmit, so that the robustness of the receiver when performing the symbol level SIC is improved, and the related art is solved.
  • the multi-user information is superimposed and encoded by the transmitter, if the receiver uses a simple symbol-level SIC to demodulate the synthesized complex symbols, the demodulation performance will be greatly reduced, and the reception can be enhanced by a simple and unique design process.
  • the machine makes the robustness of symbol-level SIC, that is, the effect of enhancing access performance under lower complexity receiver conditions.
  • denotes an exclusive OR operation
  • denotes an identical OR operation
  • bit operation When m>1, n>1, the bit operation can be expressed as:
  • the calculation of the same or the exclusive OR may have a modification that changes the operation order.
  • the XOR calculation is performed first, and the result is calculated or calculated with the following bits, but the result is obtained.
  • the results are the same as the above formula. Therefore, it should be noted that the modifications of the order of the change operations are all within the scope of protection of the present application, and the following will not be repeated.
  • the first bit c(0) and the second bit c(1) of the third group of bits are obtained by the bit operation, and when m>1, the third group The first bit c(0) and the second bit c(1) of the bit are obtained by the bit operation, and the other bits c(2)c(3)...c(2m-1) are obtained by a(2)a( 3)...a(2m-1) remains unchanged.
  • the bit operation does not include an AND operation between the second group of bits; when n>1, the bit operation includes a second group of bits b(0)b ( 1) ⁇ (same OR operation) between...b(2n-1), wherein the homo-OR operation between the second group of bits herein specifically includes: the bits of all odd bits in the second group of bits are identical Or operation, the bits of all even bits in the second set of bits are ORed.
  • a specific bit a(0)a(1) of the first group of bits determines a quadrant of a mapping constellation point corresponding to the first group of bits a(0)a(1)...a(2n-1) .
  • the second set of bits is modulated by a 2n order modulation and the third set of bits is modulated by a 2m order modulation.
  • the 2n-order modulation method includes at least one of the following: quadrature phase shift keying QPSK, quadrature amplitude modulation 16QAM, and quadrature amplitude modulation 64QAM.
  • the 2m order modulation method includes quadrature phase shift keying QPSK, quadrature amplitude modulation 16QAM, and quadrature amplitude modulation 64QAM.
  • mapping constellation of the composite complex symbol has a Gray mapping attribute.
  • a multi-user superimposed transmission device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the example is preferably implemented in software, but hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a structural block diagram of a multi-user superimposed transmission device according to an embodiment of the present invention. As shown in FIG. 4, the device includes:
  • the operation module 42 is configured to set a first group of bits a(0)a(1)...a(2m-1) to be transmitted, and a second group of bits b(0)b(1)...b(2n-1) Performing a bit operation to obtain a third set of bits c(0)c(1)...c(2m-1); wherein m and n are positive integers;
  • the modulation module 44 is configured to process the second group of bits in a 2n-order modulation manner to obtain a second complex symbol, and process the third group of bits into a 2m-order modulation manner to obtain a third complex symbol;
  • the synthesizing module 46 is configured to add the weighted second complex symbol and the weighted third complex symbol to obtain a composite complex symbol, wherein the weighted second complex symbol is weighted by a square root of a power factor, and the weighted third complex number The symbols are obtained by weighting;
  • the transmitting module 48 is configured to transmit the synthesized complex symbol forming transmission signal
  • bit operation comprises:
  • the partial bits of the second group of bits are ORed to obtain an identical operation result, and then the same operation result is XORed with a specific bit of the first group of bits to obtain the third Group of bits; or,
  • the third group of bits is composed of two parts: a first part is obtained by XORing a specific bit of the second group of bits with a specific one of the first group of bits; Bits other than a specific bit of a group of bits remain unchanged; or,
  • the third group of bits is composed of two parts: the first part is to first perform the same operation result by performing the same operation on some of the second group of bits, and then the same operation result and the first
  • the specific bit in the group bit is XORed; the second part is from the first group of bits
  • the bits other than the specific bits remain unchanged.
  • the specific bit in the first group of bits determines a quadrant of a mapping constellation point corresponding to the first group of bits.
  • the specific bit of the second group of bits may be selected according to the corresponding third group of bits. For example, when calculating the odd bits of the third group of bits, all the bits of the second group of bits may be selected as the specific bit. While calculating the even bits of the third group of bits, the bits of all the even bits of the second group of bits may be selected as the specific bits.
  • denotes an exclusive OR operation
  • denotes an identical OR operation
  • bit operation When m>1, n>1, the bit operation can be expressed as:
  • bit operation does not include an AND operation between the second group of bits
  • the bit operation includes the same-OR operation of all odd-bit bits of the second group of bits, and all even-bit bits of the second group of bits are ORed.
  • a specific bit a(0)a(1) of the first group of bits determines a quadrant of a mapping constellation point corresponding to the first group of bits.
  • the 2n-order modulation mode includes at least one of the following: quadrature phase shift keying QPSK, quadrature amplitude modulation 16QAM, quadrature amplitude modulation 64QAM;
  • the 2m order modulation mode includes at least one of the following: quadrature phase shift keying QPSK, quadrature amplitude modulation 16QAM, and quadrature amplitude modulation 64QAM.
  • mapping constellation of the composite complex symbol has a Gray mapping attribute.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • a specific bit in the second group of bits is XORed with all bits in the first group of bits to obtain an exclusive OR bit, and the resulting XOR bit is combined with the second bit.
  • a bit other than the specific bit in the group bit to obtain a third group of bits, superimposing the first group of bits and the first and second complex symbols obtained by processing the third group of bits to obtain a composite complex symbol, and forming a composite symbol to form a transmission
  • the signal is transmitted.
  • the system receiver can obtain better SIC robustness at lower complexity receiver conditions. Enhanced access performance.
  • the multi-user information is simultaneously transmitted to the two receivers after the transmitter is processed, for example, the transmitter simultaneously transmits the first set of bits to the central user receiver UE1 and the second set of bits to the edge user receiver UE2 . These two sets of bits are superimposed and sent out after the transmitter is processed. Corresponding receiver UE1, receiver UE2 demodulates the information it needs from the superimposed information of the two sets of bits, as shown in Fig. 5 is the processing of multi-user information at the transmitter.
  • UE1 bit information is encoded to obtain a first group of bits
  • UE2 bit information is encoded to obtain a second group of bits
  • the coding may be performed according to an encoding method adopted by a relevant standard, such as Turbo coding.
  • the encoding is an optional step, and the application may not include the step of encoding, that is, the first group of bits may be directly used as the UE1 bit information, and the second group of bits may be directly the UE2 bit information.
  • the second group of bits is directly modulated to obtain a modulation symbol with a certain power (ie, the weighted second complex symbol), and the first group of bits is first modulated with the second group of bits to obtain a third group of bits and then modulated.
  • Obtaining a modulation symbol with a certain power (ie, a weighted third complex symbol) wherein the modulation of the second group of bits can be performed according to a modulation method adopted by the relevant standard, for example, QPSK, 16QAM; the modulation of the third group of bits can be QPSK, 16QAM and so on.
  • the third group of bits consists of two parts, one part is operated by a specific bit of the second group of bits and a specific one of the first group of bits, and the other part is a bit of the second group of bits other than the specific bit.
  • the second group of bits is "10”
  • the first group of bits is "1100” wherein the first two bits "11” are specific 2 bits.
  • the resulting third set of bits is "0100", wherein the first two bits "01” are the second set of bits "10” and the first set of bits specific 2 bits "11” XOR are obtained:
  • the latter two bits are obtained by keeping the bit "00" of the first group of bits other than the above specific bits unchanged.
  • the "10” and “0100” are respectively modulated and multiplied by the corresponding power adjustment factors, and then superposed to obtain a composite complex symbol, and the composite complex symbol is formed into a transmission signal.
  • the two sets of bits are sent to the two user receivers after the transmitter is processed. More specifically, first, the second set of bits is two bits, as shown in FIG. 6, indicating the mapping of two bits in the constellation, for example, when it is "10", it is mapped to the solid circle in FIG. At the constellation point.
  • the first set of bits is four bits, as shown in Figure 7, indicating its mapping to the constellation, for example when it is "1011", mapped to the constellation point indicated by the filled circle in Figure 7.
  • the 16QAM constellation used here is the LTE standard 16QAM constellation, the first of the four bits, the second bit is the important bit, that is, the bit that determines the positive and negative of the I channel Q component, that is, the first bit in "1011" "1” and the second bit "0" are important bits.
  • the second group of bits is directly modulated by the QPSK method to obtain a modulation symbol with a certain power (ie, a weighted second complex symbol), and the second group of bits is first subjected to a bit operation with the first group of bits to obtain a third group of bits.
  • the third group of bits is then modulated by the 16QAM method of the LTE standard to obtain a modulation symbol with a certain power (ie, a weighted third complex symbol).
  • the third group of bits is composed of two parts, as shown in FIG. 8, a part is obtained by XORing two specific bits of the first group of bits and two bits of the second group of bits, and the other part is first.
  • the bits of the group bits other than the above specific bits remain unchanged. More specifically, the second group of bits in FIG. 8 is "10", and the first group of bits is "1011", wherein the first bit and the second bit "10" are specific 2 bits.
  • the QPSK modulation symbols have four possible constellation points in the constellation
  • the 16QAM modulation symbols have 16 possible constellation points in the constellation
  • the composite complex symbols of the two complex symbols have 64 in the constellation.
  • a possible constellation point just like the overlay coding introduced in the technical background.
  • FIG. 11(a) to (c) show a superimposed schematic diagram of the first case
  • FIG. 11(a) is a constellation point of the second group of bits in the first case
  • FIG. 11(b) is a third group in the first case.
  • FIG. 11(c) is the superimposed constellation points in the first case.
  • 12(a) to (c) show a superimposed schematic diagram of the second case
  • FIG. 12(a) is a constellation point of the second group of bits in the second case
  • FIG. 12(b) is a third group in the second case.
  • the constellation points into which the bits are mapped, wherein the third set of bits 1011 is obtained by changing the first set of bits 1011
  • FIG. 12(c) is the superimposed constellation points in the second case.
  • the places indicated in the figure are randomly taken as examples of two specific cases.
  • the first one the 16QAM symbols at the QPSK symbol “1011” at “10” are superimposed to obtain the symbols at "101011”.
  • the second type the QPSK symbol at "00” and the 16QAM symbol at "1011” are optimally superimposed to obtain the symbol at "001011”.
  • the composite complex symbols obtained in these two cases are placed in a constellation diagram, as shown in Fig. 13, which is a composite complex symbol constellation of two symbols.
  • the synthesized complex symbol forming transmission signal is transmitted to the two user receivers.
  • the design process is simple and unique through the embodiment of the present invention, even when receiving The machine misjudges the QPSK symbol because of noise, and does not affect the correct demodulation of the 16QAM symbol. Therefore, the robustness of the receiver to symbol-level SIC is enhanced, that is, the access performance is enhanced under the condition of lower complexity receiver.
  • Table 1 shows the combination of m and n when different values are used.
  • the second set of bits can be modulated by a 2n-order modulation method, and the third set of bits can be modulated by a 2m-order modulation.
  • n or m When n or m is 1, it is modulated by QPSK, when n or m is 2, it is modulated by 16QAM, and when n or m is 3, it is modulated by 64QAM.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention in essence or the contribution to the related art can be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (eg, ROM/RAM, disk, CD-ROM includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a storage medium eg, ROM/RAM, disk, CD-ROM includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S1 the transmitter transmits a first group of bits a(0)a(1)...a(2m-1) to be transmitted, and a second group of bits b(0)b(1)...b(2n-1), Performing a bit operation to obtain a third set of bits c(0)c(1)...c(2m-1), where m and n are positive integers;
  • bit operation comprises:
  • the third group of bits is composed of two parts: the first part is obtained by XORing a specific bit of the second group of bits with a specific bit of the first group of bits; Bits other than a particular bit of the first set of bits remain unchanged;
  • the third group of bits is composed of two parts: the first part is: first, the partial bits of the second group of bits are ORed to obtain a result of the same operation, and then the result of the same OR operation is The specific bit of the first set of bits is XORed; the second part is obtained by the bits other than the specific bit of the first set of bits;
  • Step S2 the transmitter processes the second group of bits in a 2n-order modulation manner to obtain a second complex symbol, and processes the third group of bits into a 2m-order modulation manner to obtain a third complex symbol;
  • Step S3 the transmitter uses the square root of the power factor of the second complex symbol Weighting the weighted second complex symbol, and using the third complex symbol Weighting the weighted third complex symbol;
  • Step S4 the transmitter adds the weighted second complex symbol and the weighted third complex symbol to obtain a composite complex symbol
  • step S5 the transmitter transmits the synthesized complex symbol forming transmission signal.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor executes the multi-user overlay transmission method according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the transmitter uses a first group of bits a(0)a(1)...a(2m-1) to be transmitted, and a second group of bits b(0)b(1)...b( 2n-1), performing a bit operation to obtain a third set of bits c(0)c(1)...c(2m-1), where m and n are positive integers; the transmitter performs a 2n order modulation of the second set of bits Processing to obtain a second complex symbol, the third group of bits is processed in a 2m order modulation manner to obtain a third complex symbol; and the transmitter uses the square root of the power factor of the second complex symbol Weighting the weighted second complex symbol, using the third complex symbol Weighting the weighted third complex symbol; the transmitter adds the weighted second complex symbol and the weighted third complex symbol to obtain a composite complex symbol; the transmitter transmits the synthesized complex symbol to form a transmission signal; wherein, the bit operation includes: Orxing a specific bit of the second group of bits with a specific bit of the first group of bits
  • the second part is obtained by keeping the bits other than the specific bit of the first group of bits; wherein the specific bit in the first group of bits determines the quadrant of the mapping constellation point corresponding to the first group of bits, and the related
  • the multi-user information in the technology is superimposed and encoded by the transmitter. If the receiver uses a simple symbol-level SIC to demodulate the synthesized complex symbols, the demodulation performance will be greatly reduced, and the simple and unique design processing is achieved. The robustness of the receiver to symbol-level SIC can be enhanced, that is, the effect of enhancing access performance under lower complexity receiver conditions.

Abstract

本发明实施例提供了一种多用户叠加传输方法及装置,其中,该方法包括:发射机将待发送的第一组2m个比特,与第二组2n个比特,进行比特运算得到第三组2m个比特,其中,m、n为正整数;发射机将第二组比特做2n阶调制方式处理得到第二复数符号,将第三组比特做2m阶调制方式处理得到第三复数符号;发射机将第二复数符号用√α加权得到加权的第二复数符号,将第三复数符号用√1−α加权得到加权的第三复数符号;发射机将加权的第二复数符号和加权的第三复数符号相加得到合成复数符号;发射机将合成复数符号形成发射信号发射出去。通过本发明实施例,达到了通过简单独特的设计处理可以增强接收机做符号级SIC的鲁棒性,即在更低复杂度接收机条件下增强接入性能的效果。

Description

多用户叠加传输方法及装置 技术领域
本发明实施例涉及通信领域,具体而言,涉及一种多用户叠加传输方法及装置。
背景技术
非正交多址技术(None Orthogonal Multiple Access,简称为NOMA)的原理是发射侧做多用户信息叠加编码,接收侧使用串行干扰消除(Successive Interference Cancellation,简称为SIC)。
例如在一个广播系统发射侧做叠加编码,指将多个用户的信息叠加到一起,这里“叠加”通常是功率域直接相加。发射机将叠加后的信息同时向多个接收机发送。各个接收机解出自己需要的信息。要注意的是,叠加编码技术使每个用户的信息都是在“整个通道”上传输的,因而在解调时各用户信息之间是相互干扰的。
非正交多址技术通常可以分为两种解调方法:第一种、每个用户都带着其他用户的干扰解调,这样实现较为简单,但性能是有损的。第二种、是使用干扰消除技术,也即多用户检测技术。下面以两个用户的SIC过程为例进行简单说明,多用户的SIC过程很容易由此推广:先解调出用户A的信息(带着用户B的干扰来解调A信息)。然后,在解调用户B信息时,需要先将之前解调出来的A信息(码块级SIC需要重构)减去,再解调出用户B信息。这样用户B信息因为可以没有干扰,所以性能可以存在较大提升。经典文献已证明采用叠加编码结合码块级SIC技术是可以达到多用户信息容量极限的。
如图1(a)~(c)所示,即为QPSK(正交相移键控)符号和16QAM(正交振幅调制)符号叠加编码示意图,携带比特信息“00”的一个QPSK符号(如图1(a)所示)和携带比特信息“1011”的一个16QAM符号(如图1(b)所示)在功率域直接相加,得到一个叠加后的携带比特信息“001011” 的符号(如图1(c)所示)。
同理,如图2(a)~(c)所示,除了包括图1中情况,还包括有另一种情况,即携带比特信息“10”的一个QPSK符号(如图2(a)所示)和携带比特信息“0011”的一个16QAM符号(如图2(b)所示)在功率域直接相加,得到一个携带比特信息“100011”的符号(如图2(c)所示)。所有可能的叠加情况就可以得到图2(c)中星座所示的64个星座点。
从图2(c)中容易看出,两个符号直接相加,最终所有可能得到的符号组合出的星座点没有Gray(格雷)映射属性(映射的相邻星座点所携带的比特信息仅存在1个比特不同,通常这样调制的性能最优),比如“100011”和“001011”有两比特不相同。
终端如果使用简单的符号级SIC来解调合成复数符号,其解调性能会下降较大,因而,为了保证性能,终端需要使用复杂的码块级SIC。但是,码块级SIC对终端而言会引起很高的实现复杂度、功耗和时延,这些对终端来说有时是不可接受的。
分层调制(Hierarchical modulation)也可以看作是一种叠加编码的变种。分层调制是指通过高优先比特流和低优先比特流的组合,然后映射到星座图中。虽然分层调制也可以组合出具有Gray映射属性的星座,但分层调制对不同数据流的进行不同功率分配很不灵活,而且其实现复杂度也较高。而对不同数据流进行不同功率分配是达到下行多用户信道容量的必要手段。
综上所述,相关技术中的多用户信息在发射机做叠加编码,对应的,接收机如果使用简单的符号级SIC来解调合成复数符号,其解调性能会下降较大。
发明内容
本发明实施例提供了一种多用户叠加传输方法及装置,以至少解决相关技术中多用户信息在发射机做叠加编码时,接收机如果使用简单的符号级SIC来解调合成复数符号,其解调性能会下降较大的问题。
根据本发明实施例的一个实施例,提供了一种多用户叠加传输方法,包括:
发射机将待发送的第一组比特a(0)a(1)…a(2m-1),与第二组比特b(0)b(1)…b(2n-1),进行比特运算得到第三组比特c(0)c(1)…c(2m-1),其中,m、n为正整数;
所述发射机将所述第二组比特做2n阶调制方式处理得到第二复数符号,将所述第三组比特做2m阶调制方式处理得到第三复数符号;
所述发射机将所述第二复数符号用功率因子的平方根
Figure PCTCN2016103433-appb-000001
加权得到加权的第二复数符号,将所述第三复数符号用
Figure PCTCN2016103433-appb-000002
加权得到加权的第三复数符号;
所述发射机将所述加权的第二复数符号和加权的第三复数符号相加得到合成复数符号;
所述发射机将所述合成复数符号形成发射信号发射出去;
其中,所述比特运算包括:
将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
或者,
先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
或者,
所述第三组比特由两部分组成:第一部分由,将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
或者,
所述第三组比特由两部分组成:第一部分由,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
其中,所述第一组比特中的特定比特决定所述第一组比特对应的映射星座点的所在象限。
可选地,⊕表示异或运算,⊙表示同或运算,则
当m=1,n=1时,所述比特运算表示为:
c(0)=a(0)⊕b(0),
c(1)=a(1)⊕b(1);
当m=1,n>1时,所述比特运算表示为:
c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1));
当m>1,n=1时,所述比特运算表示为:
c(0)=a(0)⊕b(0),
c(1)=a(1)⊕b(1),
c(k)=a(k),(k=2,3…2m-1,m>1);
当m>1,n>1时,所述比特运算表示为:
c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1)),
c(k)=a(k),(k=2,3…2m-1,m>1)。
可选地,
当m=1时,所述第三组比特的第1个比特c(0)和第2个比特c(1)通过 所述比特运算得到,
当m>1时,第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,其他比特c(2)c(3)…c(2m-1)由a(2)a(3)…a(2m-1)保持不变得到。
可选地,
当n=1时,所述比特运算不包括所述第二组比特之间的同或运算;
当n>1时,所述比特运算包括所述第二组比特中的所有奇数位的比特做同或运算,所述第二组比特中的所有偶数位的比特做同或运算。
可选地,
所述第一组比特中的特定比特a(0)a(1)决定所述第一组比特对应的映射星座点的所在象限。
可选地,
所述2n阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM;
所述2m阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM。
可选地,所述合成复数符号的映射星座具有格雷映射属性。
根据本发明实施例的另一实施例,提供了一种多用户叠加传输装置,设置于发射机中,包括:
运算模块,设置为将待发送的第一组比特a(0)a(1)…a(2m-1),与第二组比特b(0)b(1)…b(2n-1),进行比特运算得到第三组比特c(0)c(1)…c(2m-1);其中,m、n为正整数;
调制模块,设置为将所述第二组比特做2n阶调制方式处理得到第二复数符号,将所述第三组比特做2m阶调制方式处理得到第三复数符号;
合成模块,设置为将加权的第二复数符号和加权的第三复数符号相加 得到合成复数符号,所述加权的第二复数符号用功率因子的平方根
Figure PCTCN2016103433-appb-000003
加权得到,所述加权的第三复数符号用
Figure PCTCN2016103433-appb-000004
加权得到;
发射模块,设置为将所述合成复数符号形成发射信号发射出去;
其中,所述比特运算包括:
将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到所述第三组比特;或者,
先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到所述第三组比特;或者,
所述第三组比特由两部分组成:第一部分由,将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;或者,
所述第三组比特由两部分组成:第一部分由,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
其中,所述第一组比特中的特定比特决定所述第一组比特对应的映射星座点的所在象限。
可选地,⊕表示异或运算,⊙表示同或运算,则
当m=1,n=1时,所述比特运算表示为:
c(0)=a(0)⊕b(0),
c(1)=a(1)⊕b(1);
当m=1,n>1时,所述比特运算表示为:
c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1));
当m>1,n=1时,所述比特运算表示为:
c(0)=a(0)⊕b(0),
c(1)=a(1)⊕b(1),
c(k)=a(k),(k=2,3…2m-1,m>1);
当m>1,n>1时,所述比特运算表示为:
c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1)),
c(k)=a(k),(k=2,3…2m-1,m>1)。
可选地,
当m=1时,所述第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,
当m>1时,第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,其他比特c(2)c(3)…c(2m-1)由a(2)a(3)…a(2m-1)保持不变得到。
可选地,
当n=1时,所述比特运算不包括所述第二组比特之间的同或运算;
当n>1时,所述比特运算包括所述第二组比特中的所有奇数位的比特做同或运算,所述第二组比特中的所有偶数位的比特做同或运算。
可选地,
所述第一组比特中的特定比特a(0)a(1)决定所述第一组比特对应的映射星座点的所在象限。
可选地,
所述2n阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM;
所述2m阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM。
可选地,所述合成复数符号的映射星座具有格雷映射属性。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述实施例中的多用户叠加传输方法。
通过本发明实施例,采用发射机将待发送的第一组比特a(0)a(1)…a(2m-1),与第二组比特b(0)b(1)…b(2n-1),进行比特运算得到第三组比特c(0)c(1)…c(2m-1),其中,m、n为正整数;所述发射机将所述第二组比特做2n阶调制方式处理得到第二复数符号,将所述第三组比特做2m阶调制方式处理得到第三复数符号;所述发射机将所述第二复数符号用功率因子的平方根
Figure PCTCN2016103433-appb-000005
加权得到加权的第二复数符号,将所述第三复数符号用
Figure PCTCN2016103433-appb-000006
加权得到加权的第三复数符号;所述发射机将所述加权的第二复数符号和加权的第三复数符号相加得到合成复数符号;所述发射机将所述合成复数符号形成发射信号发射出去;其中,所述比特运算包括:将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到所述第三组比特;或者,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到所述第三组比特;或者,所述第三组比特由两部分组成:第一部分由,将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;或者,所述第三组比特由两部分组成:第一部分由,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;其中,所述第一 组比特中的特定比特决定所述第一组比特对应的映射星座点的所在象限的方式,解决了相关技术中的多用户信息在发射机做叠加编码时,接收机如果使用简单的符号级SIC来解调合成复数符号,其解调性能会下降较大的问题,进而达到了通过简单独特的设计处理可以增强接收机做符号级SIC的鲁棒性,即在更低复杂度接收机条件下增强接入性能的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1(a)是根据相关技术的QPSK符号和16QAM符号叠加编码的示意图一(a);
图1(b)是根据相关技术的QPSK符号和16QAM符号叠加编码的示意图一(b);
图1(c)是根据相关技术的QPSK符号和16QAM符号叠加编码的示意图一(c);
图2(a)是根据相关技术的QPSK符号和16QAM符号叠加编码的示意图二(a);
图2(b)是根据相关技术的QPSK符号和16QAM符号叠加编码的示意图二(b);
图2(c)是根据相关技术的QPSK符号和16QAM符号叠加编码的示意图二(c);
图3是根据本发明实施例的多用户叠加传输方法的流程图;
图4是根据本发明实施例的多用户叠加传输装置的结构框图;
图5是根据本发明实施示例一中多用户信息在发射机的处理过程示意图;
图6是根据本发明实施示例二中第二组比特的星座映射示意图;
图7是根据本发明实施示例二中第一组比特的星座映射示意图;
图8是根据本发明实施示例二中第一种情况下第三组比特形成示意图;
图9是根据本发明实施示例二中第三比特信息的星座映射示意图;
图10是根据本发明实施示例二中第二种情况下第三组比特形成示意图;
图11(a)是根据本发明实施示例二中第一种情况的叠加示意图(a);
图11(b)是根据本发明实施示例二中第一种情况的叠加示意图(b);
图11(c)是根据本发明实施示例二中第一种情况的叠加示意图(c);
图12(a)是根据本发明实施示例二中第二种情况的叠加示意图(a);
图12(b)是根据本发明实施示例二中第二种情况的叠加示意图(b);
图12(c)是根据本发明实施示例二中第二种情况的叠加示意图(c);
图13是根据本发明实施示例二中第一、第二种情况的叠加结果比较。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中,提供了一种多用户叠加传输方法,图3是根据本发明 实施例的多用户叠加传输方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,发射机将待发送的第一组比特a(0)a(1)…a(2m-1),与第二组比特b(0)b(1)…b(2n-1),进行比特运算得到第三组比特c(0)c(1)…c(2m-1),其中,m、n为正整数;
其中,所述比特运算包括:
将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
或者,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
或者,所述第三组比特由两部分组成:第一部分由,将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
或者,所述第三组比特由两部分组成:第一部分由,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
步骤S304,所述发射机将所述第二组比特做2n阶调制方式处理得到第二复数符号,将所述第三组比特做2m阶调制方式处理得到第三复数符号;
步骤S306,所述发射机将所述第二复数符号用功率因子α的平方根
Figure PCTCN2016103433-appb-000007
加权得到加权的第二复数符号,将所述第三复数符号用
Figure PCTCN2016103433-appb-000008
加权得到加权的第三复数符号;
步骤S308,所述发射机将所述加权的第二复数符号和加权的第三复数符号相加得到合成复数符号;
步骤S310,所述发射机将所述合成复数符号形成发射信号发射出去。
其中,所述第一组比特中的特定比特决定所述第一组比特对应的映射星座点的所在象限。所述第二组比特中的特定比特可以根据对应的第三组比特选择,例如,在计算第三组比特中的奇数比特时,可以选择第二组比特中的所有奇数位的比特作为特定比特,而在计算第三组比特中的偶数比特时,可以选择第二组比特中的所有偶数位的比特作为特定比特。
通过上述步骤,发射机采用上述独特的处理方式获取到合成复数符号,并将该合成复数符号形成发射信号进行发送,使得接收机做符号级SIC时的鲁棒性提高,解决了相关技术中的多用户信息在发射机做叠加编码时,接收机如果使用简单的符号级SIC来解调合成复数符号,其解调性能会下降较大的问题,进而达到了通过简单独特的设计处理可以增强接收机做符号级SIC的鲁棒性,即在更低复杂度接收机条件下增强接入性能的效果。
可选地,⊕表示异或运算,⊙表示同或运算,则
当m=1,n=1时,所述比特运算可以表示为:
c(0)=a(0)⊕b(0),
c(1)=a(1)⊕b(1);
当m=1,n>1时,所述比特运算可以表示为:
c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1));
当m>1,n=1时,所述比特运算可以表示为:
c(0)=a(0)⊕b(0),
c(1)=a(1)⊕b(1),
c(k)=a(k),(k=2,3…2m-1,m>1);
当m>1,n>1时,所述比特运算可以表示为:
c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1)),
c(k)=a(k),(k=2,3…2m-1,m>1)。
需要说明的是,对于本领域技术人员而言,同或与异或的计算可以存在改变运算顺序的变形,例如,先进行异或计算再将结果与后面的比特做同或计算等,但所得的结果均与上述公式相同。由此可见,这些改变运算顺序的变形均应当属于本申请的保护范围之内,下文中存在相同情况的不再赘述。
可选地,当m=1时,所述第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,当m>1时,第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,其他比特c(2)c(3)…c(2m-1)由a(2)a(3)…a(2m-1)保持不变得到。
可选地,当n=1时,所述比特运算不包括所述第二组比特之间的同或运算;当n>1时,所述比特运算包括第二组比特b(0)b(1)…b(2n-1)之间的⊙(同或运算),其中这里的第二组比特之间的同或运算具体包括:所述第二组比特中的所有奇数位的比特做同或运算,所述第二组比特中的所有偶数位的比特做同或运算。
可选地,所述第一组比特中的特定比特a(0)a(1)决定第一组比特a(0)a(1)…a(2n-1)对应的映射星座点的所在象限。
可选地,用2n阶调制方式来调制第二组比特,用2m阶调制方式来调制第三组比特。2n阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM。2m阶调制方式包括正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM。
可选地,所述合成复数符号的映射星座具有格雷映射属性。
在本实施例中还提供了一种多用户叠加传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施 例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
本发明实施例还提供了一种多用户叠加传输装置,设置于发射机中,图4是根据本发明实施例的多用户叠加传输装置的结构框图,如图4所示,该装置包括:
运算模块42,设置为将待发送的第一组比特a(0)a(1)…a(2m-1),与第二组比特b(0)b(1)…b(2n-1),进行比特运算得到第三组比特c(0)c(1)…c(2m-1);其中,m、n为正整数;
调制模块44,设置为将所述第二组比特做2n阶调制方式处理得到第二复数符号,将所述第三组比特做2m阶调制方式处理得到第三复数符号;
合成模块46,设置为将加权的第二复数符号和加权的第三复数符号相加得到合成复数符号,所述加权的第二复数符号用功率因子的平方根加权得到,所述加权的第三复数符号用加权得到;
发射模块48,设置为将所述合成复数符号形成发射信号发射出去;
其中,所述比特运算包括:
将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到所述第三组比特;或者,
先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到所述第三组比特;或者,
所述第三组比特由两部分组成:第一部分由,将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;或者,
所述第三组比特由两部分组成:第一部分由,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特 的特定比特以外的比特保持不变得到。
其中,所述第一组比特中的特定比特决定所述第一组比特对应的映射星座点的所在象限。所述第二组比特中的特定比特可以根据对应的第三组比特选择,例如,在计算第三组比特中的奇数比特时,可以选择第二组比特中的所有奇数位的比特作为特定比特,而在计算第三组比特中的偶数比特时,可以选择第二组比特中的所有偶数位的比特作为特定比特。
可选地,⊕表示异或运算,⊙表示同或运算,则
当m=1,n=1时,所述比特运算可以表示为:
c(0)=a(0)⊕b(0),
c(1)=a(1)⊕b(1);
当m=1,n>1时,所述比特运算可以表示为:
c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1));
当m>1,n=1时,所述比特运算可以表示为:
c(0)=a(0)⊕b(0),
c(1)=a(1)⊕b(1),
c(k)=a(k),(k=2,3…2m-1,m>1);
当m>1,n>1时,所述比特运算可以表示为:
c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1)),
c(k)=a(k),(k=2,3…2m-1,m>1)。
可选地,
当m=1时,所述第三组比特的第1个比特c(0)和第2个比特c(1)通过 所述比特运算得到,
当m>1时,第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,其他比特c(2)c(3)…c(2m-1)由a(2)a(3)…a(2m-1)保持不变得到。
可选地,
当n=1时,所述比特运算不包括所述第二组比特之间的同或运算;
当n>1时,所述比特运算包括所述第二组比特中的所有奇数位的比特做同或运算,所述第二组比特中的所有偶数位的比特做同或运算。
可选地,
所述第一组比特中的特定比特a(0)a(1)决定所述第一组比特对应的映射星座点的所在象限。
可选地,
所述2n阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM;
所述2m阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM。
可选地,所述合成复数符号的映射星座具有格雷映射属性。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明实施例提供的多用户叠加传输方法的一个具体例子中,第二组比特中特定的比特与第一组比特中所有比特异或运算得到异或后比特,所得异或后比特结合第二组比特中除上述特定比特之外的比特,得到第三组比特,将第一组比特和第三组比特处理得到的第一、第二复数符号叠加得到合成复数符号,将合成复数符号形成发射信号发射出去。采用本发明实施例,系统接收机可以获得更好的SIC鲁棒性,在更低复杂度接收机条件 下增强接入性能。
为强调本发明实施例的特性,下面优选典型示例对本发明实施例的实施方案做进一步说明。
实施示例一
多用户信息在发射机被处理后,同时发送给两个接收机,例如,发射机要同时将第一组比特传输至中心用户接收机UE1,以及将第二组比特传输至边缘用户接收机UE2。这两组比特在发射机被处理后叠加在一起发送出去。对应的接收机UE1,接收机UE2从收到两组比特的叠加信息中解调出自己需要的信息,如图5所示是多用户信息在发射机的处理过程。
如图5所示,首先,UE1比特信息经过编码后得到第一组比特,UE2比特信息经过编码后得到第二组比特,编码可以按照相关标准采用的编码方法,例如Turbo编码。在本实施示例中,编码是可选步骤,应用中可以不包括编码的步骤,即可以直接令第一组比特为UE1比特信息,直接令第二组比特为UE2比特信息。
然后,第二组比特直接被调制得到有一定功率的调制符号(即:加权的第二复数符号),而第一组比特先与第二组比特经过比特运算得到第三组比特后再被调制得到有一定功率的调制符号(即:加权的第三复数符号),其中第二组比特的调制可以按照相关标准采用的调制方法,例如:QPSK、16QAM;第三组比特的调制可以采用QPSK、16QAM等。
其中第三组比特由两部分组成,一部分由第二组比特中特定的比特与第一组比特中的特定比特两者运算得到,另一部分由第二组比特中除上述特定比特之外的比特保持不变得到。例如第二组比特为“10”,第一组比特为“1100”,其中前两比特“11”为特定的2个比特。则得到的第三组比特为“0100”,其中前两位“01”是第二组比特“10”和第一组比特特定的2个比特“11”异或得到:
0=1⊕1,
1=0⊕1,
而后两位由第一组比特中除上述特定比特之外的比特“00”保持不变得到。
最后分别对“10”和“0100”进行调制并分别乘以相应的功率调整因子后叠加得到合成复数符号,并将合成复数符号形成发射信号发送。
实施示例二
两组比特在发射机被处理后发送给两个用户接收机。更具体的,首先,第二组比特为两个比特,如图6所示,表示两个比特在星座图的映射,例如当它为“10”时,映射到图6中以实心圆表示的星座点上。第一组比特为四个比特,如图7所示,表示它在星座图的映射,例如当它为“1011”时,映射到图7中以实心圆表示的星座点上。这里采用的16QAM星座为LTE标准16QAM星座,四个比特中的的第1,第2比特位为重要比特位,即确定I路Q路分量正负的比特,即“1011”中的第1位“1”和第2位“0”为重要比特位。
然后,第二组比特直接被QPSK方式调制,得到有一定功率的调制符号(即:加权的第二复数符号),而第二组比特先与第一组比特经过比特运算得到第三组比特,第三组比特再被LTE标准制的16QAM方式调制得到有一定功率的调制符号(即:加权的第三复数符号)。
其中第三组比特由两部分组成,如图8所示,一部分由第一组比特中特定的两个比特与第二组比特中的两个比特两者异或运算得到,另一部分由第一组比特中除上述特定比特之外的比特保持不变得到。更具体的,图8中第二组比特为“10”,第一组比特为“1011”,其中第1比特和第2比特“10”为特定的2个比特。则得到的第三组比特为“0011”,其中第1比特和第2比特“00”是由第二组比特“10”和第一组比特特定的2个比特“10”异或得到的,图8中表示为“10”⊕“10”=“00”,而另外两位比特由第一组比特中除上述特定比特之外的比特“11”保持不变得到。
如图9所示,是第三组比特的4个比特在星座图的映射。对比第二比特信息星座映射和第三组比特星座映射容易发现,星座点变化到了与星座虚轴对称的位置。另一种可能的情况,如图10所示,令第二比特信息为 “00”,令第一比特信息为“1011”,可以得到第三组比特为“1011”,其中第一比特“1”和第二比特“0”分别由第一比特信息中的第1比特“1”、第2比特“0”与第二比特信息的“00”进行异或得到,第3、第4比特“11”是保持第一比特信息中的第3、第4比特不变得到;它与第一比特信息一样,所以在星座图的映射也一样。
上述两种可能的情况分别得到复数符号后,做叠加得到合成复数符号。容易理解的是,QPSK调制符号在星座图中有4种可能的星座点,16QAM调制符号在星座图中有16种可能的星座点,则两个复数符号的合成复数符号在星座图中有64种可能的星座点,正如在技术背景中介绍的叠加编码一样。这里我们重点关注上述描述的两种情况:第一种:第二比特信息为“10”,第一比特信息为“1011”;第二种:第二比特信息为“00”,第一比特信息为“1011”。
图11(a)~(c)表示第一种情况叠加示意图,图11(a)为第一种情况中第二组比特的星座点,图11(b)为第一种情况中第三组比特映射成的星座点,其中第三组比特0011是由第一组比特1011变化得到的,图11(c)为第一种情况中叠加后的星座点。图12(a)~(c)表示第二种情况叠加示意图,图12(a)为第二种情况中第二组比特的星座点,图12(b)为第二种情况中第三组比特映射成的星座点,其中第三组比特1011是由第一组比特1011变化得到的,图12(c)为第二种情况中叠加后的星座点。
图中标明的地方是随机取两种具体情况例子加以说明,第一种:“10”处的QPSK符号“1011”处的16QAM符号叠加,得到“101011”处的符号。第二种:“00”处的QPSK符号和“1011”处的16QAM符号优化叠加,得到“001011”处的符号。将这两种情况得到的合成复数符号放到一个星座图中来看,如图13所示是两个符号的合成复数符号星座图。
从图13中容易看到并推测所有可能合成复数符号的映射星座有格雷映射属性。
最后将合成复数符号形成发射信号发送给两个用户接收机。
需要说明的是,通过本发明实施例简单独特的设计处理,即使在接收 机因为噪声误判了QPSK符号,也不影响对16QAM符号的正确解调。所以增强了接收机做符号级SIC的鲁棒性,即在更低复杂度接收机条件下增强接入性能。
实施示例三
表1表示m,n取不同值时的组合情况,可以用2n阶调制方式来调制第二组比特,用2m阶调制方式来调制第三组比特。
n或m为1时,用QPSK调制,n或m为2时,用16QAM调制,n或m为3时,用64QAM调制。
表1不同情况下的第三组比特计算
Figure PCTCN2016103433-appb-000009
表2不同情况下的功率因子范围
Figure PCTCN2016103433-appb-000010
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如 ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S1,发射机将待发送的第一组比特a(0)a(1)…a(2m-1),与第二组比特b(0)b(1)…b(2n-1),进行比特运算得到第三组比特c(0)c(1)…c(2m-1),其中,m、n为正整数;
其中,所述比特运算包括:
将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
或者,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
或者,所述第三组比特由两部分组成:第一部分由,将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
或者,所述第三组比特由两部分组成:第一部分由,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
步骤S2,所述发射机将所述第二组比特做2n阶调制方式处理得到第二复数符号,将所述第三组比特做2m阶调制方式处理得到第三复数符号;
步骤S3,所述发射机将所述第二复数符号用功率因子的平方根
Figure PCTCN2016103433-appb-000011
加权得到加权的第二复数符号,将所述第三复数符号用
Figure PCTCN2016103433-appb-000012
加权得到加权的第三复数符号;
步骤S4,所述发射机将所述加权的第二复数符号和加权的第三复数符号相加得到合成复数符号;
步骤S5,所述发射机将所述合成复数符号形成发射信号发射出去。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述多用户叠加传输方法。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例中,采用发射机将待发送的第一组比特a(0)a(1)…a(2m-1),与第二组比特b(0)b(1)…b(2n-1),进行比特运算得到第三组比特c(0)c(1)…c(2m-1),其中,m、n为正整数;发射机将第二组比特做2n阶调制方式处理得到第二复数符号,将第三组比特做2m阶调制方式处理 得到第三复数符号;发射机将第二复数符号用功率因子的平方根
Figure PCTCN2016103433-appb-000013
加权得到加权的第二复数符号,将第三复数符号用
Figure PCTCN2016103433-appb-000014
加权得到加权的第三复数符号;发射机将加权的第二复数符号和加权的第三复数符号相加得到合成复数符号;发射机将合成复数符号形成发射信号发射出去;其中,比特运算包括:将第二组比特中的特定比特与第一组比特中的特定比特做异或运算得到第三组比特;或者,先将第二组比特中的部分比特做同或运算得到同或运算结果,然后将同或运算结果与第一组比特中的特定比特做异或运算得到第三组比特;或者,第三组比特由两部分组成:第一部分由,将第二组比特中的特定比特与第一组比特中的特定比特做异或运算得到;第二部分由第一组比特的特定比特以外的比特保持不变得到;或者,第三组比特由两部分组成:第一部分由,先将第二组比特中的部分比特做同或运算得到同或运算结果,然后将同或运算结果与第一组比特中的特定比特做异或运算得到;第二部分由第一组比特的特定比特以外的比特保持不变得到;其中,第一组比特中的特定比特决定第一组比特对应的映射星座点的所在象限的方式,解决了相关技术中的多用户信息在发射机做叠加编码时,接收机如果使用简单的符号级SIC来解调合成复数符号,其解调性能会下降较大的问题,进而达到了通过简单独特的设计处理可以增强接收机做符号级SIC的鲁棒性,即在更低复杂度接收机条件下增强接入性能的效果。

Claims (14)

  1. 一种多用户叠加传输方法,包括:
    发射机将待发送的第一组比特a(0)a(1)…a(2m-1),与第二组比特b(0)b(1)…b(2n-1),进行比特运算得到第三组比特c(0)c(1)…c(2m-1),其中,m、n为正整数;
    所述发射机将所述第二组比特做2n阶调制方式处理得到第二复数符号,将所述第三组比特做2m阶调制方式处理得到第三复数符号;
    所述发射机将所述第二复数符号用功率因子的平方根
    Figure PCTCN2016103433-appb-100001
    加权得到加权的第二复数符号,将所述第三复数符号用
    Figure PCTCN2016103433-appb-100002
    加权得到加权的第三复数符号;
    所述发射机将所述加权的第二复数符号和加权的第三复数符号相加得到合成复数符号;
    所述发射机将所述合成复数符号形成发射信号发射出去;
    其中,所述比特运算包括:
    将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
    或者,
    将所述第二组比特中的特定比特与所述第一组比特中的特定比特做同或运算得到所述第三组比特;
    或者,
    先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
    或者,
    所述第三组比特由两部分组成:第一部分由,将所述第二组比特 中的特定比特与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
    或者,
    所述第三组比特由两部分组成:第一部分由,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
    其中,所述第一组比特中的特定比特决定所述第一组比特对应的映射星座点的所在象限。
  2. 根据权利要求1所述的方法,其中,⊕表示异或运算,⊙表示同或运算,则
    当m=1,n=1时,所述比特运算表示为:
    c(0)=a(0)⊕b(0),
    c(1)=a(1)⊕b(1);或者
    c(0)=a(0)⊙b(0),
    c(1)=a(1)⊙b(1);
    当m=1,n>1时,所述比特运算表示为:
    c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
    c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1));
    当m>1,n=1时,所述比特运算表示为:
    c(0)=a(0)⊕b(0),
    c(1)=a(1)⊕b(1),
    c(k)=a(k),(k=2,3…2m-1,m>1);
    当m>1,n>1时,所述比特运算表示为:
    c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
    c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1)),
    c(k)=a(k),(k=2,3…2m-1,m>1)。
  3. 根据权利要求1所述的方法,其中,
    当m=1时,所述第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,
    当m>1时,第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,其他比特c(2)c(3)…c(2m-1)由a(2)a(3)…a(2m-1)保持不变得到。
  4. 根据权利要求1所述的方法,其中,
    当n=1时,所述比特运算不包括所述第二组比特之间的同或运算;
    当n>1时,所述比特运算包括所述第二组比特中的所有奇数位的比特做同或运算,所述第二组比特中的所有偶数位的比特做同或运算。
  5. 根据权利要求2所述的方法,其中,
    所述第一组比特中的特定比特a(0)a(1)决定所述第一组比特对应的映射星座点的所在象限。
  6. 根据权利要求1所述的方法,其中,
    所述2n阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM;
    所述2m阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM。
  7. 根据权利要求1所述的方法,其中,所述合成复数符号的映射星座具有格雷映射属性。
  8. 一种多用户叠加传输装置,设置于发射机中,包括:
    运算模块,设置为将待发送的第一组比特a(0)a(1)…a(2m-1),与第二组比特b(0)b(1)…b(2n-1),进行比特运算得到第三组比特c(0)c(1)…c(2m-1);其中,m、n为正整数;
    调制模块,设置为将所述第二组比特做2n阶调制方式处理得到第二复数符号,将所述第三组比特做2m阶调制方式处理得到第三复数符号;
    合成模块,设置为将加权的第二复数符号和加权的第三复数符号相加得到合成复数符号,所述加权的第二复数符号用功率因子的平方根
    Figure PCTCN2016103433-appb-100003
    加权得到,所述加权的第三复数符号用
    Figure PCTCN2016103433-appb-100004
    加权得到;
    发射模块,设置为将所述合成复数符号形成发射信号发射出去;
    其中,所述比特运算包括:
    将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
    或者,
    将所述第二组比特中的特定比特与所述第一组比特中的特定比特做同或运算得到所述第三组比特;
    或者,
    先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到所述第三组比特;
    或者,
    所述第三组比特由两部分组成:第一部分由,将所述第二组比特中的特定比特与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
    或者,
    所述第三组比特由两部分组成:第一部分由,先将所述第二组比特中的部分比特做同或运算得到同或运算结果,然后将所述同或运算结果与所述第一组比特中的特定比特做异或运算得到;第二部分由所述第一组比特的特定比特以外的比特保持不变得到;
    其中,所述第一组比特中的特定比特决定所述第一组比特对应的映射星座点的所在象限。
  9. 根据权利要求8所述的装置,其中,⊕表示异或运算,⊙表示同或运算,则
    当m=1,n=1时,所述比特运算表示为:
    c(0)=a(0)⊕b(0),
    c(1)=a(1)⊕b(1);或者
    c(0)=a(0)⊙b(0),
    c(1)=a(1)⊙b(1);
    当m=1,n>1时,所述比特运算表示为:
    c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
    c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1));
    当m>1,n=1时,所述比特运算表示为:
    c(0)=a(0)⊕b(0),
    c(1)=a(1)⊕b(1),
    c(k)=a(k),(k=2,3…2m-1,m>1);
    当m>1,n>1时,所述比特运算表示为:
    c(0)=a(0)⊕(b(0)⊙b(2)⊙…b(2n-2)),
    c(1)=a(1)⊕(b(1)⊙b(3)⊙…b(2n-1)),
    c(k)=a(k),(k=2,3…2m-1,m>1)。
  10. 根据权利要求8所述的装置,其中,
    当m=1时,所述第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,
    当m>1时,第三组比特的第1个比特c(0)和第2个比特c(1)通过所述比特运算得到,其他比特c(2)c(3)…c(2m-1)由a(2)a(3)…a(2m-1)保持不变得到。
  11. 根据权利要求8所述的装置,其中,
    当n=1时,所述比特运算不包括所述第二组比特之间的同或运算;
    当n>1时,所述比特运算包括所述第二组比特中的所有奇数位的比特做同或运算,所述第二组比特中的所有偶数位的比特做同或运算。
  12. 根据权利要求9所述的装置,其中,
    所述第一组比特中的特定比特a(0)a(1)决定所述第一组比特对应的映射星座点的所在象限。
  13. 根据权利要求8所述的装置,其中,
    所述2n阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM;
    所述2m阶调制方式包括以下至少之一:正交相移键控QPSK,正交振幅调制16QAM,正交振幅调制64QAM。
  14. 根据权利要求8所述的装置,其中,所述合成复数符号的映射星座具有格雷映射属性。
PCT/CN2016/103433 2015-11-07 2016-10-26 多用户叠加传输方法及装置 WO2017076207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510756526.7 2015-11-07
CN201510756526.7A CN106685583B (zh) 2015-11-07 2015-11-07 多用户叠加传输方法及装置

Publications (1)

Publication Number Publication Date
WO2017076207A1 true WO2017076207A1 (zh) 2017-05-11

Family

ID=58661798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103433 WO2017076207A1 (zh) 2015-11-07 2016-10-26 多用户叠加传输方法及装置

Country Status (2)

Country Link
CN (1) CN106685583B (zh)
WO (1) WO2017076207A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050220205A1 (en) * 2002-10-10 2005-10-06 Kang Hun-Sik Constellation mapping apparatus and method
CN101040540A (zh) * 2004-12-21 2007-09-19 中兴通讯股份有限公司 一种编码调制解调系统及其信号的发射接收方法
CN102301819A (zh) * 2008-11-21 2011-12-28 皮恩-汉·霍 单一调制方案叠加编码组播之系统、方法及计算机程序
CN106160936A (zh) * 2015-04-15 2016-11-23 中兴通讯股份有限公司 一种多用户信息处理方法及其装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100046644A1 (en) * 2008-08-19 2010-02-25 Motorola, Inc. Superposition coding
CN103327532A (zh) * 2009-09-24 2013-09-25 北京理工大学 下行多小区多用户联合传输的方法与装置
CN102387106B (zh) * 2010-08-30 2013-10-09 华为技术有限公司 Mu-mimo通信系统中数据调制的方法及装置
CN104486035A (zh) * 2014-12-08 2015-04-01 清华大学 联合叠加编码和正交复用的下行多用户传输方法
CN104901915B (zh) * 2015-05-07 2018-05-15 北京邮电大学 一种支持多用户的通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050220205A1 (en) * 2002-10-10 2005-10-06 Kang Hun-Sik Constellation mapping apparatus and method
CN101040540A (zh) * 2004-12-21 2007-09-19 中兴通讯股份有限公司 一种编码调制解调系统及其信号的发射接收方法
CN102301819A (zh) * 2008-11-21 2011-12-28 皮恩-汉·霍 单一调制方案叠加编码组播之系统、方法及计算机程序
CN106160936A (zh) * 2015-04-15 2016-11-23 中兴通讯股份有限公司 一种多用户信息处理方法及其装置

Also Published As

Publication number Publication date
CN106685583B (zh) 2020-07-07
CN106685583A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN107846377B (zh) 传输数据的方法和装置
JP5896320B2 (ja) 送信装置、受信装置、送信方法、受信方法、及び多次元コンステレーションの生成方法
JP6692807B2 (ja) マルチユーザ情報伝送の重畳、復調方法及び装置
US20170359140A1 (en) Multi-User Code Division Multiple Access Communication Method, and Corresponding Transmitter and Receiver
JP2007074618A (ja) 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
CN104412554A (zh) 增强的物理下行链路控制信道加扰及解调参考信号序列生成
WO2017016342A1 (zh) 一种多用户信息传输的调制方法、解调方法及装置
CN107926032A (zh) 信息传输装置、方法以及通信系统
WO2016082554A1 (zh) 叠加编码、解码方法、装置、发射机及接收机
WO2016155390A1 (zh) 一种数据传输方法及装置
CN107888531A (zh) 一种参考信号传输方法和装置
WO2016169414A1 (zh) 一种多用户信息处理方法及装置
WO2016165588A1 (zh) 一种多用户信息处理方法及其装置
US20190013990A1 (en) Multi-dimensional signal encoding
JP6292755B2 (ja) 送信機、受信機および送信方法
WO2018030205A1 (ja) 受信装置および受信方法
WO2018030204A1 (ja) 送信装置、受信装置、送信方法および受信方法
WO2016184241A1 (zh) 一种多用户接入方法及装置
US10979263B2 (en) Data processing method and device
WO2017076207A1 (zh) 多用户叠加传输方法及装置
EP3317995A1 (en) Apparatus and method for reusing existing constellation for superposed transmission
KR100717682B1 (ko) 인터리브된 주파수 분할 다중 접속 방식의 신호 생성 장치및 방법, 그리고 신호 수신 장치
WO2017194017A1 (zh) 信息调制方法及装置
CN108463957A (zh) 适用于非正交多址接入的信息传输方法、装置以及通信系统
CN108134755B (zh) 一种数据处理的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861475

Country of ref document: EP

Kind code of ref document: A1