WO2016165588A1 - 一种多用户信息处理方法及其装置 - Google Patents

一种多用户信息处理方法及其装置 Download PDF

Info

Publication number
WO2016165588A1
WO2016165588A1 PCT/CN2016/078851 CN2016078851W WO2016165588A1 WO 2016165588 A1 WO2016165588 A1 WO 2016165588A1 CN 2016078851 W CN2016078851 W CN 2016078851W WO 2016165588 A1 WO2016165588 A1 WO 2016165588A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit information
group
bits
bit
symbol
Prior art date
Application number
PCT/CN2016/078851
Other languages
English (en)
French (fr)
Inventor
袁志锋
戴建强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016165588A1 publication Critical patent/WO2016165588A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder

Definitions

  • This document relates to the field of multi-user information processing technologies, and in particular, to a multi-user information processing method and apparatus therefor.
  • NOMA Non-Orthogonal Multiple Access
  • SIC Serial Interference Cancellation
  • superimposing coding on the transmitting side of a broadcasting system means superimposing information of a plurality of users, where "superimposing” is usually a direct addition of power domains.
  • the transmitter transmits the superimposed information to multiple receivers simultaneously. Each receiver solves the information it needs.
  • the superposition coding technique allows each user's information to be transmitted on the "full channel", so that the user information interferes with each other during demodulation.
  • Non-orthogonal multiple access technology can usually be divided into two demodulation methods: the first one, each user carries out interference demodulation with other users, which is simpler to implement, but the performance is lossy.
  • the second is to use interference cancellation technology, that is, multi-user detection technology.
  • the following is a brief description of the SIC process of two users.
  • the multi-user SIC process can be easily promoted by first demodulating the information of user A (using the interference of user B to demodulate the A information). Then, when demodulating the user B information, it is necessary to first subtract the previously demodulated A information (the block level SIC needs to be reconstructed), and then demodulate the user B information. In this way, the user B information can be greatly improved because there can be no interference.
  • Classical literature has demonstrated that the use of superposition coding combined with code-level SIC techniques can achieve multi-user information capacity limits.
  • FIG. 1 (1) to (3) it is a schematic diagram of QPSK (Quadrature Phase Shift Keying) symbol and 16QAM (Quadrature Amplitude Modulation) symbol superposition coding, and a QPSK symbol carrying bit information "00" (such as Figure 1 (1) shows a 16QAM symbol carrying bit information "1011” (as shown in Figure 1 (2)) directly added in the power domain to obtain a superimposed carried bit information "001011” The symbol (as shown in Figure 1 (3)).
  • QPSK Quadrature Phase Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • a QPSK symbol carrying bit information "10” (as shown in Fig. 2 (1)
  • a 16QAM symbol carrying bit information "0011” (as shown in Fig. 2 (2)) is directly added in the power domain to obtain a symbol carrying bit information "100011” (as shown in Fig. 2 (3)).
  • the 64 constellation points shown by the constellation in Figure 2(3) can be obtained for all possible superpositions.
  • the terminal uses a simple symbol-level SIC to demodulate the superimposed symbols, its demodulation performance will decrease greatly. Therefore, in order to ensure performance, the terminal needs to use a complex block-level SIC.
  • the block-level SIC can cause high implementation complexity, power consumption, and latency for the terminal, which is sometimes unacceptable to the terminal.
  • Hierarchical modulation can also be seen as a variant of superposition coding.
  • Hierarchical modulation refers to the combination of a high priority bit stream and a low priority bit stream, and then mapped into a constellation diagram.
  • layered modulation can also combine constellations with Gray mapping attributes, hierarchical modulation is not flexible for different power allocations of different data streams, and its implementation complexity is also high. Different power allocations for different data streams are necessary to achieve downlink multi-user channel capacity.
  • the multi-user information in the related art is superimposed and encoded in the transmitter.
  • the receiver uses a simple symbol-level SIC to demodulate the superimposed symbols, the demodulation performance will be greatly reduced.
  • the technical problem to be solved by the present invention is to provide a multi-user information processing method and apparatus thereof for solving at least multi-user information when performing superposition coding on a transmitter, if the receiver uses a simple symbol level SIC to demodulate superimposed symbols, Demodulation performance will drop this problem.
  • a multi-user information processing method includes:
  • the transmitter adds the first complex symbol and the second complex symbol to obtain a superimposed symbol
  • the transmitter transmits the superimposed symbol forming transmission signal.
  • the bit operation includes a bit XOR operation; the operation object is all bits of the first group of bit information and M1 bits of the second group of bit information.
  • the number of bits of the third group of bit information is M2, including two parts, and part of the M1 bits of the second group of bit information and M1 of the first group of bit information Both bits are obtained by bit operation, and another part is obtained by keeping bits other than the above-mentioned specific M1 bits in the second group of bit information.
  • the number of bits of the third group of bit information is M2, by a specific M1 bit in the second group of bit information and M1 in the first group of bit information. Both bits are obtained by bit operations.
  • the specific M1 bits are bits determining a quadrant of the constellation point in the mapping constellation corresponding to the second group of bit information.
  • the third group of bit information is the same as the second group of bit information, or the constellation symbol of the third group of bit information and the second group of bit information is mapped to a real axis of the constellation coordinate system, The imaginary axis or origin is symmetric.
  • the transmitter processes the first group of bit information to obtain a first complex symbol
  • the step of processing the third group of bit information to obtain a second complex symbol comprises:
  • the modulation mode adopted by the first modulation symbol corresponding to the first complex symbol comprises binary phase shift keying BPSK, quadrature phase shift keying QPSK, and/or quadrature amplitude modulation QAM.
  • the modulation mode adopted by the second modulation symbol corresponding to the second complex symbol includes QPSK and/or QAM.
  • the mapped constellation of all superimposed symbols has a Gray mapping property.
  • a multi-user information processing device is disposed in a transmitter, and includes an arithmetic module, a modulation module, a superimposing module and a transmitting module, wherein
  • the operation module is configured to: perform a bit operation on the first group of bit information to be sent and the second group of bit information to obtain a third group of bit information; wherein the number of bits of the first group of bit information M1 is less than or equal to The number of bits of the two sets of bit information M2;
  • the modulating module is configured to: process the first set of bit information to obtain a first complex symbol, and process the third set of bit information to obtain a second complex symbol;
  • the superimposing module is configured to: add the first complex symbol and the second complex symbol to obtain a superimposed symbol
  • the transmitting module is configured to: transmit the superposed symbol forming transmission signal.
  • the bit operation includes a bit XOR operation; the operation object is all bits of the first group of bit information and M1 bits of the second group of bit information.
  • the number of bits of the third group of bit information is M2, including two parts, and part of the M1 bits of the second group of bit information and M1 of the first group of bit information Both bits are obtained by bit operation, and another part is obtained by keeping bits other than the above-mentioned specific M1 bits in the second group of bit information.
  • the number of bits of the third group of bit information is M2, by a specific M1 bit in the second group of bit information and M1 in the first group of bit information. Both bits are obtained by bit operations.
  • the specific M1 bits are bits determining a quadrant of the constellation point in the mapping constellation corresponding to the second group of bit information.
  • the third group of bit information is the same as the second group of bit information, or the constellation symbol of the third group of bit information and the second group of bit information is mapped to a real axis of the constellation coordinate system, The imaginary axis or origin is symmetric.
  • the modulation module is configured to process the first set of bit information to obtain a first complex symbol, and process the third set of bit information to obtain a second complex symbol:
  • the modulating module modulates the first set of bit information to obtain a first modulation symbol; multiplying the first modulation symbol by a predetermined first power adjustment factor according to the allocated power to obtain a first complex symbol;
  • the third set of bit information is modulated to obtain a second modulation symbol; the second modulation symbol is multiplied by a predetermined second power adjustment factor according to the allocated power to obtain a second complex symbol.
  • the modulation mode adopted by the first modulation symbol corresponding to the first complex symbol comprises binary phase shift keying BPSK, quadrature phase shift keying QPSK and/or quadrature amplitude modulation QAM.
  • the modulation mode adopted by the second modulation symbol corresponding to the second complex symbol includes QPSK and/or QAM.
  • the mapped constellation of all superimposed symbols has a Gray mapping property.
  • the technical solution of the present invention has the advantages that the robustness of the receiver to symbol level SIC can be enhanced by simple and unique design processing, that is, the access performance is enhanced under the condition of lower complexity receiver.
  • 1(1) to (3) are schematic diagrams of QPSK symbols and 16QAM symbol superposition coding
  • 2(1) to (3) are two schematic diagrams of QPSK symbols and 16QAM symbol superposition coding
  • Embodiment 3 is a schematic diagram of a process of processing multi-user information at a transmitter in Embodiment 1;
  • Embodiment 4 is a schematic diagram of constellation mapping of a first group of bit information in Embodiment 1;
  • 5 is a schematic diagram of constellation mapping of a second group of bit information in the first embodiment
  • FIG. 6 is a schematic diagram of forming a third group of bit information in the first case in Embodiment 1;
  • FIG. 8 is a schematic diagram showing formation of a third group of bit information in the second case of Embodiment 1;
  • Figure 11 is a comparison of superposition results of the first and second cases in the first embodiment
  • FIG. 12 is a schematic diagram of constellation mapping of a first group of bit information in Embodiment 2;
  • FIG. 13 is a schematic diagram of constellation mapping of a second group of bit information in Embodiment 2;
  • FIG. 14 is a schematic diagram showing formation of a third group of bit information in the first case in Embodiment 2;
  • FIG. 16 is a schematic diagram of forming a third group of bit information in a second case in Embodiment 2;
  • FIG. 20 is a schematic structural diagram of a multi-user information processing apparatus according to an embodiment of the present invention.
  • Embodiment 1 A multi-user information processing method includes:
  • the transmitter performs bit operation on the first group of bit information to be transmitted and the second group of bit information. a third group of bit information; wherein, the number of bits M1 of the first group of bit information is less than or equal to the number of bits M2 of the second group of bit information;
  • the transmitter adds the first complex symbol and the second complex symbol to obtain a superimposed symbol
  • the transmitter transmits the superimposed symbol forming transmission signal.
  • the bit operation includes a bitwise XOR operation; the operation object is all bits of the first group of bit information and M1 bits of the second group of bit information.
  • the number of bits of the third group of bit information is M2, including two parts, and one part is determined by a specific M1 bit in the second group bit information and M1 bits in the first group bit information.
  • the bit operation is performed, and the other portion is obtained by keeping the bits other than the specific M1 bits in the second group of bit information unchanged.
  • the specific M1 bits are bits determining a quadrant of the constellation point in the mapping constellation corresponding to the second group of bit information.
  • the third group of bit information is the same as the second group of bit information, or the constellation symbol of the third group of bit information and the second group of bit information is mapped to a real axis of the constellation coordinate system, The imaginary axis or origin is symmetric.
  • the transmitter processes the first group of bit information to obtain a first complex symbol, and processes the third group of bit information to obtain a second complex symbol, including:
  • the third set of bit information is modulated to obtain a second modulation symbol;
  • the second modulation symbol is multiplied by a predetermined second power adjustment factor according to the allocated power to obtain a second complex symbol; that is, the first complex symbol is pressed
  • the allocated power multiplying the first modulation symbol by a predetermined first power adjustment factor to obtain a power modulated modulation symbol;
  • the second complex symbol is multiplying the second modulation symbol by a predetermined amount according to the allocated power
  • the second power adjustment factor the resulting power modulation symbol.
  • the modulation mode adopted by the first modulation symbol corresponding to the first complex symbol includes BPSK (Binary Phase Shift Keying), QPSK, QAM.
  • the modulation mode adopted by the second modulation symbol corresponding to the second complex symbol includes QPSK, QAM.
  • all mapped constellations of possible superimposed symbols have Gray mapping properties.
  • the specific M1 bits in the second group of bit information are XORed with all M1 bits in the first group of bit information to obtain an exclusive OR bit, and the difference is obtained.
  • combining the bits of the second group of bit information except the specific bit to obtain a third group of bit information, and superposing the first group of bit information and the first and second complex symbols obtained by processing the third group of bit information
  • the superimposed symbols are used to transmit the superimposed symbols to form a transmission signal.
  • the system receiver can obtain better SIC robustness and enhance access performance under lower complexity receiver conditions.
  • the multi-user information is simultaneously transmitted to the two receivers after the transmitter is processed, for example, the transmitter simultaneously transmits the first set of bit information to the edge user receiver UE1, and transmits the second group of bit information to the central user for reception.
  • the two sets of bit information are superimposed and sent out after the transmitter is processed.
  • Corresponding receiver UE1, receiver UE2 demodulates the information it needs from the superimposed information of the two sets of bit information, as shown in Fig. 3 is the processing of multi-user information at the transmitter.
  • UE1 bit information is encoded to obtain a first group of bit information
  • UE2 bit information is encoded to obtain a second group of bit information
  • the coding may be performed according to an encoding method adopted by a relevant standard, such as Turbo coding.
  • the encoding is an optional step, and the application may not include the step of encoding, that is, the first group of bit information may be directly used as UE1 bit information, and the second group of bit information may be directly used as UE2 bit information.
  • the first group of bit information is directly modulated to obtain a modulation symbol having a certain power (ie, the first complex symbol), and the second group of bit information is first subjected to a bit operation with the first group of bit information to obtain a third group of bit information.
  • Modulated to obtain a modulation symbol with a certain power (ie, a second complex symbol) wherein the modulation of the first group of bit information can be performed according to a modulation method adopted by the relevant standard, for example: BPSK, QPSK, QAM; modulation of the third group of bit information QPSK, QAM, etc. can be used.
  • the third group of bit information is composed of two parts, one part is calculated by the specific M1 bits of the second group of bit information and the M1 bits of the first group of bit information, and the other part is divided by the second group of bit information.
  • the bits other than the above specific bits remain unchanged.
  • M1 and M2 are both positive integers, and M2 is greater than or equal to M1.
  • the first group of bit information is "10”
  • the second group of bit information is "1100” wherein the first two bits "11” are specific 2 bits.
  • the obtained third group of bit information is “0100”, wherein the first two bits “01” are XORs of the first group of bit information “10” and the second group of bit information specific 2 bits “11”, and the last two bits are obtained.
  • the bit "00” other than the above specific bits in the second group of bit information remains unchanged.
  • the two sets of bit information are sent to the two user receivers after the transmitter is processed. More specifically, first, the first group of bit information C1 is two bits, as shown in FIG. 4, indicating the mapping of two bits of C1 in the constellation, for example, when C1 is "10", it is mapped to the solid in FIG. The constellation point represented by the circle (other constellation points are represented by open circles).
  • the second group of bit information C2 is four bits, as shown in FIG. 5, indicating the mapping of four bits of C2 in the constellation, for example, when C2 is "1101", it is mapped to the constellation point indicated by a solid circle in FIG. .
  • the 16QAM constellation used here is the 16QAM constellation of the IEEE (Institute of Electrical and Electronics Engineers) 802.16e standard.
  • the first and third bits of the four bits are important bits, that is, the bits determining the positive and negative I channel Q components. That is, the first bit "1" and the third bit "0" in "1101" are important bits.
  • the first group of bit information C1 is directly modulated by the QPSK method to obtain a modulation symbol S1 having a certain power (ie, the first complex symbol), and the second group of bit information C2 is first obtained by bit operation with the first group of bit information C1.
  • the third group of bit information C, the third group of bit information C is further modulated by the 16QAM method of the IEEE802.16e standard to obtain a modulation symbol S2 having a certain power (ie, the second complex symbol).
  • FIG. 9(1) to (3) show a superposition diagram of the first case
  • FIG. 9(1) is a constellation point of the first group of bit information in the first case
  • FIG. 9(2) is a second case in the first case.
  • the group bit information and the constellation points of the third group of bit information, FIG. 9(3) is the superimposed constellation points in the first case.
  • 10(1) to (3) show a superposition diagram of the second case
  • FIG. 10(1) is a constellation point of the first group of bit information in the second case
  • FIG. 10(2) is a second case in the second case.
  • the group bit information and the constellation point of the third group of bit information, FIG. 10(3) is the superimposed constellation point in the second case.
  • the places indicated in the figure are randomly taken as examples of two specific cases.
  • the first type 16QAM symbols at the QPSK symbol “0101” at “10” are superimposed to obtain the symbols at "101101”.
  • the second type the QPSK symbol at "00” and the 16QAM symbol at "1101” are optimally superimposed to obtain the symbol at "001101”.
  • the two sets of bit information are sent to the two user receivers after the transmitter is processed. More specifically, first, the first group of bit information C1 is two bits, as shown in FIG. 12, indicating the mapping of two bits of C1 in the constellation, for example, when C1 is "10", it is mapped to the solid in FIG. The circle represents the constellation point.
  • the second group of bit information C2 is four bits, as shown in FIG. 13, indicating the mapping of four bits of C2 in the constellation, for example, when C2 is "1011", it is mapped to the constellation point indicated by a filled circle in FIG. .
  • the 16QAM constellation used here is the LTE standard 16QAM constellation, the first of the four bits, the second bit is the important bit, that is, the bit that determines the positive and negative of the I channel Q component, that is, the first bit in "1011" "1” and the second bit "0" are important bits.
  • the first group of bit information C1 is directly modulated by the QPSK method to obtain a modulation symbol S1 having a certain power (ie, the first complex symbol), and the second group of bit information C2 is first obtained by bit operation with the first group of bit information C1.
  • the third group of bit information C, the third group of bit information C is further modulated by the 16QAM method of the LTE standard to obtain a modulation symbol S2 (ie, the second complex symbol) having a certain power.
  • the third group of bit information C is composed of two parts. As shown in FIG. 14, a part of the two bits of the second group of bit information C2 are XORed with two bits of the first group of bit information C1. The other portion is obtained by keeping the bits of the second group of bit information C2 except for the above specific bits unchanged. More specifically, the first group of bit information C1 in FIG. 14 is "10", and the second group of bit information C2 is "1011", wherein the first bit and the second bit "10" are specific two bits.
  • the third set of bit information C obtained is “0011”, wherein the first bit and the second bit are XOR of the first group of bit information C1 “10” and the second bit “10” specified by the second group of bit information C2. "00”, shown as “10” in Figure 14.
  • "10” "00”
  • the other two bits are obtained by the bit "11” of the second group of bit information C2 excluding the above specific bits.
  • FIG. 17(1) to (3) show a superposition diagram of the first case
  • FIG. 17(1) is a constellation point of the first group of bit information in the first case
  • FIG. 17(2) is a second case in the first case.
  • the group bit information and the constellation points of the third group of bit information, Fig. 17 (3) are the superimposed constellation points in the first case.
  • 18(1) to (3) show a superposition diagram of the second case
  • FIG. 18(1) is a constellation point of the first group of bit information in the second case
  • FIG. 18(2) is a second case in the second case.
  • the constellation points of the group bit information and the third group bit information, and Fig. 18 (3) are the superimposed constellation points in the second case.
  • the places indicated in the figure are randomly taken as examples of two specific cases.
  • the first one the 16QAM symbols at the QPSK symbol “1011” at “10” are superimposed to obtain the symbols at "101011”.
  • the second type the QPSK symbol at "00” and the 16QAM symbol at "1011” are optimally superimposed to obtain the symbol at "001011”. Looking at the superimposed symbols obtained in these two cases into a constellation diagram, as shown in Fig. 19 is a superimposed symbol constellation of two symbols.
  • the mapping constellation of all possible symbols of the superimposed symbol after multi-user information processing in the embodiment of the present invention has a Gray mapping attribute.
  • the simple and unique design process of the embodiment of the present invention even if the QPSK symbol is misjudged by the receiver due to noise, the correct demodulation of the 16QAM symbol is not affected. Therefore, the robustness of the receiver to symbol-level SIC is enhanced, that is, the access performance is enhanced under the condition of lower complexity receiver.
  • Embodiment 2 A multi-user information processing apparatus is disposed in a transmitter, as shown in FIG. 20, and includes:
  • the operation module 2001 is configured to: perform a bit operation on the first group of bit information to be sent and the second group of bit information to obtain a third group of bit information; wherein, the number M1 of the first group of bit information is less than or equal to The number of bits of the two sets of bit information M2;
  • the modulation module 2002 is configured to: after the first group of bit information is modulated, to obtain a first complex symbol, and to modulate the third group of bit information to obtain a second complex symbol;
  • the superposition module 2003 is configured to: add the first complex symbol and the second complex symbol to obtain a superimposed symbol;
  • the transmitting module 2004 is configured to: emit the superimposed symbol forming transmission signal.
  • the bit operation includes a bitwise XOR operation; the operation object is all bits of the first group of bit information and M1 bits of the second group of bit information.
  • the number of bits of the third group of bit information is M2, including two parts, and one part is determined by a specific M1 bit in the second group bit information and M1 bits in the first group bit information.
  • the bit operation is performed, and the other portion is obtained by keeping the bits other than the specific M1 bits in the second group of bit information unchanged.
  • the specific M1 bits are bits determining a quadrant of the constellation point in the mapping constellation corresponding to the second group of bit information.
  • the third group of bit information is the same as the second group of bit information, or the constellation symbol of the third group of bit information and the second group of bit information is mapped to a real axis of the constellation coordinate system, The imaginary axis or origin is symmetric.
  • the modulating module 2002 is configured to: after the first group of bit information is modulated, to obtain a first complex symbol, and to modulate the third group of bit information to obtain a second complex symbol,
  • the modulation module 2002 modulates the first set of bit information to obtain a first modulation symbol; multiplying the first modulation symbol by a predetermined first power adjustment factor according to the allocated power to obtain a first complex symbol;
  • the third set of bit information is modulated to obtain a second modulation symbol; the second modulation symbol is multiplied by a predetermined second power adjustment factor according to the allocated power to obtain a second complex symbol.
  • the modulation mode adopted by the first modulation symbol corresponding to the first complex symbol includes binary phase shift keying BPSK, quadrature phase shift keying QPSK, and quadrature amplitude modulation QAM.
  • the modulation mode adopted by the second modulation symbol corresponding to the second complex symbol includes QPSK, QAM.
  • all mapped constellations of possible superimposed symbols have Gray mapping properties.
  • the embodiment of the invention also discloses a computer program, comprising program instructions, which when executed by the transmitter, enable the transmitter to perform any of the above-described multi-user information processing methods.
  • the embodiment of the invention also discloses a carrier carrying the computer program.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the invention is not limited to any specific combination of hardware and software.
  • Each device/function module/functional unit in the above embodiments may use a general-purpose computing device. Implementations can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the technical solution of the present invention can enhance the robustness of the receiver to perform symbol level SIC by simple and unique design processing, that is, enhance access performance under lower complexity receiver conditions, and therefore the invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种多用户信息处理方法及装置,所述方法包括:发射机将待发送的第一组比特信息与第二组比特信息进行比特运算得到第三组比特信息;其中,所述第一组比特信息的比特个数M1小于或等于第二组比特信息的比特个数M2;所述发射机将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号;所述发射机将所述第一复数符号和第二复数符号相加得到叠加符号;所述发射机将所述叠加符号形成发射信号发射出去。本发明技术方案能够解决多用户信息在发射机做叠加编码时,接收机如果使用简单的符号级SIC来解调叠加符号,其解调性能会下降较大这一问题。

Description

一种多用户信息处理方法及其装置 技术领域
本文涉及多用户信息处理技术领域,具体而言,涉及一种多用户信息处理方法及其装置。
背景技术
非正交多址技术(None Orthogonal Multiple Access,简称为NOMA)的原理是发射侧做多用户信息叠加编码,接收侧使用串行干扰消除(Successive Interference Cancellation,简称为SIC)。
例如在一个广播系统发射侧做叠加编码,指将多个用户的信息叠加到一起,这里“叠加”通常是功率域直接相加。发射机将叠加后的信息同时向多个接收机发送。各个接收机解出自己需要的信息。要注意的是,叠加编码技术使每个用户的信息都是在“整个通道”上传输的,因而在解调时各用户信息之间是相互干扰的。
非正交多址技术通常可以分为两种解调方法:第一种、每个用户都带着其他用户的干扰解调,这样实现较为简单,但性能是有损的。第二种、是使用干扰消除技术,也即多用户检测技术。下面以两个用户的SIC过程为例进行简单说明,多用户的SIC过程很容易由此推广:先解调出用户A的信息(带着用户B的干扰来解调A信息)。然后,在解调用户B信息时,需要先将之前解调出来的A信息(码块级SIC需要重构)减去,再解调出用户B信息。这样用户B信息因为可以没有干扰,所以性能可以存在较大提升。经典文献已证明采用叠加编码结合码块级SIC技术是可以达到多用户信息容量极限的。
如图1(1)~(3)所示,即为QPSK(正交相移键控)符号和16QAM(正交振幅调制)符号叠加编码示意图,携带比特信息“00”的一个QPSK符号(如图1(1)所示)和携带比特信息“1011”的一个16QAM符号(如图1(2)所示)在功率域直接相加,得到一个叠加后的携带比特信息“001011” 的符号(如图1(3)所示)。
同理,如图2(1)~(3)所示,除了包括图1中情况,还包括有另一种情况,即携带比特信息“10”的一个QPSK符号(如图2(1)所示)和携带比特信息“0011”的一个16QAM符号(如图2(2)所示)在功率域直接相加,得到一个携带比特信息“100011”的符号(如图2(3)所示)。所有可能的叠加情况就可以得到图2(3)中星座所示的64个星座点。
从图2(3)中容易看出,两个符号直接相加,最终所有可能得到的符号组合出的星座点没有Gray(格雷)映射属性(映射的相邻星座点所携带的比特信息仅存在1个比特不同,通常这样调制的性能最优),比如“100011”和“001011”有两比特不相同。
终端如果使用简单的符号级SIC来解调叠加符号,其解调性能会下降较大,因而,为了保证性能,终端需要使用复杂的码块级SIC。但是,码块级SIC对终端而言会引起很高的实现复杂度、功耗和时延,这些对终端来说有时是不可接受的。
分层调制(Hierarchical modulation)也可以看作是一种叠加编码的变种。分层调制是指通过高优先比特流和低优先比特流的组合,然后映射到星座图中。虽然分层调制也可以组合出具有Gray映射属性的星座,但分层调制对不同数据流的进行不同功率分配很不灵活,而且其实现复杂度也较高。而对不同数据流进行不同功率分配是达到下行多用户信道容量的必要手段。
综上所述,相关技术中的多用户信息在发射机做叠加编码,对应的,接收机如果使用简单的符号级SIC来解调叠加符号,其解调性能会下降较大。
发明内容
本发明要解决的技术问题是提供一种多用户信息处理方法及其装置,以至少解决多用户信息在发射机做叠加编码时,接收机如果使用简单的符号级SIC来解调叠加符号,其解调性能会下降较大这一问题。
为了解决上述问题,采用如下技术方案:
一种多用户信息处理方法,包括:
发射机将待发送的第一组比特信息与第二组比特信息进行比特运算得到第三组比特信息;其中,所述第一组比特信息的比特个数M1小于或等于第二组比特信息的比特个数M2;
所述发射机将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号;
所述发射机将所述第一复数符号和第二复数符号相加得到叠加符号;
所述发射机将所述叠加符号形成发射信号发射出去。
可选地,所述比特运算包括比特异或运算;运算对象为所述第一组比特信息的全部比特和所述第二组比特信息中的M1个比特。
可选地,所述第三组比特信息的比特个数为M2个,包括两部分,一部分由所述第二组比特信息中特定的M1个比特与所述第一组比特信息中的M1个比特两者进行比特运算得到,另一部分由所述第二组比特信息中除上述特定的M1个比特之外的比特保持不变得到。
可选地,当M1=M2时,所述第三组比特信息的比特个数为M2个,由所述第二组比特信息中特定的M1个比特与所述第一组比特信息中的M1个比特两者进行比特运算得到。
可选地,所述特定的M1个比特在所述第二组比特信息对应的映射星座图中是决定星座点所在象限的比特。
可选地,所述第三组比特信息与所述第二组比特信息相同,或者所述第三组比特信息与所述第二组比特信息映射的星座符号对于星座图坐标系的实轴、虚轴或原点呈对称关系。
可选地,所述发射机将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号的步骤包括:
所述发射机将所述第一组比特信息调制后得到第一调制符号;按所分配的功率将所述第一调制符号乘上预定的第一功率调整因子得到所述第一复数符号;
将所述第三组比特信息调制后得到第二调制符号;按所分配的功率将所述第二调制符号乘上预定的第二功率调整因子得到所述第二复数符号。
可选地,所述第一复数符号对应的第一调制符号采用的调制方式包括二进制相移键控BPSK,正交相移键控QPSK,和/或正交振幅调制QAM。
可选地,所述第二复数符号对应的第二调制符号采用的调制方式包括QPSK和/或QAM。
可选地,所有叠加符号的映射星座具有格雷映射属性。
一种多用户信息处理装置,设置于发射机中,包括运算模块、调制模块、叠加模块和发射模块,其中
所述运算模块设置成:将待发送的第一组比特信息与第二组比特信息进行比特运算得到第三组比特信息;其中,所述第一组比特信息的比特个数M1小于或等于第二组比特信息的比特个数M2;
所述调制模块设置成:将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号;
所述叠加模块设置成:将所述第一复数符号和第二复数符号相加得到叠加符号;
所述发射模块设置成:将所述叠加符号形成发射信号发射出去。
可选地,所述比特运算包括比特异或运算;运算对象为所述第一组比特信息的全部比特和所述第二组比特信息中的M1个比特。
可选地,所述第三组比特信息的比特个数为M2个,包括两部分,一部分由所述第二组比特信息中特定的M1个比特与所述第一组比特信息中的M1个比特两者进行比特运算得到,另一部分由所述第二组比特信息中除上述特定的M1个比特之外的比特保持不变得到。
可选地,当M1=M2时,所述第三组比特信息的比特个数为M2个,由所述第二组比特信息中特定的M1个比特与所述第一组比特信息中的M1个比特两者进行比特运算得到。
可选地,所述特定的M1个比特在所述第二组比特信息对应的映射星座图中是决定星座点所在象限的比特。
可选地,所述第三组比特信息与所述第二组比特信息相同,或者所述第三组比特信息与所述第二组比特信息映射的星座符号对于星座图坐标系的实轴、虚轴或原点呈对称关系。
可选地,所述调制模块设置成按照如下方式将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号:
所述调制模块将所述第一组比特信息调制后得到第一调制符号;按所分配的功率将所述第一调制符号乘上预定的第一功率调整因子得到第一复数符号;将所述第三组比特信息调制后得到第二调制符号;按所分配的功率将所述第二调制符号乘上预定的第二功率调整因子得到第二复数符号。
可选地,所述第一复数符号对应的第一调制符号采用的调制方式包括二进制相移键控BPSK,正交相移键控QPSK和/或正交振幅调制QAM。
可选地,所述第二复数符号对应的第二调制符号采用的调制方式包括QPSK和/或QAM。
可选地,所有叠加符号的映射星座具有格雷映射属性。
本发明技术方案的优点是:通过简单独特的设计处理可以增强接收机做符号级SIC的鲁棒性,即在更低复杂度接收机条件下增强接入性能。
附图概述
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1(1)~(3)是QPSK符号和16QAM符号叠加编码的示意图之一;
图2(1)~(3)是QPSK符号和16QAM符号叠加编码的示意图之二;
图3是实施示例一中多用户信息在发射机的处理过程示意图;
图4是实施示例一中第一组比特信息的星座映射示意图;
图5是实施示例一中第二组比特信息的星座映射示意图;
图6是实施示例一中第一种情况下第三组比特信息形成示意图;
图7是实施示例一中第三比特信息的星座映射示意图;
图8是实施示例一中第二种情况下第三组比特信息形成示意图;
图9(1)~(3)是实施示例一中第一种情况的叠加示意图;
图10(1)~(3)是实施示例一中第二种情况的叠加示意图;
图11是实施示例一中第一、第二种情况的叠加结果比较;
图12是实施示例二中第一组比特信息的星座映射示意图;
图13是实施示例二中第二组比特信息的星座映射示意图;
图14是实施示例二中第一种情况下第三组比特信息形成示意图;
图15是实施示例二中第三组比特信息的星座映射示意图;
图16是实施示例二中第二种情况下第三组比特信息形成示意图;
图17(1)~(3)是实施示例二中第一种情况的叠加示意图;
图18(1)~(3)是实施示例二中第二种情况的叠加示意图;
图19是实施示例二中第一、第二种情况的叠加结果比较;
图20是本发明实施例的多用户信息处理装置结构示意图。
本发明的较佳实施方式
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
下面将结合附图及实施例对本发明的技术方案进行更详细的说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一、一种多用户信息处理方法,包括:
发射机将待发送的第一组比特信息与第二组比特信息进行比特运算得到 第三组比特信息;其中,所述第一组比特信息的比特个数M1小于或等于第二组比特信息的比特个数M2;
所述发射机将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号;
所述发射机将所述第一复数符号和第二复数符号相加得到叠加符号;
所述发射机将所述叠加符号形成发射信号发射出去。
可选地,所述比特运算包括比特异或运算;运算对象为第一组比特信息的全部比特和第二组比特信息中的M1个比特。
可选地,所述第三组比特信息的比特个数为M2个,包括两部分,一部分由所述第二组比特信息中特定的M1个比特与第一组比特信息中的M1个比特两者进行比特运算得到,另一部分由所述第二组比特信息中除上述特定的M1个比特之外的比特保持不变得到。
可选地,所述特定的M1个比特在第二组比特信息对应的映射星座图中是决定星座点所在象限的比特。
可选地,所述第三组比特信息与所述第二组比特信息相同,或者所述第三组比特信息与所述第二组比特信息映射的星座符号对于星座图坐标系的实轴、虚轴或原点呈对称关系。
可选地,所述发射机将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号包括:
所述发射机将所述第一组比特信息调制后得到第一调制符号;按所分配的功率将所述第一调制符号乘上预定的第一功率调整因子得到第一复数符号;将所述第三组比特信息调制后得到第二调制符号;按所分配的功率将所述第二调制符号乘上预定的第二功率调整因子得到第二复数符号;即:所述第一复数符号是按所分配的功率,将第一调制符号乘上预定的第一功率调整因子,得到的有功率的调制符号;所述第二复数符号是按所分配的功率,将第二调制符号乘上预定的第二功率调整因子,得到的有功率的调制符号。
可选地,所述第一复数符号对应的第一调制符号采用的调制方式包括BPSK(二进制相移键控),QPSK,QAM。
可选地,所述第二复数符号对应的第二调制符号采用的调制方式包括QPSK,QAM。
可选地,所有可能叠加符号的映射星座具有格雷映射属性。
本发明实施例提供的多用户信息处理方法的一个具体例子中,第二组比特信息中特定的M1个比特与第一组比特信息中所有M1个比特异或运算得到异或后比特,所得异或后比特结合第二组比特信息中除上述特定比特之外的比特,得到第三组比特信息,将第一组比特信息和第三组比特信息处理得到的第一、第二复数符号叠加得到叠加符号,将叠加符号形成发射信号发射出去。采用本发明实施例,系统接收机可以获得更好的SIC鲁棒性,在更低复杂度接收机条件下增强接入性能。
为强调本发明实施例的特性,下面优选典型示例对本发明实施例的实施方案做进一步说明。
实施示例一
多用户信息在发射机被处理后,同时发送给两个接收机,例如,发射机要同时将第一组比特信息传输至边缘用户接收机UE1,以及将第二组比特信息传输至中心用户接收机UE2。这两组比特信息在发射机被处理后叠加在一起发送出去。对应的接收机UE1,接收机UE2从收到两组比特信息的叠加信息中解调出自己需要的信息,如图3所示是多用户信息在发射机的处理过程。
如图3所示,首先,UE1比特信息经过编码后得到第一组比特信息,UE2比特信息经过编码后得到第二组比特信息,编码可以按照相关标准采用的编码方法,例如Turbo编码。在本实施示例中,编码是可选步骤,应用中可以不包括编码的步骤,即可以直接令第一组比特信息为UE1比特信息,直接令第二组比特信息为UE2比特信息。
然后,第一组比特信息直接被调制得到有一定功率的调制符号(即:第一复数符号),而第二组比特信息先与第一组比特信息经过比特运算得到第三组比特信息后再被调制得到有一定功率的调制符号(即:第二复数符号),其中第一组比特信息的调制可以按照相关标准采用的调制方法,例如:BPSK、QPSK、QAM;第三组比特信息的调制可以采用QPSK、QAM等。
其中第三组比特信息由两部分组成,一部分由第二组比特信息中特定的M1个比特与第一组比特信息中的M1个比特两者运算得到,另一部分由第二组比特信息中除上述特定比特之外的比特保持不变得到。M1、M2均为正整数,且M2大于或等于M1。例如第一组比特信息为“10”,第二组比特信息为“1100”,其中前两比特“11”为特定的2个比特。则得到的第三组比特信息为“0100”,其中前两位“01”是第一组比特信息“10”和第二组比特信息特定的2个比特“11”异或得到,而后两位由第二组比特信息中除上述特定比特之外的比特“00”保持不变得到。
最后分别对“10”和“0100”进行调制并分别乘以相应的功率调整因子后叠加得到叠加符号,并将叠加符号形成发射信号发送。
实施示例二
两组比特信息在发射机被处理后发送给两个用户接收机。更具体的,首先,第一组比特信息C1为两个比特,如图4所示,表示C1两个比特在星座图的映射,例如当C1为“10”时,映射到图4中以实心圆表示的星座点上(其它星座点以空心圆表示)。第二组比特信息C2为四个比特,如图5所示,表示C2四个比特在星座图的映射,例如当C2为“1101”时,映射到图5中以实心圆表示的星座点上。这里采用的16QAM星座为IEEE(电气和电子工程师协会)802.16e标准的16QAM星座,四个比特中的的第1,第3比特位为重要比特位,即确定I路Q路分量正负的比特,即“1101”中的第1位“1”和第3位“0”为重要比特位。
然后,第一组比特信息C1直接被QPSK方式调制,得到有一定功率的调制符号S1(即:第一复数符号),而第二组比特信息C2先与第一组比特信息C1经过比特运算得到第三组比特信息C,第三组比特信息C再被IEEE802.16e标准制的16QAM方式调制得到有一定功率的调制符号S2(即:第二复数符号)。
其中第三组比特信息C由两部分组成,如图6所示,一部分由第二组比特信息C2中特定的两个比特与第一组比特信息C1中的两个比特两者异或运算得到,另一部分由第二组比特信息C2中除上述特定比特之外的比特保持不 变得到。更具体的,图6中第一组比特信息C1为“10”,第二组比特信息C2为“1101”,其中第1比特和第3比特“10”为特定的2个比特。则得到的第三组比特信息C为“0101”,其中第1比特和第3比特是第一组比特信息C1“10”和第二组比特信息C2特定的2个比特“10”异或得到的“00”,图6中表示为“10”
Figure PCTCN2016078851-appb-000001
“10”=“00”,而另外两位比特(第二比特和第四比特)由第二组比特信息C2中除上述特定比特之外的比特“11”保持不变得到。
如图7所示,是第三组比特信息C四个比特在星座图的映射。对比第二比特信息星座映射和第三组比特信息星座映射容易发现,星座点变化到了与星座虚轴对称的位置。另一种可能的情况,如图8所示,令C1为“00”,令C2为“1101”,可以得到第三组比特信息C为“1101”,其中第一比特“1”和第三比特“0”分别由C2中的第一比特“1”、第三比特“0”与C1的“00”进行异或得到,第二、第四比特“11”是保持C2中的第二、第四比特不变得到;它与C2一样,所以在星座图的映射也一样。
上述两种可能的情况分别得到复数符号后,做叠加得到叠加符号。容易理解的是,QPSK调制符号在星座图中有4种可能的星座点,16QAM调制符号在星座图中有16种可能的星座点,则两个复数符号的叠加符号在星座图中有64种可能的星座点,正如在技术背景中介绍的叠加编码一样。这里我们重点关注上述描述的两种情况:第一种:C1为“10”,C2为“1101”;第二种:C1为“00”,C2为“1101”。
图9(1)~(3)表示第一种情况叠加示意图,图9(1)为第一种情况中第一组比特信息的星座点,图9(2)为第一种情况中第二组比特信息及第三组比特信息的星座点,图9(3)为第一种情况中叠加后的星座点。图10(1)~(3)表示第二种情况叠加示意图,图10(1)为第二种情况中第一组比特信息的星座点,图10(2)为第二种情况中第二组比特信息及第三组比特信息的星座点,图10(3)为第二种情况中叠加后的星座点。
图中标明的地方是随机取两种具体情况例子加以说明,第一种:“10”处的QPSK符号“0101”处的16QAM符号叠加,得到“101101”处的符号。第二种:“00”处的QPSK符号和“1101”处的16QAM符号优化叠加,得到“001101”处的符号。将这两种情况得到的叠加符号放到一个星座图中来 看,如图11所示是两个符号的叠加符号星座图。
从图11中容易看到并推测所有可能叠加符号的映射星座有格雷映射属性。
最后将叠加符号形成发射信号发送给两个用户接收机。
需要说明的是,通过本发明实施例简单独特的设计处理,即使在接收机因为噪声误判了QPSK符号S1,也不影响对16QAM符号S2的正确解调。所以增强了接收机做符号级SIC的鲁棒性,即在更低复杂度接收机条件下增强接入性能。
实施示例三
两组比特信息在发射机被处理后发送给两个用户接收机。更具体的,首先,第一组比特信息C1为两个比特,如图12所示,表示C1两个比特在星座图的映射,例如当C1为“10”时,映射到图12中以实心圆表示的星座点上。第二组比特信息C2为四个比特,如图13所示,表示C2四个比特在星座图的映射,例如当C2为“1011”时,映射到图13中以实心圆表示的星座点上。这里采用的16QAM星座为LTE标准16QAM星座,四个比特中的的第1,第2比特位为重要比特位,即确定I路Q路分量正负的比特,即“1011”中的第1位“1”和第2位“0”为重要比特位。
然后,第一组比特信息C1直接被QPSK方式调制,得到有一定功率的调制符号S1(即:第一复数符号),而第二组比特信息C2先与第一组比特信息C1经过比特运算得到第三组比特信息C,第三组比特信息C再被LTE标准制的16QAM方式调制得到有一定功率的调制符号S2(即:第二复数符号)。
其中第三组比特信息C由两部分组成,如图14所示,一部分由第二组比特信息C2中特定的两个比特与第一组比特信息C1中的两个比特两者异或运算得到,另一部分由第二组比特信息C2中除上述特定比特之外的比特保持不变得到。更具体的,图14中第一组比特信息C1为“10”,第二组比特信息C2为“1011”,其中第1比特和第2比特“10”为特定的2个比特。则得到的第三组比特信息C为“0011”,其中第1比特和第2比特是第一组比特信 息C1“10”和第二组比特信息C2特定的2个比特“10”异或得到的“00”,图14中表示为“10”
Figure PCTCN2016078851-appb-000002
“10”=“00”,而另外两位比特由第二组比特信息C2中除上述特定比特之外的比特“11”保持不变得到。
如图15所示,是第三组比特信息C四个比特在星座图的映射。对比第二比特信息星座映射和第三组比特信息星座映射容易发现,星座点变化到了与星座虚轴对称的位置。另一种可能的情况,如图16所示,令C1为“00”,令C2为“0011”,可以得到第三组比特信息C为“0011”,其中第一比特“0”和第二比特“0”分别由C2中的第一比特“0”、第三比特“0”与C1的“00”进行异或得到,第三、第四比特“11”是保持C2中的第三、第四比特不变得到;它与C2一样,所以在星座图的映射也一样。
上述两种可能的情况分别得到复数符号后,做叠加得到叠加符号。容易理解的是,QPSK调制符号在星座图中有4种可能的星座点,16QAM调制符号在星座图中有16种可能的星座点,则两个复数符号的叠加符号在星座图中有64种可能的星座点,正如在技术背景中介绍的叠加编码一样。这里我们重点关注上述描述的两种情况:第一种:C1为“10”,C2为“1101”;第二种:C1为“00”,C2为“1101”。
图17(1)~(3)表示第一种情况叠加示意图,图17(1)为第一种情况中第一组比特信息的星座点,图17(2)为第一种情况中第二组比特信息及第三组比特信息的星座点,图17(3)为第一种情况中叠加后的星座点。图18(1)~(3)表示第二种情况叠加示意图,图18(1)为第二种情况中第一组比特信息的星座点,图18(2)为第二种情况中第二组比特信息及第三组比特信息的星座点,图18(3)为第二种情况中叠加后的星座点。
图中标明的地方是随机取两种具体情况例子加以说明,第一种:“10”处的QPSK符号“1011”处的16QAM符号叠加,得到“101011”处的符号。第二种:“00”处的QPSK符号和“1011”处的16QAM符号优化叠加,得到“001011”处的符号。将这两种情况得到的叠加符号放到一个星座图中来看,如图19所示是两个符号的叠加符号星座图。
从图19中容易看到并推测所有可能叠加符号的映射星座有格雷映射属性。
最后将叠加符号形成发射信号发送给两个用户接收机。
需要说明的是,对比图2直接叠加的情况,本发明实施例多用户信息处理后叠加符号的所有可能符号的映射星座有格雷映射属性。而且,更为重要的是,通过本发明实施例简单独特的设计处理,即使在接收机因为噪声误判了QPSK符号,也不影响对16QAM符号的正确解调。所以增强了接收机做符号级SIC的鲁棒性,即在更低复杂度接收机条件下增强接入性能。
实施例二、一种多用户信息处理装置,设置于发射机中,如图20所示,包括:
运算模块2001,设置成:将待发送的第一组比特信息与第二组比特信息进行比特运算得到第三组比特信息;其中,所述第一组比特信息的比特个数M1小于或等于第二组比特信息的比特个数M2;
调制模块2002,设置成:将所述第一组比特信息调制后得到第一复数符号,将所述第三组比特信息调制后得到第二复数符号;
叠加模块2003,设置成:将所述第一复数符号和第二复数符号相加得到叠加符号;
发射模块2004,设置成:将所述叠加符号形成发射信号发射出去。
可选地,所述比特运算包括比特异或运算;运算对象为第一组比特信息的全部比特和第二组比特信息中的M1个比特。
可选地,所述第三组比特信息的比特个数为M2个,包括两部分,一部分由所述第二组比特信息中特定的M1个比特与第一组比特信息中的M1个比特两者进行比特运算得到,另一部分由所述第二组比特信息中除上述特定的M1个比特之外的比特保持不变得到。
可选地,所述特定的M1个比特在第二组比特信息对应的映射星座图中是决定星座点所在象限的比特。
可选地,所述第三组比特信息与所述第二组比特信息相同,或者所述第三组比特信息与所述第二组比特信息映射的星座符号对于星座图坐标系的实轴、虚轴或原点呈对称关系。
可选地,调制模块2002,设置成:将所述第一组比特信息调制后得到第一复数符号,将所述第三组比特信息调制后得到第二复数符号是指:
所述调制模块2002将所述第一组比特信息调制后得到第一调制符号;按所分配的功率将所述第一调制符号乘上预定的第一功率调整因子得到第一复数符号;将所述第三组比特信息调制后得到第二调制符号;按所分配的功率将所述第二调制符号乘上预定的第二功率调整因子得到第二复数符号。
可选地,所述第一复数符号对应的第一调制符号采用的调制方式包括二进制相移键控BPSK,正交相移键控QPSK,正交振幅调制QAM。
可选地,所述第二复数符号对应的第二调制符号采用的调制方式包括QPSK,QAM。
可选地,所有可能叠加符号的映射星座具有格雷映射属性。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被发射机执行时,使得该发射机可执行上述任意的多用户信息处理方法。
本发明实施例还公开了一种载有所述的计算机程序的载体。
在阅读并理解了附图和详细描述后,可以明白其他方面。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来 实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求所述的保护范围为准。
工业实用性
本发明技术方案通过简单独特的设计处理可以增强接收机做符号级SIC的鲁棒性,即在更低复杂度接收机条件下增强接入性能,因此本发明具有很强的工业实用性。

Claims (20)

  1. 一种多用户信息处理方法,包括:
    发射机将待发送的第一组比特信息与第二组比特信息进行比特运算得到第三组比特信息;其中,所述第一组比特信息的比特个数M1小于或等于第二组比特信息的比特个数M2;
    所述发射机将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号;
    所述发射机将所述第一复数符号和第二复数符号相加得到叠加符号;
    所述发射机将所述叠加符号形成发射信号发射出去。
  2. 如权利要求1所述的多用户信息处理方法,其中
    所述比特运算包括比特异或运算;运算对象为所述第一组比特信息的全部比特和所述第二组比特信息中的M1个比特。
  3. 如权利要求1所述的多用户信息处理方法,其中
    所述第三组比特信息的比特个数为M2个,包括两部分,一部分由所述第二组比特信息中特定的M1个比特与所述第一组比特信息中的M1个比特两者进行比特运算得到,另一部分由所述第二组比特信息中除上述特定的M1个比特之外的比特保持不变得到。
  4. 如权利要求3所述的多用户信息处理方法,其中
    当M1=M2时,所述第三组比特信息的比特个数为M2个,由所述第二组比特信息中特定的M1个比特与所述第一组比特信息中的M1个比特两者进行比特运算得到。
  5. 如权利要求3所述的多用户信息处理方法,其中
    所述特定的M1个比特在所述第二组比特信息对应的映射星座图中是决定星座点所在象限的比特。
  6. 如权利要求1所述的多用户信息处理方法,其中
    所述第三组比特信息与所述第二组比特信息相同,或者所述第三组比特信息与所述第二组比特信息映射的星座符号对于星座图坐标系的实轴、虚轴或原点呈对称关系。
  7. 如权利要求1所述的多用户信息处理方法,其中,所述发射机将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号的步骤包括:
    所述发射机将所述第一组比特信息调制后得到第一调制符号;按所分配的功率将所述第一调制符号乘上预定的第一功率调整因子得到所述第一复数符号;
    将所述第三组比特信息调制后得到第二调制符号;按所分配的功率将所述第二调制符号乘上预定的第二功率调整因子得到所述第二复数符号。
  8. 如权利要求7所述的多用户信息处理方法,其中
    所述第一复数符号对应的第一调制符号采用的调制方式包括二进制相移键控BPSK,正交相移键控QPSK,和/或正交振幅调制QAM。
  9. 如权利要求7所述的多用户信息处理方法,其中
    所述第二复数符号对应的第二调制符号采用的调制方式包括QPSK和/或QAM。
  10. 如权利要求1所述的多用户信息处理方法,其中
    所有叠加符号的映射星座具有格雷映射属性。
  11. 一种多用户信息处理装置,设置于发射机中,包括运算模块、调制模块、叠加模块和发射模块,其中
    所述运算模块设置成:将待发送的第一组比特信息与第二组比特信息进行比特运算得到第三组比特信息;其中,所述第一组比特信息的比特个数M1小于或等于第二组比特信息的比特个数M2;
    所述调制模块设置成:将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号;
    所述叠加模块设置成:将所述第一复数符号和第二复数符号相加得到叠加符号;
    所述发射模块设置成:将所述叠加符号形成发射信号发射出去。
  12. 如权利要求11所述的多用户信息处理装置,其中
    所述比特运算包括比特异或运算;运算对象为所述第一组比特信息的全部比特和所述第二组比特信息中的M1个比特。
  13. 如权利要求11所述的多用户信息处理装置,其中
    所述第三组比特信息的比特个数为M2个,包括两部分,一部分由所述第二组比特信息中特定的M1个比特与所述第一组比特信息中的M1个比特两者进行比特运算得到,另一部分由所述第二组比特信息中除上述特定的M1个比特之外的比特保持不变得到。
  14. 如权利要求13所述的多用户信息处理装置,其中
    当M1=M2时,所述第三组比特信息的比特个数为M2个,由所述第二组比特信息中特定的M1个比特与所述第一组比特信息中的M1个比特两者进行比特运算得到。
  15. 如权利要求13所述的多用户信息处理装置,其中
    所述特定的M1个比特在所述第二组比特信息对应的映射星座图中是决定星座点所在象限的比特。
  16. 如权利要求11所述的多用户信息处理装置,其中
    所述第三组比特信息与所述第二组比特信息相同,或者所述第三组比特信息与所述第二组比特信息映射的星座符号对于星座图坐标系的实轴、虚轴或原点呈对称关系。
  17. 如权利要求11所述的多用户信息处理装置,其中,所述调制模块设置成按照如下方式将所述第一组比特信息处理得到第一复数符号,将所述第三组比特信息处理得到第二复数符号:
    所述调制模块将所述第一组比特信息调制后得到第一调制符号;按所分 配的功率将所述第一调制符号乘上预定的第一功率调整因子得到第一复数符号;将所述第三组比特信息调制后得到第二调制符号;按所分配的功率将所述第二调制符号乘上预定的第二功率调整因子得到第二复数符号。
  18. 如权利要求17所述的多用户信息处理装置,其中
    所述第一复数符号对应的第一调制符号采用的调制方式包括二进制相移键控BPSK,正交相移键控QPSK和/或正交振幅调制QAM。
  19. 如权利要求17所述的多用户信息处理装置,其中
    所述第二复数符号对应的第二调制符号采用的调制方式包括QPSK和/或QAM。
  20. 如权利要求11所述的多用户信息处理装置,其中
    所有叠加符号的映射星座具有格雷映射属性。
PCT/CN2016/078851 2015-04-15 2016-04-08 一种多用户信息处理方法及其装置 WO2016165588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510178337.6A CN106160936B (zh) 2015-04-15 2015-04-15 一种多用户信息处理方法及其装置
CN201510178337.6 2015-04-15

Publications (1)

Publication Number Publication Date
WO2016165588A1 true WO2016165588A1 (zh) 2016-10-20

Family

ID=57125645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078851 WO2016165588A1 (zh) 2015-04-15 2016-04-08 一种多用户信息处理方法及其装置

Country Status (2)

Country Link
CN (1) CN106160936B (zh)
WO (1) WO2016165588A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685583B (zh) * 2015-11-07 2020-07-07 中兴通讯股份有限公司 多用户叠加传输方法及装置
CN108449305B (zh) * 2018-01-24 2020-10-30 复旦大学 一种适用于无线通信系统下行传输的多用户复用方法
CN112153690B (zh) * 2019-06-26 2022-05-24 华为技术有限公司 通信方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040540A (zh) * 2004-12-21 2007-09-19 中兴通讯股份有限公司 一种编码调制解调系统及其信号的发射接收方法
US20100201398A1 (en) * 2009-02-11 2010-08-12 Ntt Docomo, Inc. Apparatus for providing a combined digital signal
CN102983945A (zh) * 2012-12-06 2013-03-20 哈尔滨工业大学 一种在多用户信道中实现物理层网络编码的无线通信方法
CN103634072A (zh) * 2012-08-28 2014-03-12 华为技术有限公司 传输信息的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483463B (zh) * 2008-01-11 2013-06-05 华为技术有限公司 一种基于多分集的数据发送方法及装置
EP2424143A1 (en) * 2009-04-24 2012-02-29 Panasonic Corporation Wireless communication device and wireless communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040540A (zh) * 2004-12-21 2007-09-19 中兴通讯股份有限公司 一种编码调制解调系统及其信号的发射接收方法
US20100201398A1 (en) * 2009-02-11 2010-08-12 Ntt Docomo, Inc. Apparatus for providing a combined digital signal
CN103634072A (zh) * 2012-08-28 2014-03-12 华为技术有限公司 传输信息的方法和装置
CN102983945A (zh) * 2012-12-06 2013-03-20 哈尔滨工业大学 一种在多用户信道中实现物理层网络编码的无线通信方法

Also Published As

Publication number Publication date
CN106160936A (zh) 2016-11-23
CN106160936B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
JP6692807B2 (ja) マルチユーザ情報伝送の重畳、復調方法及び装置
WO2017016342A1 (zh) 一种多用户信息传输的调制方法、解调方法及装置
WO2016169414A1 (zh) 一种多用户信息处理方法及装置
WO2017041297A1 (zh) 信息传输装置、方法以及通信系统
WO2017076036A1 (zh) 一种基于子载波移位的频域混沌认知无线电系统
KR20170060112A (ko) 다중 사용자 코드 분할 다중 접속 통신 방법 및 상응한 송신기, 수신기
CN105703877B (zh) 叠加编码、解码方法、装置、发射机及接收机
WO2016045384A1 (zh) 一种扩频处理方法及装置
US11218355B2 (en) Multi-dimensional signal encoding
WO2016165588A1 (zh) 一种多用户信息处理方法及其装置
WO2016184241A1 (zh) 一种多用户接入方法及装置
US7720093B2 (en) Modulation multiplexing
EP3214784B1 (en) Dual transport block data transmission and reception method, device, transmitter, and receiver
CN105991228B (zh) 一种下行多用户信息发送、接收方法和对应装置
CN106685583B (zh) 多用户叠加传输方法及装置
KR20070022614A (ko) 인터리브된 주파수 분할 다중 접속 방식의 신호 생성 장치및 방법, 그리고 신호 수신 장치
US9331885B2 (en) Modulation with fundamental group
JP4637721B2 (ja) 多元接続方法
CN108463957A (zh) 适用于非正交多址接入的信息传输方法、装置以及通信系统
CN108322415B (zh) 一种多载波频幅相组合调制及解调方法
US20060008019A1 (en) Communications method
Tan et al. Performance comparison and analysis of PSK and QAM
JP5912025B2 (ja) 通信装置および通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779563

Country of ref document: EP

Kind code of ref document: A1