WO2017041297A1 - 信息传输装置、方法以及通信系统 - Google Patents

信息传输装置、方法以及通信系统 Download PDF

Info

Publication number
WO2017041297A1
WO2017041297A1 PCT/CN2015/089448 CN2015089448W WO2017041297A1 WO 2017041297 A1 WO2017041297 A1 WO 2017041297A1 CN 2015089448 W CN2015089448 W CN 2015089448W WO 2017041297 A1 WO2017041297 A1 WO 2017041297A1
Authority
WO
WIPO (PCT)
Prior art keywords
constellation
symbol
receiving end
information transmission
transformation
Prior art date
Application number
PCT/CN2015/089448
Other languages
English (en)
French (fr)
Inventor
张健
王昕�
Original Assignee
富士通株式会社
张健
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2015/089448 priority Critical patent/WO2017041297A1/zh
Priority to CN201580082193.2A priority patent/CN107926032A/zh
Publication of WO2017041297A1 publication Critical patent/WO2017041297A1/zh
Priority to US15/906,393 priority patent/US20180192424A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3411Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3444Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power by applying a certain rotation to regular constellations

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an information transmission apparatus, method, and communication system based on a Non-Orthogonal Multiple Access (NOMA) system.
  • NOMA Non-Orthogonal Multiple Access
  • One of the requirements of the fifth generation (5G) mobile communication system is to support a higher system capacity (for example, 1000 times) than 4G and more terminal connections (for example, 100 times) than 4G.
  • Previously, mobile communication has adopted orthogonal multiple access technology.
  • Research shows that non-orthogonal multiple access technology can realize larger capacity domain than orthogonal multiple access technology. This theoretical guidance makes non-orthogonal multiple access technology become 5G research.
  • One of the key technologies One of the key technologies.
  • the power domain is non-orthogonal, and its representative technology, NOMA, has been included in the discussion of LTE-A Release 13.
  • NOMA NOMA
  • the NOMA technology is based on the superposition code theory.
  • the transmitting end transmits the composite constellation symbol formed by the superposition.
  • the user equipment with poor channel conditions can only demodulate its own data, and the user equipment with better channel conditions can further subdivide the constellation.
  • the NOMA technology can theoretically realize the entire capacity domain of the downlink broadcast channel and the uplink multiple access channel.
  • the transmitted signal is in the form of the following superimposed symbols:
  • a indicates the symbol sent to the user equipment with poor channel conditions (hereinafter referred to as the far-end user equipment or the first receiving end), and b indicates the user equipment that is sent to the channel with good condition (hereinafter referred to as the near-user equipment or the second receiving).
  • Embodiments of the present invention provide an information transmission apparatus, method, and communication system. Further enhance user settings Ready data demodulation performance.
  • an information transmission apparatus which is configured in a non-orthogonal multiple access system, and the information transmission apparatus includes:
  • a constellation transform unit respectively performing constellation transformation on the first symbol transmitted to the first receiving end and the second symbol transmitted to the second receiving end;
  • a symbol superposition unit that performs power allocation and superposition on a first symbol subjected to constellation transformation and a second symbol subjected to constellation transformation to form a superimposed symbol
  • a virtual real interleaving unit that performs interleaving of the imaginary part and the real part of the plurality of superimposed symbols
  • the information transmitting unit transmits the superimposed symbol that is subjected to virtual real interleaving.
  • an information transmission method is provided, which is applied to a non-orthogonal multiple access system, where the information transmission method includes:
  • the transmitting end performs constellation transformation on the first symbol transmitted to the first receiving end and the second symbol transmitted to the second receiving end respectively;
  • a communication system configured to perform non-orthogonal multiple access, the communication system comprising:
  • the transmitting end performs constellation transformation on the first symbol transmitted to the first receiving end and the second symbol transmitted to the second receiving end respectively; and performs power allocation on the first symbol subjected to constellation transformation and the second symbol subjected to constellation transformation respectively And superimposing to form a superimposed symbol; and transmitting the plurality of the superimposed symbols by interleaving the imaginary part and the real part;
  • the first receiving end receives the signal sent by the transmitting end and performs deinterleaving of the imaginary part and the real part; if the modulation mode of the second receiving end is unknown, the second symbol is used as interference, based on the The constellation used by the first symbol demodulates and decodes the first symbol; in the case where the modulation mode of the second receiving end is known, a composite constellation pair formed based on the superposition of the first symbol and the second symbol Decoding and decoding the first symbol;
  • a second receiving end receiving a signal sent by the transmitting end, and performing deinterleaving of the imaginary part and the real part;
  • the composite constellation formed by superposing the first symbol and the second symbol demodulates and decodes the second symbol.
  • the beneficial effect of the embodiment of the present invention is that the transmitting end separately performs constellation transformation on the first symbol transmitted to the first receiving end and the second symbol transmitted to the second receiving end, performs power allocation and superposition to form a superimposed symbol;
  • the superimposed symbols perform interleaving of the imaginary part and the real part.
  • FIG. 1 is a schematic diagram of an information transmission method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of superimposing symbol mapping to a time-frequency resource grid when virtual real interleaving is not performed;
  • FIG. 3 is a schematic diagram of shifting an imaginary part of a superimposed symbol according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a constellation of superimposed symbols after constellation transformation according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of another constellation of superimposed symbols after constellation transformation according to Embodiment 1 of the present invention.
  • FIG. 7 is another schematic diagram of a constellation of superimposed symbols after constellation transformation according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic overall diagram of information transmission according to Embodiment 1 of the present invention.
  • Embodiment 9 is a schematic diagram showing performance comparison of Embodiment 1 of the present invention.
  • Figure 10 is another schematic diagram of performance comparison of Embodiment 1 of the present invention.
  • FIG. 11 is another schematic diagram of performance comparison of Embodiment 1 of the present invention.
  • Figure 12 is another schematic diagram of performance comparison of Embodiment 1 of the present invention.
  • Figure 13 is another schematic diagram of performance comparison of Embodiment 1 of the present invention.
  • Figure 14 is another schematic diagram of performance comparison of Embodiment 1 of the present invention.
  • Figure 16 is another schematic diagram of performance comparison of Embodiment 1 of the present invention.
  • Figure 19 is another schematic diagram of performance comparison of Embodiment 1 of the present invention.
  • Figure 20 is a schematic diagram of an information transmission apparatus according to Embodiment 2 of the present invention.
  • Figure 21 is another schematic diagram of an information transmission apparatus according to Embodiment 2 of the present invention.
  • Figure 22 is a block diagram showing the structure of a transmitting end according to Embodiment 2 of the present invention.
  • Figure 23 is a diagram showing the communication system of Embodiment 3 of the present invention.
  • FIG. 1 is a schematic diagram of an information transmission method according to an embodiment of the present invention. As shown in FIG. 1, the information transmission method includes:
  • Step 101 The transmitting end performs constellation conversion on the first symbol transmitted to the first receiving end and the second symbol transmitted to the second receiving end respectively.
  • Step 102 The transmitting end separately performs power allocation and superposition on the first symbol subjected to constellation transformation and the second symbol subjected to constellation transformation to form a superimposed symbol;
  • Step 103 The transmitting end performs interleaving of the imaginary part and the real part on the plurality of the superimposed symbols;
  • Step 104 The transmitting end sends the superimposed symbol that is subjected to virtual real interleaving.
  • the transmitting end may be a base station in the NOMA system
  • the first receiving end is a user equipment with poor channel conditions (hereinafter also referred to as a far user equipment)
  • the second receiving end is a user with better channel conditions.
  • Equipment hereinafter also referred to as near-user equipment
  • the present invention is not limited thereto, and may be applied to other application scenarios, for example.
  • the first symbol transmitted to the first receiving end may be rotated at a rotation angle of ⁇ 1 ; and the second symbol transmitted to the second receiving end may be rotated at a rotation angle of ⁇ 2 .
  • phase rotation angles ⁇ 1 , ⁇ 2 are respectively specified for the far user equipment and the near user equipment, and the symbols a i , b i are respectively transmitted for the far and near user equipments, and the following superposition forms are obtained:
  • N N symbols are continuously transmitted.
  • the manner of performing constellation transformation in step 101 is not limited thereto, and may be, for example, a conversion manner of obtaining a symmetrically distributed composite constellation as described later.
  • step 103 of the embodiment a plurality of superimposed symbols are interleaved between the imaginary part and the real part.
  • the real and imaginary parts of all symbols to be transmitted x 1 , x 2 , . . . , x N are interleaved.
  • the principle of interleaving should be as close as possible so that the real and imaginary parts belonging to the same x i undergo independent channel fading.
  • 2 to 4 show an example of an interleaving method taking a physical resource block as an example.
  • 2 is a schematic diagram of superimposed symbol mapping to a time-frequency resource grid when virtual real interleaving is not performed. As shown in FIG. 2, gray indicates the position of the reference signal and the control channel, and white indicates the data position at which the superimposed symbol can be mapped.
  • FIG. 3 is a schematic diagram of shifting an imaginary part of a superimposed symbol according to an embodiment of the present invention.
  • the real part of the data symbol is not interleaved, that is, the real position is unchanged.
  • the imaginary part of the data symbol is interleaved, and the interleaving manner is as shown in FIG.
  • cyclically shifting the imaginary part of the data symbol along with the reference signal in the time axis direction OFDM symbols where T represents the number of OFDM symbols after the physical downlink control channel (PDCCH, Physical Downlink Control Channel) is removed in the subframe, and is cyclically shifted in the frequency axis direction.
  • Subcarriers where F represents the total number of subcarriers occupied by the data region.
  • FIG. 4 is a schematic diagram of shifting the imaginary part of the superimposed symbol according to an embodiment of the present invention, showing the positional arrangement after cyclic shifting.
  • the imaginary part of the data symbol can be read out column by column in the order of the pre-frequency (the reference signal is not read), and the imaginary part of all the data symbols read out.
  • the grid matrix shown in FIG. 2 (except for the PDCCH region) is written column by column in the order of the first frequency, that is, the interleaving of the imaginary part of the transmitted symbol is completed.
  • the complex symbol composed of the original real part and the imaginary part after interleaving on each resource particle is an interleaved symbol, and OFDM symbol shaping and transmission can be performed.
  • the actual transmitted baseband signal model can be expressed as:
  • the relationship between i and k depends on the interleaving method used.
  • the interleaving process causes the real and imaginary parts of x i to undergo independent channel fading, since the real and imaginary parts of x i contain all the information of a i , b i real imaginary part respectively, which is equivalent to transmitting a on the independent channel.
  • Two copies of i , b i information, and therefore have a diversity effect, can further obtain diversity gain on the basis of the traditional NOMA, and improve data demodulation performance.
  • n R , n I represent Gaussian white noise.
  • the virtual real interlace is schematically illustrated by taking the real position unchanged and the imaginary part shifting as an example, but the present invention is not limited thereto.
  • the real position may be changed, and it is only necessary to follow the principle of interleaving such that the real and imaginary parts belonging to the same x i undergo independent channel fading.
  • the second symbol before the second transmission of the second symbol transmitted to the second receiving end by the transmitting end, the second symbol may be transformed, so that each constellation point in the composite constellation formed by the superimposed symbol corresponds to The bits satisfy the Gray mapping.
  • the Gray mapping transformation may be performed on the constellation point of the far-end user equipment, so that the composite constellation formed by the final superimposed symbol also satisfies the Gray mapping, that is, the adjacent constellation points in the composite constellation only exist.
  • the Gray mapping may be performed on the constellation point of the far-end user equipment, so that the composite constellation formed by the final superimposed symbol also satisfies the Gray mapping, that is, the adjacent constellation points in the composite constellation only exist.
  • One bit difference which can lead to improved bit error rate performance.
  • the following uses the QPSK (Quadrature Phase Shift Keying) for the far-end user equipment, and the QPSK Gray map for the near-user equipment as an example, assuming that the near-user equipment uses the maximum likelihood receiver to demodulate the data.
  • QPSK Quadrature Phase Shift Keying
  • Figure 5 shows a composite constellation formed by superposition under non-Gray mapping.
  • FIG. 6 is another schematic diagram of a constellation of superimposed symbols after constellation transformation according to an embodiment of the present invention, showing a superimposed symbol constellation under Gray mapping. It is worth noting that FIG. 6 only shows the case of transmitting 2 bits to the near-user equipment, and the case of 4 bits including the far-user equipment is not shown, but this shifts from 2 bits to 4 The fact that the bits satisfy the Gray mapping is clear to those skilled in the art.
  • the first symbol transmitted to the first receiving end may be rotated in a phase with a rotation angle of ⁇ 1 ; and for the second symbol transmitted to the second receiving end, according to the
  • the constellation points corresponding to the first symbol respectively perform phase rotation based on ⁇ 1 and ⁇ 2 such that the constellation points in the complex constellation formed by the superimposed symbols are symmetrically distributed.
  • the phase rotation based on ⁇ 1 and ⁇ 2 may include a rotation angle: ⁇ 1 + ⁇ 2 , ⁇ 1 - ⁇ 2 , ⁇ 1 + ⁇ - ⁇ 2 , ⁇ 1 + ⁇ + ⁇ 2 .
  • symmetric rotation can also be used.
  • QPSK constellations Take two QPSK constellations as an example.
  • the constellation rotation of the far user device can be expressed as (the subscript is ignored here):
  • the constellation rotation of the near user device can be expressed as:
  • the rotation angle of the near-user device is different according to the symbol of the far-user device superimposed thereon, and is symmetrically rotated with respect to the constellation point of the rotated far-user device.
  • FIG. 7 is another constellation diagram of superimposed symbols after constellation transformation according to an embodiment of the present invention, showing a case of a composite constellation formed by superimposing symbols that do not satisfy the Gray mapping but satisfy the symmetric rotation. As shown in Fig. 7, the composite constellation is symmetrical about the aa line and is symmetric about the bb line.
  • the above illustrates schematically the case where the composite constellation formed by the superimposed symbols satisfies the Gray mapping and/or satisfies the symmetric distribution, wherein the second symbol may be appropriately transformed according to the constellation of the first symbol to cause the The composite constellation satisfies the Gray mapping and/or satisfies the symmetric distribution.
  • QPSK has been described as an example.
  • the present invention is not limited thereto, and other modulation methods such as 16QAM and 64QAM are also applicable, and a specific embodiment can be determined based on actual conditions.
  • the de-interleaving of the imaginary part and the real part may be performed.
  • the modulation mode of the second receiving end is unknown
  • the first symbol is demodulated and decoded based on the constellation used by the first symbol; in the case where the modulation mode of the second receiving end is known, The first symbol is demodulated and decoded based on a composite constellation formed by the first symbol and the second symbol superposition.
  • the second symbol may be demodulated and decoded based on the composite constellation formed by the first symbol and the second symbol superposition.
  • FIG. 8 is a general schematic diagram of information transmission according to an embodiment of the present invention, showing a case where information is transmitted to a first receiving end and a second receiving end at a transmitting end, and a received signal is processed at a receiving end respectively.
  • a first receiving end and a second receiving end at a transmitting end
  • a received signal is processed at a receiving end respectively.
  • the transmitting end may perform constellation transformation on the first symbol and the second symbol, respectively, and perform virtual real interleaving on the superimposed symbols. Furthermore, a Gray map transform and/or a symmetric constellation rotation may also be performed for the second symbol such that the composite constellation formed by the superimposed symbols satisfies the Gray map and/or satisfies the symmetric distribution.
  • the rotation angles ⁇ 1 and ⁇ 2 at which the constellation transformation is performed may be determined based on the symbol error rate.
  • the performance of the near-user equipment is optimized by selecting the appropriate angle of rotation.
  • P (z (i) ⁇ z (k)) represents the pairwise error probability, i.e., at the transmission z (i), the probability of wrongly to z (k) can be further written as:
  • this method can be used to optimize the performance of remote user equipment.
  • the upper bound of the symbol error rate at this time is:
  • FIG. 9 is a schematic diagram of performance comparison of an embodiment of the present invention, showing performance comparison between the method of the present invention and a conventional NOMA under Rayleigh channel conditions.
  • the normal in the figure represents the NOMA that does not use Gray mapping, which is called the traditional NOMA; the Gray represents the NOMA that uses the Gray mapping, which is called the Gray mapping NOMA; the Gray 16, 30 represents the method of optimizing the performance of the near-user equipment in the present invention; Gray 15, 0 represents a method of optimizing a far-user device in the present invention.
  • the near-user equipment can obtain about 1.2 dB performance gain, while This method does not cause performance loss to the far user equipment.
  • Figure 10 is another schematic diagram of performance comparison of an embodiment of the present invention. As shown in FIG. 10, if the performance of the remote user equipment is selected to be optimized, that is, using the Gray 15,0 method, the far user equipment can obtain about 1 dB performance gain for the 0.1 error block rate, and the near-user equipment suffers only a small performance loss. , about 0.2dB.
  • FIG. 11 is another schematic diagram of performance comparison of an embodiment of the present invention
  • FIG. 12 is another schematic diagram of performance comparison of an embodiment of the present invention.
  • Figures 11 and 12 show simulation results for ETU 3km/h channel conditions, and the performance gains are similar.
  • FIG. 13 is another schematic diagram of performance comparison of an embodiment of the present invention
  • FIG. 14 is another schematic diagram of performance comparison of an embodiment of the present invention.
  • Figures 13 and 14 show simulation results for EPA 120 km/h channel conditions.
  • FIG. 15 is another schematic diagram of performance comparison of an embodiment of the present invention
  • FIG. 16 is another schematic diagram of performance comparison of an embodiment of the present invention.
  • Figures 15 and 16 show simulation results for EPA 3 km/h channel conditions.
  • the method of the present invention can provide significant significance when channel conditions tend to be independent and distributed with Rayleigh channels, such as ETU 3km/h frequency selective channel or EPA 120km/h fast fading channel. Performance gain (on the order of 1 dB). When the channel conditions tend to be additive white Gaussian noise channels, such as EPA 3 km/h flat, slow fading channels, the gain tends to decrease or disappear, and the method of the present invention has approximately the same performance as the Gray Map NOMA.
  • the equivalent transceiving model can be written as follows (the subscript is omitted if no confusion is caused):
  • the upper bound of the symbol error rate under the Rayleigh channel can be calculated as shown in the following equation:
  • the optimal value is obtained under the condition that the far-end user equipment is unknown to the modulation mode of the near-user equipment (the optimal is the optimal value in the minimum sense of the upper bound of the false symbol rate, and the minimum resolution power of the angle is 1 degree)
  • the traditional NOMA method, (15, 0) represents an arbitrary set of rotation angles.
  • the optimized rotation angle (45, 0) enables better performance than conventional NOMA and arbitrary rotation scenarios.
  • the near-user device uses Gray mapping and uses symmetric rotation.
  • the near-user device does not use Gray mapping and symmetric rotation is not used.
  • the near-user device does not use Gray mapping and uses symmetric rotation.
  • FIG. 18 is another schematic diagram of performance comparison of an embodiment of the present invention
  • FIG. 19 is another schematic diagram of performance comparison of an embodiment of the present invention.
  • Figure 18 and Figure 19 show the simulation results under Rayleigh channel conditions. As shown in Figure 18 and Figure 19, it can be seen that when using this set of rotation angles, the far-near and near-user devices have a performance of about 0.5 compared to the Gray-mapped NOMA. dB gain.
  • the information transmission method may further include: the transmitting end sends the first configuration information to the first receiving end; the first configuration information includes a rotation angle ⁇ 1 and ⁇ 2 for performing the constellation transformation. And a modulation manner of the second receiving end and information of whether the composite constellation formed by the superimposed symbols is symmetrically distributed; or the first configuration information includes a rotation angle ⁇ 1 of the constellation transformation;
  • the transmitting end sends the second configuration information to the second receiving end;
  • the second configuration information includes a rotation angle ⁇ 1 and ⁇ 2 for performing the constellation transformation, and whether the composite constellation formed by the superimposed symbol satisfies the information of the Gray mapping And information on whether the composite constellation formed by the superimposed symbols is symmetrically distributed.
  • the base station may use signaling to configure whether the user equipment uses constellation transformation according to actual conditions.
  • the base station can use signaling to configure and notify the near-user equipment whether to use Gray mapping.
  • the base station can use signaling to configure and notify the near-user device whether to use symmetric rotation.
  • the signaling may include dynamic signaling (eg, PDCCH) or semi-static signaling (eg, radio resource control RRC).
  • DCI Downlink Control Information
  • This field is used to indicate if a constellation transform is used. For example, “1” indicates that a constellation transformation is used, and the specific value of the rotation angle is specified by the following rotation angle field. “0” means that the constellation transformation is not used, and the subsequent rotation angle field is reserved and does not work.
  • This field is used to indicate the pair of rotation angles used, namely ( ⁇ 1 , ⁇ 2 ), where ⁇ 1 , ⁇ 2 represent the angle of rotation of the far user device and the near user device, respectively.
  • n bits can indicate 2 n kinds of rotation angle combinations, ie
  • the 2 n kinds of rotation angle combinations can be defined in the standard in advance, for example, in the form of a lookup table, and thus can be known by both the transmitting and receiving parties.
  • the 2 n kinds of rotation angle combinations may be configured to the user equipment in a semi-static manner through RRC signaling, and then one of the angle combinations is dynamically selected through the rotation angle field of the DCI format x signaling.
  • This field is used to indicate whether the current user equipment is a far user equipment or a near user equipment. Based on this field, the user equipment can know the type of its own in the NOMA scheduling pair, so that it is possible to choose to use the correct rotation angle and power coefficient.
  • This field is used to indicate the power allocation coefficient, that is, ( ⁇ 1 , ⁇ 2 ), where ⁇ 1 , ⁇ 2 represent the power coefficients of the far-user device and the near-user device, respectively, and the coefficient can also be defined as the power of the data symbol and the reference signal.
  • the reference signal may be a common reference signal (CRS, Common Reference Signal) or a demodulation reference signal (DMRS, DeModulation Reference Signal).
  • DMRS Demodulation reference signal
  • m bits can indicate 2 m power allocation combinations, ie
  • the 2 m power allocation combination can be defined in the standard in advance, for example, in the form of a lookup table, and thus can be known by both the transmitting and receiving parties.
  • the 2 m power allocation combination may be configured to the user equipment in a semi-static manner through RRC signaling, and then one of the power allocation combinations is dynamically selected through the power coefficient field of the DCI format x signaling.
  • MCS Far User Equipment Modulation Coding Scheme
  • Each user equipment may have two transport blocks (TBs), and each transport block corresponds to one modulation and coding policy field.
  • the user equipment selects its own modulation and coding strategy according to the far and near user equipment type indication fields.
  • the above only describes the key fields in the DCI format x for supporting the NOMA function, and other functional fields (such as carrier indication, resource block allocation, etc.) can reuse the formats in other DCIs already existing in the standard. , will not repeat them here.
  • the above fields are not required, and only some of the fields may be included in the DCI format x.
  • DCI format y another PDCCH signaling format (DCI format y) is given below, which can re-use the power allocation indication field to indicate the rotation angle, and thus has less signaling overhead.
  • DCI format y the following information is transmitted by DCI format y:
  • the function is the same as described in the previous DCI format x. It is worth noting that the n-bit rotation angle field is reduced compared to the DCI format x, that is, the field is not used alone to indicate the rotation angle, but the m-bit field of the power coefficient is reused to indicate the rotation angle.
  • DCI format y for 2 m power allocation combinations, there is a 2 m rotation angle combination corresponding to one-to-one, so the m-bit field uniquely determines the rotation angle used while indicating the determination of the power coefficient. , both the indication of the power distribution result and the indication of the rotation angle are realized.
  • this field is used to indicate both the power distribution coefficient ( ⁇ 1 , ⁇ 2 ) and the rotation angle ( ⁇ 1 , ⁇ 2 ).
  • m bits can indicate 2 m power allocation combinations, ie
  • the 2 m power allocation combination and the rotation angle combination can be defined in the standard in advance, for example, in the form of a lookup table, and thus can be known by both the transmitting and receiving parties.
  • a combination of the two kinds of power distribution and rotating angle m may be configured by RRC signaling in semi-static manner to a user equipment, and dynamically select one combination of power allocation by the power factor and the rotary signaling DCI format y / rotation angle field Angle combination.
  • the DCI format x and DCI format y are taken as an example to describe the dynamic signaling configuration.
  • the present invention is not limited thereto, and a specific implementation manner may also be determined according to a specific scenario.
  • the set of parameters can be fixed to a specific value, so that it is known by the base station and the user equipment, and no signaling configuration is needed at this time.
  • the set of parameters may also be configured by the base station to use the signaling to configure the far and near user equipments.
  • the near-user equipment For the near-user equipment to use the maximum likelihood method for demodulation, it is required to signal to the near-user device two rotation angle information (near the rotation angle of the user equipment and the rotation angle of the far user equipment), The signaling may be used to indicate whether the near-user device uses Gray mapping and whether the near-user device uses symmetric rotation.
  • the far-user device For the demodulation of the far-user device in the modulation mode of the known near-user device, it is required to signal the remote user device two rotation angle information (near the rotation angle of the user device and the rotation angle of the far user device), and need to be close to the user.
  • the modulation mode of the device is notified to the remote user device, and the near user device can be notified to the remote user device by using symmetric rotation.
  • the transmitting end performs constellation transformation on the first symbol transmitted to the first receiving end and the second symbol transmitted to the second receiving end, respectively, and performs power allocation and superposition to form a superimposed symbol;
  • the superimposed symbols are interleaved between the imaginary part and the real part.
  • An embodiment of the present invention provides an information transmission apparatus, which is configured at a transmitting end of a NOMA system.
  • the embodiment of the present invention corresponds to the information transmission method of Embodiment 1, and the same content is not described again.
  • FIG. 20 is a schematic diagram of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 20, the information transmission apparatus 2000 includes:
  • the constellation transform unit 2001 performs constellation conversion on the first symbol transmitted to the first receiving end and the second symbol transmitted to the second receiving end respectively;
  • the symbol superimposing unit 2002 performs power allocation and superposition of the first symbol subjected to constellation transformation and the second symbol subjected to constellation transformation to form a superimposed symbol;
  • the virtual real interleaving unit 2003 performs interleaving of the imaginary part and the real part on the plurality of superimposed symbols
  • the information transmitting unit 2004 transmits the superimposed symbols that have been subjected to virtual real interleaving.
  • FIG. 21 is another schematic diagram of an information transmission apparatus according to an embodiment of the present invention.
  • the information transmission apparatus 2100 includes: a constellation transformation unit 2001, a symbol superposition unit 2002, a virtual real interleaving unit 2003, and The information transmitting unit 2004 is as described above.
  • the information transmission device 2100 may further include:
  • the information transformation unit 2101 transforms the second symbol transmitted to the second receiving end such that bits corresponding to the constellation points in the composite constellation formed by the superimposed symbols satisfy the Gray mapping.
  • the constellation transformation unit 2001 may further include: a first rotation unit that rotates the first symbol transmitted to the first receiving end by a phase rotation of an angle of ⁇ 1 . Furthermore, the constellation transformation unit 2001 may further include: a second rotation unit or a third rotation unit.
  • the second rotation unit rotates the second symbol transmitted to the second receiving end by a phase rotation of ⁇ 2 ; the third rotation unit transmits the second symbol to the second receiving end according to the second rotation unit.
  • the constellation points corresponding to the first symbol respectively perform phase rotation based on ⁇ 1 and ⁇ 2 such that constellation points in the composite constellation formed by the superimposed symbols are symmetrically distributed.
  • the phase rotation based on ⁇ 1 and ⁇ 2 may include the following rotation angles: ⁇ 1 + ⁇ 2 , ⁇ 1 - ⁇ 2 , ⁇ 1 + ⁇ - ⁇ 2 , ⁇ 1 + ⁇ + ⁇ 2 ; however, the invention is not limited this.
  • the information transmission device 2100 may further include:
  • the angle determining unit 2102 determines the rotation angles ⁇ 1 and ⁇ 2 at which the constellation transformation is performed based on the symbol error rate.
  • the power ratio of the first receiving end and the second receiving end is 4:1, and the angle value of the optimized selection is given.
  • the optimized angle values can be obtained using the methods described above.
  • the information transmission device 2100 may further include:
  • the first configuration unit 2103 is configured to send first configuration information to the first receiving end, where the first configuration information includes rotation angles ⁇ 1 and ⁇ 2 for performing the constellation transformation, and modulation modes and locations of the second receiving end. Determining whether the composite constellation formed by the superimposed symbols is symmetrically distributed; or the first configuration information includes a rotation angle ⁇ 1 of the constellation transformation;
  • the second configuration unit 2104 sends second configuration information to the second receiving end; the second configuration information includes rotation angles ⁇ 1 and ⁇ 2 for performing the constellation transformation, and whether the composite constellation formed by the superimposed symbols satisfies The information of the Gray map and the information of whether the composite constellation formed by the superimposed symbols is symmetrically distributed.
  • the first configuration information and/or the second configuration information may be configured by dynamic signaling.
  • the dynamic signaling includes the following information: a constellation transformation indication, a rotation angle information, a user equipment type indication, a power coefficient information, a user equipment modulation and coding policy, or includes the following information: a constellation transformation indication, a user equipment type indication, and a rotation angle. /power coefficient information, user equipment modulation and coding strategy.
  • the embodiment further provides a transmitting end configured with the information transmission device 2000 or 2100 as described above.
  • FIG. 22 is a schematic structural diagram of a transmitting end according to an embodiment of the present invention.
  • the transmitting end 2200 can include a central processing unit (CPU) 200 and a memory 210; the memory 210 is coupled to the central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the transmitting end 2200 can implement the information transmission method as described in Embodiment 1.
  • the central processing unit 200 can be configured to implement the functions of the information transmission device 2000 or 2100.
  • the transmitting end 2200 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It should be noted that the transmitting end 2200 does not necessarily have to include all the components shown in FIG. 22; in addition, the transmitting end 2200 may further include components not shown in FIG. 22, and reference may be made to the prior art.
  • the transmitting end performs constellation transformation on the first symbol transmitted to the first receiving end and the second symbol transmitted to the second receiving end, respectively, and performs power allocation and superposition to form a superimposed symbol;
  • the superimposed symbols are interleaved between the imaginary part and the real part.
  • the embodiment of the invention further provides a communication system configured to perform NOMA transmission.
  • a communication system configured to perform NOMA transmission.
  • the same content of the embodiment of the present invention and the first and second embodiments will not be described again.
  • 23 is a schematic diagram of a communication system according to an embodiment of the present invention, As shown in FIG. 23, the communication system 2300 includes:
  • the transmitting end 2301 performs constellation transformation on the first symbol transmitted to the first receiving end 2302 and the second symbol transmitted to the second receiving end 2303, respectively; the first symbol subjected to constellation transformation and the second symbol subjected to constellation transformation The symbols are separately allocated and superimposed to form a superimposed symbol; and a plurality of the superimposed symbols are interleaved by the imaginary part and the real part, and then transmitted;
  • the first receiving end 2302 receives the signal sent by the transmitting end 2301 and performs deinterleaving of the imaginary part and the real part; if the modulation mode of the second receiving end 2303 is unknown, the second symbol is used as the interference. Demodulating and decoding the first symbol based on a constellation used by the first symbol; and forming a modulation mode of the second receiving end, forming based on the first symbol and the second symbol superimposed a composite constellation demodulating and decoding the first symbol;
  • a second receiving end 2303 receiving a signal sent by the transmitting end 2301 and performing deinterleaving of the imaginary part and the real part; and demodulating the second symbol based on the composite constellation formed by the superposition of the first symbol and the second symbol And decoding.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a transmitting end, the program causes a computer to execute the information transmission method described in Embodiment 1 in the transmitting end.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to execute the information transmission method described in Embodiment 1 in a transmitting end.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Abstract

一种信息传输装置、方法以及通信系统。所述信息传输方法包括:对传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换;对进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并叠加而形成叠加符号;以及将多个所述叠加符号进行虚部和实部的交织后进行发送。由此,可以在传统NOMA的基础上进一步提升用户设备的数据解调性能。

Description

信息传输装置、方法以及通信系统 技术领域
本发明涉及通信技术领域,特别涉及一种基于非正交多址接入(NOMA,Non Orthogonal Multiple Access)系统的信息传输装置、方法以及通信系统。
背景技术
第五代(5G)移动通信系统的需求之一是支持比4G更高的系统容量(例如1000倍)以及比4G更多的终端连接数目(例如100倍)。之前历代移动通信均采用正交多址技术,研究表明,非正交多址技术能够实现比正交多址技术更大的容量域,这一理论指导使得非正交多址技术成为5G研究的关键技术之一。
实现非正交的方式之一是功率域非正交,其代表性技术NOMA目前已经被纳入LTE-A Release 13的讨论范围。NOMA技术基于叠加码理论,发送端发送叠加形成的复合星座符号,信道条件较差的用户设备仅能解调自身数据,而信道条件较好的用户设备能够进一步细分星座。对于发送端使用单天线情形,NOMA技术理论上能够实现下行广播信道和上行多址信道的全部容量域。对于NOMA下行传输,其发送信号为下述叠加符号形式:
Figure PCTCN2015089448-appb-000001
其中a表示发送给信道条件较差的用户设备(以下简称为远用户设备或第一接收端)的符号,b表示发送给信道条件较好的用户设备(以下简称为近用户设备或第二接收端)的符号,Es表示叠加符号的总能量或总功率,P1,P2表示功率分配系数,满足P1+P2=1条件。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
本发明实施例提供了一种信息传输装置、方法以及通信系统。进一步提升用户设 备的数据解调性能。
根据本发明实施例的第一个方面,提供一种信息传输装置,配置于非正交多址接入系统中,所述信息传输装置包括:
星座变换单元,对传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换;
符号叠加单元,对进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并叠加而形成叠加符号;
虚实交织单元,将多个所述叠加符号进行虚部和实部的交织;以及
信息发送单元,发送进行了虚实交织的所述叠加符号。
根据本发明实施例的第二个方面,提供一种信息传输方法,应用于非正交多址接入系统中,所述信息传输方法包括:
发送端对传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换;
对进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并叠加而形成叠加符号;
将多个所述叠加符号进行虚部和实部的交织;以及
发送进行了虚实交织的所述叠加符号。
根据本发明实施例的第三个方面,提供一种通信系统,配置为进行非正交多址接入,所述通信系统包括:
发送端,对传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换;对进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并叠加而形成叠加符号;以及将多个所述叠加符号进行虚部和实部的交织后进行发送;
第一接收端,接收所述发送端发送的信号并进行虚部和实部的解交织;在未知所述第二接收端的调制方式的情况下,将所述第二符号作为干扰,基于所述第一符号所使用的星座对所述第一符号进行解调及解码;在已知所述第二接收端的调制方式的情况下,基于所述第一符号和第二符号叠加形成的复合星座对所述第一符号进行解调及解码;
第二接收端,接收所述发送端发送的信号并进行虚部和实部的解交织;基于所述 第一符号和第二符号叠加形成的复合星座对所述第二符号进行解调及解码。
本发明实施例的有益效果在于:发送端将传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换,进行功率分配并叠加而形成叠加符号;然后将多个所述叠加符号进行虚部和实部的交织。由此,可以在传统NOMA的基础上进一步提升用户设备的数据解调性能。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘制的,而只是为了示出本发明的原理。为了便于示出和描述本发明的一些部分,附图中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本发明实施例1的信息传输方法的一示意图;
图2是不进行虚实交织时叠加符号映射到时频资源栅格的一示意图;
图3是本发明实施例1的将叠加符号的虚部进行移位的一示意图;
图4是本发明实施例1的将叠加符号的虚部进行移位后的一示意图;
图5是本发明实施例1的经过星座变换后叠加符号的一星座示意图;
图6是本发明实施例1的经过星座变换后叠加符号的另一星座示意图;
图7是本发明实施例1的经过星座变换后叠加符号的另一星座示意图;
图8是本发明实施例1的进行信息传输的一整体示意图;
图9是本发明实施例1的性能比较的一示意图;
图10是本发明实施例1的性能比较的另一示意图;
图11是本发明实施例1的性能比较的另一示意图;
图12是本发明实施例1的性能比较的另一示意图;
图13是本发明实施例1的性能比较的另一示意图;
图14是本发明实施例1的性能比较的另一示意图;
图15是本发明实施例1的性能比较的另一示意图;
图16是本发明实施例1的性能比较的另一示意图;
图17是本发明实施例1的性能比较的另一示意图;
图18是本发明实施例1的性能比较的另一示意图;
图19是本发明实施例1的性能比较的另一示意图;
图20是本发明实施例2的信息传输装置的一示意图;
图21是本发明实施例2的信息传输装置的另一示意图;
图22是本发明实施例2的发送端的一构成示意图;
图23是本发明实施例3的通信系统的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
实施例1
本发明实施例提供一种信息传输方法,应用于NOMA系统中。图1是本发明实施例的信息传输方法的一示意图,如图1所示,所述信息传输方法包括:
步骤101,发送端将传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换;
步骤102,发送端将进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并叠加而形成叠加符号;
步骤103,发送端将多个所述叠加符号进行虚部和实部的交织;以及
步骤104,发送端发送进行了虚实交织的所述叠加符号。
在本实施例中,发送端可以为NOMA系统中的基站,第一接收端为信道条件较差的用户设备(以下也可称为远用户设备),第二接收端为信道条件较好的用户设备(以下也可称为近用户设备)。但本发明不限于此,例如还可以适用于其他的应用场景。
值得注意的是,图1中仅示意性示出了与本发明相关的几个步骤,发送信息的其他步骤(例如信道编码、星座调制、资源映射以及正交频分复用符号调制等等)可以参考NOMA及正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)的相关技术,此处不再赘述。
在本实施例的步骤101中,可以将传输给第一接收端的第一符号进行旋转角度为θ1的相位旋转;以及将传输给第二接收端的第二符号进行旋转角度为θ2的相位旋转。
例如,为远用户设备和近用户设备分别指定相位旋转角度θ12,对于远、近用户设备分别发送符号ai,bi情形,得到如下叠加形式:
Figure PCTCN2015089448-appb-000002
其中i=1,...,N表示连续发送N个符号。
这里假设复平面内顺时针旋转,即乘以e-jθ,也可以假设逆时针旋转,即乘以
Figure PCTCN2015089448-appb-000003
此时
Figure PCTCN2015089448-appb-000004
本文中将统一使用e-jθ旋转模型进行描述,在此基础上,使用
Figure PCTCN2015089448-appb-000005
旋转时的角度也易于得出。
值得注意的是,步骤101中进行星座变换的方式不限于此,例如还可以是如后所述的得到对称分布的复合星座的变换方式。
在本实施例的步骤103中,将多个叠加符号进行虚部和实部的交织。
例如,对所有待发送符号x1,x2,…,xN的实部、虚部进行交织。交织原则应尽量遵循使得属于同一个xi的实部和虚部经历独立的信道衰落。
图2至图4示出了以一个物理资源块为例的一种交织方法示意情况。其中,图2是不进行虚实交织时叠加符号映射到时频资源栅格的一示意图,如图2所示,灰色表示参考信号及控制信道的位置,白色表示叠加符号可以映射的数据位置。
图3是本发明实施例的将叠加符号的虚部进行移位的一示意图。在具体实施时,数据符号的实部不做交织,即实部位置不变。对数据符号的虚部进行交织,交织方式如图3所示。
例如将数据符号的虚部连同参考信号在内,在时间轴方向循环移位
Figure PCTCN2015089448-appb-000006
个OFDM符号,其中T表示子帧内除去物理下行控制信道(PDCCH,Physical Downlink Control Channel)后的OFDM符号个数,在频率轴方向循环移位
Figure PCTCN2015089448-appb-000007
个子载波,其中F表示数据区域所占的总子载波个数。
图4是本发明实施例的将叠加符号的虚部进行移位后的一示意图,示出了经过循环移位后的位置排列情况。
在本实施例中,对图4中的栅格矩阵可以按照先频后时的顺序逐列读出数据符号的虚部(参考信号不读出),再将读出的所有数据符号的虚部按照先频后时的顺序逐列写入图2所示的栅格矩阵(PDCCH区域除外),即完成对发送符号虚部的交织。此时每个资源粒子上由原实部和交织后的虚部所组成的复数符号即为交织后符号,可以进行OFDM符号成形及发送。实际发送的基带信号模型可表示为:
χi=Re{xi}+j·Im{xk}
其中i和k的关系取决于所使用的交织方式。交织过程使得xi的实部和虚部经历独立的信道衰落,由于xi的实部和虚部分别含有ai,bi实虚部的全部信息,相当于在独立的信道上发送了ai,bi信息的两个副本,因此具有分集效果,能够在传统NOMA基础上进一步获得分集增益,提升数据解调性能。
假设交织前进行了星座旋转的叠加符号为:
Figure PCTCN2015089448-appb-000008
这里省略了下标。令
Figure PCTCN2015089448-appb-000009
表示叠加形成的复合星座点符号,由于实虚交织,复合星座z的实部和虚部经历独立的信道衰落,将z的实部表示为zR,zR经历的信道表示为hR;同理,将z的虚部表示为zI,zI经历的信道表示为hI。将 各自对应的接收信号表示为yR,yI,则有:
Figure PCTCN2015089448-appb-000010
Figure PCTCN2015089448-appb-000011
其中nR,nI表示高斯白噪声。
值得注意的是,以上以实部位置不变而虚部进行移位为例对虚实交织进行了示意性说明,但本发明不限于此。例如也可以使得实部位置发生变化,只需要尽量遵循使得属于同一个xi的实部和虚部经历独立的信道衰落这样的交织原则即可。
在本实施例中,在发送端对传输给第二接收端的第二符号进行星座变换之前,还可以对所述第二符号进行变换,使得所述叠加符号所形成的复合星座中各星座点对应的比特满足格雷映射。
例如,对于近用户设备的数据传输,可以在远用户设备的星座点基础上进行格雷映射变换,使得最终叠加符号所形成的复合星座也满足格雷映射,即复合星座中的相邻星座点只存在一比特差异,从而能够带来误比特率性能提升。
下面以远用户设备使用正交相移键控(QPSK,Quadrature Phase Shift Keying),近用户设备使用QPSK格雷映射为例进行阐述,假设近用户设备使用最大似然接收机解调数据。
图5是本发明实施例的经过星座变换后叠加符号的一星座示意图,示出了功率分配为远用户设备:近用户设备=4:1的条件下获得的经过旋转后的复合星座的情况。如图5所示,图中z(i),i=1,…,16表示叠加形成的复合星座的16个星座点。图5示出了非格雷映射下叠加形成的复合星座。
图6是本发明实施例的经过星座变换后叠加符号的另一星座示意图,示出了格雷映射下的叠加符号星座的情况。值得注意的是,图6仅示出了传输给近用户设备的2个比特的情况,未示出包含远用户设备在内的4个比特的情况,但这种从2个比特变换到4个比特并满足格雷映射的事实,对于本领域的技术人员来说是清楚的。
在本实施例的步骤101中,还可以将传输给第一接收端的所述第一符号进行旋转角度为θ1的相位旋转;以及对于传输给第二接收端的所述第二符号,根据所述第一符号所对应的星座点分别进行基于θ1和θ2的相位旋转,使得所述叠加符号形成的复合星 座中的星座点呈对称分布。具体地,所述基于θ1和θ2的相位旋转可以包括如下旋转角度:θ12,θ12,θ1+π-θ2,θ1+π+θ2
例如,对于近用户设备的星座变换,也可以使用对称旋转的方式。以两个QPSK星座叠加为例,
远用户设备的星座旋转可以表示为(这里忽略下标):
Figure PCTCN2015089448-appb-000012
近用户设备的星座旋转可以表示为:
Figure PCTCN2015089448-appb-000013
其中
Figure PCTCN2015089448-appb-000014
为QPSK星座点。
即近用户设备的旋转角度根据与其叠加的远用户设备的符号不同而不同,相对于旋转后的远用户设备的星座点呈对称旋转。
图7是本发明实施例的经过星座变换后叠加符号的另一星座示意图,示出了不满足格雷映射但满足对称旋转的叠加符号所形成的复合星座的情况。如图7所示,复合星座关于aa线对称,同时关于bb线对称。
值得注意的是,以上示意性说明了所述叠加符号形成的复合星座满足格雷映射和/或满足对称分布的情况,其中可以根据第一符号的星座,对第二符号进行适当变换而使得所述复合星座满足格雷映射和/或满足对称分布。
此外,上述说明中以QPSK为例进行了说明,但本发明不限于此,对于其他的调制方式例如16QAM、64QAM同样适用,可以根据实际情况确定具体的实施方式。
在本实施例中,在第一接收端和第二接收端接收到所述发送端发送的信号后,可以进行虚部和实部的解交织。对于第一接收端,在未知所述第二接收端的调制方式的 情况下,可以将所述第二符号作为干扰,基于所述第一符号所使用的星座对所述第一符号进行解调及解码;在已知所述第二接收端的调制方式的情况下,基于所述第一符号和第二符号叠加形成的复合星座对所述第一符号进行解调及解码。对于第二接收端,可以基于所述第一符号和第二符号叠加形成的复合星座对所述第二符号进行解调及解码。
图8是本发明实施例的进行信息传输的一整体示意图,示出了在发送端针对发送给第一接收端和第二接收端的信息进行处理的情况,以及在接收端分别处理接收到信号的情况。
如图8所示,发送端可以分别对第一符号和第二符号进行星座变换,并且对叠加符号进行虚实交织。此外,对于第二符号还可以进行格雷映射变换和/或对称星座旋转,使得所述叠加符号形成的复合星座满足格雷映射和/或满足对称分布。
在本实施例中,可以基于误符号率确定进行所述星座变换的旋转角度θ1和θ2
下面以第一接收端与第二接收端分配的功率比为4:1为例,给出优化选取角度值的方法。对于其他功率分配,可以沿用该方法获得优化角度。
在一个实施方式中,在所述叠加符号形成的复合星座满足格雷映射但不满足对称分布的情况下,θ1=16°,θ2=30°,或者θ1=15°,θ2=0°,或者θ1=45°,θ2=0°。
在本实施方式中,基于等效收发模型
Figure PCTCN2015089448-appb-000015
可以使用误符号率上界表达式得到优化的旋转角度。
下面通过选择合适的旋转角度对近用户设备的性能进行优化。对于近用户设备的符号错误率,存在上界:
Figure PCTCN2015089448-appb-000016
其中
Γ(1)=Γ(5)=Γ(9)=Γ(13)={1,5,9,13}
Γ(2)=Γ(6)=Γ(10)=Γ(14)={2,6,10,14}
Γ(3)=Γ(7)=Γ(11)=Γ(15)={3,7,11,15}
Γ(4)=Γ(8)=Γ(12)=Γ(16)={4,8,12,16}
P(z(i)→z(k))表示成对错误概率,即在发送z(i)的条件下,错判成z(k)的概率,可 以进一步写为:
Figure PCTCN2015089448-appb-000017
其中hR,hI分别表示实部、虚部经历的信道。
Figure PCTCN2015089448-appb-000018
表示已知信道时的条件错误概率,经计算可以写为:
Figure PCTCN2015089448-appb-000019
其中
Figure PCTCN2015089448-appb-000020
分别表示z(i)的实部和虚部。在瑞利信道条件下,并利用不等式erfc(x)≤exp(-x2),可以将P(z(i)→z(k))放缩为:
Figure PCTCN2015089448-appb-000021
从而最终可以得到
Figure PCTCN2015089448-appb-000022
由于
Figure PCTCN2015089448-appb-000023
均为旋转角度θ12的函数,所以选择使Pe上界最小的θ12作为旋转角度。利用数值方法,以1度作为最小分辨粒度,求得该旋转角度为θ1=16°,θ2=30°。
同理,可以使用该方法对远用户设备进行性能优化。
在本实施方式中,在远用户设备已知近用户设备的调制方式条件下,可以求得旋转角度为θ1=15°,θ2=0°。此时的误符号率上界表达式为:
Figure PCTCN2015089448-appb-000024
其中
Γ(1)=Γ(2)=Γ(3)=Γ(4)={1,2,3,4}
Γ(5)=Γ(6)=Γ(7)=Γ(8)={5,6,7,8}
Γ(9)=Γ(10)=Γ(11)=Γ(12)={9,10,11,12}
Γ(13)=Γ(14)=Γ(15)=Γ(16)={13,14,15,16}
其他符号定义与前述相同。
图9是本发明实施例的性能比较的一示意图,给出了瑞利信道条件下本发明的方法与传统NOMA的性能比较。图中normal表示未使用格雷映射的NOMA,称为传统NOMA;Gray表示使用了格雷映射的NOMA,称为格雷映射NOMA;Gray 16,30表示本发明中优化近用户设备性能的方法;Gray 15,0表示本发明中优化远用户设备的方法。
如图9所示,相比于格雷映射NOMA,如果选择对近用户设备的性能进行优化,即使用Gray 16,30方法,对于0.1误块率,近用户设备可以获得约1.2dB性能增益,同时该方法未对远用户设备造成性能损失。
图10是本发明实施例的性能比较的另一示意图。如图10所示,如果选择对远用户设备的性能进行优化,即使用Gray 15,0方法,对于0.1误块率,远用户设备可以获得约1dB性能增益,近用户设备仅受到很小性能损失,约0.2dB。
图11是本发明实施例的性能比较的另一示意图,图12是本发明实施例的性能比较的另一示意图。图11和图12示出了ETU 3km/h信道条件下的仿真结果,性能增益情况与之前类似。
图13是本发明实施例的性能比较的另一示意图,图14是本发明实施例的性能比较的另一示意图。图13和图14示出了EPA120km/h信道条件下的仿真结果。
图15是本发明实施例的性能比较的另一示意图,图16是本发明实施例的性能比较的另一示意图。图15和图16示出了EPA3km/h信道条件下的仿真结果。
通过对不同信道的广泛仿真测试,可以发现,当信道条件趋于独立同分布瑞利信道时,如ETU 3km/h频率选择性信道或EPA120km/h快衰落信道,本发明的方法能够提供较为显著的性能增益(约1dB量级)。当信道条件趋于加性白高斯噪声信道时,如EPA3km/h平坦、慢衰落信道,增益趋于减小或消失,本发明的方法具有与格雷映射NOMA近似相同的性能。
在本实施方式中,在远用户设备未知近用户设备的调制方式条件下,可以将等效收发模型写为如下形式(在不致引起混淆情况下,省略了下标):
Figure PCTCN2015089448-appb-000025
Figure PCTCN2015089448-appb-000026
其中
Figure PCTCN2015089448-appb-000027
Figure PCTCN2015089448-appb-000028
对于该模型,在远用户设备未知近用户设备的调制方式条件下,可以计算得到瑞利信道下的误符号率上界,如下式所示:
Figure PCTCN2015089448-appb-000029
其中
Figure PCTCN2015089448-appb-000030
对于该误符号率上界,在远用户设备未知近用户设备的调制方式的条件下,求得最优(最优是指使误符号率上界最小意义下的最优,且角度最小分辨力度为1度)旋转角度为θ1=45°,θ2=0°。
图17是本发明实施例的性能比较的另一示意图,给出了采用θ1=45°,θ2=0°的误符号率曲线,与之对比的两条曲线,(0,0)表示传统NOMA方法,(15,0)表示任意选取的一组旋转角度。从图17可以看到,经过优化的旋转角度(45,0)能够获得比传统NOMA及任意旋转情形更好的性能。
在另一个实施方式中,在所述叠加符号形成的复合星座满足格雷映射且满足对称分布的情况下,θ1=0°,θ2=29°,或者θ1=32°,θ2=0°,或者θ1=45°,θ2=45°。
在本实施方式中,假设近用户设备使用格雷映射,并且使用对称旋转。
对近用户设备的性能优化,可以求得最优旋转角度为θ1=0°,θ2=29°。
对远用户设备的性能优化,在远用户设备已知近用户设备的调制方式条件下,可以求得最优旋转角度为θ1=32°,θ2=0°;在远用户设备未知近用户设备的调制方式条 件下,可以求得最优旋转角度为θ1=45°,θ2=45°。
在本实施方式中,具体如何获得上述角度以及性能比较可以参考前一实施方式。
在另一个实施方式中,在所述叠加符号形成的复合星座不满足格雷映射且不满足对称分布的情况下,θ1=1°,θ2=27°,或者θ1=15°,θ2=0°,或者θ1=45°,θ2=0°。
在本实施方式中,假设近用户设备未使用格雷映射,并且未使用对称旋转。
对近用户设备的性能优化,可以求得最优旋转角度为θ1=1°,θ2=27°。
对远用户设备的性能优化,在远用户设备已知近用户设备的调制方式条件下,可以求得最优旋转角度为θ1=15°,θ2=0°;在远用户设备未知近用户设备的调制方式条件下,可以求得最优旋转角度为θ1=45°,θ2=0°。
在本实施方式中,具体如何获得上述角度以及性能比较可以参考前一实施方式。
在另一实施方式中,在所述叠加符号形成的复合星座不满足格雷映射但满足对称分布的情况下,θ1=32°,θ2=0°,或者θ1=45°,θ2=45°。
在本实施方式中,假设近用户设备未使用格雷映射,并且使用对称旋转。
对近用户设备的性能优化,可以求得最优旋转角度为θ1=32°,θ2=0°。
对远用户设备的性能优化,在远用户设备已知近用户设备的调制方式条件下,可以求得最优旋转角度为θ1=32°,θ2=0°;可以看到该方法对于远、近用户设备的优化是一致的,即θ1=32°,θ2=0°能够同时优化远、近用户设备的性能。
图18是本发明实施例的性能比较的另一示意图,图19是本发明实施例的性能比较的另一示意图。图18和图19给出瑞利信道条件下的仿真结果,如图18和图19所示,可以看到使用该组旋转角度时,远、近用户设备相比格雷映射NOMA性能均有大约0.5dB增益。
在本实施方式中,在远用户设备未知近用户设备的调制方式条件下,可以求得最优旋转角度为θ1=45°,θ2=45°。
在本实施方式中,具体如何获得上述角度以及性能比较可以参考前一实施方式。
以上对于如何通过旋转角度进行性能优化进行了示意性说明。为获得上述性能增益,某些重要参数相应地需要使用信令进行配置及通知。
在本实施例中,所述信息传输方法还可以包括:发送端向所述第一接收端发送第一配置信息;所述第一配置信息包括进行所述星座变换的旋转角度θ1和θ2,所述第二接收端的调制方式以及所述叠加符号形成的复合星座是否对称分布的信息;或者所述第一配置信息包括所述星座变换的旋转角度θ1;以及
发送端向所述第二接收端发送第二配置信息;所述第二配置信息包括进行所述星座变换的旋转角度θ1和θ2,所述叠加符号形成的复合星座是否满足格雷映射的信息以及所述叠加符号形成的复合星座是否对称分布的信息。
例如首先基站可以根据实际情况,使用信令对用户设备是否使用星座变换进行配置。基站可以使用信令对近用户设备是否采用格雷映射进行配置及通知。基站可以使用信令对近用户设备是否使用对称旋转进行配置及通知。其中,信令可以包括动态信令(例如PDCCH)或半静态信令(例如无线资源控制RRC)。
在本实施例中,对于使用动态信令例如PDCCH进行配置的情况,下面给出支持NOMA星座旋转的PDCCH信令格式的一种具体示例。
例如,为NOMA下行传输定义新的下行控制信息(DCI,Downlink Control Information)格式x,以下信息由DCI format x进行传输:
***星座变换指示,例如1比特
该字段用于指示是否使用了星座变换。例如“1”表示使用星座变换,此时旋转角度具体值由后面的旋转角度字段指定。“0”表示未使用星座变换,此时后面的旋转角度字段保留,不起作用。
***旋转角度,例如n比特
该字段用于指示所使用的旋转角度对,即(θ12),其中θ12分别表示远用户设备和近用户设备旋转角度。n比特可以指示2n种旋转角度组合,即
Figure PCTCN2015089448-appb-000031
该2n种旋转角度组合可以事先在标准中定义,例如以查找表形式存在,因而能够被收发双方共知。或者该2n种旋转角度组合可以通过RRC信令以半静态方式配置给用户设备,然后通过DCI format x信令的旋转角度字段动态选择其中一种角度组合。
***远、近用户设备类型指示,例如1比特
该字段用于指示当前用户设备为远用户设备还是近用户设备。基于该字段,用户设备能够获知在NOMA调度配对中自身所属类型,从而能够选择使用正确的旋转角度及功率系数。
***功率系数,例如m比特
该字段用于指示功率分配系数,即(ρ12),其中ρ12分别表示远用户设备和近用户设备的功率系数,该系数也可以定义为数据符号与参考信号的功率比,其中参考信号可以为公共参考信号(CRS,Common Reference Signal)或解调参考信号(DMRS,DeModulation Reference Signal)。m比特可以指示2m种功率分配组合,即
Figure PCTCN2015089448-appb-000032
该2m种功率分配组合可以事先在标准中定义,例如以查找表形式存在,因而能够被收发双方共知。或者该2m种功率分配组合可以通过RRC信令以半静态方式配置给用户设备,然后通过DCI format x信令的功率系数字段动态选择其中一种功率分配组合。
***远用户设备调制编码策略(MCS,Modulation Coding Scheme),例如5比特
***近用户设备调制编码策略,例如5比特
上述两个字段用于指示远、近用户设备的调制编码策略,每个用户设备可以有2个传输块(TB,Transport Block),每个传输块均对应一个调制编码策略字段。用户设备会根据远、近用户设备类型指示字段,选择自身对应的调制编码策略。
值得注意的是,以上仅对DCI format x中用于支持NOMA功能的关键字段进行了描述,其他功能字段(例如载波指示、资源块分配等)可以重用标准中已有的其他DCI中的格式,此处不再赘述。此外,上述字段也并不是必需的,DCI format x中可以仅包括其中的部分字段。
在本实施例中,下面给出另外一种PDCCH信令格式(DCI format y),该格式可以重用功率分配指示字段对旋转角度进行指示,因而具有更少的信令开销。
例如,以下信息由DCI format y进行传输:
***星座变换指示,例如1比特
***远、近用户设备类型指示,例如1比特
***功率系数/旋转角度,例如m比特
***远用户调制编码策略,例如5比特
***近用户调制编码策略,例如5比特
对于上述除功率系数/旋转角度外的字段,其功能与之前DCI format x中描述相同。值得注意的是,这里相比于DCI format x减少了n比特的旋转角度字段,即不再单独使用字段指示旋转角度,而是重用功率系数的m比特字段对旋转角度进行指示。
在DCI format y中,对于2m种功率分配组合,存在与之一一对应的2m种旋转角度组合,因此该m比特字段在指示确定功率系数的同时,也唯一确定了所使用的旋转角度,既实现了对功率分配结果的指示,又实现了对旋转角度指示。
对于功率系数/旋转角度字段,该字段同时用于指示功率分配系数(ρ12)和旋转角度(θ12)。m比特可以指示2m种功率分配组合,即
Figure PCTCN2015089448-appb-000033
同时可以指示2m种旋转角度组合,即
Figure PCTCN2015089448-appb-000034
该2m种功率分配组合和旋转角度组合可以事先在标准中定义,例如以查找表形式存在,因而能够被收发双方共知。或者该2m种功率分配组合及旋转角度组合可以通过RRC信令以半静态方式配置给用户设备,然后通过DCI format y信令的功率系数/旋转角度字段动态选择其中一种功率分配组合及旋转角度组合。
以上以DCI format x和DCI format y为例,对动态信令配置进行了示意性说明。但本发明不限于此,还可以根据具体场景确定具体的实施方式。
再例如,对于远、近用户设备的旋转角度,该组参数可以被固定为某一具体数值,从而被基站和用户设备公知,此时无需使用信令进行配置。
此外,对于远、近用户设备的旋转角度,该组参数也可以由基站使用信令对远、近用户设备进行配置。对于近用户设备使用最大似然方法解调,需要信令通知给近用户设备两个旋转角度信息(近用户设备的旋转角度和远用户设备的旋转角度),同时 可以信令指示近用户设备是否使用格雷映射,及指示近用户设备是否使用对称旋转。
对于远用户设备在已知近用户设备的调制方式下的解调,需要信令通知远用户设备两个旋转角度信息(近用户设备的旋转角度和远用户设备的旋转角度),并且需要将近用户设备的调制方式通知给远用户设备,同时可以将近用户设备是否使用对称旋转以信令方式通知给远用户设备。
对于远用户设备未知近用户设备的调制方式下的解调,需要信令通知远用户设备一个旋转角度信息(远用户设备的旋转角度),而无需将近用户设备的调制方式通知给远用户设备。
由上述实施例可知,发送端将传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换,并进行功率分配并叠加,形成叠加符号;然后将多个所述叠加符号进行虚部和实部的交织。由此,可以在传统NOMA的基础上进一步提升用户设备的数据解调性能。
实施例2
本发明实施例提供一种信息传输装置,配置在NOMA系统的发送端。本发明实施例对应于实施例1的信息传输方法,相同的内容不再赘述。
图20是本发明实施例的信息传输装置的一示意图,如图20所示,所述信息传输装置2000包括:
星座变换单元2001,将传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换;
符号叠加单元2002,将进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并叠加,形成叠加符号;
虚实交织单元2003,将多个所述叠加符号进行虚部和实部的交织;以及
信息发送单元2004,发送进行了虚实交织的所述叠加符号。
值得注意的是,图20中仅示意性示出了与本发明相关的几个单元,发送信息的其他单元(例如实现信道编码、星座调制、资源映射以及OFDM符号调制的部件等等)可以参考NOMA及OFDM相关技术,此处不再赘述。
图21是本发明实施例的信息传输装置的另一示意图,如图21所示,所述信息传输装置2100包括:星座变换单元2001、符号叠加单元2002、虚实交织单元2003和 信息发送单元2004,如上所述。
如图21所示,所述信息传输装置2100还可以包括:
信息变换单元2101,对于所述传输给第二接收端的第二符号进行变换,使得所述叠加符号形成的复合星座中各星座点对应的比特满足格雷映射。
在本实施例中,所述星座变换单元2001还可以包括:第一旋转单元,将所述传输给第一接收端的所述第一符号进行旋转角度为θ1的相位旋转。此外,所述星座变换单元2001还可以包括:第二旋转单元或第三旋转单元。
其中,第二旋转单元将所述传输给第二接收端的所述第二符号进行旋转角度为θ2的相位旋转;第三旋转单元对于所述传输给第二接收端的所述第二符号,根据所述第一符号中所对应的星座点分别进行基于θ1和θ2的相位旋转,使得所述叠加符号形成的复合星座中的星座点呈对称分布。所述基于θ1和θ2的相位旋转可以包括如下旋转角度:θ12,θ12,θ1+π-θ2,θ1+π+θ2;但本发明不限于此。
如图21所示,所述信息传输装置2100还可以包括:
角度确定单元2102,基于误符号率确定进行所述星座变换的旋转角度θ1和θ2
下面以第一接收端与第二接收端分配的功率比为4:1为例,给出优化选取的角度值。对于其他功率分配情况,可以使用前述方法获得优化角度值。
其中,在所述叠加符号形成的复合星座满足格雷映射但不满足对称分布的情况下,θ1=16°,θ2=30°,或者θ1=15°,θ2=0°,或者θ1=45°,θ2=0°;在所述叠加符号形成的复合星座满足格雷映射且满足对称分布的情况下,θ1=0°,θ2=29°,或者θ1=32°,θ2=0°,或者θ1=45°,θ2=45°;在所述叠加符号形成的复合星座不满足格雷映射且不满足对称分布的情况下,θ1=1°,θ2=27°,或者θ1=15°,θ2=0°,或者θ1=45°,θ2=0°;在所述叠加符号形成的复合星座不满足格雷映射但满足对称分布的情况下,θ1=32°,θ2=0°,或者θ1=45°,θ2=45°。
如图21所示,所述信息传输装置2100还可以包括:
第一配置单元2103,向所述第一接收端发送第一配置信息;所述第一配置信息 包括进行所述星座变换的旋转角度θ1和θ2,所述第二接收端的调制方式以及所述叠加符号形成的复合星座是否对称分布的信息;或者所述第一配置信息包括所述星座变换的旋转角度θ1;以及
第二配置单元2104,向所述第二接收端发送第二配置信息;所述第二配置信息包括进行所述星座变换的旋转角度θ1和θ2,所述叠加符号形成的复合星座是否满足格雷映射的信息以及所述叠加符号形成的复合星座是否对称分布的信息。
在本实施例中,所述第一配置信息和/或所述第二配置信息可以通过动态信令配置。例如,所述动态信令包括如下信息:星座变换指示、旋转角度信息、用户设备类型指示、功率系数信息、用户设备调制编码策略;或者包括如下信息:星座变换指示、用户设备类型指示、旋转角度/功率系数信息、用户设备调制编码策略。
本实施例还提供一种发送端,配置有如上所述的信息传输装置2000或2100。
图22是本发明实施例的发送端的一构成示意图。如图22所示,发送端2200可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,发送端2200可以实现如实施例1所述的信息传输方法。中央处理器200可以被配置为实现信息传输装置2000或2100的功能。
此外,如图22所示,发送端2200还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,发送端2200也并不是必须要包括图22中所示的所有部件;此外,发送端2200还可以包括图22中没有示出的部件,可以参考现有技术。
由上述实施例可知,发送端将传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换,并进行功率分配并叠加,形成叠加符号;然后将多个所述叠加符号进行虚部和实部的交织。由此,可以在传统NOMA的基础上进一步提升用户设备的数据解调性能。
实施例3
本发明实施例还提供一种通信系统,配置为进行NOMA传输。本发明实施例与实施例1和2相同的内容不再赘述。图23是本发明实施例的通信系统的一示意图, 如图23所示,所述通信系统2300包括:
发送端2301,将传输给第一接收端2302的第一符号和传输给第二接收端2303的第二符号分别进行星座变换;将进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并叠加,形成叠加符号;以及将多个所述叠加符号进行虚部和实部的交织后进行发送;
第一接收端2302,接收所述发送端2301发送的信号并进行虚部和实部的解交织;在未知所述第二接收端2303的调制方式的情况下,将所述第二符号作为干扰,基于所述第一符号所使用的星座对所述第一符号进行解调及解码;在已知所述第二接收端的调制方式的情况下,基于所述第一符号和第二符号叠加形成的复合星座对所述第一符号进行解调及解码;
第二接收端2303,接收所述发送端2301发送的信号并进行虚部和实部的解交织;基于所述第一符号和第二符号叠加形成的复合星座对所述第二符号进行解调及解码。
本发明实施例还提供一种计算机可读程序,其中当在发送端中执行所述程序时,所述程序使得计算机在所述发送端中执行实施例1所述的信息传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在发送端中执行实施例1所述的信息传输方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (19)

  1. 一种信息传输装置,配置于非正交多址接入系统中,所述信息传输装置包括:
    星座变换单元,对传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换;
    符号叠加单元,对进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并进行叠加而形成叠加符号;
    虚实交织单元,将多个所述叠加符号进行虚部和实部的交织;以及
    信息发送单元,发送进行了虚实交织的所述叠加符号。
  2. 根据权利要求1所述的信息传输装置,其中,所述信息传输装置还包括:
    信息变换单元,对所述传输给第二接收端的第二符号进行变换,使得所述叠加符号所形成的复合星座中各星座点对应的比特满足格雷映射。
  3. 根据权利要求1所述的信息传输装置,其中,所述星座变换单元包括:
    第一旋转单元,将所述第一符号进行旋转角度为θ1的相位旋转;以及
    第二旋转单元,将所述第二符号进行旋转角度为θ2的相位旋转。
  4. 根据权利要求1所述的信息传输装置,其中,所述星座变换单元包括:
    第一旋转单元,将所述第一符号进行旋转角度为θ1的相位旋转;以及
    第三旋转单元,对于所述第二符号,根据所述第一符号所对应的星座点进行基于θ1和θ2的相位旋转,使得所述叠加符号所形成的复合星座中的星座点呈对称分布。
  5. 根据权利要求4所述的信息传输装置,其中,所述基于θ1和θ2的相位旋转包括如下旋转角度:θ12,θ12,θ1+π-θ2,θ1+π+θ2
  6. 根据权利要求1所述的信息传输装置,其中,所述信息传输装置还包括:
    角度确定单元,基于误符号率确定进行所述星座变换的旋转角度θ1和θ2
  7. 根据权利要求6所述的信息传输装置,其中,在为所述第一接收端与所述第二接收端分配的功率比为4:1时,
    在所述叠加符号所形成的复合星座中的星座点满足格雷映射但不满足对称分布 的情况下,θ1=16°,θ2=30°,或者θ1=15°,θ2=0°,或者θ1=45°,θ2=0°;
    在所述叠加符号所形成的复合星座中的星座点满足格雷映射且满足对称分布的情况下,θ1=0°,θ2=29°,或者θ1=32°,θ2=0°,或者θ1=45°,θ2=45°;
    在所述叠加符号所形成的复合星座中的星座点不满足格雷映射且不满足对称分布的情况下,θ1=1°,θ2=27°,或者θ1=15°,θ2=0°,或者θ1=45°,θ2=0°;
    在所述叠加符号所形成的复合星座中的星座点不满足格雷映射但满足对称分布的情况下,θ1=32°,θ2=0°,或者θ1=45°,θ2=45°。
  8. 根据权利要求1所述的信息传输装置,其中,所述信息传输装置还包括:
    第一配置单元,向所述第一接收端发送第一配置信息;所述第一配置信息包括进行所述星座变换的旋转角度θ1和θ2,所述第二接收端的调制方式以及对所述叠加符号所形成的复合星座中的星座点是否对称分布的指示;或者,所述第一配置信息包括所述星座变换的旋转角度θ1;以及
    第二配置单元,向所述第二接收端发送第二配置信息;所述第二配置信息包括进行所述星座变换的旋转角度θ1和θ2,对所述叠加符号所形成的复合星座中的星座点是否满足格雷映射的指示以及对所述叠加符号所形成的复合星座中的星座点是否对称分布的指示。
  9. 根据权利要求8所述的信息传输装置,其中,所述第一配置信息和/或所述第二配置信息通过动态信令配置;
    所述动态信令包括如下信息:星座变换指示、旋转角度信息、用户设备类型指示、功率系数信息、用户设备调制编码策略;或者包括如下信息:星座变换指示、用户设备类型指示、旋转角度/功率系数信息、用户设备调制编码策略。
  10. 一种信息传输方法,应用于非正交多址接入系统中,所述信息传输方法包括:
    发送端对传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换;
    对进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并进行叠加而形成叠加符号;
    将多个所述叠加符号进行虚部和实部的交织;以及
    发送进行了虚实交织的所述叠加符号。
  11. 根据权利要求10所述的信息传输方法,其中,在发送端将传输给第二接收端的第二符号进行星座变换之前,所述信息传输方法还包括:
    对所述传输给第二接收端的第二符号进行变换,使得所述叠加符号所形成的复合星座中各星座点对应的比特满足格雷映射。
  12. 根据权利要求10所述的信息传输方法,其中,发送端对传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换包括:
    将所述第一符号进行旋转角度为θ1的相位旋转;以及
    将所述第二符号进行旋转角度为θ2的相位旋转。
  13. 根据权利要求10所述的信息传输方法,其中,发送端对传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换包括:
    将所述第一符号进行旋转角度为θ1的相位旋转;以及
    对于所述第二符号,根据所述第一符号所对应的星座点进行基于θ1和θ2的相位旋转,使得所述叠加符号所形成的复合星座中的星座点呈对称分布。
  14. 根据权利要求13所述的信息传输方法,其中,所述基于θ1和θ2的相位旋转包括如下旋转角度:θ12,θ12,θ1+π-θ2,θ1+π+θ2
  15. 根据权利要求10所述的信息传输方法,其中,所述信息传输方法还包括:
    基于误符号率确定进行所述星座变换的旋转角度θ1和θ2
  16. 根据权利要求15所述的信息传输方法,其中,在为所述第一接收端与所述第二接收端分配的功率比为4:1时,
    在所述叠加符号所形成的复合星座中的星座点满足格雷映射但不满足对称分布的情况下,θ1=16°,θ2=30°,或者θ1=15°,θ2=0°,或者θ1=45°,θ2=0°;
    在所述叠加符号所形成的复合星座中的星座点满足格雷映射且满足对称分布的情况下,θ1=0°,θ2=29°,或者θ1=32°,θ2=0°,或者θ1=45°,θ2=45°;
    在所述叠加符号所形成的复合星座中的星座点不满足格雷映射且不满足对称分布的情况下,θ1=1°,θ2=27°,或者θ1=15°,θ2=0°,或者θ1=45°,θ2=0°;
    在所述叠加符号所形成的复合星座中的星座点不满足格雷映射但满足对称分布的情况下,θ1=32°,θ2=0°,或者θ1=45°,θ2=45°。
  17. 根据权利要求10所述的信息传输方法,其中,所述信息传输方法还包括:
    向所述第一接收端发送第一配置信息;所述第一配置信息包括进行所述星座变换的旋转角度θ1和θ2,所述第二接收端的调制方式以及对所述叠加符号所形成的复合星座中的星座点是否对称分布的指示;或者,所述第一配置信息包括所述星座变换的旋转角度θ1;以及
    向所述第二接收端发送第二配置信息;所述第二配置信息包括进行所述星座变换的旋转角度θ1和θ2,对所述叠加符号所形成的复合星座中的星座点是否满足格雷映射的指示以及对所述叠加符号所形成的复合星座中的星座点是否对称分布的指示。
  18. 根据权利要求17所述的信息传输方法,其中,所述第一配置信息和/或所述第二配置信息通过动态信令配置;
    所述动态信令包括如下信息:星座变换指示、旋转角度信息、用户设备类型指示、功率系数信息、用户设备调制编码策略;或者包括如下信息:星座变换指示、用户设备类型指示、旋转角度/功率系数信息、用户设备调制编码策略。
  19. 一种通信系统,配置为进行非正交多址接入,所述通信系统包括:
    发送端,对传输给第一接收端的第一符号和传输给第二接收端的第二符号分别进行星座变换;对进行了星座变换的第一符号和进行了星座变换的第二符号分别进行功率分配并叠加而形成叠加符号;以及将多个所述叠加符号进行虚部和实部的交织后进行发送;
    第一接收端,接收所述发送端发送的信号并进行虚部和实部的解交织;在未知所述第二接收端的调制方式的情况下,将所述第二符号作为干扰,基于所述第一符号所使用的星座对所述第一符号进行解调及解码;在已知所述第二接收端的调制方式的情况下,基于所述第一符号和第二符号叠加形成的复合星座对所述第一符号进行解调及解码;
    第二接收端,接收所述发送端发送的信号并进行虚部和实部的解交织;基于所述第一符号和第二符号叠加形成的复合星座对所述第二符号进行解调及解码。
PCT/CN2015/089448 2015-09-11 2015-09-11 信息传输装置、方法以及通信系统 WO2017041297A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/089448 WO2017041297A1 (zh) 2015-09-11 2015-09-11 信息传输装置、方法以及通信系统
CN201580082193.2A CN107926032A (zh) 2015-09-11 2015-09-11 信息传输装置、方法以及通信系统
US15/906,393 US20180192424A1 (en) 2015-09-11 2018-02-27 Information Transmission Apparatus and Method and Communications System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089448 WO2017041297A1 (zh) 2015-09-11 2015-09-11 信息传输装置、方法以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/906,393 Continuation US20180192424A1 (en) 2015-09-11 2018-02-27 Information Transmission Apparatus and Method and Communications System

Publications (1)

Publication Number Publication Date
WO2017041297A1 true WO2017041297A1 (zh) 2017-03-16

Family

ID=58240528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089448 WO2017041297A1 (zh) 2015-09-11 2015-09-11 信息传输装置、方法以及通信系统

Country Status (3)

Country Link
US (1) US20180192424A1 (zh)
CN (1) CN107926032A (zh)
WO (1) WO2017041297A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109246049A (zh) * 2018-08-06 2019-01-18 天津大学 一种提高非正交多址接入技术通信性能的方法
EP3481022A1 (en) * 2017-11-01 2019-05-08 Industrial Technology Research Institute Method of receiving or transmitting data by ue or base station under noma scheme, ue using the same and base station using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3484115B1 (en) * 2016-08-12 2021-02-24 Huawei Technologies Co., Ltd. Data transmission method and network device thereof
TWI628969B (zh) * 2017-02-14 2018-07-01 國立清華大學 聯合用戶分組與功率分配方法以及使用所述方法的基地台
WO2020029128A1 (en) * 2018-08-08 2020-02-13 Zte Corporation Multiple access schemes with interference mitigation
WO2021028713A1 (en) * 2019-08-12 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Reliability using signal space diversity in cooperative non-orthogonal multiple access (noma)
WO2021059768A1 (ja) * 2019-09-27 2021-04-01 ソニー株式会社 通信装置、通信方法、及び通信プログラム
CN111246578B (zh) * 2020-01-09 2023-06-09 北京航空航天大学杭州创新研究院 一种定向天线场景下的noma下行链路通信方法
US20220014411A1 (en) * 2020-07-13 2022-01-13 Huawei Technologies Co., Ltd. Methods, apparatus, and systems for configurable modulation in wireless communications
WO2022081771A1 (en) * 2020-10-13 2022-04-21 Intel Corporation Constellation enhancements for secure sounding signal
US11201643B1 (en) * 2021-08-04 2021-12-14 King Abdulaziz University Method, apparatus and system for transmission of data in a power domain non-orthogonal multiple access system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140314006A1 (en) * 2013-04-19 2014-10-23 Samsung Electronics Co., Ltd. Method and apparatus for operating a non-orthogonal multiple access scheme in multiuser beamforming system
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置
CN104640220A (zh) * 2015-03-12 2015-05-20 重庆邮电大学 一种基于noma系统的频率和功率分配方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986587B (zh) * 2010-10-25 2013-04-03 北京邮电大学 一种克服弱散射的多天线码本选择调制方法
JP5869836B2 (ja) * 2011-05-20 2016-02-24 株式会社Nttドコモ 受信装置、送信装置及び無線通信方法
CN102833043A (zh) * 2012-08-25 2012-12-19 华南理工大学 空分复用多天线系统基于旋转星座图的编解码方法
CN107210838B (zh) * 2015-01-14 2019-12-06 夏普株式会社 基站装置及终端装置
US10541846B2 (en) * 2015-03-31 2020-01-21 Chongqing University Of Posts And Telecommunications Method and system for multi-carrier time division multiplexing modulation/demodulation
JP6741306B2 (ja) * 2015-07-16 2020-08-19 ディジマーク コーポレイション デジタルデータ抽出のための画像の幾何変換を推定するための方法、装置およびコンピュータ可読媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140314006A1 (en) * 2013-04-19 2014-10-23 Samsung Electronics Co., Ltd. Method and apparatus for operating a non-orthogonal multiple access scheme in multiuser beamforming system
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置
CN104640220A (zh) * 2015-03-12 2015-05-20 重庆邮电大学 一种基于noma系统的频率和功率分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, RUI: "Research on Power Allocation in Non-Orthogonal Multiple Access", CHINA MASTER'S THESES FULL-TEXT DATABASE., 15 August 2015 (2015-08-15), pages 5, ISSN: 1674-0246 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3481022A1 (en) * 2017-11-01 2019-05-08 Industrial Technology Research Institute Method of receiving or transmitting data by ue or base station under noma scheme, ue using the same and base station using the same
CN109756437A (zh) * 2017-11-01 2019-05-14 财团法人工业技术研究院 接收数据的方法、发射数据的方法及用户设备
TWI678113B (zh) * 2017-11-01 2019-11-21 財團法人工業技術研究院 接收資料的方法、發射資料的方法及使用者設備
CN109246049A (zh) * 2018-08-06 2019-01-18 天津大学 一种提高非正交多址接入技术通信性能的方法
CN109246049B (zh) * 2018-08-06 2021-01-19 天津大学 一种提高非正交多址接入技术通信性能的方法

Also Published As

Publication number Publication date
US20180192424A1 (en) 2018-07-05
CN107926032A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2017041297A1 (zh) 信息传输装置、方法以及通信系统
CN107683595B (zh) 星座叠加系统及方法
WO2017121417A1 (zh) 一种确定编码调制参数的方法、装置和系统
CN109511172B (zh) 用于在无线通信系统中传输控制信息的方法和装置
CN107710842B (zh) 传输上行数据的方法和设备
CN116896426A (zh) 用于在通信或广播系统中编码和解码信道的装置和方法
CN107534508B (zh) 终端装置及基站装置
CN107079466B (zh) 传输指示信息的方法和装置
US11356193B2 (en) Rate matching and HARQ with irregular modulation
US9820239B2 (en) Power allocation for encoded bits in OFDM systems
WO2018059488A1 (zh) 一种参考信号传输方法和装置
WO2014183461A1 (zh) 一种控制信息的传输方法及发送、接收装置
US20210400687A1 (en) Method and device for transmitting control information for distinguishing user in wireless communication system
CN106817331A (zh) 通信系统中处理通信信号的方法和装置
CN111345002A (zh) 终端装置、基站装置以及通信方法
CN108886418A (zh) 接收装置和接收方法
US20210099250A1 (en) Base station apparatus, terminal apparatus, and communication method
US20160242149A1 (en) Wireless communication system with efficient pdcch processing
CN110999146B (zh) 用于在通信或广播系统中编码和解码信道的装置和方法
WO2018030204A1 (ja) 送信装置、受信装置、送信方法および受信方法
WO2016184241A1 (zh) 一种多用户接入方法及装置
US10432356B2 (en) Data transmitting or receiving method and device for dual TBs, transmitter and receiver
CN108604951B (zh) 数据传输方法及设备
US11184107B2 (en) Semi-orthogonal multiple access communication of PPDU and acknowledgment
WO2019178736A1 (zh) 控制信息的接收和发送方法、装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903403

Country of ref document: EP

Kind code of ref document: A1