WO2017074165A1 - 플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체 - Google Patents

플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체 Download PDF

Info

Publication number
WO2017074165A1
WO2017074165A1 PCT/KR2016/012413 KR2016012413W WO2017074165A1 WO 2017074165 A1 WO2017074165 A1 WO 2017074165A1 KR 2016012413 W KR2016012413 W KR 2016012413W WO 2017074165 A1 WO2017074165 A1 WO 2017074165A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible structure
deformation
pressure
frame
sensor
Prior art date
Application number
PCT/KR2016/012413
Other languages
English (en)
French (fr)
Inventor
안영석
Original Assignee
주식회사 임프레시보코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160114648A external-priority patent/KR101839142B1/ko
Application filed by 주식회사 임프레시보코리아 filed Critical 주식회사 임프레시보코리아
Publication of WO2017074165A1 publication Critical patent/WO2017074165A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present invention relates to an apparatus, method and non-transitory computer readable recording medium for sensing deformation of a flexible structure.
  • HCI human-computer interface
  • Conductive rubber has the property that the electrical resistance is proportional to the length and inversely proportional to the cross-sectional area, like a general resistor. Accordingly, it is possible to measure the change in the length of the conductive rubber through the change of the current flowing through the conductive rubber, which has the advantage of low technical complexity and miniaturization.
  • the present invention aims to solve all the problems of the prior art described above.
  • Another object of the present invention is to provide an apparatus, method, and a non-transitory computer readable recording medium which can easily recognize various types of deformations such as tension, shrinkage, torsion, and bending of a flexible structure with a simple structure. And another object of the present invention is to detect the deformation of various forms of the flexible structure and to determine the posture or motion of the user by using this.
  • an apparatus for detecting deformation of a flexible structure comprising: a flexible structure having elasticity against deformation, a structure fixing portion disposed on one end side of the flexible structure and configured to fix at least a portion of the flexible structure And a structure fixing part formed by a frame formed in a groove formed in the frame and a groove of the frame configured to insert and support at least a portion of the structure fixing part into the groove and transmitted to the structure fixing part when the flexible structure is deformed.
  • An apparatus is provided that includes a sensor portion configured to contact and detect pressure.
  • a method for detecting deformation of a flexible structure comprising: obtaining pressure detection information from a flexible structure deformation sensing device; And determining the deformation of the flexible structure by applying pressure detection information from the pressure detection form in the flexible structure deformation detecting apparatus, wherein the flexible structure deformation detecting apparatus includes a flexible structure having elasticity against deformation, A structure fixing part disposed at one end side and configured to fix at least a part of the flexible structure, a groove is formed therein, and formed in the frame and the groove of the frame configured to insert and support at least a part of the structure fixing part in the groove; Flexible structure deforms The method comprising by the force transmitted to the structure fixing structure and a sensor configured to detect a state in contact with the pressure is provided when.
  • non-transitory computer readable recording medium for recording another apparatus, method, and computer program for executing the method for implementing the present invention.
  • the pressure is detected in a specific shape in the sensor unit according to the deformation of the flexible structure, it is possible to easily grasp various forms of deformation such as tension, shrinkage, torsion, bending, etc. of the flexible structure.
  • the flexible structure can be formed of various materials and various shapes, it is possible to use in various fields.
  • FIG. 1 is a view showing the internal and external configuration of the device for detecting the deformation of the flexible structure according to an embodiment of the present invention.
  • FIG. 2 is a view showing a form in which the flexible structure is stretched or contracted in the apparatus for detecting the deformation of the flexible structure according to an embodiment of the present invention.
  • FIG 3 is a view showing a form in which one end of the frame is fixed or contracted while being fixed in the apparatus for detecting deformation of the flexible structure according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a form in which a flexible structure is curved in an apparatus for detecting deformation of a flexible structure according to an exemplary embodiment of the present invention.
  • FIG. 5 is a view illustrating a form in which one end of a frame is curved while being fixed in an apparatus for detecting deformation of a flexible structure according to an exemplary embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a form in which a flexible structure is twisted in an apparatus for detecting deformation of a flexible structure according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a form in which a flexible structure is horizontally rotated in an apparatus for detecting deformation of a flexible structure according to an embodiment of the present invention.
  • FIG. 8 is a view illustrating a form in which an external force is applied to the center of the flexible structure while the frame is moved to be spaced apart in the vertical direction in the apparatus for detecting deformation of the flexible structure according to an embodiment of the present invention.
  • 9 to 11 are views showing various modifications to the devices for detecting the deformation of the flexible structure according to an embodiment of the present invention.
  • FIG. 1 is a view showing a device (hereinafter, referred to as a 'strain detection device') for detecting a deformation of a flexible structure according to an embodiment of the present invention.
  • a 'strain detection device' for detecting a deformation of a flexible structure according to an embodiment of the present invention.
  • FIG. 1 is a view schematically showing the internal structure of the deformation sensing apparatus according to an embodiment of the present invention
  • Figure 1 (b) is a sensor in the deformation sensing apparatus according to an embodiment of the present invention
  • FIG. 1C is a diagram schematically illustrating an external shape of a deformation sensing apparatus according to an exemplary embodiment.
  • the deformation detecting apparatus 100 may include a flexible structure 110, a structure fixing unit 120, a sensor unit 130, and a frame 140. It may include.
  • the x-axis, the y-axis, and the z-axis mean a width direction of the flexible structure 110, a length direction of the flexible structure 110, and an up-down direction of the flexible structure 110, respectively.
  • the criteria of this coordinate axis apply equally throughout this specification.
  • the flexible structure 110 is a thin strip formed of a material having elasticity, and is a structure capable of deformation such as shrinkage, tension, bending, and torsion according to a direction of force applied from the outside.
  • the flexible structure 110 has an inherent elastic modulus for tension, bending, torsion, etc. according to its material and shape, and the deformation detecting apparatus 100 detects the deformation by utilizing the inherent characteristics of the flexible structure 110. Done.
  • One end of the flexible structure 110 may be fixed by the structure fixing part 120.
  • a groove may be formed in the frame 140 to insert and support the structure fixing unit 120, and a sensor unit 130 may be formed on an inner surface of the groove into which the structure fixing unit 120 is inserted.
  • the structure fixing part 120 may be fixed in a form in which one end of the flexible structure 110 is fitted as shown in FIG.
  • the structure fixing part 120 when deformation of the flexible structure 110 occurs, for example, tension, shrinkage, curvature, torsion, etc., the structure fixing part 120 is forced in a specific direction according to the shape of the deformation.
  • the structure fixing part 120 is in contact with the sensor unit 130 by such a force, the sensor unit 130 is in contact with the structure fixing part 120, the contact area, the pressure applied when contacting (shearing force, tangential force, etc.) ) Size and the like.
  • the sensor unit 130 may include a plurality of pressure sensing sensors to detect a pressure applied when the structure fixing unit 120 is in contact with the structure fixing unit 120.
  • the sensor unit 130 is disposed in the longitudinal direction (ie, the y-axis direction) of the flexible structure 110 in the groove of the frame 140.
  • 131t and second sensors 132b and 132t, and third sensors 133b and 133t disposed in the vertical direction (ie, the z-axis direction) with respect to the flexible structure 110.
  • Each may be composed of a pressure sensor.
  • the sensor unit 130 detects a change in a point, an area, a pressure, etc. that the structure fixing part 120 is in contact with.
  • the shape and the degree of deformation of the flexible structure 110 can be recognized from the detected information and the characteristics (eg, elastic modulus) inherent in the flexible structure 110.
  • a plurality of pressure sensing sensors of the sensor unit 130 are disposed in the longitudinal direction (that is, the y-axis direction) and the vertical direction (that is, the z-axis direction) of the flexible structure 110 with respect to the structure fixing part 120.
  • the pressure sensor may be further provided in the width direction (ie, the x-axis direction) of the flexible structure 110, and in addition, the number of the pressure sensor may be changed in various ways or the arrangement thereof may be different. can do.
  • the deformation detecting apparatus 100 may have a form in which an internal configuration is shielded by the frame 140 when viewed from the outside.
  • the present invention is not limited thereto, and the frame may be formed in a form in which at least one side surface is open (for example, in the form of FIG. 1A).
  • the other end of the flexible structure 110 may also be inserted into and fixed to the frame, or may be fixed in another known manner.
  • the flexible structure of the deformation sensing device has a unique modulus of elasticity according to its material and shape, and according to the shape and degree of deformation of the flexible structure, The form is determined.
  • the shape and extent of the deformation can be determined by the pressure detected by the sensor unit when the flexible structure is deformed. Will be.
  • FIG. 2 is a view showing a form in which the flexible structure is stretched or shrunk in the deformation detection apparatus according to an embodiment of the present invention. Specifically, (a) of FIG. 2 illustrates a case in which the flexible structure is stretched along the longitudinal direction (y-axis direction) of the flexible structure with both ends thereof connected to the frame, and FIG. 2 (b) illustrates that the flexible structure contracts. The case is shown.
  • a change in pressure may be detected by a sensor disposed in the longitudinal direction of the flexible structure among the sensor units, and thus the length of the flexible structure may be increased and decreased.
  • detecting a change in pressure with time it is also possible to grasp the tensile rate and the shrinkage (restoration) rate of the flexible structure.
  • FIG. 3 is a diagram illustrating a form in which a flexible structure is stretched or shrunk while fixing a frame of one side in a deformation sensing apparatus according to an exemplary embodiment of the present invention.
  • (a) and (b) of FIG. 3 illustrate a case in which the flexible structure is stretched and contracted along its longitudinal direction (y-axis direction) while the frame on the left side of the frame to which the flexible structure is connected is fixed.
  • (c) and (d) show a case where the flexible structure is stretched and contracted along its longitudinal direction (y-axis direction) while the frame on the right side of the frame to which the flexible structure is connected is fixed.
  • FIGS. 4A and 4B show a case in which the flexible structure having a relatively high elastic modulus for bending (curvature) is bent from both sides
  • FIGS. 4C and 4D are The case where the flexible structure having a relatively low elastic modulus against bending (curvature) is bent on both sides is shown.
  • the structure fixing part 120 is a second sensor ( Not only 132b and 132t but also the third sensors 133b and 133t, the pressure can be detected by these sensors.
  • the sensor unit may detect a change in pressure, and thus the shape and extent of the flexible structure may be recognized.
  • the sensor unit may detect a change in pressure, and thus the shape and extent of the flexible structure may be recognized.
  • the sensor unit may detect a change in pressure, and thus the shape and extent of the flexible structure may be recognized.
  • the sensor unit may detect a change in pressure, and thus the shape and extent of the flexible structure may be recognized.
  • the sensor unit may detect a change in pressure, and thus the shape and extent of the flexible structure may be recognized.
  • FIG. 5 is a diagram illustrating a form in which a flexible structure is tensioned and simultaneously bent while fixing one side of a frame in a deformation sensing apparatus according to an exemplary embodiment of the present invention.
  • FIGS. 5A and 5B illustrate a case in which the flexible structure is stretched to the right and curved upwards and downwards while the left frame is fixed among the frames to which the flexible structure is connected.
  • (d) shows a case in which the flexible structure is curved upward and downward while tensioning the flexible structure to the left while fixing the right frame among the frames to which the flexible structure is connected.
  • the structure fixing part 120 when the flexible structure is stretched to the right and simultaneously curved upward, the structure fixing part 120 is in contact with the second sensors 132b and 132t in the fixed left frame to increase the pressure. In the right frame that is detected and not fixed, pressure may be detected at these sensor units while the structure fixing unit 120 contacts the second sensors 132b and 132t and the third sensors 133b and 133t. Similarly in FIGS. 5B to 5D, the structure fixing part 120 contacts the second sensors 132b and 132t in the fixed frame, and the pressure is detected and the structure fixing part in the frame in which the fixing is not fixed. While 120 is in contact with the second sensors 132b, 132t and the third sensors 133b, 133t, pressure may be detected at these sensor units.
  • the pressure and the shape and extent of the tension and bending may be determined by analyzing the pressure detected by each sensor unit. In addition, by detecting the detected pressure and the change in pressure with time, the speed at which the flexible structure curves and deforms can also be determined.
  • FIGS. 6A and 6B illustrate a left and right frame in which a flexible structure is connected. The case where the flexible structure is rotated by rotating in the opposite direction with respect to the longitudinal direction (y-axis direction) of the axis is shown.
  • the pressure may be detected while the structure fixing part 120 in the frame is in contact with the third sensors 133b and 133t disposed in the vertical direction (z-axis direction). In this case, depending on the direction in which the flexible structure is twisted, the point where the structure fixing part contacts with each sensor part may be detected.
  • the flexible structure is twisted by rotating the left frame and the right frame counterclockwise as viewed from the left and the right, respectively.
  • the lower third frame is viewed from the left in the left frame.
  • Pressure may be detected at the left point of the sensor 133b and the right point of the upper third sensor 133t, and in the right frame, the right point of the lower third sensor 133b and the upper third sensor when viewed from the right side.
  • the pressure can be detected at the left point of 133t.
  • the flexible structure is twisted by rotating the left frame and the right frame clockwise when viewed from the left and the right, respectively, in this case, the lower frame when viewed from the left in the left frame.
  • Pressure may be detected at the right point of the third sensor 133b and the left point of the upper third sensor 133t, and the left point and the upper agent of the lower third sensor 133b when viewed from the right in the right frame.
  • the pressure can be detected at the right point of the three sensors 133t.
  • the degree of twisting of the flexible structure is large, the magnitude of the pressure to be detected is also increased.
  • the flexible structure can be grasped in the twisting direction and the degree.
  • the flexible structure can be grasped in the twisting direction and the degree.
  • it is possible to grasp the speed at which the flexible structure is torsionally deformed.
  • FIG. 7 is a diagram illustrating a form in which a flexible structure rotates horizontally, that is, about a z-axis in a deformation sensing apparatus according to an exemplary embodiment of the present invention.
  • FIG. 7A illustrates a case in which the left frame is rotated in a counterclockwise direction and the right frame is rotated in a clockwise direction
  • FIG. 7B illustrates a clock in the left frame.
  • the right frame is rotated counterclockwise
  • 7C illustrates a case in which both the left frame and the right frame are rotated in the clockwise direction
  • FIG. 7D illustrates the case in which both the left frame and the right frame are rotated in the counterclockwise direction.
  • the structure fixing part 120 in the left frame, when the structure fixing part 120 is viewed from the left side, the structure fixing part 120 is disposed on the right side of the first sensors 131b and 131t and on the left side of the second sensors 132b and 132t.
  • the pressure can be detected while contacting, and the pressure while touching the left side of the first sensors 131b and 131t and the right side of the second sensors 132b and 132t when the structure fixing part 120 is viewed from the right in the right frame. Can be detected.
  • the structure fixing part 120 in the left frame, when the structure fixing part 120 is viewed from the left side, the structure fixing part 120 contacts the right side of the first sensors 131b and 131t and the left side of the second sensors 132b and 132t. While the pressure can be detected, and in the right frame, when the structure fixing part 120 is viewed from the right side, the pressure is in contact with the right side of the first sensors 131b and 131t and the left side of the second sensors 132b and 132t. In contrast, in the case of FIG. 7D, when the structure fixing part 120 is viewed from the left side in the left frame, the left side of the first sensors 131b and 131t and the second sensors 132b and 132t are detected.
  • the pressure can be detected while contacting the right side of the side, and the right side of the first sensor 131b, 131t and the right side of the second sensor 132b, 132t when the structure fixing part 120 is viewed from the right side in the right frame. Pressure can be detected while in contact.
  • the flexible structure can be grasped in the horizontal rotation direction and the extent thereof.
  • the flexible structure can be grasped in the horizontal rotation direction and the extent thereof.
  • FIG. 8 is a view illustrating a form in which an external force is applied in a center direction of a flexible structure while the frames on both sides to which the flexible structure is connected are moved apart from each other in the vertical direction, that is, the z-axis direction, in the deformation detecting apparatus according to the exemplary embodiment of the present invention. to be.
  • FIG. 8A illustrates an example in which an external force is applied so that the left frame and the right frame are directed toward the center of the flexible structure when the left frame is moved upward.
  • FIG. 8B illustrates an example in which an external force is applied such that the left frame and the right frame are directed toward the center of the flexible structure in a situation where the right frame is moved upward.
  • the structure fixing part 120 is formed of the first sensors 131b and 131t and the lower part in the left frame. Pressure may be detected while contacting the third sensor 133t, and pressure may be detected while the structure fixing part 120 is in contact with the first sensors 131b and 131t and the upper third sensor 133t in the right frame. Can be.
  • the structure fixing part 120 may be configured as the first sensor 131b in the left frame. , Pressure may be detected while contacting the first sensor 131t and the upper third sensor 133t, and the structure fixing part 120 contacts the first sensor 131b and 131t and the lower third sensor 133t in the right frame. Pressure can be detected.
  • the form of the pressure detected by the sensor unit that is, the point at which the pressure is detected, the size and change of the detected pressure, etc.
  • the tension, shrinkage, curvature, and torsion the extent (eg, the magnitude and speed of the tension, shrinkage, curvature, and torsion).
  • the deformation sensing device including the flexible structure is worn on a body, the posture and motion of the user may be detected by identifying the deformation form, the degree of deformation, and the speed of deformation of the flexible structure, and the flexible structure may be included in various fields.
  • a strain sensing device may be utilized.
  • the apparatus for detecting the deformation of the flexible structure according to the embodiment of the present invention described above may be modified in various ways.
  • FIGS 9 to 11 are diagrams illustrating various modifications to the deformation detection apparatuses according to the exemplary embodiment of the present invention, and the modifications of the deformation detection apparatus will be described with reference to them.
  • the deformation detecting apparatus 200 may include a flexible structure 210 having a thread or a string shape
  • the frame 240 to which the flexible structure 210 is connected may be a cylinder. It may be formed in a shape.
  • the frame 240 may be provided with a structure fixing part for fixing the flexible structure 210 of a thread or string form, and a sensor unit for detecting the pressure in contact with the structure fixing part.
  • the deformation detecting apparatus 300 may include a plurality of flexible structures 310 having a thread or a string shape, and the flexible structures 310 may include one frame ( 340 may be connected.
  • the frame 340 may include a structure fixing part for fixing the plurality of flexible structures 310 and a sensor part that detects pressure in contact with the structure fixing part, and a plurality of types depending on the type of pressure detected by the sensor part.
  • the shape and extent of deformation of the flexible structure 310 can be understood.
  • the plurality of flexible structures 310 may be fixed by one structure fixing unit or may be fixed by structure fixing units formed separately. According to the case where the structure fixing part is formed in one and a plurality of cases, the detection form of the pressure according to the deformation of the flexible structure 310 may vary. Know the relationship in advance.
  • the point where the pressure is detected in the sensor unit through the structure fixing unit is changed according to each deformation of the plurality of flexible structures 310, and even if a plurality of inputs are input at the same time, it can be detected.
  • deformation of each of the plurality of flexible structures 310 may be individually detected. For example, when strings in stringed instruments such as guitar, violin, and gayageum are deformed by user manipulation, the strings to be deformed can be specified, and the shape and extent of the deformation of each string can be grasped. have.
  • the structure of the flexible structure according to the present modification may be implemented in various forms such as gloves connected to a finger in addition to a stringed instrument.
  • the deformation detecting apparatus 100 is characterized in that the strip-shaped flexible structure 410 is connected to the frame 440.
  • the outer surface of the frame 440 is further provided with a surface pressure sensor 450 that can sense the external pressure applied by a touch or the like.
  • the surface pressure sensor 450 may detect whether the user or an external object is in contact with the frame 440, and thus, in detecting deformation of the flexible structure 410 through a sensor unit located in the frame 440, the frame 440 may be detected. ) Provides more information on the actual external force applied to determine the more accurate deformation form. For example, when the flexible structure is stretched or shrunk as shown in FIGS. 2 to 3, whether the actual frame is in contact with a user or an external object through the surface pressure sensor 450 installed outside the frame 440, Information on whether it is applied can be provided, so that the deformation form of the flexible structure can be identified more accurately. If the user wants to grasp the movement of the body by wearing the deformation detection apparatus on the body, the user's posture or motion may be more accurately understood.
  • Embodiments according to the present invention described above may be implemented in the form of program instructions that may be executed by various computer components, and may be recorded on a non-transitory computer readable recording medium.
  • the non-transitory computer readable recording medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the non-transitory computer readable recording medium may be those specially designed and configured for the present invention, or may be known and available to those skilled in the computer software arts.
  • non-transitory computer readable recording media include magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs, DVDs, magnetic-optical media such as floppy disks ( magneto-optical media) and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device may be configured to operate as one or more software modules to perform the process according to the invention, and vice versa.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

본 발명은 플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체에 관한 것으로서, 본 발명의 일 태양에 따르면, 플렉시블 구조체의 변형을 감지하기 위한 장치로서, 변형에 대한 탄성을 갖는 플렉시블 구조체, 플렉시블 구조체의 일 단부측에 배치되고 플렉시블 구조체의 적어도 일부를 고정하도록 구성되는 구조체 고정부, 내부에 홈이 형성되고 구조체 고정부의 적어도 일부를 상기 홈에 삽입하여 지지하도록 구성되는 프레임 및 프레임의 홈에 형성되어 플렉시블 구조체가 변형할 때 구조체 고정부에 전달되는 힘에 의해 구조체 고정부와 접하여 압력을 검출하도록 구성되는 센서부를 포함하는 장치가 제공된다.

Description

플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체
본 발명은 플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체에 관한 것이다.
근래에 들어, IT 기술이 발전을 거듭하면서 인간-컴퓨터 상호작용(HCI, Human-Computer Interface) 기술이 각광을 받고 있다. 이러한 HCI 분야에 있어서 신체의 움직임을 파악하기 위한 기술로 전도성 고무를 사용하는 것이 알려져 있다.
전도성 고무는 일반적인 저항체와 같이 전기 저항이 길이에 비례하고 단면적에 반비례하는 특성을 갖는다. 이에 따라 전도성 고무에 흐르는 전류의 변화를 통해 전도성 고무의 길이 변화 등을 측정할 수 있어 기술적 복잡도가 낮고 소형화가 가능하다는 이점이 있다.
하지만, 전류의 변화로 측정할 수 있는 것은 인장 내지 수축에 의한 변형에 국한되어, 휘거나 비틀리는 등 다른 형태의 변형을 감지하는 데에는 어려움이 있다. 또한, 전도성 고무를 통해 전신의 움직임을 파악하기 위하여는 전도성 고무를 전신에 적용해야 하는데, 이를 구성하는 것에도 현실적으로 많은 제약이 따른다.
이와 같이, 전도성 고무의 변형을 감지하여 신체의 움직임을 파악하는 방식에는 한계가 있어, 새로운 방식으로 물체의 변형을 감지하고 이를 활용할 수 있는 기술의 개발이 요구되는 실정이다.
본 발명은 상술한 종래기술의 문제점을 모두 해결하는 것을 그 목적으로 한다.
또한, 본 발명은 간단한 구조로 플렉시블 구조체의 인장, 수축, 비틀림, 굽힘 등 다양한 형태의 변형을 손쉽게 파악할 수 있는 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록매체를 제공하는데 그 목적이 있다. 그리고 본 발명은 플렉시블 구조체의 다양한 형태의 변형을 감지하고 이를 활용하여 사용자의 자세 내지 동작을 파악하는 것에 또 다른 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 대표적인 구성은 다음과 같다.
본 발명의 일 태양에 따르면, 플렉시블 구조체의 변형을 감지하기 위한 장치로서, 변형에 대한 탄성을 갖는 플렉시블 구조체, 플렉시블 구조체의 일 단부측에 배치되고 플렉시블 구조체의 적어도 일부를 고정하도록 구성되는 구조체 고정부, 내부에 홈이 형성되고 구조체 고정부의 적어도 일부를 상기 홈에 삽입하여 지지하도록 구성되는 프레임 및 프레임의 홈에 형성되어 플렉시블 구조체가 변형할 때 구조체 고정부에 전달되는 힘에 의해 구조체 고정부와 접하여 압력을 검출하도록 구성되는 센서부를 포함하는 장치가 제공된다.
본 발명의 다른 태양에 따르면, 플렉시블 구조체의 변형을 감지하기 위한 방법으로서, 플렉시블 구조체 변형 감지 장치로부터 압력 검출 정보를 획득하는 단계와, 플렉시블 구조체의 특성에 기초하여 미리 파악된, 플렉시블 구조체의 변형에 따른 플렉시블 구조체 변형 감지 장치에서의 압력 검출 형태로부터 압력 검출 정보를 적용하여 상기 플렉시블 구조체의 변형을 파악하는 단계를 포함하고, 상기 플렉시블 구조체 변형 감지 장치는 변형에 대한 탄성을 갖는 플렉시블 구조체, 플렉시블 구조체의 일 단부측에 배치되고 플렉시블 구조체의 적어도 일부를 고정하도록 구성되는 구조체 고정부, 내부에 홈이 형성되고 구조체 고정부의 적어도 일부를 상기 홈에 삽입하여 지지하도록 구성되는 프레임 및 프레임의 홈에 형성되어 플렉시블 구조체가 변형할 때 구조체 고정부에 전달되는 힘에 의해 구조체 고정부와 접하여 압력을 검출하도록 구성되는 센서부를 포함하는, 방법이 제공된다.
이 외에도, 본 발명을 구현하기 위한 다른 장치, 방법 및 상기 방법을 실행하기 위한 컴퓨터 프로그램을 기록하기 위한 비일시성의 컴퓨터 판독 가능한 기록 매체가 더 제공된다.
본 발명에 의하면, 플렉시블 구조체의 변형에 따라 센서부에서 특정한 형태로 압력이 검출되기 때문에, 이를 활용하여 플렉시블 구조체의 인장, 수축, 비틀림, 굽힘 등 다양한 형태의 변형을 손쉽게 파악할 수 있다.
또한, 간단한 구조로 다양한 형태의 플렉시블 구조체의 변형을 파악할 수 있어, 이를 통해 플렉시블 구조체를 사용하는 사용자의 자세 내지 동작을 정확히 파악할 수 있게 된다.
또한, 플렉시블 구조체를 다양한 재질과 다양한 형상으로 형성할 수 있어, 다양한 분야에서 활용이 가능하다.
도 1은 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치의 내부 및 외부 구성을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치에서 플렉시블 구조체가 인장 또는 수축하는 형태를 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치에서 프레임의 일단이 고정된 채 인장 또는 수축하는 형태를 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치에서 플렉시블 구조체가 만곡하는 형태를 나타내는 도면이다.
도 5는 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치에서 프레임의 일단이 고정된 채 만곡하는 형태를 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치에서 플렉시블 구조체가 비틀리는 형태를 나타내는 도면이다.
도 7은 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치에서 플렉시블 구조체가 수평 회전하는 형태를 나타내는 도면이다.
도 8은 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치에서 프레임이 상하 방향으로 이격되도록 이동한 채 플렉시블 구조체의 중심 방향으로 외력이 가해지는 형태를 나타내는 도면이다.
도 9 내지 도 11은 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치들에 대한 다양한 변형예를 나타내는 도면이다.
<부호의 설명>
100, 200, 300, 400: 변형 감지 장치
110, 210, 310, 410: 플렉시블 구조체
120: 구조체 고정부
130: 센서부
140, 240, 340, 440: 프레임
450: 표면 압력 감지 센서
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이러한 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 본 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 정신과 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있다. 또한, 각각의 실시예 내의 개별 구성요소의 위치 또는 배치도 본 발명의 정신과 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여지는 것이 아니며, 본 발명의 범위는 특허청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 구성요소를 나타낸다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 여러 바람직한 실시예에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
플렉시블 구조체의 변형을 감지하기 위한 장치의 구조
도 1은 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치(이하, '변형 감지 장치'라 함)를 나타내는 도면이다. 구체적으로 도 1의 (a)는 본 발명의 일 실시예에 따른 변형 감지 장치의 내부 구조를 개략적으로 나타내는 도면이고, 도 1의 (b)는 본 발명의 일 실시예에 따른 변형 감지 장치에서 센서부의 구성을 나타내는 도면이며, 도 1의 (c)는 본 발명의 일 실시예에 따른 변형 감지 장치의 외부 형상을 개략적으로 나타내는 도면이다.
우선, 도 1의 (a)를 참조하면, 본 발명의 일 실시예에 따른 변형 감지 장치(100)는 플렉시블 구조체(110), 구조체 고정부(120), 센서부(130) 및 프레임(140)을 포함할 수 있다. 도 1의 (a)에 도시된 좌표축에서 x축, y축 및 z축은 각각 플렉시블 구조체(110)의 폭 방향, 플렉시블 구조체(110)의 길이 방향 및 플렉시블 구조체(110)의 상하 방향을 의미하며, 이러한 좌표축의 기준은 본 명세서를 통하여 동일하게 적용한다.
본 실시예에 따른 플렉시블 구조체(110)는 탄성을 갖는 재질로 형성된 얇은 띠로서, 외부에서 인가되는 힘의 방향에 따라 수축, 인장, 만곡, 비틀림 등의 변형이 가능한 구조체이다. 플렉시블 구조체(110)는 그 재질 및 형상에 따라 인장, 만곡, 비틀림 등에 대한 고유의 탄성계수를 갖고, 변형 감지 장치(100)는 이러한 플렉시블 구조체(110)의 고유의 특성을 활용하여 그 변형을 감지하게 된다.
플렉시블 구조체(110)는 그 일단이 구조체 고정부(120)에 의해 고정될 수 있다. 또한, 프레임(140) 내부에는 구조체 고정부(120)를 삽입하여 지지하도록 홈이 형성될 수 있고, 구조체 고정부(120)가 삽입되는 홈의 내면에는 센서부(130)가 형성될 수 있다.
본 실시예에 따른 구조체 고정부(120)는 도 1의 (a)에 도시된 바와 같이 플렉시블 구조체(110)의 일단을 끼운 형태로 고정시킬 수 있다. 이러한 구조에 의해, 플렉시블 구조체(110)의 변형, 예를 들어 인장, 수축, 만곡, 비틀림 등이 일어날 때, 그 변형의 형태에 따라 구조체 고정부(120)는 특정한 방향으로 힘을 받게 된다. 이러한 힘에 의해 구조체 고정부(120)는 센서부(130)와 접하게 되며, 센서부(130)는 구조체 고정부(120)와 접하는 지점, 접하는 면적, 접할 때 인가되는 압력(전단력, 접선력 등)의 크기 등을 검출하게 된다.
본 실시예에 따른 센서부(130)는 구조체 고정부(120)와 접할 때 인가되는 압력 등을 검출하기 위하여 복수의 압력 감지 센서를 구비할 수 있다. 구체적으로, 도 1의 (b)를 참조하면, 센서부(130)는 프레임(140)의 홈 내에서 플렉시블 구조체(110)의 길이 방향(즉, y축 방향)으로 배치되는 제1 센서(131b, 131t) 및 제2 센서(132b, 132t)와, 플렉시블 구조체(110)에 대하여 상하 방향(즉, z축 방향)으로 배치되는 제3 센서(133b, 133t)를 포함할 수 있고, 이들 센서부는 각각 압력 감지 센서로 구성될 수 있다.
이러한 구조에 의해, 플렉시블 구조체(110)의 변형에 따라 구조체 고정부(120)가 힘을 받는 경우, 센서부(130)는 구조체 고정부(120)가 접하는 지점, 면적, 압력 등의 변화를 검출할 수 있고, 검출된 정보와 플렉시블 구조체(110) 고유의 특성(예를 들어, 탄성계수)으로부터 플렉시블 구조체(110)가 변형된 형태와 그 변형의 정도를 인식할 수 있게 된다.
본 실시예에서는 센서부(130)의 복수의 압력 감지 센서가 구조체 고정부(120)에 대하여 플렉시블 구조체(110)의 길이 방향(즉, y축 방향)과 상하 방향(즉, z축 방향)으로 배치되는 경우를 설명하였으나, 플렉시블 구조체(110)의 폭 방향(즉, x축 방향)으로도 압력 감지 센서를 더 구비할 수 있으며, 이 밖에도 다양한 방식으로 압력 감지 센서 수를 달리 하거나 그 배치를 달리 할 수 있다.
도 1의 (c)를 참조하면, 본 발명의 일 실시예에 따른 변형 감지 장치(100)는 외부에서 바라볼 때 내부 구성이 프레임(140)에 의해 차폐되는 형태로 이루어질 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 프레임은 적어도 일 측면이 개방되어 있는 형태(예를 들어, 도 1의 (a)의 형태)로 형성되는 것도 가능하다. 그리고, 도시되지 않았지만, 플렉시블 구조체(110)의 타단 역시 프레임에 삽입, 고정될 수 있으며, 또는 다른 공지된 방식으로 고정될 수도 있다.
플렉시블 구조체의 변형을 감지하기 위한 방법
상술한 바와 같이, 변형 감지 장치의 플렉시블 구조체는 그 재질 및 형상에 따라 고유한 탄성계수를 갖게 되며, 플렉시블 구조체가 변형되는 형태 및 변형되는 정도에 따라 구조체 고정부를 통해 센서부에서 감지되는 압력의 형태가 정해지게 된다. 결국, 플렉시블 고정체의 고유한 특성에 따른 플렉시블 구조체의 변형과 압력 검출 형태의 관계를 미리 파악함으로써, 플렉시블 구조체의 변형이 있을 때 센서부에서 감지되는 압력을 통해 변형의 형태와 그 정도를 파악할 수 있게 된다.
이하에서는, 변형 감지 장치를 활용하여 플렉시블 구조체가 다양한 형태로 변형될 때 그 변형을 감지할 수 있는 방법에 대하여 설명한다.
도 2는 본 발명의 일 실시예에 따른 변형 감지 장치에서 플렉시블 구조체가 인장 또는 수축하는 형태를 나타내는 도면이다. 구체적으로, 도 2의 (a)는 플렉시블 구조체가 그 양단이 프레임에 연결된 채로 플렉시블 구조체의 길이 방향(y축 방향)을 따라 인장하는 경우를 나타내고, 도 2의 (b)는 플렉시블 구조체가 수축하는 경우를 나타낸다.
도 2의 (a)와 같이 플렉시블 구조체가 인장하는 경우, 도 1에서의 구조체 고정부(120)가 제2 센서(132b, 132t)에 접하면서 압력이 검출될 수 있다. 또한, 도 2의 (b)와 같이 플렉시블 구조체가 수축(즉, 인장 상태에서 복원)하는 경우에는, 구조체 고정부(120)에 의해 제2 센서(132b, 132t)로 인가되었던 압력이 감소하게 되고, 수축(복원)하는 속도에 따라 제1 센서(131b, 131t)와 접하면서 소정의 압력이 검출될 수도 있다.
이처럼, 플렉시블 구조체가 인장 또는 수축(복원)하는 경우 센서부 중 플렉시블 구조체의 길이 방향으로 배치된 센서에서 압력 변화를 검출할 수 있고, 이로부터 플렉시블 구조체가 늘어나고 줄어든 길이를 파악할 수 있다. 또한, 시간에 따른 압력의 변화를 검출함으로써 플렉시블 구조체의 인장 속도 내지 수축(복원) 속도도 파악할 수 있다.
도 3은 본 발명의 일 실시예에 따른 변형 감지 장치에서 일측의 프레임을 고정한 채 플렉시블 구조체가 인장 또는 수축하는 형태를 나타내는 도면이다. 구체적으로, 도 3의 (a) 및 (b)는 플렉시블 구조체가 연결된 프레임 중 좌측의 프레임을 고정한 채 플렉시블 구조체가 그 길이 방향(y축 방향)을 따라 인장 및 수축하는 경우를 나타내고, 도 3의 (c) 및 (d)는 플렉시블 구조체가 연결된 프레임 중 우측의 프레임을 고정한 채 플렉시블 구조체가 그 길이 방향(y축 방향)을 따라 인장 및 수축하는 경우를 나타낸다.
도 3의 (a) 내지 (d)에서와 같이 플렉시블 구조체의 양단이 프레임에 연결되고 이 중 하나의 프레임이 고정적으로 설치된 채 플렉시블 구조체가 인장 또는 수축하는 경우에 있어서도, 도 2에서와 동일하게 플렉시블 구조체의 길이 방향으로 배치된 센서(제1 센서 및 제2 센서)에서 압력이 검출될 수 있으며, 검출된 압력 및 압력의 변화를 통해 플렉시블 구조체가 늘어나거나 줄어든 길이, 또는 인장 속도 내지 수축(복원) 속도를 파악할 수 있게 된다.
도 4는 본 발명의 일 실시예에 따른 변형 감지 장치에서 플렉시블 구조체가 만곡하는 형태를 나타내는 도면이다. 구체적으로, 도 4의 (a) 및 (b)는 상대적으로 휨(만곡)에 대한 높은 탄성계수를 갖는 플렉시블 구조체에 대하여 양측에서 만곡시키는 경우를 나타내고, 도 4의 (c) 및 (d)는 상대적으로 휨(만곡)에 대한 낮은 탄성계수를 갖는 플렉시블 구조체에 대하여 양측에서 만곡시키는 경우를 나타낸다.
도 4의 (a) 및 (b)에서와 같이 휨에 대한 높은 탄성계수를 갖는 재질(예를 들어, 고무)로 형성된 플렉시블 구조체를 양측에서 위쪽 또는 아래쪽으로 만곡시키게 되면, 도 1에서의 구조체 고정부(120)가 제2 센서(132b, 132t)에 접하면서 압력이 검출될 수 있다. 반면에, 도 4의 (c) 및 (d)와 같이 휨에 대한 낮은 탄성계수를 갖는 재질로 형성된 플렉시블 구조체를 양측에서 위쪽 또는 아래쪽으로 만곡시키게 되면, 구조체 고정부(120)는 제2 센서(132b, 132t)뿐만 아니라 제3 센서(133b, 133t)에도 접하게 되어, 이들 센서에서 압력이 검출될 수 있다.
이처럼, 플렉시블 구조체를 양측에서 위쪽 또는 아래쪽으로 만곡시킬 때 센서부에서 압력 변화를 검출할 수 있고, 이로부터 플렉시블 구조체가 만곡된 형태와 그 정도를 인식할 수 있게 된다. 또한, 시간에 따른 검출된 압력 및 압력의 변화를 검출함으로써 플렉시블 구조체가 만곡 변형하는 속도도 파악할 수 있게 된다.
도 5는 본 발명의 일 실시예에 따른 변형 감지 장치에서 프레임의 일측을 고정한 채 플렉시블 구조체를 인장하면서 동시에 만곡시키는 형태를 나타내는 도면이다. 구체적으로, 도 5의 (a)와 (b)는 플렉시블 구조체가 연결된 프레임 중 좌측 프레임을 고정한 채 플렉시블 구조체를 우측으로 인장하면서 동시에 위쪽과 아래쪽으로 만곡시키는 경우를 나타내고, 도 5의 (c)와 (d)는 플렉시블 구조체가 연결된 프레임 중 우측 프레임을 고정한 채 플렉시블 구조체를 좌측으로 인장하면서 위쪽과 아래쪽으로 만곡시키는 경우를 나타낸다.
도 5의 (a)를 참조하면, 플렉시블 구조체를 우측으로 인장하면서 동시에 위쪽으로 만곡시키는 경우, 고정되어 있는 좌측 프레임 내에서는 구조체 고정부(120)가 제2 센서(132b, 132t)에 접하여 압력이 검출되고, 고정되어 있지 않은 우측 프레임 내에서는 구조체 고정부(120)가 제2 센서(132b, 132t) 및 제3 센서(133b, 133t)에 접하면서 이들 센서부에서 압력이 검출될 수 있다. 도 5의 (b) 내지 (d)에서도 마찬가지로, 고정되어 있는 프레임 내에서는 구조체 고정부(120)가 제2 센서(132b, 132t)에 접하여 압력이 검출되고 고정되어 있지 않은 프레임 내에서는 구조체 고정부(120)가 제2 센서(132b, 132t) 및 제3 센서(133b, 133t)에 접하면서 이들 센서부에서 압력이 검출될 수 있다.
이와 같이, 플렉시블 구조체의 일단에 연결된 프레임이 고정된 상태에서 인장과 만곡이 동시에 이루어지는 경우, 각 센서부에서 검출되는 압력을 분석하여 인장 및 만곡의 형태와 그 정도를 파악할 수 있다. 또한, 시간에 따른 검출된 압력 및 압력의 변화를 검출함으로써 플렉시블 구조체가 만곡 변형하는 속도도 파악할 수도 있다.
도 6은 본 발명의 일 실시예에 따른 변형 감지 장치에서 플렉시블 구조체가 비틀리는 형태를 나타내는 도면으로, 구체적으로 도 6의 (a)와 (b)는 플렉시블 구조체가 연결된 좌측 및 우측 프레임을 플렉시블 구조체의 길이 방향(y축 방향)을 축으로 하여 서로 반대 방향으로 회전시킴으로써 플렉시블 구조체를 회전시키는 경우를 나타낸다.
이와 같이 플렉시블 구조체가 비틀리는 경우에는 프레임 내의 구조체 고정부(120)가 상하 방향(z축 방향)으로 배치된 제3 센서(133b, 133t)와 접하면서 압력이 검출될 수 있다. 이때, 플렉시블 구조체가 비틀리는 방향에 따라 구조체 고정부가 각 센서부와 접하여 압력이 검출되는 지점이 달라질 수 있다.
도 6의 (a)의 경우, 좌측 프레임과 우측 프레임을 각각 좌측과 우측에서 바라볼 때 시계 반대 방향으로 회전시켜 플렉시블 구조체가 비틀리게 되는데, 이 경우 좌측 프레임 내에서는 좌측에서 바라볼 때 하부 제3 센서(133b)의 좌측 지점과 상부 제3 센서(133t)의 우측 지점에서 압력이 검출될 수 있고, 우측 프레임 내에서는 우측에서 바라볼 때 하부 제3 센서(133b)의 우측 지점과 상부 제3 센서(133t)의 좌측 지점에서 압력이 검출될 수 있다. 반대로, 도 6의 (b)의 경우에는, 좌측 프레임과 우측 프레임을 각각 좌측과 우측에서 바라볼 때 시계 방향으로 회전시켜 플렉시블 구조체가 비틀리게 되는데, 이 경우 좌측 프레임 내에서는 좌측에서 바라볼 때 하부 제3 센서(133b)의 우측 지점과 상부 제3 센서(133t)의 좌측 지점에서 압력이 검출될 수 있고, 우측 프레임 내에서는 우측에서 바라볼 때 하부 제3 센서(133b)의 좌측 지점과 상부 제3 센서(133t)의 우측 지점에서 압력이 검출될 수 있다. 여기에서, 플렉시블 구조체가 비틀리는 정도가 크다면 검출되는 압력의 크기도 커지게 된다.
이처럼, 비틀리는 방향과 정도에 따라 센서부 내에서 압력이 검출되는 지점과 크기가 달라지므로, 이를 활용하여 플렉시블 구조체가 비틀리는 방향과 그 정도를 파악할 수 있게 된다. 또한, 시간에 따른 검출된 압력 및 압력의 변화를 검출함으로써 플렉시블 구조체가 비틀림 변형하는 속도도 파악할 수 있게 된다.
한편, 플렉시블 고정체가 비틀리는 동시에 양측으로 인장하는 경우에는, 좌측 및 우측 프레임 내에서 제3 센서(133b, 133t) 외에 제2 센서(132b, 132t)에서도 압력이 검출되므로, 이를 통해 비틀림과 동시에 인장되는 형태와 그 정도, 그리고 그 변형 속도도 파악할 수 있다.
도 7은 본 발명의 일 실시예에 따른 변형 감지 장치에서 플렉시블 구조체가 수평 회전, 즉 z축을 축으로 하여 회전하는 형태를 나타내는 도면이다. 구체적으로, 변형 감지 장치를 위에서 바라볼 때, 도 7의 (a)는 좌측 프레임을 반시계 방향으로, 우측 프레임을 시계 방향으로 회전시키는 경우를 나타내고, 도 7의 (b)는 좌측 프레임을 시계 방향으로, 우측 프레임을 반시계 방향으로 회전시키는 경우를 나타낸다. 그리고 도 7의 (c)는 좌측 프레임과 우측 프레임을 모두 시계 방향으로 회전시키는 경우를 나타내고, 도 7의 (d)는 좌측 프레임과 우측 프레임을 모두 반시계 방향으로 회전시키는 경우를 나타낸다.
도 7의 (a)의 경우, 좌측 프레임과 우측 프레임을 위에서 바라볼 때 각각 반시계 방향 및 시계 방향으로 회전시킴에 따라, 좌측 프레임 내에서는 구조체 고정부(120)가 좌측에서 바라볼 때 제1 센서(131b, 131t)의 좌측과 제2 센서(132b, 132t)의 우측에 접하면서 압력이 검출될 수 있고, 우측 프레임 내에서는 구조체 고정부(120)가 우측에서 바라볼 때 제1 센서(131b, 131t)의 우측과 제2 센서(132b, 132t)의 좌측에 접하면서 압력이 검출될 수 있다. 이와 반대로, 도 7의 (b)의 경우, 좌측 프레임 내에서는 구조체 고정부(120)가 좌측에서 바라볼 때 제1 센서(131b, 131t)의 우측과 제2 센서(132b, 132t)의 좌측에 접하면서 압력이 검출될 수 있고, 우측 프레임 내에서는 구조체 고정부(120)가 우측에서 바라볼 때 제1 센서(131b, 131t)의 좌측과 제2 센서(132b, 132t)의 우측에 접하면서 압력이 검출될 수 있다.
또한, 도 7의 (c)의 경우, 좌측 프레임 내에서는 구조체 고정부(120)가 좌측에서 바라볼 때 제1 센서(131b, 131t)의 우측과 제2 센서(132b, 132t)의 좌측에 접하면서 압력이 검출될 수 있고, 우측 프레임 내에서는 구조체 고정부(120)가 우측에서 바라볼 때 제1 센서(131b, 131t)의 우측과 제2 센서(132b, 132t)의 좌측에 접하면서 압력이 검출될 수 있으며, 이와 반대로 도 7의 (d)의 경우, 좌측 프레임 내에서는 구조체 고정부(120)가 좌측에서 바라볼 때 제1 센서(131b, 131t)의 좌측과 제2 센서(132b, 132t)의 우측에 접하면서 압력이 검출될 수 있고, 우측 프레임 내에서는 구조체 고정부(120)가 우측에서 바라볼 때 제1 센서(131b, 131t)의 좌측과 제2 센서(132b, 132t)의 우측에 접하면서 압력이 검출될 수 있다.
여기에서, 플렉시블 구조체가 수평 회전 이동하는 정도가 크다면 검출되는 압력의 크기도 커지게 된다.
이처럼, 플렉시블 구조체의 수평 회전 방향과 그 정도에 따라 센서부 내에서 압력이 검출되는 지점과 크기가 달라지므로, 이를 활용하여 플렉시블 구조체가 수평 회전하는 방향과 그 정도를 파악할 수 있게 된다. 또한, 시간에 따른 검출된 압력 및 압력의 변화를 검출함으로써 플렉시블 구조체가 수평 회전하는 속도도 파악할 수 있게 된다.
도 8은 본 발명의 일 실시예에 따른 변형 감지 장치에서 플렉시블 구조체가 연결된 양측의 프레임이 상하 방향, 즉 z축 방향으로 이격되도록 이동한 채 플렉시블 구조체의 중심 방향으로 외력이 가해지는 형태를 나타내는 도면이다. 구체적으로, 변형 감지 장치를 옆에서 바라볼 때, 도 8의 (a)는 좌측 프레임이 상대적으로 위쪽으로 이동한 상황에서 좌측 프레임과 우측 프레임이 플렉시블 구조체의 중심 방향으로 향하도록 외력을 가하는 경우를 나타내고, 도 8의 (b)는 우측 프레임이 상대적으로 위쪽으로 이동한 상황에서 좌측 프레임과 우측 프레임이 플렉시블 구조체의 중심 방향으로 향하도록 외력을 가하는 경우를 나타낸다.
도 8의 (a)의 경우, 좌측 프레임과 우측 프레임을 옆에서 바라볼 때 각각 시계 방향으로 회전시킴에 따라, 좌측 프레임 내에서는 구조체 고정부(120)가 제1 센서(131b, 131t) 및 하부 제3 센서(133t)에 접하면서 압력이 검출될 수 있고, 우측 프레임 내에서는 구조체 고정부(120)가 제1 센서(131b, 131t) 및 상부 제3 센서(133t)에 접하면서 압력이 검출될 수 있다. 반면에, 도 8의 (b)의 경우에는, 좌측 프레임과 우측 프레임을 옆에서 바라볼 때 각각 반시계 방향으로 회전시킴에 따라, 좌측 프레임 내에서는 구조체 고정부(120)가 제1 센서(131b, 131t) 및 상부 제3 센서(133t)에 접하면서 압력이 검출될 수 있고, 우측 프레임 내에서는 구조체 고정부(120)가 제1 센서(131b, 131t) 및 하부 제3 센서(133t)에 접하면서 압력이 검출될 수 있다.
이처럼, 플렉시블 구조체가 상하 방향으로 이동한 상태에서 회전력을 받는 형태에 있어서도 변형의 형태와 그 정도에 따라 센서부 내에서 압력이 검출되는 지점과 크기가 달라지므로, 이를 활용하여 플렉시블 구조체의 변형된 형태와 그 정도를 파악할 수 있게 된다. 또한, 시간에 따른 검출된 압력 및 압력의 변화를 검출함으로써 플렉시블 구조체가 변형하는 속도도 파악할 수 있게 된다.
이상 설명한 바와 같이, 플렉시블 구조체가 다양한 형태로 변형되는 경우에 있어서, 센서부에서 검출되는 압력의 형태, 즉 압력이 검출되는 지점, 검출되는 압력의 크기 및 변화 등을 통해 플렉시블 구조체가 변형되는 형태(예를 들어, 인장, 수축, 만곡, 비틀림)와 그 정도(예를 들어, 인장, 수축, 만곡, 비틀림의 크기 및 속도)를 파악할 수 있게 된다. 이러한 플렉시블 구조체를 포함하는 변형 감지 장치를 신체에 착용한 경우, 플렉시블 구조체의 변형 형태와 변형 정도, 그리고 변형 속도를 파악함으로써 사용자의 자세와 동작을 검출할 수 있으며, 이외에도 다양한 분야에서 플렉시블 구조체를 포함하는 변형 감지 장치를 활용할 수 있을 것이다.
한편, 장시간에 걸쳐 플렉시블 구조체에 다수의 변형이 이루어지는 경우, 플렉시블 구조체의 탄성계수와 같은 특성이 변화할 수 있다. 플렉시블 구조체의 탄성계수 등에 따라 플렉시블 구조체의 변형에 의해 검출되는 압력의 크기가 달라지기 때문에, 플렉시블 구조체의 특성이 변화가 감지된 경우 이를 교체하는 것이 바람직하다. 이러한 플렉시블 구조체의 교체 필요성을 판단하는 방법으로는, 핀 접촉 방식, NFC와 RFID와 같은 비접촉 방식, 자력에 의한 방식 등이 가능하다.
플렉시블 구조체의 변형을 감지하기 위한 장치의 변형예
상술한 본 발명의 일 실시예에 따른 플렉시블 구조체의 변형을 감지하기 위한 장치(변형 감지 장치)는 다양한 방식으로 변형이 가능하다.
도 9 내지 도 11은 본 발명의 일 실시예에 따른 변형 감지 장치들에 대한 다양한 변형예를 나타내는 도면으로, 이들을 참조하여 변형 감지 장치의 변형예에 대하여 설명한다.
우선, 도 9를 참조하면, 일 변형예에 따른 변형 감지 장치(200)는 실 또는 줄 형태의 플렉시블 구조체(210)를 포함할 수 있고, 플렉시블 구조체(210)가 연결되는 프레임(240)은 원통 형상으로 형성될 수 있다. 본 발명의 일 실시예에서와 같이, 프레임(240) 내에는 실 또는 줄 형태의 플렉시블 구조체(210)를 고정하는 구조체 고정부와, 구조체 고정부와 접하여 압력을 검출할 수 있는 센서부가 구비될 수 있으며, 센서부에서 검출되는 압력의 형태에 따라 실 또는 줄 형태의 플렉시블 구조체(210)가 변형하는 형태 및 그 정도와 변형 속도를 파악할 수 있다.
다음으로, 도 10을 참조하면, 다른 변형예에 따른 변형 감지 장치(300)는 실 또는 줄 형태의 플렉시블 구조체(310)를 복수 개 포함할 수 있고, 이들 플렉시블 구조체(310)가 하나의 프레임(340)에 연결될 수 있다. 프레임(340) 내에는 복수의 플렉시블 구조체(310)를 고정하는 구조체 고정부와, 구조체 고정부와 접하여 압력을 검출할 수 있는 센서부가 구비될 수 있으며, 센서부에서 검출되는 압력의 형태에 따라 복수의 플렉시블 구조체(310)가 변형하는 형태 및 그 정도를 파악할 수 있다. 이때, 복수의 플렉시블 구조체(310)는 하나의 구조체 고정부에 의해 고정되거나, 또는 각각 별개로 형성된 구조체 고정부에 의해 고정될 수도 있다. 구조체 고정부를 하나로 형성하는 경우와 복수 개로 형성하는 경우에 따라 플렉시블 구조체(310)의 변형에 따른 압력의 검출 형태가 달라질 수 있는 바, 이를 고려하여 플렉시블 구조체(310)의 변형과 압력 검출 형태의 관계를 미리 파악한다.
본 변형예에 따르면, 복수의 플렉시블 구조체(310) 각각의 변형에 따라 구조체 고정부를 통해 센서부에서 압력이 검출되는 지점이 달라지게 되고, 복수의 입력이 동시에 입력되는 경우에도 이를 검출할 수 있으므로, 복수의 플렉시블 구조체(310) 각각의 변형을 개별적으로 검출할 수 있다. 예를 들어, 기타, 바이올린, 가야금 등의 현악기에서의 스트링(string)이 사용자 조작에 의해 변형되는 경우, 변형되는 스트링을 특정할 수 있음은 물론 각각의 스트링의 변형의 형태와 그 정도를 파악할 수 있다. 본 변형예에 따른 플렉시블 구조체 등의 구조는 현악기 이외에도 손가락에 실을 연결한 장갑 등 다양한 형태로 구현될 수 있다.
도 11을 참조하면, 또 다른 변형예에 따른 변형 감지 장치(400)는 띠 형상의 플렉시블 구조체(410)가 프레임(440)에 연결된 형태인 점에서 본 발명의 일 실시예의 변형 감지 장치(100)와 유사하나, 프레임(440)의 외부 표면에 터치 등에 의해 인가되는 외부 압력을 감지할 수 있는 표면 압력 감지 센서(450)를 더 구비하는 점에서 차이가 있다.
표면 압력 감지 센서(450)는 사용자 또는 외부 물체와 프레임(440)의 접촉 여부를 감지할 수 있어, 프레임(440) 내에 위치한 센서부를 통해 플렉시블 구조체(410)의 변형을 파악함에 있어, 프레임(440)에 실제 외력이 인가되는지에 대한 정보를 제공하여 보다 정확한 변형 형태를 파악할 수 있게 된다. 예를 들어, 도 2 내지 도 3에서와 같이 플렉시블 구조체가 인장 내지 수축하는 경우, 프레임(440) 외부에 설치된 표면 압력 감지 센서(450)를 통해 실제 프레임이 사용자 또는 외부 물체와 접촉하였는지, 외력이 인가되는지에 대한 정보를 제공할 수 있어, 플렉시블 구조체의 변형 형태를 보다 정확하게 파악할 수 있다. 만약, 변형 감지 장치를 신체에 착용하는 등의 방법으로 신체의 움직임을 파악하고자 할 때 사용자의 자세 내지 동작을 보다 정확하게 파악할 수 있을 것이다.
이상 설명된 본 발명에 따른 실시예들은 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 비일시성의 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 비일시성의 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 비일시성의 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수도 있다. 비일시성의 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.

Claims (12)

  1. 플렉시블 구조체의 변형을 감지하기 위한 장치로서,
    변형에 대한 탄성을 갖는 플렉시블 구조체,
    상기 플렉시블 구조체의 일 단부측에 배치되고 상기 플렉시블 구조체의 적어도 일부를 고정하도록 구성되는 구조체 고정부,
    내부에 홈이 형성되고 상기 구조체 고정부의 적어도 일부를 상기 홈에 삽입하여 지지하도록 구성되는 프레임 및
    상기 프레임의 홈에 형성되어 상기 플렉시블 구조체가 변형할 때 상기 구조체 고정부에 전달되는 힘에 의해 상기 구조체 고정부와 접하여 압력을 검출하도록 구성되는 센서부
    를 포함하는 장치.
  2. 제1항에 있어서,
    상기 센서부는 상기 프레임의 홈 내면에 형성되고,
    상기 센서부는 상기 플렉시블 구조체의 길이 방향으로 배치되어 상기 구조체 고정부에 상기 플렉시블 구조체의 길이 방향을 따라 힘이 인가될 때 압력을 검출할 수 있는 길이 방향 센서와, 상기 플렉시블 구조체에 대해 상하 방향으로 배치되어 상기 구조체 고정부에 상기 플렉시블 구조체의 상하 방향을 따라 힘이 전달될 때 압력을 검출할 수 있는 상하 방향 센서를 포함하는, 장치.
  3. 제2항에 있어서,
    상기 센서부는, 상기 플렉시블 구조체의 길이 방향 및 상하 방향에 수직한 폭 방향으로 배치되어 상기 구조체 고정부에 상기 플렉시블 구조체의 폭 방향을 따라 힘이 전달될 때 압력을 검출할 수 있는 폭 방향 센서를 더 포함하는, 장치.
  4. 제1항에 있어서,
    상기 프레임의 표면에 설치되어 외부 물체와의 접촉 여부와 접촉 시 인가되는 압력을 감지할 수 있는 표면 압력 감지 센서를 더 포함하는 장치.
  5. 제1항에 있어서,
    상기 프레임은 상기 구조체 고정부와 상기 센서부를 외부 환경로부터 차폐하도록 구성되는, 장치.
  6. 제1항에 있어서,
    상기 구조체 고정부, 상기 프레임 및 상기 센서부는 상기 플렉시블 구조체의 양 단부측에 각각 설치되는, 장치.
  7. 제1항에 있어서,
    상기 플렉시블 구조체는 띠 형태로 형성되는, 장치.
  8. 제1항에 있어서,
    상기 플렉시블 구조체는 실 또는 줄 형태로 형성되는, 장치.
  9. 제8항에 있어서,
    상기 실 또는 줄 형태의 플렉시블 구조체를 복수 개 포함하는 장치.
  10. 플렉시블 구조체의 변형을 감지하기 위한 방법으로서,
    플렉시블 구조체 변형 감지 장치로부터 압력 검출 정보를 획득하는 단계 및
    상기 플렉시블 구조체의 특성에 기초하여 미리 파악된, 상기 플렉시블 구조체의 변형에 따른 상기 플렉시블 구조체 변형 감지 장치에서의 압력 검출 형태로부터, 상기 압력 검출 정보를 적용하여 상기 플렉시블 구조체의 변형을 파악하는 단계를 포함하고,
    상기 플렉시블 구조체 변형 감지 장치는,
    변형에 대한 탄성을 갖는 플렉시블 구조체,
    상기 플렉시블 구조체의 일 단부측에 배치되고 상기 플렉시블 구조체의 적어도 일부를 고정하도록 구성되는 구조체 고정부,
    내부에 홈이 형성되고 상기 구조체 고정부의 적어도 일부를 상기 홈에 삽입하여 지지하도록 구성되는 프레임 및
    상기 프레임의 홈에 형성되어 상기 플렉시블 구조체가 변형할 때 상기 구조체 고정부에 전달되는 힘에 의해 상기 구조체 고정부와 접하여 압력을 검출하도록 구성되는 센서부
    를 포함하는, 방법
  11. 제10항에 있어서,
    상기 플렉시블 구조체의 변형을 파악하는 단계에서는,
    상기 플렉시블 구조체 변형 감지 장치의 센서부가 구조체 고정부와 접하는 지점, 인가되는 압력의 크기, 또는 압력의 변화를 통하여 상기 플렉시블 구조체의 변형의 형태와 변형 정도를 파악하는, 방법.
  12. 제10항 또는 제11항에 따른 방법을 실행하기 위한 컴퓨터 프로그램을 기록한 비일시성의 컴퓨터 판독 가능한 기록 매체.
PCT/KR2016/012413 2015-10-30 2016-10-31 플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체 WO2017074165A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0151546 2015-10-30
KR20150151546 2015-10-30
KR10-2016-0114648 2016-09-06
KR1020160114648A KR101839142B1 (ko) 2015-10-30 2016-09-06 플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체

Publications (1)

Publication Number Publication Date
WO2017074165A1 true WO2017074165A1 (ko) 2017-05-04

Family

ID=58630723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012413 WO2017074165A1 (ko) 2015-10-30 2016-10-31 플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체

Country Status (1)

Country Link
WO (1) WO2017074165A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065705A (ja) * 1998-08-21 2000-03-03 Kanazawa Inst Of Technology 樹脂含浸ストランド試験装置、およびそれを用いた試験方法
US6701260B1 (en) * 1999-06-03 2004-03-02 R. Rouvari Oy System for measuring loadings in a structure, measuring unit and measuring sensor
JP2008276664A (ja) * 2007-05-07 2008-11-13 Matsushita Electric Ind Co Ltd 検出装置
KR20100063595A (ko) * 2008-12-03 2010-06-11 한국전자통신연구원 전기전도성 섬유를 이용한 무구속 움직임 측정 장치 및 방법
JP2010134905A (ja) * 2008-11-09 2010-06-17 Kyokko Denki Kk 動作検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065705A (ja) * 1998-08-21 2000-03-03 Kanazawa Inst Of Technology 樹脂含浸ストランド試験装置、およびそれを用いた試験方法
US6701260B1 (en) * 1999-06-03 2004-03-02 R. Rouvari Oy System for measuring loadings in a structure, measuring unit and measuring sensor
JP2008276664A (ja) * 2007-05-07 2008-11-13 Matsushita Electric Ind Co Ltd 検出装置
JP2010134905A (ja) * 2008-11-09 2010-06-17 Kyokko Denki Kk 動作検出装置
KR20100063595A (ko) * 2008-12-03 2010-06-11 한국전자통신연구원 전기전도성 섬유를 이용한 무구속 움직임 측정 장치 및 방법

Similar Documents

Publication Publication Date Title
WO2017026610A1 (ko) 플렉서블 촉각 센서 및 이의 제조 방법
Nishiyama et al. Wearable sensing glove with embedded hetero-core fiber-optic nerves for unconstrained hand motion capture
WO2011132822A1 (ko) 휴대 단말기용 스타일러스 펜
WO2015035546A9 (zh) 一种压力感应式触摸屏和触摸显示屏及电子设备
WO2015126009A1 (ko) 3축 자기력 센서와 자기력 펜을 이용한 터치스크린 융합 디지타이저
JP2018529948A (ja) 抵抗容量型変形センサ
WO2019112158A1 (ko) 관절센서를 이용한 센서 오차 보정장치, 보정방법
WO2006106612A1 (ja) センサ素子、センサ装置、対象物移動制御装置、対象物判別装置
WO2020122272A1 (ko) 웨어러블 디바이스 및 이의 제스처 인식 방법
WO2021025335A1 (ko) 안테나를 포함하는 디지털 펜의 구조
WO2017074165A1 (ko) 플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체
Guo et al. Finger motion detection based on optical fiber Bragg grating with polyimide substrate
WO2024043684A1 (ko) 터치패드 기반의 손가락 벤딩 센서 장치 및 이를 이용한 로봇 핸드 파지 제스처 제어 방법
WO2013047933A1 (ko) 초소형 공진형 가속도계
WO2019124868A1 (ko) 촉각 센서, 그 제조 방법 및 그 동작 방법
CN114259223A (zh) 一种基于d型塑料光纤的人体运动状态监测系统
JP2006235362A (ja) 光ファイバ曲げ受光ヘッド
WO2018101667A2 (ko) 손가락 마디 간 착용형 반지 타입의 사용자 조작 센싱 장치
WO2015147407A1 (ko) 표적판용 다중 접점식 위치 감지 장치
KR101839142B1 (ko) 플렉시블 구조체의 변형을 감지하기 위한 장치, 방법 및 비일시성의 컴퓨터 판독 가능한 기록 매체
WO2017014330A1 (ko) 웨어러블 장치 및 이를 이용한 정보 입력 방법
WO2020098733A1 (zh) 一种曲线作图软尺以及曲线制图装置
US10451672B2 (en) Probing apparatus for tapping electric signals generated by a device-under-test
CN207908633U (zh) 一种电路故障检测装置
WO2016053696A1 (en) Apparatus and method for magnetic sensor based surface shape analysis spatial positioning in a uniform magnetic field

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860348

Country of ref document: EP

Kind code of ref document: A1