WO2017074095A1 - Light-emitting element comprising wavelength conversion structure - Google Patents

Light-emitting element comprising wavelength conversion structure Download PDF

Info

Publication number
WO2017074095A1
WO2017074095A1 PCT/KR2016/012239 KR2016012239W WO2017074095A1 WO 2017074095 A1 WO2017074095 A1 WO 2017074095A1 KR 2016012239 W KR2016012239 W KR 2016012239W WO 2017074095 A1 WO2017074095 A1 WO 2017074095A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
wavelength conversion
layer
emitting structure
Prior art date
Application number
PCT/KR2016/012239
Other languages
French (fr)
Korean (ko)
Inventor
진모 김제임스
Original Assignee
주식회사 썬다이오드코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 썬다이오드코리아 filed Critical 주식회사 썬다이오드코리아
Publication of WO2017074095A1 publication Critical patent/WO2017074095A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a light emitting device, and more particularly to a light emitting device that can implement a variety of colors through a wavelength conversion structure.
  • the light emitting device is an optoelectronic device that emits light based on a bandgap energy caused by recombination of electrons and holes in the compound semiconductor layers when a voltage is applied.
  • the light emitting device is excellent in light efficiency due to its fast processing speed and low power consumption, and has a feature that can be miniaturized. In recent years, it is expected that the light emitting device can replace an illumination light source such as a fluorescent lamp or an incandescent lamp. Accordingly, the development of applying a light emitting device as a high power and high efficiency light source for a back light of a lighting device or a display device is being actively conducted.
  • one light emitting device emits monochromatic light having a predetermined wavelength.
  • white light is obtained by combining R (red, red), G (green, green), and B (blue, blue), or a phosphor
  • R red, red
  • G green
  • B blue
  • a phosphor The technique of converting into white light by using is introduced.
  • the brightness of the light is reduced, or the final color is uneven due to the arrangement of a plurality of phosphors having different specific gravity and particle size, The process is complicated.
  • the present invention is to provide a light emitting device that can easily implement a light of various colors, including white light.
  • the present invention includes a light emitting structure in which a plurality of semiconductor laminates including light emitting layers positioned between semiconductor layers having different conductivity types are stacked, and a wavelength conversion structure disposed on one surface of the light emitting structure.
  • the wavelength conversion structure may include a filter layer disposed on one surface of the light emitting structure to transmit only a portion of the light emitted from the light emitting structure, and disposed on one surface of the filter layer to absorb light transmitted through the filter layer.
  • Light emission comprising a wavelength conversion layer for changing and emitting a wavelength region of light and a reflection layer disposed on one surface of the wavelength conversion layer, reflecting the light emitted from the wavelength conversion layer and the light emitting structure to the outside An element can be provided.
  • the light emitting layers included in the light emitting structures may emit light having different wavelength regions.
  • the light emitting structure is a first semiconductor laminate for emitting green light and a second semiconductor laminate for emitting blue light are sequentially stacked, the wavelength conversion layer absorbs the green light or the blue light It may be to be excited.
  • the light emitting structure includes a first semiconductor laminate emitting near-uv light, a second semiconductor laminate emitting green light, and a third semiconductor laminate emitting blue light. The sieves are sequentially stacked, and the wavelength conversion layer may be excited by absorbing any light selected from the near ultraviolet light, the green light, or the blue light.
  • the filter layer selectively transmits light having a first wavelength region in the light emitting structure, and the wavelength conversion layer absorbs light having the first wavelength region that has passed through the filter layer to down-convert energy of light. ) To emit light having the second wavelength region.
  • an upper filter for selectively transmitting the light emitted from the light emitting structure and the wavelength conversion layer may be further provided.
  • the light emitting device of the present invention can easily implement light of a desired color including white light through a light emitting structure and a wavelength conversion structure in which a plurality of semiconductor laminates are multi-bonded.
  • the upper filter disposed on the top of the light emitting structure may increase the amount of light reaching the wavelength converting structure, thereby improving conversion efficiency of the wavelength converting structure.
  • FIGS. 1A to 1C are cross-sectional views illustrating a structure of a light emitting device and a flow of light emitted from the light emitting device according to an embodiment of the present invention.
  • FIGS. 2A to 2B are cross-sectional views illustrating a light emitting device and a flow of light emitted from the light emitting device according to another embodiment of the present invention.
  • 3A to 3B are cross-sectional views illustrating a light emitting device and a flow of light emitted from the light emitting device according to another embodiment of the present invention.
  • the present invention relates to a light emitting device including a light emitting structure in which a plurality of semiconductor laminates including light emitting layers positioned between semiconductor layers having different conductivity types are stacked, and a wavelength conversion structure disposed on one surface of the light emitting structure.
  • the wavelength conversion structure is disposed on one surface of the light emitting structure, the filter layer for transmitting only a portion of the light emitted from the light emitting structure, disposed on one surface of the filter layer, absorbs the light transmitted through the filter layer to change the wavelength region of the light
  • It may include a wavelength conversion layer for emitting and a reflective layer disposed on one surface of the wavelength conversion layer, reflecting the light emitted from the wavelength conversion layer and the light emitting structure to the outside.
  • the first conductive semiconductor layer is n-type
  • the second conductive semiconductor layer has a p-type, so that the light emitting layer is an n-type semiconductor layer and a p-type semiconductor layer. It can mean to be located between.
  • FIG. 1A is a cross-sectional view schematically illustrating a light emitting device according to an embodiment of the present invention.
  • a first light emitting layer 113 may be disposed between semiconductor layers having different conductivity types (a first conductive semiconductor layer 111 and a second conductive semiconductor layer 115). 1
  • the semiconductor laminate 110 may be provided.
  • a second layer disposed between semiconductor layers having different conductivity types (first conductive semiconductor layer 121 and second conductive semiconductor layer 125).
  • the second semiconductor laminate 120 including the light emitting layer 123 may be stacked to form the light emitting structure 100. That is, in one embodiment of the present invention, the light emitting structure 100 is n-type semiconductor layer / light emitting layer / p-type semiconductor layer / n-type semiconductor layer / light-emitting layer / p-type semiconductor layer /. It may have a structure arranged in.
  • FIG. 1B is a view schematically illustrating a light emitting device according to another embodiment of the present invention. Specifically, this is another embodiment having a structure different from that of the light emitting structure of FIG. 1A.
  • a first light emitting layer 113 may be disposed between semiconductor layers having different conductivity types (the first conductive semiconductor layer 111 and the second conductive semiconductor layer 115).
  • a first semiconductor laminate 110 is provided, a second light emitting layer 123 is disposed on the second conductive semiconductor layer 115, and a second conductive semiconductor layer (top) is disposed on the second light emitting layer 123.
  • a first conductivity type semiconductor layer 121 having a different conductivity type from 115 may be disposed. That is, the light emitting structure 100 of Fig. 1B is n-type semiconductor layer / light emitting layer / p-type semiconductor layer / light emitting layer / n-type semiconductor layer. It may have a structure arranged in.
  • the first conductivity type semiconductor layers 111 and 121 and the second conductivity type semiconductor layers 115 and 125 may be compound semiconductor layers implanted with dopants that may exhibit conductive properties.
  • the first conductive semiconductor layers 111 and 121 may be nitride-based oxides or oxides implanted with n-type impurities such as silicon (Si), nitrogen (N), phosphorus (P), or boron (B). Zinc-based or gallium arsenide-based compound semiconductor materials.
  • the second conductivity type semiconductor layers 115 and 125 may include magnesium (Mg), nitrogen (N), phosphorus (P), arsenic (As), zinc (Zn), lithium (Li), copper (Cu), and the like.
  • It may include a nitride, zinc oxide or gallium arsenide compound semiconductor material implanted with a p-type impurity.
  • the type and concentration of impurities included in the conductive semiconductor layers of each of the semiconductor stacks 110 and 120 may be variously applied according to embodiments.
  • the light emitting layers 113 and 123 convert bandgap energy emitted by recombination of electrons and holes between the first conductive semiconductor layers 111 and 121 and the second conductive semiconductor layers 115 and 125 as light.
  • a conventional light emitting layer material can be used.
  • the light emitting layers 113 and 123 are made of an InAlGaN layer having In x Al y Ga (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and 0 ⁇ x + y ⁇ 1) as wells, in a Al b Ga (1- ab) N (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1 and 0 ⁇ a + b ⁇ 1) of the InAlGaN barrier layer multiple quantum well (multi-quantum well, as MQW Or a single quantum well structure.
  • a and b are irrelevant to x and y and are intended to form a barrier structure.
  • the light emitting layers 113 and 123 may include a zinc oxide-based material such as ZnMgO or ZnCdO.
  • the light emitting layers 113 and 123 may be formed of a doped compound semiconductor.
  • the emission layers 113 and 123 may emit light of various colors having different wavelength ranges according to the composition ratio of the constituent materials. In general, the wavelength region of near ultraviolet light is about 300nm to 410nm, the wavelength range of blue light is about 440nm to 460nm, the wavelength range of green light is about 525nm to 535nm, the wavelength range of yellow light is about 550nm to 600nm, and the red light is about The wavelength of is about 615nm to 630nm.
  • first and second electrodes 117 and 127 and second and second electrodes 119 and 129 are respectively formed on the first and second conductive semiconductor layers 111 and 121 and 115 and 125, respectively. This can be formed.
  • first electrodes 117 and 127 and second electrodes 119 are formed on the first conductive semiconductor layers 111 and 121 and the second conductive semiconductor layer 115, respectively.
  • the first electrodes 117 and 127 and the second electrodes 119 and 129 may be formed of an electrode material of a conventional light emitting device.
  • a voltage may be applied to the first semiconductor stack 110 and the second semiconductor stack 120 through the first electrodes 117 and 127 and the second electrodes 119 and 129.
  • the light emitting layers 113 and 123 included in each of the semiconductor stacks 110 and 120 may emit light having different wavelength regions due to voltage.
  • the wavelength conversion structure 200 in which the 231 and the filter layer 211 are sequentially stacked may be disposed.
  • a filter layer 211 that transmits only a portion of the light emitted from the light emitting structure 100 is disposed below the light emitting structure 100, and passes through the filter layer 211 under the filter layer 211.
  • a wavelength conversion layer 231 is disposed to absorb the light and change the wavelength region of the light.
  • the wavelength conversion layer 231 is disposed below the wavelength conversion layer 231 and is emitted from the light emitting structure 100.
  • a reflective layer 251 may be disposed to reflect light and emit it to the outside.
  • the filter layer 211 transmits only light having a wavelength region that is a target target to be wavelength converted among light having different wavelength regions emitted from each of the semiconductor stacks 110 and 120 of the light emitting structure 100.
  • the filter layer 211 may perform a role of selectively transmitting the light emitted from the wavelength conversion layer 231 into the changed wavelength region and emitting the light to the upper portion of the light emitting structure.
  • the present invention can emit light having a wavelength region that can implement a desired color to the outside of the light emitting device.
  • the filter layer 211 may use a conventional color filter material including a pigment and a pigment carrier or resin (transparent resin, epoxy resin, silicone resin).
  • the filter layer 211 may be formed of a dichroic filter, a long pass filter, a short pass filter, a band pass filter, or a notch. Dielectric filters, such as notch filters, may be used, but are not limited thereto.
  • the wavelength conversion layer 231 may be formed of a wavelength conversion material and may be excited by absorbed light to change and emit a wavelength range of light. Specifically, when the filter layer 211 selectively transmits light having the first wavelength region emitted from the light emitting structure 100, the wavelength conversion layer 231 passes through the filter layer 211. Absorbs light having the wavelength region and down-converts the energy of the light having the first wavelength region to convert the second wavelength region, the wavelength region being higher than the wavelength of the first wavelength region according to the energy downconversion. It can emit by changing the wavelength range by the light which has.
  • the first wavelength region and the second wavelength region may be set to a predetermined range according to the light to be implemented.
  • the wavelength conversion material may be a wavelength conversion material that can be converted so that the wavelength region of the light emitted by the conversion may have at least one wavelength range selected from the group consisting of red, yellow, green, and blue, At least one known wavelength converting material selected from among quantum dots (QD), quantum well (QW) phosphors, and pigments may be used according to a wavelength range of light.
  • QD quantum dots
  • QW quantum well
  • the quantum dot may be a group II-VI compound or a group III-V compound, and more specifically, may be a CdSe quantum dot, a ZnSe quantum dot, an InGaAs quantum dot, or an InGaN quantum dot, and the quantum well QQ is It may be an InGaN quantum well layer, but is not limited thereto.
  • the quantum dot and the quantum well may be formed using a conventional epitaxy method.
  • red wavelength converting material sulfide-based phosphors such as SrS: Eu or CaS: Eu, nitride-based phosphors such as SrSiN: Eu, CaSiN: Eu or LaSiN: Eu or iron oxide (Fe 2 O 3 ), Pigments such as lead oxide (Pb 3 O 4 ) or mercury sulfide (HgS) may be included, but are not limited thereto.
  • SrS: Eu or CaS: Eu nitride-based phosphors such as SrSiN: Eu, CaSiN: Eu or LaSiN: Eu or iron oxide (Fe 2 O 3 )
  • Pigments such as lead oxide (Pb 3 O 4 ) or mercury sulfide (HgS) may be included, but are not limited thereto.
  • a yellow wavelength converting material is a yttrium aluminum garnet (YAG) -based phosphor such as YAG: Ce, TbYAG: Ce, GdYAG: Ce or GdTbYAG: Ce, methyl silicate, ethyl silicate, or magnesium Silicate-based phosphors such as aluminum silicate, or pigments such as cadmium sulfide-zinc sulfide (CdS-ZnS), zinc chromate (ZnCrO 4 ), or lead chromate (PbCrO 4 ), but are not limited thereto.
  • YAG yttrium aluminum garnet
  • the green wavelength converting material is a phosphor of BaSiO: Eu, SrSiO: Eu, SrAlO: Eu, SrAlO: Eu, SrGaS: Eu, SrSiAlON: Eu, YSiON: Tb, YSiON: Tb or GdSiON: Tn, or Chromium oxide (Cr 2 O 3 ), chromium hydroxide (Cr 2 O (OH) 4 ) or basic copper acetate (Cu (C 2 H 3 O 2 ) -2Cu (OH) 2 ), cobalt chrome green (Cr 2 O 3 Pigments such as -Al 2 O 3 -CoO), but are not limited thereto.
  • the blue wavelength converting material is a phosphor such as Sr (PO) Cl: Eu, SrMgSiO: Eu, BaMgSiO: Eu, BaMgAlO: Eu, SrPO: Eu or SrSiAlON: Eu, or ferric ferrocyanide (Fe 4).
  • Pigments such as [Fe (CN) 6 ] 3 ) or cobalt blue (CoO-Al 2 O 3 ), but are not limited thereto.
  • the wavelength conversion layer 231 may be formed by a known method of depositing a phosphor or a pigment, and for example, a dispensing method, a spin coating method, a physical vapor deposition method, PVD) method, etc. can be used.
  • the reflective layer 251 is disposed on one surface of the wavelength conversion layer 231 to reflect light emitted from the wavelength conversion layer 231 and the light emitting structure 100 to the outside of the light emitting device. And a portion of the light that has passed through the wavelength conversion layer 231 but is not converted may be reflected.
  • the reflective layer 251 may be a reflective layer material used in a conventional lighting device, for example, a metal layer for reflecting light such as aluminum (Al) thin film may be used, but is not limited thereto.
  • the present invention includes a wavelength conversion structure on one surface of a light emitting structure to which a plurality of semiconductor laminates are bonded, thereby converting a part of the light emitted from the light emitting structure through the wavelength converting structure into light having a desired wavelength region.
  • the light emitting device may emit light having various colors together with light emitted from the light emitting structure.
  • FIG. 1C is a cross-sectional view schematically illustrating the flow of light emitted from the light emitting device having the structure of FIGS. 1A to 1B described above.
  • a portion of the light emitted from the first semiconductor laminate 110 is emitted to the upper portion of the light emitting structure 100, and a portion of the light passes through the filter layer 211 to transmit the wavelength conversion layer 231.
  • Light emitted from the first semiconductor laminate 110 reaching the wavelength conversion layer 231 is converted into a wavelength region of light by the wavelength conversion layer 231 to emit light from the first semiconductor laminate 110.
  • Light having a wavelength region different from that of the city may be emitted, and the light may be emitted to the upper portion of the light emitting structure 100 by the reflective layer 251.
  • the light emitted from the upper portion of the light emitting structure 100 is the light emitted from the second semiconductor stack 120, the light emitted from the first semiconductor stack 110 and the wavelength conversion layer 231
  • various colors can be realized according to the wavelength range of each light.
  • the present invention arranges a filter layer between the light emitting structure and the wavelength conversion layer and passes only a part of the light emitted from the light emitting structure, thereby converting the light into a light having a desired wavelength region so as not to pass through the converted light and filter layer. Since all the reflected light can be utilized, the wavelength region of the light finally emitted from the light emitting device can be easily controlled.
  • the light emitting structure 100 is a first semiconductor laminate 110 for emitting green light and a second semiconductor laminate 120 for emitting blue light are sequentially stacked, the wavelength conversion The layer 231 may be absorbed by absorbing the green light or the blue light.
  • the green light or the blue light absorbed by the wavelength conversion layer 231 may be converted into red light, yellow light or green light and emitted according to the composition of wavelength change materials such as phosphors and pigments constituting the wavelength conversion layer 231.
  • YAG in which green light of the first semiconductor laminate 110 is transmitted through the filter layer 211 to reach the wavelength conversion layer 231, and the wavelength conversion layer 231 emits yellow light.
  • the blue light reaching the wavelength conversion layer 231 is generated by the yellow-green fluorescence by exciting the wavelength conversion layer 231 made of the YAG-based phosphor to the outside of the light emitting structure 100 Can be released.
  • the light emitting device is composed of green light emitted from the first semiconductor laminate 110, blue light emitted from the second semiconductor laminate 120, and yellow-green light converted and emitted from the wavelength conversion layer 231. White light can be realized.
  • FIG. 2A is a cross-sectional view schematically illustrating a light emitting device according to another embodiment of the present invention.
  • a first semiconductor including a light emitting layer 133 disposed between semiconductor layers having different conductivity types first conductive semiconductor layer 131 and second conductive semiconductor layer 135).
  • the laminate 130 may be provided.
  • a light emitting layer 143 positioned between semiconductor layers having different conductivity types (first conductive semiconductor layer 141 and second conductive semiconductor layer 145).
  • a second semiconductor laminate 140 may be provided.
  • a light emitting layer 153 positioned between semiconductor layers having different conductivity types (first conductive semiconductor layer 151 and second conductive semiconductor layer 155).
  • the third semiconductor laminate 150 including a stack may be stacked to form the light emitting structure 100.
  • first and second conductive semiconductor layers 131, 141, and 151 and the second and second conductive semiconductor layers 135, 145, and 155, respectively, have a first electrode 137, 147, 157, and a second electrode 139, respectively.
  • 149 and 159 may be formed.
  • a filter layer 213 is formed at a lower portion of the light emitting structure 100 to which the three semiconductor laminates 130, 140, and 150 are bonded to transmit only a part of the light emitted from the light emitting structure 100.
  • the wavelength conversion layer 233 is disposed under the filter layer 213 to absorb the light transmitted through the filter layer 213 to change the wavelength region of the light, and is disposed below the wavelength conversion layer 233.
  • the reflective layer 253 reflecting the light emitted from the wavelength conversion layer 233 to be emitted to the outside may be disposed. Description of the functions and features of each component described above is the same as that disclosed in Figure 1a, for a detailed description thereof may refer to Figure 1a.
  • FIG. 2B is a cross-sectional view schematically illustrating the flow of light emitted from the light emitting device having the structure of FIG. 2A described above.
  • FIG. 2B is a cross-sectional view schematically illustrating the flow of light emitted from the light emitting device having the structure of FIG. 2A described above.
  • a portion of the light emitted from the first semiconductor laminate 130 is emitted to the upper portion of the light emitting structure 100, and a portion of the light passes through the filter layer 213 to transmit the wavelength conversion layer 233. ) Is reached.
  • the light emitted from the first semiconductor laminate 130 reaching the wavelength conversion layer 233 is converted into a wavelength region of the light by the wavelength conversion layer 233, so that the first semiconductor laminate 130
  • the light may be light having a wavelength region different from that at the time of light emission, and the light may be emitted to the upper portion of the light emitting structure 100 by the reflective layer 253.
  • the light emitted from the upper portion of the light emitting structure 100 may be light emitted from the second semiconductor laminate 140, light emitted from the third semiconductor laminate 150, or the first semiconductor laminate (
  • the light emitted from 130 and the light emitted from the wavelength conversion layer 233 are mixed, and various colors may be implemented according to the wavelength range of each light.
  • the light emitting structure 100, the first semiconductor laminate 130 for emitting near ultraviolet light, the second semiconductor laminate 140 for emitting green light and the third light emitting blue light The semiconductor laminate 150 is sequentially stacked, and the wavelength conversion layer 233 may be excited by absorbing any one of the near ultraviolet light, the green light, and the blue light.
  • near-ultraviolet light of the first semiconductor laminate 130 is transmitted through the filter layer 213 to reach the wavelength conversion layer 233, and the wavelength conversion layer 233 emits red light.
  • the light emitting device may include blue light emitted from the third semiconductor stack 150, green light emitted from the second semiconductor stack 140, near ultraviolet light emitted from the first semiconductor stack 130, and The red light converted and emitted by the wavelength conversion layer 233 may be synthesized to implement white light.
  • the present invention may easily implement various colors of light by synthesizing the light emitted from the semiconductor stacks by multi-bonding the semiconductor stacks.
  • the present invention can improve the problem that the luminance is lowered and the color is uneven when a plurality of various phosphors are disposed in one semiconductor laminate in order to realize light of various colors.
  • the wavelength conversion structure can be used to easily control the color of light. Accordingly, the light emitting device of the present invention can be actively used in pixels or related fields of a display device such as a display.
  • the other surface of the light emitting structure, the upper filter for selectively transmitting the light emitted from the light emitting structure and the wavelength conversion layer may be further provided.
  • FIG. 3A is a cross-sectional view schematically illustrating a light emitting device according to still another embodiment of the present invention.
  • the upper filter may be further disposed on the other surface of the light emitting structure.
  • a first light emitting layer 163 may be disposed between semiconductor layers having different conductivity types (a first conductive semiconductor layer 161 and a second conductive semiconductor layer 165). 1
  • the semiconductor laminate 160 may be provided.
  • the second light emitting layer 173 is disposed on the first semiconductor laminate 160, and the second conductive semiconductor layer 165 of the first semiconductor laminate 160 is disposed on the second light emitting layer 173.
  • the first conductive semiconductor layer 171 having another conductivity type may be disposed to form the second semiconductor laminate 170.
  • a third light emitting layer 183 is disposed on the second semiconductor laminate 170, and a first conductive semiconductor layer 171 of the second semiconductor laminate 170 is disposed on the third light emitting layer 183.
  • a second conductive semiconductor 185 having a conductivity type different from that of the first semiconductor laminate 180 is formed to form the first semiconductor laminate 160, the second semiconductor laminate 170, and the second semiconductor laminate 180.
  • the light emitting structure 100 including the third semiconductor laminate 180 may be formed.
  • first and second electrodes 167 and 177 and 179 and 189 may be formed in the first and second conductive semiconductor layers 161 and 171 and 165 and 185, respectively. have.
  • a filter layer 215 for transmitting only a part of the light emitted from the light emitting structure 100 is disposed under the light emitting structure 100 to which the three semiconductor laminates 160, 170, and 180 are bonded to each other.
  • a wavelength conversion layer 235 is disposed below the wavelength conversion layer 235 to absorb light transmitted through the filter layer 215 to change the wavelength region of the light.
  • the reflective layer 255 may be disposed to reflect the light emitted from the 235 to the outside. Description of the functions and features of each component described above is the same as that disclosed in Figure 1a, a detailed description thereof may be referred to Figure 1a.
  • an upper filter 310 may be further disposed on the other surface of the light emitting structure 100, that is, the uppermost part of the light emitting structure 100.
  • the upper filter 310 selectively transmits the light emitted from each of the semiconductor stacks 160, 170, and 180 constituting the light emitting structure 100 and the light emitted from the wavelength conversion layer 235.
  • the filter function may finally select a wavelength region of the light emitted from the light emitting device according to the color of the light to be implemented.
  • the present invention can be easily controlled to implement various colors of light, including white light.
  • FIG. 3B is a cross-sectional view schematically illustrating the flow of light emitted from the light emitting device having the structure of FIG. 3A described above.
  • a portion of the light emitted from the first semiconductor laminate 160 is emitted toward an upper direction of the light emitting structure 100, and a portion of the other light is disposed below the first semiconductor laminate 160.
  • the light emitted to the filter layer 215 but emitted to the upper portion of the light emitting structure 100 is reflected by the upper filter 310 disposed on the light emitting structure 100 and finally emitted to the outside of the light emitting device.
  • the reflected light passes through the filter layer 215 disposed under the first semiconductor laminate 160, reaches the wavelength conversion layer 235 disposed under the filter layer 215, and converts the wavelength into the upper filter 310. ) Can be penetrated.
  • a material of the upper filter 310 may include a dichroic filter, a long pass filter, a short pass filter, and a band pass filter. Or a dielectric filter such as a notch filter, but is not limited thereto.

Abstract

Provided is a light-emitting element comprising a wavelength conversion structure. Particularly, the light-emitting element comprises a wavelength conversion structure comprising a filter layer, a wavelength conversion layer, and a reflective layer such that a part of light, which has been emitted from a light-emitting structure, is selectively transmitted through the filter layer, and the transmitted light is absorbed by the wavelength conversion layer, is emitted as light that has a wavelength domain, which has been changed through down-conversion of energy, and is mixed with the light emitted from the light-emitting structure, thereby making it possible to easily implement various colors of light, including white light.

Description

파장변환구조체를 포함하는 발광 소자Light emitting device comprising a wavelength conversion structure
본 발명은 발광 소자에 관한 것으로, 보다 상세하게는 파장변환구조체를 통해 다양한 색을 구현할 수 있는 발광 소자에 관한 것이다.The present invention relates to a light emitting device, and more particularly to a light emitting device that can implement a variety of colors through a wavelength conversion structure.
발광 소자는 전압을 가하면 화합물 반도체층들의 전자와 정공의 재결합에 따른 밴드갭 에너지를 기초로 하여 빛을 내는 광전자 소자이다. 발광 소자는 처리속도가 빠르고 전력소모가 적어 광 효율성이 우수하며, 소형화가 가능한 특징이 있어, 최근, 표시용 광원에서 형광등이나 백열등 등의 조명 광원을 대체할 수 있을 것으로 기대되고 있다. 이에, 발광 소자를 조명 장치 또는 디스플레이 장치의 백 라이트(back light)를 위한 고출력 및 고효율 광원으로 응용하려는 개발이 적극적으로 진행되고 있다. The light emitting device is an optoelectronic device that emits light based on a bandgap energy caused by recombination of electrons and holes in the compound semiconductor layers when a voltage is applied. The light emitting device is excellent in light efficiency due to its fast processing speed and low power consumption, and has a feature that can be miniaturized. In recent years, it is expected that the light emitting device can replace an illumination light source such as a fluorescent lamp or an incandescent lamp. Accordingly, the development of applying a light emitting device as a high power and high efficiency light source for a back light of a lighting device or a display device is being actively conducted.
일반적으로 하나의 발광 소자는 정해진 파장의 단색광을 발광하기 때문에, 백색광을 구현하기 위해서는 R(red, 적색), G(green, 녹색), B(blue, 청색)를 조합하여 백색광을 얻거나, 형광체를 이용하여 백색광으로 변환시키는 기술이 소개되고 있다. 하지만, 종래의 기술들을 응용하여 백색광을 포함한 다양한 색의 광을 구현하고자 하는 경우, 광의 휘도가 저하되거나, 서로 다른 비중과 입도를 갖는 복수개의 형광체의 배치로 인해 최종적으로 구현되는 색이 불균일하며, 공정이 복잡한 문제점이 있다.In general, one light emitting device emits monochromatic light having a predetermined wavelength. Thus, in order to realize white light, white light is obtained by combining R (red, red), G (green, green), and B (blue, blue), or a phosphor The technique of converting into white light by using is introduced. However, when applying the conventional techniques to implement light of various colors including white light, the brightness of the light is reduced, or the final color is uneven due to the arrangement of a plurality of phosphors having different specific gravity and particle size, The process is complicated.
상술한 문제점을 해결하기 위하여, 본 발명은 백색광을 포함한 다양한 색의 광을 용이하게 구현할 수 있는 발광 소자를 제공하는 데에 있다.In order to solve the above problems, the present invention is to provide a light emitting device that can easily implement a light of various colors, including white light.
상기 과제를 해결하기 위하여 본 발명은 서로 다른 도전형을 갖는 반도체층들 사이에 위치하는 발광층을 포함하는 반도체 적층체가 복수개 적층된 발광구조체와, 상기 발광구조체의 일면에 배치된 파장변환구조체를 포함하며, 상기 파장변환구조체는, 상기 발광구조체의 일면에 배치되어, 상기 발광구조체로부터 방출된 광의 일부만을 투과시키는 필터(filter)층, 상기 필터층의 일면에 배치되어, 상기 필터층을 투과한 광을 흡수하여 광의 파장영역을 변화시켜 방출하는 파장변환층 및 상기 파장변환층의 일면에 배치되어, 상기 파장변환층 및 상기 발광구조체에서 방출된 광을 반사시켜 외부로 방출시키는 반사층을 포함하는 것을 특징으로 하는 발광 소자를 제공할 수 있다. To solve the above problems, the present invention includes a light emitting structure in which a plurality of semiconductor laminates including light emitting layers positioned between semiconductor layers having different conductivity types are stacked, and a wavelength conversion structure disposed on one surface of the light emitting structure. The wavelength conversion structure may include a filter layer disposed on one surface of the light emitting structure to transmit only a portion of the light emitted from the light emitting structure, and disposed on one surface of the filter layer to absorb light transmitted through the filter layer. Light emission comprising a wavelength conversion layer for changing and emitting a wavelength region of light and a reflection layer disposed on one surface of the wavelength conversion layer, reflecting the light emitted from the wavelength conversion layer and the light emitting structure to the outside An element can be provided.
상기 복수개의 발광구조체에 포함된 발광층들은 각각 다른 파장영역을 갖는 광을 방출하는 것일 수 있다. 본 발명의 일 실시예에서, 상기 발광구조체는 녹색광을 발광하는 제1 반도체 적층체 및 청색광을 발광하는 제2 반도체 적층체가 순차적으로 적층된 것으로, 상기 파장변환층은 상기 녹색광 또는 상기 청색광을 흡수하여 여기되는 것일 수 있다. 또한, 본 발명의 다른 실시예에서, 상기 발광구조체는, 근자외선(near-uv)광을 발광하는 제1 반도체 적층체, 녹색광을 발광하는 제2 반도체 적층체 및 청색광을 발광하는 제3 반도체 적층체가 순차적으로 적층된 것으로, 상기 파장변환층은 상기 근자외선광, 상기 녹색광 또는 상기 청색광 중에서 선택되는 어느 하나의 광을 흡수하여 여기되는 것일 수 있다. The light emitting layers included in the light emitting structures may emit light having different wavelength regions. In one embodiment of the present invention, the light emitting structure is a first semiconductor laminate for emitting green light and a second semiconductor laminate for emitting blue light are sequentially stacked, the wavelength conversion layer absorbs the green light or the blue light It may be to be excited. In another embodiment of the present invention, the light emitting structure includes a first semiconductor laminate emitting near-uv light, a second semiconductor laminate emitting green light, and a third semiconductor laminate emitting blue light. The sieves are sequentially stacked, and the wavelength conversion layer may be excited by absorbing any light selected from the near ultraviolet light, the green light, or the blue light.
상기 필터층은 상기 발광구조체에서 제1 파장영역을 갖는 광을 선택적으로 투과시키며, 상기 파장변환층은 상기 필터층을 투과한 상기 제1 파장영역을 갖는 광을 흡수하여 광의 에너지를 하향 변환(down-conversion)시켜 제2 파장영역을 갖는 광으로 방출하는 것일 수 있다. The filter layer selectively transmits light having a first wavelength region in the light emitting structure, and the wavelength conversion layer absorbs light having the first wavelength region that has passed through the filter layer to down-convert energy of light. ) To emit light having the second wavelength region.
상기 발광구조체의 타면에, 상기 발광구조체 및 상기 파장변환층에서 방출되는 광을 선택적으로 투과시키기 위한 상부필터가 더 구비될 수 있다.On the other side of the light emitting structure, an upper filter for selectively transmitting the light emitted from the light emitting structure and the wavelength conversion layer may be further provided.
본 발명의 발광 소자는 복수개의 반도체 적층체가 다중접합된 발광구조체와 파장변환구조체를 통해 백색광을 포함한 원하는 색의 광을 용이하게 구현할 수 있다.The light emitting device of the present invention can easily implement light of a desired color including white light through a light emitting structure and a wavelength conversion structure in which a plurality of semiconductor laminates are multi-bonded.
또한, 발광구조체 최상부에 배치된 상부필터는 파장변환구조체에 도달하는 광량을 증가시켜 파장변환구조체의 변환효율을 향상시킬 수 있다. In addition, the upper filter disposed on the top of the light emitting structure may increase the amount of light reaching the wavelength converting structure, thereby improving conversion efficiency of the wavelength converting structure.
다만, 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들을 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다.However, the effects of the invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1a 내지 도 1c는 본 발명의 일 실시예에 따른 발광 소자의 구조 및 상기 발광 소자에서 방출된 광의 흐름을 모식화한 단면도이다.1A to 1C are cross-sectional views illustrating a structure of a light emitting device and a flow of light emitted from the light emitting device according to an embodiment of the present invention.
도 2a 내지 도 2b는 본 발명의 다른 실시예에 따른 발광 소자 및 상기 발광 소자에서 방출된 광의 흐름을 모식화한 단면도이다.2A to 2B are cross-sectional views illustrating a light emitting device and a flow of light emitted from the light emitting device according to another embodiment of the present invention.
도 3a 내지 도 3b는 본 발명의 또 다른 실시예에 따른 발광 소자 및 상기 발광 소자에서 방출된 광의 흐름을 모식화한 단면도이다.3A to 3B are cross-sectional views illustrating a light emitting device and a flow of light emitted from the light emitting device according to another embodiment of the present invention.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다. 본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시 예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다. 명세서 전체에 걸쳐서 동일한 참고번호들은 동일한 구성요소들을 나타낸다. 도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장 또는 축소된 것일 수 있다. 명세서 전체에 걸쳐서 동일한 참고번호들은 동일한 구성요소들을 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. While the invention allows for various modifications and variations, specific embodiments thereof are illustrated by way of example in the drawings and will be described in detail below. However, it is not intended to be exhaustive or to limit the invention to the precise forms disclosed, but rather the invention includes all modifications, equivalents, and alternatives consistent with the spirit of the invention as defined by the claims. Like reference numerals denote like elements throughout the specification. In the drawings, the thicknesses of layers and regions may be exaggerated or reduced for clarity. Like reference numerals denote like elements throughout the specification.
본 발명은 서로 다른 도전형을 갖는 반도체층들 사이에 위치하는 발광층을 포함하는 반도체 적층체가 복수개 적층된 발광구조체와, 상기 발광구조체의 일면에 배치된 파장변환구조체를 포함하는 발광 소자에 관한 것이다. 상기 파장변환구조체는 상기 발광구조체의 일면에 배치되어, 상기 발광구조체로부터 방출된 광의 일부만을 투과시키는 필터층, 상기 필터층의 일면에 배치되어, 상기 필터층을 투과한 광을 흡수하여 광의 파장영역을 변화시켜 방출하는 파장변환층 및 상기 파장변환층의 일면에 배치되어, 상기 파장변환층 및 상기 발광구조체에서 방출된 광을 반사시켜 외부로 방출시키는 반사층을 포함할 수 있다. 구체적으로, 상기 서로 다른 도전형을 갖는 반도체층들은 제1 도전형 반도체층이 n형인 경우, 제2 도전형 반도체층은 p형을 갖는 것으로, 이에 상기 발광층이 n형 반도체층 및 p형 반도체층 사이에 위치하는 것을 의미할 수 있다.The present invention relates to a light emitting device including a light emitting structure in which a plurality of semiconductor laminates including light emitting layers positioned between semiconductor layers having different conductivity types are stacked, and a wavelength conversion structure disposed on one surface of the light emitting structure. The wavelength conversion structure is disposed on one surface of the light emitting structure, the filter layer for transmitting only a portion of the light emitted from the light emitting structure, disposed on one surface of the filter layer, absorbs the light transmitted through the filter layer to change the wavelength region of the light It may include a wavelength conversion layer for emitting and a reflective layer disposed on one surface of the wavelength conversion layer, reflecting the light emitted from the wavelength conversion layer and the light emitting structure to the outside. Specifically, when the first conductive semiconductor layer is n-type, the second conductive semiconductor layer has a p-type, so that the light emitting layer is an n-type semiconductor layer and a p-type semiconductor layer. It can mean to be located between.
도 1a는 본 발명의 일 실시예에 따른 발광 소자를 모식화한 단면도이다. 1A is a cross-sectional view schematically illustrating a light emitting device according to an embodiment of the present invention.
도 1a를 참조하면, 서로 다른 도전형을 갖는 반도체층들(제1 도전형 반도체층(111) 및 제2 도전형 반도체층(115)) 사이에 위치하는 제1 발광층(113)을 포함하는 제1 반도체 적층체(110)가 구비될 수 있다. 또한, 상기 제1 반도체 적층체(110) 상부에는, 서로 다른 도전형을 갖는 반도체층들(제1 도전형 반도체층(121) 및 제2 도전형 반도체층(125)) 사이에 위치하는 제2 발광층(123)을 포함하는 제2 반도체 적층체(120)가 적층되어 발광구조체(100)를 형성할 수 있다. 즉, 본 발명의 일 실시예에서, 상기 발광구조체(100)는 n형 반도체층/발광층/p형 반도체층/n형 반도체층/발광층/p형 반도체층/…으로 배치된 구조를 가질 수 있다.Referring to FIG. 1A, a first light emitting layer 113 may be disposed between semiconductor layers having different conductivity types (a first conductive semiconductor layer 111 and a second conductive semiconductor layer 115). 1 The semiconductor laminate 110 may be provided. In addition, on the first semiconductor laminate 110, a second layer disposed between semiconductor layers having different conductivity types (first conductive semiconductor layer 121 and second conductive semiconductor layer 125). The second semiconductor laminate 120 including the light emitting layer 123 may be stacked to form the light emitting structure 100. That is, in one embodiment of the present invention, the light emitting structure 100 is n-type semiconductor layer / light emitting layer / p-type semiconductor layer / n-type semiconductor layer / light-emitting layer / p-type semiconductor layer /. It may have a structure arranged in.
도 1b는 본 발명의 다른 실시예에 따른 발광 소자를 모식화한 도면이다. 구체적으로 이는, 상기 도 1a의 발광구조체와 다른 구조를 가진 다른 실시예이다.1B is a view schematically illustrating a light emitting device according to another embodiment of the present invention. Specifically, this is another embodiment having a structure different from that of the light emitting structure of FIG. 1A.
도 1b를 참조하면, 서로 다른 도전형을 갖는 반도체층들(제1 도전형 반도체층(111) 및 제2 도전형 반도체층(115)) 사이에 위치하는 제1 발광층(113)을 포함하는 제1 반도체 적층체(110)가 구비되고, 상기 제2 도전형 반도체층(115) 상부에는 제2 발광층(123)이 배치되고, 상기 제2 발광층(123) 상부에는 상기 제2 도전형 반도체층(115)과 다른 도전형을 갖는, 제1 도전형 반도체층(121)가 배치될 수 있다. 즉, 도 1b의 발광구조체(100)는 n형 반도체층/발광층/p형 반도체층/발광층/n형 반도체층…으로 배치된 구조를 가질 수 있다. 상기 제1 도전형 반도체층(111,121) 및 제2 도전형 반도체층(115, 125)는 도전성 성질을 나타낼 수 있는 불순물(dopant)이 각각 주입된 화합물 반도체층일 수 있다. 구체적으로 예를 들어, 상기 제1 도전형 반도체층(111, 121)은 규소(Si), 질소(N), 인(P) 또는 붕소(B) 등의 n형 불순물이 주입된 질화물계, 산화아연계 또는 갈륨아세나이드계의 화합물 반도체 물질을 포함할 수 있다. 또한, 상기 제2 도전형 반도체층(115, 125)는 마그네슘(Mg), 질소(N), 인(P), 비소(As), 아연(Zn), 리튬(Li) 또는 구리(Cu) 등의 p형 불순물이 주입된 질화물계, 산화아연계 또는 갈륨아세나이드계의 화합물 반도체 물질을 포함할 수 있다. 또한, 상기 각각의 반도체 적층체(110, 120)의 도전형 반도체층에 포함되는 불순물의 종류 및 첨가 농도는 실시예에 따라 다양하게 적용될 수 있다. Referring to FIG. 1B, a first light emitting layer 113 may be disposed between semiconductor layers having different conductivity types (the first conductive semiconductor layer 111 and the second conductive semiconductor layer 115). A first semiconductor laminate 110 is provided, a second light emitting layer 123 is disposed on the second conductive semiconductor layer 115, and a second conductive semiconductor layer (top) is disposed on the second light emitting layer 123. A first conductivity type semiconductor layer 121 having a different conductivity type from 115 may be disposed. That is, the light emitting structure 100 of Fig. 1B is n-type semiconductor layer / light emitting layer / p-type semiconductor layer / light emitting layer / n-type semiconductor layer. It may have a structure arranged in. The first conductivity type semiconductor layers 111 and 121 and the second conductivity type semiconductor layers 115 and 125 may be compound semiconductor layers implanted with dopants that may exhibit conductive properties. Specifically, for example, the first conductive semiconductor layers 111 and 121 may be nitride-based oxides or oxides implanted with n-type impurities such as silicon (Si), nitrogen (N), phosphorus (P), or boron (B). Zinc-based or gallium arsenide-based compound semiconductor materials. In addition, the second conductivity type semiconductor layers 115 and 125 may include magnesium (Mg), nitrogen (N), phosphorus (P), arsenic (As), zinc (Zn), lithium (Li), copper (Cu), and the like. It may include a nitride, zinc oxide or gallium arsenide compound semiconductor material implanted with a p-type impurity. In addition, the type and concentration of impurities included in the conductive semiconductor layers of each of the semiconductor stacks 110 and 120 may be variously applied according to embodiments.
상기 발광층(113, 123)은 상기 제1 도전형 반도체층(111, 121) 및 상기 제2 도전형 반도체층(115, 125) 사이에서 전자 및 정공의 재결합에 의해 방출되는 밴드갭 에너지를 광으로 방출시키는 역할을 수행하는 것으로, 통상의 발광층 소재를 사용할 수 있다. 구체적으로 상기 발광층(113, 123)은 InxAlyGa(1-x-y)N(0≤x<1, 0≤y<1 및 0≤x+y<1)인 InAlGaN층을 우물로 하고, InaAlbGa(1-a-b)N(0≤a<1, 0≤b<1 및 0≤a+b<1)인 InAlGaN층을 장벽층으로 하는 다중양자우물(multi-quantum well, MQW) 또는 단일양자우물 구조를 가질 수 있다. 여기서, 상기 a 및 b는, 상기 x 및 y와 무관하며, 장벽 구조를 이루는 데에 목적이 있다. 또는, 상기 발광층(113, 123)을 ZnMgO 또는 ZnCdO 등의 산화아연계 물질을 포함할 수 있으며, 실시예에 따라, 상기 발광층(113, 123)은 도핑된 화합물 반도체로 이루어질 수 있다. 상기 발광층(113, 123)은 구성하는 물질의 조성비에 따라 서로 다른 파장영역을 갖는 다양한 색의 광을 방출할 수 있다. 일반적으로, 근자외선광의 파장영역은 약 300nm 내지 410nm 정도이며, 청색광의 파장영역은 440nm 내지 460nm 정도이며, 녹색광의 파장영역은 525nm 내지 535nm 정도이며, 황색광의 파장영역은 550nm 내지 600nm 정도이고, 적색광의 파장은 615nm 내지 630nm 정도이다.The light emitting layers 113 and 123 convert bandgap energy emitted by recombination of electrons and holes between the first conductive semiconductor layers 111 and 121 and the second conductive semiconductor layers 115 and 125 as light. By performing the role of emitting, a conventional light emitting layer material can be used. Specifically, the light emitting layers 113 and 123 are made of an InAlGaN layer having In x Al y Ga (1-xy) N (0 ≦ x <1, 0 ≦ y <1 and 0 ≦ x + y <1) as wells, in a Al b Ga (1- ab) N (0≤a <1, 0≤b <1 and 0≤a + b <1) of the InAlGaN barrier layer multiple quantum well (multi-quantum well, as MQW Or a single quantum well structure. Here, a and b are irrelevant to x and y and are intended to form a barrier structure. Alternatively, the light emitting layers 113 and 123 may include a zinc oxide-based material such as ZnMgO or ZnCdO. In some embodiments, the light emitting layers 113 and 123 may be formed of a doped compound semiconductor. The emission layers 113 and 123 may emit light of various colors having different wavelength ranges according to the composition ratio of the constituent materials. In general, the wavelength region of near ultraviolet light is about 300nm to 410nm, the wavelength range of blue light is about 440nm to 460nm, the wavelength range of green light is about 525nm to 535nm, the wavelength range of yellow light is about 550nm to 600nm, and the red light is about The wavelength of is about 615nm to 630nm.
도 1a를 참조하면, 상기 제1 도전형 반도체층(111, 121) 및 상기 제2 도전형 반도체층(115, 125)에는 각각 제1 전극(117, 127) 및 제2 전극(119, 129)이 형성될 수 있다. 또한, 도 1b를 참조하면, 상기 제1 도전형 반도체층(111, 121) 및 상기 제2 도전형 반도체층(115)에는 각각 제1 전극(117, 127) 및 제 2 전극(119)이 형성될 수 있다. 상기 제1 전극(117, 127) 및 상기 제2 전극(119, 129)은 통상의 발광 소자의 전극 물질로 이루어질 수 있으며, 예를 들어 니켈(Ni), 구리(Cu), 티타늄(Ti), 알루미늄(Al) 또는 금(Au) 등의 금속 또는 광 투과성 및 전기전도도가 우수한 ITO, IZO, TiO2, ZnO, CaO 또는 WO3 등의 투명전극재료로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 상기 제1 전극(117, 127) 및 상기 제2 전극(119, 129)을 통해 상기 제1 반도체 적층체(110) 및 상기 제2 반도체 적층체(120)에 전압을 인가할 수 있으며, 인가된 전압에 의해 각각의 반도체 적층체(110, 120)에 포함된 상기 발광층(113, 123)들은 각각 서로 다른 파장영역을 갖는 광을 방출할 수 있게 된다. Referring to FIG. 1A, first and second electrodes 117 and 127 and second and second electrodes 119 and 129 are respectively formed on the first and second conductive semiconductor layers 111 and 121 and 115 and 125, respectively. This can be formed. In addition, referring to FIG. 1B, first electrodes 117 and 127 and second electrodes 119 are formed on the first conductive semiconductor layers 111 and 121 and the second conductive semiconductor layer 115, respectively. Can be. The first electrodes 117 and 127 and the second electrodes 119 and 129 may be formed of an electrode material of a conventional light emitting device. For example, nickel (Ni), copper (Cu), titanium (Ti), It may be at least one selected from the group consisting of a metal such as aluminum (Al) or gold (Au) or a transparent electrode material such as ITO, IZO, TiO 2 , ZnO, CaO, or WO 3 having excellent light transmittance and electrical conductivity. . A voltage may be applied to the first semiconductor stack 110 and the second semiconductor stack 120 through the first electrodes 117 and 127 and the second electrodes 119 and 129. The light emitting layers 113 and 123 included in each of the semiconductor stacks 110 and 120 may emit light having different wavelength regions due to voltage.
도 1a 내지 도 1b를 참조하면, 상기 제1 반도체 적층체(110) 및 상기 제2 반도체 적층체(120)가 순차적으로 적층된 상기 발광구조체(100)의 일면에 반사층(251), 파장변환층(231) 및 필터층(211)이 순차적으로 적층된 파장변환구조체(200)가 배치될 수 있다. 상세하게는, 상기 발광구조체(100)의 하부에 상기 발광구조체(100)로부터 방출된 광의 일부만을 투과시키는 필터층(211)이 배치되고, 상기 필터층(211)의 하부에 상기 필터층(211)을 투과한 광을 흡수하여 광의 파장영역을 변화시켜 방출하는 파장변환층(231)이 배치되며, 상기 파장변환층(231)의 하부에 상기 파장변환층(231) 및 상기 발광구조체(100)에서 방출된 광을 반사시켜 외부로 방출시키는 반사층(251)이 배치될 수 있다.1A to 1B, a reflective layer 251 and a wavelength conversion layer on one surface of the light emitting structure 100 in which the first semiconductor laminate 110 and the second semiconductor laminate 120 are sequentially stacked. The wavelength conversion structure 200 in which the 231 and the filter layer 211 are sequentially stacked may be disposed. In detail, a filter layer 211 that transmits only a portion of the light emitted from the light emitting structure 100 is disposed below the light emitting structure 100, and passes through the filter layer 211 under the filter layer 211. A wavelength conversion layer 231 is disposed to absorb the light and change the wavelength region of the light. The wavelength conversion layer 231 is disposed below the wavelength conversion layer 231 and is emitted from the light emitting structure 100. A reflective layer 251 may be disposed to reflect light and emit it to the outside.
구체적으로, 상기 필터층(211)은 상기 발광구조체(100)의 각각의 반도체 적층체(110, 120)에서 방출되는 서로 다른 파장영역을 갖는 광 중에서 파장변환 하고자 하는 타겟 대상인 파장영역을 갖는 광만을 투과시켜 상기 필터층(211) 하부에 배치된 상기 파장변환층(231)에 도달하게 할 수 있다. 또한, 상기 필터층(211)은 상기 파장변환층(231)에서 에너지 하향 변환되어 변화된 파장영역으로 방출되는 광을 선택적으로 투과시켜 상기 발광구조체의 상부로 방출시키는 역할을 수행할 수 있다. 이를 통해, 본 발명은 원하는 색을 구현할 수 있는 파장영역을 갖는 광을 발광 소자의 외부로 방출시킬 수 있다. In detail, the filter layer 211 transmits only light having a wavelength region that is a target target to be wavelength converted among light having different wavelength regions emitted from each of the semiconductor stacks 110 and 120 of the light emitting structure 100. To reach the wavelength conversion layer 231 disposed under the filter layer 211. In addition, the filter layer 211 may perform a role of selectively transmitting the light emitted from the wavelength conversion layer 231 into the changed wavelength region and emitting the light to the upper portion of the light emitting structure. Through this, the present invention can emit light having a wavelength region that can implement a desired color to the outside of the light emitting device.
상기 필터층(211)은 안료 및 안료 담체 또는 수지(투명수지, 에폭시 수지, 실리콘 수지)등을 포함하는 통상의 컬러필터 소재를 사용할 수 있다. 예를 들어, 상기 필터층(211) 구성소재로는 다이크로익 필터(dichroic filter), 장파장 투과 필터(long pass filter), 단파장 투과 필터(short pass filter), 대역 투과 필터(band pass filter) 또는 노치 필터(notch filter) 등의 유전체 필터(dielectric filter)를 사용할 수 있으나, 이에 국한되지는 않는다. The filter layer 211 may use a conventional color filter material including a pigment and a pigment carrier or resin (transparent resin, epoxy resin, silicone resin). For example, the filter layer 211 may be formed of a dichroic filter, a long pass filter, a short pass filter, a band pass filter, or a notch. Dielectric filters, such as notch filters, may be used, but are not limited thereto.
상기 파장변환층(231)은 파장변환물질로 이루어지며, 흡수된 광에 의해 여기되어 광의 파장영역을 변화시켜 방출하는 역할을 수행할 수 있다. 구체적으로, 상기 필터층(211)이 상기 발광구조체(100)로부터 방출된 제1 파장영역을 갖는 광을 선택적으로 투과시키면, 상기 파장변환층(231)은 상기 필터층(211)을 투과한 상기 제1 파장영역을 갖는 광을 흡수하여 상기 제1 파장영역을 갖는 광의 에너지를 하향 변환(down-conversion)시켜 에너지 하향 변환에 따른 상기 제1 파장영역의 파장보다 상향된 파장영역인, 제2 파장영역을 갖는 광으로 파장영역을 변화시켜 방출할 수 있다. 상기 제1 파장영역 및 제2 파장영역은 구현하고자 하는 광에 따라 일정 범위로 설정되는 것일 수 있다.The wavelength conversion layer 231 may be formed of a wavelength conversion material and may be excited by absorbed light to change and emit a wavelength range of light. Specifically, when the filter layer 211 selectively transmits light having the first wavelength region emitted from the light emitting structure 100, the wavelength conversion layer 231 passes through the filter layer 211. Absorbs light having the wavelength region and down-converts the energy of the light having the first wavelength region to convert the second wavelength region, the wavelength region being higher than the wavelength of the first wavelength region according to the energy downconversion. It can emit by changing the wavelength range by the light which has. The first wavelength region and the second wavelength region may be set to a predetermined range according to the light to be implemented.
상기 파장변환물질은 변환하여 방출하는 광의 파장영역이 적색, 황색, 녹색 및 청색으로 이루어지는 군에서 선택되는 적어도 하나의 파장 범위를 가질 수 있도록 변환시킬 수 있는 파장변환물질을 사용할 수 있으며, 하향 변환하고자 하는 광의 파장영역에 맞춰 양자점(quantum dots, QD), 양자우물(quantum well, QW)형광체 및 안료 중에서 선택되는 적어도 어느 하나의 공지된 파장변환물질을 사용할 수 있다. 예를 들어, 상기 양자점(QD)은 Ⅱ-Ⅵ족 화합물 또는 Ⅲ-Ⅴ족 화합물로, 더욱 상세하게는, CdSe 양자점, ZnSe 양자점, InGaAs 양자점 또는 InGaN 양자점일 수 있으며, 상기 양자우물(QW)은 InGaN 양자우물층일 수 있으나, 이에 국한되지는 않는다. 상기 양자점 및 상기 양자우물은 통상의 에피택시(epitaxy)법 등을 이용하여 형성할 수 있다.The wavelength conversion material may be a wavelength conversion material that can be converted so that the wavelength region of the light emitted by the conversion may have at least one wavelength range selected from the group consisting of red, yellow, green, and blue, At least one known wavelength converting material selected from among quantum dots (QD), quantum well (QW) phosphors, and pigments may be used according to a wavelength range of light. For example, the quantum dot (QD) may be a group II-VI compound or a group III-V compound, and more specifically, may be a CdSe quantum dot, a ZnSe quantum dot, an InGaAs quantum dot, or an InGaN quantum dot, and the quantum well QQ is It may be an InGaN quantum well layer, but is not limited thereto. The quantum dot and the quantum well may be formed using a conventional epitaxy method.
또한, 예를 들어, 적색 파장변환물질로는 SrS:Eu 또는 CaS:Eu 등의 황화물계 형광체, SrSiN:Eu, CaSiN:Eu 또는 LaSiN:Eu 등의 질화물계 형광체 또는 산화철(Fe2O3), 산화납(Pb3O4) 또는 황화수은(HgS)등의 안료를 포함할 수 있으나, 이에 한정되지는 않는다. 구체적으로 예를 들어, 황색 파장변환물질로는 YAG:Ce, TbYAG:Ce, GdYAG:Ce 또는 GdTbYAG:Ce 등의 이트륨 알루미늄 가닛(yttrium aluminum garnet, YAG)계 형광체, 메틸 실리케이트, 에틸 실리케이트, 또는 마그네슘알루미늄 실리케이트 등의 실리케이트계 형광체, 또는 황화-카드뮴-황화아연(CdS-ZnS), 크롬산 아연(ZnCrO4) 또는 크롬산 납(PbCrO4) 등의 안료를 포함할 수 있으나, 이에 한정되지는 않는다. 구체적으로 예를 들어, 녹색 파장변환물질은 BaSiO:Eu, SrSiO:Eu, SrAlO:Eu, SrAlO:Eu, SrGaS:Eu, SrSiAlON:Eu, YSiON:Tb, YSiON:Tb 또는 GdSiON:Tn의 형광체, 또는 산화크롬(Cr2O3), 수산화 크롬(Cr2O(OH)4) 또는 염기성 아세트산구리(Cu(C2H3O2)-2Cu(OH)2), 코발트크롬그린(Cr2O3-Al2O3-CoO) 등의 안료를 포함할 수 있으나, 이에 한정되지는 않는다. 구체적으로 예를 들어, 청색 파장변환물질은 Sr(PO)Cl:Eu, SrMgSiO:Eu, BaMgSiO:Eu, BaMgAlO:Eu, SrPO:Eu 또는 SrSiAlON:Eu 등의 형광체, 또는 페릭페로시아니드(Fe4[Fe(CN)6]3) 또는 코발트 블루(CoO-Al2O3)등의 안료를 포함할 수 있으나, 이에 한정되지는 않는다.For example, as the red wavelength converting material, sulfide-based phosphors such as SrS: Eu or CaS: Eu, nitride-based phosphors such as SrSiN: Eu, CaSiN: Eu or LaSiN: Eu or iron oxide (Fe 2 O 3 ), Pigments such as lead oxide (Pb 3 O 4 ) or mercury sulfide (HgS) may be included, but are not limited thereto. Specifically, for example, a yellow wavelength converting material is a yttrium aluminum garnet (YAG) -based phosphor such as YAG: Ce, TbYAG: Ce, GdYAG: Ce or GdTbYAG: Ce, methyl silicate, ethyl silicate, or magnesium Silicate-based phosphors such as aluminum silicate, or pigments such as cadmium sulfide-zinc sulfide (CdS-ZnS), zinc chromate (ZnCrO 4 ), or lead chromate (PbCrO 4 ), but are not limited thereto. Specifically, for example, the green wavelength converting material is a phosphor of BaSiO: Eu, SrSiO: Eu, SrAlO: Eu, SrAlO: Eu, SrGaS: Eu, SrSiAlON: Eu, YSiON: Tb, YSiON: Tb or GdSiON: Tn, or Chromium oxide (Cr 2 O 3 ), chromium hydroxide (Cr 2 O (OH) 4 ) or basic copper acetate (Cu (C 2 H 3 O 2 ) -2Cu (OH) 2 ), cobalt chrome green (Cr 2 O 3 Pigments such as -Al 2 O 3 -CoO), but are not limited thereto. Specifically, for example, the blue wavelength converting material is a phosphor such as Sr (PO) Cl: Eu, SrMgSiO: Eu, BaMgSiO: Eu, BaMgAlO: Eu, SrPO: Eu or SrSiAlON: Eu, or ferric ferrocyanide (Fe 4). Pigments such as [Fe (CN) 6 ] 3 ) or cobalt blue (CoO-Al 2 O 3 ), but are not limited thereto.
상기 파장변환층(231)은 공지된 형광체 또는 안료의 증착방법을 통해 형성할 수 있으며, 예를 들어, 디스펜싱(dispensing)법, 스핀코팅(spin coating)법, 물리적 기상 증착(physical vapor deposition, PVD)법 등을 이용하여 수행할 수 있다. The wavelength conversion layer 231 may be formed by a known method of depositing a phosphor or a pigment, and for example, a dispensing method, a spin coating method, a physical vapor deposition method, PVD) method, etc. can be used.
도 1a를 참조하면, 상기 반사층(251)은 상기 파장변환층(231)의 일면에 배치되어, 상기 파장변환층(231) 및 상기 발광구조체(100)에서 방출하는 광을 반사시켜 발광소자의 외부로 방출시키는 기능을 수행할 수 있으며, 또한, 상기 파장변환층(231)을 통과하였으나 변환되지 않은 광의 일부도 반사시킬 수 있다. 상기 반사층(251)은 통상의 조명 장치에서 사용되는 반사층 소재를 적용할 수 있으며, 예를 들어, 알루미늄(Al) 박막과 같은 광을 반사시키는 금속층을 사용할 수 있으나, 이에 국한되지는 않는다.Referring to FIG. 1A, the reflective layer 251 is disposed on one surface of the wavelength conversion layer 231 to reflect light emitted from the wavelength conversion layer 231 and the light emitting structure 100 to the outside of the light emitting device. And a portion of the light that has passed through the wavelength conversion layer 231 but is not converted may be reflected. The reflective layer 251 may be a reflective layer material used in a conventional lighting device, for example, a metal layer for reflecting light such as aluminum (Al) thin film may be used, but is not limited thereto.
상기와 같이, 본 발명은 복수개의 반도체 적층체가 접합된 발광구조체의 일면에 파장변환구조체를 구비함으로써, 상기 파장변환구조체를 통해 상기 발광구조체에서 방출되는 광의 일부를 원하는 파장영역을 갖는 광으로 변환하여 방출시킬 수 있어, 상기 발광구조체에서 방출되는 광과 함께 다양한 색을 갖는 광을 용이하게 구현할 수 있다.As described above, the present invention includes a wavelength conversion structure on one surface of a light emitting structure to which a plurality of semiconductor laminates are bonded, thereby converting a part of the light emitted from the light emitting structure through the wavelength converting structure into light having a desired wavelength region. The light emitting device may emit light having various colors together with light emitted from the light emitting structure.
도 1c는 전술된 도 1a 내지 도 1b의 구조를 갖는 발광 소자에서 방출되는 광의 흐름을 모식화한 단면도이다. 도 1c를 참조하면, 상기 제1 반도체 적층체(110)에서 발광된 광의 일부는 상기 발광구조체(100)의 상부로 방출되고, 광의 일부는 상기 필터층(211)을 투과하여 상기 파장변환층(231)에 도달하게 된다. 상기 파장변환층(231)에 도달한 상기 제1 반도체 적층체(110)로부터 발광된 광은 상기 파장변환층(231)에 의해 광의 파장영역이 변환되어 상기 제1 반도체 적층체(110)에서 발광시의 파장영역과 다른 파장영역을 갖는 광이 되고, 이러한 광은 상기 반사층(251)에 의해 상기 발광구조체(100)의 상부로 방출될 수 있다. 이에, 상기 발광구조체(100)의 상부로 방출된 광은 상기 제2 반도체 적층체(120)에서 방출된 광, 상기 제1 반도체 적층체(110)에서 방출된 광 및 상기 파장변환층(231)에서 방출된 광이 혼합된 것으로, 각각의 광의 파장영역에 따라 다양한 색을 구현할 수 있다. 1C is a cross-sectional view schematically illustrating the flow of light emitted from the light emitting device having the structure of FIGS. 1A to 1B described above. Referring to FIG. 1C, a portion of the light emitted from the first semiconductor laminate 110 is emitted to the upper portion of the light emitting structure 100, and a portion of the light passes through the filter layer 211 to transmit the wavelength conversion layer 231. ) Is reached. Light emitted from the first semiconductor laminate 110 reaching the wavelength conversion layer 231 is converted into a wavelength region of light by the wavelength conversion layer 231 to emit light from the first semiconductor laminate 110. Light having a wavelength region different from that of the city may be emitted, and the light may be emitted to the upper portion of the light emitting structure 100 by the reflective layer 251. Thus, the light emitted from the upper portion of the light emitting structure 100 is the light emitted from the second semiconductor stack 120, the light emitted from the first semiconductor stack 110 and the wavelength conversion layer 231 As the light emitted from is mixed, various colors can be realized according to the wavelength range of each light.
상기와 같이, 본 발명은 발광구조체와 파장변환층 사이에 필터층을 배치하여 상기 발광구조체에서 방출되는 광의 일부만을 통과시킴으로써 원하는 파장영역을 갖는 광으로 변환하여 파장영역이 변환된 광 및 필터층을 통과하지 않고 반사된 광을 모두 활용할 수 있으므로, 발광 소자에서 최종적으로 방출되는 광의 파장영역을 용이하게 제어할 수 있다. As described above, the present invention arranges a filter layer between the light emitting structure and the wavelength conversion layer and passes only a part of the light emitted from the light emitting structure, thereby converting the light into a light having a desired wavelength region so as not to pass through the converted light and filter layer. Since all the reflected light can be utilized, the wavelength region of the light finally emitted from the light emitting device can be easily controlled.
본 발명의 일 실시예에서, 상기 발광구조체(100)는 녹색광을 발광하는 제1 반도체 적층체(110) 및 청색광을 발광하는 제2 반도체 적층체(120)가 순차적으로 적층된 것으로, 상기 파장변환층(231)은 상기 녹색광 또는 상기 청색광을 흡수하여 여기되는 것일 수 있다. 상기 파장변환층(231)에 흡수된 녹색광 또는 청색광은 상기 파장변환층(231)을 구성하는 형광체 및 안료 등의 파장변화물질의 조성에 따라 적색광, 황색광 또는 녹색광 등으로 변환되어 방출될 수 있다. 예를 들어, 상기 필터층(211)을 통해 상기 제1 반도체 적층체(110)의 녹색광이 투과되어 상기 파장변환층(231)에 도달되고, 상기 파장변환층(231)이 황색광을 방출하는 YAG계 형광체를 포함하는 경우, 상기 파장변환층(231)에 도달된 청색광은 상기 YAG계 형광체로 이루어진 상기 파장변환층(231)을 여기시켜 황록색의 형광으로 발생되어 상기 발광구조체(100)의 외부로 방출될 수 있다. 이에, 상기 발광 소자는 상기 제1 반도체 적층체(110)에서 방출된 녹색광, 상기 제2 반도체 적층체(120)에서 방출된 청색광 및 상기 파장변환층(231)에서 변환되어 방출된 황록색광이 합성되어 백색광을 구현할 수 있다.In one embodiment of the present invention, the light emitting structure 100 is a first semiconductor laminate 110 for emitting green light and a second semiconductor laminate 120 for emitting blue light are sequentially stacked, the wavelength conversion The layer 231 may be absorbed by absorbing the green light or the blue light. The green light or the blue light absorbed by the wavelength conversion layer 231 may be converted into red light, yellow light or green light and emitted according to the composition of wavelength change materials such as phosphors and pigments constituting the wavelength conversion layer 231. . For example, YAG in which green light of the first semiconductor laminate 110 is transmitted through the filter layer 211 to reach the wavelength conversion layer 231, and the wavelength conversion layer 231 emits yellow light. In the case of including the phosphor, the blue light reaching the wavelength conversion layer 231 is generated by the yellow-green fluorescence by exciting the wavelength conversion layer 231 made of the YAG-based phosphor to the outside of the light emitting structure 100 Can be released. Accordingly, the light emitting device is composed of green light emitted from the first semiconductor laminate 110, blue light emitted from the second semiconductor laminate 120, and yellow-green light converted and emitted from the wavelength conversion layer 231. White light can be realized.
도 2a는 본 발명의 다른 실시예에 따른 발광 소자를 모식화한 단면도이다.2A is a cross-sectional view schematically illustrating a light emitting device according to another embodiment of the present invention.
도 2a를 참조하면, 서로 다른 도전형을 갖는 반도체층들(제1 도전형 반도체층(131), 제2 도전형 반도체층(135)) 사이에 위치하는 발광층(133)을 포함하는 제1 반도체 적층체(130)가 구비될 수 있다. 상기 제1 반도체 적층체(130) 상부에는, 서로 다른 도전형을 갖는 반도체층들(제1 도전형 반도체층(141), 제2 도전형 반도체층(145)) 사이에 위치하는 발광층(143)을 포함하는 제2 반도체 적층체(140)가 구비될 수 있다. 상기 제2 반도체 적층체(140) 상부에는, 서로 다른 도전형을 갖는 반도체층들(제1 도전형 반도체층(151), 제2 도전형 반도체층(155)) 사이에 위치하는 발광층(153)을 포함하는 제3 반도체 적층체(150)가 적층되어 발광구조체(100)를 형성할 수 있다. 또한, 상기 제1 도전형 반도체층(131, 141, 151) 및 상기 제2 도전형 반도체층(135, 145, 155)에는 각각 제1 전극(137, 147, 157) 및 제2 전극(139, 149, 159)이 형성될 수 있다. Referring to FIG. 2A, a first semiconductor including a light emitting layer 133 disposed between semiconductor layers having different conductivity types (first conductive semiconductor layer 131 and second conductive semiconductor layer 135). The laminate 130 may be provided. On the first semiconductor laminate 130, a light emitting layer 143 positioned between semiconductor layers having different conductivity types (first conductive semiconductor layer 141 and second conductive semiconductor layer 145). A second semiconductor laminate 140 may be provided. On the second semiconductor laminate 140, a light emitting layer 153 positioned between semiconductor layers having different conductivity types (first conductive semiconductor layer 151 and second conductive semiconductor layer 155). The third semiconductor laminate 150 including a stack may be stacked to form the light emitting structure 100. In addition, the first and second conductive semiconductor layers 131, 141, and 151 and the second and second conductive semiconductor layers 135, 145, and 155, respectively, have a first electrode 137, 147, 157, and a second electrode 139, respectively. 149 and 159 may be formed.
도 2a를 참조하면, 상기 3개의 반도체 적층체(130, 140, 150)가 접합된 상기 발광구조체(100)의 하부에 상기 발광구조체(100)로부터 방출된 광의 일부만을 투과시키는 필터층(213)이 배치되고, 상기 필터층(213)의 하부에 상기 필터층(213)을 투과한 광을 흡수하여 광의 파장영역을 변화시켜 방출하는 파장변환층(233)이 배치되며, 상기 파장변환층(233)의 하부에 상기 파장변환층(233)에서 방출된 광을 반사시켜 외부로 방출시키는 반사층(253)이 배치될 수 있다. 상술한 각각의 구성요소의 대한 기능 및 특징에 대한 설명은 도 1a에 개시된 바와 동일하므로, 이에 대한 상세한 설명은 도 1a를 참조할 수 있다. Referring to FIG. 2A, a filter layer 213 is formed at a lower portion of the light emitting structure 100 to which the three semiconductor laminates 130, 140, and 150 are bonded to transmit only a part of the light emitted from the light emitting structure 100. The wavelength conversion layer 233 is disposed under the filter layer 213 to absorb the light transmitted through the filter layer 213 to change the wavelength region of the light, and is disposed below the wavelength conversion layer 233. The reflective layer 253 reflecting the light emitted from the wavelength conversion layer 233 to be emitted to the outside may be disposed. Description of the functions and features of each component described above is the same as that disclosed in Figure 1a, for a detailed description thereof may refer to Figure 1a.
도 2b는 전술된 도 2a의 구조를 갖는 발광 소자에서 방출되는 광의 흐름을 모식화한 단면도이다.FIG. 2B is a cross-sectional view schematically illustrating the flow of light emitted from the light emitting device having the structure of FIG. 2A described above. FIG.
도 2b를 참조하면, 상기 제1 반도체 적층체(130)에서 발광된 광의 일부는 상기 발광구조체(100)의 상부로 방출되고, 광의 일부는 상기 필터층(213)을 투과하여 상기 파장변환층(233)에 도달하게 된다. 상기 파장변환층(233)에 도달한 상기 제1 반도체 적층체(130)로부터 발광된 광은, 상기 파장변환층(233)에 의해 광의 파장영역이 변환되어 상기 제1 반도체 적층체(130)에서 발광시의 파장영역과 다른 파장영역을 갖는 광이 되고, 이러한 광은 상기 반사층(253)에 의해 상기 발광구조체(100)의 상부로 방출될 수 있다. 이에, 상기 발광구조체(100)의 상부로 방출된 광은 상기 제2 반도체 적층체(140)에서 방출된 광, 상기 제3 반도체 적층체(150)에서 방출된 광, 상기 제1 반도체 적층체(130)에서 방출된 광 및 상기 파장변환층(233)에서 방출된 광이 혼합된 것으로, 각각의 광의 파장영역에 따라 다양한 색을 구현할 수 있다. Referring to FIG. 2B, a portion of the light emitted from the first semiconductor laminate 130 is emitted to the upper portion of the light emitting structure 100, and a portion of the light passes through the filter layer 213 to transmit the wavelength conversion layer 233. ) Is reached. The light emitted from the first semiconductor laminate 130 reaching the wavelength conversion layer 233 is converted into a wavelength region of the light by the wavelength conversion layer 233, so that the first semiconductor laminate 130 The light may be light having a wavelength region different from that at the time of light emission, and the light may be emitted to the upper portion of the light emitting structure 100 by the reflective layer 253. Accordingly, the light emitted from the upper portion of the light emitting structure 100 may be light emitted from the second semiconductor laminate 140, light emitted from the third semiconductor laminate 150, or the first semiconductor laminate ( The light emitted from 130 and the light emitted from the wavelength conversion layer 233 are mixed, and various colors may be implemented according to the wavelength range of each light.
본 발명의 일 실시예에서, 상기 발광구조체(100)는, 근자외선광을 발광하는 제1 반도체 적층체(130), 녹색광을 발광하는 제2 반도체 적층체(140) 및 청색광을 발광하는 제3 반도체 적층체(150)가 순차적으로 적층된 것으로, 상기 파장변환층(233)은 상기 근자외선광, 상기 녹색광 또는 상기 청색광 중에서 선택되는 어느 하나의 광을 흡수하여 여기되는 것일 수 있다. 예를 들어, 상기 필터층(213)을 통해 상기 제1 반도체 적층체(130)의 근자외선광이 투과되어 상기 파장변환층(233)에 도달되고, 상기 파장변환층(233)이 적색광을 방출하는 황화물계 형광체를 포함하는 경우, 상기 파장변환층(233)에 도달된 근자외선광은 상기 황화물계 형광체로 이루어진 상기 파장변환층(233)을 여기시켜 적색광으로 발생되어 상기 발광구조체(100)의 외부로 방출될 수 있다. 이에, 상기 발광 소자는 상기 제3 반도체 적층체(150)에서 방출된 청색광, 상기 제2 반도체 적층체(140)에서 방출된 녹색광, 상기 제1 반도체 적층체(130)에서 방출된 근자외선광 및 상기 파장변환층(233)에서 변환되어 방출된 적색광이 합성되어 백색광을 구현할 수 있다.In one embodiment of the present invention, the light emitting structure 100, the first semiconductor laminate 130 for emitting near ultraviolet light, the second semiconductor laminate 140 for emitting green light and the third light emitting blue light The semiconductor laminate 150 is sequentially stacked, and the wavelength conversion layer 233 may be excited by absorbing any one of the near ultraviolet light, the green light, and the blue light. For example, near-ultraviolet light of the first semiconductor laminate 130 is transmitted through the filter layer 213 to reach the wavelength conversion layer 233, and the wavelength conversion layer 233 emits red light. In the case of including a sulfide-based phosphor, near-ultraviolet light that reaches the wavelength conversion layer 233 is generated as red light by exciting the wavelength conversion layer 233 made of the sulfide-based phosphor to the outside of the light emitting structure 100. Can be released. Accordingly, the light emitting device may include blue light emitted from the third semiconductor stack 150, green light emitted from the second semiconductor stack 140, near ultraviolet light emitted from the first semiconductor stack 130, and The red light converted and emitted by the wavelength conversion layer 233 may be synthesized to implement white light.
전술된 도 2a 및 도 2b와 같이, 본 발명은 반도체 적층체를 다중 접합하여 각각의 반도체 적층체들로부터 방출된 광을 합성하여 다양한 색의 광을 용이하게 구현할 수 있다. 이러한 구조적 특징을 통해 본 발명은, 종래의 다양한 색의 광을 구현하기 위해 하나의 반도체 적층체에 다양한 형광체를 복수개 배치하는 경우 휘도가 저하되고 색이 불균일했던 문제점을 개선할 수 있으며, 광의 휘도를 유지하면서도 파장변환구조체를 이용하여 광의 색을 용이하게 제어할 수 있다. 이에, 본 발명의 발광 소자는 디스플레이(display) 등의 표시 장치의 화소나 관련분야에 적극 활용될 수 있다.As described above with reference to FIGS. 2A and 2B, the present invention may easily implement various colors of light by synthesizing the light emitted from the semiconductor stacks by multi-bonding the semiconductor stacks. Through this structural feature, the present invention can improve the problem that the luminance is lowered and the color is uneven when a plurality of various phosphors are disposed in one semiconductor laminate in order to realize light of various colors. The wavelength conversion structure can be used to easily control the color of light. Accordingly, the light emitting device of the present invention can be actively used in pixels or related fields of a display device such as a display.
본 발명의 또 다른 실시예에서, 상기 발광구조체의 타면에, 상기 발광구조체 및 상기 파장변환층에서 방출되는 광을 선택적으로 투과시키기 위한 상부필터가 더 구비될 수 있다.In another embodiment of the present invention, the other surface of the light emitting structure, the upper filter for selectively transmitting the light emitted from the light emitting structure and the wavelength conversion layer may be further provided.
도 3a는 본 발명의 또 다른 실시예에 따른 발광 소자를 모식화한 단면도이다. 구체적으로 이는, 도 2a의 구조에서 발광구조체의 타면에 상부필터를 더 배치한 것일 수 있다.3A is a cross-sectional view schematically illustrating a light emitting device according to still another embodiment of the present invention. Specifically, in the structure of FIG. 2A, the upper filter may be further disposed on the other surface of the light emitting structure.
도 3a를 참조하면, 서로 다른 도전형을 갖는 반도체층들(제1 도전형 반도체층(161), 제2 도전형 반도체층(165)) 사이에 위치하는 제1 발광층(163)을 포함하는 제1 반도체 적층체(160)가 구비될 수 있다. 상기 제1 반도체 적층체(160) 상부에는 제2 발광층(173)이 배치되고, 상기 제2 발광층(173) 상부에는 상기 제1 반도체 적층체(160)의 제2 도전형 반도체층(165)과 다른 도전형을 갖는 제1 도전형 반도체층(171)이 배치되어 제2 반도체 적층체(170)가 형성될 수 있다. 상기 제2 반도체 적층체(170) 상부에는, 제3 발광층(183)이 배치되고, 상기 제3 발광층(183) 상부에는 상기 제2 반도체 적층체(170)의 제1 도전형 반도체층(171)과 다른 도전형을 갖는 제2 도전형 반도체(185)가 배치되어 제3 반도체 적층체(180)가 형성되어, 상기 제1 반도체 적층체(160), 상기 제2 반도체 적층체(170) 및 상기 제3 반도체 적층체(180)를 포함하는 발광구조체(100)를 형성할 수 있다. 또한, 상기 제1 도전형 반도체층(161, 171) 및 상기 제2 도전형 반도체층(165, 185)에는 각각 제1 전극(167, 177) 및 제2 전극(179, 189)이 형성될 수 있다. Referring to FIG. 3A, a first light emitting layer 163 may be disposed between semiconductor layers having different conductivity types (a first conductive semiconductor layer 161 and a second conductive semiconductor layer 165). 1 The semiconductor laminate 160 may be provided. The second light emitting layer 173 is disposed on the first semiconductor laminate 160, and the second conductive semiconductor layer 165 of the first semiconductor laminate 160 is disposed on the second light emitting layer 173. The first conductive semiconductor layer 171 having another conductivity type may be disposed to form the second semiconductor laminate 170. A third light emitting layer 183 is disposed on the second semiconductor laminate 170, and a first conductive semiconductor layer 171 of the second semiconductor laminate 170 is disposed on the third light emitting layer 183. A second conductive semiconductor 185 having a conductivity type different from that of the first semiconductor laminate 180 is formed to form the first semiconductor laminate 160, the second semiconductor laminate 170, and the second semiconductor laminate 180. The light emitting structure 100 including the third semiconductor laminate 180 may be formed. In addition, first and second electrodes 167 and 177 and 179 and 189 may be formed in the first and second conductive semiconductor layers 161 and 171 and 165 and 185, respectively. have.
상기 3개의 반도체 적층체(160, 170, 180)가 접합된 상기 발광구조체(100)의 하부에 상기 발광구조체(100)로부터 방출된 광의 일부만을 투과시키는 필터층(215)이 배치되고, 상기 필터층(215)의 하부에 상기 필터층(215)을 투과한 광을 흡수하여 광의 파장영역을 변화시켜 방출하는 파장변환층(235)이 배치되며, 상기 파장변환층(235)의 하부에 상기 파장변환층(235)에서 방출된 광을 반사시켜 외부로 방출시키는 반사층(255)이 배치될 수 있다. 상술한 각각의 구성요소의 기능 및 특징에 대한 설명은 도 1a에 개시된 바와 동일하므로, 이에 대한 상세한 설명은 도 1a를 참조할 수 있다. A filter layer 215 for transmitting only a part of the light emitted from the light emitting structure 100 is disposed under the light emitting structure 100 to which the three semiconductor laminates 160, 170, and 180 are bonded to each other. A wavelength conversion layer 235 is disposed below the wavelength conversion layer 235 to absorb light transmitted through the filter layer 215 to change the wavelength region of the light. The reflective layer 255 may be disposed to reflect the light emitted from the 235 to the outside. Description of the functions and features of each component described above is the same as that disclosed in Figure 1a, a detailed description thereof may be referred to Figure 1a.
도 3a를 참조하면, 상기 발광구조체(100)의 타면, 즉, 상기 발광구조체(100)의 최상부에 상부필터(310)가 더 배치될 수 있다. 상기 상부필터(310)는 상기 발광구조체(100)를 구성하는 각각의 반도체 적층체(160, 170, 180)에서 방출된 광들 및 상기 파장변환층(235)에서 방출된 광을 선택적으로 투과시키기는 역할을 수행하는 것으로, 구현하고자 하는 광의 색에 따라 최종적으로 상기 발광 소자에서 방출되는 광의 파장영역을 선택하는 필터기능을 수행할 수 있다. 이를 통해, 본 발명은 백색광을 포함한 다양한 색의 광을 구현하도록 제어하는 것이 용이해질 수 있다. Referring to FIG. 3A, an upper filter 310 may be further disposed on the other surface of the light emitting structure 100, that is, the uppermost part of the light emitting structure 100. The upper filter 310 selectively transmits the light emitted from each of the semiconductor stacks 160, 170, and 180 constituting the light emitting structure 100 and the light emitted from the wavelength conversion layer 235. By performing the role, the filter function may finally select a wavelength region of the light emitted from the light emitting device according to the color of the light to be implemented. Through this, the present invention can be easily controlled to implement various colors of light, including white light.
도 3b는 전술된 도 3a의 구조를 갖는 발광 소자에서 방출되는 광의 흐름을 모식화한 단면도이다. 3B is a cross-sectional view schematically illustrating the flow of light emitted from the light emitting device having the structure of FIG. 3A described above.
도 3b를 참조하면, 상기 제1 반도체 적층체(160)에서 발광된 광의 일부는 상기 발광구조체(100)의 상부 방향으로 방출되고 다른 광의 일부는 상기 제1 반도체 적층체(160) 하부에 배치된 필터층(215)으로 방출되나, 상기 발광구조체(100)의 상부로 방출된 광은 상기 발광구조체(100)의 상부에 배치된 상부필터(310)에 의해 반사되어 최종적으로 상기 발광 소자의 외부로 방출되지 않도록 제어할 수 있다. 반사된 광은 상기 제1 반도체 적층체(160) 하부에 배치된 필터층(215)을 투과하여 상기 필터층(215) 하부에 배치된 파장변환층(235)에 도달하여 파장변환되어 상기 상부필터(310)를 투과할 수 있다. 즉, 전술된 바와 같이, 상기 발광구조체(100) 상부에 필터층(310)을 구비함으로써 상기 변환하고자 하는 광을 손실없이 상기 필터층(215)을 통해 상기 파장변환층(235)으로 도달하게 할 수 있어, 발광구조체 최상부에 배치된 필터층은 파장변환구조체에 도달하는 광량을 증가시키고, 이에 파장변환구조체의 변환효율을 향상시킬 수 있다. 예를 들어, 상기 상부필터(310)의 구성소재로는 다이크로익 필터(dichroic filter), 장파장 투과 필터(long pass filter), 단파장 투과 필터(short pass filter), 대역 투과 필터(band pass filter) 또는 노치 필터(notch filter) 등의 유전체 필터(dielectric filter)를 사용할 수 있으나, 이에 국한되지는 않는다.Referring to FIG. 3B, a portion of the light emitted from the first semiconductor laminate 160 is emitted toward an upper direction of the light emitting structure 100, and a portion of the other light is disposed below the first semiconductor laminate 160. The light emitted to the filter layer 215 but emitted to the upper portion of the light emitting structure 100 is reflected by the upper filter 310 disposed on the light emitting structure 100 and finally emitted to the outside of the light emitting device. Can be controlled to prevent The reflected light passes through the filter layer 215 disposed under the first semiconductor laminate 160, reaches the wavelength conversion layer 235 disposed under the filter layer 215, and converts the wavelength into the upper filter 310. ) Can be penetrated. That is, as described above, by providing the filter layer 310 on the light emitting structure 100, it is possible to reach the wavelength conversion layer 235 through the filter layer 215 without losing the light to be converted. The filter layer disposed on the top of the light emitting structure may increase the amount of light reaching the wavelength converting structure, thereby improving the conversion efficiency of the wavelength converting structure. For example, a material of the upper filter 310 may include a dichroic filter, a long pass filter, a short pass filter, and a band pass filter. Or a dielectric filter such as a notch filter, but is not limited thereto.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.

Claims (6)

  1. 서로 다른 도전형을 갖는 반도체층들 사이에 위치하는 발광층을 포함하는 반도체 적층체 복수개가 적층된 발광구조체와, 상기 발광구조체의 일면에 배치된 파장변환구조체를 포함하며,And a light emitting structure in which a plurality of semiconductor laminates including light emitting layers positioned between semiconductor layers having different conductivity types are stacked, and a wavelength conversion structure disposed on one surface of the light emitting structure,
    상기 파장변환구조체는, The wavelength conversion structure,
    상기 발광구조체의 일면에 배치되어, 상기 발광구조체로부터 방출된 광의 일부만을 투과시키는 필터층;A filter layer disposed on one surface of the light emitting structure and transmitting only a part of the light emitted from the light emitting structure;
    상기 필터층의 일면에 배치되어, 상기 필터층을 투과한 광을 흡수하여 광의 파장영역을 변화시켜 방출하는 파장변환층; 및A wavelength conversion layer disposed on one surface of the filter layer to absorb the light passing through the filter layer and change the wavelength region of the light to emit the light; And
    상기 파장변환층의 일면에 배치되어, 상기 파장변환층 및 상기 발광구조체에서 방출된 광을 반사시켜 외부로 방출시키는 반사층을 포함하는 것을 특징으로 하는 발광 소자.And a reflective layer disposed on one surface of the wavelength conversion layer to reflect light emitted from the wavelength conversion layer and the light emitting structure to be emitted to the outside.
  2. 제1항에 있어서,The method of claim 1,
    상기 복수개의 발광구조체에 포함된 발광층들은 각각 서로 다른 파장영역을 갖는 광을 방출하는 것을 특징으로 하는 발광 소자.The light emitting device of claim 1, wherein the light emitting layers included in the plurality of light emitting structures emit light having different wavelength regions.
  3. 제1항에 있어서,The method of claim 1,
    상기 발광구조체는 The light emitting structure is
    녹색광을 발광하는 제1 반도체 적층체; 및 A first semiconductor laminate for emitting green light; And
    청색광을 발광하는 제2 반도체 적층체가 순차적으로 적층된 것으로,The second semiconductor laminate that emits blue light is sequentially stacked,
    상기 파장변환층은 상기 녹색광 또는 상기 청색광을 흡수하여 여기되는 것을 특징으로 하는 발광 소자.And the wavelength conversion layer absorbs the green light or the blue light and is excited.
  4. 제1항에 있어서,The method of claim 1,
    상기 발광구조체는, The light emitting structure,
    근자외선광을 발광하는 제1 반도체 적층체; A first semiconductor laminate for emitting near ultraviolet light;
    녹색광을 발광하는 제2 반도체 적층체; 및A second semiconductor laminate for emitting green light; And
    청색광을 발광하는 제3 반도체 적층체가 순차적으로 적층된 것으로, The third semiconductor laminate that emits blue light is sequentially stacked,
    상기 파장변환층은 상기 근자외선광, 상기 녹색광 또는 상기 청색광 중에서 선택되는 어느 하나의 광을 흡수하여 여기되는 것을 특징으로 하는 발광 소자.The wavelength conversion layer is a light emitting device, characterized in that the absorption of any one selected from the near ultraviolet light, the green light or the blue light is excited.
  5. 제1항에 있어서,The method of claim 1,
    상기 필터층은 상기 발광구조체에서 제1 파장영역을 갖는 광을 선택적으로 투과시키며,The filter layer selectively transmits light having a first wavelength region in the light emitting structure,
    상기 파장변환층은 상기 필터층을 투과한 상기 제1 파장영역을 갖는 광을 흡수하여 광의 에너지를 하향 변환(down-conversion)시켜 제2 파장영역을 갖는 광으로 방출하는 것을 특징으로 하는 발광 소자.And the wavelength conversion layer absorbs light having the first wavelength region passing through the filter layer, and down-converts energy of light to emit light having the second wavelength region.
  6. 제1항에 있어서,The method of claim 1,
    상기 발광구조체의 타면에, 상기 발광구조체 및 상기 파장변환층에서 방출되는 광을 선택적으로 투과시키기 위한 상부필터가 더 구비되는 것을 특징으로 하는 발광 소자.And an upper filter on the other surface of the light emitting structure, for selectively transmitting the light emitted from the light emitting structure and the wavelength conversion layer.
PCT/KR2016/012239 2015-10-30 2016-10-28 Light-emitting element comprising wavelength conversion structure WO2017074095A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150151752A KR101739851B1 (en) 2015-10-30 2015-10-30 Light emitting device comprising wavelength conversion structures
KR10-2015-0151752 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017074095A1 true WO2017074095A1 (en) 2017-05-04

Family

ID=58631833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012239 WO2017074095A1 (en) 2015-10-30 2016-10-28 Light-emitting element comprising wavelength conversion structure

Country Status (2)

Country Link
KR (1) KR101739851B1 (en)
WO (1) WO2017074095A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117656A1 (en) * 2017-12-14 2019-06-20 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
WO2019125055A1 (en) * 2017-12-21 2019-06-27 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
EP3718137A4 (en) * 2017-11-27 2021-11-03 Seoul Viosys Co. Ltd. Led unit for display and display apparatus having the same
US11973104B2 (en) 2022-05-26 2024-04-30 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931798B1 (en) * 2017-09-19 2018-12-21 주식회사 썬다이오드코리아 Multi tunnel junction light emitting diode
KR101972026B1 (en) * 2017-11-17 2019-04-24 주식회사 지엘비젼 Light emitting element
US10892297B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting diode (LED) stack for a display
US11527519B2 (en) 2017-11-27 2022-12-13 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US10892296B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting device having commonly connected LED sub-units
US10748881B2 (en) 2017-12-05 2020-08-18 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US11552057B2 (en) 2017-12-20 2023-01-10 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US11552061B2 (en) 2017-12-22 2023-01-10 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US11114499B2 (en) 2018-01-02 2021-09-07 Seoul Viosys Co., Ltd. Display device having light emitting stacked structure
US10784240B2 (en) 2018-01-03 2020-09-22 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
KR102170243B1 (en) * 2019-06-24 2020-10-26 주식회사 썬다이오드코리아 Multijunction LED with Eutectic Metal-Alloy Bonding and Method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179566A1 (en) * 2003-03-11 2004-09-16 Aharon El-Bahar Multi-color stacked semiconductor lasers
US20090001389A1 (en) * 2007-06-28 2009-01-01 Motorola, Inc. Hybrid vertical cavity of multiple wavelength leds
KR20090080217A (en) * 2008-01-21 2009-07-24 엘지전자 주식회사 Nitride light emitting device
KR20110103994A (en) * 2008-12-02 2011-09-21 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Led assembly
KR20110128007A (en) * 2010-05-20 2011-11-28 엘지이노텍 주식회사 Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179566A1 (en) * 2003-03-11 2004-09-16 Aharon El-Bahar Multi-color stacked semiconductor lasers
US20090001389A1 (en) * 2007-06-28 2009-01-01 Motorola, Inc. Hybrid vertical cavity of multiple wavelength leds
KR20090080217A (en) * 2008-01-21 2009-07-24 엘지전자 주식회사 Nitride light emitting device
KR20110103994A (en) * 2008-12-02 2011-09-21 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Led assembly
KR20110128007A (en) * 2010-05-20 2011-11-28 엘지이노텍 주식회사 Light emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3718137A4 (en) * 2017-11-27 2021-11-03 Seoul Viosys Co. Ltd. Led unit for display and display apparatus having the same
WO2019117656A1 (en) * 2017-12-14 2019-06-20 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
CN111213248A (en) * 2017-12-14 2020-05-29 首尔伟傲世有限公司 Light emitting stack structure and display device having the same
WO2019125055A1 (en) * 2017-12-21 2019-06-27 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11756984B2 (en) 2017-12-21 2023-09-12 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11973104B2 (en) 2022-05-26 2024-04-30 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same

Also Published As

Publication number Publication date
KR20170050334A (en) 2017-05-11
KR101739851B1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
WO2017074095A1 (en) Light-emitting element comprising wavelength conversion structure
TWI394287B (en) Wavelength converted semiconductor light emitting devices
TWI394818B (en) Illumination system comprising color deficiency compensating luminescent material
CN1912050B (en) Phosphor, optical device, and display device
CN101490860B (en) Optoelectronic semiconductor chip comprising a wavelength conversion substance, and optoelectronic semiconductor component comprising such a semiconductor chip, and method for producing the optoelectronic semiconductor chip
KR100609830B1 (en) White Semiconductor Light Emitted Device using Green-emitting and Red emitting Phosphor
KR102335843B1 (en) Light emitting device with improved warm white color point
EP2610930B1 (en) Multichip white led device
JP2005298817A (en) Phosphor, method for producing the same and light emission device using the same
US20090167151A1 (en) Lighting device having illumination, backlighting and display applications
WO2007120582A1 (en) WHITE LEDs WITH TAILORABLE COLOR TEMPERATURE
US7473935B2 (en) White-light emitting semiconductor device
CN107170866A (en) A kind of multispectral light emitting diode construction
EP2787055A1 (en) Light emitting device
CN105023995A (en) Light emitting device
US8358059B2 (en) Phosphor, white light illumination device and solar cell utilizing the same
US8487525B2 (en) Light emitting device including optical lens
US20060175956A1 (en) Light emitting device
CN102985511B (en) Opto-electronic device
CN102694126B (en) Organic electroluminescent device
CN104766878A (en) Display panel based on horizontal-type QLED light-emitting elements
US20100133987A1 (en) Phosphor and white light illumiantion device utilizing the same
EP1696496A1 (en) Light emitting device
CN101104802A (en) Luminescent diode and phosphor thereof
CN106604976A (en) Phosphor composition, light emitting element package comprising same, and lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/09/2018)