WO2017073963A1 - Method for producing polymer microparticles having network structure - Google Patents

Method for producing polymer microparticles having network structure Download PDF

Info

Publication number
WO2017073963A1
WO2017073963A1 PCT/KR2016/011862 KR2016011862W WO2017073963A1 WO 2017073963 A1 WO2017073963 A1 WO 2017073963A1 KR 2016011862 W KR2016011862 W KR 2016011862W WO 2017073963 A1 WO2017073963 A1 WO 2017073963A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mixed solvent
dmso
network structure
polymer solution
Prior art date
Application number
PCT/KR2016/011862
Other languages
French (fr)
Korean (ko)
Other versions
WO2017073963A9 (en
Inventor
김근풍
Original Assignee
주식회사 바임
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58581020&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017073963(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 바임 filed Critical 주식회사 바임
Priority to CN201680062806.0A priority Critical patent/CN108350180B/en
Priority to BR112018008405-0A priority patent/BR112018008405B1/en
Publication of WO2017073963A1 publication Critical patent/WO2017073963A1/en
Publication of WO2017073963A9 publication Critical patent/WO2017073963A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a method for producing polymer microparticles having a network structure, and more specifically, polyester-based polymers are ethylene carbonate (hereinafter referred to as "EC") and dimethylsulfoxide (hereinafter referred to as “EC”).
  • EC ethylene carbonate
  • EC dimethylsulfoxide
  • DMSO which is dissolved in a mixed solvent, is injected into a hydrocarbon having a temperature lower than the freezing point of the mixed solvent to obtain a solid containing EC / DMSO / polymer, and then the solid is added to water to give the solid.
  • the present invention relates to a method for producing polymer fine particles having a network structure by removing a mixed solvent from the mixture.
  • Porous biodegradable polymeric microparticles are widely used as drug delivery systems and scaffolds for tissue regeneration. These polymer microparticles are required to have porosity, and in particular, the internal structure of the particles has a network structure, which not only increases the strength of the particles, but also has good cell adhesion, and is therefore promising to be used as an injection agent for cell carriers, cell cultures, and tissue regeneration. This is an advantage in designing drug release systems.
  • microparticles for injection is the Emulsification-Solvent Evaporation Method.
  • the W / O / W type dual emulsification method undergoes two emulsification steps, and the porous structure is determined according to the stability of the first emulsification step, the water-in-oil (W / O) emulsion.
  • W / O water-in-oil
  • emulsions are thermodynamically unstable, they are difficult to manufacture because the aqueous phase and the organic phase try to separate from each other through processes such as coalescence, fusion, and phase separation (see M. Kanouni, HL Rosano). , N. Naouli, Adv.Colloid Interface Sci. 99 (2002) 229-254; AJ Webster, ME Cates, Langmuir, 14 (1998) 2068-2079).
  • a particulate carrier comprising an oil-in-water type double emulsification step of adding an aqueous solution of an effervescent salt dissolved in an aliphatic polyester polymer to form an oil-in-water emulsion and redispersing and emulsifying it in an aqueous solution containing a hydrophilic surfactant.
  • the particulate carrier has properties such as biodegradability, high porosity, excellent interconnectivity between pores, but has a weak mechanical strength and a difficult mass production process.
  • biodegradable polymer microparticle manufacturing method is to dissolve the biodegradable polymer in DMSO (Dimethyl Sulfoxide), spray on a low temperature hydrocarbon solution to freeze the DMSO / polymer solution and remove the DMSO from the low temperature salt solution.
  • DMSO Dimethyl Sulfoxide
  • microparticles for tissue regeneration support, it is necessary to develop microparticles that can maximize the tissue regeneration effect by increasing the cell adhesion by making the internal structure of the microparticles have a network structure.
  • the present inventors studied the particle formation step of the conventional microparticle manufacturing process, and when the biodegradable polyester-based microsolution droplets dissolved in the EC / DMSO mixed solvent are frozen in a low temperature hydrocarbon, the polymer dissolved in the microsolution is reticulated. By discovering the phenomenon of solidification to the structure, the present invention was completed by finding out that the polymer microparticles having the maximum cell adhesion ability can be prepared.
  • Method for producing a polymer microparticle having a network structure (1) preparing a polymer solution by dissolving the polymer in a mixed solvent containing EC and DMSO; (2) a solid preparation step of preparing a solid by adding the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon at a temperature below the freezing point of the mixed solvent; And (3) removing the solids obtained in the solids manufacturing step, and removing the mixed solvent in the solids by adding the separated solids to water.
  • the present invention as described above it can be produced in a yield of 80% or more polymer microparticles having a network structure.
  • the polymer microparticles were spherical particles having a diameter of 20 to 1,000 ⁇ m, which can be adjusted according to the injection amount and the amount of injection air during the injection of the polymer solution, the porosity of the polymer microparticles is controlled by the polymer concentration of the polymer solution Can be.
  • the present invention is not only biocompatible, biodegradable, porous, but also the internal structure of the particle has a network structure, it can be used as an excellent cell carrier and cell culture, can be injected by a syringe, it is injected in vivo to restore damaged tissue It can be usefully used as a cell carrier for excellent tissue regeneration.
  • 1 is a graph showing that the freezing point changes depending on the mixing ratio of the mixed solvent used in the present invention.
  • the present invention (1) a polymer solution manufacturing step of preparing a polymer solution by dissolving the polymer in a mixed solvent containing EC and DMSO; (2) a solid preparation step of preparing a solid by adding the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon at a temperature below the freezing point of the mixed solvent; And (3) removing the solids obtained in the solids production step and removing the mixed solvent in the solids by adding the separated solids to water.
  • Method for producing a polymer microparticle having a network structure (1) preparing a polymer solution by dissolving the polymer in a mixed solvent containing EC and DMSO; (2) a solid preparation step of preparing a solid by adding the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon at a temperature below the freezing point of the mixed solvent; And (3) removing the solids obtained in the solids production step and removing the mixed solvent in the solids by adding the separated solids to water.
  • the method for producing a polymer microparticle having a network structure (1) a polymer solution (solution containing a polymer / EC / DMSO) by dissolving the polymer in a mixed solvent containing EC and DMSO Preparing a polymer solution; (2) a solid content preparing step of preparing a frozen solid by spraying the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon having 5 to 10 carbon atoms (C 5 to C 10 ) at a temperature of -20 to 0 ° C .; And (3) removing the solids obtained in the solids production step and removing the mixed solvent in the solids by adding the separated solids to distilled water at 0 to 4 ° C .;
  • the polymer is preferably a biodegradable polyester-based polymer having a weight average molecular weight of 10,000 to 250,000, more preferably polylactic acid (PLA), polyglycolic acid (PGA), poly (D, L-lactic acid-co-glycolic acid (PLGA: from the group consisting of Poly (D, L-lactic-co-glycolic acid), polycaprolactone (PCL), poly (valerolactone), poly (hydroxybutyrate) and poly (hydroxyvallate) It may be any one biodegradable polyester-based polymer selected.
  • the mixing ratio of EC: DMSO is in the range of 90:10 to 10:90 by weight, more preferably within the range of 80:20 to 20:80, most preferably 70:30 to 30:70 It may be a mixed solvent within the range.
  • the hydrocarbon may be any one selected from the group consisting of pentane, hexane, heptane, octane, nonane, decane and petroleum ether. .
  • the polymer preferably a biodegradable polyester-based polymer, is an aliphatic polyester-based polymer, but is not limited thereto.
  • These polymers preferably have an average molecular weight (weight average molecular weight) of 10,000 to 250,000.
  • the method for preparing biodegradable polymer microparticles of the present invention has the characteristics of easily producing spherical microparticles and of easily controlling the size of microparticles. It is not limited.
  • the polymer is prepared as a polymer solution, wherein the polymer is dissolved in an EC / DMSO mixed solvent so as to have a concentration of 1 to 25 w / v% (weight / vol%), and can be used in various ways.
  • the porosity of the polymer microparticles can be adjusted through. If the concentration of the polymer solution is less than 1w / v%, the mechanical strength of the microparticles are weak and practicality, if the concentration is more than 25w / v%, there is a problem that the efficiency is low, such as the formation of fibers so high that the viscosity is too high have.
  • the mixed solvent used to dissolve the polymer in the present invention is a mixture of EC (Ethylene carbonate, freezing point 37 °C) and DMSO (Dimethylsulfoxide, freezing point 18 °C), the freezing point of the mixed solvent depends on the mixing ratio (Fig. 1), the freezing point of the mixed solvent may act as an important factor in the structure formation of aliphatic polyester polymer microparticles.
  • the internal structure of the polymer microparticles has a network structure.
  • Preferred mixed solvents having a network-like internal structure have a mixing ratio of EC: DMSO in the weight ratio within the range of 90: 10 to 10: 90, preferably within the range of 80: 20 to 20: 80, more preferably 70: It is a mixed solvent within the range of 30-30: 70.
  • the liquid hydrocarbon in the present invention is preferably a hydrocarbon having 5 to 10 carbon atoms (C 5 to C 10 ), which may not be frozen at a freezing point of the mixed solvent and may be phase separated from the solid containing the polymer / EC / DMSO.
  • saturated hydrocarbons such as pentane, hexane, heptane, octane, nonane, nonane, decane, petroleum ether and mixtures thereof, preferably It is recommended to use n-hexane which is highly volatile. Due to the high volatility of n-hexane, it can finally be easily removed during drying.
  • Hydrocarbons having less than 5 carbon atoms are too volatile and difficult to manufacture, and hydrocarbons having 10 or more carbon atoms may have a problem of poor practicality.
  • the temperature of the hydrocarbon solution is preferably maintained at a temperature below the melting point of the mixed solvent for freezing the mixed solvent. More preferably, in order to smoothly freeze the EC / DMSO mixed solvent and form fine particles, it is preferably -20 to 0 ° C, and most preferably -15 to -10 ° C.
  • Solids which are prepared as described above and separated from the liquid hydrocarbon at low temperature are separated from the liquid hydrocarbon, and are added to water to remove EC / DMSO and washed to obtain polymer microparticles having a network structure inside the microparticles.
  • the obtained polymer microparticles can be further charged into water, preferably distilled water, washed to remove residual mixed solvents and impurities, and further dried, preferably lyophilized.
  • Example 1 3.5 g of polylactic acid (PLA) having a weight average molecular weight of 110,000 was dissolved in 50 ml of an EC / DMSO (8/2) mixed solvent to prepare a 7W / V% polymer solution. The polymer solution was sprayed on n-hexane cooled to -15 ° C under the conditions of 5 ml / min of injection amount and 5 L / min of injection air. At this time, the injected polymer solution is frozen in spherical form at low temperature n-hexane.
  • PLA polylactic acid
  • Obtained frozen microparticles were added to the cooled (0 ⁇ 4 °C) distilled water and stirred to remove a mixed solvent, that is, EC and DMSO to obtain a polymer microparticles. This was again washed with 500 mL distilled water to remove residual EC, DMSO, and then lyophilized to obtain the polymer microparticles of the present invention.
  • a mixed solvent that is, EC and DMSO
  • Example 2 Polymer microparticles were obtained in the same manner as in Example 1, except that the EC / DMSO (8/2) mixed solvent was replaced with the EC / DMSO (7/3) mixed solvent.
  • Example 3 Polymer microparticles were obtained in the same manner as in Example 1, except that the EC / DMSO (8/2) mixed solvent was replaced with the EC / DMSO (5/5) mixed solvent.
  • Example 4 Polymer microparticles were obtained in the same manner as in Example 1, except that the EC / DMSO (8/2) mixed solvent was replaced with the EC / DMSO (3/7) mixed solvent.
  • Example 5 Polymer microparticles were obtained in the same manner as in Example 1, except that the EC / DMSO (8/2) mixed solvent was replaced with the EC / DMSO (2/8) mixed solvent.
  • Comparative Example 1 Polymer microparticles were prepared in the same manner as in Example 1 except that 3.5 g of polylactic acid (PLA) having an average molecular weight of 110,000 was dissolved in 50 ml of DMSO (DMSO alone) to prepare a 7w / v% polymer solution. Obtained.
  • PVA polylactic acid
  • DMSO DMSO alone
  • Comparative Example 2 Polymer microparticles were prepared in the same manner as in Example 1 except that 3.5 g of polylactic acid (PLA) having an average molecular weight of 110,000 was dissolved in 50 ml EC (EC alone) to prepare a 7w / v% polymer solution. Obtained.
  • PLA polylactic acid
  • the shape and production yield of the microparticles were measured.
  • the shape of the microparticles was measured by taking an electron microscope photograph, and the production yield was calculated by measuring the amount of the finally obtained microparticles relative to the amount of the injected polymer.
  • Figs. 2 to 8 (Fig. 2-Example 1, Fig. 3-Example 2, Fig. 4-Example 3, Fig. 5-Example 4, Fig. 6-Example 5, Fig. 7-Comparative Example 1, 8-Comparative Example 2) and as shown in Table 1 below, the internal structure of the fine particles (Comparative Examples 1, 2) prepared from the polymer solution dissolved in DMSO, EC alone solvent has an empty space (Fig. 7, 8), the internal structures of the spherical polymer microparticles prepared from the polymer solution dissolved in the EC / DMSO mixed solvent according to the present invention was confirmed to form a network structure (see Figures 2 to 6).
  • the microparticles prepared according to the preparation method of the present invention were a size suitable for injection into the body through a syringe, and the internal network structure of the microparticles was used as a cell carrier, a cell culture medium, and a cell carrier for tissue regeneration by facilitating cell attachment. It was determined that it could be used more usefully.
  • the present invention can be seen that it is a useful invention to provide a method for producing polymer microparticles that can inject a biodegradable polymer particulate carrier having a spherical and internal network structure with a syringe.
  • the microparticles having an internal network structure are expected to improve cell adhesion, which is expected to contribute to the bio industry through the use as cell carriers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a method for producing polymer microparticles having a network structure by injecting a polymer solution, obtained by dissolving a polyester-based polymer in a mixture solvent of ethylene carbonate (hereinafter, referred to as "EC") and dimethylsulfoxide (hereinafter, referred to as "DMSO"), into hydrocarbon having a lower temperature than the freezing point of the mixture solvent to obtain solid contents containing the EC/DMSO/polymer, and then putting the solid contents into water to remove the mixture solvent from the solid contents. The method comprises: (1) a polymer solution preparation step for dissolving a polymer in a mixture solvent containing EC and DMSO to prepare a polymer solution; (2) a solid contents preparation step for putting the polymer solution obtained in the polymer solution preparation step into liquid hydrocarbon having a temperature equal to or lower than the freezing point of the mixture solvent to prepare solid contents; and (3) a solvent removal step for separating the solid contents obtained in the solid contents preparation step and putting the separated solid contents into water to remove the mixture solvent in the solid contents.

Description

망상구조를 갖는 고분자 미세입자의 제조방법Manufacturing method of polymer microparticles having a network structure
본 발명은 망상구조를 갖는 고분자 미세입자의 제조방법에 관한 것으로서, 보다 상세하게는 폴리에스테르계 고분자를 에틸렌카보네이트(Ethylene carbonate)(이하 "EC"라 한다)와 디메틸설폭사이드(Dimethylsulfoxide)(이하 "DMSO"라 한다)의 혼합용매에 용해시켜 얻은 고분자용액을 혼합용매의 어는점 보다 낮은 온도의 탄화수소에 분사시켜 EC/DMSO/고분자를 포함하는 고형분을 수득한 후, 이 고형분을 물에 투입하여 상기 고형분으로부터 혼합용매를 제거함으로써 망상구조를 갖는 고분자 미세입자의 제조방법에 관한 것이다.The present invention relates to a method for producing polymer microparticles having a network structure, and more specifically, polyester-based polymers are ethylene carbonate (hereinafter referred to as "EC") and dimethylsulfoxide (hereinafter referred to as "EC"). DMSO ", which is dissolved in a mixed solvent, is injected into a hydrocarbon having a temperature lower than the freezing point of the mixed solvent to obtain a solid containing EC / DMSO / polymer, and then the solid is added to water to give the solid. The present invention relates to a method for producing polymer fine particles having a network structure by removing a mixed solvent from the mixture.
다공성 생분해성 고분자 미세입자는 약물전달체계(Drug Delivery System) 및 조직재생을 위한 지지체(Scaffold)로서 널리 이용되고 있다. 이러한 고분자 미세입자는 다공성이 요구되고 있으며, 특히 입자 내부구조가 망상구조를 갖게 함으로서 입자의 강도가 증가될 뿐 아니라, 세포 부착성이 좋아 세포운반체, 세포배양체 및 조직재생용 주사제로 활용이 유망하고, 약물방출시스템을 설계함에 있어 장점으로 작용된다. Porous biodegradable polymeric microparticles are widely used as drug delivery systems and scaffolds for tissue regeneration. These polymer microparticles are required to have porosity, and in particular, the internal structure of the particles has a network structure, which not only increases the strength of the particles, but also has good cell adhesion, and is therefore promising to be used as an injection agent for cell carriers, cell cultures, and tissue regeneration. This is an advantage in designing drug release systems.
현재 사용되는 주사용 미세입자 제조방법은 유화-용매 증발법(Emulsification-Solvent Evaporation Method)이다. 그 중 수중유중수형(W/O/W type) 이중 유화방법은 두 번의 유화단계를 거치는데, 첫 번째 유화단계인 유중수(W/O) 유화액의 안정성에 따라 다공성 구조가 결정된다. 유화액은 열역학적으로 불안정한 상태이기 때문에 뭉침(Coalescence), 융합(Fusion), 상분리(Creaming) 등의 과정을 거쳐 수상과 유기상이 서로 분리되려고 하기 때문에 제조가 어려운 단점이 있다(문헌 M. Kanouni, H. L. Rosano, N. Naouli, Adv. Colloid Interface Sci. 99 (2002) 229-254; A. J. Webster, M. E. Cates, Langmuir, 14 (1998) 2068-2079 참조).Currently used microparticles for injection is the Emulsification-Solvent Evaporation Method. Among them, the W / O / W type dual emulsification method undergoes two emulsification steps, and the porous structure is determined according to the stability of the first emulsification step, the water-in-oil (W / O) emulsion. Since emulsions are thermodynamically unstable, they are difficult to manufacture because the aqueous phase and the organic phase try to separate from each other through processes such as coalescence, fusion, and phase separation (see M. Kanouni, HL Rosano). , N. Naouli, Adv.Colloid Interface Sci. 99 (2002) 229-254; AJ Webster, ME Cates, Langmuir, 14 (1998) 2068-2079).
또한 지방족 폴리에스테르 고분자를 녹인 유기상에 발포성 염을 녹인 수용액을 첨가하여 유중수 유화액을 형성하고, 친수성 계면활성제를 포함하는 수용액에 재분산, 유화시키는 수중유중수형 이중 유화단계를 포함하는 미립 담체 제조방법이 있다(대한민국 특허 제801194호 참조). 상기 미립담체는 생분해성, 높은 공극율, 공극간 우수한 상호 연결성 등의 특성을 가지고 있으나, 기계적 강도가 약하고, 양산공정이 어려운 문제점을 가지고 있다.In addition, to prepare a particulate carrier comprising an oil-in-water type double emulsification step of adding an aqueous solution of an effervescent salt dissolved in an aliphatic polyester polymer to form an oil-in-water emulsion and redispersing and emulsifying it in an aqueous solution containing a hydrophilic surfactant. There is a method (see Korean Patent No. 801194). The particulate carrier has properties such as biodegradability, high porosity, excellent interconnectivity between pores, but has a weak mechanical strength and a difficult mass production process.
최근에 개발된 생분해성 고분자 미세입자 제조방법으로는 생분해성 고분자를 DMSO(Dimethyl Sulfoxide)에 용해시킨 후, 저온의 탄화수소 용액에 분사시켜 DMSO/고분자용액을 냉동시킨 후 저온의 염 수용액에서 DMSO를 제거함으로서 생분해성 고분자 미세입자를 제조하는 방법이 있다(대한민국 특허 제1105292호 참조).Recently developed biodegradable polymer microparticle manufacturing method is to dissolve the biodegradable polymer in DMSO (Dimethyl Sulfoxide), spray on a low temperature hydrocarbon solution to freeze the DMSO / polymer solution and remove the DMSO from the low temperature salt solution There is a method for producing biodegradable polymer microparticles (see Korean Patent No. 1105292).
또한 생분해성 고분자 용매로서 DMSO 대신에 EC(Ethylene Carbonate)를 사용함으로써 '요(凹)'자 형상의 미세입자를 제조하는 방법이 개발되었다(대한민국 특허 제10-1481441호 참조). 이와 같이 제조된 미세입자는 다공성을 가지고 있으나, 미세입자의 내부구조를 보면 내부는 텅 비어 있고, 표면에만 고분자 층이 형성되어 있다. In addition, a method of preparing 'urine' shaped fine particles by using EC (Ethylene Carbonate) instead of DMSO as a biodegradable polymer solvent has been developed (see Korean Patent No. 10-1481441). Thus prepared microparticles have a porosity, but when looking at the internal structure of the microparticles, the inside is hollow, and the polymer layer is formed only on the surface.
따라서, 조직재생 지지체용 미세입자로서 활용하기 위해서는 미세입자의 내부구조가 망상구조를 갖게 하여 세포 부착성을 높임으로서 조직재생효과를 극대화 할 수 있는 미세입자 개발이 필요하게 되었다.Therefore, in order to utilize the microparticles for tissue regeneration support, it is necessary to develop microparticles that can maximize the tissue regeneration effect by increasing the cell adhesion by making the internal structure of the microparticles have a network structure.
이에 본 발명자는 기존의 미세입자 제조과정 중 입자생성 단계를 연구하던 중 EC/DMSO 혼합용매에 녹은 생분해성 폴리에스테르계 고분자 미세용액 방울이 저온의 탄화수소에서 냉동될 때 미세용액 내부에 녹아 있는 고분자가 망상구조로 고체화하는 현상을 발견함으로서 세포부착능력이 극대화된 고분자 미세입자를 제조할 수 있음을 알아내어 본 발명을 완성하였다.Accordingly, the present inventors studied the particle formation step of the conventional microparticle manufacturing process, and when the biodegradable polyester-based microsolution droplets dissolved in the EC / DMSO mixed solvent are frozen in a low temperature hydrocarbon, the polymer dissolved in the microsolution is reticulated. By discovering the phenomenon of solidification to the structure, the present invention was completed by finding out that the polymer microparticles having the maximum cell adhesion ability can be prepared.
본 발명에 따른 망상구조를 갖는 고분자 미세입자의 제조방법은, (1) EC와 DMSO를 포함하는 혼합용매에 고분자를 용해시켜 고분자용액을 제조하는 고분자용액 제조단계; (2) 고분자용액 제조단계에서 수득되는 고분자용액을 상기 혼합용매의 어는점 이하의 온도의 액상 탄화수소에 투입하여 고형분을 제조하는 고형분 제조단계; 및 (3) 상기 고형분 제조단계에서 수득되는 고형분을 분리해내고, 분리된 고형분을 물에 투입하여 고형분 중의 혼합용매를 제거하는 용매제거단계;를 포함한다.Method for producing a polymer microparticle having a network structure according to the present invention, (1) preparing a polymer solution by dissolving the polymer in a mixed solvent containing EC and DMSO; (2) a solid preparation step of preparing a solid by adding the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon at a temperature below the freezing point of the mixed solvent; And (3) removing the solids obtained in the solids manufacturing step, and removing the mixed solvent in the solids by adding the separated solids to water.
상기한 바와 같은 본 발명에 따르면 망상구조를 갖는 고분자 미세입자를 80% 이상의 수율로 제조할 수 있다. 상기 고분자 미세입자는 20 내지 1,000㎛의 직경을 갖는 구형 입자이었으며, 이는 고분자용액의 분사 시 분사량 및 분사공기의 양에 따라 조절될 수 있으며, 고분자 미세입자의 다공도는 고분자용액의 고분자 농도에 의해 조절될 수 있다.According to the present invention as described above it can be produced in a yield of 80% or more polymer microparticles having a network structure. The polymer microparticles were spherical particles having a diameter of 20 to 1,000 ㎛, which can be adjusted according to the injection amount and the amount of injection air during the injection of the polymer solution, the porosity of the polymer microparticles is controlled by the polymer concentration of the polymer solution Can be.
따라서 본 발명은 생체적합성, 생분해성, 다공성 뿐만 아니라 입자 내부구조가 망상구조를 갖도록 함으로써, 우수한 세포 운반체 및 세포배양체로 사용이 가능하며, 주사기로 주입할 수 있어, 생체 내에 주입하여 손상된 조직을 복원시키는 우수한 조직재생용 세포 전달체로 유용하게 이용할 수 있다.Therefore, the present invention is not only biocompatible, biodegradable, porous, but also the internal structure of the particle has a network structure, it can be used as an excellent cell carrier and cell culture, can be injected by a syringe, it is injected in vivo to restore damaged tissue It can be usefully used as a cell carrier for excellent tissue regeneration.
도 1은 본 발명에서 사용되는 혼합용매의 혼합비율에 따라 어는점이 달라지는 것을 나타내는 그래프이다.1 is a graph showing that the freezing point changes depending on the mixing ratio of the mixed solvent used in the present invention.
도 2는 본 발명의 실시예 1에 따라 제조된 고분자 미세입자를 전자현미경으로 관찰한 사진이다(X 1,300; 혼합용매: EC/DMSO = 80/20).Figure 2 is a photograph observing the polymer microparticles prepared according to Example 1 of the present invention with an electron microscope (X 1,300; mixed solvent: EC / DMSO = 80/20).
도 3은 본 발명의 실시예 2에 따라 제조된 고분자 미세입자를 전자현미경으로 관찰한 사진이다(X 1,400; 혼합용매: EC/DMSO = 70/30).3 is a photograph observing the polymer microparticles prepared according to Example 2 of the present invention with an electron microscope (X 1,400; mixed solvent: EC / DMSO = 70/30).
도 4는 본 발명의 실시예 3에 따라 제조된 고분자 미세입자를 전자현미경으로 관찰한 사진이다(X 1,500; 혼합용매: EC/DMSO = 50/50).4 is a photograph observing the polymer microparticles prepared according to Example 3 of the present invention with an electron microscope (X 1,500; mixed solvent: EC / DMSO = 50/50).
도 5는 본 발명의 실시예 4에 따라 제조된 고분자 미세입자를 전자현미경으로 관찰한 사진이다(X 2,000; 혼합용매: EC/DMSO = 30/70).5 is a photograph observing the polymer microparticles prepared according to Example 4 of the present invention with an electron microscope (X 2,000; mixed solvent: EC / DMSO = 30/70).
도 6은 본 발명의 실시예 5에 따라 제조된 고분자 미세입자를 전자현미경으로 관찰한 사진이다(X 1,000; 혼합용매: EC/DMSO = 20/80).6 is a photograph observing the polymer microparticles prepared according to Example 5 of the present invention with an electron microscope (X 1,000; mixed solvent: EC / DMSO = 20/80).
도 7은 종래의 방법(비교예 1)에 따라 제조된 고분자 미세입자를 전자현미경으로 관찰한 사진이다(X 1,500; 용매: DMSO = 100).7 is a photograph observing the polymer microparticles prepared according to a conventional method (Comparative Example 1) with an electron microscope (X 1,500; solvent: DMSO = 100).
도 8은 종래의 방법(비교예 2)에 따라 제조된 고분자 미세입자를 전자현미경으로 관찰한 사진이다(X 1,500; 용매: EC = 100).8 is a photograph observing the polymer microparticles prepared according to a conventional method (Comparative Example 2) with an electron microscope (X 1,500; solvent: EC = 100).
본 발명은 (1) EC와 DMSO를 포함하는 혼합용매에 고분자를 용해시켜 고분자용액을 제조하는 고분자용액 제조단계; (2) 고분자용액 제조단계에서 수득되는 고분자용액을 상기 혼합용매의 어는점 이하의 온도의 액상 탄화수소에 투입하여 고형분을 제조하는 고형분 제조단계; 및 (3) 상기 고형분 제조단계에서 수득되는 고형분을 분리해내고, 분리된 고형분을 물에 투입하여 고형분 중의 혼합용매를 제거하는 용매제거단계;를 포함하여 구성된다.The present invention (1) a polymer solution manufacturing step of preparing a polymer solution by dissolving the polymer in a mixed solvent containing EC and DMSO; (2) a solid preparation step of preparing a solid by adding the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon at a temperature below the freezing point of the mixed solvent; And (3) removing the solids obtained in the solids production step and removing the mixed solvent in the solids by adding the separated solids to water.
이하 본 발명을 구체적인 실시예를 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to specific examples.
본 발명에 따른 망상구조를 갖는 고분자 미세입자의 제조방법은, (1) EC와 DMSO를 포함하는 혼합용매에 고분자를 용해시켜 고분자용액을 제조하는 고분자용액 제조단계; (2) 고분자용액 제조단계에서 수득되는 고분자용액을 상기 혼합용매의 어는점 이하의 온도의 액상 탄화수소에 투입하여 고형분을 제조하는 고형분 제조단계; 및 (3) 상기 고형분 제조단계에서 수득되는 고형분을 분리해내고, 분리된 고형분을 물에 투입하여 고형분 중의 혼합용매를 제거하는 용매제거단계;를 포함함을 특징으로 한다.Method for producing a polymer microparticle having a network structure according to the present invention, (1) preparing a polymer solution by dissolving the polymer in a mixed solvent containing EC and DMSO; (2) a solid preparation step of preparing a solid by adding the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon at a temperature below the freezing point of the mixed solvent; And (3) removing the solids obtained in the solids production step and removing the mixed solvent in the solids by adding the separated solids to water.
보다 구체적으로는, 본 발명에 따른 망상구조를 갖는 고분자 미세입자의 제조방법은, (1) EC와 DMSO를 포함하는 혼합용매에 고분자를 용해시켜 고분자용액(고분자/EC/DMSO를 포함하는 용액)을 제조하는 고분자용액 제조단계; (2) 고분자용액 제조단계에서 수득되는 고분자용액을 -20 내지 0℃의 온도의 탄소수 5 내지 10(C5 내지 C10)의 액상 탄화수소에 분사하여 동결된 고형분을 제조하는 고형분 제조단계; 및 (3) 상기 고형분 제조단계에서 수득되는 고형분을 분리해내고, 분리된 고형분을 0 내지 4℃의 증류수에 투입하여 고형분 중의 혼합용매를 제거하는 용매제거단계;를 포함함을 특징으로 한다.More specifically, the method for producing a polymer microparticle having a network structure according to the present invention, (1) a polymer solution (solution containing a polymer / EC / DMSO) by dissolving the polymer in a mixed solvent containing EC and DMSO Preparing a polymer solution; (2) a solid content preparing step of preparing a frozen solid by spraying the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon having 5 to 10 carbon atoms (C 5 to C 10 ) at a temperature of -20 to 0 ° C .; And (3) removing the solids obtained in the solids production step and removing the mixed solvent in the solids by adding the separated solids to distilled water at 0 to 4 ° C .;
상기 고분자는 바람직하게는 중량평균분자량이 10,000 내지 250,000인 생분해성 폴리에스테르계 고분자, 보다 바람직하게는 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리(D,L-락트산-코-글리콜산)(PLGA: Poly(D,L-lactic-co-glycolic acid), 폴리카프로락톤(PCL), 폴리(발레로락톤), 폴리(하이드록시부티레이트) 및 폴리(하이드록시발러레이트)로 이루어지는 군으로부터 선택되는 어느 하나의 생분해성 폴리에스테르계 고분자일 수 있다.The polymer is preferably a biodegradable polyester-based polymer having a weight average molecular weight of 10,000 to 250,000, more preferably polylactic acid (PLA), polyglycolic acid (PGA), poly (D, L-lactic acid-co-glycolic acid (PLGA: from the group consisting of Poly (D, L-lactic-co-glycolic acid), polycaprolactone (PCL), poly (valerolactone), poly (hydroxybutyrate) and poly (hydroxyvallate) It may be any one biodegradable polyester-based polymer selected.
상기 혼합용매는 EC : DMSO의 혼합비가 중량비로 90 : 10 내지 10 : 90의 범위 이내, 보다 바람직하게는 80 : 20 내지 20 : 80의 범위 이내, 가장 바람직하게는 70 : 30 내지 30 : 70의 범위 이내인 혼합용매일 수 있다.In the mixed solvent, the mixing ratio of EC: DMSO is in the range of 90:10 to 10:90 by weight, more preferably within the range of 80:20 to 20:80, most preferably 70:30 to 30:70 It may be a mixed solvent within the range.
상기 탄화수소는 펜탄(pentane), 헥산(hexane), 헵탄(heptane), 옥탄(octane), 노난(nonane), 데칸(decane) 및 석유에테르(petroleum ether)로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.The hydrocarbon may be any one selected from the group consisting of pentane, hexane, heptane, octane, nonane, decane and petroleum ether. .
상기 고분자, 바람직하게는 생분해성 폴리에스테르계 고분자는 지방족 폴리에스테르계 고분자로서, 이에 한정되지 않으나, 폴리락트산(Polylactic acid: PLA), 폴리글리콜산(Polyglycolic acid: PGA), 폴리(D,L-락트산-코-글리콜산)(PLGA: Poly(D,L-lactic-co-glycolic acid)), 폴리(발레로락톤), 폴리(하이드록시부티레이트), 폴리(하이드록시발러레이트) 또는 이들의 유도체일 수 있으며, 단독 또는 2 성분 이상의 혼합물일 수 있다. 바람직하게는 PLA, PGA, PLGA 또는 이들의 혼합물이며, 보다 바람직하게는 PLA, PLGA 이다. 이들은 고분자로서 평균 분자량(중량평균분자량)이 10,000 내지 250,000인 것이 바람직하다. 하지만 본 발명의 생분해성 고분자 미세입자의 제조방법은 구형의 미세입자를 쉽게 제조할 수 있는 특징과 미세입자의 크기를 쉽게 제어할 수 있는 특징을 갖고 있으므로, 평균분자량에 의해 미세입자 크기의 제어가 제한되지 않는다.The polymer, preferably a biodegradable polyester-based polymer, is an aliphatic polyester-based polymer, but is not limited thereto. Polylactic acid (PLA), polyglycolic acid (PGA), poly (D, L- Lactic acid-co-glycolic acid) (PLGA: Poly (D, L-lactic-co-glycolic acid)), poly (valerolactone), poly (hydroxybutyrate), poly (hydroxyvalrate) or derivatives thereof It may be a single or a mixture of two or more components. Preferably it is PLA, PGA, PLGA or a mixture thereof, More preferably, it is PLA, PLGA. These polymers preferably have an average molecular weight (weight average molecular weight) of 10,000 to 250,000. However, the method for preparing biodegradable polymer microparticles of the present invention has the characteristics of easily producing spherical microparticles and of easily controlling the size of microparticles. It is not limited.
상기 고분자는 고분자용액으로 제조되며, 이때, 상기 고분자를 1 내지 25w/v%(중량/용적%)의 농도가 되도록 EC/DMSO 혼합용매에 용해시켜 다양하게 조절하여 사용할 수 있으며, 이러한 농도 조절을 통해 제조되는 고분자 미세입자의 공극율을 조절할 수 있다. 고분자용액의 농도가 1w/v% 미만인 경우, 미세입자의 기계적 강도가 약해 실용성이 떨어지고, 25w/v% 초과인 경우, 점도가 너무 높아 섬유상(fiber)이 형성되는 등 효율성이 떨어지는 문제점이 있을 수 있다.The polymer is prepared as a polymer solution, wherein the polymer is dissolved in an EC / DMSO mixed solvent so as to have a concentration of 1 to 25 w / v% (weight / vol%), and can be used in various ways. The porosity of the polymer microparticles can be adjusted through. If the concentration of the polymer solution is less than 1w / v%, the mechanical strength of the microparticles are weak and practicality, if the concentration is more than 25w / v%, there is a problem that the efficiency is low, such as the formation of fibers so high that the viscosity is too high have.
본 발명에서 고분자를 용해시키기 위해 사용되는 혼합용매는 EC(Ethylene carbonate, 어는점 37℃)와 DMSO(Dimethylsulfoxide, 어는점 18℃)를 혼합시킨 것으로서, 상기 혼합용매의 어는점은 혼합비율에 따라 달라지며(도 1 참조), 혼합용매의 어는점은 지방족 폴리에스테르계 고분자 미세입자의 구조형성에 중요한 요소로 작용할 수 있다. 고분자/EC/DMSO를 포함하는 고분자용액이 미세용액입자 형태로 냉각된 액상 탄화수소 내로 분사될 때, 고분자용액 중의 고분자가 고형화(고체화)하는 속도와 액상 탄화수소 내에서의 고분자의 이동속도 및 EC/DMSO 혼합용매의 어는 속도 등 복합적인 인자로 인하여 고분자 미세입자의 내부구조가 망상구조를 갖게 된다. 망상형 내부구조를 갖도록 하는 바람직한 혼합용매는 EC : DMSO의 혼합비가 중량비로 90 : 10 내지 10 : 90의 범위 이내, 바람직하게는 80 : 20 내지 20 : 80의 범위 이내, 보다 바람직하게는 70 : 30 내지 30 : 70의 범위 이내인 혼합용매이다.The mixed solvent used to dissolve the polymer in the present invention is a mixture of EC (Ethylene carbonate, freezing point 37 ℃) and DMSO (Dimethylsulfoxide, freezing point 18 ℃), the freezing point of the mixed solvent depends on the mixing ratio (Fig. 1), the freezing point of the mixed solvent may act as an important factor in the structure formation of aliphatic polyester polymer microparticles. When the polymer solution containing the polymer / EC / DMSO is injected into the cooled liquid hydrocarbon in the form of fine solution particles, the rate of solidification (solidification) of the polymer in the polymer solution, the moving speed of the polymer in the liquid hydrocarbon, and the EC / DMSO Due to complex factors such as freezing speed of the mixed solvent, the internal structure of the polymer microparticles has a network structure. Preferred mixed solvents having a network-like internal structure have a mixing ratio of EC: DMSO in the weight ratio within the range of 90: 10 to 10: 90, preferably within the range of 80: 20 to 20: 80, more preferably 70: It is a mixed solvent within the range of 30-30: 70.
본 발명에서의 액상 탄화수소는 바람직하게는 상기 혼합용매의 어는점에서도 얼지 않아 상기 고분자/EC/DMSO를 포함하는 고형분과 상분리가 될 수 있는 탄소수 5 내지 10(C5 내지 C10)의 탄화수소, 예를 들어, 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane), 옥탄(Octane), 노난(Nonane), 데칸(Decane), 석유에테르(Petrolum ether)와 같은 포화 탄화수소 및 이들의 혼합물이며, 바람직하게는 휘발성이 좋은 n-헥산(n-hexane)을 사용하는 것이 좋다. n-헥산의 높은 휘발성으로, 최종적으로 건조과정에서 쉽게 제거될 수 있다. 탄소수 5 미만의 탄화수소는 휘발성이 너무 커서 제조상 어려움이 있고, 탄소수 10 이상의 탄화수소는 실용성이 떨어지는 문제점이 있을 수 있다. 탄화수소 용액의 온도는 혼합용매의 동결을 위하여 상기 혼합용매의 융점 미만의 온도로 유지되는 것이 바람직하다. 더 바람직하게는 EC/DMSO 혼합용매의 동결 및 미세입자의 형성을 원활히 하기 위하여 -20 내지 0℃, 가장 바람직하게는 -15 내지 -10℃인 것이 좋다.The liquid hydrocarbon in the present invention is preferably a hydrocarbon having 5 to 10 carbon atoms (C 5 to C 10 ), which may not be frozen at a freezing point of the mixed solvent and may be phase separated from the solid containing the polymer / EC / DMSO. For example, saturated hydrocarbons such as pentane, hexane, heptane, octane, nonane, nonane, decane, petroleum ether and mixtures thereof, preferably It is recommended to use n-hexane which is highly volatile. Due to the high volatility of n-hexane, it can finally be easily removed during drying. Hydrocarbons having less than 5 carbon atoms are too volatile and difficult to manufacture, and hydrocarbons having 10 or more carbon atoms may have a problem of poor practicality. The temperature of the hydrocarbon solution is preferably maintained at a temperature below the melting point of the mixed solvent for freezing the mixed solvent. More preferably, in order to smoothly freeze the EC / DMSO mixed solvent and form fine particles, it is preferably -20 to 0 ° C, and most preferably -15 to -10 ° C.
상기한 바와 같이 제조되고, 저온의 액상 탄화수소로부터 상분리되는 고형분을 상기 액상 탄화수소로부터 분리하고, 이를 물에 첨가하여 EC/DMSO를 제거하고 세척하여, 미세입자 내부에 망상구조가 생성된 고분자 미세입자를 수득할 수 있게 되며, 수득된 고분자 미세입자는 추가로 물, 바람직하게는 증류수에 투입되어 세척되어 잔류하는 혼합용매 및 불순물들을 제거하고, 추가로 건조, 바람직하게는 동결건조될 수 있다.Solids which are prepared as described above and separated from the liquid hydrocarbon at low temperature are separated from the liquid hydrocarbon, and are added to water to remove EC / DMSO and washed to obtain polymer microparticles having a network structure inside the microparticles. Being obtainable, the obtained polymer microparticles can be further charged into water, preferably distilled water, washed to remove residual mixed solvents and impurities, and further dried, preferably lyophilized.
이하, 본 발명을 실시예를 들어 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
실시예 및 비교예Examples and Comparative Examples
실시예 1. 중량평균분자량이 110,000인 폴리락트산(PLA) 3.5g을 50㎖의 EC/DMSO(8/2) 혼합용매에 용해시켜 7W/V% 고분자용액을 제조하였다. -15℃로 냉각된 n-헥산(n-hexane)에 상기 고분자용액을 분사량 5㎖/분, 분사 공기의 양 5ℓ/분의 조건으로 분사하였다. 이때, 분사된 고분자 용액은 저온의 n-헥산에서 구형으로 냉동된다. Example 1. 3.5 g of polylactic acid (PLA) having a weight average molecular weight of 110,000 was dissolved in 50 ml of an EC / DMSO (8/2) mixed solvent to prepare a 7W / V% polymer solution. The polymer solution was sprayed on n-hexane cooled to -15 ° C under the conditions of 5 ml / min of injection amount and 5 L / min of injection air. At this time, the injected polymer solution is frozen in spherical form at low temperature n-hexane.
냉동된 미세입자를 수득하여 이를 냉각(0 내지 4℃)된 증류수에 투입하고 교반시켜 혼합용매 즉, EC 및 DMSO를 제거하여 고분자 미세입자를 수득하였다. 이를 다시 500㎖ 증류수로 세척하여 잔류 EC, DMSO를 제거한 다음, 동결건조하여 본 발명의 고분자 미세입자를 수득하였다. Obtained frozen microparticles were added to the cooled (0 ~ 4 ℃) distilled water and stirred to remove a mixed solvent, that is, EC and DMSO to obtain a polymer microparticles. This was again washed with 500 mL distilled water to remove residual EC, DMSO, and then lyophilized to obtain the polymer microparticles of the present invention.
실시예 2. EC/DMSO(8/2) 혼합용매를 EC/DMSO(7/3) 혼합용매로 대체한 것을 제외하고는 상기 실시예 1의 방법과 동일하게 수행하여 고분자 미세입자를 수득하였다. Example 2 . Polymer microparticles were obtained in the same manner as in Example 1, except that the EC / DMSO (8/2) mixed solvent was replaced with the EC / DMSO (7/3) mixed solvent.
실시예 3. EC/DMSO(8/2) 혼합용매를 EC/DMSO(5/5) 혼합용매로 대체한 것을 제외하고는 상기 실시예 1의 방법과 동일하게 수행하여 고분자 미세입자를 수득하였다. Example 3 . Polymer microparticles were obtained in the same manner as in Example 1, except that the EC / DMSO (8/2) mixed solvent was replaced with the EC / DMSO (5/5) mixed solvent.
실시예 4. EC/DMSO(8/2) 혼합용매를 EC/DMSO(3/7) 혼합용매로 대체한 것을 제외하고는 상기 실시예 1의 방법과 동일하게 수행하여 고분자 미세입자를 수득하였다. Example 4 Polymer microparticles were obtained in the same manner as in Example 1, except that the EC / DMSO (8/2) mixed solvent was replaced with the EC / DMSO (3/7) mixed solvent.
실시예 5. EC/DMSO(8/2) 혼합용매를 EC/DMSO(2/8) 혼합용매로 대체한 것을 제외하고는 상기 실시예 1의 방법과 동일하게 수행하여 고분자 미세입자를 수득하였다. Example 5 . Polymer microparticles were obtained in the same manner as in Example 1, except that the EC / DMSO (8/2) mixed solvent was replaced with the EC / DMSO (2/8) mixed solvent.
비교예 1. 평균분자량이 110,000인 폴리락트산(PLA) 3.5g을 50㎖ DMSO(DMSO 단독)에 용해시켜 7w/v% 고분자용액을 제조한 것을 제외하고는 상기 실시예 1의 방법과 동일하게 수행하여 고분자 미세입자를 수득하였다. Comparative Example 1 . Polymer microparticles were prepared in the same manner as in Example 1 except that 3.5 g of polylactic acid (PLA) having an average molecular weight of 110,000 was dissolved in 50 ml of DMSO (DMSO alone) to prepare a 7w / v% polymer solution. Obtained.
비교예 2. 평균분자량이 110,000인 폴리락트산(PLA) 3.5g을 50㎖ EC(EC 단독)에 용해시켜 7w/v% 고분자용액을 제조한 것을 제외하고는 상기 실시예 1의 방법과 동일하게 수행하여 고분자 미세입자를 수득하였다. Comparative Example 2 . Polymer microparticles were prepared in the same manner as in Example 1 except that 3.5 g of polylactic acid (PLA) having an average molecular weight of 110,000 was dissolved in 50 ml EC (EC alone) to prepare a 7w / v% polymer solution. Obtained.
실험예Experimental Example
상기 실시예 1 내지 5 및 비교예 1 내지 2에서 수득된 각각의 고분자 미세입자의 특성을 확인하기 위하여 제조된 고분자 미세입자를 대상으로 미세입자의 형태 및 제조수율을 측정하였다. 이때, 미세입자의 형태는 전자현미경 사진을 촬영하여 측정하였고, 제조수율은 투입된 고분자의 양 대비 최종적으로 수득된 미세입자의 양을 측정하여 계산하였다. In order to confirm the properties of the respective polymer microparticles obtained in Examples 1 to 5 and Comparative Examples 1 to 2, the shape and production yield of the microparticles were measured. In this case, the shape of the microparticles was measured by taking an electron microscope photograph, and the production yield was calculated by measuring the amount of the finally obtained microparticles relative to the amount of the injected polymer.
그 결과, 도 2 내지 8(도 2 - 실시예 1, 도 3 - 실시예 2, 도 4 - 실시예 3, 도 5 - 실시예 4, 도 6 - 실시예 5, 도 7 - 비교예 1, 도 8 - 비교예 2) 및 하기 표 1에 나타난 바와 같이, DMSO, EC 단독용매에 용해시킨 고분자용액으로부터 제조된 미세입자(비교예 1, 2)의 내부구조는 빈 공간을 가지나(도 7, 8 참조), 본 발명에 따라 EC/DMSO 혼합용매에 용해시킨 고분자용액으로부터 제조된 구형 고분자 미세입자들의 내부구조들은 망상구조를 이룸을 확인할 수 있었다(도 2 내지 도 6 참조). 즉, 본 발명의 제조방법에 따라 제조된 미세입자는 주사기를 통하여 체내에 주사하기 적합한 크기이었으며, 미세입자의 내부 망상구조는 세포부착을 용이하게 함으로써 세포운반체, 세포배양체 및 조직재생용 세포전달체로 더욱 유용하게 이용될 수 있을 것으로 판단되었다.As a result, Figs. 2 to 8 (Fig. 2-Example 1, Fig. 3-Example 2, Fig. 4-Example 3, Fig. 5-Example 4, Fig. 6-Example 5, Fig. 7-Comparative Example 1, 8-Comparative Example 2) and as shown in Table 1 below, the internal structure of the fine particles (Comparative Examples 1, 2) prepared from the polymer solution dissolved in DMSO, EC alone solvent has an empty space (Fig. 7, 8), the internal structures of the spherical polymer microparticles prepared from the polymer solution dissolved in the EC / DMSO mixed solvent according to the present invention was confirmed to form a network structure (see Figures 2 to 6). That is, the microparticles prepared according to the preparation method of the present invention were a size suitable for injection into the body through a syringe, and the internal network structure of the microparticles was used as a cell carrier, a cell culture medium, and a cell carrier for tissue regeneration by facilitating cell attachment. It was determined that it could be used more usefully.
용매menstruum 미세입자내부구조Fine particle internal structure 미세입자크기(㎛)Fine particle size (㎛) 수율(%)yield(%)
DMSODMSO ECEC
비교예 1Comparative Example 1 100100 00 빈 공간 empty place 20 내지 15020 to 150 8282
비교예 2Comparative Example 2 00 100100 8080
실시예 1Example 1 8080 2020 망상구조Network structure 8383
실시예 2Example 2 7070 3030 8585
실시예 3Example 3 5050 5050 8181
실시예 4Example 4 3030 7070 8282
실시예 5Example 5 2020 8080 8383
본 발명은 구형 및 내부 망상구조를 갖은 생분해성 고분자 미립 담체를 주사기로 주사할 수 있는 고분자 미세입자 제조 방법을 제공하는 유용한 발명임을 알 수 있다. 특히 내부 망상구조를 갖는 미세입자는 세포 부착력을 향상시킬 것으로 기대되는바 세포전달체로의 활용을 통한 바이오 산업에 기여할 것으로 판단된다.The present invention can be seen that it is a useful invention to provide a method for producing polymer microparticles that can inject a biodegradable polymer particulate carrier having a spherical and internal network structure with a syringe. In particular, the microparticles having an internal network structure are expected to improve cell adhesion, which is expected to contribute to the bio industry through the use as cell carriers.

Claims (8)

  1. (1) EC와 DMSO를 포함하는 혼합용매에 고분자를 용해시켜 고분자용액을 제조하는 고분자용액 제조단계; (1) preparing a polymer solution for preparing a polymer solution by dissolving the polymer in a mixed solvent containing EC and DMSO;
    (2) 고분자용액 제조단계에서 수득되는 고분자용액을 상기 혼합용매의 어는점 이하의 온도의 액상 탄화수소에 투입하여 고형분을 제조하는 고형분 제조단계; 및 (2) a solid preparation step of preparing a solid by adding the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon at a temperature below the freezing point of the mixed solvent; And
    (3) 상기 고형분 제조단계에서 수득되는 고형분을 분리해내고, 분리된 고형분을 물에 투입하여 고형분 중의 혼합용매를 제거하는 용매제거단계;(3) a solvent removal step of removing the solids obtained in the solids production step and removing the mixed solvent in the solids by adding the separated solids to water;
    를 포함함을 특징으로 하는 망상구조를 갖는 고분자 미세입자의 제조방법.Method for producing a polymer microparticle having a network structure, characterized in that it comprises a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 고분자가 중량평균분자량이 10,000 내지 250,000인 생분해성 폴리에스테르계 고분자임을 특징으로 하는 망상구조를 갖는 고분자 미세입자의 제조방법.Method for producing a polymer microparticle having a network structure characterized in that the polymer is a biodegradable polyester-based polymer having a weight average molecular weight of 10,000 to 250,000.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 고분자가 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리(D,L-락트산-코-글리콜산)(PLGA: Poly(D,L-lactic-co-glycolic acid), 폴리카프로락톤(PCL), 폴리(발레로락톤), 폴리(하이드록시부티레이트) 및 폴리(하이드록시발러레이트)로 이루어지는 군으로부터 선택되는 어느 하나의 생분해성 폴리에스테르계 고분자임을 특징으로 하는 망상구조를 갖는 고분자 미세입자의 제조방법.The polymer is polylactic acid (PLA), polyglycolic acid (PGA), poly (D, L-lactic acid-co-glycolic acid) (PLGA: Poly (D, L-lactic-co-glycolic acid), polycaprolactone ( PCL), poly (valerolactone), poly (hydroxybutyrate) and poly (hydroxy valerate) any one biodegradable polyester polymer selected from the group consisting of polymer microparticles having a network structure Manufacturing method.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 혼합용매가 EC : DMSO의 혼합비가 중량비로 90 : 10 내지 10 : 90의 범위 이내인 혼합용매임을 특징으로 하는 망상구조를 갖는 고분자 미세입자의 제조방법.The method of producing a polymer microparticle having a network structure, characterized in that the mixed solvent is a mixed solvent in which the mixing ratio of EC: DMSO is in the range of 90:10 to 10:90 by weight.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 탄화수소가 펜탄(pentane), 헥산(hexane), 헵탄(heptane), 옥탄(octane), 노난(nonane), 데칸(decane) 및 석유에테르(petroleum ether)로 이루어진 군으로부터 선택되는 어느 하나임을 특징으로 하는 망상구조를 갖는 고분자 미세입자의 제조방법.The hydrocarbon is any one selected from the group consisting of pentane, hexane, heptane, octane, nonane, decane and petroleum ether. Method for producing a polymer microparticle having a network structure to.
  6. 제 1 항 내지 제 5 항 중의 어느 한 항에 따라 수득되는 망상구조를 갖는 고분자 미세입자.A polymer microparticle having a network structure obtained according to any one of claims 1 to 5.
  7. (1) EC와 DMSO를 포함하는 혼합용매에 고분자를 용해시켜 고분자용액(고분자/EC/DMSO를 포함하는 용액)을 제조하는 고분자용액 제조단계; (1) preparing a polymer solution for dissolving the polymer in a mixed solvent containing EC and DMSO to prepare a polymer solution (solution containing polymer / EC / DMSO);
    (2) 고분자용액 제조단계에서 수득되는 고분자용액을 -20 내지 0℃의 온도의 탄소수 5 내지 10(C5 내지 C10)의 액상 탄화수소에 분사하여 동결된 고형분을 제조하는 고형분 제조단계; 및 (2) a solid content preparing step of preparing a frozen solid by spraying the polymer solution obtained in the polymer solution preparation step into a liquid hydrocarbon having 5 to 10 carbon atoms (C 5 to C 10 ) at a temperature of -20 to 0 ° C .; And
    (3) 상기 고형분 제조단계에서 수득되는 고형분을 분리해내고, 분리된 고형분을 0 내지 4℃의 증류수에 투입하여 고형분 중의 혼합용매를 제거하는 용매제거단계;(3) a solvent removing step of separating the solids obtained in the solids production step and removing the mixed solvent in the solids by adding the separated solids to distilled water at 0-4 ° C .;
    를 포함함을 특징으로 하는 망상구조를 갖는 고분자 미세입자의 제조방법.Method for producing a polymer microparticle having a network structure, characterized in that it comprises a.
  8. 제 7 항에 따라 수득되는 망상구조를 갖는 고분자 미세입자.A polymer microparticle having a network structure obtained according to claim 7.
PCT/KR2016/011862 2015-10-27 2016-10-21 Method for producing polymer microparticles having network structure WO2017073963A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680062806.0A CN108350180B (en) 2015-10-27 2016-10-21 Method for preparing high molecular fine particles with net structure
BR112018008405-0A BR112018008405B1 (en) 2015-10-27 2016-10-21 Method for preparing polymer microparticles with a lattice structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0149151 2015-10-27
KR1020150149151A KR101725279B1 (en) 2015-10-27 2015-10-27 Manufacturing method of polymeric microparticles having network structure

Publications (2)

Publication Number Publication Date
WO2017073963A1 true WO2017073963A1 (en) 2017-05-04
WO2017073963A9 WO2017073963A9 (en) 2018-09-13

Family

ID=58581020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011862 WO2017073963A1 (en) 2015-10-27 2016-10-21 Method for producing polymer microparticles having network structure

Country Status (4)

Country Link
KR (1) KR101725279B1 (en)
CN (1) CN108350180B (en)
BR (1) BR112018008405B1 (en)
WO (1) WO2017073963A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102012441B1 (en) 2017-11-29 2019-08-20 주식회사 울트라브이 The fabrication method of fine particle of biodegradable polymer, the fabrication method of injection including the same, and reactor for manufacturing fine particle of biodegradable polymer
KR20230171675A (en) * 2022-06-14 2023-12-21 주식회사 바임 Complex, method for manufacturing the same, and filler composition for plastic surgery using the same
KR102587872B1 (en) * 2022-06-14 2023-10-12 주식회사 바임 Complex, method for manufacturing the same, and filler composition for plastic surgery using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010002589A (en) * 1999-06-16 2001-01-15 김윤 Process for preparing biodegradable microspheres containing physiologically active agents
KR20100131244A (en) * 2009-06-05 2010-12-15 주식회사 리젠 바이오텍 Biodegradable polymeric microparticles and their preparation method
KR20140094119A (en) * 2013-01-21 2014-07-30 주식회사 바임 A process for the preparation of polymeric microparticles
KR20140105174A (en) * 2013-02-22 2014-09-01 주식회사 바임 A process for the preparation of polymeric microparticles by a spray method
WO2015019213A1 (en) * 2013-08-09 2015-02-12 Kimberly-Clark Worldwide, Inc. Microparticles having a multimodal pore distribution

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429000B1 (en) * 2001-08-14 2004-04-28 한국과학기술원 Process for Preparing Drug-embeded Biodegradable Porous Polymeric Scaffold
CN101214947B (en) * 2008-01-18 2010-06-09 中国科学技术大学 Method for preparing carbon nano-tube by catalyzing and carbonizing polymer and /or asphalt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010002589A (en) * 1999-06-16 2001-01-15 김윤 Process for preparing biodegradable microspheres containing physiologically active agents
KR20100131244A (en) * 2009-06-05 2010-12-15 주식회사 리젠 바이오텍 Biodegradable polymeric microparticles and their preparation method
KR20140094119A (en) * 2013-01-21 2014-07-30 주식회사 바임 A process for the preparation of polymeric microparticles
KR20140105174A (en) * 2013-02-22 2014-09-01 주식회사 바임 A process for the preparation of polymeric microparticles by a spray method
WO2015019213A1 (en) * 2013-08-09 2015-02-12 Kimberly-Clark Worldwide, Inc. Microparticles having a multimodal pore distribution

Also Published As

Publication number Publication date
BR112018008405B1 (en) 2022-01-25
WO2017073963A9 (en) 2018-09-13
KR101725279B1 (en) 2017-04-10
BR112018008405A2 (en) 2018-10-30
CN108350180A (en) 2018-07-31
CN108350180B (en) 2021-01-01

Similar Documents

Publication Publication Date Title
EP2439228B1 (en) Biodegradable polymer microparticles and preparation method thereof
KR102047983B1 (en) Method for preparing biodegradable microsphere with improved safety and storage stability
WO2014129773A1 (en) Method for preparing polymer microparticles by spray process
WO2017073963A1 (en) Method for producing polymer microparticles having network structure
US6296842B1 (en) Process for the preparation of polymer-based sustained release compositions
US20020037309A1 (en) Process for the preparation of polymer-based sustained release compositions
CN110343288B (en) Porous calcium alginate microspheres using aqueous two-phase emulsion as template, preparation method and application thereof
US20150321159A1 (en) Microcapsule-manufacturing process and microcapsules
KR101766995B1 (en) method for preparing porous PCL microsphere scaffolds as a cell delivery system
EP3573747A1 (en) Preparation of microparticles of an active ingredient
AU1154588A (en) Porous microspheres for drug delivery and methods for making same
EP2442839B1 (en) Block copolymer blends
KR20020093059A (en) Process for producing microsphere
WO2013094955A1 (en) Composition comprising biodegradable polymer fine particles having improved dispersibility and method for preparing same
KR102068578B1 (en) Porous microspheres for cell delivery and manufacturing method thereof
Zhang et al. From nanofibrous hollow microspheres to nanofibrous hollow discs and nanofibrous shells
JP2000239152A (en) Method for removing organic solvent remaining in fine particle
Monnier et al. Poly (hydroxybutyrate-co-hydroxyvalerate) Microspheres for the Encapsulation and Controlled Release of Heparin
US20130214441A1 (en) Secondary aqueous dispersions of biodegradable diblock copolyesters, processes for preparation thereof and use thereof
CN117430861A (en) Polylactic acid microsphere with double-sided structure and preparation method and application thereof
KR20140094119A (en) A process for the preparation of polymeric microparticles
Hu et al. Notice of Retraction: An Alternative Sustained Release Microsphere of Silk Fibroin-Chitosan: Preparation, Pharmaceutical Characteristics and Pharmacokinetic Profiles
Halim et al. Development of Porous PCL Based Microcarrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018008405

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018008405

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180426

122 Ep: pct application non-entry in european phase

Ref document number: 16860146

Country of ref document: EP

Kind code of ref document: A1