WO2014129773A1 - Method for preparing polymer microparticles by spray process - Google Patents

Method for preparing polymer microparticles by spray process Download PDF

Info

Publication number
WO2014129773A1
WO2014129773A1 PCT/KR2014/001254 KR2014001254W WO2014129773A1 WO 2014129773 A1 WO2014129773 A1 WO 2014129773A1 KR 2014001254 W KR2014001254 W KR 2014001254W WO 2014129773 A1 WO2014129773 A1 WO 2014129773A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
microparticles
solution
biodegradable
poly
Prior art date
Application number
PCT/KR2014/001254
Other languages
French (fr)
Korean (ko)
Inventor
김근풍
Original Assignee
주식회사 바임
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51391513&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014129773(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 바임 filed Critical 주식회사 바임
Priority to US14/769,494 priority Critical patent/US9850341B2/en
Priority to CN201480009823.9A priority patent/CN105073841B/en
Publication of WO2014129773A1 publication Critical patent/WO2014129773A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a manufacturing method according to the spray process of the polymer microparticles. More specifically, a polymer solution obtained by dissolving a polyester polymer in ethylene carbonate (hereinafter referred to as "EC") as a solvent is sprayed onto a low temperature hydrocarbon or alcohol solution to produce frozen EC / polymer microparticles. It relates to a method for preparing polymer microparticles by dissolving and removing EC in water.
  • EC ethylene carbonate
  • Porous biodegradable polymer scaffolds are widely used as templates for various tissue regeneration.
  • the support requires a porous structure with good interpore connectivity to promote nutrition and oxygen supply for sufficient cell adhesion density, cell proliferation and differentiation.
  • Pore-forming particles are a variety of particles, such as salts, effervescent salts, carbohydrates, hydrocarbon waxes, and is a method of forming pores by selectively dissolving or foaming the pore-forming particles in the polymer / solvent / pore-forming particle mixture.
  • Other methods include emulsification / freeze drying, phase separation, expansion of critical liquid phases, and three-dimensional inkjet printing. (AG Mikos, G. Sarakinos, SM Leite, JP Vacanti, R. Langer, Biomaterials, 14) 1993) 323-330; Z. Ma, C. Gao, Y. Gong, J. Biomed.Mater.Res. 67B (2003) 610-617; A. Park, B. Wu, LG Griffith, J. Biomater.Sci Polym.Ed. 9 (1998) 89-110).
  • the porous polymer support may be useful for bone, cartilage and liver regeneration by inducing cell adhesion and differentiation.
  • these supports are implanted into the body through surgical operations, which is a physical and economic burden on the patient. Therefore, a method of injecting a biodegradable polymer support by injection is developed to minimize patient inconvenience.
  • This is a method of forming a hydrogel by injection of a polymer solution containing cells and then photo-crosslinking or sol-gel development (J. j. Marler, A. Guha, J. Rowley, R. Koka, D. Monney, J. Upton, J. p. Vacanti, Plast.Reconstr. Surg. 105 (2000) 2049-2058; S. He, MJ Yaszemski, AW Yasko, PS Engel, AG Mikos, Biomaterials, 21 (2000) 2389-2394) .
  • hydrogels do not provide an ideal environment for cells that need to adhere to a solid surface, and their mechanical strength is weak, making it difficult to protect the cells enclosed therein.
  • a wide range of natural and synthetic microparticles including Cultispher, a microparticle made of gelatin with a porous structure, have been used in animal cell culture, but they have poor biocompatibility and unsatisfactory mechanical strength. There are disadvantages.
  • microparticles for injection is the Emulsification-Solvent Evaporation Method.
  • the W / O / W dual emulsification method undergoes two emulsification steps, and the porous structure is determined according to the stability of the first emulsification step, W / O emulsion.
  • emulsion is thermodynamically unstable, it is difficult to manufacture because the aqueous phase and the organic phase are separated from each other through a process such as coalescence, fusion, and phase separation (M. Kanouni, HL Rosano). , N. Naouli, Adv.Colloid Interface Sci. 99 (2002) 229-254; AJ Webster, ME Cates, Langmuir, 14 (1998) 2068-2079).
  • fine particles including a W / O / W double emulsification step of forming a W / O emulsion by adding an aqueous solution in which an effervescent salt is dissolved in an organic phase in which an aliphatic polyester polymer is dissolved, and redispersing and emulsifying it in an aqueous solution containing a hydrophilic surfactant.
  • a carrier see Korean Patent No. 801194
  • the particulate carrier has properties such as biodegradability, high porosity, excellent interconnectivity between pores, but has a weak mechanical strength and a difficult mass production process.
  • biodegradable polymer microparticle manufacturing method is to dissolve the biodegradable polymer in DMSO (Dimethyl Sulfoxide) and spray it in a low temperature hydrocarbon solution to freeze the DMSO / polymer solution and then remove the DMSO from the low temperature salt solution
  • DMSO Dimethyl Sulfoxide
  • prepared microparticles have a high porosity, excellent mechanical strength, excellent cell affinity, but has the disadvantage of using only hydrocarbon as a freezing solvent in the injection process, the most important process of the manufacturing process. Hydrocarbons have a low flash point and have a high risk of fire, which makes them difficult to use in mass production. Therefore, development of a manufacturing process that can solve these problems is required.
  • the present inventors have studied to develop a method for overcoming the technical disadvantages of the existing microparticle manufacturing process, and the polymer / EC solution made by dissolving a biodegradable polyester polymer in ethylene carbonate (EC). Because of its high melting point (MP, 37 ° C), it is possible to freeze polymers / EC solutions not only in low temperature hydrocarbon solutions but also in alcoholic solutions, so that EC is dissolved in water, resulting in excellent biocompatibility, biodegradability and porous polymer microparticles. It was found that can be prepared, to complete the present invention.
  • MP high melting point
  • the biodegradable polyester polymer is dissolved in ethylene carbonate (EC), and the obtained polymer / EC solution is a hydrocarbon solution or alcohol (methanol) having a carbon number of 5 to 10 (C 5 to C 10 ) of -20 ° C to 0 ° C. , Ethanol) solution to obtain a frozen polymer / EC microparticles, and put it in an aqueous salt solution to dissolve and remove EC, and wash and remove the remaining EC with water to prepare a biodegradable polymer microparticles.
  • EC ethylene carbonate
  • methanol hydrocarbon solution or alcohol
  • the biodegradable polyester-based polymer is an aliphatic polyester-based polymer, but is not limited thereto.
  • PLA, PGA, PLGA, PCL or mixtures thereof more preferably PLA, PLGA or PCL.
  • These polymers preferably have an average molecular weight of 10,000 to 250,000.
  • the method for preparing biodegradable polymer microparticles of the present invention has the characteristics of easily producing spherical microparticles and of easily controlling the size of microparticles. It is not limited.
  • Biodegradable polyester-based polymer solution in the present invention can be used by variously controlled by dissolving the polymer in EC (Ethylene carbonate) so as to have a concentration of 1% -25% (w / v), prepared through such a concentration control
  • EC Ethylene carbonate
  • the porosity of the biodegradable porous microparticles can be controlled.
  • concentration of the polymer solution is less than 1%, the mechanical strength of the microparticles is weak, which makes them less practical.
  • concentration of the polymer solution is more than 25%, the viscosity is too high.
  • the organic solvent used to dissolve the aliphatic polyester polymer has a high freezing point (Melting Point 37 ° C.) and uses EC (Ethylene carbonate) which is well mixed with water.
  • the hydrocarbon solution is a hydrocarbon having 5 to 10 (C 5 to C 10 ) carbon atoms, for example, Pentane, Hexane, Heptane, which are phase-separated from EC without freezing below zero degrees Celsius.
  • Saturated hydrocarbons such as octane, nonane, decane, petroleum ether, and mixtures thereof, preferably using volatile n-hexane. good. Due to the high volatility of n-hexane, it can finally be easily removed during drying. Hydrocarbons with less than 5 carbon atoms are too volatile and difficult to manufacture, and hydrocarbons having 10 or more carbon atoms are not practical.
  • the temperature of the hydrocarbon solution is preferably below the melting point of the EC for freezing of the EC. More preferably, it is -20 ° C to 0 ° C, most preferably -10 ° C to -5 ° C to facilitate freezing of EC and formation of fine particles.
  • the alcohol solution is an alcohol having 1 to 2 carbon atoms (C 1 to C 2 ), for example, alcohols such as methanol, ethanol, and aqueous solutions thereof, preferably ethanol which is environmentally friendly and nontoxic. And its aqueous solution are preferred.
  • alcohols such as methanol, ethanol, and aqueous solutions thereof, preferably ethanol which is environmentally friendly and nontoxic. And its aqueous solution are preferred.
  • the temperature of the alcohol solution is preferably below the melting point of the EC for freezing of the EC. More preferably, it is -20 ° C to 0 ° C, most preferably -10 ° C to -5 ° C to facilitate freezing of EC and formation of fine particles.
  • Frozen polymer / EC microparticles prepared from low temperature hydrocarbons are added to an aqueous salt solution to dissolve and remove EC and wash with water to obtain polyester polymer microparticles of the present invention.
  • the aqueous salt solution is kept in a freezing state at 0 ° C or less.
  • the aqueous salt solution may use a 20% to 25% sodium chloride (NaCl) solution, it is preferable to use from -20 °C to 0 °C.
  • Removal of the salts after removal of the EC with aqueous salt solution can be carried out by washing with excess water, preferably deionized distilled water (DDW) to remove residual EC and salts.
  • DDW deionized distilled water
  • Biodegradable polymer microparticles can be produced by such a method.
  • the biodegradable polymer microparticles prepared by the present invention had a yield of 80% or more and had a diameter of 30 ⁇ m to 1,000 ⁇ m.
  • the diameter of the biodegradable polymer microparticles of the present invention can be adjusted according to the injection amount and the amount of injection air during the injection of the EC polymer solution, the porosity of the biodegradable polymer microparticles can be controlled by the polymer concentration of the EC polymer solution. .
  • the present invention is excellent in biocompatibility, biodegradability, porosity, etc. so that it can be used as a cell carrier and cell culture medium, and can be injected into a syringe to be used as a cell carrier for tissue regeneration to restore damaged tissues by injecting in vivo. It provides a method for mass production of biodegradable polymer microparticles.
  • Figure 1 is a photograph of the microparticles prepared according to the method of the present invention by electron microscopy.
  • X 700 polymer solution concentration: 5%; injection amount: 1 ml / min; air injection rate: 5 L / min; freezing Solvent: n-Hexane; Freezer Temperature: -10 °C
  • Figure 2 is a photograph observing the microparticles prepared according to the method of the present invention with an electron microscope.
  • Figure 3 is a photograph observing the microparticles prepared according to the method of the present invention with an electron microscope.
  • X 1,500 polymer solution concentration: 5%; injection amount: 1 ml / min; air injection rate: 5 L / min; freezing Solvent: EtOH; freezer temperature: -10 ° C
  • Figure 6 is a photograph observing the microparticles prepared according to the method of the present invention with an electron microscope.
  • X 800 polymer solution concentration: 5%; injection amount: 1 ml / min; air injection rate: 5 L / min; freezing Solvent: 75% aqueous solution of EtOH; freezer temperature: 5 ° C.
  • example 1 is the best mode.
  • Example 2 the biodegradable polymer microparticles were prepared in the same manner as in the above method 1 except that the polymer solution dissolved in EC was dropped in -5 ° C. and n-hexane.
  • Example 3 2.5 g of polylactic acid (PLA) having an average molecular weight of 110,000 was dissolved in 50 ml of EC (ethylene carbonate) to prepare a 5% (W / V) polymer solution. The polymer solution was injected into ethanol (Ethanol) cooled to ⁇ 10 ° C. under the conditions of 1 ml / min injection amount and 5 L / min amount of injection air. At this time, the injected polymer solution is frozen in a round shape in low temperature ethanol.
  • PVA polylactic acid
  • EC ethylene carbonate
  • Obtained frozen microparticles were washed with 500 ml distilled water to remove residual EC and then lyophilized to complete the preparation of the biodegradable polymer microparticles of the present invention.
  • Example 4 the biodegradable polymer microparticles were prepared in the same manner as in the above method 3 except that the polymer solution dissolved in EC was dropped in -5 ° C ethanol.
  • Example 5 the biodegradable polymer microparticles were prepared in the same manner as in the above method 3 except that the polymer solution dissolved in EC was dropped in 75% ethanol aqueous solution at -10 ° C.
  • Example 6 the biodegradable polymer microparticles were prepared in the same manner as in the above method 3 except that the polymer solution dissolved in EC was dropped in an aqueous solution of 75% ethanol at 5 ° C.
  • the shape and production yield of the microparticles were measured. At this time, the shape of the microparticles was measured by taking an electron microscope photograph, and the production yield was calculated by measuring the amount of the finally obtained microparticles relative to the amount of the injected polymer.
  • spherical microparticles were prepared in the frozen solvent of the EC polymer solution in n-hexane, and the rounded solvent was prepared in the ethanol and its aqueous solution.
  • the shape of the microparticles prepared according to the method of the present invention was a size suitable for administration in the body, and in particular, the microparticles prepared in ethanol and its aqueous solution were prepared in a round-shaped cell to which cells are more adhered to, and thus the cell transporter for tissue regeneration. It was judged that it could be used more usefully.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a method for preparing polymer microparticles by a spray process, wherein a polymer solution obtained by dissolving a polyester-based polymer in ethylene carbonate (hereinafter, referred to as "EC"), which is a solvent, is sprayed at a low temperature hydrocarbon or alcohol solution, thereby preparing frozen EC/polymer microparticles, the frozen EC/polymer microparticles are dissolved in a salt aqueous solution, thereby dissolving and removing EC, and the residual EC in water is removed by washing.

Description

고분자 미세입자의 스프레이공정에 따른 제조방법Manufacturing method according to spray process of polymer fine particles
본 발명은 고분자 미세입자의 스프레이 공정에 따른 제조방법에 관한 것이다. 보다 상세하게는 폴리에스테르계 고분자를 용매인 에틸렌 카보네이트(Ethylene carbonate)(이하 "EC"라 한다)에 용해시켜 얻은 고분자용액을 저온의 탄화수소 혹은 알코올용액에 분사시켜 냉동된 EC/고분자 미세입자를 만든 후 이를 물에서 EC를 용해시켜 제거함으로써 고분자 미세입자를 제조하는 방법에 관한 것이다.The present invention relates to a manufacturing method according to the spray process of the polymer microparticles. More specifically, a polymer solution obtained by dissolving a polyester polymer in ethylene carbonate (hereinafter referred to as "EC") as a solvent is sprayed onto a low temperature hydrocarbon or alcohol solution to produce frozen EC / polymer microparticles. It relates to a method for preparing polymer microparticles by dissolving and removing EC in water.
다공성 생분해성 고분자 지지체(Scaffold)는 다양한 조직재생을 위한 주형으로 널리 이용되고 있다. 지지체는 충분한 세포 접착밀도,세포증식 및 분화를 위한 영양과 산소공급을 촉진시키기 위해 공극간 연결이 우수한 다공성 구조가 요구된다.Porous biodegradable polymer scaffolds are widely used as templates for various tissue regeneration. The support requires a porous structure with good interpore connectivity to promote nutrition and oxygen supply for sufficient cell adhesion density, cell proliferation and differentiation.
다공성 생분해성 고분자 지지체를 제조하는 방법은 다양하며, 그 중에서 공극형성입자 침출법(porogen leaching)이 가장 널리 이용되고 있다. 공극형성입자는 염, 발포성염, 탄수화물, 탄화수소 왁스등 다양한 입자가 활용되며, 고분자/용매/공극형성입자 혼합물에서 공극형성입자를 선택적으로 녹여 내거나 발포시켜 공극을 형성 시키는 방법이다. 그 외 유화/동결건조, 상분리법, 임계 액체상의 팽창, 3차원 잉크제트 프린팅 등의 방법도 이용되고 있다.(A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, R. Langer, Biomaterials, 14 (1993) 323-330; Z. Ma, C. Gao, Y. Gong, J. Biomed. Mater. Res. 67B (2003) 610-617; A. Park, B. Wu, L. G. Griffith, J. Biomater. Sci. Polym. Ed. 9 (1998) 89-110).There are various methods of preparing a porous biodegradable polymer support, among which porogen leaching is most widely used. Pore-forming particles are a variety of particles, such as salts, effervescent salts, carbohydrates, hydrocarbon waxes, and is a method of forming pores by selectively dissolving or foaming the pore-forming particles in the polymer / solvent / pore-forming particle mixture. Other methods include emulsification / freeze drying, phase separation, expansion of critical liquid phases, and three-dimensional inkjet printing. (AG Mikos, G. Sarakinos, SM Leite, JP Vacanti, R. Langer, Biomaterials, 14) 1993) 323-330; Z. Ma, C. Gao, Y. Gong, J. Biomed.Mater.Res. 67B (2003) 610-617; A. Park, B. Wu, LG Griffith, J. Biomater.Sci Polym.Ed. 9 (1998) 89-110).
이러한 다공성 고분자 지지체는 세포의 접착과 분화를 유도하여 뼈, 연골, 간 재생에 유용하게 사용할 수 있다. 하지만 이런 지지체는 외과적 수술을 통해 체내에 이식되는데, 이는 환자에 신체적, 경제적 부담이 된다. 따라서 환자의 불편을 최소화하기 위해 생분해성 고분자 지지체를 주사형으로 주입하는 방법이 개발되고 있다. 이는 세포를 포함한 고분자 액을 주사한 후 광-가교 하거나 졸-겔 현상에 의해 하이드로 겔을 형성시키는 방법이다(J. j. Marler, A. Guha, J. Rowley, R. Koka, D. Monney, J. Upton, J. p. Vacanti, Plast. Reconstr. Surg. 105 (2000) 2049-2058; S. He, M. J. Yaszemski, A. W. Yasko, P. S. Engel, A. G. Mikos, Biomaterials, 21 (2000) 2389-2394).The porous polymer support may be useful for bone, cartilage and liver regeneration by inducing cell adhesion and differentiation. However, these supports are implanted into the body through surgical operations, which is a physical and economic burden on the patient. Therefore, a method of injecting a biodegradable polymer support by injection is developed to minimize patient inconvenience. This is a method of forming a hydrogel by injection of a polymer solution containing cells and then photo-crosslinking or sol-gel development (J. j. Marler, A. Guha, J. Rowley, R. Koka, D. Monney, J. Upton, J. p. Vacanti, Plast.Reconstr. Surg. 105 (2000) 2049-2058; S. He, MJ Yaszemski, AW Yasko, PS Engel, AG Mikos, Biomaterials, 21 (2000) 2389-2394) .
그러나 이런 하이드로겔은 고체 표면에 부착이 필요한 세포에는 이상적인 환경을 제공하지 못하며, 기계적 강도가 약하여 내부에 봉입된 세포를 보호하기 힘들다. 이러한 단점을 해결하기 위해 다공성 구조를 갖는 젤라틴으로 제조된 미세입자인 컬티스퍼(Cultispher)를 포함한 광범위한 천연 및 합성 미세입자가 동물세포 배양에 이용되고 있으나 생체적합성이 떨어지고, 기계적 강도가 만족스럽지 못한 단점이 있다.However, these hydrogels do not provide an ideal environment for cells that need to adhere to a solid surface, and their mechanical strength is weak, making it difficult to protect the cells enclosed therein. In order to solve this drawback, a wide range of natural and synthetic microparticles, including Cultispher, a microparticle made of gelatin with a porous structure, have been used in animal cell culture, but they have poor biocompatibility and unsatisfactory mechanical strength. There are disadvantages.
현재 사용되는 주사용 미세입자 제조방법은 유화-용매 증발법(Emulsification-Solvent Evaporation Method)이다. 그 중 W/O/W 이중 유화방법은 두 번의 유화단계를 거치는데 첫 번째 유화단계인 W/O 유화액의 안정성에 따라 다공성 구조가 결정된다. 유화액은 열역학적으로 불안정한 상태이기 때문에 뭉침(Coalescence), 융합(Fusion), 상분리(Creaming) 등의 과정을 거쳐 수상과 유기상이 서로 분리되려고 하기 때문에 제조가 어려운 단점이 있다.(M. Kanouni, H. L. Rosano, N. Naouli, Adv. Colloid Interface Sci. 99 (2002) 229-254; A. J. Webster, M. E. Cates, Langmuir, 14 (1998) 2068-2079).Currently used microparticles for injection is the Emulsification-Solvent Evaporation Method. Among them, the W / O / W dual emulsification method undergoes two emulsification steps, and the porous structure is determined according to the stability of the first emulsification step, W / O emulsion. Since emulsion is thermodynamically unstable, it is difficult to manufacture because the aqueous phase and the organic phase are separated from each other through a process such as coalescence, fusion, and phase separation (M. Kanouni, HL Rosano). , N. Naouli, Adv.Colloid Interface Sci. 99 (2002) 229-254; AJ Webster, ME Cates, Langmuir, 14 (1998) 2068-2079).
또한 지방족 폴리에스테르 고분자를 녹인 유기상에 발포성 염을 녹인 수용액을 첨가하여 W/O 유화액을 형성하고, 친수성 계면활성제를 포함하는 수용액에 재분산, 유화시키는 W/O/W 이중 유화단계를 포함하는 미립 담체 제조방법이 있다(대한민국 특허 제801194호 참조). 상기 미립담체는 생분해성, 높은 공극율, 공극간 우수한 상호 연결성 등의 특성을 가지고 있으나 기계적 강도가 약하고, 양산공정이 어려운 문제점을 가지고 있다.In addition, fine particles including a W / O / W double emulsification step of forming a W / O emulsion by adding an aqueous solution in which an effervescent salt is dissolved in an organic phase in which an aliphatic polyester polymer is dissolved, and redispersing and emulsifying it in an aqueous solution containing a hydrophilic surfactant. There is a method for preparing a carrier (see Korean Patent No. 801194). The particulate carrier has properties such as biodegradability, high porosity, excellent interconnectivity between pores, but has a weak mechanical strength and a difficult mass production process.
최근에 개발된 생분해성 고분자 미세입자 제조방법으로는 생분해성 고분자를 DMSO(Dimethyl Sulfoxide)에 용해시킨 후 저온의 탄화수소 용액에 분사시켜 DMSO/고분자용액을 냉동시킨 후 저온의 염 수용액에서 DMSO를 제거함으로서 생분해성 고분자 미세입자를 제조하는 방법이다(대한민국 특허 제1105292호 참조). 이와 같이 제조된 미세입자는 높은 공극율, 우수한 기계적 강도를 가지고 있으며, 세포 친화력도 우수하지만 제조공정 중 가장 중요한 공정인 분사공정에서 냉동용매로 탄화수소만 사용해야하는 단점이 있다. 탄화수소는 발화점이 낮아 화재의 위험성이 매우 높아 양산공정에서의 사용이 용이하지 않은 단점이 있다. 따라서 이러한 문제를 해결할 수 있는 제조공정 개발이 요구되고 있다. Recently developed biodegradable polymer microparticle manufacturing method is to dissolve the biodegradable polymer in DMSO (Dimethyl Sulfoxide) and spray it in a low temperature hydrocarbon solution to freeze the DMSO / polymer solution and then remove the DMSO from the low temperature salt solution It is a method for producing biodegradable polymer microparticles (see Korean Patent No. 1105292). Thus prepared microparticles have a high porosity, excellent mechanical strength, excellent cell affinity, but has the disadvantage of using only hydrocarbon as a freezing solvent in the injection process, the most important process of the manufacturing process. Hydrocarbons have a low flash point and have a high risk of fire, which makes them difficult to use in mass production. Therefore, development of a manufacturing process that can solve these problems is required.
따라서, 생체적합성, 생분해성, 다공성, 기계적 강도, 세포 친화력 등이 우수한 고분자 미세입자를 보다 위험성이 낮고, 환경 친화적인 양산공정의 개발이 요구되어 왔다.Therefore, there has been a demand for development of a low-risk, environmentally friendly mass production process for polymer microparticles having excellent biocompatibility, biodegradability, porosity, mechanical strength, cell affinity, and the like.
이에 본 발명자는 기존의 미세입자 제조공정이 가지는 기술적 단점을 극복할 수 있는 방법을 개발하기 위해 연구하던 중 생분해성 폴리에스테르계 고분자를 에틸렌 카보네이트(Ethylene carbonate; EC)에 용해시켜 만들어진 고분자/EC용액은 EC의 높은 융점 (Melting Point; mp, 37 ℃) 때문에 저온의 탄화수소 용액은 물론이고 알코올 용액에서도 고분자/EC용액을 냉동시킬 수 있어 EC를 물로 용해시킴으로서 우수한 생체적합성, 생분해성, 다공성 고분자 미세입자를 제조할 수 있음을 알아내어, 본 발명을 완성하였다.Accordingly, the present inventors have studied to develop a method for overcoming the technical disadvantages of the existing microparticle manufacturing process, and the polymer / EC solution made by dissolving a biodegradable polyester polymer in ethylene carbonate (EC). Because of its high melting point (MP, 37 ° C), it is possible to freeze polymers / EC solutions not only in low temperature hydrocarbon solutions but also in alcoholic solutions, so that EC is dissolved in water, resulting in excellent biocompatibility, biodegradability and porous polymer microparticles. It was found that can be prepared, to complete the present invention.
상기와 같은 목적을 달성하기 위하여,In order to achieve the above object,
생분해성 폴리에스터계 고분자를 에틸렌 카보네이트(EC; Ethylene carbonate)에 용해시키고, 얻은 고분자/EC용액을 -20 ℃ 내지 0 ℃의 탄소수 5 내지 10(C5 내지 C10)의 탄화수소 용액 혹은 알코올(메탄올, 에탄올)용액에 분사시켜 냉동된 고분자/EC 미세입자를 얻고, 이를 염 수용액에 넣어 EC를 용해, 제거하고, 물로 잔류 EC를 세척, 제거하여, 생분해성 고분자 미세입자를 제조한다.The biodegradable polyester polymer is dissolved in ethylene carbonate (EC), and the obtained polymer / EC solution is a hydrocarbon solution or alcohol (methanol) having a carbon number of 5 to 10 (C 5 to C 10 ) of -20 ° C to 0 ° C. , Ethanol) solution to obtain a frozen polymer / EC microparticles, and put it in an aqueous salt solution to dissolve and remove EC, and wash and remove the remaining EC with water to prepare a biodegradable polymer microparticles.
이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
먼저, 생분해성 폴리에스터계 고분자의 에틸렌 카보네이트(Ethylene carbonate; EC) 용액에 대하여 설명한다.First, an ethylene carbonate (EC) solution of a biodegradable polyester polymer is described.
본 발명에서 생분해성 폴리에스테르계 고분자는 지방족 폴리에스테르계 고분자로서, 이에 한정되지 않으나, 폴리락트산(Polylactic acid: PLA), 폴리글리콜산(Polyglycolic acid: PGA), 폴리(D,L-락트산-co-글리콜산)(Poly(D,L-lactic-co-glycolic acid), PLGA), 폴리카프로락톤(PCL), 폴리(발레로락톤), 폴리(하이드록시부티레이트), 폴리(하이드록시 발러레이트) 또는 이들의 유도체일 수 있으며, 단독 또는 2 성분 이상의 혼합물일 수 있다. 바람직하게는 PLA, PGA, PLGA, PCL 또는 이들의 혼합물이며, 보다 바람직하게는 PLA, PLGA 또는 PCL이다. 이들은 고분자로서 평균 분자량이 10,000 내지 250,000인 것이 바람직하다. 하지만 본 발명의 생분해성 고분자 미세입자의 제조방법은 구형의 미세입자를 쉽게 제조할 수 있는 특징과 미세입자의 크기를 쉽게 제어할 수 있는 특징을 갖고 있으므로, 평균분자량에 의해 미세입자 크기의 제어가 제한되지 않는다.In the present invention, the biodegradable polyester-based polymer is an aliphatic polyester-based polymer, but is not limited thereto. Polylactic acid (PLA), polyglycolic acid (PGA), poly (D, L-lactic acid-co Poly (D, L-lactic-co-glycolic acid, PLGA), polycaprolactone (PCL), poly (valerolactone), poly (hydroxybutyrate), poly (hydroxy valerate) Or derivatives thereof, and may be a single or a mixture of two or more components. Preferably PLA, PGA, PLGA, PCL or mixtures thereof, more preferably PLA, PLGA or PCL. These polymers preferably have an average molecular weight of 10,000 to 250,000. However, the method for preparing biodegradable polymer microparticles of the present invention has the characteristics of easily producing spherical microparticles and of easily controlling the size of microparticles. It is not limited.
본 발명에서 생분해성 폴리에스테르계 고분자 용액은 해당 고분자를 1 %-25 %(w/v)의 농도가 되도록 EC(Ethylene carbonate)에 녹여 다양하게 조절하여 사용할 수 있으며, 이러한 농도 조절을 통해 제조되는 생분해성 다공성 미세입자의 공극율을 조절할 수 있다. 고분자 용액의 농도가 1 % 미만이면 미세입자의 기계적 강도가 약해 실용성이 떨어지고, 25 % 초과가 되면 점도가 너무 높아 섬유상(fiber)이 형성되는 등 효율성이 떨어진다.Biodegradable polyester-based polymer solution in the present invention can be used by variously controlled by dissolving the polymer in EC (Ethylene carbonate) so as to have a concentration of 1% -25% (w / v), prepared through such a concentration control The porosity of the biodegradable porous microparticles can be controlled. When the concentration of the polymer solution is less than 1%, the mechanical strength of the microparticles is weak, which makes them less practical. When the concentration of the polymer solution is more than 25%, the viscosity is too high.
본 발명에서 지방족 폴리에스테르계 고분자를 용해시키기 위해 사용되는 유기용매는 어는점이 높고(Melting Point 37 ℃), 물에 잘 섞이는 EC(Ethylene carbonate)를 사용한다.In the present invention, the organic solvent used to dissolve the aliphatic polyester polymer has a high freezing point (Melting Point 37 ° C.) and uses EC (Ethylene carbonate) which is well mixed with water.
본 발명에서 탄화수소 용액은 섭씨 영하 0 ℃ 이하에서 얼지 않고 EC와 상분리 되는 탄소수 5 내지 10(C5 내지 C10)의 탄화수소, 예를 들어, 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane), 옥탄(Octane), 노난(Nonane), 데칸(Decane), 석유에테르(Petrolum ether)와 같은 포화 탄화수소 및 이들의 혼합물이며, 바람직하게는 휘발성이 좋은 n-헥산(n-hexane)을 사용하는 것이 좋다. n-헥산의 높은 휘발성으로, 최종적으로 건조과정에서 쉽게 제거될 수 있다. 탄소수 5 미만의 탄화수소는 휘발성이 너무 커서 제조상 어려움이 있고, 탄소수 10 이상의 탄화수소는 실용성이 떨어진다. 탄화수소 용액의 온도는 EC의 동결을 위하여 EC의 녹는점 미만의 온도가 바람직하다. 더 바람직하게는 EC의 동결 및 미세입자의 형성을 원활히 하기 위하여 -20 ℃ 내지 0 ℃, 가장 바람직하게는 -10 ℃ 내지 -5 ℃인 것이 좋다.In the present invention, the hydrocarbon solution is a hydrocarbon having 5 to 10 (C 5 to C 10 ) carbon atoms, for example, Pentane, Hexane, Heptane, which are phase-separated from EC without freezing below zero degrees Celsius. , Saturated hydrocarbons such as octane, nonane, decane, petroleum ether, and mixtures thereof, preferably using volatile n-hexane. good. Due to the high volatility of n-hexane, it can finally be easily removed during drying. Hydrocarbons with less than 5 carbon atoms are too volatile and difficult to manufacture, and hydrocarbons having 10 or more carbon atoms are not practical. The temperature of the hydrocarbon solution is preferably below the melting point of the EC for freezing of the EC. More preferably, it is -20 ° C to 0 ° C, most preferably -10 ° C to -5 ° C to facilitate freezing of EC and formation of fine particles.
본 발명에서 알코올 용액은 탄소수 1 내지 2(C1 내지 C2 )의 알코올, 예를 들어 메탄올(Methanol), 에탄올(Ethanol)과 같은 알코올 및 이들의 수용액이며, 바람직하게는 친환경적이고 독성이 없는 에탄올과 그의 수용액을 사용하는 것이 좋다. 고분자/EC용액을 저온의 알코올 용액에 분사하면 일부 EC은 서서히 알코올 용액에 녹아들면서 고분자/EC 냉동 미세입자가 형성되므로 탄소수가 3 이상의 알코올은 고분자를 용해시킬 수 있으므로 사용할 수 없다. In the present invention, the alcohol solution is an alcohol having 1 to 2 carbon atoms (C 1 to C 2 ), for example, alcohols such as methanol, ethanol, and aqueous solutions thereof, preferably ethanol which is environmentally friendly and nontoxic. And its aqueous solution are preferred. When the polymer / EC solution is sprayed on a low temperature alcohol solution, some EC slowly melts in the alcohol solution, and thus the polymer / EC frozen microparticles are formed. Therefore, alcohols having 3 or more carbon atoms cannot dissolve the polymer.
알코올 용액의 온도는 EC의 동결을 위하여 EC의 녹는점 미만의 온도가 바람직하다. 더 바람직하게는 EC의 동결 및 미세입자의 형성을 원활히 하기 위하여 -20 ℃ 내지 0 ℃, 가장 바람직하게는 -10 ℃ 내지 -5 ℃인 것이 좋다. The temperature of the alcohol solution is preferably below the melting point of the EC for freezing of the EC. More preferably, it is -20 ° C to 0 ° C, most preferably -10 ° C to -5 ° C to facilitate freezing of EC and formation of fine particles.
저온의 탄화수소에서 제조된 냉동 고분자/EC 미세입자를 염 수용액에 첨가하여 EC를 용해시켜 제거하고 물로 세척하여, 본 발명의 폴리에스터계 고분자 미세입자를 얻는다.Frozen polymer / EC microparticles prepared from low temperature hydrocarbons are added to an aqueous salt solution to dissolve and remove EC and wash with water to obtain polyester polymer microparticles of the present invention.
저온의 알코올 용액에서 제조된 냉동 고분자/EC 미세입자는 증류수로 세척하여 본 발명의 폴리에스터계 고분자 미세입자를 얻는다.Frozen polymer / EC microparticles prepared in a low temperature alcohol solution are washed with distilled water to obtain the polyester-based polymer microparticles of the present invention.
본 발명에서 염 수용액은 섭씨 0 ℃ 이하에서 얼지 않는 상태로 유지되는 것이 바람직하다. 제조 시 미세입자의 안정성을 위하여 가급적 섭씨 0 ℃ 이하의 용액으로 EC를 제거하는 것이 바람직하므로 5 % 내지 30 % 농도의 NaCl 또는 CaCl2 수용액을 사용하는 것이 바람직하다. 바람직하게는 염 수용액은 20 % 내지 25 % 염화나트륨(NaCl) 용액을 사용할 수 있으며, -20 ℃ 내지 0 ℃로 사용하는 것이 바람직하다. 염 수용액으로 EC를 제거한 후 염의 제거는 과량의 물, 바람직하게는 탈이온증류수(deionized distilled water; D.D.W)을 사용하여 세척하면 잔류 EC 및 염을 제거할 수 있다.In the present invention, it is preferable that the aqueous salt solution is kept in a freezing state at 0 ° C or less. In order to ensure the stability of the microparticles during the preparation, it is preferable to remove the EC with a solution of 0 ° C. or less. Therefore, it is preferable to use an aqueous NaCl or CaCl 2 solution at a concentration of 5% to 30%. Preferably, the aqueous salt solution may use a 20% to 25% sodium chloride (NaCl) solution, it is preferable to use from -20 ℃ to 0 ℃. Removal of the salts after removal of the EC with aqueous salt solution can be carried out by washing with excess water, preferably deionized distilled water (DDW) to remove residual EC and salts.
이와 같은 방법에 의해서 생분해성 고분자 미세입자를 제조할 수 있다. 본 발명에 의해 제조된 생분해성 고분자 미세입자는 수율이 80 % 이상이었고, 30 ㎛ 내지 1,000 ㎛의 직경을 가진다. 본 발명의 생분해성 고분자 미세입자의 직경은 EC 고분자 용액의 분사 시 분사량 및 분사공기의 양에 따라서 조절될 수 있으며, 생분해성 고분자 미세입자의 다공도는 EC 고분자 용액의 고분자 농도에 의해 조절될 수 있다.Biodegradable polymer microparticles can be produced by such a method. The biodegradable polymer microparticles prepared by the present invention had a yield of 80% or more and had a diameter of 30 μm to 1,000 μm. The diameter of the biodegradable polymer microparticles of the present invention can be adjusted according to the injection amount and the amount of injection air during the injection of the EC polymer solution, the porosity of the biodegradable polymer microparticles can be controlled by the polymer concentration of the EC polymer solution. .
따라서 본 발명은 생체적합성, 생분해성, 다공성 등이 우수하여 세포 운반체 및 세포배양체로 사용이 가능하며, 주사기로 주입할 수 있어 생체 내에 주입하여 손상된 조직을 복원시키는 조직재생용 세포 전달체로 유용하게 이용할 수 있는 생분해성 고분자 미세입자의 양산화 제조방법을 제공한다.Therefore, the present invention is excellent in biocompatibility, biodegradability, porosity, etc. so that it can be used as a cell carrier and cell culture medium, and can be injected into a syringe to be used as a cell carrier for tissue regeneration to restore damaged tissues by injecting in vivo. It provides a method for mass production of biodegradable polymer microparticles.
도 1은 본 발명의 방법에 따라 제조된 미세입자를 전자현미경으로 관찰한 사진이다.(X 700; 고분자용액 농도 : 5 % ; 분사량 : 1 ml/min ; air 분사속도 : 5 L/min ; 냉동용매 : n-Hexane ; 냉동조 온도 : -10 ℃ )Figure 1 is a photograph of the microparticles prepared according to the method of the present invention by electron microscopy. (X 700; polymer solution concentration: 5%; injection amount: 1 ml / min; air injection rate: 5 L / min; freezing Solvent: n-Hexane; Freezer Temperature: -10 ℃)
도 2는 본 발명의 방법에 따라 제조된 미세입자를 전자현미경으로 관찰한 사진이다.(X 1,000; 고분자용액 농도 : 5 % ; 분사량 : 1 ml/min ; air 분사속도 : 5 L/min ; 냉동용매 : n-Hexane ; 냉동조 온도 : 0 ℃)Figure 2 is a photograph observing the microparticles prepared according to the method of the present invention with an electron microscope. (X 1,000; polymer solution concentration: 5%; injection amount: 1 ml / min; air injection rate: 5 L / min; freezing Solvent: n-Hexane; Freezer Temperature: 0 ℃)
도 3은 본 발명의 방법에 따라 제조된 미세입자를 전자현미경으로 관찰한 사진이다.(X 1,500; 고분자용액 농도 : 5 % ; 분사량 : 1 ml/min ; air 분사속도 : 5 L/min ; 냉동용매 : EtOH ; 냉동조 온도 : -10 ℃)Figure 3 is a photograph observing the microparticles prepared according to the method of the present invention with an electron microscope. (X 1,500; polymer solution concentration: 5%; injection amount: 1 ml / min; air injection rate: 5 L / min; freezing Solvent: EtOH; freezer temperature: -10 ° C)
도 4는 본 발명의 방법에 따라 제조된 미세입자를 전자현미경으로 관찰한 사진이다.(X 500; 고분자용액 농도 : 5 % ; 분사량 : 1 ml/min ; air 분사속도 : 5 L/min ; 냉동용매 : EtOH ; 냉동조 온도 : -5 ℃)Figure 4 is a photograph observing the microparticles prepared according to the method of the present invention with an electron microscope. (X 500; polymer solution concentration: 5%; injection amount: 1 ml / min; air injection rate: 5 L / min; freezing Solvent: EtOH; freezer temperature: -5 ° C)
도 5는 본 발명의 방법에 따라 제조된 미세입자를 전자현미경으로 관찰한 사진이다.(X 700; 고분자용액 농도 : 5 % ; 분사량 : 1 ml/min ; air 분사속도 : 5 L/min ; 냉동용매 : 75 % EtOH 수용액 ; 냉동조 온도 : -5 ℃)5 is a photograph observing the microparticles prepared according to the method of the present invention by an electron microscope. (X 700; polymer solution concentration: 5%; injection amount: 1 ml / min; air injection rate: 5 L / min; freezing Solvent: 75% aqueous solution of EtOH; freezer temperature: -5 ° C)
도 6은 본 발명의 방법에 따라 제조된 미세입자를 전자현미경으로 관찰한 사진이다.(X 800; 고분자용액 농도 : 5 % ; 분사량 : 1 ml/min ; air 분사속도 : 5 L/min ; 냉동용매 : 75 % EtOH 수용액 ; 냉동조 온도 : 5 ℃)Figure 6 is a photograph observing the microparticles prepared according to the method of the present invention with an electron microscope. (X 800; polymer solution concentration: 5%; injection amount: 1 ml / min; air injection rate: 5 L / min; freezing Solvent: 75% aqueous solution of EtOH; freezer temperature: 5 ° C.)
아래 기재된 실시예 중 실시예 1이 최선의 형태이다.Of the examples described below, example 1 is the best mode.
이하, 본 발명을 실시예를 들어 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
실시예 1 ~ 6Examples 1-6
실시예 1. 평균분자량이 110,000인 폴리락트산(PLA) 2.5 g을 50 ml EC(Ethylene carbonate)에 녹여서 5 %(W/V) 고분자 용액을 제조하였다. -10 ℃로 냉각된 n-헥산(n-hexane)에 상기 고분자용액을 분사량 1 ml/min, 분사 공기의 양 5 L/min의 조건으로 분사하였다. 이때, 분사된 고분자 용액은 저온의 n-헥산에서 구형으로 냉동된다. Example 1 . 2.5 g of polylactic acid (PLA) having an average molecular weight of 110,000 was dissolved in 50 ml of EC (ethylene carbonate) to prepare a 5% (W / V) polymer solution. The polymer solution was injected into n-hexane cooled to −10 ° C. under the conditions of 1 ml / min injection amount and 5 L / min amount of injection air. At this time, the injected polymer solution is frozen in spherical form at low temperature n-hexane.
냉동된 미세입자를 수득하여 이를 -10 ℃로 냉각된 25 %(w/v) NaCl 수용액 100 ml에서 48 시간 동안 방치하면서 EC성분을 용해시킨 후, 여과하여 EC가 제거된 고분자 미세입자를 얻는다. 이를 다시 500 ml 증류수로 세척하여 잔류 EC를 제거한 다음 동결 건조하여 본 발명의 생분해성 고분자 미세입자 제조를 완성하였다. Obtaining the frozen microparticles to dissolve the EC component in 100 ml of 25% (w / v) NaCl aqueous solution cooled to -10 ℃ for 48 hours, and then filtered to obtain the polymer microparticles from which EC is removed. This was again washed with 500 ml distilled water to remove residual EC and then lyophilized to complete the biodegradable polymer microparticles of the present invention.
실시예 2. 이와 더불어 EC에 용해시킨 고분자 용액을 -5 ℃, n-헥산에 떨어뜨린 것을 제외하고 상기 1의 방법과 같이 수행하여 생분해성 고분자 미세입자를 제조하였다. Example 2 . In addition, the biodegradable polymer microparticles were prepared in the same manner as in the above method 1 except that the polymer solution dissolved in EC was dropped in -5 ° C. and n-hexane.
실시예 3. 평균분자량이 110,000인 폴리락트산(PLA) 2.5 g을 50 ml EC(Ethylene carbonate)에 녹여서 5 %(W/V) 고분자 용액을 제조하였다. -10 ℃로 냉각된 에탄올(Ethanol)에 상기 고분자용액을 분사량 1 ml/min, 분사 공기의 양 5 L/min의 조건으로 분사하였다. 이때, 분사된 고분자 용액은 저온의 에탄올에서 둥근凹형으로 냉동된다. Example 3 . 2.5 g of polylactic acid (PLA) having an average molecular weight of 110,000 was dissolved in 50 ml of EC (ethylene carbonate) to prepare a 5% (W / V) polymer solution. The polymer solution was injected into ethanol (Ethanol) cooled to −10 ° C. under the conditions of 1 ml / min injection amount and 5 L / min amount of injection air. At this time, the injected polymer solution is frozen in a round shape in low temperature ethanol.
냉동된 미세입자를 수득하여 이를 500 ml 증류수로 세척하여 잔류 EC를 제거한 다음 동결 건조하여 본 발명의 생분해성 고분자 미세입자 제조를 완성하였다.Obtained frozen microparticles were washed with 500 ml distilled water to remove residual EC and then lyophilized to complete the preparation of the biodegradable polymer microparticles of the present invention.
실시예 4. 이와 더불어 EC에 용해시킨 고분자 용액을 -5 ℃ 에탄올에 떨어뜨린 것을 제외하고 상기 3의 방법과 같이 수행하여 생분해성 고분자 미세입자를 제조하였다. Example 4 . In addition, the biodegradable polymer microparticles were prepared in the same manner as in the above method 3 except that the polymer solution dissolved in EC was dropped in -5 ° C ethanol.
실시예 5. 또한 EC에 용해시킨 고분자 용액을 -10 ℃ 75 % 에탄올 수용액에 떨어뜨린 것을 제외하고 상기 3의 방법과 같이 수행하여 생분해성 고분자 미세입자를 제조하였다. Example 5 . In addition, the biodegradable polymer microparticles were prepared in the same manner as in the above method 3 except that the polymer solution dissolved in EC was dropped in 75% ethanol aqueous solution at -10 ° C.
실시예 6. 또한 EC에 용해시킨 고분자 용액을 5 ℃ 75 % 에탄올 수용액에 떨어뜨린 것을 제외하고 상기 3의 방법과 같이 수행하여 생분해성 고분자 미세입자를 제조하였다. Example 6 In addition, the biodegradable polymer microparticles were prepared in the same manner as in the above method 3 except that the polymer solution dissolved in EC was dropped in an aqueous solution of 75% ethanol at 5 ° C.
실험예Experimental Example
상기 실시예 1 ~ 6에서 제조한 각각의 생분해성 고분자 미세입자의 특성을 확인하기 위하여 제조된 생분해성 고분자 미세입자를 대상으로 미세입자의 형태 및 제조수율을 측정 하였다. 이 때, 미세입자의 형태는 전자현미경 사진을 촬영하여 측정하였고, 제조수율은 투입된 고분자의 양 대비 최종적으로 수득된 미세입자의 양을 측정하여 계산하였다. In order to confirm the properties of the biodegradable polymer microparticles prepared in Examples 1 to 6, the shape and production yield of the microparticles were measured. At this time, the shape of the microparticles was measured by taking an electron microscope photograph, and the production yield was calculated by measuring the amount of the finally obtained microparticles relative to the amount of the injected polymer.
그 결과, 도 1 내지 6 및 하기 표 1에서 보듯이, EC 고분자용액의 냉동 용매가 n-헥산에서는 구형의 미세입자가 제조되었고, 냉동 용매가 에탄올 및 그의 수용액에서는 둥근凹형으로 제조되었다. 본 발명의 제조방법에 따라 제조된 미세입자의 형태는 체내에 투여하기 적합한 크기이었으며, 특히 에탄올 및 그의 수용액에서 제조된 미세입자는 세포가 더욱 잘 부착되는 둥근凹형으로 제조되어 조직재생용 세포 전달체로 더욱 유용하게 이용될 수 있을 것으로 판단되었다. As a result, as shown in Figs. 1 to 6 and Table 1, spherical microparticles were prepared in the frozen solvent of the EC polymer solution in n-hexane, and the rounded solvent was prepared in the ethanol and its aqueous solution. The shape of the microparticles prepared according to the method of the present invention was a size suitable for administration in the body, and in particular, the microparticles prepared in ethanol and its aqueous solution were prepared in a round-shaped cell to which cells are more adhered to, and thus the cell transporter for tissue regeneration. It was judged that it could be used more usefully.
표 1
제조조건 ; 5 % PLA/EC 용액, 분사속도; 1 ml/min, 공기 분사량 ; 5 L/min 미세입자 형태 미세입자 크기㎛ 수율%
냉동용매 냉동온도, ℃
n-Hexane -10 다공성 100 - 300 ㎛ 81
0 80
EtOH -10 둥근凹형 83
-5 82
75 % EtOH -5 82
5 81
Table 1
Manufacturing condition; 5% PLA / EC solution, spray rate; 1 ml / min, air injection amount; 5 L / min Microparticle morphology Fine particle size μm yield%
Frozen Solvent Refrigeration temperature, ℃
n-Hexane -10 Porosity 100-300 μm 81
0 80
EtOH -10 Round 83
-5 82
75% EtOH -5 82
5 81
본 발명은 구형 및 둥근凹형의 생분해성 고분자 미립 담체를 주사기로 주사할 수 있는 고분자 미세입자 제조 방법을 제공하는 유용한 발명임을 알 수 있다. 특히 둥근凹형의 미세입자는 세포 부착력을 향상시킬 것으로 기대되는바 세포전달체로의 활용을 통한 바이오 산업에 기여할 것으로 판단된다.It can be seen that the present invention is a useful invention for providing a method for preparing polymer microparticles which can inject spherical and round-shaped biodegradable polymer particulate carriers by syringe. Particularly, the round-shaped microparticles are expected to improve cell adhesion, which is expected to contribute to the bio industry through their use as cell carriers.

Claims (5)

  1. 생분해성 폴리에스터계 고분자를 에틸렌 카보네이트(Ethylene carbonate; EC)에 용해시키고, 얻은 고분자/EC용액을 -20 ℃ 내지 0 ℃의 탄소수 5 내지 10(C5 내지 C10)의 탄화수소 용액 혹은 메탄올 또는 에탄올 중에서 선택한 알코올 용액에 분사시켜 냉동된 고분자/EC 미세입자를 얻고, 이를 염 수용액에 넣어 EC를 용해, 제거하고, 물로 잔류 EC를 세척, 제거하여, 생분해성 고분자 미세입자를 제조하는 방법.The biodegradable polyester polymer is dissolved in ethylene carbonate (EC), and the obtained polymer / EC solution is a hydrocarbon solution of 5 to 10 carbon atoms (C 5 to C 10 ) or methanol or ethanol at -20 ° C to 0 ° C. Method of preparing a biodegradable polymer microparticles by spraying the alcohol solution selected from among to obtain a frozen polymer / EC microparticles, put it in a salt aqueous solution to dissolve and remove EC, and wash and remove the residual EC with water.
  2. 제1항에 있어서, 생분해성 폴리에스테르계 고분자는 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리(D,L-락트산-co-글리콜산)(Poly(D,L-lactic-co-glycolic acid), PLGA), 폴리카프로락톤(PCL), 폴리(발레로락톤), 폴리(하이드록시부티레이트) 및 폴리(하이드록시 발러레이트) 중에서 선택된 고분자로서 중량 평균분자량이 10,000 내지 250,000인, 생분해성 고분자 미세입자의 제조방법.The method of claim 1, wherein the biodegradable polyester-based polymer is polylactic acid (PLA), polyglycolic acid (PGA), poly (D, L- lactic acid-co-glycolic acid) (Poly (D, L-lactic-co- biodegradable polymer having a weight average molecular weight of 10,000 to 250,000 selected from glycolic acid, PLGA), polycaprolactone (PCL), poly (valerolactone), poly (hydroxybutyrate) and poly (hydroxy valerate) Method for producing polymer microparticles.
  3. 제1항에 있어서, 생분해성 폴리에스테르계 고분자를 1 내지 25 %(w/v)가 되도록 에틸렌 카보네이트(EC)에 용해시키는, 생분해성 고분자 미세입자의 제조방법.The method for producing biodegradable polymer microparticles according to claim 1, wherein the biodegradable polyester polymer is dissolved in ethylene carbonate (EC) so as to be 1 to 25% (w / v).
  4. 제1항에 있어서, 상기 탄화수소(hydrocarbon)는 펜탄(pentane), 헥산(hexane), 헵탄(heptane), 옥탄(octane), 노난(nonane), 데칸(decane) 및 석유에테르(petroleum ether)로 이루어진 군에서 선택된, 생분해성 고분자 미세입자의 제조방법.According to claim 1, wherein the hydrocarbon (hydrocarbon) is made of pentane (hexane), hexane (hexane), heptane (heptane), octane, nonane (nonane), decane (decane) and petroleum ether (petroleum ether) Method for producing biodegradable polymer microparticles selected from the group.
  5. 제1항에 있어서, 상기 염 수용액은 5 내지 30 %(w/v)의 NaCl 또는 CaCl2 수용액인, 생분해성 고분자 미세입자의 제조방법.The method of claim 1, wherein the aqueous salt solution is 5 to 30% (w / v) of NaCl or CaCl 2 aqueous solution.
PCT/KR2014/001254 2013-02-22 2014-02-17 Method for preparing polymer microparticles by spray process WO2014129773A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/769,494 US9850341B2 (en) 2013-02-22 2014-02-17 Method for preparing polymer microparticles by spray process
CN201480009823.9A CN105073841B (en) 2013-02-22 2014-02-17 The method for preparing high molecular particle based on jeting process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0019086 2013-02-22
KR20130019086A KR101481441B1 (en) 2013-02-22 2013-02-22 A process for the preparation of polylactic acid microparticles by a spray method

Publications (1)

Publication Number Publication Date
WO2014129773A1 true WO2014129773A1 (en) 2014-08-28

Family

ID=51391513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001254 WO2014129773A1 (en) 2013-02-22 2014-02-17 Method for preparing polymer microparticles by spray process

Country Status (4)

Country Link
US (1) US9850341B2 (en)
KR (1) KR101481441B1 (en)
CN (1) CN105073841B (en)
WO (1) WO2014129773A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725279B1 (en) * 2015-10-27 2017-04-10 주식회사 바임 Manufacturing method of polymeric microparticles having network structure
KR101706254B1 (en) * 2015-11-17 2017-02-13 주식회사 동일팜텍 Manufacturing method of polymeric microparticles for restoring or regenerating biological tissue
KR101888071B1 (en) 2017-04-20 2018-08-14 주식회사 효성 Polyketone resin composition having improved processing stability and mechanical properties
JP7296520B2 (en) * 2019-03-19 2023-06-22 株式会社リーゼンバイオテク Biodegradable polymer microparticles containing steroid drug and method for producing the same
IL289678A (en) * 2019-07-10 2022-07-01 Redantea S R L Compositions comprising cyclic alkylene carbonates and polyamides, processes for their preparation and their uses
KR102089560B1 (en) 2019-12-27 2020-03-17 주식회사 울트라브이 Fabrication method of biodegradable polymer for filler, and Fabricaltion method of injection comprising the same
KR102504479B1 (en) * 2020-10-12 2023-03-03 한양대학교 산학협력단 3D artificial tubular-scaffold and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010002589A (en) * 1999-06-16 2001-01-15 김윤 Process for preparing biodegradable microspheres containing physiologically active agents
JP2005002302A (en) * 2003-06-11 2005-01-06 Toho Chem Ind Co Ltd Biodegradable polyester-based resin fine particle and method for producing the same
KR20100131244A (en) * 2009-06-05 2010-12-15 주식회사 리젠 바이오텍 Biodegradable polymeric microparticles and their preparation method
KR20120117585A (en) * 2011-04-15 2012-10-24 서울대학교산학협력단 Manufacturing method for porous hollow microsphere and porous hollow microsphere prepared by the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140741A (en) * 1976-01-14 1979-02-20 Agroferm A.G. Use of cyclic carbonic acid esters as solvents for poly-(β-hydroxybutyric acid)
JP2670680B2 (en) 1988-02-24 1997-10-29 株式会社ビーエムジー Polylactic acid microspheres containing physiologically active substance and method for producing the same
CN1302766C (en) * 2005-06-23 2007-03-07 同济大学 Method for preparing biological degradable polymer drug-carried fine particle by supercritical anti-solvent process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010002589A (en) * 1999-06-16 2001-01-15 김윤 Process for preparing biodegradable microspheres containing physiologically active agents
JP2005002302A (en) * 2003-06-11 2005-01-06 Toho Chem Ind Co Ltd Biodegradable polyester-based resin fine particle and method for producing the same
KR20100131244A (en) * 2009-06-05 2010-12-15 주식회사 리젠 바이오텍 Biodegradable polymeric microparticles and their preparation method
KR20120117585A (en) * 2011-04-15 2012-10-24 서울대학교산학협력단 Manufacturing method for porous hollow microsphere and porous hollow microsphere prepared by the same

Also Published As

Publication number Publication date
CN105073841A (en) 2015-11-18
KR20140105174A (en) 2014-09-01
US9850341B2 (en) 2017-12-26
CN105073841B (en) 2018-07-24
KR101481441B1 (en) 2015-01-13
US20160002393A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
WO2014129773A1 (en) Method for preparing polymer microparticles by spray process
KR101105292B1 (en) Biodegradable polymeric microparticles and their preparation method
PT1651712E (en) Porous material and method of production thereof
KR100673498B1 (en) Preparation method of biodegradable dual pore polymer scaffolds for tissue engineering
KR101181738B1 (en) Process for producing 3-dimentional nanofibrous scaffold having micro-size pores
JPWO2017022750A1 (en) Artificial blood vessel, artificial blood vessel manufacturing method, and porous tissue regeneration substrate manufacturing method
KR100372751B1 (en) Fabrication Method of Porous Biodegradable Polymer Scaffolds for Tissue Engineering
CN103974727A (en) Porous tissue scaffolds
WO2017073963A1 (en) Method for producing polymer microparticles having network structure
KR100801194B1 (en) Porous Biodegradable Microcarriers for Cell Culture and Delivery and Fabrication Method Thereof
CN102432911B (en) Particle with surface topological topography, porous bracket and preparation method thereof
CN100534537C (en) Method for preparing microporous double continuous structure stent material
KR102307897B1 (en) Method for preparing scaffold composition for tissue regeneration using non-sponsored emulsion diffusion method
CN109715225B (en) Porous base material containing heparin and containing bioabsorbable polymer, method for producing same, and artificial blood vessel
JP6803760B2 (en) Method for producing a porous base material made of a bioabsorbable polymer containing heparin
Annabi Porous biomaterials
JP2002146084A (en) Method for producing polymer porous material
KR20140094119A (en) A process for the preparation of polymeric microparticles
KR102256933B1 (en) Porous beads with synthetic polymer-natural polymer hybrid structure, and method for preparing thereof
KR101547603B1 (en) Composition for electrospinning and application thereof
KR20180092650A (en) Method for preparing biodegradable polymeric microparticles having uniform particle distribution using membrane emulsification device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009823.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14769494

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14753765

Country of ref document: EP

Kind code of ref document: A1