WO2017073429A1 - Gas measurement device and gas measurement method - Google Patents

Gas measurement device and gas measurement method Download PDF

Info

Publication number
WO2017073429A1
WO2017073429A1 PCT/JP2016/080966 JP2016080966W WO2017073429A1 WO 2017073429 A1 WO2017073429 A1 WO 2017073429A1 JP 2016080966 W JP2016080966 W JP 2016080966W WO 2017073429 A1 WO2017073429 A1 WO 2017073429A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
concentration
gas cloud
cloud
processing unit
Prior art date
Application number
PCT/JP2016/080966
Other languages
French (fr)
Japanese (ja)
Inventor
土屋 信介
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017073429A1 publication Critical patent/WO2017073429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a gas measuring apparatus and a gas measuring method for measuring a predetermined gas located in a space, such as a leaked gas leaked into the space, and in particular, a gas capable of measuring a gas concentration / thickness product at one measurement point.
  • the present invention relates to a measuring apparatus and a gas measuring method.
  • Patent Document 1 discloses a technique for obtaining a concentration thickness product.
  • P B -P A ⁇ exp ( ⁇ ( ⁇ ) ct) S ( ⁇ ) [B (T back — B, ⁇ ) ⁇ B (T back — A , ⁇ )] d ⁇ (1)
  • P A is the amount of infrared rays are observed by an infrared camera at the location A
  • B (T back_A, ⁇ ) is the background radiation amount of infrared rays at a point A (T back_A is the background temperature at the location A , ⁇ is the wavelength)
  • P B is the amount of infrared radiation observed by the infrared camera at location B
  • B (T back — B, ⁇ ) is the amount of background radiation infrared at location B (T back — B is location B)
  • S ( ⁇ ) is the transmittance of the optical system
  • ct is the gas concentration-thickness product (c is the concentration
  • t is the thickness
  • is the background radiation.
  • ⁇ ( ⁇ ) is the gas
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a gas measuring device and a gas measuring method capable of measuring a gas concentration thickness product at one measurement point.
  • the gas measuring device and the gas measuring method according to the present invention determine the amount of infrared rays at one location in a gas cloud formed of a predetermined gas in a space based on an infrared image, and determine the amount of infrared rays obtained and the gas temperature of the gas cloud. Based on the above, the concentration thickness product of the gas cloud is obtained. Therefore, the gas measuring device and the gas measuring method according to the present invention can measure the gas concentration / thickness product at one measurement point.
  • FIG. 1 is a block diagram illustrating a configuration of a gas measurement device according to an embodiment.
  • Drawing 2 is a mimetic diagram for explaining the use situation of the gas measuring device in an embodiment.
  • FIG. 3 is a diagram showing a characteristic curve of transmittance with respect to wavelength in methane gas as an example.
  • the horizontal axis in FIG. 3 is the wavelength ⁇ expressed in nm, and the vertical axis is the transmittance ⁇ .
  • FIG. 4 is a diagram showing a characteristic curve of spectral radiance with respect to wavelength in methane gas as an example.
  • the horizontal axis in FIG. 4 is the wavelength ⁇ expressed in nm
  • the vertical axis is the spectral radiance expressed in W / m 2 / Sr / nm.
  • the gas measurement device extracts a gas cloud image region of a gas cloud formed with a predetermined gas in a space from an infrared image of a predetermined target region, and the concentration thickness of the extracted gas cloud image region in the gas cloud It is a device that calculates the product. More specifically, the gas measurement device according to the embodiment includes an infrared image acquisition unit that acquires an infrared image of a target region, and a predetermined gas in the space based on the infrared image of the target region acquired by the infrared image acquisition unit.
  • a gas cloud processing unit that extracts a gas cloud image region of the formed gas cloud, a gas cloud temperature acquisition unit that acquires a gas temperature of the gas cloud, and an infrared image acquisition unit that determines the amount of infrared rays at one location in the gas cloud And a concentration / thickness product processing unit that calculates the concentration / thickness product of the gas cloud based on the determined infrared amount and the gas temperature detected by the gas cloud temperature acquisition unit.
  • the target region may be arbitrary, but is preferably a region including a gas storage unit that stores gas such as a gas pipe (pipe) or a gas tank, and in this case, the gas cloud is the gas storage unit. It is a gas cloud formed by the leaked gas of the gas leaking from.
  • the gas measuring device D in the present embodiment includes a control processing unit 4, an interface unit (IF unit) 7, and a storage unit 8, and in the example illustrated in FIG. 1. Furthermore, an infrared imaging unit 1, a visible imaging unit 2, a gas cloud temperature detection unit 3, an input unit 5, and a display unit 6 are provided.
  • the infrared imaging unit 1 is an apparatus that is connected to the control processing unit 4 and images the target region in the infrared under the control of the control processing unit 4 and generates an infrared image of the target region.
  • the infrared imaging unit 1 is, for example, an imaging optical system that forms an infrared optical image (infrared optical image) of a target region on a predetermined imaging surface, and a light receiving surface that is aligned with the imaging surface.
  • An infrared image sensor that converts an infrared optical image of the target region into an electrical signal, and an infrared image processing unit that generates infrared image data by performing image processing on the output of the infrared image sensor.
  • Such as a camera Such as a camera.
  • the infrared imaging unit 1 outputs an infrared image (infrared image data) of the target area to the control processing unit 4.
  • the visible imaging unit 2 is an apparatus that is connected to the control processing unit 4 and that visually captures a target region under the control of the control processing unit 4 and generates a visible image of the target region.
  • the visible imaging unit 2 is, for example, an imaging optical system that forms an optical image of a target region (optical image of visible light) on a predetermined imaging surface, and a light receiving surface that is aligned with the imaging surface, An image sensor that converts an optical image of the target region into an electrical signal, and a visible camera that includes a visible image processing unit that generates visible image data by performing image processing on the output of the image sensor.
  • the visible imaging unit 2 outputs a visible image (visible image data) of the target area to the control processing unit 4.
  • the gas cloud temperature detection unit 3 is an apparatus that is connected to the control processing unit 4 and detects the gas temperature of the gas cloud formed with a predetermined gas in the space under the control of the control processing unit 4.
  • the gas cloud temperature detection unit 3 includes, for example, a temperature sensor that detects an atmospheric temperature (atmospheric temperature).
  • the gas temperature is regarded as the atmospheric temperature.
  • the temperature sensor includes, for example, a thermistor and its peripheral circuit.
  • the gas cloud temperature detection unit 3 outputs the detected gas temperature (atmospheric temperature in the present embodiment) to the control processing unit 4.
  • the input unit 5 is connected to the control processing unit 4, and executes measurement of gas such as input of various commands such as a command for instructing start of a measurement operation for measuring gas and input of an identifier of a target region, for example.
  • Is a device for inputting various necessary data to the gas measuring device D for example, a plurality of input switches, keyboards and mice assigned with predetermined functions.
  • the display unit 6 is connected to the control processing unit 4, and commands and data input from the input unit 5 as well as the gas cloud, concentration thickness product, concentration measured by the gas measuring device D under the control of the control processing unit 4.
  • a device that outputs a risk level described later for example, a display device such as a CRT (Cathode Ray Tube) display, a liquid crystal display, and an organic EL (Electroluminescence) display.
  • CTR Cathode Ray Tube
  • LCD Organic EL
  • a touch panel may be configured from the input unit 5 and the display unit 6.
  • the input unit 5 is a position input device that detects and inputs an operation position such as a resistance film type or a capacitance type.
  • a position input device is provided on the display surface of the display device, one or more input content candidates that can be input to the display device are displayed, and the user touches the display position where the input content to be input is displayed. Then, the position is detected by the position input device, and the display content displayed at the detected position is input to the gas measurement device D as the operation input content of the user.
  • the gas measuring device D that is easy to handle for the user is provided.
  • the IF unit 7 is a circuit that is connected to the control processing unit 4 and inputs / outputs data to / from an external device according to the control of the control processing unit 4.
  • an interface circuit of an RS-232C that is a serial communication system
  • the IF unit 7 is a communication card or the like that communicates by wire or wirelessly, and may communicate with an external device such as a server device via a communication network such as an Ethernet environment (Ethernet is a registered trademark). Is).
  • the storage unit 8 is a circuit that is connected to the control processing unit 4 and stores various predetermined programs and various predetermined data under the control of the control processing unit 4.
  • the various predetermined programs include, for example, a space based on a control program for controlling each part of the gas measuring device D according to the function of each part, or an infrared image of the target area generated by the infrared imaging unit 1.
  • a gas cloud processing program for extracting a gas cloud image region of a gas cloud formed with a predetermined gas, a concentration / thickness product processing program for determining a concentration / thickness product of the gas cloud, and the concentration / thickness product processing program A concentration processing program for determining the concentration of the gas cloud based on the concentration / thickness product of the gas cloud, or an index representing the degree of danger based on the concentration / thickness product of the gas cloud determined by the concentration / thickness product processing program.
  • a risk processing program for determining the risk, a visible image of the target region generated by the visible imaging unit 2, a gas cloud image region extracted by the gas cloud processing program, A display for displaying on the display unit 6 the concentration thickness product of the gas cloud determined by the concentration thickness product processing program, the concentration of the gas cloud determined by the concentration processing program, and the degree of danger determined by the risk processing program.
  • a control processing program such as a processing program is included.
  • the various predetermined data includes data necessary for executing each program.
  • the storage unit 8 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like.
  • the storage unit 8 includes a RAM (Random Access Memory) serving as a working memory of the so-called control processing unit 4 that stores data generated during the execution of the predetermined program.
  • the storage unit 8 may include a hard disk having a relatively large
  • the control processing unit 4 controls each part of the gas measuring device D according to the function of each part, and obtains and displays the concentration thickness product, concentration and risk in a gas cloud formed of a predetermined gas in the space. Circuit.
  • the control processing unit 4 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits.
  • the control processing unit 4 includes a control unit 41, a gas cloud processing unit 42, a concentration / thickness product processing unit 43, a concentration processing unit 44, a risk level processing unit 45, and a display processing unit 46 by executing a control processing program. Functionally configured.
  • the control part 41 is for controlling each part of the gas measuring device D according to the function of each part.
  • the gas cloud processing unit 42 extracts a gas cloud image region of a gas cloud formed with a predetermined gas in the space based on the infrared image of the target region generated by the infrared imaging unit 1.
  • the gas measurement device D can capture the infrared image and the visible image in the target region with the infrared imaging unit 1 and the visible imaging unit 2, respectively.
  • the imaging direction of the infrared imaging unit 1 and the imaging direction of the visible imaging unit 2 are fixedly arranged toward the target area.
  • the infrared imaging unit 1 arranged in this manner images infrared rays (background radiation infrared rays and background radiation infrared rays) radiated (radiated) by individual objects (background objects) OB present in the target region. Then, as shown in FIG.
  • background radiation Infrared rays reach the infrared imaging unit 1 via the gas cloud GS.
  • the gas cloud GS absorbs a part of the background radiation infrared rays at the wavelength of the absorption line unique to the gas, and radiates infrared rays according to the temperature of the gas cloud GS itself.
  • the amount of absorption with respect to the background radiation infrared ray follows the concentration of the gas cloud GS and the thickness of the gas cloud GS.
  • the gas cloud processing unit 42 extracts, for example, a pixel region having a luminance value change amount per unit time that is equal to or less than a predetermined determination threshold value Dth from the infrared image of the target region.
  • a gas cloud image region of the gas cloud GS can be extracted.
  • the concentration / thickness product processing unit 43 obtains the concentration / thickness product of the gas cloud.
  • the concentration / thickness product processing unit 43 obtains an infrared ray amount at one location in the gas cloud based on the infrared image generated by the infrared imaging unit 1, and obtains the obtained infrared ray amount and the gas cloud temperature detection unit 3.
  • the concentration-thickness product of the gas cloud is obtained based on the gas temperature detected in step (b). More specifically, as described above, the concentration / thickness product processing unit 43 absorbs a part of the background radiation infrared ray at the wavelength of the absorption line specific to the gas and emits infrared rays corresponding to the temperature of the gas cloud GS itself.
  • the concentration thickness product of the gas cloud is obtained.
  • B (T back , ⁇ ) is the amount of infrared radiation (background radiation amount) radiated (radiated) in the background, is a function of the background temperature T back and wavelength ⁇
  • B (T g , ⁇ ) is gas It is the amount of infrared radiation (gas radiation infrared radiation amount, gas radiation infrared radiation amount) radiated (radiated) by the gas of the cloud GS, and is a function of the gas temperature Tg and the wavelength ⁇ .
  • the function forms (forms of function graphs) in the functions of ⁇ g ( ⁇ , ct), B (T back , ⁇ ) and B (T g , ⁇ ) are known in advance.
  • the transmittance ⁇ for the wavelength ⁇ in methane gas is the characteristic curve shown in FIG. 3
  • the spectral radiance for the wavelength ⁇ in methane gas is the characteristic curve shown in FIG.
  • the amount of gas radiation infrared rays is obtained based on the spectral radiance.
  • the background radiation infrared ray amount is obtained based on the black body radiation with the background object regarded as a black body.
  • the integrals of Equations 2 and 3 are executed over the observed infrared wavelength range.
  • the gas measuring device D obtains the infrared ray amount P, the background temperature T back and the gas temperature T g for one place in the gas cloud image region, and the concentration / thickness product processing unit 43 calculates the value of the concentration / thickness product ct using Equation 2.
  • the concentration / thickness product ct at which both sides of Equation 2 are the same may be obtained as the concentration / thickness product ct of the gas cloud GS.
  • the concentration / thickness product processing unit 43 assigns the value of the concentration / thickness product ct to Equation 3
  • the concentration thickness product ct at which both sides of 3 are the same may be obtained as the concentration thickness product ct of the gas cloud GS.
  • the background temperature T back may be obtained based on the luminance value (outside area luminance value) of the image in the vicinity of the gas cloud image area in the target area and outside the gas cloud image area, and includes the wavelength of the absorption line.
  • a region corresponding to the gas cloud image region in the infrared image of the target region obtained by attaching the band-pass filter having a non-infrared wavelength range to the transmission wavelength band to the infrared imaging unit 1 through the band-pass filter. May be obtained based on the brightness value (region brightness value).
  • a correspondence relationship (first conversion temperature correspondence relationship) between the out-of-region luminance value of the infrared image and the temperature (background temperature T back ) is stored in advance in the storage unit 8 as one of the various predetermined data.
  • the stored gas measurement device D uses the control processing unit 4 to obtain the background temperature T back corresponding to the out-of-region luminance value of the image outside the gas cloud image region from the first conversion temperature correspondence relationship.
  • a correspondence relationship (second conversion temperature correspondence relationship) between the region luminance value of the infrared image and the temperature (background temperature T back ) is stored in advance in the storage unit 8 as one of the various predetermined data, and gas measurement is performed.
  • the device D uses the control processing unit 4 to obtain the background temperature T back corresponding to the region luminance value of the region corresponding to the gas cloud image region from the second converted temperature correspondence relationship.
  • the concentration processing unit 44 obtains the length of the horizontal line passing through the one place in the gas cloud (the lateral width of the gas cloud at the one place), and the obtained horizontal line.
  • the concentration of the gas cloud is obtained from the concentration / thickness product of the gas cloud obtained by the concentration / thickness product processing unit 43 using the length of the gas cloud as the thickness of the gas cloud. That is, the concentration is obtained as an average concentration by dividing the concentration-thickness product by the thickness.
  • the risk level processing unit 45 calculates a risk level that is an index representing the degree of risk (for example, toxicity, explosiveness, etc.) with respect to the gas cloud concentration / thickness product determined by the concentration / thickness product processing unit 43. More specifically, a correspondence relationship (risk degree correspondence relationship) between the concentration thickness product of the gas cloud and the risk level (risk level correspondence relationship) is stored in advance in the storage unit 8 as one of the various predetermined data, and the risk level processing unit 45 is The degree of risk for the concentration thickness product ct of the gas cloud obtained by the concentration / thickness product processing unit 43 is obtained from the risk correspondence relationship.
  • a low density risk product “ct” that is equal to or less than a preset first risk determination threshold Gth1 is associated with “low risk” and the first risk determination threshold Gth1
  • the density thickness product ct exceeding the preset second risk determination threshold Gth2 is associated with the medium risk “medium risk”
  • the density exceeding the second risk determination threshold Gth2 “High risk level” with high risk is associated with the thickness product ct.
  • the risk processing unit 45 is based on the concentration determined by the concentration processing unit 44 and the lower explosion limit concentration that is the lowest concentration at which the gas explodes.
  • the explosion risk which is an index representing the degree of explosion risk, is obtained as the risk. More specifically, a correspondence relationship (explosion risk correspondence relationship) between the concentration of the gas cloud and the explosion risk (explosion risk correspondence) is stored in advance in the storage unit 8 as one of the various predetermined data. Then, the explosion risk for the gas cloud concentration c obtained by the concentration processing unit 44 is obtained from the explosion risk correspondence relationship.
  • the lower explosive concentration is, for example, the lower explosive limit that is the lowest concentration that causes combustible gas to mix with air and cause an explosion upon ignition, and the explosive risk correspondence relationship is set in advance.
  • the concentration c below the first risk determination threshold Gth1 (for example, 5% LEL or the like) is associated with “explosion risk 0” having no danger, and is set in advance exceeding the first risk determination threshold Gth1.
  • the concentration c below the second risk determination threshold Gth2 (for example, 10% LEL) is associated with “explosion risk 1” having a low risk, and is set in advance exceeding the second risk determination threshold Gth2.
  • the concentration c equal to or lower than the third risk determination threshold Gth3 (for example, 20% LEL) is associated with “explosion risk 2”, which is a medium risk, and the third risk determination threshold.
  • a concentration c that exceeds Gth3 and is equal to or less than a preset fourth risk determination threshold Gth4 (for example, 30% LEL) is associated with “explosion risk 3” having a high risk, and the fourth risk determination threshold.
  • Concentration c exceeding Gth4 is associated with dangerous “explosion caution”.
  • the degree of risk is classified into a plurality of stages, for example, three stages, five stages, and the like according to the concentration.
  • the minimum explosion concentration (lower explosion limit) c is 5% in the air, and the 5% concentration corresponds to 100% LEL. For this reason, for example, in methane gas, the concentration of 2.5% is 50% LEL, and the concentration of 1% is 20% LEL.
  • the display processing unit 46 includes a visible image of the target region generated by the visible imaging unit 2, a gas cloud image region extracted by the gas cloud processing unit 42, and a concentration / thickness product of the gas cloud obtained by the concentration / thickness product processing unit 43.
  • the concentration of the gas cloud determined by the concentration processing unit 44 and the risk level determined by the risk level processing unit 45 are displayed on the display unit 6. More specifically, the display processing unit 46 superimposes the gas cloud image region extracted by the gas cloud processing unit 42 on the visible image of the target region generated by the visible imaging unit 2 and displays it on the display unit 6.
  • the concentration-thickness product, the concentration, and the risk level are displayed on the display unit 6 in association with the gas cloud image region.
  • the gas measuring device D includes the infrared imaging unit 1, the visible imaging unit 2, the gas cloud temperature detection unit 3, the control processing unit 4, the input unit 5, the display unit 6, the IF unit 7, and the storage unit 8.
  • a single unit may be configured.
  • the infrared imaging unit 1 corresponds to an example of an infrared image acquisition unit that acquires an infrared image of a target region
  • the gas cloud temperature detection unit 3 is a gas cloud temperature acquisition unit that acquires the gas temperature of the gas cloud. It corresponds to an example.
  • the gas measurement device D includes a sensor unit configured by combining the infrared imaging unit 1, the visible imaging unit 2, and the gas cloud temperature detection unit 3, the control processing unit 4, the input unit 5, and the display unit 6.
  • the IF unit 7 and the storage unit 8 may be configured as a single unit, and may include a main body unit that is communicably connected to the sensor unit by wire or wirelessly.
  • the IF unit 7 corresponds to another example of an infrared image acquisition unit that acquires an infrared image of the target region, and further corresponds to another example of a gas cloud temperature acquisition unit that acquires the gas temperature of the gas cloud.
  • the display unit 6 may be further separated in a state where it is communicably connected by wire or wireless so that it can be monitored at a remote place, and may be arranged at a remote place.
  • FIG. 5 is a flowchart illustrating the operation of the gas measurement device according to the embodiment.
  • FIG. 6 is a schematic diagram for explaining a display screen of the gas measurement device according to the embodiment.
  • Such a gas measuring device D is arranged with the imaging direction of the infrared imaging unit 1 and the imaging direction of the visible imaging unit 2 facing the target area, and when a power switch (not shown) is turned on by the user (operator).
  • the control processing unit 4 executes initialization of each necessary unit, and by executing the control processing program, the control processing unit 4 includes the control unit 41, the gas cloud processing unit 42, the concentration / thickness product processing unit 43, and the concentration processing.
  • the unit 44, the risk level processing unit 45, and the display processing unit 46 are functionally configured.
  • the gas measuring apparatus D captures and acquires an infrared image of the target area by imaging the target area with the infrared imaging unit 1.
  • the infrared image (image data of the infrared image) of the target area is output from the infrared imaging unit 1 to the control processing unit 4 (S1).
  • the gas measuring device D captures and captures the target area with the visible imaging unit 2, and generates and acquires a visible image of the target area.
  • the visible image of the target area (image data of the visible image) is output from the visible imaging unit 2 to the control processing unit 4 (S2).
  • the gas measuring device D determines whether or not a gas cloud GS formed of a predetermined gas is generated in the space of the target region by the control processing unit 4 (S3).
  • the control processing unit 4 causes the gas cloud processing unit 42 to extract a gas cloud image region of the gas cloud GS based on the infrared image of the target region generated by the infrared imaging unit 1.
  • the control processing unit 4 determines that the gas cloud GS is not generated, and executes a process S10 described later.
  • the control processing unit 4 determines that the gas cloud GS is generated, and executes the next process S4.
  • the gas measuring apparatus D by the gas cloud temperature detection unit 3 (in the present embodiment the atmospheric temperature) gas temperature Gasukumo GS is obtained by detecting the T g.
  • This gas temperature (atmospheric temperature) Tg is output from the gas cloud temperature detection unit 3 to the control processing unit 4.
  • the gas measuring device D obtains the background temperature T back based on the infrared image of the target area generated by the infrared imaging unit 1 by the control processing unit 4 (S5). More specifically, for example, the control processing unit 4 obtains an out-of-region luminance value of an image in the vicinity of the gas cloud image region and outside the gas cloud image region, and calculates the background temperature T back corresponding to the out-of-region luminance value. Obtained from the first conversion temperature correspondence stored in advance in the storage unit 8.
  • control processing unit 4 is configured such that the gas cloud image region in the infrared image of the target region obtained by the infrared imaging unit 1 through a bandpass filter whose transmission wavelength band is an infrared wavelength range not including the wavelength of the absorption line. It obtains a region luminance value of the region corresponding to, determined from pre-stored second conversion temperature relationship background temperature T back corresponding to the area luminance value in the storage unit 8.
  • processing S4 and processing S5 may be executed with their processing order interchanged with each other, or may be executed in parallel (in parallel processing).
  • the gas measuring apparatus D uses the concentration / thickness product processing unit 43 to generate an infrared image of the gas cloud image region generated by the infrared imaging unit 1 by using the infrared amount of one location in the gas cloud GS extracted by the gas cloud processing unit 42.
  • the concentration thickness product ct of the gas cloud GS is obtained based on the obtained infrared amount and the gas temperature detected by the gas cloud temperature detection unit 3 (S6).
  • the gas measuring device D obtains the length of the horizontal line passing through the one place in the gas cloud GS in the gas cloud image region extracted by the gas cloud processing unit 42 by the concentration processing unit 44, and the obtained horizontal line.
  • the concentration c of the gas cloud GS is obtained from the concentration / thickness product ct of the gas cloud GS obtained by the concentration / thickness product processor 43 with the length of the gas cloud GS as the thickness (S7). More specifically, the concentration processing unit 44 calculates the concentration c of the gas cloud GS by dividing the concentration / thickness product ct of the gas cloud GS determined by the concentration / thickness product processing unit 43 by the thickness.
  • the gas measuring device D obtains the degree of risk with respect to the concentration / thickness product ct of the gas cloud GS obtained by the concentration / thickness product processing unit 43 by the risk processing unit 45 (S8). More specifically, in the present embodiment, the risk level processing unit 45 determines the concentration c obtained in step S6 by the concentration processing unit 44 based on the concentration thickness product ct of the gas cloud GS obtained by the concentration thickness product processing unit 43. Is determined from the explosion risk correspondence relationship.
  • the gas measuring device D obtains the visible image of the target region generated by the visible imaging unit 2, the gas cloud image region extracted by the gas cloud processing unit 42, and the concentration / thickness product obtained by each of the above-described processes.
  • Degree) is displayed on the display unit 6 by the display processing unit 46 (S9). More specifically, the display processing unit 46 aligns and superimposes the gas cloud image region extracted by the gas cloud processing unit 42 on the visible image of the target region generated by the visible imaging unit 2. Displayed on the display unit 6, the concentration-thickness product ct, the concentration c, and the explosion risk are displayed on the display unit 6 in association with a predetermined location in the gas cloud image region.
  • FIG. 6 shows how to obtain the thickness of the gas cloud GS, but it may be omitted in the display of each information.
  • one predetermined spot SP in the gas cloud GS is set in the gas cloud image region extracted in each of the processes S1 to S3.
  • the predetermined one spot SP in the gas cloud GS is set to the geometric gravity center position in the gas cloud image region.
  • the predetermined one spot SP in the gas cloud GS is set in the vicinity of a gas leak point (leak position) in the gas cloud image region as shown in FIG.
  • the leak location can be estimated, for example, by tracing a plurality of time-series gas cloud image regions back in time. Further, for example, the leakage location (leakage position) is obtained, for example, by obtaining a plurality of optical flows in the gas cloud GS based on a plurality of gas cloud image regions continuous in time series, and tracing the plurality of optical flows back in time. Can be estimated. Then, the concentration thickness product ct, the concentration c, and the explosion risk degree are determined for each of the predetermined locations SP by each of the processes S4 to S8.
  • the concentration processing unit 44 obtains the length Wx of the horizontal line SL passing through the one spot SP in the gas cloud GS as shown in FIG.
  • the actual length of the region shown in one pixel is stored in advance in the storage unit 8 as one of the various predetermined data, the number of pixels of the horizontal line SL in the gas image region is counted, and the counted number of pixels.
  • step S9 the display processing unit 46 adds the gas cloud image of the gas cloud GS extracted by the gas cloud processing unit 42 to the visible image of the target area generated by the visible imaging unit 2, as shown in FIG. The regions are aligned and superimposed and displayed on the display unit 6. Then, as shown in FIG. 6, the display processing unit 46 displays the predetermined one spot SP on the display unit 6, and associates this with the concentration thickness product ct (in the example shown in FIG. 6, 6% LEL ⁇ m), concentration c (6% LEL in the example shown in FIG. 6), and explosion risk (“explosion risk 1” in the example shown in FIG. 6) are displayed on the display unit 6.
  • concentration thickness product ct in the example shown in FIG. 6, 6% LEL ⁇ m
  • concentration c 6% LEL in the example shown in FIG. 6
  • explosion risk explosion risk 1
  • the risk processing unit 45 further determines whether or not the concentration obtained by the concentration processing unit 44 is equal to or higher than a warning determination threshold Ath for determining execution of the warning, and obtained by the concentration processing unit 44.
  • the display processing unit 46 changes the display color of the explosion risk, for example, to a color different from a normal display color (display color when no warning is accompanied) or an explosion risk.
  • the warning is executed in a display form such as blinking the degree.
  • the concentration obtained by the concentration processing unit 44 is equal to or higher than the warning determination threshold Ath, the warning is not executed.
  • the warning may be executed with a sound such as a warning sound or a warning voice message.
  • step S ⁇ b> 10 the gas measuring device D determines whether or not the input processing unit 5 has accepted the end of the measurement operation by the user, and inputs the end of the measurement operation. If it is received by the unit 5 (Yes), the process ends, and if the end of the measurement operation is not received by the input unit 5 (No), the process returns to the process S1.
  • the gas measuring device D in this embodiment and the gas measuring method mounted on the gas measuring device D calculate the concentration thickness product of the gas cloud based on the amount of infrared rays at one location in the gas cloud GS and the gas temperature. Since the required concentration / thickness product processing unit 43 is provided, the concentration / thickness product of gas can be measured at one measurement point.
  • the gas measuring apparatus D and the gas measuring method use the above-described relational expression, it is possible to preferably measure the gas concentration thickness product at one measurement point.
  • the gas measuring device D and the gas measuring method constitute the gas cloud temperature detecting unit 3 using a temperature sensor that detects the temperature of the atmosphere, the gas temperature can be detected more easily.
  • the user can determine the risk of the gas cloud GS by referring to the risk obtained by the risk processing unit 45.
  • an explosion risk can be obtained as the risk.
  • the gas measuring device D and the gas measuring method can warn of the risk of explosion by displaying the explosion risk level on the display unit 6.
  • the concentration processing unit 44 Since the gas measuring device D and the gas measuring method include the concentration processing unit 44, the concentration of the gas cloud GS can be measured.
  • the gas measurement device is formed of a predetermined gas in a space based on an infrared image acquisition unit that acquires an infrared image of a target region and the infrared image of the target region acquired by the infrared image acquisition unit
  • a gas cloud processing unit that extracts a gas cloud image region of the gas cloud, a gas cloud temperature acquisition unit that acquires a gas temperature of the gas cloud, and an infrared image acquisition unit that acquires an infrared amount at one location in the gas cloud
  • a concentration-thickness product processing unit that obtains the concentration-thickness product of the gas cloud based on the obtained infrared amount and the gas temperature detected by the gas cloud temperature acquisition unit.
  • the infrared image acquisition unit is an interface unit that receives input of data from an external device, and the interface unit captures an image of a target region in infrared as the external device.
  • An infrared image of the target area is input from an infrared imaging unit that generates an infrared image of the area.
  • the infrared image acquisition unit is an infrared imaging unit that captures an infrared region of the target region and generates an infrared image of the target region.
  • the gas cloud temperature acquisition unit is an interface unit that receives data input from an external device, and the interface unit detects a gas temperature of the gas cloud.
  • the gas cloud temperature acquisition unit is a gas cloud temperature detection unit that detects a gas temperature of the gas cloud.
  • Such a gas measuring device includes a concentration / thickness product processing unit that obtains the concentration / thickness product of the gas cloud based on the amount of infrared rays at one location in the gas cloud and its gas temperature, Concentration thickness product can be measured.
  • the concentration-thickness product processing unit includes an amount of infrared rays absorbed by the gas cloud and an amount of infrared rays radiated from the gas cloud.
  • the concentration-thickness product of the gas cloud is obtained based on the obtained amount of infrared rays and the gas temperature acquired by the gas cloud temperature acquisition unit.
  • the relational expression is such that an infrared ray amount at one place in the gas cloud is P, and the absorption rate of the gas is a function ⁇ g ( ⁇ , ct) of a wavelength ⁇ and a concentration thickness product ct.
  • the amount of infrared rays radiated (radiated) in the background is a function B (T back , ⁇ ) of the background temperature T back and the wavelength ⁇ , and the amount of infrared rays radiated by the gas of the gas cloud
  • (gas radiation infrared ray amount) is a function B (T g , ⁇ ) of the gas temperature T g and the wavelength ⁇
  • P ⁇ [ ⁇ g ( ⁇ , ct) B (T back , ⁇ ) + (1 ⁇ ⁇ g ( ⁇ , ct)) B (T g, ⁇ )] d ⁇ ( where integral ⁇ is executed) over the wavelength range of the observed infrared.
  • the gas concentration thickness product can be preferably measured at one measurement point.
  • the gas cloud temperature acquisition unit is a temperature sensor that detects the temperature of the atmosphere.
  • Such a gas measuring device constitutes the gas cloud temperature acquisition unit using a temperature sensor that detects the temperature of the atmosphere, the gas temperature can be detected more easily.
  • the unit is further provided.
  • such a gas measuring device further includes the risk processing unit
  • the user refers to the risk (eg, toxicity risk or explosive risk) obtained by the risk processing unit.
  • the danger of the gas cloud can be determined.
  • the length of the horizontal line passing through the one place in the gas cloud is obtained, and the concentration-thickness product processing unit is defined by using the obtained length of the horizontal line as the thickness of the gas cloud.
  • Such a gas measuring device further includes a concentration processing unit, the concentration of the gas cloud can be measured.
  • the risk processing unit may determine an explosion risk based on the concentration obtained by the concentration processing unit and an explosion lower limit concentration that is a minimum concentration at which the gas explodes.
  • An explosion risk level which is an index representing the degree, is obtained as the risk level.
  • the lower explosion limit concentration is a lower explosive limit (Low Explosive Limit) which is a lowest concentration at which a combustible gas mixes with air and causes an explosion upon ignition.
  • Such a gas measuring device can determine the explosion risk as the risk.
  • the gas measurement method includes an infrared image acquisition step of acquiring an infrared image of a target region, and a space based on the infrared image of the target region acquired in the infrared image acquisition step.
  • a gas cloud processing unit for extracting a gas cloud image region of a gas cloud formed of a predetermined gas; a gas cloud temperature acquisition step for acquiring a gas temperature of the gas cloud; and an infrared ray amount at one location in the gas cloud
  • a concentration-thickness product processing step for obtaining a concentration-thickness product of the gas cloud based on the infrared amount obtained in the infrared image acquisition step and the gas temperature detected in the gas cloud temperature acquisition step.
  • Such a gas measuring method includes a concentration / thickness product treatment step for obtaining a concentration / thickness product of the gas cloud based on the amount of infrared rays at one location in the gas cloud and the gas temperature, the gas is measured at one measurement point. Concentration thickness product can be measured.
  • a gas measuring device and a gas measuring method can be provided.

Abstract

This gas measurement device and gas measurement method use an infrared image to find the amount of infrared radiation at one location in a gas cloud that has been formed within a space from a prescribed gas and use the found amount of infrared radiation and the gas temperature of the gas cloud to find a concentration-thickness product for the gas cloud. The gas measurement device and gas measurement method can thereby measure a concentration-thickness product for a gas at a single measurement point.

Description

ガス測定装置およびガス測定方法Gas measuring device and gas measuring method
 本発明は、例えば空間に漏洩した漏洩ガス等の、空間に所在する所定のガスを測定するガス測定装置およびガス測定方法に関し、特に、一箇所の測定点でガスの濃度厚み積を測定できるガス測定装置およびガス測定方法に関する。 The present invention relates to a gas measuring apparatus and a gas measuring method for measuring a predetermined gas located in a space, such as a leaked gas leaked into the space, and in particular, a gas capable of measuring a gas concentration / thickness product at one measurement point. The present invention relates to a measuring apparatus and a gas measuring method.
 例えば、可燃性ガス、毒性ガスおよび有機溶剤の蒸気等のガスが配管やタンク等から漏洩した場合、早期に対処する必要がある。また、その危険性を判断するために、空間に漏洩した漏洩ガスの濃度厚み積、好ましくは濃度を知る必要がある。このため、漏洩ガス等のガスを測定する装置が要望されている。このような装置として、例えば、特許文献1には、濃度厚み積を求める技術が開示されている。 For example, if a gas such as flammable gas, toxic gas or organic solvent vapor leaks from a pipe or tank, it is necessary to deal with it early. Further, in order to judge the risk, it is necessary to know the concentration thickness product, preferably the concentration, of the leaked gas leaked into the space. For this reason, an apparatus for measuring a gas such as a leakage gas is desired. As such an apparatus, for example, Patent Document 1 discloses a technique for obtaining a concentration thickness product.
 この特許文献1に開示された技術は、赤外線カメラによって漏洩ガスを介した背景温度の異なる2箇所A、Bに対して赤外線量を求め、次式1で濃度厚み積ctの値を振り、次式1の両辺が最も等しくなる濃度厚み積ctを前記漏洩ガスの濃度厚み積ctとして求めている(Second Sight 方式)。
-P=ε∫exp(α(λ)ct)S(λ)[B(Tback_B,λ)-B(Tback_A,λ)]dλ   ・・・(1)
ここで、Pは、箇所Aにおける赤外線カメラによって観測された赤外線量であり、B(Tback_A,λ)は、箇所Aにおける背景輻射赤外線量であり(Tback_Aは箇所Aにおける背景温度であり、λは波長である)、Pは、箇所Bにおける赤外線カメラによって観測された赤外線量であり、B(Tback_B,λ)は、箇所Bにおける背景輻射赤外線量であり(Tback_Bは箇所Bにおける背景温度である)、S(λ)は、光学系の透過率であり、ctは、ガスの濃度厚み積であり(cは濃度であり、tは厚みである)、εは、背景放射率であり、α(λ)は、ガス吸収率である。積分∫は、観測した赤外線の波長範囲に亘って実行される。
In the technique disclosed in Patent Document 1, the amount of infrared light is obtained for two locations A and B having different background temperatures via leaked gas by an infrared camera, and the value of the concentration thickness product ct is given by the following equation 1, The concentration / thickness product ct at which both sides of Equation 1 are the same is obtained as the concentration / thickness product ct of the leakage gas (Second Light method).
P B -P A = ε∫exp (α (λ) ct) S (λ) [B (T back — B, λ) −B (T back — A , λ)] dλ (1)
Here, P A is the amount of infrared rays are observed by an infrared camera at the location A, B (T back_A, λ ) is the background radiation amount of infrared rays at a point A (T back_A is the background temperature at the location A , Λ is the wavelength), P B is the amount of infrared radiation observed by the infrared camera at location B, and B (T back — B, λ) is the amount of background radiation infrared at location B (T back — B is location B) ), S (λ) is the transmittance of the optical system, ct is the gas concentration-thickness product (c is the concentration, t is the thickness), and ε is the background radiation. And α (λ) is the gas absorption rate. The integration is performed over the observed infrared wavelength range.
 ところで、前記特許文献1に開示された技術では、より適正に濃度厚み積を求めるために、誤差を低減すべく2箇所A、Bにおける背景温度差が大きく、かつ、同一濃度厚み積とすべく互いに近接している必要がある。このようなトレードオフの関係(相反関係)にある両者を満たす状況は、生じ難く現実的でない。特に、ガス測定装置を定点に設置し漏洩ガスを監視する態様では、前記状況は、一層生じ難く現実的ではない。 By the way, in the technique disclosed in Patent Document 1, in order to obtain the concentration thickness product more appropriately, the background temperature difference between the two locations A and B is large to reduce the error, and the same concentration thickness product should be used. Must be close to each other. A situation that satisfies both of these trade-off relationships (reciprocal relationships) is unlikely to occur and is not realistic. In particular, in a mode in which a gas measuring device is installed at a fixed point and leakage gas is monitored, the above situation is less likely to occur and is not realistic.
米国特許第5306913号明細書US Pat. No. 5,306,913
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、一箇所の測定点でガスの濃度厚み積を測定できるガス測定装置およびガス測定方法を提供することである。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a gas measuring device and a gas measuring method capable of measuring a gas concentration thickness product at one measurement point.
 本発明にかかるガス測定装置およびガス測定方法は、空間に所定のガスで形成されたガス雲における一箇所の赤外線量を赤外線画像に基づいて求め、この求めた赤外線量と前記ガス雲のガス温度とに基づいて前記ガス雲の濃度厚み積を求める。したがって、本発明にかかるガス測定装置およびガス測定方法は、一箇所の測定点でガスの濃度厚み積を測定できる。 The gas measuring device and the gas measuring method according to the present invention determine the amount of infrared rays at one location in a gas cloud formed of a predetermined gas in a space based on an infrared image, and determine the amount of infrared rays obtained and the gas temperature of the gas cloud. Based on the above, the concentration thickness product of the gas cloud is obtained. Therefore, the gas measuring device and the gas measuring method according to the present invention can measure the gas concentration / thickness product at one measurement point.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
実施形態におけるガス測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the gas measuring device in embodiment. 前記ガス測定装置の使用状況を説明するための模式図である。It is a schematic diagram for demonstrating the use condition of the said gas measuring device. 一例として、メタンガスにおける波長に対する透過率の特性曲線を示す図である。As an example, it is a figure which shows the characteristic curve of the transmittance | permeability with respect to the wavelength in methane gas. 一例として、メタンガスにおける波長に対する分光放射輝度の特性曲線を示す図である。As an example, it is a figure which shows the characteristic curve of the spectral radiance with respect to the wavelength in methane gas. 前記ガス測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the said gas measuring apparatus. 前記ガス測定装置の表示画面を説明するための模式図である。It is a schematic diagram for demonstrating the display screen of the said gas measuring device.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix.
 図1は、実施形態におけるガス測定装置の構成を示すブロック図である。図2は、実施形態におけるガス測定装置の使用状況を説明するための模式図である。図3は、一例として、メタンガスにおける波長に対する透過率の特性曲線を示す図である。図3の横軸は、nm単位で表す波長λであり、その縦軸は、透過率τである。図4は、一例として、メタンガスにおける波長に対する分光放射輝度の特性曲線を示す図である。図4の横軸は、nm単位で表す波長λであり、その縦軸は、W/m/Sr/nm単位で表す分光放射輝度である。 FIG. 1 is a block diagram illustrating a configuration of a gas measurement device according to an embodiment. Drawing 2 is a mimetic diagram for explaining the use situation of the gas measuring device in an embodiment. FIG. 3 is a diagram showing a characteristic curve of transmittance with respect to wavelength in methane gas as an example. The horizontal axis in FIG. 3 is the wavelength λ expressed in nm, and the vertical axis is the transmittance τ. FIG. 4 is a diagram showing a characteristic curve of spectral radiance with respect to wavelength in methane gas as an example. The horizontal axis in FIG. 4 is the wavelength λ expressed in nm, and the vertical axis is the spectral radiance expressed in W / m 2 / Sr / nm.
 実施形態におけるガス測定装置は、所定の対象領域の赤外線画像から、空間に所定のガスで形成されたガス雲のガス雲画像領域を抽出し、この抽出したガス雲画像領域のガス雲における濃度厚み積を求める装置である。より詳しくは、実施形態におけるガス測定装置は、対象領域の赤外線画像を取得する赤外線画像取得部と、前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、空間に所定のガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理部と、前記ガス雲のガス温度を取得するガス雲温度取得部と、前記ガス雲における一箇所の赤外線量を前記赤外線画像取得部で取得した前記赤外線画像に基づいて求め、前記求めた赤外線量と前記ガス雲温度取得部で検出したガス温度とに基づいて前記ガス雲の濃度厚み積を求める濃度厚み積処理部とを備える。前記対象領域は、任意であって良いが、好ましくは、例えばガス管(配管)やガスタンク等のガスを収容するガス収容部を含む領域であり、この場合、前記ガス雲は、前記ガス収容部から漏洩している前記ガスの漏洩ガスで形成されたガス雲である。このような本実施形態におけるガス測定装置Dは、例えば、図1に示すように、制御処理部4と、インターフェース部(IF部)7と、記憶部8とを備え、図1に示す例では、さらに、赤外線撮像部1と、可視撮像部2と、ガス雲温度検出部3と、入力部5と、表示部6とを備える。 The gas measurement device according to the embodiment extracts a gas cloud image region of a gas cloud formed with a predetermined gas in a space from an infrared image of a predetermined target region, and the concentration thickness of the extracted gas cloud image region in the gas cloud It is a device that calculates the product. More specifically, the gas measurement device according to the embodiment includes an infrared image acquisition unit that acquires an infrared image of a target region, and a predetermined gas in the space based on the infrared image of the target region acquired by the infrared image acquisition unit. A gas cloud processing unit that extracts a gas cloud image region of the formed gas cloud, a gas cloud temperature acquisition unit that acquires a gas temperature of the gas cloud, and an infrared image acquisition unit that determines the amount of infrared rays at one location in the gas cloud And a concentration / thickness product processing unit that calculates the concentration / thickness product of the gas cloud based on the determined infrared amount and the gas temperature detected by the gas cloud temperature acquisition unit. The target region may be arbitrary, but is preferably a region including a gas storage unit that stores gas such as a gas pipe (pipe) or a gas tank, and in this case, the gas cloud is the gas storage unit. It is a gas cloud formed by the leaked gas of the gas leaking from. For example, as shown in FIG. 1, the gas measuring device D in the present embodiment includes a control processing unit 4, an interface unit (IF unit) 7, and a storage unit 8, and in the example illustrated in FIG. 1. Furthermore, an infrared imaging unit 1, a visible imaging unit 2, a gas cloud temperature detection unit 3, an input unit 5, and a display unit 6 are provided.
 赤外線撮像部1は、制御処理部4に接続され、制御処理部4の制御に従って、対象領域を赤外で撮像し、前記対象領域の赤外線画像を生成する装置である。赤外線撮像部1は、例えば、対象領域の赤外線光学像(赤外の光学像)を所定の結像面上に結像する結像光学系、前記結像面に受光面を一致させて配置され、前記対象領域の赤外線光学像を電気的な信号に変換する赤外線イメージセンサ、および、前記赤外線イメージセンサの出力を画像処理することで赤外線画像のデータを生成する赤外線画像処理部等を備える赤外カメラ等である。赤外線撮像部1は、対象領域の赤外線画像(赤外線画像のデータ)を制御処理部4へ出力する。 The infrared imaging unit 1 is an apparatus that is connected to the control processing unit 4 and images the target region in the infrared under the control of the control processing unit 4 and generates an infrared image of the target region. The infrared imaging unit 1 is, for example, an imaging optical system that forms an infrared optical image (infrared optical image) of a target region on a predetermined imaging surface, and a light receiving surface that is aligned with the imaging surface. An infrared image sensor that converts an infrared optical image of the target region into an electrical signal, and an infrared image processing unit that generates infrared image data by performing image processing on the output of the infrared image sensor. Such as a camera. The infrared imaging unit 1 outputs an infrared image (infrared image data) of the target area to the control processing unit 4.
 可視撮像部2は、制御処理部4に接続され、制御処理部4の制御に従って、対象領域を可視で撮像し、前記対象領域の可視画像を生成する装置である。可視撮像部2は、例えば、対象領域の光学像(可視光の光学像)を所定の結像面上に結像する結像光学系、前記結像面に受光面を一致させて配置され、前記対象領域の光学像を電気的な信号に変換するイメージセンサ、および、前記イメージセンサの出力を画像処理することで可視画像のデータを生成する可視画像処理部等を備える可視カメラ等である。可視撮像部2は、対象領域の可視画像(可視画像のデータ)を制御処理部4へ出力する。 The visible imaging unit 2 is an apparatus that is connected to the control processing unit 4 and that visually captures a target region under the control of the control processing unit 4 and generates a visible image of the target region. The visible imaging unit 2 is, for example, an imaging optical system that forms an optical image of a target region (optical image of visible light) on a predetermined imaging surface, and a light receiving surface that is aligned with the imaging surface, An image sensor that converts an optical image of the target region into an electrical signal, and a visible camera that includes a visible image processing unit that generates visible image data by performing image processing on the output of the image sensor. The visible imaging unit 2 outputs a visible image (visible image data) of the target area to the control processing unit 4.
 ガス雲温度検出部3は、制御処理部4に接続され、制御処理部4の制御に従って、空間に所定のガスで形成されたガス雲のガス温度を検出する装置である。本実施形態では、比較的簡便にガス温度を検出するために、ガス雲温度検出部3は、例えば、大気の温度(大気温度)を検出する温度センサを備えて構成される。本実施形態では、ガス温度は、大気温度とみなされる。温度センサは、例えばサーミスタおよびその周辺回路を備えて構成される。ガス雲温度検出部3は、検出したガス温度(本実施形態では大気温度)を制御処理部4へ出力する。 The gas cloud temperature detection unit 3 is an apparatus that is connected to the control processing unit 4 and detects the gas temperature of the gas cloud formed with a predetermined gas in the space under the control of the control processing unit 4. In the present embodiment, in order to detect the gas temperature relatively easily, the gas cloud temperature detection unit 3 includes, for example, a temperature sensor that detects an atmospheric temperature (atmospheric temperature). In this embodiment, the gas temperature is regarded as the atmospheric temperature. The temperature sensor includes, for example, a thermistor and its peripheral circuit. The gas cloud temperature detection unit 3 outputs the detected gas temperature (atmospheric temperature in the present embodiment) to the control processing unit 4.
 入力部5は、制御処理部4に接続され、例えば、ガスを測定する測定動作の開始を指示するコマンド等の各種コマンド、および、例えば対象領域の識別子の入力等のガスの測定を実行する上で必要な各種データをガス測定装置Dに入力する機器であり、例えば、所定の機能を割り付けられた複数の入力スイッチ、キーボードおよびマウス等である。表示部6は、制御処理部4に接続され、制御処理部4の制御に従って、入力部5から入力されたコマンドおよびデータ、ならびに、ガス測定装置Dによって測定されたガス雲、濃度厚み積、濃度および後述の危険度等を出力する機器であり、例えばCRT(Cathode Ray Tube)ディスプレイ、液晶ディスプレイおよび有機EL(Electroluminescence)ディスプレイ等の表示装置である。 The input unit 5 is connected to the control processing unit 4, and executes measurement of gas such as input of various commands such as a command for instructing start of a measurement operation for measuring gas and input of an identifier of a target region, for example. Is a device for inputting various necessary data to the gas measuring device D, for example, a plurality of input switches, keyboards and mice assigned with predetermined functions. The display unit 6 is connected to the control processing unit 4, and commands and data input from the input unit 5 as well as the gas cloud, concentration thickness product, concentration measured by the gas measuring device D under the control of the control processing unit 4. And a device that outputs a risk level described later, for example, a display device such as a CRT (Cathode Ray Tube) display, a liquid crystal display, and an organic EL (Electroluminescence) display.
 なお、入力部5および表示部6からタッチパネルが構成されてもよい。このタッチパネルを構成する場合において、入力部5は、例えば抵抗膜方式や静電容量方式等の操作位置を検出して入力する位置入力装置である。このタッチパネルでは、表示装置の表示面上に位置入力装置が設けられ、表示装置に入力可能な1または複数の入力内容の候補が表示され、ユーザが、入力したい入力内容を表示した表示位置を触れると、位置入力装置によってその位置が検出され、検出された位置に表示された表示内容がユーザの操作入力内容としてガス測定装置Dに入力される。このようなタッチパネルでは、ユーザは、入力操作を直感的に理解し易いので、ユーザにとって取り扱い易いガス測定装置Dが提供される。 A touch panel may be configured from the input unit 5 and the display unit 6. In the case of configuring this touch panel, the input unit 5 is a position input device that detects and inputs an operation position such as a resistance film type or a capacitance type. In this touch panel, a position input device is provided on the display surface of the display device, one or more input content candidates that can be input to the display device are displayed, and the user touches the display position where the input content to be input is displayed. Then, the position is detected by the position input device, and the display content displayed at the detected position is input to the gas measurement device D as the operation input content of the user. In such a touch panel, since the user can easily understand the input operation intuitively, the gas measuring device D that is easy to handle for the user is provided.
 IF部7は、制御処理部4に接続され、制御処理部4の制御に従って、外部機器との間でデータの入出力を行う回路であり、例えば、シリアル通信方式であるRS-232Cのインターフェース回路、Bluetooth(登録商標)規格を用いたインターフェース回路、IrDA(Infrared Data Asscoiation)規格等の赤外線通信を行うインターフェース回路、および、USB(Universal Serial Bus)規格を用いたインターフェース回路等である。また、IF部7は、有線または無線によって通信する通信カード等であり、例えばイーサネット環境等の通信ネットワークを介して例えばサーバ装置等の外部装置との間で通信しても良い(イーサネットは登録商標である)。 The IF unit 7 is a circuit that is connected to the control processing unit 4 and inputs / outputs data to / from an external device according to the control of the control processing unit 4. For example, an interface circuit of an RS-232C that is a serial communication system An interface circuit using the Bluetooth (registered trademark) standard, an interface circuit performing infrared communication such as an IrDA (Infrared Data Association) standard, and an interface circuit using the USB (Universal Serial Bus) standard. The IF unit 7 is a communication card or the like that communicates by wire or wirelessly, and may communicate with an external device such as a server device via a communication network such as an Ethernet environment (Ethernet is a registered trademark). Is).
 記憶部8は、制御処理部4に接続され、制御処理部4の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、ガス測定装置Dの各部を当該各部の機能に応じてそれぞれ制御する制御プログラムや、赤外線撮像部1で生成された対象領域の赤外線画像に基づいて、空間に所定のガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理プログラムや、前記ガス雲の濃度厚み積を求める濃度厚み積処理プログラムや、前記濃度厚み積処理プログラムで求めた前記ガス雲の濃度厚み積に基づいて前記ガス雲の濃度を求める濃度処理プログラムや、前記濃度厚み積処理プログラムで求めた前記ガス雲の濃度厚み積に基づいて、危険性の度合いを表す指標である危険度を求める危険度処理プログラムや、可視撮像部2で生成された対象領域の可視画像、前記ガス雲処理プログラムで抽出されたガス雲画像領域、前記濃度厚み積処理プログラムで求めた前記ガス雲の濃度厚み積、前記濃度処理プログラムで求めた前記ガス雲の濃度、および、前記危険処理プログラムで求めた前記危険度を表示部6に表示する表示処理プログラム等の制御処理プログラムが含まれる。前記各種の所定のデータには、各プログラムを実行する上で必要なデータ等が含まれる。記憶部8は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。記憶部8は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部4のワーキングメモリとなるRAM(Random Access Memory)等を含む。なお、記憶部8は、比較的大容量の記憶容量を持つハードディスクを備えても良い。 The storage unit 8 is a circuit that is connected to the control processing unit 4 and stores various predetermined programs and various predetermined data under the control of the control processing unit 4. The various predetermined programs include, for example, a space based on a control program for controlling each part of the gas measuring device D according to the function of each part, or an infrared image of the target area generated by the infrared imaging unit 1. A gas cloud processing program for extracting a gas cloud image region of a gas cloud formed with a predetermined gas, a concentration / thickness product processing program for determining a concentration / thickness product of the gas cloud, and the concentration / thickness product processing program A concentration processing program for determining the concentration of the gas cloud based on the concentration / thickness product of the gas cloud, or an index representing the degree of danger based on the concentration / thickness product of the gas cloud determined by the concentration / thickness product processing program. A risk processing program for determining the risk, a visible image of the target region generated by the visible imaging unit 2, a gas cloud image region extracted by the gas cloud processing program, A display for displaying on the display unit 6 the concentration thickness product of the gas cloud determined by the concentration thickness product processing program, the concentration of the gas cloud determined by the concentration processing program, and the degree of danger determined by the risk processing program. A control processing program such as a processing program is included. The various predetermined data includes data necessary for executing each program. The storage unit 8 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like. The storage unit 8 includes a RAM (Random Access Memory) serving as a working memory of the so-called control processing unit 4 that stores data generated during the execution of the predetermined program. The storage unit 8 may include a hard disk having a relatively large storage capacity.
 制御処理部4は、ガス測定装置Dの各部を当該各部の機能に応じてそれぞれ制御し、空間に所定のガスで形成されたガス雲における濃度厚み積、濃度および危険度を求め、表示するための回路である。制御処理部4は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。制御処理部4には、制御処理プログラムが実行されることによって、制御部41、ガス雲処理部42、濃度厚み積処理部43、濃度処理部44、危険度処理部45および表示処理部46が機能的に構成される。 The control processing unit 4 controls each part of the gas measuring device D according to the function of each part, and obtains and displays the concentration thickness product, concentration and risk in a gas cloud formed of a predetermined gas in the space. Circuit. The control processing unit 4 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits. The control processing unit 4 includes a control unit 41, a gas cloud processing unit 42, a concentration / thickness product processing unit 43, a concentration processing unit 44, a risk level processing unit 45, and a display processing unit 46 by executing a control processing program. Functionally configured.
 制御部41は、ガス測定装置Dの各部を当該各部の機能に応じてそれぞれ制御するためのものである。 The control part 41 is for controlling each part of the gas measuring device D according to the function of each part.
 ガス雲処理部42は、赤外線撮像部1で生成された対象領域の赤外線画像に基づいて、空間に所定のガスで形成されたガス雲のガス雲画像領域を抽出するものである。 The gas cloud processing unit 42 extracts a gas cloud image region of a gas cloud formed with a predetermined gas in the space based on the infrared image of the target region generated by the infrared imaging unit 1.
 ここで、例えば、図2に示すように、本実施形態におけるガス測定装置Dは、対象領域における赤外線画像および可視画像それぞれを赤外線撮像部1および可視撮像部2それぞれで撮像することができるように、赤外線撮像部1の撮影方向および可視撮像部2の撮影方向それぞれを前記対象領域に向けて固定的に配設される。このように配設された赤外線撮像部1は、対象領域内に存在する個々の物体(背景物)OBが輻射(放射)した赤外線(背景輻射赤外線、背景放射赤外線)を撮像する。そして、図2に示すように、例えば配管等のガス収容部PYからガスが漏洩し、赤外線撮像部1と前記背景物との間に、前記漏洩したガスのガス雲GSが存在すると、背景輻射赤外線は、ガス雲GSを介して赤外線撮像部1に到達する。ガス雲GSは、そのガス固有の吸収線の波長で前記背景輻射赤外線の一部を吸収し、またガス雲GS自体の温度に応じた赤外線を輻射する。背景輻射赤外線に対するその吸収量は、ガス雲GSの濃度に従い、そして、ガス雲GSの厚みに従うので、結局、ガス雲GSの濃度厚み積に従う。このため、赤外線撮像部1によって撮像され生成された対象領域の赤外線画像では、ガス雲GSを介した部分画像の輝度値は、前記ガス雲GSを介しなかった部分画像の輝度値と相違する。したがって、ガス雲処理部42は、例えば、前記対象領域の赤外線画像から、予め設定された所定の判定閾値Dth以下の単位時間当たりの輝度値の変化量を持つ画素の領域を抽出することによって、ガス雲GSのガス雲画像領域を抽出できる。 Here, for example, as shown in FIG. 2, the gas measurement device D according to the present embodiment can capture the infrared image and the visible image in the target region with the infrared imaging unit 1 and the visible imaging unit 2, respectively. The imaging direction of the infrared imaging unit 1 and the imaging direction of the visible imaging unit 2 are fixedly arranged toward the target area. The infrared imaging unit 1 arranged in this manner images infrared rays (background radiation infrared rays and background radiation infrared rays) radiated (radiated) by individual objects (background objects) OB present in the target region. Then, as shown in FIG. 2, if gas leaks from a gas storage part PY such as a pipe and the gas cloud GS of the leaked gas exists between the infrared imaging unit 1 and the background object, background radiation Infrared rays reach the infrared imaging unit 1 via the gas cloud GS. The gas cloud GS absorbs a part of the background radiation infrared rays at the wavelength of the absorption line unique to the gas, and radiates infrared rays according to the temperature of the gas cloud GS itself. The amount of absorption with respect to the background radiation infrared ray follows the concentration of the gas cloud GS and the thickness of the gas cloud GS. For this reason, in the infrared image of the target area imaged and generated by the infrared imaging unit 1, the luminance value of the partial image via the gas cloud GS is different from the luminance value of the partial image not via the gas cloud GS. Accordingly, the gas cloud processing unit 42 extracts, for example, a pixel region having a luminance value change amount per unit time that is equal to or less than a predetermined determination threshold value Dth from the infrared image of the target region. A gas cloud image region of the gas cloud GS can be extracted.
 濃度厚み積処理部43は、ガス雲の濃度厚み積を求めるものである。本実施形態では、濃度厚み積処理部43は、前記ガス雲における一箇所の赤外線量を赤外線撮像部1で生成した前記赤外線画像に基づいて求め、この求めた赤外線量とガス雲温度検出部3で検出したガス温度とに基づいて前記ガス雲の濃度厚み積を求めるものである。より具体的には、濃度厚み積処理部43は、上述したように、そのガス固有の吸収線の波長で前記背景輻射赤外線の一部を吸収し、ガス雲GS自体の温度に応じた赤外線を輻射するので、前記ガス雲における一箇所の赤外線量が前記ガス雲で吸収される吸収赤外線量と前記ガス雲から輻射される輻射赤外線量との和であることを表す関係式を用いることによって、前記求めた赤外線量とガス雲温度検出部3で検出したガス温度とに基づいて前記ガス雲の濃度厚み積を求める。 The concentration / thickness product processing unit 43 obtains the concentration / thickness product of the gas cloud. In the present embodiment, the concentration / thickness product processing unit 43 obtains an infrared ray amount at one location in the gas cloud based on the infrared image generated by the infrared imaging unit 1, and obtains the obtained infrared ray amount and the gas cloud temperature detection unit 3. The concentration-thickness product of the gas cloud is obtained based on the gas temperature detected in step (b). More specifically, as described above, the concentration / thickness product processing unit 43 absorbs a part of the background radiation infrared ray at the wavelength of the absorption line specific to the gas and emits infrared rays corresponding to the temperature of the gas cloud GS itself. By radiating, by using a relational expression representing that the amount of infrared rays at one location in the gas cloud is the sum of the amount of absorbed infrared rays absorbed by the gas cloud and the amount of radiant infrared rays radiated from the gas cloud, Based on the obtained infrared amount and the gas temperature detected by the gas cloud temperature detection unit 3, the concentration thickness product of the gas cloud is obtained.
 前記関係式は、例えば、次式2で表され、次式3のように書き換えられる。
P=∫[τ(λ、ct)B(Tback,λ)+(1-τ(λ、ct))B(T、λ)]dλ   ・・・(2)
P=∫[B(T、λ)+τ(λ、ct){B(Tback、λ)-B(T、λ)}]dλ   ・・・(3)
ここで、Pは、赤外線撮像部1で観測される赤外線量であり、τ(λ、ct)は、ガスの吸収率であり、波長λおよび濃度厚み積ctの関数であり、したがって、(1-τ(λ、ct))は、前記ガスの放射率である。B(Tback、λ)は、背景が輻射(放射)した赤外線の量(背景輻射赤外線量)であり、背景温度Tbackおよび波長λの関数であり、B(T、λ)は、ガス雲GSのガスが輻射(放射)した赤外線の量(ガス輻射赤外線量、ガス放射赤外線量)であり、ガス温度Tおよび波長λの関数である。これらτ(λ、ct)、B(Tback、λ)およびB(T、λ)の各関数における関数形(関数のグラフの形)は、予め既知である。一例では、メタンガスにおける波長λに対する透過率τは、図3に示す特性曲線であり、メタンガスにおける波長λに対する分光放射輝度は、温度27℃において、図4に示す特性曲線である。前記分光放射輝度に基づいて前記ガス輻射赤外線量が求められる。前記背景輻射赤外線量は、背景物を黒体とみなし黒体放射に基づいて求められる。式2および式3それぞれの積分∫は、観測した赤外線の波長範囲に亘って実行される。
The relational expression is expressed by the following expression 2, for example, and can be rewritten as the following expression 3.
P = ∫ [τ g (λ, ct) B (T back , λ) + (1−τ g (λ, ct)) B (T g , λ)] dλ (2)
P = ∫ [B (T g , λ) + τ g (λ, ct) {B (T back , λ) −B (T g , λ)}] dλ (3)
Here, P is the amount of infrared rays observed by the infrared imaging unit 1, τ g (λ, ct) is the gas absorptance, and is a function of the wavelength λ and the concentration thickness product ct. 1−τ g (λ, ct)) is the emissivity of the gas. B (T back , λ) is the amount of infrared radiation (background radiation amount) radiated (radiated) in the background, is a function of the background temperature T back and wavelength λ, and B (T g , λ) is gas It is the amount of infrared radiation (gas radiation infrared radiation amount, gas radiation infrared radiation amount) radiated (radiated) by the gas of the cloud GS, and is a function of the gas temperature Tg and the wavelength λ. The function forms (forms of function graphs) in the functions of τ g (λ, ct), B (T back , λ) and B (T g , λ) are known in advance. In one example, the transmittance τ for the wavelength λ in methane gas is the characteristic curve shown in FIG. 3, and the spectral radiance for the wavelength λ in methane gas is the characteristic curve shown in FIG. The amount of gas radiation infrared rays is obtained based on the spectral radiance. The background radiation infrared ray amount is obtained based on the black body radiation with the background object regarded as a black body. The integrals of Equations 2 and 3 are executed over the observed infrared wavelength range.
 ガス測定装置Dは、ガス雲画像領域における一箇所について赤外線量P、背景温度Tbackおよびガス温度Tそれぞれを求め、濃度厚み積処理部43は、式2で濃度厚み積ctの値を振り、式2の両辺が最も等しくなる濃度厚み積ctをガス雲GSの濃度厚み積ctとして求めて良く、あるいは、濃度厚み積処理部43は、式3で濃度厚み積ctの値を振り、式3の両辺が最も等しくなる濃度厚み積ctをガス雲GSの濃度厚み積ctとして求めて良い。 The gas measuring device D obtains the infrared ray amount P, the background temperature T back and the gas temperature T g for one place in the gas cloud image region, and the concentration / thickness product processing unit 43 calculates the value of the concentration / thickness product ct using Equation 2. The concentration / thickness product ct at which both sides of Equation 2 are the same may be obtained as the concentration / thickness product ct of the gas cloud GS. Alternatively, the concentration / thickness product processing unit 43 assigns the value of the concentration / thickness product ct to Equation 3 The concentration thickness product ct at which both sides of 3 are the same may be obtained as the concentration thickness product ct of the gas cloud GS.
 なお、背景温度Tbackは、対象領域におけるガス雲画像領域近傍であってガス雲画像領域外の画像の輝度値(領域外輝度値)に基づいて求めて良く、また、吸収線の波長を含まない赤外線波長範囲を透過波長帯域とするバンドパスフィルタを赤外線撮像部1に装着し、このバンドパスフィルタを介して赤外線撮像部1によって得られた対象領域の赤外線画像における前記ガス雲画像領域に当たる領域の輝度値(領域輝度値)に基づいて求めて良い。より具体的には、赤外線画像の前記領域外輝度値と温度(背景温度Tback)との対応関係(第1変換温度対応関係)が前記各種の所定のデータの1つとして記憶部8に予め記憶され、ガス測定装置Dは、制御処理部4によって、前記ガス雲画像領域外の画像の前記領域外輝度値に対応する背景温度Tbackを前記第1変換温度対応関係から求める。あるいは、赤外線画像の前記領域輝度値と温度(背景温度Tback)との対応関係(第2変換温度対応関係)が前記各種の所定のデータの1つとして記憶部8に予め記憶され、ガス測定装置Dは、制御処理部4によって、前記ガス雲画像領域に当たる領域の前記領域輝度値に対応する背景温度Tbackを前記第2変換温度対応関係から求める。 The background temperature T back may be obtained based on the luminance value (outside area luminance value) of the image in the vicinity of the gas cloud image area in the target area and outside the gas cloud image area, and includes the wavelength of the absorption line. A region corresponding to the gas cloud image region in the infrared image of the target region obtained by attaching the band-pass filter having a non-infrared wavelength range to the transmission wavelength band to the infrared imaging unit 1 through the band-pass filter. May be obtained based on the brightness value (region brightness value). More specifically, a correspondence relationship (first conversion temperature correspondence relationship) between the out-of-region luminance value of the infrared image and the temperature (background temperature T back ) is stored in advance in the storage unit 8 as one of the various predetermined data. The stored gas measurement device D uses the control processing unit 4 to obtain the background temperature T back corresponding to the out-of-region luminance value of the image outside the gas cloud image region from the first conversion temperature correspondence relationship. Alternatively, a correspondence relationship (second conversion temperature correspondence relationship) between the region luminance value of the infrared image and the temperature (background temperature T back ) is stored in advance in the storage unit 8 as one of the various predetermined data, and gas measurement is performed. The device D uses the control processing unit 4 to obtain the background temperature T back corresponding to the region luminance value of the region corresponding to the gas cloud image region from the second converted temperature correspondence relationship.
 濃度処理部44は、ガス雲処理部42で抽出したガス雲画像領域において、前記ガス雲における前記一箇所を通る横線の長さ(前記一箇所に関するガス雲の横幅)を求め、前記求めた横線の長さを前記ガス雲の厚みとして濃度厚み積処理部43で求めた前記ガス雲の濃度厚み積から前記ガス雲の濃度を求めるものである。すなわち、前記濃度は、前記濃度厚み積を前記厚みで除算することで平均濃度として求められる。 In the gas cloud image region extracted by the gas cloud processing unit 42, the concentration processing unit 44 obtains the length of the horizontal line passing through the one place in the gas cloud (the lateral width of the gas cloud at the one place), and the obtained horizontal line. The concentration of the gas cloud is obtained from the concentration / thickness product of the gas cloud obtained by the concentration / thickness product processing unit 43 using the length of the gas cloud as the thickness of the gas cloud. That is, the concentration is obtained as an average concentration by dividing the concentration-thickness product by the thickness.
 危険度処理部45は、濃度厚み積処理部43で求めたガス雲の濃度厚み積に対する、危険性(例えば毒性や爆発性等)の度合いを表す指標である危険度を求めるものである。より具体的には、ガス雲の濃度厚み積と危険度との対応関係(危険度対応関係)が前記各種の所定のデータの1つとして記憶部8に予め記憶され、危険度処理部45は、濃度厚み積処理部43で求めたガス雲の濃度厚み積ctに対する危険度を前記危険度対応関係から求める。例えば危険度対応関係は、予め設定された第1危険度判定閾値Gth1以下の濃度厚み積ctには、危険性の少ない“危険度小”が対応付けられ、前記第1危険度判定閾値Gth1を越え予め設定された第2危険度判定閾値Gth2以下の濃度厚み積ctには、中程度の危険性である“危険度中”が対応付けられ、前記第2危険度判定閾値Gth2を越えた濃度厚み積ctには、危険性の高い“危険度大”が対応付けられる。 The risk level processing unit 45 calculates a risk level that is an index representing the degree of risk (for example, toxicity, explosiveness, etc.) with respect to the gas cloud concentration / thickness product determined by the concentration / thickness product processing unit 43. More specifically, a correspondence relationship (risk degree correspondence relationship) between the concentration thickness product of the gas cloud and the risk level (risk level correspondence relationship) is stored in advance in the storage unit 8 as one of the various predetermined data, and the risk level processing unit 45 is The degree of risk for the concentration thickness product ct of the gas cloud obtained by the concentration / thickness product processing unit 43 is obtained from the risk correspondence relationship. For example, in the risk correspondence relationship, a low density risk product “ct” that is equal to or less than a preset first risk determination threshold Gth1 is associated with “low risk” and the first risk determination threshold Gth1 The density thickness product ct exceeding the preset second risk determination threshold Gth2 is associated with the medium risk “medium risk”, and the density exceeding the second risk determination threshold Gth2 “High risk level” with high risk is associated with the thickness product ct.
 本実施形態では、濃度処理部44によって濃度が求められているので、危険度処理部45は、濃度処理部44で求めた濃度と前記ガスが爆発する最低濃度である爆発下限濃度とに基づいて爆発の危険性の度合いを表す指標である爆発危険度を前記危険度として求めている。より具体的には、ガス雲の濃度と爆発危険度との対応関係(爆発危険度対応関係)が前記各種の所定のデータの1つとして記憶部8に予め記憶され、危険度処理部45は、濃度処理部44で求めたガス雲の濃度cに対する爆発危険度を前記爆発危険度対応関係から求める。例えば、前記爆発下限濃度は、例えば、可燃性ガスが空気と混合し着火によって爆発を起こす最低濃度である爆発下限界(Lower Explosive Limit)であり、前記爆発危険度対応関係は、予め設定された第1危険度判定閾値Gth1(例えば5%LEL等)以下の濃度cには、危険性の無い“爆発危険度0”が対応付けられ、前記第1危険度判定閾値Gth1を越え予め設定された第2危険度判定閾値Gth2(例えば10%LEL等)以下の濃度cには、危険性の小さい“爆発危険度1”が対応付けられ、前記第2危険度判定閾値Gth2を越え予め設定された第3危険度判定閾値Gth3(例えば20%LEL等)以下の濃度cには、中程度の危険性である“爆発危険度2”が対応付けられ、前記第3危険度判定閾値Gth3を越え予め設定された第4危険度判定閾値Gth4(例えば30%LEL等)以下の濃度cには、危険性の大きい“爆発危険度3”が対応付けられ、前記第4危険度判定閾値Gth4を越えた濃度cには、危険である“爆発注意”が対応付けられる。このように前記危険度は、濃度に応じて複数の段階、例えば3段階や5段階等に区分けされる。 In this embodiment, since the concentration is determined by the concentration processing unit 44, the risk processing unit 45 is based on the concentration determined by the concentration processing unit 44 and the lower explosion limit concentration that is the lowest concentration at which the gas explodes. The explosion risk, which is an index representing the degree of explosion risk, is obtained as the risk. More specifically, a correspondence relationship (explosion risk correspondence relationship) between the concentration of the gas cloud and the explosion risk (explosion risk correspondence) is stored in advance in the storage unit 8 as one of the various predetermined data. Then, the explosion risk for the gas cloud concentration c obtained by the concentration processing unit 44 is obtained from the explosion risk correspondence relationship. For example, the lower explosive concentration is, for example, the lower explosive limit that is the lowest concentration that causes combustible gas to mix with air and cause an explosion upon ignition, and the explosive risk correspondence relationship is set in advance. The concentration c below the first risk determination threshold Gth1 (for example, 5% LEL or the like) is associated with “explosion risk 0” having no danger, and is set in advance exceeding the first risk determination threshold Gth1. The concentration c below the second risk determination threshold Gth2 (for example, 10% LEL) is associated with “explosion risk 1” having a low risk, and is set in advance exceeding the second risk determination threshold Gth2. The concentration c equal to or lower than the third risk determination threshold Gth3 (for example, 20% LEL) is associated with “explosion risk 2”, which is a medium risk, and the third risk determination threshold. A concentration c that exceeds Gth3 and is equal to or less than a preset fourth risk determination threshold Gth4 (for example, 30% LEL) is associated with “explosion risk 3” having a high risk, and the fourth risk determination threshold. Concentration c exceeding Gth4 is associated with dangerous “explosion caution”. As described above, the degree of risk is classified into a plurality of stages, for example, three stages, five stages, and the like according to the concentration.
 なお、メタンガスでは、空気中において、爆発の最低濃度(爆発下限界)cは、5%であり、濃度5%が100%LELに当たる。このため、例えば、メタンガスでは、濃度2.5%は、50%LELとなり、濃度1%は、20%LELとなる。 In the case of methane gas, the minimum explosion concentration (lower explosion limit) c is 5% in the air, and the 5% concentration corresponds to 100% LEL. For this reason, for example, in methane gas, the concentration of 2.5% is 50% LEL, and the concentration of 1% is 20% LEL.
 表示処理部46は、可視撮像部2で生成された対象領域の可視画像、ガス雲処理部42で抽出されたガス雲画像領域、濃度厚み積処理部43で求めた前記ガス雲の濃度厚み積、濃度処理部44で求めた前記ガス雲の濃度、および、危険度処理部45で求めた前記危険度を表示部6に表示するものである。より具体的には、表示処理部46は、可視撮像部2で生成された対象領域の可視画像に、ガス雲処理部42で抽出されたガス雲画像領域を重畳して表示部6に表示し、前記ガス雲画像領域に対応付けて前記濃度厚み積、前記濃度および前記危険度を表示部6に表示する。 The display processing unit 46 includes a visible image of the target region generated by the visible imaging unit 2, a gas cloud image region extracted by the gas cloud processing unit 42, and a concentration / thickness product of the gas cloud obtained by the concentration / thickness product processing unit 43. The concentration of the gas cloud determined by the concentration processing unit 44 and the risk level determined by the risk level processing unit 45 are displayed on the display unit 6. More specifically, the display processing unit 46 superimposes the gas cloud image region extracted by the gas cloud processing unit 42 on the visible image of the target region generated by the visible imaging unit 2 and displays it on the display unit 6. The concentration-thickness product, the concentration, and the risk level are displayed on the display unit 6 in association with the gas cloud image region.
 なお、上述において、ガス測定装置Dは、これら赤外線撮像部1、可視撮像部2、ガス雲温度検出部3、制御処理部4、入力部5、表示部6、IF部7および記憶部8を1つに纏めて構成されて良い。この場合、赤外線撮像部1は、対象領域の赤外線画像を取得する赤外線画像取得部の一例に相当し、ガス雲温度検出部3は、前記ガス雲のガス温度を取得するガス雲温度取得部の一例に相当する。あるいは、ガス測定装置Dは、これら赤外線撮像部1、可視撮像部2およびガス雲温度検出部3を1つに纏めて構成したセンサ部と、これら制御処理部4、入力部5、表示部6、IF部7および記憶部8を1つに纏めて構成し、前記センサ部と有線または無線によって通信可能に接続した本体部とを備えて構成されて良い。この場合、IF部7は、対象領域の赤外線画像を取得する赤外線画像取得部の他の一例に相当し、さらに、前記ガス雲のガス温度を取得するガス雲温度取得部の他の一例に相当する。そして、これらの場合において、遠隔地で監視可能となるように、表示部6は、さらに、有線または無線によって通信可能に接続される状態で分離され、遠隔地に配置されても良い。 In the above description, the gas measuring device D includes the infrared imaging unit 1, the visible imaging unit 2, the gas cloud temperature detection unit 3, the control processing unit 4, the input unit 5, the display unit 6, the IF unit 7, and the storage unit 8. A single unit may be configured. In this case, the infrared imaging unit 1 corresponds to an example of an infrared image acquisition unit that acquires an infrared image of a target region, and the gas cloud temperature detection unit 3 is a gas cloud temperature acquisition unit that acquires the gas temperature of the gas cloud. It corresponds to an example. Alternatively, the gas measurement device D includes a sensor unit configured by combining the infrared imaging unit 1, the visible imaging unit 2, and the gas cloud temperature detection unit 3, the control processing unit 4, the input unit 5, and the display unit 6. The IF unit 7 and the storage unit 8 may be configured as a single unit, and may include a main body unit that is communicably connected to the sensor unit by wire or wirelessly. In this case, the IF unit 7 corresponds to another example of an infrared image acquisition unit that acquires an infrared image of the target region, and further corresponds to another example of a gas cloud temperature acquisition unit that acquires the gas temperature of the gas cloud. To do. In these cases, the display unit 6 may be further separated in a state where it is communicably connected by wire or wireless so that it can be monitored at a remote place, and may be arranged at a remote place.
 次に、本実施形態の動作について説明する。図5は、実施形態におけるガス測定装置の動作を示すフローチャートである。図6は、実施形態におけるガス測定装置の表示画面を説明するための模式図である。 Next, the operation of this embodiment will be described. FIG. 5 is a flowchart illustrating the operation of the gas measurement device according to the embodiment. FIG. 6 is a schematic diagram for explaining a display screen of the gas measurement device according to the embodiment.
 このようなガス測定装置Dは、赤外線撮像部1の撮影方向および可視撮像部2の撮影方向それぞれを対象領域に向けて配設され、ユーザ(オペレータ)によって図略の電源スイッチがオンされると、制御処理部4は、必要な各部の初期化を実行し、制御処理プログラムの実行によって、制御処理部4には、制御部41、ガス雲処理部42、濃度厚み積処理部43、濃度処理部44、危険度処理部45および表示処理部46が機能的に構成される。そして、ユーザによって入力部5から測定動作の開始が入力され指示されると、対象領域に対しガスの測定動作を開始する。 Such a gas measuring device D is arranged with the imaging direction of the infrared imaging unit 1 and the imaging direction of the visible imaging unit 2 facing the target area, and when a power switch (not shown) is turned on by the user (operator). The control processing unit 4 executes initialization of each necessary unit, and by executing the control processing program, the control processing unit 4 includes the control unit 41, the gas cloud processing unit 42, the concentration / thickness product processing unit 43, and the concentration processing. The unit 44, the risk level processing unit 45, and the display processing unit 46 are functionally configured. When the user inputs and instructs the start of the measurement operation from the input unit 5, the gas measurement operation is started for the target region.
 より具体的には、図5において、まず、ガス測定装置Dは、赤外線撮像部1によって、前記対象領域を赤外で撮像し、前記対象領域の赤外線画像を生成して取得する。この前記対象領域の赤外線画像(赤外線画像の画像データ)は、赤外線撮像部1から制御処理部4へ出力される(S1)。 More specifically, in FIG. 5, first, the gas measuring apparatus D captures and acquires an infrared image of the target area by imaging the target area with the infrared imaging unit 1. The infrared image (image data of the infrared image) of the target area is output from the infrared imaging unit 1 to the control processing unit 4 (S1).
 次に、ガス測定装置Dは、可視撮像部2によって、前記対象領域を可視で撮像し、前記対象領域の可視画像を生成して取得する。この前記対象領域の可視画像(可視画像の画像データ)は、可視撮像部2から制御処理部4へ出力される(S2)。 Next, the gas measuring device D captures and captures the target area with the visible imaging unit 2, and generates and acquires a visible image of the target area. The visible image of the target area (image data of the visible image) is output from the visible imaging unit 2 to the control processing unit 4 (S2).
 次に、ガス測定装置Dは、制御処理部4によって、対象領域の空間に所定のガスで形成されたガス雲GSが発生したか否かを判定する(S3)。なお、ガス漏れを検出する場合には、前記ガス雲GSが漏洩ガスによって形成されたものと想定することで、この処理S3によってガス漏れの有無が判定できる。より具体的には、制御処理部4は、ガス雲処理部42によって、赤外線撮像部1で生成された対象領域の赤外線画像に基づいてガス雲GSのガス雲画像領域を抽出する。この結果、ガス雲画像領域が抽出されなかった場合(No)には、制御処理部4は、ガス雲GSの不発生と判定し、後述の処理S10を実行する。一方、ガス雲画像領域が抽出された場合(Yes)には、制御処理部4は、ガス雲GSの発生と判定し、次の処理S4を実行する。 Next, the gas measuring device D determines whether or not a gas cloud GS formed of a predetermined gas is generated in the space of the target region by the control processing unit 4 (S3). In addition, when detecting gas leak, the presence or absence of gas leak can be determined by this process S3 by assuming that the said gas cloud GS was formed with leak gas. More specifically, the control processing unit 4 causes the gas cloud processing unit 42 to extract a gas cloud image region of the gas cloud GS based on the infrared image of the target region generated by the infrared imaging unit 1. As a result, when the gas cloud image region is not extracted (No), the control processing unit 4 determines that the gas cloud GS is not generated, and executes a process S10 described later. On the other hand, when the gas cloud image region is extracted (Yes), the control processing unit 4 determines that the gas cloud GS is generated, and executes the next process S4.
 処理S4では、ガス測定装置Dは、ガス雲温度検出部3によって、ガス雲GSのガス温度(本実施形態では大気温度)Tを検出して取得する。このガス温度(大気温度)Tは、ガス雲温度検出部3から制御処理部4へ出力される。 In the processing S4, the gas measuring apparatus D, by the gas cloud temperature detection unit 3 (in the present embodiment the atmospheric temperature) gas temperature Gasukumo GS is obtained by detecting the T g. This gas temperature (atmospheric temperature) Tg is output from the gas cloud temperature detection unit 3 to the control processing unit 4.
 次に、ガス測定装置Dは、制御処理部4によって、赤外線撮像部1で生成された前記対象領域の赤外線画像に基づいて背景温度Tbackを求める(S5)。より具体的には、制御処理部4は、例えば、ガス雲画像領域近傍であってガス雲画像領域外の画像の領域外輝度値を求め、この領域外輝度値に対応する背景温度Tbackを記憶部8に予め記憶した前記第1変換温度対応関係から求める。また例えば、制御処理部4は、吸収線の波長を含まない赤外線波長範囲を透過波長帯域とするバンドパスフィルタを介して赤外線撮像部1によって得られた対象領域の赤外線画像における前記ガス雲画像領域に当たる領域の領域輝度値を求め、この領域輝度値に対応する背景温度Tbackを記憶部8に予め記憶した前記第2変換温度対応関係から求める。 Next, the gas measuring device D obtains the background temperature T back based on the infrared image of the target area generated by the infrared imaging unit 1 by the control processing unit 4 (S5). More specifically, for example, the control processing unit 4 obtains an out-of-region luminance value of an image in the vicinity of the gas cloud image region and outside the gas cloud image region, and calculates the background temperature T back corresponding to the out-of-region luminance value. Obtained from the first conversion temperature correspondence stored in advance in the storage unit 8. Further, for example, the control processing unit 4 is configured such that the gas cloud image region in the infrared image of the target region obtained by the infrared imaging unit 1 through a bandpass filter whose transmission wavelength band is an infrared wavelength range not including the wavelength of the absorption line. It obtains a region luminance value of the region corresponding to, determined from pre-stored second conversion temperature relationship background temperature T back corresponding to the area luminance value in the storage unit 8.
 なお、これら上述の処理S4および処理S5は、相互に処理の順番を入れ換えて実行されて良く、また、同時並行的に(並列処理で)実行されて良い。 Note that the above-described processing S4 and processing S5 may be executed with their processing order interchanged with each other, or may be executed in parallel (in parallel processing).
 次に、ガス測定装置Dは、濃度厚み積処理部43によって、ガス雲処理部42で抽出したガス雲GSにおける一箇所の赤外線量を、赤外線撮像部1で生成したガス雲画像領域の赤外線画像に基づいて求め、この求めた赤外線量とガス雲温度検出部3で検出したガス温度とに基づいてガス雲GSの濃度厚み積ctを求める(S6)。 Next, the gas measuring apparatus D uses the concentration / thickness product processing unit 43 to generate an infrared image of the gas cloud image region generated by the infrared imaging unit 1 by using the infrared amount of one location in the gas cloud GS extracted by the gas cloud processing unit 42. The concentration thickness product ct of the gas cloud GS is obtained based on the obtained infrared amount and the gas temperature detected by the gas cloud temperature detection unit 3 (S6).
 次に、ガス測定装置Dは、濃度処理部44によって、ガス雲処理部42で抽出したガス雲画像領域において、前記ガス雲GSにおける前記一箇所を通る横線の長さを求め、この求めた横線の長さを前記ガス雲GSの厚みとして濃度厚み積処理部43で求めた前記ガス雲GSの濃度厚み積ctから前記ガス雲GSの濃度cを求める(S7)。より具体的には、濃度処理部44は、濃度厚み積処理部43で求めた前記ガス雲GSの濃度厚み積ctを前記厚みで除算することで前記ガス雲GSの濃度cを求める。 Next, the gas measuring device D obtains the length of the horizontal line passing through the one place in the gas cloud GS in the gas cloud image region extracted by the gas cloud processing unit 42 by the concentration processing unit 44, and the obtained horizontal line. The concentration c of the gas cloud GS is obtained from the concentration / thickness product ct of the gas cloud GS obtained by the concentration / thickness product processor 43 with the length of the gas cloud GS as the thickness (S7). More specifically, the concentration processing unit 44 calculates the concentration c of the gas cloud GS by dividing the concentration / thickness product ct of the gas cloud GS determined by the concentration / thickness product processing unit 43 by the thickness.
 次に、ガス測定装置Dは、危険度処理部45によって、濃度厚み積処理部43で求めたガス雲GSの濃度厚み積ctに対する、危険度を求める(S8)。より具体的には、本実施形態では、危険度処理部45は、濃度厚み積処理部43で求めたガス雲GSの濃度厚み積ctに基づいて濃度処理部44によって処理S6で求めた濃度cに対する爆発危険度を前記爆発危険度対応関係から求める。 Next, the gas measuring device D obtains the degree of risk with respect to the concentration / thickness product ct of the gas cloud GS obtained by the concentration / thickness product processing unit 43 by the risk processing unit 45 (S8). More specifically, in the present embodiment, the risk level processing unit 45 determines the concentration c obtained in step S6 by the concentration processing unit 44 based on the concentration thickness product ct of the gas cloud GS obtained by the concentration thickness product processing unit 43. Is determined from the explosion risk correspondence relationship.
 次に、ガス測定装置Dは、これら上述の各処理によって求められた、可視撮像部2で生成された対象領域の可視画像、ガス雲処理部42で抽出されたガス雲画像領域、濃度厚み積処理部43で求めた前記ガス雲GSの濃度厚み積ct、濃度処理部44で求めた前記ガス雲GSの濃度、および、危険度処理部45で求めた前記危険度(本実施形態では爆発危険度)を表示処理部46によって表示部6に表示する(S9)。より具体的には、表示処理部46は、可視撮像部2で生成された対象領域の可視画像に、ガス雲処理部42で抽出されたガス雲画像領域をその位置合わせを行って重畳して表示部6に表示し、前記ガス雲画像領域内の所定の一箇所に対応付けて前記濃度厚み積ct、前記濃度cおよび前記爆発危険度を表示部6に表示する。 Next, the gas measuring device D obtains the visible image of the target region generated by the visible imaging unit 2, the gas cloud image region extracted by the gas cloud processing unit 42, and the concentration / thickness product obtained by each of the above-described processes. The concentration thickness product ct of the gas cloud GS obtained by the processing unit 43, the concentration of the gas cloud GS obtained by the concentration processing unit 44, and the risk obtained by the risk processing unit 45 (explosion risk in this embodiment). Degree) is displayed on the display unit 6 by the display processing unit 46 (S9). More specifically, the display processing unit 46 aligns and superimposes the gas cloud image region extracted by the gas cloud processing unit 42 on the visible image of the target region generated by the visible imaging unit 2. Displayed on the display unit 6, the concentration-thickness product ct, the concentration c, and the explosion risk are displayed on the display unit 6 in association with a predetermined location in the gas cloud image region.
 一例では、例えば、図6に示すように、これら各情報が表示部6に表示される。なお、図6には、説明の都合上、ガス雲GSの厚みの求め方も図示されているが、前記各情報の表示では省略しても良い。より詳しくは、前記ガス雲GSにおける所定の一箇所SPが、上述の処理S1ないし処理S3の各処理において抽出されたガス雲画像領域内に設定される。例えば、前記ガス雲GSにおける所定の一箇所SPは、ガス雲画像領域における幾何学的な重心位置に設定される。また例えば、前記ガス雲GSにおける所定の一箇所SPは、図6に示すように、ガス雲画像領域におけるガスの漏洩箇所(漏洩位置)の近傍に設定される。なお、前記漏洩箇所(漏洩位置)は、例えば、時系列に連続した複数のガス雲画像領域を時刻を遡って辿ることで推定できる。また例えば、前記漏洩箇所(漏洩位置)は、例えば、時系列に連続した複数のガス雲画像領域に基づいてガス雲GSにおける複数のオプティカルフローを求め、複数のオプティカルフローを時刻を遡って辿ることで推定できる。そして、この所定の一箇所SPについて、その濃度厚み積ct、濃度cおよび爆発危険度が処理S4ないし処理S8の各処理によって求められる。なお、処理S7では、上述したように、濃度処理部44は、図6に示すように前記ガス雲GSにおける前記一箇所SPを通る横線SLの長さWxを求め、この求めた横線SLの長さWxを前記ガス雲GSの厚みtとし(t=Wx)、この長さWxで濃度厚み積ctを除算することで前記ガス雲GSの濃度cを求める(c=ct/Wx)。ここで、一画素に写る領域の実長が記憶部8に前記各種の所定のデータの1つとして予め記憶され、ガス画像領域内における横線SLの画素数が計数され、この計数された画素数に前記一画素に写る領域の実長が乗算されることで前記横線SLの長さWxが求められる。なお、赤外線撮像部1の撮像方向が水平ではなく、例えば上方から下方へ向く方向等である場合には、撮像方向に応じて前記横線SLの長さWxが補正されても良い。そして、処理S9では、表示処理部46は、図6に示すように、可視撮像部2で生成された対象領域の可視画像に、ガス雲処理部42で抽出されたガス雲GSのガス雲画像領域をその位置合わせを行って重畳して表示部6に表示する。そして、表示処理部46は、図6に示すように、前記所定の一箇所SPを表示部6に表示し、これに対応付けてその濃度厚み積ct(図6に示す例では6%LEL・m)、濃度c(図6に示す例では6%LEL)および爆発危険度(図6に示す例では“爆発危険度1”)が表示部6に表示される。 In one example, for example, as shown in FIG. 6, these pieces of information are displayed on the display unit 6. For convenience of explanation, FIG. 6 also shows how to obtain the thickness of the gas cloud GS, but it may be omitted in the display of each information. More specifically, one predetermined spot SP in the gas cloud GS is set in the gas cloud image region extracted in each of the processes S1 to S3. For example, the predetermined one spot SP in the gas cloud GS is set to the geometric gravity center position in the gas cloud image region. Further, for example, the predetermined one spot SP in the gas cloud GS is set in the vicinity of a gas leak point (leak position) in the gas cloud image region as shown in FIG. Note that the leak location (leak position) can be estimated, for example, by tracing a plurality of time-series gas cloud image regions back in time. Further, for example, the leakage location (leakage position) is obtained, for example, by obtaining a plurality of optical flows in the gas cloud GS based on a plurality of gas cloud image regions continuous in time series, and tracing the plurality of optical flows back in time. Can be estimated. Then, the concentration thickness product ct, the concentration c, and the explosion risk degree are determined for each of the predetermined locations SP by each of the processes S4 to S8. In the process S7, as described above, the concentration processing unit 44 obtains the length Wx of the horizontal line SL passing through the one spot SP in the gas cloud GS as shown in FIG. The thickness Wx is defined as the thickness t of the gas cloud GS (t = Wx), and the concentration thickness product ct is divided by the length Wx to obtain the concentration c of the gas cloud GS (c = ct / Wx). Here, the actual length of the region shown in one pixel is stored in advance in the storage unit 8 as one of the various predetermined data, the number of pixels of the horizontal line SL in the gas image region is counted, and the counted number of pixels. Is multiplied by the actual length of the region shown in one pixel to obtain the length Wx of the horizontal line SL. Note that when the imaging direction of the infrared imaging unit 1 is not horizontal, for example, a direction from above to below, the length Wx of the horizontal line SL may be corrected according to the imaging direction. In step S9, the display processing unit 46 adds the gas cloud image of the gas cloud GS extracted by the gas cloud processing unit 42 to the visible image of the target area generated by the visible imaging unit 2, as shown in FIG. The regions are aligned and superimposed and displayed on the display unit 6. Then, as shown in FIG. 6, the display processing unit 46 displays the predetermined one spot SP on the display unit 6, and associates this with the concentration thickness product ct (in the example shown in FIG. 6, 6% LEL · m), concentration c (6% LEL in the example shown in FIG. 6), and explosion risk (“explosion risk 1” in the example shown in FIG. 6) are displayed on the display unit 6.
 なお、処理S9において、例えば“爆発注意”等のように爆発危険度が比較的高い場合に、爆発の危険性が警告されても良い。より具体的には、危険度処理部45は、濃度処理部44で求めた濃度が警告の実行を判定するための警告判定閾値Ath以上か否かをさらに判定し、濃度処理部44で求めた前記濃度が前記警告判定閾値Ath以上である場合には、表示処理部46によって例えば爆発危険度の表示色を通常の表示色(警告を伴わない場合の表示色)と異なる色に変えたり爆発危険度を点滅表示したりする等の表示態様で警告を実行し、一方、濃度処理部44で求めた前記濃度が前記警告判定閾値Ath以上である場合には、警告を実行しない。なお、警告音や警告の音声メッセージ等の音で前記警告が実行されても良い。 In the process S9, when the explosion risk is relatively high, for example, “explosion caution”, the danger of explosion may be warned. More specifically, the risk processing unit 45 further determines whether or not the concentration obtained by the concentration processing unit 44 is equal to or higher than a warning determination threshold Ath for determining execution of the warning, and obtained by the concentration processing unit 44. When the density is equal to or higher than the warning determination threshold Ath, the display processing unit 46 changes the display color of the explosion risk, for example, to a color different from a normal display color (display color when no warning is accompanied) or an explosion risk. The warning is executed in a display form such as blinking the degree. On the other hand, when the concentration obtained by the concentration processing unit 44 is equal to or higher than the warning determination threshold Ath, the warning is not executed. The warning may be executed with a sound such as a warning sound or a warning voice message.
 図5に戻って、そして、処理S10では、ガス測定装置Dは、制御処理部4によって、ユーザによる測定動作の終了を入力部5で受け付けているか否かを判断し、測定動作の終了を入力部5で受け付けている場合(Yes)には、処理を終了し、測定動作の終了を入力部5で受け付けていない場合(No)には、処理を処理S1に戻す。 Returning to FIG. 5, and in step S <b> 10, the gas measuring device D determines whether or not the input processing unit 5 has accepted the end of the measurement operation by the user, and inputs the end of the measurement operation. If it is received by the unit 5 (Yes), the process ends, and if the end of the measurement operation is not received by the input unit 5 (No), the process returns to the process S1.
 以上説明したように、本実施形態におけるガス測定装置Dおよびこれに実装されたガス測定方法は、ガス雲GSにおける一箇所の赤外線量とそのガス温度とに基づいて前記ガス雲の濃度厚み積を求める濃度厚み積処理部43を備えるので、一箇所の測定点でガスの濃度厚み積を測定できる。 As described above, the gas measuring device D in this embodiment and the gas measuring method mounted on the gas measuring device D calculate the concentration thickness product of the gas cloud based on the amount of infrared rays at one location in the gas cloud GS and the gas temperature. Since the required concentration / thickness product processing unit 43 is provided, the concentration / thickness product of gas can be measured at one measurement point.
 上記ガス測定装置Dおよびガス測定方法は、上述の関係式を用いるので、好適に一箇所の測定点でガスの濃度厚み積を測定できる。 Since the gas measuring apparatus D and the gas measuring method use the above-described relational expression, it is possible to preferably measure the gas concentration thickness product at one measurement point.
 上記ガス測定装置Dおよびガス測定方法は、大気の温度を検出する温度センサを用いてガス雲温度検出部3を構成するので、より簡易にガス温度を検出できる。 Since the gas measuring device D and the gas measuring method constitute the gas cloud temperature detecting unit 3 using a temperature sensor that detects the temperature of the atmosphere, the gas temperature can be detected more easily.
 上記ガス測定装置Dおよびガス測定方法は、危険度処理部45を備えるので、ユーザは、危険度処理部45で求められた危険度を参照することで、ガス雲GSの危険性を判断できる。本実施形態では、一例として、前記危険度として爆発危険度を求めることができる。上記ガス測定装置Dおよびガス測定方法は、爆発危険度を表示部6に表示することで、爆発の危険性を警告できる。 Since the gas measuring device D and the gas measuring method include the risk processing unit 45, the user can determine the risk of the gas cloud GS by referring to the risk obtained by the risk processing unit 45. In this embodiment, as an example, an explosion risk can be obtained as the risk. The gas measuring device D and the gas measuring method can warn of the risk of explosion by displaying the explosion risk level on the display unit 6.
 上記ガス測定装置Dおよびガス測定方法は、濃度処理部44を備えるので、ガス雲GSの濃度を測定できる。 Since the gas measuring device D and the gas measuring method include the concentration processing unit 44, the concentration of the gas cloud GS can be measured.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるガス測定装置は、対象領域の赤外線画像を取得する赤外線画像取得部と、前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、空間に所定のガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理部と、前記ガス雲のガス温度を取得するガス雲温度取得部と、前記ガス雲における一箇所の赤外線量を前記赤外線画像取得部で取得した前記赤外線画像に基づいて求め、前記求めた赤外線量と前記ガス雲温度取得部で検出したガス温度とに基づいて前記ガス雲の濃度厚み積を求める濃度厚み積処理部とを備える。好ましくは、上述のガス測定装置において、前記赤外線画像取得部は、外部機器からデータの入力を受けるインターフェース部であり、前記インターフェース部は、前記外部機器として、対象領域を赤外で撮像し前記対象領域の赤外線画像を生成する赤外線撮像部から、前記対象領域の赤外線画像の入力を受ける。好ましくは、上述のガス測定装置において、前記赤外線画像取得部は、対象領域を赤外で撮像し、前記対象領域の赤外線画像を生成する赤外線撮像部である。好ましくは、上述のガス測定装置において、前記ガス雲温度取得部は、外部機器からデータの入力を受けるインターフェース部であり、前記インターフェース部は、前記ガス雲のガス温度を検出するガス雲温度検出部から、前記ガス雲のガス温度の入力を受ける。好ましくは、上述のガス測定装置において、前記ガス雲温度取得部は、前記ガス雲のガス温度を検出するガス雲温度検出部である。 The gas measurement device according to one aspect is formed of a predetermined gas in a space based on an infrared image acquisition unit that acquires an infrared image of a target region and the infrared image of the target region acquired by the infrared image acquisition unit A gas cloud processing unit that extracts a gas cloud image region of the gas cloud, a gas cloud temperature acquisition unit that acquires a gas temperature of the gas cloud, and an infrared image acquisition unit that acquires an infrared amount at one location in the gas cloud A concentration-thickness product processing unit that obtains the concentration-thickness product of the gas cloud based on the obtained infrared amount and the gas temperature detected by the gas cloud temperature acquisition unit. Preferably, in the gas measurement device described above, the infrared image acquisition unit is an interface unit that receives input of data from an external device, and the interface unit captures an image of a target region in infrared as the external device. An infrared image of the target area is input from an infrared imaging unit that generates an infrared image of the area. Preferably, in the above-described gas measurement device, the infrared image acquisition unit is an infrared imaging unit that captures an infrared region of the target region and generates an infrared image of the target region. Preferably, in the above gas measurement device, the gas cloud temperature acquisition unit is an interface unit that receives data input from an external device, and the interface unit detects a gas temperature of the gas cloud. To receive the gas temperature of the gas cloud. Preferably, in the gas measurement device described above, the gas cloud temperature acquisition unit is a gas cloud temperature detection unit that detects a gas temperature of the gas cloud.
 このようなガス測定装置は、ガス雲における一箇所の赤外線量とそのガス温度とに基づいて前記ガス雲の濃度厚み積を求める濃度厚み積処理部を備えるので、一箇所の測定点でガスの濃度厚み積を測定できる。 Since such a gas measuring device includes a concentration / thickness product processing unit that obtains the concentration / thickness product of the gas cloud based on the amount of infrared rays at one location in the gas cloud and its gas temperature, Concentration thickness product can be measured.
 他の一態様では、上述のガス測定装置において、前記濃度厚み積処理部は、前記ガス雲における一箇所の赤外線量が前記ガス雲で吸収される吸収赤外線量と前記ガス雲から輻射される輻射赤外線量との和であることを表す関係式を用いることによって、前記求めた赤外線量と前記ガス雲温度取得部で取得したガス温度とに基づいて前記ガス雲の濃度厚み積を求める。好ましくは、上述のガス測定装置において、前記関係式は、前記ガス雲における一箇所の赤外線量をPとし、前記ガスの吸収率を波長λおよび濃度厚み積ctの関数τ(λ、ct)とし、背景が輻射(放射)した赤外線の量(背景輻射赤外線量)を背景温度Tbackおよび波長λの関数B(Tback,λ)とし、そして、前記ガス雲のガスが輻射した赤外線の量(ガス輻射赤外線量)をガス温度Tおよび波長λの関数B(T,λ)とする場合に、P=∫[τ(λ、ct)B(Tback,λ)+(1-τ(λ、ct))B(T,λ)]dλ(ただし、積分∫は、観測した赤外線の波長範囲に亘って実行される)である。好ましくは、上述のガス測定装置において、前記関係式は、P=∫[B(T,λ)+τ(λ、ct){B(Tback,λ)-B(T、λ)}]dλ(ただし、積分∫は、観測した赤外線の波長範囲に亘って実行される)である。 In another aspect, in the above-described gas measuring device, the concentration-thickness product processing unit includes an amount of infrared rays absorbed by the gas cloud and an amount of infrared rays radiated from the gas cloud. By using a relational expression that represents the sum of the amount of infrared rays, the concentration-thickness product of the gas cloud is obtained based on the obtained amount of infrared rays and the gas temperature acquired by the gas cloud temperature acquisition unit. Preferably, in the gas measuring apparatus described above, the relational expression is such that an infrared ray amount at one place in the gas cloud is P, and the absorption rate of the gas is a function τ g (λ, ct) of a wavelength λ and a concentration thickness product ct. The amount of infrared rays radiated (radiated) in the background (background radiated infrared ray amount) is a function B (T back , λ) of the background temperature T back and the wavelength λ, and the amount of infrared rays radiated by the gas of the gas cloud When (gas radiation infrared ray amount) is a function B (T g , λ) of the gas temperature T g and the wavelength λ, P = ∫ [τ g (λ, ct) B (T back , λ) + (1− τ g (λ, ct)) B (T g, λ)] dλ ( where integral ∫ is executed) over the wavelength range of the observed infrared. Preferably, in the above gas measuring device, the relational expression is P = P [B (T g , λ) + τ g (λ, ct) {B (T back , λ) −B (T g , λ)} ] Dλ (where the integral power is performed over the observed infrared wavelength range).
 このようなガス測定装置は、前記関係式を用いるので、好適に一箇所の測定点でガスの濃度厚み積を測定できる。 Since such a gas measuring apparatus uses the above-mentioned relational expression, the gas concentration thickness product can be preferably measured at one measurement point.
 他の一態様では、これら上述のガス測定装置において、前記ガス雲温度取得部は、大気の温度を検出する温度センサである。 In another aspect, in the above-described gas measurement devices, the gas cloud temperature acquisition unit is a temperature sensor that detects the temperature of the atmosphere.
 このようなガス測定装置は、大気の温度を検出する温度センサを用いて前記ガス雲温度取得部を構成するので、より簡易にガス温度を検出できる。 Since such a gas measuring device constitutes the gas cloud temperature acquisition unit using a temperature sensor that detects the temperature of the atmosphere, the gas temperature can be detected more easily.
 他の一態様では、これら上述のガス測定装置において、前記濃度厚み積処理部で求めた前記ガス雲の濃度厚み積に基づいて、危険性の度合いを表す指標である危険度を求める危険度処理部をさらに備える。 In another aspect, in the above-described gas measuring device, the risk processing for obtaining a risk that is an index representing the degree of risk based on the concentration / thickness product of the gas cloud obtained by the concentration / thickness product processing unit. The unit is further provided.
 このようなガス測定装置は、前記危険度処理部をさらに備えるので、ユーザは、前記危険度処理部で求められた危険度(例えば毒性の危険度や爆発性の危険度等)を参照することで、前記ガス雲の危険性を判断できる。 Since such a gas measuring device further includes the risk processing unit, the user refers to the risk (eg, toxicity risk or explosive risk) obtained by the risk processing unit. Thus, the danger of the gas cloud can be determined.
 他の一態様では、これら上述のガス測定装置において、前記ガス雲における前記一箇所を通る横線の長さを求め、前記求めた横線の長さを前記ガス雲の厚みとして前記濃度厚み積処理部で求めた前記ガス雲の濃度厚み積から前記ガス雲の濃度を求める濃度処理部をさらに備える。 In another aspect, in the above-described gas measuring devices, the length of the horizontal line passing through the one place in the gas cloud is obtained, and the concentration-thickness product processing unit is defined by using the obtained length of the horizontal line as the thickness of the gas cloud. And a concentration processing unit for determining the concentration of the gas cloud from the concentration-thickness product of the gas cloud determined in (1).
 このようなガス測定装置は、濃度処理部をさらに備えるので、前記ガス雲の濃度を測定できる。 Since such a gas measuring device further includes a concentration processing unit, the concentration of the gas cloud can be measured.
 他の一態様では、上述のガス測定装置において、前記危険度処理部は、前記濃度処理部で求めた濃度と前記ガスが爆発する最低濃度である爆発下限濃度とに基づいて爆発の危険性の度合いを表す指標である爆発危険度を前記危険度として求める。好ましくは、上述のガス測定装置において、前記爆発下限濃度は、可燃性ガスが空気と混合し着火によって爆発を起こす最低濃度である爆発下限界(Lower Explosive Limit)である。 In another aspect, in the gas measurement device described above, the risk processing unit may determine an explosion risk based on the concentration obtained by the concentration processing unit and an explosion lower limit concentration that is a minimum concentration at which the gas explodes. An explosion risk level, which is an index representing the degree, is obtained as the risk level. Preferably, in the gas measurement device described above, the lower explosion limit concentration is a lower explosive limit (Low Explosive Limit) which is a lowest concentration at which a combustible gas mixes with air and causes an explosion upon ignition.
 このようなガス測定装置は、前記危険度として爆発危険度を求めることができる。 Such a gas measuring device can determine the explosion risk as the risk.
 そして、本発明の他の一態様にかかるガス測定方法は、対象領域の赤外線画像を取得する赤外線画像取得工程と、前記赤外線画像取得工程で取得した前記対象領域の赤外線画像に基づいて、空間に所定のガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理部と、前記ガス雲のガス温度を取得するガス雲温度取得工程と、前記ガス雲における一箇所の赤外線量を前記赤外線画像取得工程で取得した前記赤外線画像に基づいて求め、前記求めた赤外線量と前記ガス雲温度取得工程で検出したガス温度とに基づいて前記ガス雲の濃度厚み積を求める濃度厚み積処理工程とを備える。 The gas measurement method according to another aspect of the present invention includes an infrared image acquisition step of acquiring an infrared image of a target region, and a space based on the infrared image of the target region acquired in the infrared image acquisition step. A gas cloud processing unit for extracting a gas cloud image region of a gas cloud formed of a predetermined gas; a gas cloud temperature acquisition step for acquiring a gas temperature of the gas cloud; and an infrared ray amount at one location in the gas cloud A concentration-thickness product processing step for obtaining a concentration-thickness product of the gas cloud based on the infrared amount obtained in the infrared image acquisition step and the gas temperature detected in the gas cloud temperature acquisition step. With.
 このようなガス測定方法は、ガス雲における一箇所の赤外線量とそのガス温度とに基づいて前記ガス雲の濃度厚み積を求める濃度厚み積処理工程を備えるので、一箇所の測定点でガスの濃度厚み積を測定できる。 Since such a gas measuring method includes a concentration / thickness product treatment step for obtaining a concentration / thickness product of the gas cloud based on the amount of infrared rays at one location in the gas cloud and the gas temperature, the gas is measured at one measurement point. Concentration thickness product can be measured.
 この出願は、2015年10月29日に出願された日本国特許出願特願2015-212506を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2015-221506 filed on Oct. 29, 2015, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、ガス測定装置およびガス測定方法が提供できる。
 
According to the present invention, a gas measuring device and a gas measuring method can be provided.

Claims (7)

  1.  対象領域の赤外線画像を取得する赤外線画像取得部と、
     前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、空間に所定のガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理部と、
     前記ガス雲のガス温度を取得するガス雲温度取得部と、
     前記ガス雲における一箇所の赤外線量を前記赤外線画像取得部で取得した前記赤外線画像に基づいて求め、前記求めた赤外線量と前記ガス雲温度取得部で検出したガス温度とに基づいて前記ガス雲の濃度厚み積を求める濃度厚み積処理部とを備える、
     ガス測定装置。
    An infrared image acquisition unit for acquiring an infrared image of the target area;
    A gas cloud processing unit that extracts a gas cloud image region of a gas cloud formed of a predetermined gas in a space based on the infrared image of the target region acquired by the infrared image acquisition unit;
    A gas cloud temperature acquisition unit for acquiring a gas temperature of the gas cloud;
    The amount of infrared rays at one location in the gas cloud is determined based on the infrared image acquired by the infrared image acquisition unit, and the gas cloud is determined based on the determined infrared amount and the gas temperature detected by the gas cloud temperature acquisition unit. A concentration / thickness product processing unit for obtaining a concentration / thickness product of
    Gas measuring device.
  2.  前記濃度厚み積処理部は、前記ガス雲における一箇所の赤外線量が前記ガス雲で吸収される吸収赤外線量と前記ガス雲から輻射される輻射赤外線量との和であることを表す関係式を用いることによって、前記求めた赤外線量と前記ガス雲温度取得部で取得したガス温度とに基づいて前記ガス雲の濃度厚み積を求める、
     請求項1に記載のガス測定装置。
    The concentration-thickness product processing unit has a relational expression representing that the amount of infrared rays at one location in the gas cloud is the sum of the amount of infrared rays absorbed by the gas cloud and the amount of radiation infrared rays radiated from the gas cloud. By using the obtained infrared amount and the gas temperature acquired by the gas cloud temperature acquisition unit to determine the concentration thickness product of the gas cloud,
    The gas measuring device according to claim 1.
  3.  前記ガス雲温度取得部は、大気の温度を検出する温度センサである、
     請求項1または請求項2に記載のガス測定装置。
    The gas cloud temperature acquisition unit is a temperature sensor that detects the temperature of the atmosphere.
    The gas measuring device according to claim 1 or 2.
  4.  前記濃度厚み積処理部で求めた前記ガス雲の濃度厚み積に基づいて、危険性の度合いを表す指標である危険度を求める危険度処理部をさらに備える、
     請求項1ないし請求項3のいずれか1項に記載のガス測定装置。
    A risk processing unit for determining a risk that is an index representing the degree of danger based on the concentration thickness product of the gas cloud determined by the concentration thickness product processing unit;
    The gas measuring device according to any one of claims 1 to 3.
  5.  前記ガス雲における前記一箇所を通る横線の長さを求め、前記求めた横線の長さを前記ガス雲の厚みとして前記濃度厚み積処理部で求めた前記ガス雲の濃度厚み積から前記ガス雲の濃度を求める濃度処理部をさらに備える、
     請求項1ないし請求項4のいずれか1項に記載のガス測定装置。
    The gas cloud is obtained from the concentration / thickness product of the gas cloud obtained by the concentration / thickness product processing unit using the length of the horizontal line as the thickness of the gas cloud. A concentration processing unit for determining the concentration of
    The gas measuring device according to any one of claims 1 to 4.
  6.  前記危険度処理部は、前記濃度処理部で求めた濃度と前記ガスが爆発する最低濃度である爆発下限濃度とに基づいて爆発の危険性の度合いを表す指標である爆発危険度を前記危険度として求める、
     請求項4を引用する請求項5に記載のガス測定装置。
    The risk processing unit determines an explosion risk, which is an index representing a degree of explosion risk, based on the concentration obtained by the concentration processing unit and an explosion lower limit concentration that is a minimum concentration at which the gas explodes. Asking,
    The gas measuring device according to claim 5, which refers to claim 4.
  7.  対象領域の赤外線画像を取得する赤外線画像取得工程と、
     前記赤外線画像取得工程で取得した前記対象領域の赤外線画像に基づいて、空間に所定のガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理部と、
     前記ガス雲のガス温度を取得するガス雲温度取得工程と、
     前記ガス雲における一箇所の赤外線量を前記赤外線画像取得工程で取得した前記赤外線画像に基づいて求め、前記求めた赤外線量と前記ガス雲温度取得工程で検出したガス温度とに基づいて前記ガス雲の濃度厚み積を求める濃度厚み積処理工程とを備える、
     ガス測定方法。
    An infrared image acquisition step of acquiring an infrared image of the target area;
    A gas cloud processing unit that extracts a gas cloud image region of a gas cloud formed of a predetermined gas in a space based on the infrared image of the target region acquired in the infrared image acquisition step;
    A gas cloud temperature acquisition step of acquiring a gas temperature of the gas cloud;
    The amount of infrared rays at one location in the gas cloud is determined based on the infrared image acquired in the infrared image acquisition step, and the gas cloud is determined based on the determined infrared amount and the gas temperature detected in the gas cloud temperature acquisition step. A concentration-thickness product processing step for obtaining a concentration-thickness product of
    Gas measurement method.
PCT/JP2016/080966 2015-10-29 2016-10-19 Gas measurement device and gas measurement method WO2017073429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015212506 2015-10-29
JP2015-212506 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017073429A1 true WO2017073429A1 (en) 2017-05-04

Family

ID=58631604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080966 WO2017073429A1 (en) 2015-10-29 2016-10-19 Gas measurement device and gas measurement method

Country Status (1)

Country Link
WO (1) WO2017073429A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693609B1 (en) * 2018-11-28 2020-05-13 コニカミノルタ株式会社 Gas flow rate estimation device, gas flow rate estimation method, and gas flow rate estimation program
WO2020110411A1 (en) * 2018-11-28 2020-06-04 コニカミノルタ株式会社 Gas flow rate estimation device, gas flow rate estimation method, and gas flow rate estimation program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505308A (en) * 1996-12-03 2001-04-17 グラハム トーマス コンサルタンツ リミテッド Gas imaging method and apparatus
JP2009174990A (en) * 2008-01-24 2009-08-06 Nec Corp Gas-measuring device and gas-measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505308A (en) * 1996-12-03 2001-04-17 グラハム トーマス コンサルタンツ リミテッド Gas imaging method and apparatus
JP2009174990A (en) * 2008-01-24 2009-08-06 Nec Corp Gas-measuring device and gas-measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693609B1 (en) * 2018-11-28 2020-05-13 コニカミノルタ株式会社 Gas flow rate estimation device, gas flow rate estimation method, and gas flow rate estimation program
WO2020110411A1 (en) * 2018-11-28 2020-06-04 コニカミノルタ株式会社 Gas flow rate estimation device, gas flow rate estimation method, and gas flow rate estimation program

Similar Documents

Publication Publication Date Title
US10190975B2 (en) Leaked gas detection device and leaked gas detection method
US10837860B2 (en) Leaked gas detection device and leaked gas detection method
JP6492612B2 (en) Leaked gas detection device and leaked gas detection method
US11519852B2 (en) Gas detection-use image processing device, and gas detection-use image processing method
US10088344B2 (en) Underlying wall structure finder and infrared camera
US20150022667A1 (en) Activity and/or environment driven annotation prompts for thermal imager
JP7217180B2 (en) A method for multispectral quantification and identification of gases for optical gas imaging cameras
US11598716B2 (en) Gas image device and image acquisition method
WO2017073429A1 (en) Gas measurement device and gas measurement method
WO2015166265A1 (en) Self-correcting gas camera
US10642354B2 (en) Experimental chamber with computer-controlled display wall
MX2017013477A (en) Lidar and vision vehicle sensing.
JP2015152785A5 (en)
WO2020136969A1 (en) Measurement system, measurement device, measurement method, and program
WO2017069098A1 (en) Light on/off determination device and light on/off determination program
US9733129B1 (en) Multispectral band sensor
KR101742122B1 (en) Fire flower sensor error inspection apparatus and test methods
JP2013142928A5 (en) Information processing apparatus, control method, and program
KR20160014440A (en) Chemical gas detection system and controlling method thereof
JP6787337B2 (en) Gas measuring device and gas measuring method
KR20200042670A (en) Accident Vehicle Monitoring System
US20180300886A1 (en) System and method of producing and displaying visual information regarding gas clouds
KR102425924B1 (en) Apparatus for detecting illegal photographing equipment
CN106852189A (en) Bottom wall feature detector and infrared camera
JPWO2021095248A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP