WO2017073278A1 - 直線駆動アクチュエータ - Google Patents

直線駆動アクチュエータ Download PDF

Info

Publication number
WO2017073278A1
WO2017073278A1 PCT/JP2016/079603 JP2016079603W WO2017073278A1 WO 2017073278 A1 WO2017073278 A1 WO 2017073278A1 JP 2016079603 W JP2016079603 W JP 2016079603W WO 2017073278 A1 WO2017073278 A1 WO 2017073278A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
gear
driven gear
rotation axis
axis
Prior art date
Application number
PCT/JP2016/079603
Other languages
English (en)
French (fr)
Inventor
佑介 山本
雄秋 丸山
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2017073278A1 publication Critical patent/WO2017073278A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a linear drive actuator, and more particularly, to a linear drive actuator configured such that a moving member is reciprocated linearly by a driving force of a motor.
  • linear drive actuators configured such that a moving member is reciprocated linearly by a driving force of a motor are known.
  • Such a linear drive actuator is disclosed in, for example, Japanese Patent Application Laid-Open No. 2011-106614.
  • Japanese Patent Application Laid-Open No. 2011-106614 discloses a clutch actuator (linear drive actuator) in which an output rod (moving member) can be reciprocated by a driving force of an electric motor.
  • a speed reduction mechanism portion that reduces the rotation speed of the electric motor and rotates the screw member between the drive shaft of the electric motor and the output rod, and a speed reduction mechanism portion And a feed screw mechanism for converting the rotational motion on the output side into a linear motion.
  • the speed reduction mechanism section is configured by meshing circumscribed gears that rotate around a rotation axis that extends in parallel with a predetermined distance from each other. Therefore, the screw member is rotated along the output axis extending along the position shifted (translated) laterally from the rotation axis of the drive shaft of the electric motor, and the output rod is reciprocated linearly. ing.
  • the speed reduction mechanism is configured so that the drive shaft (rotation axis) of the electric motor and the movement axis of the screw member (output rod) are different.
  • the linear drive actuator main body (apparatus main body) increases in size as the internal structure becomes complicated.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a linear drive actuator capable of downsizing the apparatus body by simplifying the internal structure. Is to provide.
  • a linear drive actuator includes a motor including a drive shaft, a drive force of the motor being input, and an eccentricity with respect to a rotation axis of the motor drive shaft.
  • a motor including a driven gear to be rotated, and a driven gear having a number of teeth different from the number of teeth of the driving gear and meshed with the driving gear and having a rotation axis arranged on the rotation axis of the motor.
  • a speed reduction mechanism that decelerates the rotational speed of the motor, and a moving member whose movement axis is disposed on the rotation axis of the driven gear of the speed reduction mechanism, and that the forward and reverse rotation of the driven gear follows the movement axis of the moving member.
  • a feed screw mechanism configured to be convertible for reciprocating linear movement.
  • the rotation axis includes the driven gear arranged on the rotation axis of the motor, and the speed reduction mechanism for reducing the rotation speed of the motor and the movement axis are A feed screw mechanism that includes a moving member disposed on the rotation axis of the driven gear of the speed reduction mechanism and is configured to convert the forward / reverse rotation of the driven gear into a reciprocating linear movement along the moving axis of the moving member With.
  • the rotation axis of the motor, the rotation axis of the speed reduction mechanism (driven gear) and the movement axis of the moving member can be aligned on the same axis, so the internal structure of the device main body (linear drive actuator main body) is simplified.
  • the apparatus main body can be reduced in size. Also, since the rotation axis of the motor, the rotation axis of the speed reduction mechanism (driven gear) and the movement axis of the moving member are aligned on the same axis, the number of bearing members can also be reduced (minimized) This can further contribute to the simplification of the internal structure.
  • the linear drive actuator preferably includes a cycloid reduction gear configured to be able to mesh with the external teeth of the driving side gear using the cycloid curve as the tooth profile curve of the internal teeth of the driven side gear.
  • the feed screw mechanism portion includes a nut member and a screw shaft member as a moving member screwed to the nut member, and the driven side gear in the speed reduction mechanism portion is a nut.
  • the screw shaft member is configured to reciprocate linearly on the rotation axis of the motor by forward and reverse rotation of the nut member.
  • the feed screw mechanism preferably includes a nut member and a screw shaft member as a moving member screwed to the nut member, and the driven gear in the speed reduction mechanism is a screw.
  • the nut member By being connected to the shaft member, the nut member is configured to reciprocate linearly on the rotation axis of the motor by forward and reverse rotation of the screw shaft member.
  • the linear drive actuator preferably includes a cycloid reducer configured to mesh with each other using a cycloid curve as a tooth profile curve of an internal tooth of a driven gear with respect to an external tooth of a driving gear,
  • a cycloid reducer configured to mesh with each other using a cycloid curve as a tooth profile curve of an internal tooth of a driven gear with respect to an external tooth of a driving gear
  • the driven gear in the speed reduction mechanism and the moving member in the feed screw mechanism are integrally formed.
  • the driven gear in the speed reduction mechanism unit and the moving member in the feed screw mechanism unit are integrated, so that the linear drive actuator can be miniaturized and the number of components can be reduced.
  • the linear drive actuator according to the one aspect further includes a casing member that rotatably holds the speed reduction mechanism, and the driven gear of the speed reduction mechanism is held to be able to rotate forward and backward with respect to the inner surface of the casing member.
  • the moving member is configured to reciprocate linearly relative to the driven gear along the moving axis in the casing member.
  • the moving member in the feed screw mechanism can be easily reciprocated along the moving axis while the casing member is effectively used to maintain the rotational position of the driven gear along the rotating axis at the same position. It can be moved linearly.
  • FIG. 2 is a cross-sectional view of the trochoid reducer taken along line 150-150 in FIG. It is the figure which showed the operation state of the clutch actuator by 1st Embodiment of this invention. It is the figure which showed the structure of the clutch actuator by 2nd Embodiment of this invention.
  • a clutch actuator 100 (an example of a linear drive actuator) according to the first embodiment of the present invention includes a DC motor 10 (an example of a motor) as a drive source and rotation (forward / reverse rotation) of the DC motor 10 as shown in FIG. ) To a linear motion (reciprocating motion), and a hydraulic unit 70 driven by the driving force conversion unit 20 to generate hydraulic pressure. Then, the clutch actuator 100 causes the hydraulic unit 70 to generate hydraulic pressure to mechanically perform the operation of the clutch unit 3 that transmits and interrupts the driving force from the engine 1 to the transmission 2 of the vehicle (not shown). This is a motor hydraulic actuator.
  • the clutch unit 3 constitutes a part of an AMT (Automated Manual Transmission) mounted on the vehicle.
  • the DC motor 10 includes a metal housing member 11 having a permanent magnet 12 fixed on the inner surface thereof, and a drive shaft 14 that is rotatably disposed within the housing member 11 and that rotates about a rotation center R (rotation axis A). , A rectifying mechanism 15 including a brush and a commutator, and a terminal portion 16 to which a power supply and control wiring cable 17 is connected.
  • the DC motor 10 is connected to an ECU (not shown) that controls the engine of the vehicle.
  • the driving force conversion unit 20 includes a metal (aluminum alloy) casing member 21 having a hollow cylindrical structure, a metal (aluminum alloy) connection member 22 for connecting the casing member 21 and the hydraulic unit 70, and The driving force conversion mechanism 30 incorporated in the casing member 21 is included.
  • the driving force conversion mechanism 30 plays a role of converting the driving force of the DC motor 10 (the rotational movement of the driving shaft 14) into the reciprocating movement of the hydraulic piston 63.
  • the connection member 22 is provided with a holding portion 22a for holding the pin portion 52d of the screw shaft member 52 for preventing the screw shaft member 52, which will be described later, from rotating with respect to the nut portion 51.
  • the holding portion 22a is formed in a concave shape (groove shape) in the connecting member 22 so that the pin portion 52d can move in the X-axis direction.
  • a metal housing member 11 of the DC motor 10 is fastened to one end (X2 side) of the casing member 21, and the other end (X1 side) end of the connection member 22 is
  • the hydraulic unit 70 is fastened using a plurality of screw members 5 (bolt members).
  • the hydraulic unit 70 includes a resin hydraulic cylinder 72 having a hydraulic chamber 71 formed therein, a hydraulic piston 73 movably held in the hydraulic cylinder 72, and a screw shaft member 52 side (described later).
  • a spring 74 that urges the hydraulic piston 73 to the X2 side, and a concave seal member 75 that holds the movement of the hydraulic piston 73 in the X-axis direction without leaking hydraulic oil to the outside of the hydraulic unit 70.
  • connection member 22 c of 22 is configured to be fixed to the end surface 72 a on the X2 side of the hydraulic cylinder 72 using the screw member 5.
  • the hydraulic piston 73 is formed on an elongated hole portion 73a into which the spring 74 is loaded and the opposite side (X2 side) of the hole portion 73a, and a distal end portion 52c of a rod portion 52b of the screw shaft member 52 described later. And a recess 73b for receiving (X1 side) so as to be able to come into contact therewith.
  • the hydraulic cylinder 72 is provided with an oil passage 76 (shown by a broken line) for drawing hydraulic oil from the oil reservoir 4 into the hydraulic chamber 71, and hydraulic oil (hydraulic pressure) pushed out from the hydraulic chamber 71 by the hydraulic piston 73.
  • An oil passage 77 (indicated by a broken line) for supplying the oil is formed.
  • the driving force conversion mechanism 30 includes a trochoid speed reducer 40 (an example of a speed reduction mechanism and a cycloid speed reducer) and a feed screw mechanism 50.
  • the driving force of the DC motor 10 is input to the trochoid decelerator 40 to reduce the rotational speed, and the rotational motion after deceleration is converted into linear motion (reciprocating motion) by the feed screw mechanism 50.
  • the reciprocating movement of the feed screw mechanism 50 (screw shaft member 52 described later) is transmitted to the reciprocating linear movement of the hydraulic piston 73.
  • a ball bearing 61 is fixed to the X2 side end surface 21 a of the casing member 21 of the driving force conversion unit 20 using a seal member 62. Further, the holding portion 60 a of the coupling member 60 is fitted into the inner ring portion 61 a of the ball bearing 61.
  • the drive shaft 14 of the DC motor 10 is connected to the central portion of the rotating shaft of the holding portion 60a of the coupling member 60 so that power can be transmitted.
  • the coupling member 60 has a revolving locus of the driving side gear 41 on the X1 side of the holding portion 60a held by the ball bearing 61 and an eccentric amount W (see FIG. 2) with respect to the rotation center R of the holding portion 60a.
  • the crank part 60b formed so as to be eccentric is integrally provided. And the drive side gear 41 of the trochoid reduction gear 40 is connected with respect to the crank part 60b so that revolution is possible. That is, as shown in FIG. 2, when the coupling member 60 is rotated around the rotation center R (here, the rotation axis A) in the direction of the arrow R ⁇ b> 1, the driving gear 41 is eccentric with respect to the rotation center R. The position eccentric by the amount W is moved (turned) in the direction of arrow R1 about the rotation center R.
  • the trochoid reducer 40 includes a driving gear 41 having external teeth 41a, a driven gear 42 having internal teeth 42a, and a ball bearing 43.
  • the driving gear 41 is a spur gear
  • the internal teeth 42a of the driven gear 42 are formed by a tooth profile curve formed of a trochoid curve that is a kind of cycloid curve.
  • the ball bearing 43 is driven so that the driving gear 41 can revolve in the arrow R1 direction or the arrow R2 direction as the crank portion 60b rotates in the arrow R1 direction or the arrow R2 direction inside the driven gear 42.
  • the side gear 41 is held.
  • the driven gear 42 is held so as to be rotatable with respect to the inner peripheral surface 23 of the casing member 21 in the arrow R1 direction or the arrow R2 direction.
  • the rotation center R of the driven gear 42 (here, the rotation axis B (see FIG. 1)) is the rotation center R (the rotation axis A (see FIG. 1) of the coupling member 60 (that is, the drive shaft 14 of the DC motor 10)). 1))) and coaxial lines.
  • the driven gear 42 is also configured to rotate with respect to the inner peripheral surface 23 of the casing member 21 in the same direction as the driving gear 41 (arrow R1 direction or arrow R2 direction). Therefore, the driving side gear 41 revolves at a position eccentric by the eccentric amount W with respect to the rotation center R of the drive shaft 14 of the DC motor 10, but the driven side gear 42 meshing with the outer side of the driving side gear 41 rotates at the rotation center R (rotation).
  • the trochoid reduction gear 40 itself has its physique (size) determined by the diameter of the driven gear 42.
  • the number of teeth (for example, 21) of the driving side gear 41 that revolves inside the driven side gear 42 is one less than the number of teeth (for example, 22) of the driven side gear 42.
  • a feed screw mechanism 50 is arranged adjacent to the X2 side of the trochoid reducer 40.
  • the feed screw mechanism 50 includes a nut portion 51 (an example of a nut member) and a screw shaft member 52 (an example of a moving member) that is screwed into the nut portion 51.
  • the driven gear 42 and the nut portion 51 are integrally formed as a single component.
  • the screw shaft member 52 includes a screw portion 52a that is screwed into the screw groove 51a of the nut portion 51, and a rod portion 52b that extends linearly from the screw portion 52a in the arrow X1 direction.
  • the circumferential step part 23a is formed in the inner peripheral surface 23 of the casing member 21, and it is comprised so that the flange-shaped end surface 51b of the nut part 51 may slide. Therefore, the driven gear 42 and the nut portion 51 are held inside the casing member 21 so as to be rotated at the same position in the X-axis direction.
  • the rod portion 52b of the screw shaft member 52 is provided with a pin portion 52d extending linearly outward in the radial direction.
  • the pin portion 52d is inserted into the concave (groove-shaped) holding portion 22a of the connection member 22 so as to be movable in the X-axis direction.
  • the rotation axis A of the DC motor 10, the rotation axis B of the driven gear 42, and the movement axis C of the screw shaft member 52 are on the same axis. It is aligned on the line. Then, the rod portion 52b of the screw shaft member 52 is rotated in the rotational axis A of the DC motor 10 by forward / reverse rotation (arrow R1 direction or arrow R2 direction) of the driven gear 42 (nut portion 51) accompanying the driving of the DC motor 10. It is configured to reciprocate linearly in the direction of arrow X1 or arrow X2.
  • FIG. 1 shows a state in which the screw shaft member 52 is moved to the most X2 side and no hydraulic pressure is generated from the hydraulic unit 70 to the clutch unit 3. Then, when the DC motor 10 is rotated in the direction of the arrow R1 (see FIG. 2), the driving side gear 41 is rotated (revolved) in the direction of the arrow R1 via the coupling member 60, and the driven side gear 42 is It is rotated (spinned) in the direction of arrow R1.
  • the nut portion 51 integrated with the driven gear 42 is rotated in the direction of the arrow R ⁇ b> 1, so that the screw shaft member 52 that meshes with the nut portion 51 is relatively straight with respect to the nut portion 51 in the direction of the arrow X ⁇ b> 1.
  • the rod portion 52b of the screw shaft member 52 moves (presses) the hydraulic piston 73 in the direction of the arrow X1.
  • the hydraulic oil in the hydraulic chamber 71 is pushed out of the hydraulic chamber 71 and acts on the clutch portion 3 via the oil passage 77.
  • the feed screw mechanism 50 linearly moves on the rotation axis A of the DC motor 10 in one direction (arrow X1 direction).
  • the current position of the screw shaft member 52 in the X-axis direction is maintained so that the screw shaft member 52 is not linearly moved in the other direction (arrow X2 direction) due to the hydraulic pressure (pushback load) from the clutch portion 3.
  • It is configured as follows. Therefore, for example, even if the meshing of the feed screw mechanism portion 50 is softened due to wear and the self-lock function (function to prevent pushing back) is weakened, the self-lock function on the trochoid reduction gear 40 side works. Thereby, even when the power is not supplied to the DC motor 10, the current position of the screw shaft member 52 is configured not to be easily shifted (not returned) in the direction of the arrow X2.
  • the clutch actuator 100 in the first embodiment is configured as described above.
  • the rotational axis B includes the driven gear 42 disposed on the rotational axis A of the DC motor 10, and the trochoid speed reducer 40 that reduces the rotational speed of the DC motor 10 is moved.
  • the axis C includes a screw shaft member 52 disposed on the rotation axis B of the driven side gear 42 of the trochoid reduction gear 40, and forward / reverse rotation (arrow R1 direction or arrow R2 direction) of the driven side gear 42 is determined by the screw shaft member 52.
  • a feed screw mechanism 50 configured to be convertible for reciprocal movement (in the direction of the arrow X1 or the direction of the arrow X2) along the movement axis C.
  • the rotation axis A of the DC motor 10, the rotation axis B of the trochoid reducer 40 (driven gear 42) and the movement axis C of the screw shaft member 52 can be aligned on the same axis.
  • the internal structure of the driving force conversion unit 20) can be simplified.
  • the clutch actuator 100 can be reduced in size.
  • the rotation axis A of the DC motor 10 the rotation axis B of the trochoid reduction gear 40 (driven gear 42) and the movement axis C of the screw shaft member 52 are aligned on the same axis, the number of bearing members is also minimized. This can further contribute to the simplification of the internal structure of the driving force conversion unit 20.
  • the trochoid reducer 40 configured to be able to mesh with the outer teeth 41a of the driving gear 41 using the trochoidal curve as the tooth profile curve of the inner teeth 42a of the driven gear 42 is used.
  • the clutch actuator 100 having a large reduction ratio can be obtained using the trochoid reduction device 40 that is formed by one-stage meshing between the two gears (the driving gear 41 and the driven gear 42) that are inscribed with each other. Therefore, even if the DC motor 10 having a smaller driving force is applied, a desired driving force can be obtained from the clutch actuator 100. Therefore, the clutch actuator 100 can be further reduced in size as the DC motor 10 is reduced in size. it can.
  • the screw shaft member 52 when the driven gear 42 in the trochoid reduction gear 40 is connected to the nut portion 51, the screw shaft member 52 is rotated by forward and reverse rotation of the nut portion 51 in the arrow R1 direction or the arrow R2 direction. Is configured to reciprocate linearly on the rotation axis A of the DC motor 10 in the direction of the arrow X1 or the direction of the arrow X2.
  • the rotational movement of the nut portion 51 that rotates with the driven gear 42 in the state where the rotational axis line of the nut portion 51 is aligned with the rotational axis B of the driven gear 42 causes the screw shaft member 52 along the moving axis C to move. It can be easily converted into a reciprocating linear motion.
  • the feed screw mechanism 50 linearly moves on the rotation axis A of the DC motor 10 in one direction (arrow X1 direction).
  • the screw shaft member 52 is configured so that the position of the screw shaft member 52 is held so that the screw shaft member 52 is not linearly moved in the other direction (arrow X2 direction) due to the push-back load.
  • the driven gear 42 in the trochoid reducer 40 and the screw shaft member 52 in the feed screw mechanism 50 are integrally configured.
  • the clutch actuator 100 can be reduced in size and the number of components can be reduced.
  • the driven gear 42 (the flange-like end surface 51 b of the nut portion 51) of the trochoid reduction gear 40 is forward and backward with respect to the circumferential step portion 23 a on the inner peripheral surface 23 of the casing member 21.
  • the screw shaft member 52 is configured to reciprocate linearly relative to the driven gear 42 along the movement axis C in a state where the screw shaft member 52 is rotatably held.
  • the rod member 52b of the screw shaft member 52 is moved in the direction of the arrow X1 or the direction of the arrow X2 while effectively using the casing member 21 and holding the rotational position along the rotational axis B of the driven gear 42 at the same position. It can be easily reciprocated linearly.
  • the driven gear 242 is connected to the screw shaft portion 252 (an example of a screw shaft member), whereby the nut member 251 (an example of a moving member) is rotated by forward and reverse rotation of the screw shaft portion 252.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • a trochoid speed reducer 240 (a speed reduction mechanism section and a cycloid speed reducer) having a driven gear 242 in a casing member 221.
  • the trochoid reducer 240 includes a driving gear 41, a driven gear 242, and a ball bearing 43. Further, a feed screw mechanism 250 is disposed adjacent to the X2 side of the trochoid decelerator 240.
  • the feed screw mechanism portion 250 includes a nut member 251 (an example of a moving member) and a screw shaft portion 252 that is screwed into the nut member 251.
  • the nut member 251 includes a screw groove 251a that is screwed into the screw portion 252a of the screw shaft portion 252, and a rod portion 251b that extends linearly from the screw groove 251a in the direction of the arrow X1.
  • the driven gear 242 and the screw shaft portion 252 are integrally formed as a single component.
  • the rod portion 251b of the nut member 251 is provided with a tip portion 251c (X1 side) that contacts the recess 73b of the hydraulic piston 73 and a pin portion 251d that linearly extends radially outward from the rod portion 251b. Yes.
  • the pin portion 251d is inserted into the concave (groove-shaped) holding portion 22a of the connection member 22 so as to be movable in the X-axis direction.
  • the driven gear 242 and the screw shaft portion 252 are held inside the casing member 221 so as to be rotated at the same position in the X-axis direction.
  • the driven gear 242 screw shaft portion 252
  • the nut member 251 moves linearly along the movement axis C in the X-axis direction ( (Reciprocating movement).
  • the rotation axis B includes the driven gear 242 disposed on the rotation axis A of the DC motor 10, and the trochoid decelerator 240 that reduces the rotation speed of the DC motor 10 is moved.
  • the axis C includes a nut member 251 disposed on the rotation axis B of the driven side gear 242 of the trochoid reducer 240, and the nut member 251 moves in the forward / reverse rotation (arrow R1 direction or arrow R2 direction) of the driven side gear 242.
  • a feed screw mechanism portion 250 configured to be convertible for reciprocating movement along the axis C (in the direction of the arrow X1 or the direction of the arrow X2).
  • the rotation axis A of the DC motor 10, the rotation axis B of the trochoid reducer 240 (driven gear 242), and the movement axis C of the nut member 251 can be aligned on the same axis.
  • the internal structure of the clutch actuator 200 can be simplified.
  • the rotation axis A of the DC motor 10 the rotation axis B of the trochoid reducer 240 (driven gear 242) and the movement axis C of the nut member 251 coincide, the internal structure is simplified and the physique of the clutch actuator 200 ( (Outer shape) can be reduced in size.
  • the feed screw mechanism portion 250 includes a nut member 251 and a screw shaft portion 252 as a moving member that is screwed to the nut member 251, and the driven side gear 242 in the trochoid reducer 240 is the driven side gear 242.
  • the nut member 251 is configured to reciprocate linearly on the rotation axis A of the DC motor 10 by forward and reverse rotation of the screw shaft portion 252.
  • the rotational motion of the screw shaft portion 252 that rotates with the driven gear 242 is changed to the reciprocating linear motion of the nut member 251 with the rotational axis A of the driven gear 242 aligned with the rotational axis A of the screw shaft portion 252.
  • the driven gear 242 of the trochoid reduction gear 240 (the flange-shaped end surface 252b of the screw shaft portion 252) is positive with respect to the circumferential step portion 23a on the inner peripheral surface 23 of the casing member 221.
  • the nut member 251 is configured to reciprocate linearly along the movement axis C with respect to the driven gear 242 while being held so as to be able to rotate in the reverse direction. Accordingly, the rod member 251b of the nut member 251 can be easily moved in the direction of the arrow X1 or the direction of the arrow X2 while effectively using the casing member 221 and holding the rotational position along the rotational axis B of the driven gear 242 at the same position. Can be reciprocated linearly.
  • the remaining effects of the second embodiment are similar to those of the aforementioned first embodiment.
  • the trochoid speed reducer 40 (240) using a trochoid curve is applied to the internal teeth 42a of the driven gear 42 (242), but the present invention is not limited to this. That is, you may comprise the "deceleration mechanism part" of this invention using the driven gear which has a cycloid curve including an epicycloid curve (outer cycloid curve) or a hypocycloid curve (inner cycloid curve) in a tooth shape.
  • the trochoidal speed reducer 40 (240) is applied so that the number of teeth of the driving gear 41 is 21 and the number of teeth of the driven gear 42 (242) is 22.
  • the present invention is not limited to this. If the rotational speed of the DC motor 10 can be decelerated, the combination of the number of teeth of the driving side gear 41 and the driven side gear 42 (242) may be other than the above.
  • the ball bearing 61 for holding the holding portion 60a of the coupling member 60 is provided at the connection portion between the DC motor 10 and the trochoid reducer 40 (240). It is not limited to this.
  • the driving force (rotational force) of the DC motor 10 can be stably transmitted to the drive side gear 41 of the trochoid reduction gear 40 so that the trochoid reduction gear 40 (240) can be driven stably. If it is possible to fasten the housing member 11 and the casing member 21 of the driving force conversion unit 20, the ball bearing 61 may be omitted.
  • the present invention is applied to the clutch actuator 100 (200) that mechanically performs the operation of the clutch portion 3 of the automobile including the engine 1.
  • the present invention is not limited to this. I can't.
  • the present invention is applied to a linear drive actuator other than a clutch actuator as a linear drive actuator that converts rotation of a drive source into a reciprocating linear motion of a manipulator (rod) as a hydraulic source for a device (mechanical device) driven by hydraulic pressure. Also good.
  • the present invention can also be applied to a linear drive actuator in which a manipulator (rod) directly drives a device (mechanical device) instead of a hydraulic power source.
  • the present invention is applied to the clutch actuator 100 (200) that mechanically performs the operation of the clutch portion 3 of the automobile including the engine 1.
  • the present invention is not limited to this. I can't.
  • the present invention may be applied to a linear drive actuator that drives a device (mechanical device) for an internal combustion engine mounted on equipment other than a vehicle.
  • a gasoline engine, a diesel engine, a gas engine, etc. are applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transmission Devices (AREA)
  • Retarders (AREA)
  • Gears, Cams (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

この直線駆動アクチュエータは、駆動軸を含むモータと、モータの駆動力が入力されるとともにモータの駆動軸の回転軸線に対して偏心した状態で回転される原動側ギアと、原動側ギアが有する歯数と異なる歯数を有して原動側ギアに噛み合わされ、回転軸線がモータの回転軸線上に配置された従動側ギアとを含み、モータの回転数を減速させる減速機構部と、移動軸線が減速機構部の従動側ギアの回転軸線上に配置された移動部材を含み、従動側ギアの正逆回転を移動部材の移動軸線に沿った往復直線移動に変換可能に構成された送りねじ機構部と、を備える。

Description

直線駆動アクチュエータ
 本発明は、直線駆動アクチュエータに関し、特に、モータの駆動力により移動部材が往復直線移動されるように構成された直線駆動アクチュエータに関する。
 従来、モータの駆動力により移動部材が往復直線移動されるように構成された直線駆動アクチュエータなどが知られている。このような直線駆動アクチュエータは、たとえば、特開2011-106614号公報に開示されている。
 特開2011-106614号公報には、電動モータの駆動力により出力ロッド(移動部材)が往復移動可能に構成されたクラッチアクチュエータ(直線駆動アクチュエータ)が開示されている。この特開2011-106614号公報に記載のクラッチアクチュエータでは、電動モータの駆動軸と出力ロッドとの間に、電動モータの回転速度を減速させてスクリュー部材を回転させる減速機構部と、減速機構部の出力側の回転運動を直線運動に変換する送りねじ機構部とが設けられている。なお、減速機構部は、互いに所定の間隔を隔てて平行に延びる回転軸線まわりに回転される外接式の歯車が噛み合わされて構成されている。したがって、電動モータの駆動軸の回転軸線から横方向にシフト(平行移動)された位置に沿って延びる出力軸線に沿ってスクリュー部材が回転されて、出力ロッドが往復直線移動されるように構成されている。
特開2011-106614号公報
 しかしながら、特開2011-106614号公報に記載されたクラッチアクチュエータでは、電動モータの駆動軸(回転軸線)とスクリュー部材(出力ロッド)の移動軸線とが異なるように減速機構部が構成されているため、互いに平行配置される回転軸の数が増える分、内部構造の複雑化とともに直線駆動アクチュエータ本体(装置本体)が大型化するという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、内部構造を簡素化させることによって、装置本体を小型化することが可能な直線駆動アクチュエータを提供することである。
 上記目的を達成するために、この発明の一の局面における直線駆動アクチュエータは、駆動軸を含むモータと、モータの駆動力が入力されるとともにモータの駆動軸の回転軸線に対して偏心した状態で回転される原動側ギアと、原動側ギアが有する歯数と異なる歯数を有して原動側ギアに噛み合わされ、回転軸線がモータの回転軸線上に配置された従動側ギアとを含み、モータの回転数を減速させる減速機構部と、移動軸線が減速機構部の従動側ギアの回転軸線上に配置された移動部材を含み、従動側ギアの正逆回転を移動部材の移動軸線に沿った往復直線移動に変換可能に構成された送りねじ機構部と、を備える。
 この発明の一の局面による直線駆動アクチュエータでは、上記のように、回転軸線がモータの回転軸線上に配置された従動側ギアを含み、モータの回転数を減速させる減速機構部と、移動軸線が減速機構部の従動側ギアの回転軸線上に配置された移動部材を含み、従動側ギアの正逆回転を移動部材の移動軸線に沿った往復直線移動に変換可能に構成された送りねじ機構部とを備える。これにより、モータの回転軸線と減速機構部(従動側ギア)の回転軸線と移動部材の移動軸線とを同一軸線上に揃えることができるので、装置本体(直線駆動アクチュエータ本体)の内部構造を簡素化させることができる。その結果、装置本体を小型化することができる。また、モータの回転軸線と減速機構部(従動側ギア)の回転軸線と移動部材の移動軸線とが同一軸線上に揃うので、軸受部材の個数も削減する(最小限にする)ことができ、内部構造の簡素化にさらに寄与することができる。
 上記一の局面による直線駆動アクチュエータにおいて、好ましくは、原動側ギアの外歯に対して従動側ギアの内歯の歯形曲線にサイクロイド曲線を用いて互いに噛み合い可能に構成されたサイクロイド減速機を含む。
 このように構成すれば、互いに内接する2つのギア(原動側ギアおよび従動側ギア)による1段の噛み合いからなるサイクロイド減速機を用いて減速比の大きい直線駆動アクチュエータを容易に得ることができる。したがって、駆動力のより小さいモータを適用しても直線駆動アクチュエータから所望の駆動力を得ることができるので、モータが小型化される分、装置本体(直線駆動アクチュエータ本体)をさらに小型化することができる。
 上記一の局面による直線駆動アクチュエータにおいて、好ましくは、送りねじ機構部は、ナット部材と、ナット部材に螺合される移動部材としてのねじ軸部材とを含み、減速機構部における従動側ギアがナット部材に接続されることにより、ナット部材の正逆回転によって、ねじ軸部材がモータの回転軸線上を往復直線移動されるように構成されている。
 このように構成すれば、ナット部材の回転軸線を従動側ギアの回転軸線に揃えた状態で、従動側ギアとともに連れ回りするナット部材の回転運動をねじ軸部材の往復直線運動に容易に変換することができる。
 上記一の局面による直線駆動アクチュエータにおいて、好ましくは、送りねじ機構部は、ナット部材と、ナット部材に螺合される移動部材としてのねじ軸部材とを含み、減速機構部における従動側ギアがねじ軸部材に接続されることにより、ねじ軸部材の正逆回転によって、ナット部材がモータの回転軸線上を往復直線移動されるように構成されている。
 このように構成すれば、従動側ギアの回転軸線をねじ軸部材の回転軸線に揃えた状態で、従動側ギアとともに連れ回りするねじ軸部材の回転運動をナット部材の往復直線運動に容易に変換することができる。
 上記一の局面による直線駆動アクチュエータにおいて、好ましくは、原動側ギアの外歯に対して従動側ギアの内歯の歯形曲線にサイクロイド曲線を用いて互いに噛み合い可能に構成されたサイクロイド減速機を含み、サイクロイド減速機と送りねじ機構部とが組み合わされることによって、送りねじ機構部によってモータの回転軸線上を一方方向に直線移動された移動部材が、押し戻し荷重に起因して一方方向とは反対の他方方向に直線移動されないように移動部材の位置が保持されるように構成されている。
 このように構成すれば、移動部材の他方方向への押し戻し荷重に起因して、送りねじ機構部のみならずサイクロイド減速機によっても各々の機構部の逆回転を確実に抑制することができるので、モータに電力が供給されない状態でのモータの逆回転を確実に抑制することができる。したがって、移動部材を直線移動させる時にモータに電力を供給するとともに移動部材の移動停止時にはモータに電力を供給する必要がないので、直線駆動アクチュエータの消費電力を低減させることができる。
 上記一の局面による直線駆動アクチュエータにおいて、好ましくは、減速機構部における従動側ギアと送りねじ機構部における移動部材とは、一体的に構成されている。
 このように構成すれば、減速機構部における従動側ギアと送りねじ機構部における移動部材とが一体化される分、直線駆動アクチュエータの小型化とともに構成部品の部品点数を削減することができる。
 上記一の局面による直線駆動アクチュエータにおいて、好ましくは、減速機構部を回転可能に保持するケーシング部材をさらに備え、減速機構部の従動側ギアがケーシング部材の内面に対して正逆回転可能に保持された状態で、移動部材がケーシング部材の内部を従動側ギアに対して移動軸線に沿って相対的に往復直線移動されるように構成されている。
 このように構成すれば、ケーシング部材を有効に利用して従動側ギアの回転軸線に沿った回転位置を同じ位置に保持しつつ、送りねじ機構部における移動部材を移動軸線に沿って容易に往復直線移動させることができる。
本発明の第1実施形態によるクラッチアクチュエータの構成を示した図である。 図1における150-150線に沿ったトロコイド減速機の断面図である。 本発明の第1実施形態によるクラッチアクチュエータの動作状態を示した図である。 本発明の第2実施形態によるクラッチアクチュエータの構成を示した図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 [第1実施形態]
 まず、図1~図3を参照して、本発明の第1実施形態によるクラッチアクチュエータ100の構成について説明する。
 (クラッチアクチュエータの構成)
 本発明の第1実施形態によるクラッチアクチュエータ100(直線駆動アクチュエータの一例)は、図1に示すように、駆動源としてのDCモータ10(モータの一例)と、DCモータ10の回転(正逆回転)を直線運動(往復運動)に変換する駆動力変換ユニット20と、駆動力変換ユニット20により駆動されて油圧を発生させる油圧ユニット70とを備える。そして、クラッチアクチュエータ100は、油圧ユニット70に油圧を発生させて車両(図示せず)のエンジン1から変速機2への駆動力の伝達および遮断を行うクラッチ部3の動作を機械的に行わせるためのモータ油圧式のアクチュエータである。なお、クラッチ部3は、車両に搭載されたAMT(オートメイテッドマニュアルトランスミッション)の一部を構成している。
 DCモータ10は、内面に永久磁石12が固定された金属製のハウジング部材11と、ハウジング部材11内に回転可能に配置されるとともに、回転中心R(回転軸線A)まわりに回転する駆動軸14を有するロータ13と、ブラシおよび整流子からなる整流機構15と、電力供給および制御用の配線ケーブル17が接続される端子部16とを含む。また、DCモータ10は、車両のエンジン制御を行うECU(図示せず)に接続されている。
 駆動力変換ユニット20は、中空円筒構造を有する金属(アルミニウム合金)製のケーシング部材21と、ケーシング部材21と油圧ユニット70との接続を行うための金属(アルミニウム合金)製の接続部材22と、ケーシング部材21内に組み込まれた駆動力変換機構30とを含んでいる。駆動力変換機構30は、DCモータ10の駆動力(駆動軸14の回転運動)を油圧ピストン63の往復運動に変換する役割を担う。また、接続部材22には、後述するねじ軸部材52のナット部51に対する連れ回りを防止するためのねじ軸部材52のピン部52dを保持する保持部22aが設けられている。なお、保持部22aは、ピン部52dがX軸方向に移動可能に接続部材22に凹状(溝状)に形成されている。
 また、ケーシング部材21の一方側(X2側)の端部には、DCモータ10の金属製のハウジング部材11が締結されるとともに、接続部材22の他方側(X1側)の端部には、油圧ユニット70が複数のねじ部材5(ボルト部材)を用いて締結されている。
 油圧ユニット70は、内部に油圧室71が形成された樹脂製の油圧シリンダ72と、油圧シリンダ72内に移動可能に保持された油圧ピストン73と、油圧ピストン73を後述するねじ軸部材52側(X2側)に付勢するスプリング74と、作動油を油圧ユニット70の外部に漏らすことなく油圧ピストン73のX軸方向の移動を保持する凹状のシール部材75とを含む。なお、油圧ピストン73がスプリング74とともに油圧シリンダ72内に装填され、かつ、接続部材22の貫通孔22bにシール部材75のX2側の端部領域が所定長さだけ挿入された状態で、接続部材22の周状のフランジ部22cが、油圧シリンダ72のX2側の端面72aにねじ部材5を用いて固定されるように構成されている。
 また、油圧ピストン73は、スプリング74が装填される細長状の穴部73aと、穴部73aとは反対側(X2側)に形成され、後述するねじ軸部材52のロッド部52bの先端部52c(X1側)を当接可能に受け入れる凹部73bとを有する。また、油圧シリンダ72には、オイルリザーバ4からの作動油を油圧室71に引き込む油路76(破線で示す)と、油圧室71から油圧ピストン73により押し出される作動油(油圧)をクラッチ部3に供給するための油路77(破線で示す)とが形成されている。
 ここで、第1実施形態では、駆動力変換機構30は、トロコイド減速機40(減速機構部およびサイクロイド減速機の一例)と、送りねじ機構部50とによって構成されている。すなわち、DCモータ10の駆動力がトロコイド減速機40に入力されて回転数が減速されるとともに、減速後の回転運動が送りねじ機構部50によって直線運動(往復移動)に変換されるように構成されている。そして、送りねじ機構部50(後述するねじ軸部材52)の往復移動が油圧ピストン73の往復直線移動に伝達されるように構成されている。
 以下において、DCモータ10からトロコイド減速機40および送りねじ機構部50を経て油圧ピストン73に駆動力が伝達される駆動力変換機構30の構成を詳細に説明する。
 (駆動力変換機構の詳細な構造)
 駆動力変換ユニット20のケーシング部材21のX2側の端面21aには、ボールベアリング61がシール部材62を用いて固定されている。また、ボールベアリング61の内輪部61aにカップリング部材60の保持部60aが嵌め込まれている。そして、DCモータ10の駆動軸14が、カップリング部材60における保持部60aの回転軸中心部分に動力伝達可能に接続されている。また、カップリング部材60は、ボールベアリング61に保持される保持部60aのX1側に、原動側ギア41の公転軌跡が保持部60aの回転中心Rに対して偏心量W(図2参照)だけ偏心されるように形成されたクランク部60bを一体的に有している。そして、クランク部60bに対してトロコイド減速機40の原動側ギア41が公転可能に接続されている。すなわち、図2に示すように、カップリング部材60が回転中心R(ここでは回転軸線Aとする)まわりに矢印R1方向に回転された場合、原動側ギア41は、回転中心Rに対して偏心量Wだけ偏心された位置を、回転中心Rを中心にして矢印R1方向に移動(回動)されるようになる。
 ここで、トロコイド減速機40は、図2に示すように、外歯41aを有する原動側ギア41と、内歯42aを有する従動側ギア42と、ボールベアリング43とを含む。また、原動側ギア41は平歯車である一方、従動側ギア42の内歯42aは、サイクロイド曲線の一種であるトロコイド曲線からなる歯形曲線により構成されている。また、ボールベアリング43は、従動側ギア42の内側でクランク部60bの矢印R1方向または矢印R2方向への回動とともに原動側ギア41が矢印R1方向または矢印R2方向に公転可能になるように原動側ギア41を保持している。また、従動側ギア42は、ケーシング部材21の内周面23に対して矢印R1方向または矢印R2方向に回転可能に保持されている。そして、従動側ギア42の回転中心R(ここでは回転軸線B(図1参照)とする)は、カップリング部材60(すなわちDCモータ10の駆動軸14)の回転中心R(回転軸線A(図1参照))と同軸線上に配置されている。
 そして、原動側ギア41の外歯41aに対して、従動側ギア42の内歯42aが1箇所で噛み合った状態で、原動側ギア41の矢印R1方向または矢印R2方向への公転運動に伴って、従動側ギア42もケーシング部材21の内周面23に対して原動側ギア41と同じ方向(矢印R1方向または矢印R2方向)に回転されるように構成されている。したがって、原動側ギア41は、DCモータ10の駆動軸14の回転中心Rに対して偏心量Wだけ偏心された位置を公転するが、その外側に噛み合う従動側ギア42は、回転中心R(回転軸線Aであり回転軸線Bである)まわりに回転(矢印R1方向または矢印R2方向)される。したがって、トロコイド減速機40自体は、従動側ギア42の直径によりその体格(サイズ)が決定されている。なお、従動側ギア42の内側で公転する原動側ギア41の歯数(たとえば21枚)は、従動側ギア42の歯数(たとえば22枚)よりも1枚だけ少ない。この場合、トロコイド減速機40の速度伝達比(=内歯(21)/歯数差(-1))は、-21になる。
 また、図1に示すように、トロコイド減速機40のX2側に隣接して送りねじ機構部50が配置されている。送りねじ機構部50は、ナット部51(ナット部材の一例)と、ナット部51に螺合されるねじ軸部材52(移動部材の一例)とを含む。なお、第1実施形態では、従動側ギア42とナット部51とは一体成形されて単一の部品として構成されている。また、ねじ軸部材52は、ナット部51のねじ溝51aに螺合されるねじ部52aと、ねじ部52aから矢印X1方向に直線状に延びるロッド部52bとにより構成されている。なお、ケーシング部材21の内周面23には周状の段差部23aが形成されており、ナット部51のフランジ状の端面51bが摺動されるように構成されている。したがって、従動側ギア42とナット部51とが、X軸方向における同じ位置で回転されるようにケーシング部材21の内部に保持されている。
 また、ねじ軸部材52におけるロッド部52bには、半径方向外側に直線的に延びるピン部52dが設けられている。また、ピン部52dは、接続部材22における凹状(溝状)の保持部22a内にX軸方向に移動可能に挿入されている。これにより、従動側ギア42(ナット部51)が矢印R1方向または矢印R2方向(図2参照)に正逆回転された場合、ねじ軸部材52がX軸方向(ここでは移動軸線Cとする)沿って矢印X1方向または矢印X2方向に直線移動(往復移動)されるように構成されている。
 これにより、第1実施形態では、図1および図3に示すように、DCモータ10の回転軸線Aと、従動側ギア42の回転軸線Bと、ねじ軸部材52の移動軸線Cとが同一軸線上に揃えられている。そして、DCモータ10の駆動に伴う従動側ギア42(ナット部51)の正逆回転(矢印R1方向または矢印R2方向)によって、ねじ軸部材52におけるロッド部52bが、DCモータ10の回転軸線A上を矢印X1方向または矢印X2方向に往復直線移動されるように構成されている。
 なお、図1では、ねじ軸部材52が最もX2側に移動されて油圧ユニット70からクラッチ部3に対する油圧が発生していない状態を示している。そして、DCモータ10が矢印R1方向(図2参照)に回転されることにより、カップリング部材60を介して原動側ギア41が矢印R1方向に回転(公転)され、かつ、従動側ギア42が矢印R1方向に回転(自転)される。これにより、従動側ギア42と一体化されたナット部51が矢印R1方向に回転されることにより、ナット部51に噛み合うねじ軸部材52がナット部51に対して矢印X1方向に相対的に直線移動される。したがって、図3に示すように、ねじ軸部材52のロッド部52bが油圧ピストン73を矢印X1方向に移動(押圧)するようになる。また、これにより、油圧室71内の作動油が油圧室71から押し出されて油路77を介してクラッチ部3に作用するようになる。
 また、ECU(図示せず)の指令に基づいてDCモータ10が矢印R2方向(図2参照)に回転された場合には、上記とは反対の動作が行われる。すなわち、従動側ギア42と一体化されたナット部51が矢印R2方向に回転されることにより、ナット部51に噛み合うねじ軸部材52(ロッド部52b)がナット部51に対して矢印X2方向に相対的に直線移動される。この際、油圧シリンダ72内では、スプリング74の付勢力(復元力)によって、油圧ピストン73が、図3の状態から図1の状態へと矢印X2方向に移動される。
 また、第1実施形態では、トロコイド減速機40と送りねじ機構部50とを組み合わせることによって、送りねじ機構部50によってDCモータ10の回転軸線A上を一方方向(矢印X1方向)に直線移動されたねじ軸部材52が、クラッチ部3からの油圧(押し戻し荷重)に起因して他方方向(矢印X2方向)に直線移動されないように、ねじ軸部材52のX軸方向の現在位置が保持されるように構成されている。したがって、たとえば、送りねじ機構部50の噛み合いが摩耗によって甘くなりセルフロック機能(押し戻しを防止する機能)が弱まったとしても、トロコイド減速機40側のセルフロック機能がはたらく。これにより、DCモータ10に電力が供給されない状態においても、ねじ軸部材52の現在位置が矢印X2方向に容易にずれない(戻されない)ように構成されている。第1実施形態におけるクラッチアクチュエータ100は、上記のように構成されている。
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、回転軸線BがDCモータ10の回転軸線A上に配置された従動側ギア42を含み、DCモータ10の回転数を減速させるトロコイド減速機40と、移動軸線Cがトロコイド減速機40の従動側ギア42の回転軸線B上に配置されたねじ軸部材52を含み、従動側ギア42の正逆回転(矢印R1方向または矢印R2方向)をねじ軸部材52の移動軸線Cに沿った往復移動(矢印X1方向または矢印X2方向)に変換可能に構成された送りねじ機構部50とを備える。これにより、DCモータ10の回転軸線Aとトロコイド減速機40(従動側ギア42)の回転軸線Bとねじ軸部材52の移動軸線Cとを同一軸線上に揃えることができるので、クラッチアクチュエータ100(駆動力変換ユニット20)の内部構造を簡素化させることができる。その結果、クラッチアクチュエータ100を小型化することができる。また、DCモータ10の回転軸線Aとトロコイド減速機40(従動側ギア42)の回転軸線Bとねじ軸部材52の移動軸線Cとが同一軸線上に揃うので、軸受部材の個数も最小限にすることができ、駆動力変換ユニット20の内部構造の簡素化にさらに寄与することができる。
 また、第1実施形態では、原動側ギア41の外歯41aに対して従動側ギア42の内歯42aの歯形曲線にトロコイド曲線を用いて互いに噛み合い可能に構成されたトロコイド減速機40を用いる。これにより、互いに内接する2つのギア(原動側ギア41および従動側ギア42)による1段の噛み合いからなるトロコイド減速機40を用いて減速比の大きいクラッチアクチュエータ100を得ることができる。したがって、駆動力のより小さいDCモータ10を適用してもクラッチアクチュエータ100から所望の駆動力を得ることができるので、DCモータ10が小型化される分、クラッチアクチュエータ100をさらに小型化することができる。
 また、第1実施形態では、トロコイド減速機40における従動側ギア42がナット部51に接続されることにより、ナット部51の矢印R1方向または矢印R2方向への正逆回転によって、ねじ軸部材52がDCモータ10の回転軸線A上を矢印X1方向または矢印X2方向に往復直線移動されるように構成する。これにより、ナット部51の回転軸線を従動側ギア42の回転軸線Bを揃えた状態で、従動側ギア42とともに連れ回りするナット部51の回転運動を移動軸線Cに沿ったねじ軸部材52の往復直線運動に容易に変換することができる。
 また、第1実施形態では、トロコイド減速機40と送りねじ機構部50とを組み合わせることによって、送りねじ機構部50によってDCモータ10の回転軸線A上を一方方向(矢印X1方向)に直線移動されたねじ軸部材52が、押し戻し荷重に起因して他方方向(矢印X2方向)に直線移動されないようにねじ軸部材52の位置が保持されるように構成する。これにより、ねじ軸部材52の他方方向(矢印X2方向)への押し戻し荷重に起因して、送りねじ機構部50のみならずトロコイド減速機40によっても各々の機構部の逆回転を確実に抑制することができるので、DCモータ10に電力が供給されない状態でのDCモータ10の逆回転を確実に抑制することができる。したがって、ねじ軸部材52を直線移動させる時にDCモータ10に電力を供給するとともにねじ軸部材52の移動停止時にはDCモータ10に電力を供給する必要がないので、クラッチアクチュエータ100の消費電力を低減させることができる。
 また、第1実施形態では、トロコイド減速機40における従動側ギア42と送りねじ機構部50におけるねじ軸部材52とを一体的に構成する。これにより、従動側ギア42とねじ軸部材52とが一体化される分、クラッチアクチュエータ100の小型化とともに構成部品の部品点数を削減することができる。
 また、第1実施形態では、トロコイド減速機40の従動側ギア42(ナット部51のフランジ状の端面51b)が、ケーシング部材21の内周面23における周状の段差部23aに対して正逆回転可能に保持された状態で、ねじ軸部材52がケーシング部材21の内部を従動側ギア42に対して移動軸線Cに沿って相対的に往復直線移動するように構成する。これにより、ケーシング部材21を有効に利用して従動側ギア42の回転軸線Bに沿った回転位置を同じ位置に保持しつつ、ねじ軸部材52におけるロッド部52bを矢印X1方向または矢印X2方向に容易に往復直線移動させることができる。
 [第2実施形態]
 次に、図2および図4を参照して、第2実施形態について説明する。この第2実施形態では、従動側ギア242がねじ軸部252(ねじ軸部材の一例)に接続されることにより、ねじ軸部252の正逆回転によって、ナット部材251(移動部材の一例)が往復直線移動される例について説明する。なお、図中において、上記第1実施形態と同様の構成には、同じ符号を付して図示する。
 本発明の第2実施形態によるクラッチアクチュエータ200(直線駆動アクチュエータの一例)では、図4に示すように、ケーシング部材221内に従動側ギア242を有するトロコイド減速機240(減速機構部およびサイクロイド減速機の一例)が設けられている。また、トロコイド減速機240は、原動側ギア41と、従動側ギア242と、ボールベアリング43とを含む。また、トロコイド減速機240のX2側に隣接して送りねじ機構部250が配置されている。
 ここで、第2実施形態では、送りねじ機構部250は、ナット部材251(移動部材の一例)と、ナット部材251に螺合されるねじ軸部252とを含む。また、ナット部材251は、ねじ軸部252のねじ部252aに螺合されるねじ溝251aと、ねじ溝251aから矢印X1方向に直線状に延びるロッド部251bとにより構成されている。そして、従動側ギア242とねじ軸部252とが一体成形されて単一の部品として構成されている。また、ナット部材251におけるロッド部251bには、油圧ピストン73の凹部73bに当接する先端部251c(X1側)と、ロッド部251bから半径方向外側に直線的に延びるピン部251dとが設けられている。また、ピン部251dは、接続部材22における凹状(溝状)の保持部22a内にX軸方向に移動可能に挿入されている。
 したがって、従動側ギア242とねじ軸部252とが、X軸方向における同じ位置で回転されるようにケーシング部材221の内部に保持されている。そして、従動側ギア242(ねじ軸部252)が矢印R1方向または矢印R2方向(図2参照)に正逆回転された場合、ナット部材251がX軸方向に移動軸線Cに沿って直線移動(往復移動)されるように構成されている。
 これにより、第2実施形態では、図4に示すように、DCモータ10の回転軸線Aと、従動側ギア242の回転軸線Bと、ナット部材251の移動軸線Cとが同一軸線上に揃えられている。そして、DCモータ10の駆動に伴う従動側ギア242(ねじ軸部252)の正逆回転(矢印R1方向または矢印R2方向)によって、ナット部材251におけるロッド部251bがDCモータ10の回転軸線A上を矢印X1方向または矢印X2方向に往復直線移動されるように構成されている。なお、第2実施形態におけるその他の構成については、上記第1実施形態と同様である。
 (第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
 第2実施形態では、上記のように、回転軸線BがDCモータ10の回転軸線A上に配置された従動側ギア242を含み、DCモータ10の回転数を減速させるトロコイド減速機240と、移動軸線Cがトロコイド減速機240の従動側ギア242の回転軸線B上に配置されたナット部材251を含み、従動側ギア242の正逆回転(矢印R1方向または矢印R2方向)をナット部材251の移動軸線Cに沿った往復移動(矢印X1方向または矢印X2方向)に変換可能に構成された送りねじ機構部250とを備える。これにより、DCモータ10の回転軸線Aとトロコイド減速機240(従動側ギア242)の回転軸線Bとナット部材251の移動軸線Cとを同一軸線上に揃えることができるので、軸受部材の個数が削減されてクラッチアクチュエータ200の内部構造を簡素化させることができる。また、DCモータ10の回転軸線Aとトロコイド減速機240(従動側ギア242)の回転軸線Bとナット部材251の移動軸線Cとが一致するので、内部構造の簡素化とともにクラッチアクチュエータ200の体格(外形形状)を小型化することができる。
 また、第2実施形態では、送りねじ機構部250は、ナット部材251と、ナット部材251に螺合される移動部材としてのねじ軸部252とを含み、トロコイド減速機240における従動側ギア242がねじ軸部252に接続されることにより、ねじ軸部252の正逆回転によって、ナット部材251がDCモータ10の回転軸線A上を往復直線移動されるように構成する。これにより、従動側ギア242の回転軸線Aをねじ軸部252の回転軸線Aに揃えた状態で、従動側ギア242とともに連れ回りするねじ軸部252の回転運動をナット部材251の往復直線運動に容易に変換することができる。
 また、第2実施形態では、トロコイド減速機240の従動側ギア242(ねじ軸部252のフランジ状の端面252b)が、ケーシング部材221の内周面23における周状の段差部23aに対して正逆回転可能に保持された状態で、ナット部材251がケーシング部材221の内部を従動側ギア242に対して移動軸線Cに沿って往復直線移動するように構成する。これにより、ケーシング部材221を有効に利用して従動側ギア242の回転軸線Bに沿った回転位置を同じ位置に保持しつつ、ナット部材251におけるロッド部251bを矢印X1方向または矢印X2方向に容易に往復直線移動させることができる。なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
 [変形例]
 今回開示された実施形態は、全ての点で例示であり制限的なものではないと考えられるべきである。本発明の範囲は上記実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内での全ての変更(変形例)が含まれる。
 たとえば、上記第1および第2実施形態では、従動側ギア42(242)の内歯42aにトロコイド曲線を用いたトロコイド減速機40(240)を適用したが、本発明はこれに限られない。すなわち、エピサイクロイド曲線(外サイクロイド曲線)またはハイポサイクロイド曲線(内サイクロイド曲線)を含むサイクロイド曲線を歯形形状にもつ従動側ギアを用いて本発明の「減速機構部」を構成してもよい。
 また、上記第1および第2実施形態では、原動側ギア41の歯数が21枚であり従動側ギア42(242)の歯数が22枚であるようにトロコイド減速機40(240)を適用したが、本発明はこれに限られない。DCモータ10の回転速度が減速可能であるならば、原動側ギア41および従動側ギア42(242)の歯数の組み合わせは、上記以外であってもよい。
 また、上記第1および第2実施形態では、DCモータ10とトロコイド減速機40(240)との接続部分にカップリング部材60の保持部60aを保持するボールベアリング61を設けたが、本発明はこれに限られない。トロコイド減速機40(240)を安定的に駆動することが可能なようにDCモータ10の駆動力(回転力)を安定的にトロコイド減速機40の原動側ギア41に伝達可能にDCモータ10のハウジング部材11と駆動力変換ユニット20のケーシング部材21とを締結することが可能であるならば、ボールベアリング61を設けないように構成してもよい。
 また、上記第1および第2実施形態では、エンジン1を備えた自動車のクラッチ部3の動作を機械的に行わせるクラッチアクチュエータ100(200)に本発明を適用したが、本発明はこれに限られない。油圧により駆動されるデバイス(機械装置)用の油圧源として駆動源の回転を操作子(ロッド)の往復直線運動に変換する直線駆動アクチュエータとしてクラッチアクチュエータ以外の直線駆動アクチュエータに本発明を適用してもよい。また、油圧源ではなく操作子(ロッド)が直接的にデバイス(機械装置)を駆動するような直線駆動アクチュエータに対して、本発明を適用することも可能である。
 また、上記第1および第2実施形態では、エンジン1を備えた自動車のクラッチ部3の動作を機械的に行わせるクラッチアクチュエータ100(200)に本発明を適用したが、本発明はこれに限られない。車両以外の設備機器に搭載された内燃機関用のデバイス(機械装置)を駆動するような直線駆動アクチュエータに対して本発明を適用してもよい。また、内燃機関としては、ガソリンエンジン、ディーゼルエンジンおよびガスエンジンなどが適用可能である。
 10 DCモータ(モータ)
 14 駆動軸
 20 駆動力変換部
 21、221 ケーシング部材
 40、240 トロコイド減速機(減速機構部、サイクロイド減速機)
 41 原動側ギア
 42、242 従動側ギア
 50、250 送りねじ機構部
 51 ナット部
 52 ねじ軸部材(移動部材)
 52b、251b ロッド部
 60 カップリング部材
 60a 保持部
 60b クランク部
 70 油圧ユニット
 100、200 クラッチアクチュエータ(直線駆動アクチュエータ)
 251 ナット部材(移動部材)
 252 ねじ軸部(ねじ軸部材)
 A、B 回転軸線
 C 移動軸線

Claims (7)

  1.  駆動軸を含むモータと、
     前記モータの駆動力が入力されるとともに前記モータの駆動軸の回転軸線に対して偏心した状態で回転される原動側ギアと、前記原動側ギアが有する歯数と異なる歯数を有して前記原動側ギアに噛み合わされ、回転軸線が前記モータの回転軸線上に配置された従動側ギアとを含み、前記モータの回転数を減速させる減速機構部と、
     移動軸線が前記減速機構部の従動側ギアの回転軸線上に配置された移動部材を含み、前記従動側ギアの正逆回転を前記移動部材の移動軸線に沿った往復直線移動に変換可能に構成された送りねじ機構部と、を備える、直線駆動アクチュエータ。
  2.  前記減速機構部は、前記原動側ギアの外歯に対して前記従動側ギアの内歯の歯形曲線にサイクロイド曲線を用いて互いに噛み合い可能に構成されたサイクロイド減速機を含む、請求項1に記載の直線駆動アクチュエータ。
  3.  前記送りねじ機構部は、ナット部材と、前記ナット部材に螺合される前記移動部材としてのねじ軸部材とを含み、
     前記減速機構部における前記従動側ギアが前記ナット部材に接続されることにより、前記ナット部材の正逆回転によって、前記ねじ軸部材が前記モータの回転軸線上を往復直線移動されるように構成されている、請求項1または2に記載の直線駆動アクチュエータ。
  4.  前記送りねじ機構部は、ナット部材と、前記ナット部材に螺合される前記移動部材としてのねじ軸部材とを含み、
     前記減速機構部における前記従動側ギアが前記ねじ軸部材に接続されることにより、前記ねじ軸部材の正逆回転によって、前記ナット部材が前記モータの回転軸線上を往復直線移動されるように構成されている、請求項1または2に記載の直線駆動アクチュエータ。
  5.  前記減速機構部は、前記原動側ギアの外歯に対して前記従動側ギアの内歯の歯形曲線にサイクロイド曲線を用いて互いに噛み合い可能に構成されたサイクロイド減速機を含み、
     前記サイクロイド減速機と前記送りねじ機構部とが組み合わされることによって、前記送りねじ機構部によって前記モータの回転軸線上を一方方向に直線移動された前記移動部材が、押し戻し荷重に起因して前記一方方向とは反対の他方方向に直線移動されないように前記移動部材の位置が保持されるように構成されている、請求項1~4のいずれか1項に記載の直線駆動アクチュエータ。
  6.  前記減速機構部における前記従動側ギアと前記送りねじ機構部における前記移動部材とは、一体的に構成されている、請求項1~5のいずれか1項に記載の直線駆動アクチュエータ。
  7.  前記減速機構部を回転可能に保持するケーシング部材をさらに備え、
     前記減速機構部の前記従動側ギアが前記ケーシング部材の内面に対して正逆回転可能に保持された状態で、前記移動部材が前記ケーシング部材の内部を前記従動側ギアに対して移動軸線に沿って相対的に往復直線移動されるように構成されている、請求項1~6のいずれか1項に記載の直線駆動アクチュエータ。
PCT/JP2016/079603 2015-10-28 2016-10-05 直線駆動アクチュエータ WO2017073278A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015211472A JP2017085766A (ja) 2015-10-28 2015-10-28 直線駆動アクチュエータ
JP2015-211472 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073278A1 true WO2017073278A1 (ja) 2017-05-04

Family

ID=58631428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079603 WO2017073278A1 (ja) 2015-10-28 2016-10-05 直線駆動アクチュエータ

Country Status (2)

Country Link
JP (1) JP2017085766A (ja)
WO (1) WO2017073278A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800007766A1 (it) * 2018-08-02 2020-02-02 Magneti Marelli Spa Attuatore elettrico lineare flessibile per applicazioni automotive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156415A (ja) * 2007-12-27 2009-07-16 Ntn Corp 電動リニアアクチュエータ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156415A (ja) * 2007-12-27 2009-07-16 Ntn Corp 電動リニアアクチュエータ

Also Published As

Publication number Publication date
JP2017085766A (ja) 2017-05-18

Similar Documents

Publication Publication Date Title
JP4789000B2 (ja) 減速比自動切換装置
KR20160001681A (ko) 유압식 차량 브레이크 시스템용 압력 발생기
CN105473892B (zh) 旋转致动器以及谐波齿轮减速机单元
US20070062317A1 (en) Electric Cylinder
AU2011311151A1 (en) Gear, motor-gear unit, vehicle, generator with a gear, and force transmitting element
CN103770936B (zh) 一种用于直升机主减速器螺旋锥齿行星轮系
JP2009156415A (ja) 電動リニアアクチュエータ
JP2019100460A (ja) 遊星歯車減速機構
CN108036034B (zh) 一种双向输出型谐波减速装置
US20230167880A1 (en) Eccentric gear unit for a braking force generator, braking force generator
CN202203345U (zh) 复式精密摆线减速器
WO2017073278A1 (ja) 直線駆動アクチュエータ
CN1900551B (zh) 行星齿轮传动装置和采用了该行星齿轮传动装置并用于驱动阀门的电动致动器
CN112096797A (zh) 一种拥有少齿差减速与行星减速的双级减速动力装置
CN109780163B (zh) 一种往复式圆柱正弦端面活齿减速器
JPH04224343A (ja) ワンウェイクラッチを組込んだ遊星歯車変速機構    
CN110701251A (zh) 一种多级同轴面接触活齿精密减速器
KR200393467Y1 (ko) 실축형 유성기어 감속기
KR101164644B1 (ko) 중공형 싸이클로이드 감속기
CN109281813B (zh) 一种电驱动齿轮传动柱塞泵
JP2010223277A (ja) リニアアクチュエータ
JP2018194109A (ja) 電動アクチュエータ
KR102206092B1 (ko) 듀얼 감속비를 가지는 유성기어 감속기
CN107269787B (zh) 齿轮装置
CN100472091C (zh) 曲柄针齿传动机构及其曲柄针齿减速器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859515

Country of ref document: EP

Kind code of ref document: A1