WO2017073251A1 - Diffuser, method for designing diffuser, method for manufacturing diffuser, display device, projection device, and illumination device - Google Patents

Diffuser, method for designing diffuser, method for manufacturing diffuser, display device, projection device, and illumination device Download PDF

Info

Publication number
WO2017073251A1
WO2017073251A1 PCT/JP2016/079345 JP2016079345W WO2017073251A1 WO 2017073251 A1 WO2017073251 A1 WO 2017073251A1 JP 2016079345 W JP2016079345 W JP 2016079345W WO 2017073251 A1 WO2017073251 A1 WO 2017073251A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion plate
microlens
unit cell
plate according
microlenses
Prior art date
Application number
PCT/JP2016/079345
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 花島
昭夫 高田
和幸 渋谷
雄介 松野
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016121332A external-priority patent/JP6884518B2/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN202111431607.1A priority Critical patent/CN114325900A/en
Priority to US15/770,816 priority patent/US11125413B2/en
Priority to CN201680063025.3A priority patent/CN108351437B/en
Priority to EP16859488.5A priority patent/EP3355086B1/en
Publication of WO2017073251A1 publication Critical patent/WO2017073251A1/en
Priority to US17/396,116 priority patent/US11592156B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/004Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a diffusion plate, a diffusion plate design method, a diffusion plate manufacturing method, a display device, a projection device, and an illumination device.
  • Diffusers that scatter incident light in various directions are widely used in various devices such as display devices such as displays, projection devices such as projectors, and various illumination devices.
  • the diffusion mechanism of incident light in such a diffuser plate uses light refraction caused by the surface shape of the diffuser plate, and uses scattering caused by a substance present in the bulk body and having a refractive index different from that of the surroundings. It is roughly divided into One of the diffusion plates using light refraction caused by the surface shape is a so-called microlens array type diffusion plate in which a plurality of microlenses having a size of several tens of ⁇ m are arranged on the surface of a bulk body.
  • Patent Document 1 discloses a diffusing plate for a focusing screen, and the diffusing plate is designed with variations in the pitch and height of the microlenses.
  • the pitch P of the microlens is 8 ⁇ m ⁇ P ⁇ 30 ⁇ m
  • the height H of the microlens is 0.01 ⁇ P ⁇ H ⁇ 0.1 ⁇ P. The effect is disclosed.
  • Patent Document 2 discloses a microlens array in which a plurality of microlenses are irregularly arranged, and a boundary region of the plurality of microlenses has a curvature with a sign different from the surface curvature of the microlens. It is disclosed that it consists of aspects.
  • Patent Document 3 a focusing screen that performs exposure of a second area by a step-and-repeat method using a reticle pattern configured by a random pattern is manufactured. A method is disclosed.
  • Patent Document 3 it is mentioned that the pattern at the periphery of the reticle is not discontinuous at the joint. Further, in Patent Document 3, the suppression of the diffracted light component is also mentioned while paying attention to the functional characteristics as a focusing screen such as blur and brightness.
  • the focusing screen (that is, the focusing screen) manufactured by the manufacturing method disclosed in Patent Document 3 described above realizes desired characteristics when light is incident over a wide area of the focusing screen. Is possible. However, if such a manufacturing method is applied to a microlens array type diffusion plate, it is difficult to obtain desired diffused light for light incident on a spot-like narrow region such as laser light. There was a problem.
  • An object of the present invention is to exhibit excellent diffusion characteristics and excellent durability against coherent light.
  • An object of the present invention is to provide a diffusion plate, a diffusion plate design method and a diffusion plate manufacturing method that can be manufactured with higher productivity, and a display device, a projection device, and an illumination device using the diffusion plate.
  • a microlens array type diffusing plate composed of a group of microlenses located on the surface of a transparent substrate, which is continuous with respect to the array arrangement
  • the unit cell is composed of a plurality of microlenses positioned on the surface of the transparent substrate, and ridge lines between the adjacent microlenses are not parallel to each other, and the transparent substrate A diffusion plate is provided that is not parallel to.
  • the distance between the apexes of the adjacent microlenses constituting the unit cell is included within a range of ⁇ 60% of the average value, and the radius of curvature of each of the microlenses constituting the unit cell is The average value is preferably within a range of ⁇ 20%.
  • the degree of variation from the average value of the distance between the apexes of the adjacent microlenses constituting the unit cell is ⁇ p, and the degree of variation from the average value of the radius of curvature of the adjacent microlenses constituting the unit cell It is preferable that the following (Equation 1) is satisfied when ⁇ R is set.
  • the length of the diagonal of the unit cell is preferably 3 mm or less.
  • the length of at least one side of the unit cell is an integer multiple of the average pitch of the microlenses included in the unit cell.
  • the number of microlenses included in the unit cell is at least nine.
  • a boundary portion between the microlenses adjacent to each other is not flat.
  • a half lens is disposed on at least a part of the boundary portion.
  • the shape of the micro lens may be a polygon.
  • the microlens is preferably a concave lens.
  • the transparent substrate may be made of an inorganic material.
  • the inorganic material may be a glass mainly composed of silicon having an alkali component content of 20% or less.
  • An antireflection layer may be provided on the surface of the microlens and the surface of the transparent substrate on which the microlens group is not disposed.
  • the antireflection layer may be a multilayer structure composed of Nb 2 O 5 and SiO 2 .
  • the antireflection layer provided on the surface of the microlens may be an antireflection structure including irregularities having a size equal to or smaller than the wavelength of light, which is formed on the surface of the microlens group.
  • the antireflection structure may be a structure that is provided anisotropically on the surface of the microlens and has a pitch of unevenness of 300 nm or less.
  • a diffusion plate design method for determining the curvature radius of each microlens based on the product of the reciprocal of the etching selectivity between the transparent substrate and the resist and the curvature radius developed on the resist is provided.
  • a method of manufacturing the diffusion plate comprising: a step of laminating a resist on a transparent substrate; and a grayscale mask having a transmittance distribution.
  • a method of manufacturing a diffusion plate which includes a step of exposing the resist and a step of dry etching the developed transparent substrate using a fluorine-based gas so as to obtain a desired lens shape.
  • the radius of curvature of each microlens constituting the microlens group is determined by the product of the reciprocal of the etching selectivity of the transparent substrate and the resist and the radius of curvature developed on the resist. Also good.
  • a display device including the above diffusion plate.
  • a projection apparatus including the above diffusion plate.
  • an illumination device including the above diffusion plate is provided.
  • the present invention it is possible to produce a diffuser plate that exhibits excellent diffusion characteristics and has excellent durability against coherent light with higher productivity.
  • a display device, a projection device, and an illumination device using such a diffusion plate it is possible to provide a display device, a projection device, and an illumination device using such a diffusion plate.
  • FIG. 1 is an explanatory view schematically showing a diffusion plate according to this embodiment.
  • FIG. 2 is an explanatory view schematically showing a part of the unit cell constituting the diffusion plate according to the present embodiment.
  • 3A to 4B are explanatory diagrams showing an example of a boundary state between adjacent microlenses in the unit cell according to the present embodiment.
  • FIG. 5 is an explanatory view schematically showing the diffusion plate according to the present embodiment.
  • 6A to 7B are explanatory views for explaining the arrangement of unit cells in the diffusion plate according to the present embodiment.
  • the diffusing plate 1 is a microlens array type diffusing plate in which a microlens group including a plurality of microlenses is arranged on a substrate.
  • the diffusion plate 1 is composed of a plurality of unit cells 3 as schematically shown in FIG.
  • the layout pattern (arrangement pattern) of the plurality of microlenses provided in the unit cell 3 is the unit cell arrangement direction (in other words, In this case, it is continuous in the array arrangement direction).
  • FIG. 1 shows an example in which the shape of the unit cell 3 constituting the diffusion plate 1 is a rectangle, but the shape of the unit cell 3 is limited to that shown in FIG.
  • any shape that can fill the plane without gaps such as a regular triangle shape or a regular hexagonal shape, may be used.
  • the number of unit cells 3 constituting the diffusion plate 1 according to the present embodiment is not particularly limited, but the diffusion plate 1 is preferably composed of at least two unit cells 3.
  • FIG. 2 is an explanatory view schematically showing a part of the structure of the unit cell 3 according to the present embodiment.
  • the unit cell 3 according to the present embodiment includes a transparent substrate 10 and a microlens group 20 formed on the surface of the transparent substrate 10.
  • the transparent substrate 10 is a substrate made of a material that can be regarded as transparent in the wavelength band of light incident on the diffusion plate 1 according to the present embodiment.
  • a substrate is preferably formed using an inorganic material having high light resistance.
  • inorganic materials having high light resistance include, for example, known optical glasses such as quartz glass, borosilicate glass, white plate glass, etc., and the main component is silicon having an alkali component content of 20% by mass or less. It is preferable to use glass.
  • the transparent substrate 10 is rectangular is illustrated as an example.
  • the shape of the transparent substrate 10 is not limited to a rectangle, for example, a display device on which the diffusion plate 1 is mounted, It may have an arbitrary shape depending on the shape of the projection device, lighting device, or the like.
  • a microlens group 20 including a plurality of microlenses 21 is formed on the surface of the transparent substrate 10.
  • the exit surface of the microlens 21 constituting the unit cell 3 is a concave lens. Is preferred. This is because when the exit surface of the diffuser plate is a convex lens, a condensing part is generated at the focal position, which may cause problems in installation restrictions and safety.
  • each microlens 21 is not the same in radius of curvature or pitch between vertices, and has a variation in a certain range, so that the focal length is also a certain distribution. have.
  • the focal position is a virtual point, but the light intensity density is large at the focal position. Therefore, the focal position of each microlens 21 may be in a region adjacent to the transparent substrate 10 constituting the diffusion plate 1. preferable. This is because when the focal position of each microlens 21 is located away from the transparent substrate 10, there may be restrictions on the optical system such as various components cannot be arranged at the focal position.
  • each microlens 21 constituting the unit cell 3 is arranged so as to satisfy the following three conditions.
  • the boundary of the four sides of the unit cell 3 should not be discontinuous in the pattern in the array arrangement.
  • the planar position and height position of the apex of each microlens 21 (in other words, the position where the depth of the concave lens is the lowest) and the ridge line between the microlenses 21 are not so large that diffraction is sufficiently suppressed. Be regular.
  • the “irregularity” referred to in the above (2) means that there is substantially no regularity regarding the arrangement of the microlenses 21 in an arbitrary region of the microlens group 20 in the diffusion plate 1. To do. Therefore, even if there is a certain regularity in the arrangement of the microlenses 21 in a micro area in an arbitrary area, the irregularity in which the arrangement of the microlenses 21 does not exist in the entire arbitrary area is “irregular”. Shall be included.
  • the ridge lines between the adjacent microlenses 21 are not all parallel to each other and are parallel to the transparent substrate 10. It is not like that. This is because the diffracted light component increases when there are ridge lines parallel to each other between the microlenses 21.
  • the “ridge line” refers to a linear region in which the curvature radius of the microlens 21 is abruptly changed at an adjacent lens boundary where the plurality of microlenses 21 are adjacent to each other.
  • the width of such a ridge line is about the wavelength of normal light or less, but the width of the ridge line is controlled so that the diffracted light has an appropriate size under process conditions such as etching.
  • “not parallel” includes a case where at least one of two lines for determining whether or not parallel is a curve.
  • the region of the microlens surrounded by the adjacent microlens 21 is a polygon when viewed from the optical axis direction of the microlens.
  • the sides are curved when viewed from the cross section of the microlens.
  • the length of at least one side of the unit cell 3 composed of the microlenses 21 satisfying the above three conditions is the average pitch of the microlenses 21 included in the unit cell 3 (for example, between the vertex positions of the microlenses 21). It is preferable that it is an integral multiple of the average distance).
  • the period of the unit cell 3 in the diffusing plate 1 according to the present embodiment is preferably a period in which the length of at least one side of the unit cell 3 is an integral multiple of the average pitch of the microlenses 21.
  • the adjacent microlenses 21 in the microlens group 20 are determined so as to satisfy the above-described conditions, and are not completely random.
  • the ridgeline between adjacent microlenses 21 can be further devised to reduce the diffracted light component.
  • a part of the ridge line is not a simple straight line or curve, but a convex or concave shape, or as shown in FIGS. 4A and 4B, a half lens part is formed on a part of the ridge line.
  • the half-lens portion refers to a region where the change in the radius of curvature of the microlens 21 is relatively gradual such that the width of the ridge line is 10 ⁇ m or more.
  • such a half-lens part includes one having a different sign of curvature in an orthogonal direction, such as a saddle type.
  • the diffusion plate 1 has a front surface and a back surface (in other words, the surface of the microlens 21 and the surface on the side where the microlens group 20 of the transparent substrate 10 is not disposed).
  • the antireflection layer 30 may be formed for the purpose of increasing transmittance and preventing reflection stray light.
  • the antireflection layer 30 is made of, for example, SiO 2 , Al 2 O 3 , MgF 2 , CeO 2 , TiO 2 , Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , Tb 2 O 3 , ZnS, ZrO 2. It can be formed by a known method such as vapor deposition or sputtering using a general dielectric such as.
  • a material having high light resistance such as Ta 2 O 5 , Nb 2 O 5 , and SiO 2
  • the incident light has a high light density such as a high output laser. Even so, it is possible to obtain a sufficient effect without being deteriorated by the light.
  • the antireflection layer 30 is formed into a multilayer structure in which materials having high light resistance such as Ta 2 O 5 , Nb 2 O 5 , and SiO 2 are laminated with each other, thereby further improving light resistance. It can be realized.
  • the film thickness of the antireflection layer 30 is not particularly limited, and may be set as appropriate according to the use of the diffusion plate 1, the light density of incident light, and the like.
  • the antireflection layer 30 is formed on the diffusion plate 1, since the unevenness of the microlens 21 exists on the surface of the diffusion plate 1, the thickness of the antireflection layer 30 is different from that of the central portion of the microlens 21. In view of this point, it is preferable to form the antireflection layer 30 because there is a possibility that it differs depending on the peripheral portion. In addition, since the incident angle of incident light is different between the central portion and the peripheral portion of the microlens 21, it is more preferable to devise such as taking a wider angle range than usual.
  • the antireflection layer 30 provided on the surface of the microlens 21 is formed on the surface of the microlens group 20 (also the surface of the microlens 21) and has fine irregularities having a size equal to or smaller than the wavelength of light (so-called so-called).
  • An antireflection structure made of a moth-eye structure may be used.
  • the antireflection structure is preferably a structure that is provided anisotropically in the surface of the microlens 21 and has a pitch of fine irregularities of 300 nm or less.
  • ⁇ About arrangement of unit cell 3> As conventionally known, when light is incident on a periodic repeating structure, diffracted light is generated.
  • the diffraction angle ⁇ is given by Equation 101 below, where p is the pitch (repetition period) of the repetitive structure, m is the diffraction order (integer), and ⁇ is the wavelength of incident light.
  • the emitted light is a superimposition of the diffusion effect by the lens element (microlens 21) and the diffracted light component by the periodic arrangement of the microlenses 21. It becomes.
  • the diffracted light component has a discrete distribution with respect to the angle, and the peak intensity of the diffracted light component decreases in inverse proportion to the diffraction order m. If these discrete diffraction components become smaller than the intensity level of the diffused light spread by the lens array, they will be buried in the diffused light and cannot be distinguished from them. By reducing the peak, adverse effects due to diffraction are suppressed.
  • the peak intensity of the diffracted light component depends on the incident conditions such as the incident light diameter. For example, when light having an incident light diameter having the same size as that of the microlens 21 is incident on the microlens 21, even if the microlens group 20 is regularly arranged, the microlens 21 to which the light has entered is arranged. Since only a small amount of light is incident on the microlens 21 adjacent to, diffracted light is hardly generated. On the other hand, when incident light having an incident light diameter approximately equal to the size of the microlens 21 is incident on the microlens 21, a phenomenon in which emission characteristics change depending on the relationship between the incident optical axis and the optical axis of the microlens 21. Is likely to occur.
  • FIG. 6A to 6C show examples in which the emission light distribution of the irregularly arranged microlens array is simulated by a commercially available electromagnetic field simulator.
  • the pitch p (also the diameter of the microlens) of the microlens 21 in the microlens array is 82 ⁇ m
  • the size of the rectangular microlens array is 738 ⁇ m ⁇ 710 ⁇ m (diagonal length: about 1024 ⁇ m). It was.
  • the incident light diameter of the light incident on the microlens array is changed to 200 ⁇ m, 300 ⁇ m, and 650 ⁇ m, how the emitted light distribution including the diffracted light is projected onto the detector screen. I verified.
  • the bright spot in the figure indicates the diffracted light by the microlens array.
  • the diffracted bright spot in the diffused light becomes large.
  • the shape of the microlens 21 is often formed by direct drawing with a laser or an electron beam.
  • the unit cell 3 having a relatively small area is used.
  • a so-called step-and-repeat technique is employed in which the array is repeatedly arranged in the vertical and horizontal directions and expanded to a desired size.
  • two types of diffracted light components having a double repeated structure in the unit cell 3 and between the unit cells 3 are generated. For each diffraction angle, the diffraction angle in the unit cell 3 is determined by the pitch of the lens arrangement, and the diffraction angle between the unit cells 3 is determined by the size (size) of the unit cell 3.
  • the diffracted light resulting from such a unit cell array will be referred to as sub-diffracted light.
  • each bright spot of the diffracted light by the lens array as described above is sub-diffraction by the unit cell array as described above.
  • the peaks are further discretely separated. Therefore, the clarity of the bright spot in the diffused light is reduced by the sub-diffracted light peak.
  • the diffracted bright spot in the diffused light becomes smaller because the diffracted light by the diffraction in the unit cell 3 as described above (hereinafter also referred to as main diffracted light). Is due to the phenomenon of being separated by the sub-diffraction light.
  • the diffraction angle by the unit cell is very small, the bright spot of the sub-diffraction component does not become a problem in actual use of the diffusion plate 1 according to the present embodiment. Therefore, by appropriately generating the sub-diffracted light by the unit cell 3, as described with reference to FIGS. 6A to 6C, the peak intensity of the main diffracted light can be reduced.
  • the intensity of the sub-diffracted light is determined by the relationship between the unit cell 3 and the magnitude of the incident light.
  • the unit cell 3 is larger than the incident light, sub-diffracted light due to the periodic structure of the unit cell 3 is not generated.
  • the diameter in the direction in which the full width at half maximum is minimized is defined as the “incident light diameter” as shown in FIG. 7B.
  • the unit cell 3 is a rectangle such as a rectangle or a square, and the length of the diagonal line of the unit cell 3 is defined as “unit cell size”.
  • the diffusion plate 1 can be used for any laser light source.
  • the microlens array type diffusing plate 1 includes two or more unit cells 3, and each unit cell 3 is a microlens group including a plurality of microlenses 21. 20
  • the microlenses 21 included in each unit cell 3 are continuous with respect to the array arrangement, and the ridgelines of the microlenses 21 are not parallel to each other and are not parallel to the transparent substrate 10. And thereby, the diffusing plate 1 according to the present embodiment can suppress the diffracted light component in the diffused light, and exhibits excellent diffusion characteristics.
  • the diffusion plate 1 according to this embodiment has been described in detail above with reference to FIGS. 1 to 7B.
  • FIG. 8 is a flowchart showing an example of the flow of the manufacturing method of the diffusion plate according to the embodiment.
  • 9 and 10 are explanatory diagrams for explaining the manufacturing method of the diffusion plate according to the present embodiment.
  • the diffusion plate 1 according to the present embodiment can be manufactured by transferring a pattern made of an organic material such as a photoresist onto a substrate by dry etching, as will be described below.
  • a resist is applied to a predetermined transparent substrate 10 (step S101).
  • the fluorine-based etching gas such as CF 4 , SF 6 , CHF 3 or the like is generally used as the etching gas
  • the transparent substrate 10 is as described above.
  • alkali components such as Al 2 O 3 and alkali metals that react with various fluorine-based etching gases to become nonvolatile substances (or the content of alkali components is 20% by mass or less, more preferably 10% by mass or less). It is preferable to use quartz glass or Tempax glass.
  • step S103 stepper exposure is performed on the transparent substrate 10 coated with resist using a gray scale mask.
  • a unit cell 3 of about 1 mm or less and further vertically and horizontally repeated is used as a basic cell of about 1 to 20 mm, and this basic cell is used in step-and-repeat exposure. It can also be a repeating unit. In this case, depending on the positional accuracy in the stepping, a pattern joint having a width of about several ⁇ m at maximum is generated between the basic cells. However, as schematically shown in FIG. 9, the exposure shot is moved at the unit cell interval. By performing the exposure while overlapping the patterns, it is possible to eliminate the connection between the patterns. At this time, if the exposure amount by one exposure is half of the desired exposure amount, the desired exposure amount can be realized by four exposures. It is also possible to eliminate joints by performing step-and-repeat exposure so that the edges of adjacent basic cells are slightly overlapped (for example, a width of 500 nm or less). In this case, multiple exposures are not necessary.
  • step S105 the resist pattern after the stepper exposure is developed.
  • a desired microlens pattern is formed on the resist applied on the transparent substrate 10.
  • step S107 dry etching is performed on the transparent substrate 10 that has been developed using the fluorine-based etching gas as described above.
  • step S107 dry etching is performed on the transparent substrate 10 that has been developed using the fluorine-based etching gas as described above.
  • the antireflection layer 30 is formed by performing AR coating on the front and back surfaces of the transparent substrate 10 on which the microlens pattern is formed by vapor deposition or sputtering using the dielectric as described above (step S109). Moreover, you may form the antireflection structure which consists of an unevenness
  • the diffusion plate 1 forms a resist pattern having a lens curved surface on a transparent substrate 10 such as a glass substrate by gray scale exposure, and then dry-etches the resist pattern on the transparent substrate 10. It is produced by transferring the lens shape to the lens.
  • the lens-like resist pattern shape transferred to the transparent substrate 10 is determined in consideration of not only the gray scale exposure conditions but also the dry etching conditions.
  • the etching selectivity as described above can be changed by adjusting the flow rate ratio of each etching gas in the dry etching process. Thereby, it is possible to finely adjust the shape of the lens to be transferred (for example, the radius of curvature of the microlens 21).
  • the shape of the resist pattern created by the gray scale exposure is determined in consideration of the lens pattern of the transparent substrate 10 which is a final finished diffuser and the shape deformation caused by the etching. Specifically, if the etching selectivity is represented by ⁇ and the depth (also sag amount) of each microlens 21 is represented by S, the depth of the microlens 21 actually formed on the transparent substrate 10 is Approximately ⁇ ⁇ S. When the curvature radius of the resist pattern is R, the curvature radius after etching is R ⁇ ⁇ .
  • FIG. 10 shows the result of actually measuring the shape of the formed resist pattern when the etching selectivity is 0.6 and 1.7.
  • the shape of the substantially central portion of the microlens array (the shape in the vicinity of the AA cutting line in the upper part of FIG. 10) was actually measured with a laser confocal microscope.
  • the resist design value and the transferred finished product shape do not always match.
  • FIG. 11 is a flowchart showing an example of the flow of the diffusion plate design method according to the present embodiment.
  • step S ⁇ b> 201 a curvature radius R (n, ⁇ , p) is calculated based on the following equation 103 (step S203).
  • change allowable widths such as a curvature radius change width ⁇ R, a pitch change width ⁇ p, and a lens apex height change width ⁇ h are set (step S205). Then, a unit cell layout is implemented using a known lens arrangement calculation algorithm (step S207).
  • step S209 it is determined whether or not the unit cell that has been laid out meets the layout standard.
  • a layout standard is the conditions (1) to (3) as described above.
  • step S207 If the unit cell that has been laid out does not satisfy all of the above (1) to (3), the process returns to step S207, and the unit cell is changed again while changing the basic setting condition within the allowable change range. Layout is implemented. On the other hand, if the unit cell thus laid out satisfies all of the above (1) to (3), the temporary layout of the unit cell is completed (step S211).
  • the etching selectivity ⁇ as described above is set (step S211).
  • the sag data (that is, the height S) of the temporary layout is corrected to a value represented by ⁇ ⁇ S based on the set etching selection ratio ⁇ (step S215).
  • the final layout of the unit cell is completed (step S213).
  • the diffusion plate 1 according to the present embodiment can be manufactured with higher productivity by using a simpler manufacturing process called a dry etching process.
  • a Tempax glass substrate is used as the transparent substrate 10, and a positive resist is applied on the glass substrate.
  • the film thickness of the resist is 11 ⁇ m so as to be larger than the sag depth of the microlens 21 to be manufactured.
  • the layout of the gray scale mask to be used is composed of a rectangular unit cell 3 having a horizontal dimension of 737.6 ⁇ m and a vertical length of 709.6 ⁇ m (that is, a basic cell) arranged vertically and horizontally.
  • the unit cell 3 is designed so that, for example, the arrangement of microlenses in the horizontal direction has an average pitch of 82 ⁇ m and nine lenses (100 or more in total in the cell) are arranged so as not to form a discontinuous pattern when repeated vertically and horizontally.
  • the in-plane position of the vertex is within a radius of 42 ⁇ m from the hexagonal vertex
  • the change width of the height position is 2 ⁇ m or less, and between adjacent lenses. It is assumed that the boundary is not parallel and is not parallel to the substrate.
  • a unit cell 3 is a unit cell 3 in which an arrangement that satisfies the above conditions is determined by a known lens arrangement calculation algorithm.
  • unit cells 3 arranged in an array of 16 in the horizontal direction and 17 in the vertical direction are used as basic cells, and step-and-repeat exposure is performed using the basic cells as exposure unit positions.
  • etching is performed using a resist shape obtained after development as a mask and a mixed gas of CF 4 and Ar as an etching gas.
  • the etching rate is, for example, glass: 0.5 ⁇ m / min, resist: 0.45 ⁇ m / min.
  • the antireflection layer 30 made of, for example, a Nb 2 O 5 / SiO 2 multilayer film is formed on both surfaces of the glass substrate by vapor deposition or sputtering.
  • the diffusion plate 1 according to the present embodiment as described above can be appropriately mounted on a device that needs to diffuse light in order to realize its function.
  • Examples of the device that needs to diffuse light in order to realize the function include a display device such as various displays and a projection device such as a projector.
  • the diffusion plate 1 according to the present embodiment can be applied to the backlight of the liquid crystal display device, and can also be used for light shaping. Furthermore, the diffusion plate 1 according to the present embodiment can be applied to various illumination devices.
  • the device that needs to diffuse light in order to realize the function is not limited to the above example, and the device that uses light diffusion is not limited to this well-known device. It is possible to apply the diffusion plate 1 according to the embodiment.
  • diffusion plates having various diffusion full angles such as a diffusion full angle of about 1 to 30 degrees are used.
  • a diffusion plate having a total diffusion angle of less than 10 degrees is used, and an application for obtaining the same diffusion characteristics as a phosphor film using blue light
  • a diffusion plate having a total diffusion angle of about 10 to 30 degrees is used.
  • the diffusion light is diffused in an angular region where the diffused light intensity is attenuated. There was a problem that the attenuation was not steep.
  • the diffusion plate applicable to the above uses is realized by a microlens type diffusion plate, in addition to the suppression of the diffraction component as described in the first embodiment, the diffused light intensity It is important to realize more excellent diffusion characteristics such that the attenuation of diffused light becomes steep even in the angle region where the light is attenuated.
  • the conditions (1) to (3) regarding each microlens constituting the unit cell focused on the diffusion plate according to the first embodiment.
  • a more excellent diffusion characteristic is realized such that the attenuation of the diffused light becomes steep in the angular region where the intensity of the diffused light attenuates.
  • the diffusion plate 1 according to the second embodiment of the present invention is a microlens array type in which a microlens group including a plurality of microlenses is arranged on a substrate.
  • This is a diffusion plate.
  • the diffusing plate 1 is composed of a plurality of unit cells 3 like the diffusing plate 1 according to the first embodiment shown in FIG.
  • the layout pattern (arrangement pattern) of the plurality of microlenses provided in the unit cell 3 is continuous in the unit cell arrangement direction (in other words, the array arrangement direction).
  • FIG. 12 is an explanatory view schematically showing a part of the unit cell constituting the diffusion plate according to the present embodiment.
  • FIG. 13A is an explanatory diagram for explaining the variation in the inter-vertex distance in the microlens group according to the present embodiment
  • FIG. 13B is for explaining the variation in the radius of curvature in the microlens group according to the present embodiment. It is explanatory drawing.
  • FIG. 14 is an explanatory diagram for explaining the attenuation width in the diffusion plate according to the present embodiment, and FIGS.
  • FIG. 15A and 15B are graphs showing the relationship between the inter-vertex distance and the variation in the radius of curvature and the attenuation rate. It is.
  • FIG. 16 is an explanatory diagram for explaining the relationship between the full diffusion angle and the attenuation factor in the diffusion plate.
  • the unit cell 3 included in the diffusion plate 1 according to the present embodiment is a transparent substrate 10 and a microlens formed on the surface of the transparent substrate 10. And a group 20.
  • the transparent substrate 10 of the unit cell 3 according to the present embodiment has the same configuration as the transparent substrate 10 of the unit cell 3 according to the first embodiment, and has the same effects. Then, detailed explanation is omitted.
  • a microlens group 20 including a plurality of microlenses 21 is formed on the surface of the transparent substrate 10. Since the diffusion plate is originally intended to diffuse light, it is preferable that the exit surface of the microlens 21 constituting the unit cell 3 is a concave lens. Also in the microlens group 20 according to the present embodiment, each microlens 21 is not the same in radius of curvature or pitch between vertices, and has variations in a certain range, so that the focal length is also constant. Have a distribution. In the case of a concave lens, the focal position is a virtual point, but the light intensity density is large at the focal position. Therefore, the focal position of each microlens 21 may be in a region adjacent to the transparent substrate 10 constituting the diffusion plate 1. preferable.
  • each microlens 21 constituting the unit cell 3 satisfies the following three conditions (1) to (3), as in the first embodiment. It is arranged to do.
  • the boundary of the four sides of the unit cell 3 should not be discontinuous in the pattern in the array arrangement.
  • the planar position and height position of the apex of each microlens 21 (in other words, the position where the depth of the concave lens is the lowest) and the ridge line between the microlenses 21 are not so large that diffraction is sufficiently suppressed. Be regular.
  • the ridge lines between the adjacent microlenses 21 are not all parallel to each other and are parallel to the transparent substrate 10. It is not like that.
  • the average value (average pitch) of the pitches of the repeating structure of the microlenses 21 (that is, the distance between the apexes between adjacent microlenses 21 in FIG.
  • the diffusion full angle (full width at half maximum) ⁇ of the microlens type diffusion plate is obtained by using the refractive index n, the average pitch (average inter-vertex distance) p, and the average curvature radius R of the microlens 21.
  • the following equation 201 can be expressed.
  • the average inter-vertex distance p and the average radius of curvature R are determined based on the following formula 201 so that the desired diffusion full angle ⁇ is obtained.
  • the microlens group 20 has a uniform and regular arrangement, the diffused light from all the microlenses 21 constituting the array coincides, and a diffusion characteristic having a flat central portion and a steep attenuation characteristic is obtained.
  • a large number of diffracted lights are generated due to the periodicity of the array structure, which is not preferable as a diffusion plate. Therefore, as in the first embodiment, the diffraction component is suppressed by introducing appropriate irregularities in the lens shape and lens arrangement.
  • FIGS. 13A and 13B the values of the distance between the vertices and the radius of curvature will vary.
  • ⁇ p given by Equation 203 is used as the degree of variation from the average value of the distance between vertices.
  • ⁇ R given by 205 is used as the degree of variation from the average value of the radius of curvature.
  • the steepness in the diffusion characteristic is represented by an attenuation rate ⁇ expressed by the following expression 207.
  • ⁇ in the following expression 207 is the full width of diffusion, and corresponds to the full width at half maximum of the diffusion angle distribution curve as schematically shown in FIG.
  • an angle region from an angle at which the intensity is 90% of the maximum value to an angle at which the intensity is 10% of the maximum value is referred to as an attenuation region.
  • the average value in the circumferential direction of the width of the attenuation region (that is, the angular width) is defined as an attenuation width ⁇ in the following expression 207.
  • the attenuation width used in the following Expression 207 ⁇ is an average value of the width (angular width) of these two attenuation regions.
  • the variation width dp between the vertices and the variation radius of the curvature radius are obtained by using the variation degrees ⁇ p and ⁇ R given by the equations 203 and 205.
  • dR be expressed as in Equation 209 and Equation 211 below.
  • the attenuation width ⁇ can be expressed as the following expression 213 using the above expression 201, expression 209, and expression 211.
  • the following expression 213 can be expressed as expression 215. Therefore, the attenuation rate ⁇ defined by the above equation 207 can be expressed as the following equation 217 using the following equation 215.
  • FIG. 15A shows how the attenuation factor ⁇ given by the above equation 217 changes when the value is changed from 02 (2%) to 0.3 (30%). It was.
  • the variation degree ⁇ p of the inter-vertex distance is When changing from 0.4 (40%) to 0.8 (80%) and changing the curvature radius variation degree ⁇ R from 0.02 (2%) to 0.3 (30%), A diffusion angle distribution curve was calculated using a commercially available ray tracing simulator. Then, the result of calculating the attenuation rate ⁇ from the obtained diffusion angle distribution curve is shown in FIG. 15B. As is clear from a comparison between FIGS.
  • the diffusion plate 1 according to the present embodiment can be suitably used for applications such as spreading a coherent light beam such as a laser beam uniformly on the phosphor surface.
  • the attenuation rate ⁇ as described above is required to be usually 1 or less, more preferably 0.9 or less, because it affects the light conversion efficiency in the phosphor.
  • the distance between the vertices of the adjacent microlenses 21 constituting the unit cell 3 has a variation within a range of ⁇ 60% of the average value (in other words, the variation degree ⁇ p of the distance between the vertices is , 0 ⁇ p ⁇ 0.6), and the radius of curvature of each microlens 21 constituting the unit cell 3 varies within a range of ⁇ 20% of the average value (in other words, the variation degree ⁇ R of the radius of curvature satisfies the relationship 0 ⁇ R ⁇ 0.2), which suggests that the attenuation rate ⁇ of the diffusion characteristic can be made 0.9 or less.
  • the microlens group 20 it is preferable that the following conditions (4) and (5) are further satisfied, and that the following conditions (4) to (6) are further satisfied. preferable.
  • the distance between the apexes of the adjacent microlenses 21 constituting the unit cell 3 is included within a range of ⁇ 60% of the average value.
  • the radius of curvature of the microlens 21 is included within a range of ⁇ 20% of the average value.
  • ⁇ R degree of variation from the average value of the distance between vertices
  • ⁇ R degree of variation from the average value of the radius of curvature
  • the width ⁇ of the attenuation region increases in proportion to the diffusion full angle ⁇ .
  • the conversion efficiency of the phosphor depends on the width ⁇ of the attenuation region rather than the attenuation factor ⁇ , and as shown schematically in FIG. 16, the light energy that is wasted increases as the width ⁇ of the attenuation region increases. . Accordingly, when a diffusion plate having a larger diffusion full angle ⁇ is realized, the required attenuation rate ⁇ is smaller. Therefore, the effect of improving the conversion efficiency by the diffusion plate 1 according to the present embodiment is greater when the diffusion total angle ⁇ is 10 degrees or more (in other words, the F value is 5.5 or less).
  • the total diffusion angle ⁇ is the same value, but the average vertex distance is limited by the incident light diameter, production sag, etc. Is limited by the resolution in the depth direction determined by the production method, in addition to the production sag. Therefore, considering these practical restrictions, the average apex distance p is preferably in the range of 13 to 90 ⁇ m, and the average radius of curvature R is preferably in the range of 20 to 2000 ⁇ m.
  • the attenuation characteristic is related to two parameters, that is, the distribution of the microlens arrangement and the distribution of the curvature radius with respect to the new viewpoint of optimization of the attenuation characteristic. Focusing on this, the range of these two parameters is defined. Thereby, in the diffusion plate according to the present embodiment, it is possible to optimize the attenuation characteristics while reducing the diffraction component.
  • the diffusion plate 1 has a front surface and a back surface (in other words, the surface of the microlens 21 and the surface on the side where the microlens group 20 of the transparent substrate 10 is not disposed).
  • the antireflection layer 30 may be formed for the purpose of increasing transmittance and preventing reflection stray light. Since such an antireflection layer 30 can be provided in the same manner as the antireflection layer 30 in the diffusing plate 1 according to the first embodiment, detailed description thereof will be omitted below.
  • the procedure for arranging the microlenses 21 is not particularly limited.
  • the apexes of the microlenses 21 are initially arranged at positions corresponding to the apexes of the hexagon. Thereafter, the vertex position may be shifted within a range satisfying the above conditions (1) to (5), more preferably the above conditions (1) to (6).
  • a position that satisfies the above conditions (1) to (5), more preferably the above conditions (1) to (6) without providing an initial position.
  • the relationship may be obtained sequentially using various computers.
  • the NA of the stepper is 0.4 to 0.6, and the resist depth that can be exposed is about 15 ⁇ m.
  • the sag depth is preferably 15 ⁇ m or less.
  • the arrangement of the microlenses When determining the arrangement of the microlenses by the method of providing the initial arrangement, it is possible to easily control the statistic (for example, the average value or range) of the distance between the apexes of the microlenses. On the other hand, when the arrangement of the microlenses is sequentially determined without providing the initial arrangement, the diffraction component can be more efficiently reduced.
  • the diffusion plate 1 according to the present embodiment can be manufactured in the same manner as the manufacturing method of the diffusion plate 1 according to the first embodiment.
  • the F value can be precisely controlled by changing the sag depth even if the planar shape is the same by the array arrangement according to the present embodiment. That is, a desired F value can be realized by changing the process time by a manufacturing method described later, and the productivity is high.
  • the F value is 5.5 or less.
  • the F value is higher than that (for example, for the purpose of uniforming the light intensity of the laser array light source, 8 Even with an F value of about ⁇ 60), it is possible to manufacture by shortening the process time with the same pattern.
  • the diffusion plate 1 according to the present embodiment as described above can be appropriately mounted on a device that needs to diffuse light in order to realize its function.
  • Examples of the device that needs to diffuse light in order to realize the function include a display device such as various displays and a projection device such as a projector.
  • the diffusion plate 1 according to the present embodiment can be applied to the backlight of the liquid crystal display device, and can also be used for light shaping. Furthermore, the diffusion plate 1 according to the present embodiment can be applied to various illumination devices.
  • the device that needs to diffuse light in order to realize the function is not limited to the above example, and the device that uses light diffusion is not limited to this well-known device. It is possible to apply the diffusion plate 1 according to the embodiment.
  • the diffusion plate according to the present invention will be specifically described with reference to Examples and Comparative Examples.
  • the Example shown below is only an example of the diffusion plate which concerns on this invention to the last, and the diffusion plate which concerns on this invention is not limited to the following example.
  • FIGS. 17A to 17D The obtained results are shown in FIGS. 17A to 17D.
  • FIG. 17A only when the incident light diameter is 650 ⁇ m, the diffusion angle (center angle ⁇ ) that cannot be seen in the case of other incident light diameters (FIGS. 17B, 17C, and 17D).
  • FIG. 17A and FIG. 17D when the unit cell size is equal to or smaller than the incident light diameter, the sub-diffracted light as described above is generated, and the sudden intensity change remarkably observed in FIG. You can see that
  • FIG. 18 shows the conditions of the diffusing plate model on which the simulation was performed as a table, and the obtained diffused light distribution is shown in FIGS. 19A and 19B.
  • FIG. 19A shows a simulation result when the variation degree ⁇ R of the radius of curvature is ⁇ 10%
  • FIG. 19B shows a simulation result when the variation degree ⁇ R of the curvature radius is ⁇ 20%.
  • the table shown in FIG. 18 also shows the attenuation rate ⁇ calculated from the results shown in FIGS. 19A and 19B.
  • the results in the vicinity of the curvature of 300 ⁇ m are described. However, even in the case of a wider diffusion angle, it conforms to the second embodiment of the present invention.
  • the distance between the vertices is 82 ⁇ m ⁇ 42 ⁇ m (variation range: ⁇ 50%), and the radius of curvature is 370 ⁇ m to 760 ⁇ m on average, the variation range is ⁇ 10%, and the selection ratio at the time of etching is An appropriate change was made in the range of 0.8 to 1.4.
  • the diffusion characteristics of the diffusion plate obtained by such design and process conditions are shown in FIG. As can be seen from FIG. 20, the above diffusion plate exhibits diffusion characteristics with a diffusion angle of 2 to 9 degrees.
  • the microlens array configuration when the diffusion angle is larger was verified.
  • three types of conditions as shown in FIG. 21 were examined.
  • the values of the obtained diffusion full angle, attenuation width, and attenuation rate are shown in FIG.
  • the diffusion characteristics of the obtained diffusion plate are shown in FIG.
  • the distance between the vertices is 15 ⁇ m ⁇ 10 ⁇ m (variation range: ⁇ 0.67)
  • the curvature radius is 22 ⁇ m ⁇ 2.2 ⁇ m
  • the attenuation rate can be set to 0.65.
  • the arrangement state of the microlens in such a case is shown in FIG.

Abstract

[Problem] To manufacture, at high productivity, a diffuser which exhibits excellent diffusion characteristics while having excellent durability against highly coherent light. [Solution] The diffuser according to the present invention is a microlens array diffuser comprising a microlens group positioned on the surface of a transparent substrate, and is configured from two or more unit cells continuously provided in an array. The unit cells are provided with a plurality of microlenses positioned on the surface of the transparent substrate. The ridges between the mutually adjoining microlenses are not parallel to each other, and are not parallel to the transparent substrate.

Description

拡散板、拡散板の設計方法、拡散板の製造方法、表示装置、投影装置及び照明装置Diffusion plate, diffusion plate design method, diffusion plate manufacturing method, display device, projection device, and illumination device
 本発明は、拡散板、拡散板の設計方法、拡散板の製造方法、表示装置、投影装置及び照明装置に関する。 The present invention relates to a diffusion plate, a diffusion plate design method, a diffusion plate manufacturing method, a display device, a projection device, and an illumination device.
 入射光を様々な方向へと散乱させる拡散板は、例えば、ディスプレイ等の表示装置や、プロジェクタ等の投影装置や、各種の照明装置等といった様々な装置に広く利用されている。かかる拡散板における入射光の拡散機構は、拡散板の表面形状に起因する光の屈折を利用するものと、バルク体の内部に存在する、周囲とは屈折率の異なる物質による散乱を利用するものと、に大別される。表面形状に起因する光の屈折を利用した拡散板のひとつに、数十μm程度の大きさのマイクロレンズをバルク体の表面に複数配置した、いわゆるマイクロレンズアレイ型の拡散板がある。 Diffusers that scatter incident light in various directions are widely used in various devices such as display devices such as displays, projection devices such as projectors, and various illumination devices. The diffusion mechanism of incident light in such a diffuser plate uses light refraction caused by the surface shape of the diffuser plate, and uses scattering caused by a substance present in the bulk body and having a refractive index different from that of the surroundings. It is roughly divided into One of the diffusion plates using light refraction caused by the surface shape is a so-called microlens array type diffusion plate in which a plurality of microlenses having a size of several tens of μm are arranged on the surface of a bulk body.
 マイクロレンズアレイ型の拡散板においては、例えば以下の特許文献1や特許文献2のように、レンズ形状やレンズの配置を不規則化することで、回折光の発生を抑圧する方法が、各種提案されている。以下の特許文献1では、焦点板用の拡散板が開示されており、かかる拡散板は、マイクロレンズのピッチ及び高さにばらつきを持たせた設計となっている。具体的には、以下の特許文献1には、マイクロレンズのピッチPを、8μm≦P≦30μmとし、マイクロレンズの高さHを、0.01×P≦H≦0.1×Pとする旨が開示されている。また、以下の特許文献2では、複数のマイクロレンズが不規則に配置されたマイクロレンズアレイが開示されており、複数のマイクロレンズの境界領域は、マイクロレンズの面曲率とは異なる符号の曲率の面よりなる旨が開示されている。 In the micro lens array type diffusion plate, various proposals have been made for methods of suppressing the generation of diffracted light by making the lens shape and lens arrangement irregular, for example, as in Patent Document 1 and Patent Document 2 below. Has been. The following Patent Document 1 discloses a diffusing plate for a focusing screen, and the diffusing plate is designed with variations in the pitch and height of the microlenses. Specifically, in Patent Document 1 below, the pitch P of the microlens is 8 μm ≦ P ≦ 30 μm, and the height H of the microlens is 0.01 × P ≦ H ≦ 0.1 × P. The effect is disclosed. Further, Patent Document 2 below discloses a microlens array in which a plurality of microlenses are irregularly arranged, and a boundary region of the plurality of microlenses has a curvature with a sign different from the surface curvature of the microlens. It is disclosed that it consists of aspects.
 上記のような不規則化配置の構造を実際に製造する場合には、転写金型やフォトマスクの作製において、レーザや電子ビームにより描画を行うことが一般的である。この際に、描画領域の全面が繰り返しのないパターンである場合、データ量が膨大になってしまうという問題があった。また、描画作製物を評価する際にも、例えば、パターンに繰り返しがないために評価箇所を絞ることができない結果全面評価に膨大な時間を要するなど、作製コストが大きくなるという問題があった。 When an irregularly arranged structure as described above is actually manufactured, it is common to perform drawing with a laser or an electron beam in the production of a transfer mold or a photomask. At this time, there is a problem that the amount of data becomes enormous if the entire drawing area is a pattern that does not repeat. Further, when evaluating the drawn product, there is a problem that the manufacturing cost increases, for example, because the evaluation portion cannot be narrowed down because there is no repetition in the pattern, so that the entire surface evaluation takes a lot of time.
 上記のような生産性の問題を解決するために、例えば以下の特許文献3では、ランダムなパターンで構成されたレチクルパターンを用いて、ステップアンドリピート法により第面積の露光を行うフォーカシングスクリーンの製造方法が開示されている。かかる特許文献3では、レチクル周縁部のパターンを繋ぎ目で不連続とならないようにすることが言及されている。また、かかる特許文献3では、ボケ味や明るさなど、焦点板としての機能特性に着目しつつ、回折光成分の抑圧についても言及されている。 In order to solve the above-described productivity problem, for example, in Patent Document 3 below, a focusing screen that performs exposure of a second area by a step-and-repeat method using a reticle pattern configured by a random pattern is manufactured. A method is disclosed. In Patent Document 3, it is mentioned that the pattern at the periphery of the reticle is not discontinuous at the joint. Further, in Patent Document 3, the suppression of the diffracted light component is also mentioned while paying attention to the functional characteristics as a focusing screen such as blur and brightness.
特開平3-192232号公報Japanese Patent Laid-Open No. 3-192232 特開2007-108400号公報JP 2007-108400 A 特開昭59-208536号公報JP 59-208536 A
 ここで、上記特許文献3で開示されたような製造方法で製造されるフォーカシングスクリーン(すなわち、焦点板)は、焦点板の広い領域にわたって光が入射する場合には、所望の特性を実現することが可能である。しかしながら、このような製造方法をマイクロレンズアレイ型の拡散板に適用しようとすると、例えばレーザ光のようなスポット的に狭い領域に入射される光に対して所望の拡散光を得ることが困難であるという問題が生じた。 Here, the focusing screen (that is, the focusing screen) manufactured by the manufacturing method disclosed in Patent Document 3 described above realizes desired characteristics when light is incident over a wide area of the focusing screen. Is possible. However, if such a manufacturing method is applied to a microlens array type diffusion plate, it is difficult to obtain desired diffused light for light incident on a spot-like narrow region such as laser light. There was a problem.
 上記のようなスポット状の入射光が入射する場合、特にレーザ光が入射する場合には、入射光の可干渉性が大きくなる。そのために、回折光成分の抑圧には、レンズ配置のみならずレンズ間の境界部分の影響も無視できなくなり、また、照射されるスポット内に存在するレンズ部分だけが出射光に影響を与えるようになる。これらの観点から、焦点板とは異なるマイクロレンズアレイ構造の最適化が重要となる。更に、スポット内の高い光強度密度に対しても耐久性を保持するために、レンズ部分を含む拡散板全体を適切な材料を用いて形成することが重要となる。しかしながら、拡散板の素材に起因する製造プロセス上の制約がマイクロレンズ構造に与える影響については、上記特許文献3には開示されていない。 When the spot-like incident light as described above is incident, especially when laser light is incident, the coherence of the incident light is increased. For this reason, in order to suppress the diffracted light component, the influence of not only the lens arrangement but also the boundary portion between the lenses cannot be ignored, and only the lens portion existing in the irradiated spot affects the emitted light. Become. From these viewpoints, it is important to optimize a microlens array structure different from the focusing screen. Furthermore, in order to maintain durability against a high light intensity density in the spot, it is important to form the entire diffuser plate including the lens portion using an appropriate material. However, the above-mentioned Patent Document 3 does not disclose the influence of the restrictions on the manufacturing process caused by the material of the diffusion plate on the microlens structure.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、優れた拡散特性を示すとともに、可干渉性の大きな光に対して優れた耐久性を有し、より生産性良く製造することが可能な拡散板、拡散板の設計方法及び拡散板の製造方法と、かかる拡散板を用いた表示装置、投影装置及び照明装置と、を提供することにある。 Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to exhibit excellent diffusion characteristics and excellent durability against coherent light. An object of the present invention is to provide a diffusion plate, a diffusion plate design method and a diffusion plate manufacturing method that can be manufactured with higher productivity, and a display device, a projection device, and an illumination device using the diffusion plate.
 上記課題を解決するために、本発明のある観点によれば、透明基板の表面に位置するマイクロレンズ群からなるマイクロレンズアレイ型の拡散板であって、アレイ配列に対して連続である2つ以上の単位セルから構成されており、前記単位セルは、透明基板の表面に位置する複数のマイクロレンズからなり、互いに隣り合う前記マイクロレンズ間の稜線は、互いに平行ではなく、かつ、前記透明基板に対して平行ではない、拡散板が提供される。 In order to solve the above-described problem, according to an aspect of the present invention, there is provided a microlens array type diffusing plate composed of a group of microlenses located on the surface of a transparent substrate, which is continuous with respect to the array arrangement The unit cell is composed of a plurality of microlenses positioned on the surface of the transparent substrate, and ridge lines between the adjacent microlenses are not parallel to each other, and the transparent substrate A diffusion plate is provided that is not parallel to.
 前記単位セルを構成する互いに隣り合う前記マイクロレンズの頂点間距離が、平均値の±60%の範囲内に含まれており、かつ、前記単位セルを構成するそれぞれの前記マイクロレンズの曲率半径が、平均値の±20%の範囲内に含まれていることが好ましい。 The distance between the apexes of the adjacent microlenses constituting the unit cell is included within a range of ± 60% of the average value, and the radius of curvature of each of the microlenses constituting the unit cell is The average value is preferably within a range of ± 20%.
 前記単位セルを構成する互いに隣り合う前記マイクロレンズの頂点間距離の平均値からのばらつき度合いをσとし、前記単位セルを構成する互いに隣り合う前記マイクロレンズの曲率半径の平均値からのばらつき度合いをσとしたときに、以下の(式1)が成立することが好ましい。 The degree of variation from the average value of the distance between the apexes of the adjacent microlenses constituting the unit cell is σ p, and the degree of variation from the average value of the radius of curvature of the adjacent microlenses constituting the unit cell It is preferable that the following (Equation 1) is satisfied when σ R is set.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 前記単位セルの対角線の長さは、3mm以下であることが好ましい。 The length of the diagonal of the unit cell is preferably 3 mm or less.
 前記単位セルの少なくとも一つの辺の長さは、当該単位セルに含まれる前記マイクロレンズの平均ピッチの整数倍であることが好ましい。 It is preferable that the length of at least one side of the unit cell is an integer multiple of the average pitch of the microlenses included in the unit cell.
 前記単位セルに含まれる前記マイクロレンズは、少なくとも9個以上であることが好ましい。 It is preferable that the number of microlenses included in the unit cell is at least nine.
 前記単位セル内において、互いに隣り合う前記マイクロレンズ間の境界部分は、平坦ではないことが好ましい。 In the unit cell, it is preferable that a boundary portion between the microlenses adjacent to each other is not flat.
 前記境界部分の少なくとも一部に、半レンズが配設されることが好ましい。 It is preferable that a half lens is disposed on at least a part of the boundary portion.
 前記マイクロレンズの形状は、多角形であってもよい。 The shape of the micro lens may be a polygon.
 前記マイクロレンズは、凹レンズであることが好ましい。 The microlens is preferably a concave lens.
 前記透明基板は、無機材料からなるものであってもよい。 The transparent substrate may be made of an inorganic material.
 前記無機材料は、アルカリ成分含有量が20%以下のケイ素を主成分とするガラスであってもよい。 The inorganic material may be a glass mainly composed of silicon having an alkali component content of 20% or less.
 前記マイクロレンズの表面、及び、前記透明基板の前記マイクロレンズ群が配設されていない側の表面に、反射防止層を備えてもよい。 An antireflection layer may be provided on the surface of the microlens and the surface of the transparent substrate on which the microlens group is not disposed.
 前記反射防止層は、NbとSiOとからなる多層構造体であってもよい。 The antireflection layer may be a multilayer structure composed of Nb 2 O 5 and SiO 2 .
 前記マイクロレンズの表面に設けられる前記反射防止層は、前記マイクロレンズ群の表面に形成された、光の波長以下の大きさの凹凸からなる反射防止構造であってもよい。 The antireflection layer provided on the surface of the microlens may be an antireflection structure including irregularities having a size equal to or smaller than the wavelength of light, which is formed on the surface of the microlens group.
 前記反射防止構造は、前記マイクロレンズの表面内において非等方的に設けられた、凹凸のピッチが300nm以下の構造であってもよい。 The antireflection structure may be a structure that is provided anisotropically on the surface of the microlens and has a pitch of unevenness of 300 nm or less.
 上記課題を解決するために、本発明の別の観点によれば、透明基板の表面に位置するマイクロレンズ群からなるマイクロレンズアレイ型の拡散板の設計方法であって、前記マイクロレンズ群を構成する各マイクロレンズの曲率半径を、前記透明基板とレジストのエッチング選択比の逆数と、レジスト上に現像された曲率半径と、の積に基づき決定する拡散板の設計方法が提供される。 In order to solve the above-mentioned problem, according to another aspect of the present invention, there is provided a method for designing a microlens array type diffusing plate composed of a microlens group located on the surface of a transparent substrate, which comprises the microlens group. There is provided a diffusion plate design method for determining the curvature radius of each microlens based on the product of the reciprocal of the etching selectivity between the transparent substrate and the resist and the curvature radius developed on the resist.
 上記課題を解決するために、本発明の更に別の観点によれば、上記の拡散板の製造方法であって、透明基板上にレジストを積層する工程と、透過率分布を有するグレースケールマスクにより、前記レジストを露光する工程と、現像された前記透明基板を所望のレンズ形状が得られるようにフッ素系ガスを用いてドライエッチングする工程と、を含む、拡散板の製造方法が提供される。 In order to solve the above problems, according to still another aspect of the present invention, there is provided a method of manufacturing the diffusion plate, comprising: a step of laminating a resist on a transparent substrate; and a grayscale mask having a transmittance distribution. There is provided a method of manufacturing a diffusion plate, which includes a step of exposing the resist and a step of dry etching the developed transparent substrate using a fluorine-based gas so as to obtain a desired lens shape.
 前記ドライエッチングする工程では、マイクロレンズ群を構成する各マイクロレンズの曲率半径が、前記透明基板とレジストのエッチング選択比の逆数と、レジスト上に現像された曲率半径と、の積で決定されてもよい。 In the dry etching step, the radius of curvature of each microlens constituting the microlens group is determined by the product of the reciprocal of the etching selectivity of the transparent substrate and the resist and the radius of curvature developed on the resist. Also good.
 また、上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える表示装置が提供される。 In order to solve the above problems, according to another aspect of the present invention, there is provided a display device including the above diffusion plate.
 また、上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える投影装置が提供される。 In order to solve the above problems, according to another aspect of the present invention, there is provided a projection apparatus including the above diffusion plate.
 また、上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える照明装置が提供される。 Moreover, in order to solve the above-described problems, according to another aspect of the present invention, an illumination device including the above diffusion plate is provided.
 以上説明したように本発明によれば、優れた拡散特性を示すとともに、可干渉性の大きな光に対して優れた耐久性を有する拡散板を、より生産性良く製造することが可能となるとともに、かかる拡散板を用いた表示装置、投影装置及び照明装置を提供することが可能となる。 As described above, according to the present invention, it is possible to produce a diffuser plate that exhibits excellent diffusion characteristics and has excellent durability against coherent light with higher productivity. Thus, it is possible to provide a display device, a projection device, and an illumination device using such a diffusion plate.
本発明の第1の実施形態に係る拡散板を模式的に示した説明図である。It is explanatory drawing which showed typically the diffusion plate which concerns on the 1st Embodiment of this invention. 同実施形態に係る拡散板を構成する単位セルの一部を模式的に示した説明図である。It is explanatory drawing which showed typically a part of unit cell which comprises the diffuser plate which concerns on the embodiment. 同実施形態に係る単位セルにおける隣り合うマイクロレンズ間の境界の状態の一例を模式的に示した説明図である。It is explanatory drawing which showed typically an example of the state of the boundary between the adjacent microlenses in the unit cell which concerns on the embodiment. 同実施形態に係る単位セルにおける隣り合うマイクロレンズ間の境界の状態の一例を示した説明図である。It is explanatory drawing which showed an example of the state of the boundary between the adjacent microlenses in the unit cell which concerns on the same embodiment. 同実施形態に係る単位セルにおける隣り合うマイクロレンズ間の境界の状態の一例を示した説明図である。It is explanatory drawing which showed an example of the state of the boundary between the adjacent microlenses in the unit cell which concerns on the same embodiment. 同実施形態に係る単位セルにおける隣り合うマイクロレンズ間の境界の状態の一例を示した説明図である。It is explanatory drawing which showed an example of the state of the boundary between the adjacent microlenses in the unit cell which concerns on the same embodiment. 同実施形態に係る拡散板を模式的に示した説明図である。It is explanatory drawing which showed typically the diffusion plate which concerns on the same embodiment. 同実施形態に係る拡散板における単位セルの配置について説明するための説明図である。It is explanatory drawing for demonstrating arrangement | positioning of the unit cell in the diffusion plate which concerns on the same embodiment. 同実施形態に係る拡散板における単位セルの配置について説明するための説明図であるIt is explanatory drawing for demonstrating arrangement | positioning of the unit cell in the diffusion plate which concerns on the same embodiment. 同実施形態に係る拡散板における単位セルの配置について説明するための説明図であるIt is explanatory drawing for demonstrating arrangement | positioning of the unit cell in the diffusion plate which concerns on the same embodiment. 同実施形態に係る拡散板における単位セルの配置について説明するための説明図である。It is explanatory drawing for demonstrating arrangement | positioning of the unit cell in the diffusion plate which concerns on the same embodiment. 同実施形態に係る拡散板における単位セルの配置について説明するための説明図である。It is explanatory drawing for demonstrating arrangement | positioning of the unit cell in the diffusion plate which concerns on the same embodiment. 同実施形態に係る拡散板の製造方法の流れの一例を示した流れ図である。It is the flowchart which showed an example of the flow of the manufacturing method of the diffusion plate which concerns on the same embodiment. 同実施形態に係る拡散板の製造方法について説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of the diffusion plate which concerns on the same embodiment. 同実施形態に係る拡散板の製造方法について説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of the diffusion plate which concerns on the same embodiment. 同実施形態に係る拡散板の設計方法の流れの一例を示した流れ図である。It is the flowchart which showed an example of the flow of the design method of the diffusion plate which concerns on the same embodiment. 本発明の第2の実施形態に係る拡散板を構成する単位セルの一部を模式的に示した説明図である。It is explanatory drawing which showed typically a part of unit cell which comprises the diffuser plate which concerns on the 2nd Embodiment of this invention. 同実施形態に係るマイクロレンズ群における頂点間距離のばらつきを説明するための説明図である。It is explanatory drawing for demonstrating the dispersion | variation in the distance between vertices in the microlens group which concerns on the embodiment. 同実施形態に係るマイクロレンズ群における曲率半径のばらつきを説明するための説明図である。It is explanatory drawing for demonstrating the dispersion | variation in the curvature radius in the microlens group which concerns on the same embodiment. 同実施形態に係る拡散板における減衰幅を説明するための説明図である。It is explanatory drawing for demonstrating the attenuation width in the diffusion plate which concerns on the same embodiment. 頂点間距離及び曲率半径のばらつきと減衰率との関係を示したグラフ図である。It is the graph which showed the relationship between the dispersion | variation in the distance between vertices and a curvature radius, and an attenuation factor. 頂点間距離及び曲率半径のばらつきと減衰率との関係を示したグラフ図である。It is the graph which showed the relationship between the dispersion | variation in the distance between vertices and a curvature radius, and an attenuation factor. 拡散板における拡散全角と減衰率との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the diffusion full angle and attenuation factor in a diffusion plate. 本発明の第1の実施形態に係る拡散板に関する実施例の結果を示したグラフ図である。It is the graph which showed the result of the Example regarding the diffusion plate which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る拡散板に関する実施例の結果を示したグラフ図である。It is the graph which showed the result of the Example regarding the diffusion plate which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る拡散板に関する実施例の結果を示したグラフ図である。It is the graph which showed the result of the Example regarding the diffusion plate which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る拡散板に関する実施例の結果を示したグラフ図である。It is the graph which showed the result of the Example regarding the diffusion plate which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る拡散板に関する実施例の結果を示した表である。It is the table | surface which showed the result of the Example regarding the diffusion plate which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る拡散板に関する実施例の結果を示したグラフ図である。It is the graph which showed the result of the Example regarding the diffusion plate which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る拡散板に関する実施例の結果を示したグラフ図である。It is the graph which showed the result of the Example regarding the diffusion plate which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る拡散板に関する実施例の結果を示したグラフ図である。It is the graph which showed the result of the Example regarding the diffusion plate which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る拡散板に関する実施例の結果を示した表である。It is the table | surface which showed the result of the Example regarding the diffusion plate which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る拡散板に関する実施例の結果を示したグラフ図である。It is the graph which showed the result of the Example regarding the diffusion plate which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る拡散板におけるマイクロレンズの配置の一例を示した説明図である。It is explanatory drawing which showed an example of arrangement | positioning of the micro lens in the diffusion plate which concerns on the 2nd Embodiment of this invention.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
[第1の実施形態]
(拡散板について)
 以下では、図1~図7Bを参照しながら、本発明の第1の実施形態に係る拡散板1について詳細に説明する。
 図1は、本実施形態に係る拡散板を模式的に示した説明図である。図2は、本実施形態に係る拡散板を構成する単位セルの一部を模式的に示した説明図である。図3A~図4Bは、本実施形態に係る単位セルにおける隣り合うマイクロレンズ間の境界の状態の一例を示した説明図である。図5は、本実施形態に係る拡散板を模式的に示した説明図である。図6A~図7Bは、本実施形態に係る拡散板における単位セルの配置について説明するための説明図である。
[First Embodiment]
(About diffusion plate)
Hereinafter, the diffusion plate 1 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 7B.
FIG. 1 is an explanatory view schematically showing a diffusion plate according to this embodiment. FIG. 2 is an explanatory view schematically showing a part of the unit cell constituting the diffusion plate according to the present embodiment. 3A to 4B are explanatory diagrams showing an example of a boundary state between adjacent microlenses in the unit cell according to the present embodiment. FIG. 5 is an explanatory view schematically showing the diffusion plate according to the present embodiment. 6A to 7B are explanatory views for explaining the arrangement of unit cells in the diffusion plate according to the present embodiment.
 本実施形態に係る拡散板1は、基板上に複数のマイクロレンズからなるマイクロレンズ群が配置された、マイクロレンズアレイ型の拡散板である。かかる拡散板1は、図1に模式的に示したように、複数の単位セル3から構成されている。また、単位セル3間では、図1右側の図に模式的に示したように、単位セル3内に設けられた複数のマイクロレンズのレイアウトパターン(配置パターン)が、単位セルの配列方向(換言すれば、アレイ配列方向)に連続となっている。 The diffusing plate 1 according to the present embodiment is a microlens array type diffusing plate in which a microlens group including a plurality of microlenses is arranged on a substrate. The diffusion plate 1 is composed of a plurality of unit cells 3 as schematically shown in FIG. In addition, between the unit cells 3, as schematically shown in the diagram on the right side of FIG. 1, the layout pattern (arrangement pattern) of the plurality of microlenses provided in the unit cell 3 is the unit cell arrangement direction (in other words, In this case, it is continuous in the array arrangement direction).
 ここで、図1では、拡散板1を構成する単位セル3の形状が矩形である場合を例に挙げて図示を行っているが、単位セル3の形状は、図1に示したものに限定されるものではなく、例えば、正三角形状や正六角形状などのように、平面を隙間なく埋めることが可能な形状であれば良い。 Here, FIG. 1 shows an example in which the shape of the unit cell 3 constituting the diffusion plate 1 is a rectangle, but the shape of the unit cell 3 is limited to that shown in FIG. For example, any shape that can fill the plane without gaps, such as a regular triangle shape or a regular hexagonal shape, may be used.
 本実施形態に係る拡散板1を構成する単位セル3の個数は、特に限定するものではないが、拡散板1は、少なくとも2個以上の単位セル3から構成されることが好ましい。 The number of unit cells 3 constituting the diffusion plate 1 according to the present embodiment is not particularly limited, but the diffusion plate 1 is preferably composed of at least two unit cells 3.
 図2は、本実施形態に係る単位セル3の一部の構造を模式的に示した説明図である。図2に模式的に示したように、本実施形態に係る単位セル3は、透明基板10と、透明基板10の表面に形成されたマイクロレンズ群20と、を有している。 FIG. 2 is an explanatory view schematically showing a part of the structure of the unit cell 3 according to the present embodiment. As schematically shown in FIG. 2, the unit cell 3 according to the present embodiment includes a transparent substrate 10 and a microlens group 20 formed on the surface of the transparent substrate 10.
<透明基板10について>
 透明基板10は、本実施形態に係る拡散板1に入射する光の波長帯域において、透明とみなすことが可能な材質からなる基板である。かかる基板は、耐光性の高い無機材料を用いて形成されることが好ましい。耐光性の高い無機材料の例として、例えば、石英ガラス、ホウケイ酸ガラス、白板ガラス等といった公知の光学ガラスを挙げることができるが、アルカリ成分含有量が20質量%以下のケイ素を主成分とするガラスを用いることが好ましい。このような無機材料を用いることで、特に入射光として高出力のレーザ光を用いる場合であっても、材料の変質による拡散板の拡散特性の劣化を無くすことが可能となる。図2では、透明基板10が矩形である場合を例に挙げて図示を行っているが、透明基板10の形状は矩形に限定されるものではなく、例えば拡散板1が実装される表示装置、投影装置、照明装置等の形状に応じて、任意の形状を有していても良い。
<About the transparent substrate 10>
The transparent substrate 10 is a substrate made of a material that can be regarded as transparent in the wavelength band of light incident on the diffusion plate 1 according to the present embodiment. Such a substrate is preferably formed using an inorganic material having high light resistance. Examples of inorganic materials having high light resistance include, for example, known optical glasses such as quartz glass, borosilicate glass, white plate glass, etc., and the main component is silicon having an alkali component content of 20% by mass or less. It is preferable to use glass. By using such an inorganic material, it is possible to eliminate the deterioration of the diffusion characteristics of the diffusion plate due to the alteration of the material even when a high-power laser beam is used as the incident light. In FIG. 2, the case where the transparent substrate 10 is rectangular is illustrated as an example. However, the shape of the transparent substrate 10 is not limited to a rectangle, for example, a display device on which the diffusion plate 1 is mounted, It may have an arbitrary shape depending on the shape of the projection device, lighting device, or the like.
<マイクロレンズ群20について>
 透明基板10の表面には、複数のマイクロレンズ21からなるマイクロレンズ群20が形成されている。拡散板では、光を拡散させることが本来の使用方法であるため、単位セル3を構成するマイクロレンズ21としては、図2下段に模式的に示したように、出射面が全て凹レンズからなることが好ましい。拡散板の出射面が凸レンズからなる場合、焦点位置に集光部が生じることから、設置上の制約や安全性に問題が生じる可能性があるからである。また、本実施形態に係るマイクロレンズ群20では、各マイクロレンズ21は、曲率半径や頂点間ピッチが同一ではなく、一定の範囲でばらつきを有しているために、焦点距離もまた一定の分布を有している。凹レンズの場合、焦点位置は仮想点となるが、焦点位置では光強度密度が大きくなるため、各マイクロレンズ21の焦点位置は、拡散板1を構成する透明基板10に隣接した領域にあることが好ましい。各マイクロレンズ21の焦点位置が透明基板10から離れた場所にある場合には、焦点位置に各種部品を配置することができないなど、光学系上の制約が生じる場合があるためである。
<About the micro lens group 20>
A microlens group 20 including a plurality of microlenses 21 is formed on the surface of the transparent substrate 10. In the diffusing plate, since the original use method is to diffuse light, as shown in the lower part of FIG. 2, the exit surface of the microlens 21 constituting the unit cell 3 is a concave lens. Is preferred. This is because when the exit surface of the diffuser plate is a convex lens, a condensing part is generated at the focal position, which may cause problems in installation restrictions and safety. Further, in the microlens group 20 according to the present embodiment, each microlens 21 is not the same in radius of curvature or pitch between vertices, and has a variation in a certain range, so that the focal length is also a certain distribution. have. In the case of a concave lens, the focal position is a virtual point, but the light intensity density is large at the focal position. Therefore, the focal position of each microlens 21 may be in a region adjacent to the transparent substrate 10 constituting the diffusion plate 1. preferable. This is because when the focal position of each microlens 21 is located away from the transparent substrate 10, there may be restrictions on the optical system such as various components cannot be arranged at the focal position.
 また、本実施形態に係るマイクロレンズ群20では、単位セル3を構成する各マイクロレンズ21は、以下に示す3つの条件を満足するように配設されている。 Also, in the microlens group 20 according to the present embodiment, each microlens 21 constituting the unit cell 3 is arranged so as to satisfy the following three conditions.
 (1)単位セル3の4辺の境界は、アレイ配列でパターンに不連続が生じないこと。
 (2)各マイクロレンズ21の頂点の平面位置及び高さ位置(換言すれば、凹レンズの深さの最も低い位置)と、マイクロレンズ21間の稜線とは、回折が十分抑圧されるように不規則化されていること。
 (3)非拡散透過光を抑圧するため、隣接するマイクロレンズ21間に非レンズ領域が存在しないこと。
(1) The boundary of the four sides of the unit cell 3 should not be discontinuous in the pattern in the array arrangement.
(2) The planar position and height position of the apex of each microlens 21 (in other words, the position where the depth of the concave lens is the lowest) and the ridge line between the microlenses 21 are not so large that diffraction is sufficiently suppressed. Be regular.
(3) There is no non-lens region between adjacent microlenses 21 in order to suppress non-diffuse transmitted light.
 ここで、上記(2)で言及されている「不規則」とは、拡散板1におけるマイクロレンズ群20の任意の領域において、マイクロレンズ21の配置に関する規則性が実質的に存在しないことを意味する。従って、任意の領域での微小領域においてマイクロレンズ21の配置にある種の規則性が存在したとしても、任意の領域全体としてマイクロレンズ21の配置に規則性が存在しないものは、「不規則」に含まれるものとする。 Here, the “irregularity” referred to in the above (2) means that there is substantially no regularity regarding the arrangement of the microlenses 21 in an arbitrary region of the microlens group 20 in the diffusion plate 1. To do. Therefore, even if there is a certain regularity in the arrangement of the microlenses 21 in a micro area in an arbitrary area, the irregularity in which the arrangement of the microlenses 21 does not exist in the entire arbitrary area is “irregular”. Shall be included.
 上記の3つの条件を満たすように配置された、本実施形態に係るマイクロレンズ群20において、互いに隣り合うマイクロレンズ21間の稜線は、全て互いに平行ではなく、かつ、透明基板10に対して平行ではないようになっている。マイクロレンズ21間で互いに平行な稜線が存在する場合、回折光成分が増加してしまうからである。 In the microlens group 20 according to the present embodiment arranged so as to satisfy the above three conditions, the ridge lines between the adjacent microlenses 21 are not all parallel to each other and are parallel to the transparent substrate 10. It is not like that. This is because the diffracted light component increases when there are ridge lines parallel to each other between the microlenses 21.
 ここで、「稜線」とは、複数のマイクロレンズ21が隣接している隣接レンズ境界部にあって、マイクロレンズ21の曲率半径が急激に変化している線状の領域を指すものとする。このような稜線の幅は、通常光の波長程度以下であるが、この稜線の幅は、エッチングなどのプロセス条件で回折光が適切な大きさとなるよう制御される。また、「平行ではない」とは、平行か否かを判断する2つの線の少なくとも一方が、曲線である場合を含むものとする。 Here, the “ridge line” refers to a linear region in which the curvature radius of the microlens 21 is abruptly changed at an adjacent lens boundary where the plurality of microlenses 21 are adjacent to each other. The width of such a ridge line is about the wavelength of normal light or less, but the width of the ridge line is controlled so that the diffracted light has an appropriate size under process conditions such as etching. Further, “not parallel” includes a case where at least one of two lines for determining whether or not parallel is a curve.
 具体的には、隣接するマイクロレンズ21によって囲まれるマイクロレンズの領域は、図3A及び図3Bに示したように、マイクロレンズの光軸方向から見ると多角形となっており、多角形の各辺は、マイクロレンズ断面からみると曲線となっている。 Specifically, as shown in FIGS. 3A and 3B, the region of the microlens surrounded by the adjacent microlens 21 is a polygon when viewed from the optical axis direction of the microlens. The sides are curved when viewed from the cross section of the microlens.
 また、上記の3つの条件を満たすマイクロレンズ21からなる単位セル3の少なくとも一つの辺の長さは、単位セル3に含まれるマイクロレンズ21の平均ピッチ(例えば、各マイクロレンズ21の頂点位置間距離の平均値)の整数倍となっていることが好ましい。換言すれば、本実施形態に係る拡散板1における単位セル3の周期は、単位セル3の少なくとも一辺の長さがマイクロレンズ21の平均ピッチの整数倍となる周期であることが好ましい。 In addition, the length of at least one side of the unit cell 3 composed of the microlenses 21 satisfying the above three conditions is the average pitch of the microlenses 21 included in the unit cell 3 (for example, between the vertex positions of the microlenses 21). It is preferable that it is an integral multiple of the average distance). In other words, the period of the unit cell 3 in the diffusing plate 1 according to the present embodiment is preferably a period in which the length of at least one side of the unit cell 3 is an integral multiple of the average pitch of the microlenses 21.
 このように、マイクロレンズ群20における隣接する各マイクロレンズ21は、上記のような条件を満たすように決められており、完全にランダムなものではない。 Thus, the adjacent microlenses 21 in the microlens group 20 are determined so as to satisfy the above-described conditions, and are not completely random.
 なお、隣接するマイクロレンズ21間の稜線については、回折光成分を低減するために更なる工夫を行うことが可能である。例えば、図3Aに模式的に示したように、稜線の一部を単純な直線や曲線ではなく凸凹形状としたり、図4A及び図4Bに示したように、稜線上の一部に半レンズ部などの異形状を配置したりすることも可能である。ここで、本実施形態において半レンズ部とは、稜線の幅が10μm以上となるような、マイクロレンズ21の曲率半径の変化が比較的緩やかな領域をいう。また、かかる半レンズ部には、鞍型のように、直交する方向で曲率の符号が異なるものも含まれる。マイクロレンズ21間の稜線を以上のような形態とすることで、互いに隣り合うマイクロレンズ21間の境界部分を平坦ではないようにして、稜線部分で発生する回折波面の位相を乱し、特定の方向への回折光成分が生じないようにすることが可能となる。 It should be noted that the ridgeline between adjacent microlenses 21 can be further devised to reduce the diffracted light component. For example, as schematically shown in FIG. 3A, a part of the ridge line is not a simple straight line or curve, but a convex or concave shape, or as shown in FIGS. 4A and 4B, a half lens part is formed on a part of the ridge line. It is also possible to arrange different shapes such as. Here, in the present embodiment, the half-lens portion refers to a region where the change in the radius of curvature of the microlens 21 is relatively gradual such that the width of the ridge line is 10 μm or more. In addition, such a half-lens part includes one having a different sign of curvature in an orthogonal direction, such as a saddle type. By forming the ridgeline between the microlenses 21 as described above, the boundary portion between the adjacent microlenses 21 is not flat, and the phase of the diffracted wavefront generated at the ridgeline portion is disturbed. It is possible to prevent a diffracted light component in the direction from being generated.
 また、単位セル3を構成するマイクロレンズ21の数は、3×3=9個以上であることが好ましい。これは、単位セル3と等しい径を持つ入射光が入射した場合に、マイクロレンズ21の平均ピッチが入射光径の1/3以下程度であれば、入射光位置のズレに対して拡散特性が変化しないことから導かれるものである。マイクロレンズ21の平均ピッチと入射光径との関係については、以下で改めて詳述する。 The number of microlenses 21 constituting the unit cell 3 is preferably 3 × 3 = 9 or more. This is because, when incident light having a diameter equal to that of the unit cell 3 is incident, if the average pitch of the microlenses 21 is about 1/3 or less of the incident light diameter, the diffusion characteristic is less than the deviation of the incident light position. It is derived from not changing. The relationship between the average pitch of the microlenses 21 and the incident light diameter will be described in detail later.
<反射防止層について>
 本実施形態に係る拡散板1には、その表面及び裏面(換言すれば、マイクロレンズ21の表面、及び、透明基板10のマイクロレンズ群20が配設されていない側の表面)に対して、図5に模式的に示したように、透過率の増加や反射迷光などの防止を目的として、反射防止層30を形成してもよい。
<About the antireflection layer>
The diffusion plate 1 according to the present embodiment has a front surface and a back surface (in other words, the surface of the microlens 21 and the surface on the side where the microlens group 20 of the transparent substrate 10 is not disposed). As schematically shown in FIG. 5, the antireflection layer 30 may be formed for the purpose of increasing transmittance and preventing reflection stray light.
 かかる反射防止層30は、例えば、SiO、Al、MgF、CeO、TiO、Ta、Nb、Y、Tb、ZnS、ZrO等といった、一般的な誘電体を用いて、蒸着やスパッタ等といった公知の方法により形成することが可能である。ここで、反射防止層30を、例えばTa、Nb、SiOなど耐光性の高い材料を用いて形成することで、入射光が高出力レーザ等といった高い光密度を有する光であっても、かかる光によって劣化することなく、十分な効果を奏することが可能となる。この際に、反射防止層30を、例えばTa、Nb、SiOなどの耐光性の高い材料が相互に積層された多層構造体とすることで、より一層の耐光性を実現することが可能となる。このような反射防止層30の膜厚については、特に限定されるものではなく、拡散板1の用途や入射する光の光密度等に応じて、適宜設定すればよい。 The antireflection layer 30 is made of, for example, SiO 2 , Al 2 O 3 , MgF 2 , CeO 2 , TiO 2 , Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , Tb 2 O 3 , ZnS, ZrO 2. It can be formed by a known method such as vapor deposition or sputtering using a general dielectric such as. Here, by forming the antireflection layer 30 using a material having high light resistance such as Ta 2 O 5 , Nb 2 O 5 , and SiO 2 , the incident light has a high light density such as a high output laser. Even so, it is possible to obtain a sufficient effect without being deteriorated by the light. At this time, the antireflection layer 30 is formed into a multilayer structure in which materials having high light resistance such as Ta 2 O 5 , Nb 2 O 5 , and SiO 2 are laminated with each other, thereby further improving light resistance. It can be realized. The film thickness of the antireflection layer 30 is not particularly limited, and may be set as appropriate according to the use of the diffusion plate 1, the light density of incident light, and the like.
 なお、拡散板1に対して反射防止層30を形成する際には、拡散板1の表面にマイクロレンズ21の凹凸が存在するために反射防止層30の膜厚がマイクロレンズ21の中央部と周縁部とで異なってしまう可能性があるため、この点を考慮して、反射防止層30を形成することが好ましい。また、マイクロレンズ21の中心部と周縁部とでは、入射光の入射角は異なっているため、設計で想定する角度範囲を通常よりも広く取るなどの工夫を行うことがより好ましい。 When the antireflection layer 30 is formed on the diffusion plate 1, since the unevenness of the microlens 21 exists on the surface of the diffusion plate 1, the thickness of the antireflection layer 30 is different from that of the central portion of the microlens 21. In view of this point, it is preferable to form the antireflection layer 30 because there is a possibility that it differs depending on the peripheral portion. In addition, since the incident angle of incident light is different between the central portion and the peripheral portion of the microlens 21, it is more preferable to devise such as taking a wider angle range than usual.
 また、マイクロレンズ21の表面に設けられる反射防止層30は、マイクロレンズ群20の表面(マイクロレンズ21の表面でもある。)に形成された、光の波長以下の大きさの微細な凹凸(いわゆるモスアイ構造)からなる反射防止構造であってもよい。特に拡散角10度を超える拡散特性を実現する場合、マイクロレンズ21の表面の傾斜が大きくなるため、反射率の入射角度依存性が小さいモスアイ構造は、上記のような多層構造体と比べて利点がある。迷光及び反射の低減という観点からは、上記反射防止構造は、マイクロレンズ21の表面内において非等方的に設けられた、微細凹凸のピッチが300nm以下の構造であることが好ましい。 Further, the antireflection layer 30 provided on the surface of the microlens 21 is formed on the surface of the microlens group 20 (also the surface of the microlens 21) and has fine irregularities having a size equal to or smaller than the wavelength of light (so-called so-called). An antireflection structure made of a moth-eye structure may be used. In particular, when realizing diffusion characteristics exceeding a diffusion angle of 10 degrees, the inclination of the surface of the microlens 21 increases, so that the moth-eye structure having a small dependency on the incident angle of the reflectance is advantageous over the multilayer structure as described above. There is. From the standpoint of reducing stray light and reflection, the antireflection structure is preferably a structure that is provided anisotropically in the surface of the microlens 21 and has a pitch of fine irregularities of 300 nm or less.
<単位セル3の配置について>
 従来知られているように、周期的な繰り返し構造に対して光が入射すると、回折光が発生する。回折角度θは、繰り返し構造のピッチ(繰り返し周期)をpとし、回折次数(整数)をmとし、入射する光の波長をλとすると、以下の式101で与えられる。
<About arrangement of unit cell 3>
As conventionally known, when light is incident on a periodic repeating structure, diffracted light is generated. The diffraction angle θ is given by Equation 101 below, where p is the pitch (repetition period) of the repetitive structure, m is the diffraction order (integer), and λ is the wavelength of incident light.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本実施形態で着目するようなマイクロレンズアレイ型の拡散板の場合、出射光は、レンズ素子(マイクロレンズ21)による拡散効果と、マイクロレンズ21の周期配列による回折光成分の二つが重畳したものとなる。回折光成分は、角度に対して離散的な分布であり、回折光成分のピーク強度は、回折次数mに反比例して小さくなる。これら離散的な回折成分は、レンズアレイによって広がる拡散光の強度レベルよりも小さくなると、拡散光中に埋没してそれと識別できなくなることから、周期的な配置にランダムな不規則成分を加えて回折ピークを小さくすることで、回折による悪影響を抑制することが行われる。 In the case of a microlens array type diffusing plate as noted in the present embodiment, the emitted light is a superimposition of the diffusion effect by the lens element (microlens 21) and the diffracted light component by the periodic arrangement of the microlenses 21. It becomes. The diffracted light component has a discrete distribution with respect to the angle, and the peak intensity of the diffracted light component decreases in inverse proportion to the diffraction order m. If these discrete diffraction components become smaller than the intensity level of the diffused light spread by the lens array, they will be buried in the diffused light and cannot be distinguished from them. By reducing the peak, adverse effects due to diffraction are suppressed.
 また、回折光成分のピーク強度は、入射光径などの入射条件によっても左右される。例えば、マイクロレンズ21の大きさと同じ程度のサイズを持つ入射光径の光がマイクロレンズ21に入射した場合、マイクロレンズ群20が規則的な配置であったとしても、光が入射したマイクロレンズ21に隣接するマイクロレンズ21には光がわずかしか入射しないため、回折光はほとんど発生しない。他方、マイクロレンズ21の大きさと同程度の入射光径を有する入射光がマイクロレンズ21に入射した場合には、入射光軸とマイクロレンズ21の光軸との関係によって、出射特性が変わるという現象が生じやすくなる。 Also, the peak intensity of the diffracted light component depends on the incident conditions such as the incident light diameter. For example, when light having an incident light diameter having the same size as that of the microlens 21 is incident on the microlens 21, even if the microlens group 20 is regularly arranged, the microlens 21 to which the light has entered is arranged. Since only a small amount of light is incident on the microlens 21 adjacent to, diffracted light is hardly generated. On the other hand, when incident light having an incident light diameter approximately equal to the size of the microlens 21 is incident on the microlens 21, a phenomenon in which emission characteristics change depending on the relationship between the incident optical axis and the optical axis of the microlens 21. Is likely to occur.
 不規則な配置をもつマイクロレンズアレイの出射光分布を、市販の電磁界シミュレータによってシミュレートした例を、図6A~図6Cに示した。かかるシミュレーションでは、マイクロレンズアレイにおけるマイクロレンズ21のピッチp(マイクロレンズの直径でもある。)を82μmとし、矩形状のマイクロレンズアレイの大きさを、738μm×710μm(対角線の長さ:約1024μm)とした。その上で、かかるマイクロレンズアレイに入射する光の入射光径を、200μm、300μm、650μmと変化させた場合に、回折光を含む出射光分布が検出器であるスクリーンにどのように投影されるかを検証した。図6A~図6Cにおいて、図中の輝点は、マイクロレンズアレイによる回折光を示している。 6A to 6C show examples in which the emission light distribution of the irregularly arranged microlens array is simulated by a commercially available electromagnetic field simulator. In this simulation, the pitch p (also the diameter of the microlens) of the microlens 21 in the microlens array is 82 μm, and the size of the rectangular microlens array is 738 μm × 710 μm (diagonal length: about 1024 μm). It was. In addition, when the incident light diameter of the light incident on the microlens array is changed to 200 μm, 300 μm, and 650 μm, how the emitted light distribution including the diffracted light is projected onto the detector screen. I verified. In FIG. 6A to FIG. 6C, the bright spot in the figure indicates the diffracted light by the microlens array.
 図6Aに示したように、マイクロレンズ21の直径(82μm)と入射光径とのサイズ差が比較的小さい場合には、拡散光中の回折光輝点が大きくなってしまうため、図6B及び図6Cから明らかなように、マイクロレンズ21の直径を小さくする(又は、入射光径を大きくする)ことが好ましいことがわかる。具体的には、マイクロレンズアレイのピッチは概ね入射光径の1/3以下とすることで、上記のような輝点による影響を実用上問題ないレベルまで低減することが可能となる。 As shown in FIG. 6A, when the size difference between the diameter (82 μm) of the microlens 21 and the incident light diameter is relatively small, the diffracted bright spot in the diffused light becomes large. As is apparent from 6C, it can be seen that it is preferable to reduce the diameter of the microlens 21 (or increase the incident light diameter). Specifically, by setting the pitch of the microlens array to be approximately 1/3 or less of the incident light diameter, it is possible to reduce the influence of the bright spots as described above to a level that does not cause a problem in practice.
 一方、実際にマイクロレンズアレイを製造するに際して、転写用のフォトマスクや金型を作製することを考える。この場合、一般的には、マイクロレンズ21の形状の形成を、レーザや電子ビームによる直接描画で行うことが多いが、作製するデータ量を低減するために、比較的小さな面積からなる単位セル3を上下左右に繰り返しアレイ配列化して所望のサイズまで拡大する、いわゆるステップアンドリピート的な手法がとられることも多い。このようなアレイ構造を持つものに光が入射すると、単位セル3内と単位セル3間の2重の繰り返し構造からなる2種類の回折光成分が発生することになる。各々の回折角について、単位セル3内の回折角は、レンズ配置のピッチによって決まり、単位セル3間の回折角は、単位セル3のサイズ(大きさ)によって決まる。 On the other hand, when actually manufacturing a microlens array, consider creating a photomask or mold for transfer. In this case, in general, the shape of the microlens 21 is often formed by direct drawing with a laser or an electron beam. However, in order to reduce the amount of data to be produced, the unit cell 3 having a relatively small area is used. In many cases, a so-called step-and-repeat technique is employed in which the array is repeatedly arranged in the vertical and horizontal directions and expanded to a desired size. When light is incident on an element having such an array structure, two types of diffracted light components having a double repeated structure in the unit cell 3 and between the unit cells 3 are generated. For each diffraction angle, the diffraction angle in the unit cell 3 is determined by the pitch of the lens arrangement, and the diffraction angle between the unit cells 3 is determined by the size (size) of the unit cell 3.
 単位セルアレイによる回折角(単位セル3間の回折角)を考える。例えば、単位セルのピッチを700μmとし、入射する光の波長を450nmとしたとき、上記(式101)により、1次回折光(m=1の場合の回折光)の角度(半角)は、0.03度となる。従って、拡散板の拡散角(半角)が3度程度の場合であっても、(3/0.03)=10個の回折光が拡散光中に発生することなる。回折光の強度は、回折次数mが高次となるに従って、急速に低下していく(例えば、回折次数mのときピーク強度は(2/π)となる)ため、実際には数十個程度の回折ピークが、拡散光中に現れることになる。以下では、このような単位セルアレイに起因した回折光を、サブ回折光と称することとする。 Consider the diffraction angle by the unit cell array (diffraction angle between unit cells 3). For example, when the unit cell pitch is 700 μm and the wavelength of incident light is 450 nm, the angle (half angle) of the first-order diffracted light (diffracted light when m = 1) is 0. It will be 03 degrees. Therefore, even when the diffusion angle (half angle) of the diffusion plate is about 3 degrees, (3 / 0.03) 2 = 10 4 diffracted lights are generated in the diffused light. The intensity of the diffracted light rapidly decreases as the diffraction order m becomes higher (for example, the peak intensity becomes (2 / π) m at the diffraction order m). A certain degree of diffraction peak will appear in the diffused light. Hereinafter, the diffracted light resulting from such a unit cell array will be referred to as sub-diffracted light.
 一方、先に述べたようなレンズアレイによる回折光の各々の輝点(換言すれば、単位セル3内での回折による回折光の各々の輝点)は、上記のような単位セルアレイによるサブ回折ピークによって、更に離散的に分離する。従って、拡散光中での輝点の明瞭度は、かかるサブ回折光ピークによって低減されることになる。図6Aから図6Cへと条件が推移するに従って拡散光中の回折光輝点が小さくなっていくのは、上記のような、単位セル3内の回折による回折光(以下では、メイン回折光とも称する。)が、サブ回折光によって分離される現象によるものである。 On the other hand, each bright spot of the diffracted light by the lens array as described above (in other words, each bright spot of the diffracted light in the unit cell 3) is sub-diffraction by the unit cell array as described above. The peaks are further discretely separated. Therefore, the clarity of the bright spot in the diffused light is reduced by the sub-diffracted light peak. As the conditions change from FIG. 6A to FIG. 6C, the diffracted bright spot in the diffused light becomes smaller because the diffracted light by the diffraction in the unit cell 3 as described above (hereinafter also referred to as main diffracted light). Is due to the phenomenon of being separated by the sub-diffraction light.
 ここで、単位セルによる回折角は非常に小さいものであるため、本実施形態に係る拡散板1の実使用上、サブ回折成分の輝点が問題となることはない。従って、単位セル3によるサブ回折光を適切に発生させることによって、図6A~図6Cを参照しながら説明したように、メイン回折光のピーク強度を低減することが可能となる。 Here, since the diffraction angle by the unit cell is very small, the bright spot of the sub-diffraction component does not become a problem in actual use of the diffusion plate 1 according to the present embodiment. Therefore, by appropriately generating the sub-diffracted light by the unit cell 3, as described with reference to FIGS. 6A to 6C, the peak intensity of the main diffracted light can be reduced.
 サブ回折光の強度は、単位セル3と入射光の大きさとの関係によって決まる。概ね単位セル3が入射光より大きい場合には、単位セル3の周期構造に起因するサブ回折光は発生しない。ここで、図7Aに示したような入射光強度の半値全幅を考え、かかる半値全幅が最小になる方向の径を、図7Bに示したような「入射光径」と定義する。また、単位セル3を長方形又は正方形等の矩形状とし、単位セル3の対角線の長さを「単位セルサイズ」と定義する。この際、図7Bに示したように、単位セルサイズが入射光径よりも小さければ、単位セル3間の回折に起因するサブ回折光が発生して、レンズアレイに起因する(換言すれば、単位セル3内の回折に起因する)メイン回折光のピーク強度を低減することが可能となる。 The intensity of the sub-diffracted light is determined by the relationship between the unit cell 3 and the magnitude of the incident light. In general, when the unit cell 3 is larger than the incident light, sub-diffracted light due to the periodic structure of the unit cell 3 is not generated. Here, considering the full width at half maximum of the incident light intensity as shown in FIG. 7A, the diameter in the direction in which the full width at half maximum is minimized is defined as the “incident light diameter” as shown in FIG. 7B. Further, the unit cell 3 is a rectangle such as a rectangle or a square, and the length of the diagonal line of the unit cell 3 is defined as “unit cell size”. At this time, as shown in FIG. 7B, if the unit cell size is smaller than the incident light diameter, sub-diffracted light caused by diffraction between the unit cells 3 is generated and caused by the lens array (in other words, It becomes possible to reduce the peak intensity of the main diffracted light (due to diffraction in the unit cell 3).
 ここで、拡散板1に入射する光がレーザ光であったとしても、図7Bに示したような入射光径は、最大でも3mm程度であると考えられる。従って、図7Bに示したような単位セルサイズが3mm以下であれば、どのようなレーザ光源に対しても本実施形態に係る拡散板1を使用することが可能となる。 Here, even if the light incident on the diffusion plate 1 is a laser beam, the incident light diameter as shown in FIG. 7B is considered to be about 3 mm at the maximum. Therefore, if the unit cell size as shown in FIG. 7B is 3 mm or less, the diffusion plate 1 according to this embodiment can be used for any laser light source.
 以上説明したように、本実施形態に係るマイクロレンズアレイ型の拡散板1は、2個以上の単位セル3で構成されており、各単位セル3は、複数のマイクロレンズ21からなるマイクロレンズ群20を有している。また、各単位セル3に含まれるマイクロレンズ21は、アレイ配列に対して連続であり、各マイクロレンズ21の稜線は互いに平行ではなく、かつ、透明基板10に対しても平行ではないことを特徴とする。これにより、本実施形態に係る拡散板1は、拡散光中における回折光成分を抑制することが可能となり、優れた拡散特性を示すこととなる。 As described above, the microlens array type diffusing plate 1 according to this embodiment includes two or more unit cells 3, and each unit cell 3 is a microlens group including a plurality of microlenses 21. 20 The microlenses 21 included in each unit cell 3 are continuous with respect to the array arrangement, and the ridgelines of the microlenses 21 are not parallel to each other and are not parallel to the transparent substrate 10. And Thereby, the diffusing plate 1 according to the present embodiment can suppress the diffracted light component in the diffused light, and exhibits excellent diffusion characteristics.
 以上、図1~図7Bを参照しながら、本実施形態に係る拡散板1について、詳細に説明した。 The diffusion plate 1 according to this embodiment has been described in detail above with reference to FIGS. 1 to 7B.
(拡散板の製造方法について)
 以下では、図8~図10を参照しながら、本実施形態に係る拡散板1の製造方法の一例について、簡単に説明する。図8は、同実施形態に係る拡散板の製造方法の流れの一例を示した流れ図である。図9及び図10は、本実施形態に係る拡散板の製造方法について説明するための説明図である。
(Diffusion plate manufacturing method)
Hereinafter, an example of a method for manufacturing the diffusion plate 1 according to the present embodiment will be briefly described with reference to FIGS. FIG. 8 is a flowchart showing an example of the flow of the manufacturing method of the diffusion plate according to the embodiment. 9 and 10 are explanatory diagrams for explaining the manufacturing method of the diffusion plate according to the present embodiment.
 本実施形態に係る拡散板1は、以下で説明するように、例えば、フォトレジスト等の有機材料からなるパターンをドライエッチングによって基板に転写することで製造することが可能である。 The diffusion plate 1 according to the present embodiment can be manufactured by transferring a pattern made of an organic material such as a photoresist onto a substrate by dry etching, as will be described below.
 かかる製造方法では、まず、所定の透明基板10に対してレジストを塗布することが実施される(ステップS101)。ここで、以下で説明するような製造方法では、エッチングガスとして、一般的には、CF、SF、CHF等といったフッ素系エッチングガスが用いられるため、透明基板10としては、上記のようなフッ素系エッチングガスと反応して不揮発性物質となるAlやアルカリ金属等のアルカリ成分を含有しない(又は、アルカリ成分の含有量が20質量%以下、より好ましくは10質量%以下である)石英ガラスやテンパックスガラス等を用いることが好ましい。例えば、Alを27%含有し、アルカリ金属を全く含有しないガラス基板(例えば、コーニング社の製品名:イーグルXG等)を上記のようなフッ素系エッチングガスを用いてドライエッチングすると、表面にエッチングされないAlの微小突起が発生して、透過率が低下してしまうという問題が発生してしまう。 In such a manufacturing method, first, a resist is applied to a predetermined transparent substrate 10 (step S101). Here, in the manufacturing method described below, since the fluorine-based etching gas such as CF 4 , SF 6 , CHF 3 or the like is generally used as the etching gas, the transparent substrate 10 is as described above. Does not contain alkali components such as Al 2 O 3 and alkali metals that react with various fluorine-based etching gases to become nonvolatile substances (or the content of alkali components is 20% by mass or less, more preferably 10% by mass or less). It is preferable to use quartz glass or Tempax glass. For example, when a glass substrate containing 27% Al 2 O 3 and containing no alkali metal (for example, Corning product name: Eagle XG) is dry-etched using the fluorine-based etching gas as described above, the surface A problem arises in that microscopic protrusions of Al 2 O 3 that are not etched are generated and the transmittance is reduced.
 続いて、レジストの塗布された透明基板10に対して、グレースケールマスクを用いて、ステッパ露光を実施する(ステップS103)。 Subsequently, stepper exposure is performed on the transparent substrate 10 coated with resist using a gray scale mask (step S103).
 この際、図9に模式的に示したように、1mm以下程度の単位セル3を更に上下左右繰り返しアレイ化したものを1~20mm程度の基本セルとし、かかる基本セルをステップアンドリピート露光での繰り返し単位とすることも可能である。この場合、ステッピングでの位置精度によっては、基本セル間で最大で数μm幅程度のパターンの繋ぎ目が生じるが、図9に模式的に示したように、単位セル間隔で露光ショットを移動してパターンを重ねながら露光を行うことで、このパターンの繋ぎ目を生じなくすることが可能となる。この際、1回の露光による露光量を所望の露光量の半分とした場合、4回の露光で所望の露光量を実現することが可能となる。また、隣接する基本セルの端をわずかに(例えば幅500nm以下)重ね合わせるようにステップアンドリピート露光することでも、繋ぎ目をなくすことが可能となる。この場合、複数回の露光は不要となる。 At this time, as schematically shown in FIG. 9, a unit cell 3 of about 1 mm or less and further vertically and horizontally repeated is used as a basic cell of about 1 to 20 mm, and this basic cell is used in step-and-repeat exposure. It can also be a repeating unit. In this case, depending on the positional accuracy in the stepping, a pattern joint having a width of about several μm at maximum is generated between the basic cells. However, as schematically shown in FIG. 9, the exposure shot is moved at the unit cell interval. By performing the exposure while overlapping the patterns, it is possible to eliminate the connection between the patterns. At this time, if the exposure amount by one exposure is half of the desired exposure amount, the desired exposure amount can be realized by four exposures. It is also possible to eliminate joints by performing step-and-repeat exposure so that the edges of adjacent basic cells are slightly overlapped (for example, a width of 500 nm or less). In this case, multiple exposures are not necessary.
 続いて、ステッパ露光の終了したレジストパターンを現像する(ステップS105)。これにより、透明基板10上に塗布されたレジストに対して、所望のマイクロレンズパターンが形成される。 Subsequently, the resist pattern after the stepper exposure is developed (step S105). As a result, a desired microlens pattern is formed on the resist applied on the transparent substrate 10.
 続いて、現像が終了した透明基板10に対して、上記のようなフッ素系エッチングガスを利用して、ドライエッチングを実施する(ステップS107)。これにより、レジストに形成されたマイクロレンズパターンが、透明基板10に転写されることとなる。 Subsequently, dry etching is performed on the transparent substrate 10 that has been developed using the fluorine-based etching gas as described above (step S107). As a result, the microlens pattern formed on the resist is transferred to the transparent substrate 10.
 その後、マイクロレンズパターンの形成された透明基板10の表面及び裏面に対して、上記のような誘電体を用いて蒸着又はスパッタによりARコートを行い、反射防止層30を形成する(ステップS109)。また、マイクロレンズの表面に対して、反射防止層30として、公知のモスアイ構造の製造方法により、光の波長以下の大きさの凹凸からなる反射防止構造を形成してもよい。 Thereafter, the antireflection layer 30 is formed by performing AR coating on the front and back surfaces of the transparent substrate 10 on which the microlens pattern is formed by vapor deposition or sputtering using the dielectric as described above (step S109). Moreover, you may form the antireflection structure which consists of an unevenness | corrugation below the wavelength of light with the well-known moth-eye structure manufacturing method as the antireflection layer 30 with respect to the surface of a microlens.
 このように、本実施形態に係る拡散板1は、ガラス基板等の透明基板10上にレンズ曲面をもつレジストパターンをグレースケール露光によって形成した後、かかるレジストパターンをドライエッチングして透明基板10上にレンズ形状を転写することにより、作製される。ここで、透明基板10に転写されるレンズ状のレジストパターン形状は、グレースケール露光の条件だけではなく、ドライエッチングの条件も加味して決定される。 As described above, the diffusion plate 1 according to this embodiment forms a resist pattern having a lens curved surface on a transparent substrate 10 such as a glass substrate by gray scale exposure, and then dry-etches the resist pattern on the transparent substrate 10. It is produced by transferring the lens shape to the lens. Here, the lens-like resist pattern shape transferred to the transparent substrate 10 is determined in consideration of not only the gray scale exposure conditions but also the dry etching conditions.
 ここで、ドライエッチングにおけるレジストのエッチング速度と透明基板10(例えばガラス等)のエッチング速度との比(=透明基板のエッチング速度/レジストのエッチング速度)を、「エッチング選択比」と称することとする。この際、ドライエッチング工程における各エッチングガスの流量比率を調節することで、上記のようなエッチング選択比を変化させることが可能である。これにより、転写するレンズ形状(例えば、マイクロレンズ21の曲率半径)の微調整を行うことが可能である。 Here, the ratio of the etching rate of the resist in dry etching and the etching rate of the transparent substrate 10 (for example, glass) (= the etching rate of the transparent substrate / the etching rate of the resist) is referred to as “etching selectivity”. . At this time, the etching selectivity as described above can be changed by adjusting the flow rate ratio of each etching gas in the dry etching process. Thereby, it is possible to finely adjust the shape of the lens to be transferred (for example, the radius of curvature of the microlens 21).
 具体的には、エッチングガスとしてCF、Ar、Oを用いる場合、流量比(=「CFガスの流量/Arガスの流量」)を0.25~4の範囲で変化させると、上記のようなエッチング選択比は、1.0~1.7まで変化する。更に、この状態でOガスを3%~10%添加すると、上記のようなエッチング選択比を、0.7~1.0まで低減することができる。このように、エッチングガスの条件によって、上記のようなエッチング選択比を0.7~1.7まで変化させることが可能である。かかる現象は、グレースケール露光で得られたフォトレジストからなるマイクロレンズの曲率半径を、エッチングによって70~170%の範囲で調整可能であることを意味している。 Specifically, when CF 4 , Ar, or O 2 is used as the etching gas, the flow rate ratio (= “flow rate of CF 4 gas / flow rate of Ar gas”) is changed in the range of 0.25 to 4, Etching selectivity varies from 1.0 to 1.7. Further, when O 2 gas is added in an amount of 3% to 10% in this state, the etching selectivity as described above can be reduced to 0.7 to 1.0. Thus, the etching selectivity as described above can be changed from 0.7 to 1.7 depending on the conditions of the etching gas. This phenomenon means that the radius of curvature of a microlens made of a photoresist obtained by gray scale exposure can be adjusted in a range of 70 to 170% by etching.
 グレースケール露光によって作成されるレジストパターンの形状は、最終的な拡散板の完成体である透明基板10のレンズパターンと、上記エッチングによる形状変形と、を加味して決められる。具体的には、エッチング選択比をηと表わし、各マイクロレンズ21の深さ(サグ量でもある。)をSと表わすとすると、透明基板10に実際に形成されるマイクロレンズ21の深さは、近似的にη×Sとなる。また、レジストパターンの曲率半径をRとすると、エッチング後の曲率半径は、R÷ηとなる。 The shape of the resist pattern created by the gray scale exposure is determined in consideration of the lens pattern of the transparent substrate 10 which is a final finished diffuser and the shape deformation caused by the etching. Specifically, if the etching selectivity is represented by η and the depth (also sag amount) of each microlens 21 is represented by S, the depth of the microlens 21 actually formed on the transparent substrate 10 is Approximately η × S. When the curvature radius of the resist pattern is R, the curvature radius after etching is R ÷ η.
 図10は、エッチング選択比を0.6及び1.7とした場合に、形成されたレジストパターンの形状を実際に測定した結果を示したものである。かかる測定は、実際にマイクロレンズアレイの略中央部分の形状(図10上段におけるA-A切断線近傍の形状)を、レーザ共焦点顕微鏡により測定したものである。図10から明らかなように、レジスト設計値と、転写された完成体形状とは、必ずしも一致しない。 FIG. 10 shows the result of actually measuring the shape of the formed resist pattern when the etching selectivity is 0.6 and 1.7. In this measurement, the shape of the substantially central portion of the microlens array (the shape in the vicinity of the AA cutting line in the upper part of FIG. 10) was actually measured with a laser confocal microscope. As is clear from FIG. 10, the resist design value and the transferred finished product shape do not always match.
 そこで、本実施形態に係る拡散板を製造するに際しては、図11に示すような設計方法が採用される。 Therefore, when manufacturing the diffusion plate according to the present embodiment, a design method as shown in FIG. 11 is adopted.
(拡散板の設計方法について)
 以下では、図11を参照しながら、本実施形態に係る拡散板1の設計方法の一例について、簡単に説明する。図11は、本実施形態に係る拡散板の設計方法の流れの一例を示した流れ図である。
(Diffusion plate design method)
Below, an example of the design method of the diffusion plate 1 which concerns on this embodiment is demonstrated easily, referring FIG. FIG. 11 is a flowchart showing an example of the flow of the diffusion plate design method according to the present embodiment.
 本実施形態に係る拡散板の設計方法では、まず、透明基板10の屈折率n、実現したい拡散角の大きさθ、マイクロレンズ21のピッチp等といった、基本設計条件が設定される(ステップS201)。その後、以下の式103に基づいて、曲率半径R(n,θ,p)が算出される(ステップS203)。 In the diffusing plate designing method according to the present embodiment, first, basic design conditions such as the refractive index n of the transparent substrate 10, the diffusion angle size θ desired to be realized, the pitch p of the microlenses 21, and the like are set (step S <b> 201). ). Thereafter, a curvature radius R (n, θ, p) is calculated based on the following equation 103 (step S203).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 続いて、本実施形態に係る拡散板の設計方法では、曲率半径変化幅ΔR、ピッチ変化幅Δp、レンズ頂点高さ変化幅Δh等といった、変化許容幅が設定される(ステップS205)。その上で、公知のレンズ配置の算出アルゴリズムを利用して、単位セルのレイアウト化が実施される(ステップS207)。 Subsequently, in the diffusing plate design method according to the present embodiment, change allowable widths such as a curvature radius change width ΔR, a pitch change width Δp, and a lens apex height change width Δh are set (step S205). Then, a unit cell layout is implemented using a known lens arrangement calculation algorithm (step S207).
 単位セルのレイアウト化が終了すると、レイアウト化された単位セルが、レイアウト基準に適合するか否かが判定される(ステップS209)。このようなレイアウト基準は、先だって説明したような、(1)~(3)の条件となる。 When the layout of the unit cell is completed, it is determined whether or not the unit cell that has been laid out meets the layout standard (step S209). Such a layout standard is the conditions (1) to (3) as described above.
 レイアウト化された単位セルが、上記(1)~(3)の全てを満足していない場合、ステップS207に戻って、基本設定条件を変化許容幅の範囲内で変化させながら、再度単位セルのレイアウト化が実施される。一方、レイアウト化された単位セルが、上記(1)~(3)の全てを満足した場合、単位セルの仮レイアウトが完成することとなる(ステップS211)。 If the unit cell that has been laid out does not satisfy all of the above (1) to (3), the process returns to step S207, and the unit cell is changed again while changing the basic setting condition within the allowable change range. Layout is implemented. On the other hand, if the unit cell thus laid out satisfies all of the above (1) to (3), the temporary layout of the unit cell is completed (step S211).
 続いて、本実施形態に係る拡散板の設計方法では、上記のようなエッチング選択比ηが設定される(ステップS211)。その後、設定されたエッチング選択比ηに基づいて、仮レイアウトのサグデータ(すなわち、高さS)が、η×Sで表わされる値へと修正される(ステップS215)。これにより、単位セルの最終レイアウトが完成することとなる(ステップS213)。 Subsequently, in the diffusion plate designing method according to the present embodiment, the etching selectivity η as described above is set (step S211). Thereafter, the sag data (that is, the height S) of the temporary layout is corrected to a value represented by η × S based on the set etching selection ratio η (step S215). Thereby, the final layout of the unit cell is completed (step S213).
 以上、図11を参照しながら、本実施形態に係る拡散板1の設計方法の一例について、簡単に説明した。 In the above, an example of the design method of the diffusion plate 1 according to the present embodiment has been briefly described with reference to FIG.
 以上説明したような製造方法を用いることで、ドライエッチングプロセスという、より簡便な製造プロセスを利用して、本実施形態に係る拡散板1を、より生産性良く製造することが可能となる。 By using the manufacturing method as described above, the diffusion plate 1 according to the present embodiment can be manufactured with higher productivity by using a simpler manufacturing process called a dry etching process.
(拡散板の製造方法の具体例)
 以上説明したような、本実施形態に係る拡散板の製造方法の具体例を、以下に簡単に記載する。なお、以下に示す具体例は、本発明に係る拡散板の製造方法の一具体例にすぎず、本発明に係る拡散板の製造方法が下記の具体例に限定されるものではない。
(Specific example of diffusion plate manufacturing method)
The specific example of the manufacturing method of the diffusion plate which concerns on this embodiment as demonstrated above is described easily below. In addition, the specific example shown below is only one specific example of the manufacturing method of the diffusion plate which concerns on this invention, and the manufacturing method of the diffusion plate which concerns on this invention is not limited to the following specific example.
 まず、例えばテンパックスガラス基板を透明基板10として利用し、かかるガラス基板上に、ポジレジストを塗布する。この際、作製するマイクロレンズ21のサグ深さよりも大きくなるように、レジストの膜厚は、11μmとする。 First, for example, a Tempax glass substrate is used as the transparent substrate 10, and a positive resist is applied on the glass substrate. At this time, the film thickness of the resist is 11 μm so as to be larger than the sag depth of the microlens 21 to be manufactured.
 次に、グレースケールマスクと露光装置(ステッパー)とを用いて、ステップアンドリピート露光を実施する。この際、使用するグレースケールマスクのレイアウトは、横737.6μm×縦709.6μmの四角形状の単位セル3を、上下左右にアレイ配列したもの(すなわち、基本セル)から構成されているものとする。単位セル3は、縦横繰り返しで不連続パターンとならないように、例えばマイクロレンズの横方向の並びは平均ピッチ82μmとし、9個(セル内の合計では100個以上)のレンズが並ぶよう設計する。 Next, step-and-repeat exposure is performed using a gray scale mask and an exposure apparatus (stepper). At this time, the layout of the gray scale mask to be used is composed of a rectangular unit cell 3 having a horizontal dimension of 737.6 μm and a vertical length of 709.6 μm (that is, a basic cell) arranged vertically and horizontally. To do. The unit cell 3 is designed so that, for example, the arrangement of microlenses in the horizontal direction has an average pitch of 82 μm and nine lenses (100 or more in total in the cell) are arranged so as not to form a discontinuous pattern when repeated vertically and horizontally.
 ここで、単位セル3内の各マイクロレンズの配置条件については、頂点の面内位置が六角形の頂点から半径42μm以内となり、高さ位置の変化幅が2μm以下となり、かつ、隣接レンズ間の境界が平行とならず、かつ、基板とも平行とならないこと、とする。曲率半径については、拡散角θ=3度とすると、上記式103によりエッチング後でR=752μmとなる。この際、エッチング選択比0.90による変化を加味して、レジストパターンの曲率は、R’=752×0.90=677μmとし、変化幅は67μmとすることができる。 Here, regarding the arrangement conditions of each microlens in the unit cell 3, the in-plane position of the vertex is within a radius of 42 μm from the hexagonal vertex, the change width of the height position is 2 μm or less, and between adjacent lenses. It is assumed that the boundary is not parallel and is not parallel to the substrate. With respect to the radius of curvature, if the diffusion angle θ = 3 degrees, R = 752 μm after etching according to the above equation 103. At this time, considering the change due to the etching selection ratio 0.90, the curvature of the resist pattern can be R ′ = 752 × 0.90 = 677 μm and the change width can be 67 μm.
 上記のような条件を満たす配置を、公知のレンズ配置の算出アルゴリズムによって探索決定したものを、単位セル3とする。 A unit cell 3 is a unit cell 3 in which an arrangement that satisfies the above conditions is determined by a known lens arrangement calculation algorithm.
 更に、以上のような単位セル3を横方向に16個×縦方向に17個アレイ配列したものを基本セルとした上で、かかる基本セルを露光単位位として、ステップアンドリピート露光を行う。 Further, the above-described unit cells 3 arranged in an array of 16 in the horizontal direction and 17 in the vertical direction are used as basic cells, and step-and-repeat exposure is performed using the basic cells as exposure unit positions.
 次に、現像後得られたレジスト形状をマスクとして、CFとArとの混合ガスをエッチングガスとして用いて、ドライエッチングを行う。エッチング速度は、一例として、ガラス:0.5μm/min、レジスト:0.45μm/minであり、レジストパターンのサグよりも深くエッチングを行うことで、レジストのマイクロレンズ形状が、ガラス基板へ転写されることとなる。 Next, dry etching is performed using a resist shape obtained after development as a mask and a mixed gas of CF 4 and Ar as an etching gas. The etching rate is, for example, glass: 0.5 μm / min, resist: 0.45 μm / min. By performing etching deeper than the sag of the resist pattern, the microlens shape of the resist is transferred to the glass substrate. The Rukoto.
 エッチングによるレンズ形成後、蒸着又はスパッタにより、ガラス基板の両面に対して、例えばNb/SiO多層膜からなる反射防止層30を形成する。 After forming the lens by etching, the antireflection layer 30 made of, for example, a Nb 2 O 5 / SiO 2 multilayer film is formed on both surfaces of the glass substrate by vapor deposition or sputtering.
 このような製造方法を実施することで、本実施形態に係る拡散板を実際に製造することが可能となる。 It is possible to actually manufacture the diffusion plate according to this embodiment by performing such a manufacturing method.
(拡散板の適用例)
 次に、本実施形態に係る拡散板1の適用例について、簡単に説明する。
(Application example of diffusion plate)
Next, an application example of the diffusion plate 1 according to the present embodiment will be briefly described.
 以上説明したような本実施形態に係る拡散板1は、その機能を実現するために光を拡散させる必要がある装置に対して、適宜実装することが可能である。機能を実現するために光を拡散させる必要がある装置としては、例えば、各種のディスプレイ等の表示装置や、プロジェクタ等の投影装置を挙げることができる。 The diffusion plate 1 according to the present embodiment as described above can be appropriately mounted on a device that needs to diffuse light in order to realize its function. Examples of the device that needs to diffuse light in order to realize the function include a display device such as various displays and a projection device such as a projector.
 また、本実施形態に係る拡散板1は、液晶表示装置のバックライトに対して適用することも可能であり、光整形の用途にも用いることが可能である。更に、本実施形態に係る拡散板1は、各種の照明装置に対しても適用することが可能となる。 Further, the diffusion plate 1 according to the present embodiment can be applied to the backlight of the liquid crystal display device, and can also be used for light shaping. Furthermore, the diffusion plate 1 according to the present embodiment can be applied to various illumination devices.
 なお、機能を実現するために光を拡散させる必要がある装置は、上記の例に限定されるものではなく、光の拡散を利用する装置であればその他の公知の装置に対しても、本実施形態に係る拡散板1を適用することが可能である。 Note that the device that needs to diffuse light in order to realize the function is not limited to the above example, and the device that uses light diffusion is not limited to this well-known device. It is possible to apply the diffusion plate 1 according to the embodiment.
[第2の実施形態]
 レーザ光のような可干渉性の大きな光に対して用いられる拡散板としては、拡散全角が1度~30度程度までのような、様々な拡散全角の拡散板が使用される。例えば、入射レーザ光を蛍光体面で均一に広げるという用途では、拡散全角が10度未満である拡散板が用いられ、青色光を利用して蛍光体フィルムと同様の拡散特性を得るための用途や、スペックルを低減するための用途では、拡散全角が10度~30度程度の拡散板が用いられる。拡散全角が10度~30度となるような比較的大きな拡散全角を有する拡散板を、マイクロレンズ型の拡散板で実現しようとする場合には、拡散光強度が減衰する角度領域において拡散光の減衰が急峻ではなくなってしまうという問題があった。
[Second Embodiment]
As a diffusion plate used for light having high coherence such as laser light, diffusion plates having various diffusion full angles such as a diffusion full angle of about 1 to 30 degrees are used. For example, in an application in which the incident laser light is spread uniformly on the phosphor surface, a diffusion plate having a total diffusion angle of less than 10 degrees is used, and an application for obtaining the same diffusion characteristics as a phosphor film using blue light In applications for reducing speckles, a diffusion plate having a total diffusion angle of about 10 to 30 degrees is used. When a diffusion plate having a relatively large diffusion full angle such that the total diffusion angle is 10 degrees to 30 degrees is to be realized with a microlens-type diffusion plate, the diffusion light is diffused in an angular region where the diffused light intensity is attenuated. There was a problem that the attenuation was not steep.
 従って、上記のような用途にも適用可能な拡散板を、マイクロレンズ型の拡散板で実現する場合には、第1の実施形態で説明したような回折成分の抑制に加えて、拡散光強度が減衰する角度領域においても拡散光の減衰が急峻となるような、より優れた拡散特性を実現することが重要となる。 Therefore, in the case where the diffusion plate applicable to the above uses is realized by a microlens type diffusion plate, in addition to the suppression of the diffraction component as described in the first embodiment, the diffused light intensity It is important to realize more excellent diffusion characteristics such that the attenuation of diffused light becomes steep even in the angle region where the light is attenuated.
 そこで、以下で詳述する第2の実施形態に係る拡散板では、第1の実施形態に係る拡散板で着目した、単位セルを構成する各マイクロレンズに関する上記(1)~(3)の条件の他に更なる条件を加味することによって、回折成分の抑制に加えて、拡散光強度が減衰する角度領域においても拡散光の減衰が急峻となるような、より優れた拡散特性を実現する。 Therefore, in the diffusion plate according to the second embodiment described in detail below, the conditions (1) to (3) regarding each microlens constituting the unit cell focused on the diffusion plate according to the first embodiment. In addition to the suppression of the diffraction component, in addition to the suppression of the diffraction component, a more excellent diffusion characteristic is realized such that the attenuation of the diffused light becomes steep in the angular region where the intensity of the diffused light attenuates.
(拡散板について)
 本発明の第2の実施形態に係る拡散板1は、第1の実施形態に係る拡散板1と同様に、基板上に複数のマイクロレンズからなるマイクロレンズ群が配置された、マイクロレンズアレイ型の拡散板である。かかる拡散板1は、図1に示した第1の実施形態に係る拡散板1と同じく、複数の単位セル3から構成されている。また、単位セル3間では、単位セル3内に設けられた複数のマイクロレンズのレイアウトパターン(配置パターン)が、単位セルの配列方向(換言すれば、アレイ配列方向)に連続となっている。
(About diffusion plate)
Similar to the diffusion plate 1 according to the first embodiment, the diffusion plate 1 according to the second embodiment of the present invention is a microlens array type in which a microlens group including a plurality of microlenses is arranged on a substrate. This is a diffusion plate. The diffusing plate 1 is composed of a plurality of unit cells 3 like the diffusing plate 1 according to the first embodiment shown in FIG. In addition, between the unit cells 3, the layout pattern (arrangement pattern) of the plurality of microlenses provided in the unit cell 3 is continuous in the unit cell arrangement direction (in other words, the array arrangement direction).
 以下では、図12~図16を参照しながら、第1の実施形態に係る拡散板1との相違点を中心に説明を行うものとし、第1の実施形態に係る拡散板1と同様の構成を有するものについては、詳細な説明は省略する。
 図12は、本実施形態に係る拡散板を構成する単位セルの一部を模式的に示した説明図である。図13Aは、本実施形態に係るマイクロレンズ群における頂点間距離のばらつきを説明するための説明図であり、図13Bは、本実施形態に係るマイクロレンズ群における曲率半径のばらつきを説明するための説明図である。図14は、本実施形態に係る拡散板における減衰幅を説明するための説明図であり、図15A及び図15Bは、頂点間距離及び曲率半径のばらつきと減衰率との関係を示したグラフ図である。図16は、拡散板における拡散全角と減衰率との関係を説明するための説明図である。
In the following, the difference from the diffusion plate 1 according to the first embodiment will be mainly described with reference to FIGS. 12 to 16, and the same configuration as the diffusion plate 1 according to the first embodiment will be described. The detailed description of those having is omitted.
FIG. 12 is an explanatory view schematically showing a part of the unit cell constituting the diffusion plate according to the present embodiment. FIG. 13A is an explanatory diagram for explaining the variation in the inter-vertex distance in the microlens group according to the present embodiment, and FIG. 13B is for explaining the variation in the radius of curvature in the microlens group according to the present embodiment. It is explanatory drawing. FIG. 14 is an explanatory diagram for explaining the attenuation width in the diffusion plate according to the present embodiment, and FIGS. 15A and 15B are graphs showing the relationship between the inter-vertex distance and the variation in the radius of curvature and the attenuation rate. It is. FIG. 16 is an explanatory diagram for explaining the relationship between the full diffusion angle and the attenuation factor in the diffusion plate.
 本実施形態に係る拡散板1が備える単位セル3は、図2に示した第1の実施形態に係る単位セル3と同様に、透明基板10と、透明基板10の表面に形成されたマイクロレンズ群20と、を有している。 Similar to the unit cell 3 according to the first embodiment shown in FIG. 2, the unit cell 3 included in the diffusion plate 1 according to the present embodiment is a transparent substrate 10 and a microlens formed on the surface of the transparent substrate 10. And a group 20.
<透明基板10について>
 ここで、本実施形態に係る単位セル3の透明基板10は、第1の実施形態に係る単位セル3の透明基板10と同様の構成を有し、同様の効果を奏するものであるため、以下では詳細な説明は省略する。
<About the transparent substrate 10>
Here, the transparent substrate 10 of the unit cell 3 according to the present embodiment has the same configuration as the transparent substrate 10 of the unit cell 3 according to the first embodiment, and has the same effects. Then, detailed explanation is omitted.
<マイクロレンズ群20について>
 透明基板10の表面には、第1の実施形態と同様に、複数のマイクロレンズ21からなるマイクロレンズ群20が形成されている。拡散板は、光を拡散させることが本来の使用方法であるため、単位セル3を構成するマイクロレンズ21としては、出射面が全て凹レンズからなることが好ましい。また、本実施形態に係るマイクロレンズ群20においても、各マイクロレンズ21は、曲率半径や頂点間ピッチが同一ではなく、一定の範囲でばらつきを有しているために、焦点距離もまた一定の分布を有している。凹レンズの場合、焦点位置は仮想点となるが、焦点位置では光強度密度が大きくなるため、各マイクロレンズ21の焦点位置は、拡散板1を構成する透明基板10に隣接した領域にあることが好ましい。
<About the micro lens group 20>
Similar to the first embodiment, a microlens group 20 including a plurality of microlenses 21 is formed on the surface of the transparent substrate 10. Since the diffusion plate is originally intended to diffuse light, it is preferable that the exit surface of the microlens 21 constituting the unit cell 3 is a concave lens. Also in the microlens group 20 according to the present embodiment, each microlens 21 is not the same in radius of curvature or pitch between vertices, and has variations in a certain range, so that the focal length is also constant. Have a distribution. In the case of a concave lens, the focal position is a virtual point, but the light intensity density is large at the focal position. Therefore, the focal position of each microlens 21 may be in a region adjacent to the transparent substrate 10 constituting the diffusion plate 1. preferable.
 また、本実施形態に係るマイクロレンズ群20では、単位セル3を構成する各マイクロレンズ21は、第1の実施形態と同様に、以下に示す(1)~(3)の3つの条件を満足するように配設されている。 In the microlens group 20 according to the present embodiment, each microlens 21 constituting the unit cell 3 satisfies the following three conditions (1) to (3), as in the first embodiment. It is arranged to do.
 (1)単位セル3の4辺の境界は、アレイ配列でパターンに不連続が生じないこと。
 (2)各マイクロレンズ21の頂点の平面位置及び高さ位置(換言すれば、凹レンズの深さの最も低い位置)と、マイクロレンズ21間の稜線とは、回折が十分抑圧されるように不規則化されていること。
 (3)非拡散透過光を抑圧するため、隣接するマイクロレンズ21間に非レンズ領域が存在しないこと。
(1) The boundary of the four sides of the unit cell 3 should not be discontinuous in the pattern in the array arrangement.
(2) The planar position and height position of the apex of each microlens 21 (in other words, the position where the depth of the concave lens is the lowest) and the ridge line between the microlenses 21 are not so large that diffraction is sufficiently suppressed. Be regular.
(3) There is no non-lens region between adjacent microlenses 21 in order to suppress non-diffuse transmitted light.
 上記3つの条件を満たすように配置された、本実施形態に係るマイクロレンズ群20においても、互いに隣り合うマイクロレンズ21間の稜線は、全て互いに平行ではなく、かつ、透明基板10に対して平行ではないようになっている。 Also in the microlens group 20 according to the present embodiment arranged so as to satisfy the above three conditions, the ridge lines between the adjacent microlenses 21 are not all parallel to each other and are parallel to the transparent substrate 10. It is not like that.
 以下では、マイクロレンズ21の繰り返し構造のピッチ(すなわち、図12における互いに隣り合うマイクロレンズ21間の頂点間距離)の平均値(平均ピッチ)をpとし、マイクロレンズ21の形状を表す曲線(すなわち、図12における断面プロファイルに該当する曲線)の曲率半径の平均値(平均曲率半径)をRと表わすこととする。この場合に、マイクロレンズ型の拡散板の拡散全角(半値全幅)θは、マイクロレンズ21の屈折率nと、平均ピッチ(平均頂点間距離)pと、平均曲率半径Rと、を用いて、以下の式201のように表わすことができる。この際、平均頂点間距離p及び平均曲率半径Rは、所望の拡散全角θとなるように、下記式201に基づき決定される。 In the following, the average value (average pitch) of the pitches of the repeating structure of the microlenses 21 (that is, the distance between the apexes between adjacent microlenses 21 in FIG. The average value of the radius of curvature of the curve corresponding to the cross-sectional profile in FIG. In this case, the diffusion full angle (full width at half maximum) θ of the microlens type diffusion plate is obtained by using the refractive index n, the average pitch (average inter-vertex distance) p, and the average curvature radius R of the microlens 21. The following equation 201 can be expressed. At this time, the average inter-vertex distance p and the average radius of curvature R are determined based on the following formula 201 so that the desired diffusion full angle θ is obtained.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 マイクロレンズ群20が均一で規則的な配列を有する場合、アレイを構成する全てのマイクロレンズ21からの拡散光は一致し、中央部が平坦で急峻な減衰特性を有する拡散特性が得られる。しかしながら、このままではアレイ構造の周期性により回折光が多数発生するため、拡散板としては好ましくない。従って、第1の実施形態と同様に、レンズ形状及びレンズ配置に適度な不規則性を導入することで、回折成分を抑制することが行われる。その結果、図13A及び図13Bに模式的に示したように、頂点間距離と曲率半径の値には、ばらつきが生じることとなる。 When the microlens group 20 has a uniform and regular arrangement, the diffused light from all the microlenses 21 constituting the array coincides, and a diffusion characteristic having a flat central portion and a steep attenuation characteristic is obtained. However, in this state, a large number of diffracted lights are generated due to the periodicity of the array structure, which is not preferable as a diffusion plate. Therefore, as in the first embodiment, the diffraction component is suppressed by introducing appropriate irregularities in the lens shape and lens arrangement. As a result, as schematically shown in FIGS. 13A and 13B, the values of the distance between the vertices and the radius of curvature will vary.
 いま、図13Aに示したように、不規則性を導入した結果生じる頂点間距離の最大値をpmaxとし、頂点間距離の最小値をpminとした場合に、本実施形態では、以下の式203で与えられるσを、頂点間距離の平均値からのばらつき度合いとして利用する。同様に、図13Bに示したように、不規則性を導入した結果生じる曲率半径の最大値をRmaxとし、曲率半径の最小値をRminとした場合に、本実施形態では、以下の式205で与えられるσを、曲率半径の平均値からのばらつき度合いとして利用する。 Now, as shown in FIG. 13A, when the maximum value of the distance between vertices resulting from the introduction of irregularity is p max and the minimum value of the distance between vertices is p min , in this embodiment, Σ p given by Equation 203 is used as the degree of variation from the average value of the distance between vertices. Similarly, as shown in FIG. 13B, when the maximum value of the radius of curvature resulting from the introduction of irregularity is R max and the minimum value of the radius of curvature is R min , in the present embodiment, Σ R given by 205 is used as the degree of variation from the average value of the radius of curvature.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本実施形態では、拡散特性(特に、減衰特性)における急峻性を、以下の式207で表わされる減衰率αによって表すこととする。ここで、以下の式207におけるθは拡散全角であり、図14に模式的に示したように、拡散角分布曲線の半値全幅に対応する。また、図14に模式的に示したように、拡散角分布曲線において、強度が最大値の90%となる角度から強度が最大値の10%となる角度までの角度領域を減衰域と称することとし、かかる減衰域の広さ(すなわち、角度幅)の円周方向の平均値を、以下の式207における減衰幅δとする。例えば、図14に示した例では、角度の値が正となる領域と、角度の値が負となる領域とで、2箇所の減衰域が存在するが、以下の式207に用いられる減衰幅δは、これら2箇所の減衰域の広さ(角度幅)の平均値となる。 In this embodiment, the steepness in the diffusion characteristic (particularly the attenuation characteristic) is represented by an attenuation rate α expressed by the following expression 207. Here, θ in the following expression 207 is the full width of diffusion, and corresponds to the full width at half maximum of the diffusion angle distribution curve as schematically shown in FIG. Further, as schematically shown in FIG. 14, in the diffusion angle distribution curve, an angle region from an angle at which the intensity is 90% of the maximum value to an angle at which the intensity is 10% of the maximum value is referred to as an attenuation region. The average value in the circumferential direction of the width of the attenuation region (that is, the angular width) is defined as an attenuation width δ in the following expression 207. For example, in the example shown in FIG. 14, there are two attenuation ranges, a region where the angle value is positive and a region where the angle value is negative, but the attenuation width used in the following Expression 207 δ is an average value of the width (angular width) of these two attenuation regions.
 また、導入されるマイクロレンズの配置の不規則性に関して、上記式203及び式205で与えられるばらつき度合いσ及びσを利用して、頂点間距離の変化幅dpと、曲率半径の変化幅dRとを、以下の式209及び式211のように表わすこととする。 Further, regarding the irregularity of the arrangement of the microlenses to be introduced, the variation width dp between the vertices and the variation radius of the curvature radius are obtained by using the variation degrees σ p and σ R given by the equations 203 and 205. Let dR be expressed as in Equation 209 and Equation 211 below.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 この場合に、減衰幅δは、上記式201、式209及び式211を用いて、以下の式213のように表わすことができる。ここで、(p/R)の値が十分に小さいという近似を行うと、以下の式213は、式215のように表わすことができる。従って、上記式207で規定される減衰率αは、下記式215を用いて、以下の式217のように表わすことができる。 In this case, the attenuation width δ can be expressed as the following expression 213 using the above expression 201, expression 209, and expression 211. Here, when an approximation that the value of (p / R) is sufficiently small is performed, the following expression 213 can be expressed as expression 215. Therefore, the attenuation rate α defined by the above equation 207 can be expressed as the following equation 217 using the following equation 215.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 頂点間距離のばらつき度合いσを0.4(40%)、0.6(60%)、0.8(80%)のそれぞれに固定したうえで、曲率半径のばらつき度合いσを0.02(2%)から0.3(30%)まで変化させた場合に、上記式217により与えられる減衰率αがどのように変化するかを計算し、得られた結果を、図15Aに示した。また、平均頂点間距離p=90μm、平均曲率半径R=300μm、屈折率n=1.47(すなわち、拡散全角θ≒8度)の拡散板を想定し、頂点間距離のばらつき度合いσを0.4(40%)から0.8(80%)まで変化させるとともに、曲率半径のばらつき度合いσを0.02(2%)から0.3(30%)まで変化させた場合について、市販の光線追跡シミュレータを用いて拡散角分布曲線を算出した。その後、得られた拡散角分布曲線から減衰率αを算出した結果を、図15Bに示した。図15A及び図15Bを比較すると明らかなように、上記式217に示した近似式を用いた減衰率αの算出結果は、光線追跡シミュレーション結果とほぼ一致しており、上記式217に示した近似式は妥当なものであると言える。 The variation degree σ p of the distance between vertices is fixed to 0.4 (40%), 0.6 (60%), and 0.8 (80%), respectively, and the variation degree σ R of the curvature radius is set to 0. FIG. 15A shows how the attenuation factor α given by the above equation 217 changes when the value is changed from 02 (2%) to 0.3 (30%). It was. Further, assuming a diffusion plate having an average inter-vertex distance p = 90 μm, an average curvature radius R = 300 μm, and a refractive index n = 1.47 (that is, a total diffusion angle θ≈8 degrees), the variation degree σ p of the inter-vertex distance is When changing from 0.4 (40%) to 0.8 (80%) and changing the curvature radius variation degree σ R from 0.02 (2%) to 0.3 (30%), A diffusion angle distribution curve was calculated using a commercially available ray tracing simulator. Then, the result of calculating the attenuation rate α from the obtained diffusion angle distribution curve is shown in FIG. 15B. As is clear from a comparison between FIGS. 15A and 15B, the calculation result of the attenuation rate α using the approximate expression shown in the above expression 217 almost coincides with the ray tracing simulation result, and the approximation shown in the above expression 217. It can be said that the formula is valid.
 本実施形態に係る拡散板1は、例えばレーザ光のような可干渉性の大きな光線を、蛍光体面に均一に広げるといった用途に好適に利用することが可能である。かかる用途において、上記のような減衰率αは、蛍光体での光の変換効率を左右することから、通常1以下、より好ましくは0.9以下、となることが求められる。 The diffusion plate 1 according to the present embodiment can be suitably used for applications such as spreading a coherent light beam such as a laser beam uniformly on the phosphor surface. In such applications, the attenuation rate α as described above is required to be usually 1 or less, more preferably 0.9 or less, because it affects the light conversion efficiency in the phosphor.
 ここで、上記式217を用いて算出した図15Aの結果を見ると、頂点間距離のばらつき度合いσ=0.6(60%)であり、かつ、曲率半径のばらつき度合いσ=0.2(20%)であるときに、減衰率α=0.83となることがわかる。かかる結果は、単位セル3を構成する互いに隣り合うマイクロレンズ21の頂点間距離が、平均値の±60%の範囲内でばらつきを有し(換言すれば、頂点間距離のばらつき度合いσが、0<σ≦0.6の関係を満足し)、かつ、単位セル3を構成するそれぞれのマイクロレンズ21の曲率半径が、平均値の±20%の範囲内でばらつきを有する(換言すれば、曲率半径のばらつき度合いσが、0<σ≦0.2の関係を満足する)ことで、拡散特性の減衰率αを0.9以下とすることができることを示唆している。 Here, looking at the result of FIG. 15A calculated using the above equation 217, the variation degree σ p = 0.6 (60%) of the distance between the vertices and the variation degree σ R = 0. It can be seen that the attenuation rate α = 0.83 when 2 (20%). As a result, the distance between the vertices of the adjacent microlenses 21 constituting the unit cell 3 has a variation within a range of ± 60% of the average value (in other words, the variation degree σ p of the distance between the vertices is , 0 <σ p ≦ 0.6), and the radius of curvature of each microlens 21 constituting the unit cell 3 varies within a range of ± 20% of the average value (in other words, For example, the variation degree σ R of the radius of curvature satisfies the relationship 0 <σ R ≦ 0.2), which suggests that the attenuation rate α of the diffusion characteristic can be made 0.9 or less.
 従って、本実施形態に係るマイクロレンズ群20では、以下の(4)及び(5)の条件を更に満足することが好ましく、以下の(4)~(6)の条件を更に満足することがより好ましい。 Therefore, in the microlens group 20 according to the present embodiment, it is preferable that the following conditions (4) and (5) are further satisfied, and that the following conditions (4) to (6) are further satisfied. preferable.
 (4)単位セル3を構成する互いに隣り合うマイクロレンズ21の頂点間距離が、平均値の±60%の範囲内に含まれること。
 (5)マイクロレンズ21の曲率半径が、平均値の±20%の範囲内に含まれること。
 (6)頂点間距離の平均値からのばらつき度合いをσとし、曲率半径の平均値からのばらつき度合いをσとしたときに、上記式217の関係が成立すること。
(4) The distance between the apexes of the adjacent microlenses 21 constituting the unit cell 3 is included within a range of ± 60% of the average value.
(5) The radius of curvature of the microlens 21 is included within a range of ± 20% of the average value.
(6) When the degree of variation from the average value of the distance between vertices is σ p and the degree of variation from the average value of the radius of curvature is σ R , the relationship of the above equation 217 is established.
 ここで、減衰率αが一定であっても、拡散全角θが大きくなると、減衰域の広さδは、拡散全角θに比例して大きくなる。蛍光体の変換効率は、減衰率αよりも減衰域の広さδに左右され、図16に模式的に示したように、減衰域の広さδが広くなるほど無駄となる光エネルギーも多くなる。従って、より大きな拡散全角θを有する拡散板を実現する場合には、求められる減衰率αはより小さくなる。そのため、本実施形態に係る拡散板1による変換効率改善の効果は、拡散全角θ=10度以上(換言すれば、F値=5.5以下)である場合に、より大きなものとなる。 Here, even if the attenuation rate α is constant, when the diffusion full angle θ increases, the width δ of the attenuation region increases in proportion to the diffusion full angle θ. The conversion efficiency of the phosphor depends on the width δ of the attenuation region rather than the attenuation factor α, and as shown schematically in FIG. 16, the light energy that is wasted increases as the width δ of the attenuation region increases. . Accordingly, when a diffusion plate having a larger diffusion full angle θ is realized, the required attenuation rate α is smaller. Therefore, the effect of improving the conversion efficiency by the diffusion plate 1 according to the present embodiment is greater when the diffusion total angle θ is 10 degrees or more (in other words, the F value is 5.5 or less).
 なお、マイクロレンズ21の平均頂点間距離及び平均曲率半径は、先だって言及したように、求められる拡散全角θ(例えば、θ=1~30度)に応じて、上記式201により決定される。平均頂点間距離と平均曲率半径との比率が同じ場合には、拡散全角θは同じ値となるが、平均頂点間距離は、入射光径や作製上のサグ等によって制約を受け、平均曲率半径は、作製上のサグの他、作製方法から決まる深さ方向の分解能等によって制約を受ける。そのため、これらの実用上の制約を考慮すると、平均頂点間距離pは、13~90μmの範囲内であることが好ましく、平均曲率半径Rは、20~2000μmの範囲内であることが好ましい。 Note that the average vertex distance and the average radius of curvature of the microlens 21 are determined by the above equation 201 according to the required diffusion full angle θ (for example, θ = 1 to 30 degrees), as mentioned above. When the ratio between the average vertex distance and the average radius of curvature is the same, the total diffusion angle θ is the same value, but the average vertex distance is limited by the incident light diameter, production sag, etc. Is limited by the resolution in the depth direction determined by the production method, in addition to the production sag. Therefore, considering these practical restrictions, the average apex distance p is preferably in the range of 13 to 90 μm, and the average radius of curvature R is preferably in the range of 20 to 2000 μm.
 以上説明したように、本実施形態に係る拡散板1では、減衰特性の最適化という新たな観点に対し、減衰特性が、マイクロレンズ配置の分布と曲率半径の分布という二つのパラメータに関係があることに着目し、これら二つのパラメータの範囲を規定している。これにより、本実施形態に係る拡散板では、回折成分の低減を図りつつ、減衰特性を最適化することが可能となる。 As described above, in the diffusing plate 1 according to the present embodiment, the attenuation characteristic is related to two parameters, that is, the distribution of the microlens arrangement and the distribution of the curvature radius with respect to the new viewpoint of optimization of the attenuation characteristic. Focusing on this, the range of these two parameters is defined. Thereby, in the diffusion plate according to the present embodiment, it is possible to optimize the attenuation characteristics while reducing the diffraction component.
<反射防止層について>
 本実施形態に係る拡散板1には、その表面及び裏面(換言すれば、マイクロレンズ21の表面、及び、透明基板10のマイクロレンズ群20が配設されていない側の表面)に対して、透過率の増加や反射迷光などの防止を目的として、反射防止層30を形成してもよい。かかる反射防止層30として、第1の実施形態に係る拡散板1における反射防止層30と同様のものを設けることが可能であるため、以下では詳細な説明は省略する。
<About the antireflection layer>
The diffusion plate 1 according to the present embodiment has a front surface and a back surface (in other words, the surface of the microlens 21 and the surface on the side where the microlens group 20 of the transparent substrate 10 is not disposed). The antireflection layer 30 may be formed for the purpose of increasing transmittance and preventing reflection stray light. Since such an antireflection layer 30 can be provided in the same manner as the antireflection layer 30 in the diffusing plate 1 according to the first embodiment, detailed description thereof will be omitted below.
 以上、図12~図16を参照しながら、本実施形態に係る拡散板について、詳細に説明した。 The diffusion plate according to this embodiment has been described in detail above with reference to FIGS.
(拡散板の設計方法について)
 本実施形態に係る拡散板において、マイクロレンズ21を配置する手順については、特に限定されるものではなく、例えば、初期的に六角形の各頂点に対応する位置に各マイクロレンズ21の頂点を配置した後、上記(1)~(5)の条件、より好ましくは上記(1)~(6)の条件を満たす範囲で、頂点位置をずらすようにしてもよい。また、第1の実施形態で説明した方法と同様にして、初期位置を設けずに、上記(1)~(5)の条件、より好ましくは上記(1)~(6)の条件を満たす位置関係を、各種コンピュータを用いて逐次的に求めてもよい。
(Diffusion plate design method)
In the diffusion plate according to the present embodiment, the procedure for arranging the microlenses 21 is not particularly limited. For example, the apexes of the microlenses 21 are initially arranged at positions corresponding to the apexes of the hexagon. Thereafter, the vertex position may be shifted within a range satisfying the above conditions (1) to (5), more preferably the above conditions (1) to (6). Similarly to the method described in the first embodiment, a position that satisfies the above conditions (1) to (5), more preferably the above conditions (1) to (6), without providing an initial position. The relationship may be obtained sequentially using various computers.
 ここで、本実施形態に係る拡散板を設計する際には、作製プロセス上の制約を考慮することが重要である。例えば、グレーマスク露光を行う場合、ステッパの焦点深度(=λ/NA)により、露光可能なレジスト深さが規定される。例えば、i線(λ=365nm)を用いた場合、ステッパのNAは、0.4~0.6であり、露光可能なレジスト深さは、約15μmとなる。そのため、サグ深さは、15μm以下とすることが好ましい。 Here, when designing the diffusing plate according to the present embodiment, it is important to consider restrictions on the manufacturing process. For example, when performing gray mask exposure, the resist depth that can be exposed is defined by the depth of focus of the stepper (= λ / NA 2 ). For example, when i-line (λ = 365 nm) is used, the NA of the stepper is 0.4 to 0.6, and the resist depth that can be exposed is about 15 μm. For this reason, the sag depth is preferably 15 μm or less.
 初期配置を設ける方法によりマイクロレンズの配置を決定する場合、マイクロレンズの頂点間距離の統計量(例えば、平均値や範囲等)を容易に制御することが可能となる。一方、初期配置を設けずに逐次的にマイクロレンズの配置を決定する場合には、より効率的に回折成分を低減することが可能となる。 When determining the arrangement of the microlenses by the method of providing the initial arrangement, it is possible to easily control the statistic (for example, the average value or range) of the distance between the apexes of the microlenses. On the other hand, when the arrangement of the microlenses is sequentially determined without providing the initial arrangement, the diffraction component can be more efficiently reduced.
(拡散板の製造方法について)
 本実施形態に係る拡散板1は、第1の実施形態に係る拡散板1の製造方法と同様にして製造することが可能である。
(Diffusion plate manufacturing method)
The diffusion plate 1 according to the present embodiment can be manufactured in the same manner as the manufacturing method of the diffusion plate 1 according to the first embodiment.
 なお、拡散角が大きい(換言すれば、F値が大きい)拡散板を製造する場合には、本実施形態に係る効果をより大きく得ることが可能となる。F値を使用用途に応じて調整する場合、本実施形態に係るアレイ配置により、平面形状が同じであってもサグ深さを変化させることにより、F値を精密に制御することができる。すなわち、後述する製造方法によりプロセス時間を変化させることで、所望のF値の実現が可能であり、また、生産性も高い。入射光を非常に拡大する目的では、F値が5.5以下であることが望ましいが、それ以上のF値であっても(例えば、レーザアレイ光源の光強度均一化の目的等では、8~60程度のF値であっても)、同様のパターンでプロセス時間を短くすることにより、製造することが可能である。 In the case of manufacturing a diffusion plate having a large diffusion angle (in other words, a large F value), it is possible to obtain a greater effect according to the present embodiment. When the F value is adjusted according to the intended use, the F value can be precisely controlled by changing the sag depth even if the planar shape is the same by the array arrangement according to the present embodiment. That is, a desired F value can be realized by changing the process time by a manufacturing method described later, and the productivity is high. For the purpose of enlarging the incident light, it is desirable that the F value is 5.5 or less. However, even if the F value is higher than that (for example, for the purpose of uniforming the light intensity of the laser array light source, 8 Even with an F value of about ˜60), it is possible to manufacture by shortening the process time with the same pattern.
(拡散板の適用例)
 次に、本実施形態に係る拡散板1の適用例について、簡単に説明する。
(Application example of diffusion plate)
Next, an application example of the diffusion plate 1 according to the present embodiment will be briefly described.
 以上説明したような本実施形態に係る拡散板1は、その機能を実現するために光を拡散させる必要がある装置に対して、適宜実装することが可能である。機能を実現するために光を拡散させる必要がある装置としては、例えば、各種のディスプレイ等の表示装置や、プロジェクタ等の投影装置を挙げることができる。 The diffusion plate 1 according to the present embodiment as described above can be appropriately mounted on a device that needs to diffuse light in order to realize its function. Examples of the device that needs to diffuse light in order to realize the function include a display device such as various displays and a projection device such as a projector.
 また、本実施形態に係る拡散板1は、液晶表示装置のバックライトに対して適用することも可能であり、光整形の用途にも用いることが可能である。更に、本実施形態に係る拡散板1は、各種の照明装置に対しても適用することが可能となる。 Further, the diffusion plate 1 according to the present embodiment can be applied to the backlight of the liquid crystal display device, and can also be used for light shaping. Furthermore, the diffusion plate 1 according to the present embodiment can be applied to various illumination devices.
 なお、機能を実現するために光を拡散させる必要がある装置は、上記の例に限定されるものではなく、光の拡散を利用する装置であればその他の公知の装置に対しても、本実施形態に係る拡散板1を適用することが可能である。 Note that the device that needs to diffuse light in order to realize the function is not limited to the above example, and the device that uses light diffusion is not limited to this well-known device. It is possible to apply the diffusion plate 1 according to the embodiment.
 続いて、実施例及び比較例を示しながら、本発明に係る拡散板について、具体的に説明する。なお、以下に示す実施例は、あくまでも本発明に係る拡散板の一例にすぎず、本発明に係る拡散板が下記の例に限定されるものではない。 Subsequently, the diffusion plate according to the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, the Example shown below is only an example of the diffusion plate which concerns on this invention to the last, and the diffusion plate which concerns on this invention is not limited to the following example.
 以下では、本発明の第1の実施形態に係る拡散板の妥当性を検証するために、単位セルサイズとレンズアレイのピッチを固定した状態で入射光径を変えた場合の出射光強度分布の計算を行った。以下の検証では、単位セル3の形状は、横738μm×縦710μm、単位セルサイズ=1024μmとし、かかる単位セル3を3×3のアレイ状に配置したものを検証モデルとした。 In the following, in order to verify the validity of the diffusion plate according to the first embodiment of the present invention, the intensity distribution of the emitted light when the incident light diameter is changed while the unit cell size and the pitch of the lens array are fixed. Calculated. In the following verification, the unit cell 3 is 738 μm wide × 710 μm long, unit cell size = 1024 μm, and the unit cell 3 arranged in a 3 × 3 array is used as a verification model.
 上記のような検証モデルに対し、強度半値全幅が(a)650μm、(b)1000μm、(c)1500μm、(d)2000μmである4種類の円形入射光が入射する場合について、市販の光線追跡シミュレータを用いて計算を行った。計算では、実際の評価条件に近づけるように、検出器の空間分解能を制限するスペイシャルフィルタを配置した。このため、図6A~図6Cの結果に見られる回折による輝点は、以下に示す計算結果では、ある程度は平均化されており、図6A~図6Cに示した結果と、以下で示す結果とは、やや異なるものとなっている。 In the case where four types of circular incident light having full width at half maximum of (a) 650 μm, (b) 1000 μm, (c) 1500 μm, and (d) 2000 μm are incident on the verification model as described above, commercially available ray tracing is performed. Calculations were performed using a simulator. In the calculation, a spatial filter that restricts the spatial resolution of the detector was arranged so as to approach the actual evaluation conditions. For this reason, the bright spots by diffraction seen in the results of FIGS. 6A to 6C are averaged to some extent in the calculation results shown below, and the results shown in FIGS. 6A to 6C and the results shown below are as follows. Is a little different.
 得られた結果を、図17A~図17Dに示した。
 図17Aに示したように、入射光径が650μmである場合にのみ、他の入射光径(図17B、図17C、図17D)の場合には見られないような、拡散角(中心角度±1度)の範囲での急激な強度変化が生じていることがわかる。これは、入射光径650μmでは、単位セルサイズ内にほとんどの入射光成分が存在するために、単位セル3によるサブ回折が十分に生じず、メイン回折光がサブ回折光によって分離されることなく出射しているためと考えられる。一方、図17A及び図17Dでは、単位セルサイズが入射光径以下となることで、先だって説明したようなサブ回折光が発生し、図17Aで顕著に観測されたような急激な強度変化が緩和されていることがわかる。
The obtained results are shown in FIGS. 17A to 17D.
As shown in FIG. 17A, only when the incident light diameter is 650 μm, the diffusion angle (center angle ±) that cannot be seen in the case of other incident light diameters (FIGS. 17B, 17C, and 17D). It can be seen that there is a sudden intensity change in the range of 1 degree. This is because when the incident light diameter is 650 μm, most of the incident light components exist within the unit cell size, so that the sub-diffraction by the unit cell 3 does not occur sufficiently, and the main diffracted light is not separated by the sub-diffracted light. This is probably because the light is emitted. On the other hand, in FIG. 17A and FIG. 17D, when the unit cell size is equal to or smaller than the incident light diameter, the sub-diffracted light as described above is generated, and the sudden intensity change remarkably observed in FIG. You can see that
 かかる結果から、単位セルサイズを入射光径以下とすることでサブ回折光を発生させて、拡散出射光内に急激な強度変化が生じない拡散板を提供可能であることが明らかとなった。 From these results, it has been clarified that it is possible to provide a diffusion plate in which sub-diffracted light is generated by setting the unit cell size to be equal to or smaller than the incident light diameter and a sudden intensity change does not occur in the diffused outgoing light.
 以下では、本発明の第2の実施形態に係る拡散板の妥当性を検証するために、市販の光線追跡シミュレータを用いて検証を行った。 Hereinafter, in order to verify the validity of the diffusion plate according to the second embodiment of the present invention, verification was performed using a commercially available ray tracing simulator.
 計算に用いたマイクロレンズアレイ型の拡散板のモデルは、形状と配置に一定のばらつきをもった凹レンズを、ガラス基板(屈折率n=1.47)の表面に多数配置したものである。かかるシミュレーションでは、波長λ=450nmであり、入射光径φ=0.6mmの入射光を、上記のような拡散板に入射させ、200mm先のスクリーン投影された光拡散パターンを、角度分布に換算した。 The model of the microlens array type diffuser plate used for the calculation is one in which a large number of concave lenses having a certain variation in shape and arrangement are arranged on the surface of a glass substrate (refractive index n = 1.47). In this simulation, incident light having a wavelength λ = 450 nm and an incident light diameter φ = 0.6 mm is incident on the diffusion plate as described above, and the light diffusion pattern projected on the screen 200 mm ahead is converted into an angular distribution. did.
 図18に、シミュレーションを行った拡散板モデルの条件を表として示すとともに、得られた拡散光分布を、図19A及び図19Bに示した。図19Aは、曲率半径のばらつき度合いσが±10%である場合のシミュレーション結果であり、図19Bは、曲率半径のばらつき度合いσが±20%である場合のシミュレーション結果である。また、図18に示した表には、図19A及び図19Bに示した結果から算出した減衰率αをあわせて示している。 FIG. 18 shows the conditions of the diffusing plate model on which the simulation was performed as a table, and the obtained diffused light distribution is shown in FIGS. 19A and 19B. FIG. 19A shows a simulation result when the variation degree σ R of the radius of curvature is ± 10%, and FIG. 19B shows a simulation result when the variation degree σ R of the curvature radius is ± 20%. The table shown in FIG. 18 also shows the attenuation rate α calculated from the results shown in FIGS. 19A and 19B.
 図19A内での比較、及び、図19B内での比較から明らかなように、頂点間距離のばらつき範囲が大きくなると、減衰率αも大きくなることがわかる。また、条件Aと条件Dとの比較、条件Bと条件Eとの比較、及び、条件Cと条件Fとの比較から、頂点間距離のばらつき範囲がほぼ同一である場合、曲率半径のばらつき範囲が大きいほど、減衰率αも大きくなることがわかる。 As is clear from the comparison in FIG. 19A and the comparison in FIG. 19B, it can be seen that the attenuation rate α increases as the variation range of the inter-vertex distance increases. Further, from the comparison between the condition A and the condition D, the comparison between the condition B and the condition E, and the comparison between the condition C and the condition F, when the variation range of the distance between the vertices is almost the same, the variation range of the curvature radius It can be seen that the larger the is, the larger the attenuation rate α is.
 ここで、光線追跡シミュレーションによって得られた、図18に示したばらつき量と減衰率との関係を、図15Aに示したグラフ中にプロットすると、グラフ中の曲線とほぼ一致することが明らかとなった。かかる結果からも、上記式217に基づく、頂点間距離のばらつき度合いと、曲率半径のばらつき度合いと、減衰率と、の関係は、妥当なものであることがわかる。 Here, when the relationship between the variation amount and the attenuation rate shown in FIG. 18 obtained by the ray tracing simulation is plotted in the graph shown in FIG. 15A, it becomes clear that the curve almost coincides with the curve in the graph. It was. From these results, it can be seen that the relationship between the degree of variation in the distance between the vertices, the degree of variation in the radius of curvature, and the attenuation rate based on the above equation 217 is reasonable.
 上記実施例では、曲率300μm近傍(概ね、拡散角2度~4度の範囲)における結果を記載したが、より広い拡散角の場合であっても、本発明の第2の実施形態に則した設計又はプロセス条件とすることにより、減衰特性を一定に保ったままで拡散角を広げることが可能となる。例えば、頂点間距離については、82μm±42μm(ばらつき範囲:±50%)とし、曲率半径については、その平均を370μm~760μm、ばらつき範囲を±10%としたうえで、エッチング時の選択比を0.8~1.4の範囲で適切に変化させた。かかる設計及びプロセス条件により得られる拡散板の拡散特性を、図20に示した。図20から明らかなように、上記のような拡散板は、拡散角2度~9度の拡散特性を示すことがわかる。 In the above examples, the results in the vicinity of the curvature of 300 μm (generally in the range of the diffusion angle of 2 ° to 4 °) are described. However, even in the case of a wider diffusion angle, it conforms to the second embodiment of the present invention. By setting the design or process conditions, it is possible to widen the diffusion angle while keeping the attenuation characteristic constant. For example, the distance between the vertices is 82 μm ± 42 μm (variation range: ± 50%), and the radius of curvature is 370 μm to 760 μm on average, the variation range is ± 10%, and the selection ratio at the time of etching is An appropriate change was made in the range of 0.8 to 1.4. The diffusion characteristics of the diffusion plate obtained by such design and process conditions are shown in FIG. As can be seen from FIG. 20, the above diffusion plate exhibits diffusion characteristics with a diffusion angle of 2 to 9 degrees.
 更に、拡散角がより大きい場合のマイクロレンズアレイ構成について、検証を行った。かかる検証では、図21に示したような、3種類の条件を検討した。得られた拡散全角、減衰幅及び減衰率の値を、図21にあわせて示した。また、得られた拡散板の拡散特性を、図22に示した。図21及び図22から明らかなように、プロセス上のサグの制約を満足する設計として、頂点間距離を15μm±10μm(ばらつき範囲:±0.67)とし、曲率半径を22μm±2.2μm(ばらつき幅:±0.l0)とすることで、減衰率を0.65とすることができている。かかる場合のマイクロレンズの配置状態を、図23に示した。 Furthermore, the microlens array configuration when the diffusion angle is larger was verified. In this verification, three types of conditions as shown in FIG. 21 were examined. The values of the obtained diffusion full angle, attenuation width, and attenuation rate are shown in FIG. Further, the diffusion characteristics of the obtained diffusion plate are shown in FIG. As is clear from FIGS. 21 and 22, as a design that satisfies the sag restrictions in the process, the distance between the vertices is 15 μm ± 10 μm (variation range: ± 0.67), and the curvature radius is 22 μm ± 2.2 μm ( By setting the variation width to ± 0.10, the attenuation rate can be set to 0.65. The arrangement state of the microlens in such a case is shown in FIG.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
  1  拡散板
  3  単位セル
 10  透明基板
 20  マイクロレンズ群
 21  マイクロレンズ
1 Diffusion plate 3 Unit cell 10 Transparent substrate 20 Micro lens group 21 Micro lens

Claims (22)

  1.  透明基板の表面に位置するマイクロレンズ群からなるマイクロレンズアレイ型の拡散板であって、
     アレイ配列に対して連続である2つ以上の単位セルから構成されており、
     前記単位セルは、透明基板の表面に位置する複数のマイクロレンズからなり、
     互いに隣り合う前記マイクロレンズ間の稜線は、互いに平行ではなく、かつ、前記透明基板に対して平行ではない、拡散板。
    A microlens array type diffusion plate composed of a group of microlenses located on the surface of a transparent substrate,
    It consists of two or more unit cells that are contiguous to the array arrangement,
    The unit cell is composed of a plurality of microlenses located on the surface of the transparent substrate,
    The ridge plate between the microlenses adjacent to each other is not parallel to each other and is not parallel to the transparent substrate.
  2.  前記単位セルを構成する互いに隣り合う前記マイクロレンズの頂点間距離が、平均値の±60%の範囲内に含まれており、かつ、
     前記単位セルを構成するそれぞれの前記マイクロレンズの曲率半径が、平均値の±20%の範囲内に含まれている、請求項1に記載の拡散板。
    The distance between the apexes of the adjacent microlenses constituting the unit cell is included within a range of ± 60% of the average value, and
    The diffusing plate according to claim 1, wherein the radius of curvature of each of the microlenses constituting the unit cell is included in a range of ± 20% of an average value.
  3.  前記単位セルを構成する互いに隣り合う前記マイクロレンズの頂点間距離の平均値からのばらつき度合いをσとし、前記単位セルを構成する互いに隣り合う前記マイクロレンズの曲率半径の平均値からのばらつき度合いをσとしたときに、以下の(式1)が成立する、請求項1又は2に記載の拡散板。
    Figure JPOXMLDOC01-appb-M000001
    The degree of variation from the average value of the distance between the apexes of the adjacent microlenses constituting the unit cell is σ p, and the degree of variation from the average value of the radius of curvature of the adjacent microlenses constituting the unit cell The diffusion plate according to claim 1, wherein the following (Equation 1) is established when σ R is:
    Figure JPOXMLDOC01-appb-M000001
  4.  前記単位セルの対角線の長さは、3mm以下である、請求項1~3の何れか1項に記載の拡散板。 The diffusion plate according to any one of claims 1 to 3, wherein a length of a diagonal line of the unit cell is 3 mm or less.
  5.  前記単位セルの少なくとも一つの辺の長さは、当該単位セルに含まれる前記マイクロレンズの平均ピッチの整数倍である、請求項1~4の何れか1項に記載の拡散板。 The diffusion plate according to any one of claims 1 to 4, wherein the length of at least one side of the unit cell is an integer multiple of an average pitch of the microlenses included in the unit cell.
  6.  前記単位セルに含まれる前記マイクロレンズは、少なくとも9個以上である、請求項1~5の何れか1項に記載の拡散板。 The diffusion plate according to any one of claims 1 to 5, wherein the number of microlenses contained in the unit cell is at least nine.
  7.  前記単位セル内において、互いに隣り合う前記マイクロレンズ間の境界部分は、平坦ではない、請求項1~6の何れか1項に記載の拡散板。 The diffusion plate according to any one of claims 1 to 6, wherein a boundary portion between the microlenses adjacent to each other in the unit cell is not flat.
  8.  前記境界部分の少なくとも一部に、半レンズが配設される、請求項7に記載の拡散板。 The diffusing plate according to claim 7, wherein a half lens is disposed on at least a part of the boundary portion.
  9.  前記マイクロレンズの形状は、多角形である、請求項1~8の何れか1項に記載の拡散板。 The diffusion plate according to any one of claims 1 to 8, wherein the microlens has a polygonal shape.
  10.  前記マイクロレンズは、凹レンズである、請求項1~9の何れか1項に記載の拡散板。 10. The diffusion plate according to claim 1, wherein the micro lens is a concave lens.
  11.  前記透明基板は、無機材料からなる、請求項1~10の何れか1項に記載の拡散板。 The diffusion plate according to any one of claims 1 to 10, wherein the transparent substrate is made of an inorganic material.
  12.  前記無機材料は、アルカリ成分含有量が20%以下のケイ素を主成分とするガラスである、請求項11に記載の拡散板。 The diffusion plate according to claim 11, wherein the inorganic material is a glass mainly composed of silicon having an alkali component content of 20% or less.
  13.  前記マイクロレンズの表面、及び、前記透明基板の前記マイクロレンズ群が配設されていない側の表面に、反射防止層を備える、請求項1~12の何れか1項に記載の拡散板。 The diffusing plate according to any one of claims 1 to 12, further comprising an antireflection layer on a surface of the microlens and a surface of the transparent substrate on which the microlens group is not disposed.
  14.  前記反射防止層は、NbとSiOとからなる多層構造体である、請求項13に記載の拡散板。 The diffusion plate according to claim 13, wherein the antireflection layer is a multilayer structure composed of Nb 2 O 5 and SiO 2 .
  15.  前記マイクロレンズの表面に設けられる前記反射防止層は、前記マイクロレンズ群の表面に形成された、光の波長以下の大きさの凹凸からなる反射防止構造である、請求項13に記載の拡散板。 The diffusing plate according to claim 13, wherein the antireflection layer provided on the surface of the microlens is an antireflection structure formed on the surface of the microlens group and having irregularities having a size equal to or smaller than the wavelength of light. .
  16.  前記反射防止構造は、前記マイクロレンズの表面内において非等方的に設けられた、凹凸のピッチが300nm以下の構造である、請求項15に記載の拡散板。 The diffusing plate according to claim 15, wherein the antireflection structure is a structure provided anisotropically in the surface of the microlens and having an uneven pitch of 300 nm or less.
  17.  透明基板の表面に位置するマイクロレンズ群からなるマイクロレンズアレイ型の拡散板の設計方法であって、
     前記マイクロレンズ群を構成する各マイクロレンズの曲率半径を、前記透明基板とレジストのエッチング選択比の逆数と、レジスト上に現像された曲率半径と、の積に基づき決定する、拡散板の設計方法。
    A method of designing a microlens array type diffusion plate composed of a group of microlenses located on the surface of a transparent substrate,
    A method of designing a diffusion plate, wherein the radius of curvature of each microlens constituting the microlens group is determined based on the product of the reciprocal of the etching selectivity of the transparent substrate and the resist and the radius of curvature developed on the resist. .
  18.  請求項1~請求項16の何れか1項に記載の拡散板の製造方法であって、
     透明基板上にレジストを積層する工程と、
     透過率分布を有するグレースケールマスクにより、前記レジストを露光する工程と、
     現像された前記透明基板を所望のレンズ形状が得られるようにフッ素系ガスを用いてドライエッチングする工程と、
    を含む、拡散板の製造方法。
    A method of manufacturing a diffusion plate according to any one of claims 1 to 16,
    Laminating a resist on a transparent substrate;
    Exposing the resist with a grayscale mask having a transmittance distribution;
    A step of dry etching the developed transparent substrate using a fluorine-based gas so as to obtain a desired lens shape;
    A method for manufacturing a diffuser plate.
  19.  前記ドライエッチングする工程では、マイクロレンズ群を構成する各マイクロレンズの曲率半径が、前記透明基板とレジストのエッチング選択比の逆数と、レジスト上に現像された曲率半径と、の積で決まる、請求項18に記載の拡散板の製造方法。 In the dry etching step, the radius of curvature of each microlens constituting the microlens group is determined by the product of the reciprocal of the etching selectivity of the transparent substrate and the resist and the radius of curvature developed on the resist. Item 19. A method for producing a diffuser plate according to Item 18.
  20.  請求項1~16の何れか1項に記載の拡散板を備える、表示装置。 A display device comprising the diffusion plate according to any one of claims 1 to 16.
  21.  請求項1~16の何れか1項に記載の拡散板を備える、投影装置。 A projection apparatus comprising the diffusion plate according to any one of claims 1 to 16.
  22.  請求項1~16の何れか1項に記載の拡散板を備える、照明装置。 An illumination device comprising the diffusion plate according to any one of claims 1 to 16.
PCT/JP2016/079345 2015-10-29 2016-10-03 Diffuser, method for designing diffuser, method for manufacturing diffuser, display device, projection device, and illumination device WO2017073251A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202111431607.1A CN114325900A (en) 2015-10-29 2016-10-03 Diffusion plate, method for designing diffusion plate, method for manufacturing diffusion plate, display device, projection device, and illumination device
US15/770,816 US11125413B2 (en) 2015-10-29 2016-10-03 Diffuser plate, designing method of diffuser plate, manufacturing method of diffuser plate, display device, projection device, and lighting device
CN201680063025.3A CN108351437B (en) 2015-10-29 2016-10-03 Diffusion plate, method for designing diffusion plate, method for manufacturing diffusion plate, display device, projection device, and illumination device
EP16859488.5A EP3355086B1 (en) 2015-10-29 2016-10-03 Diffuser, method for designing diffuser, method for manufacturing diffuser, display device, projection device, and illumination device
US17/396,116 US11592156B2 (en) 2015-10-29 2021-08-06 Diffuser plate, designing method of diffuser plate, manufacturing method of diffuser plate, display device, projection device, and lighting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-213465 2015-10-29
JP2015213465 2015-10-29
JP2016121332A JP6884518B2 (en) 2015-10-29 2016-06-20 Diffusing plate, diffuser plate design method, diffuser plate manufacturing method, display device, projection device and lighting device
JP2016-121332 2016-06-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/770,816 A-371-Of-International US11125413B2 (en) 2015-10-29 2016-10-03 Diffuser plate, designing method of diffuser plate, manufacturing method of diffuser plate, display device, projection device, and lighting device
US17/396,116 Continuation US11592156B2 (en) 2015-10-29 2021-08-06 Diffuser plate, designing method of diffuser plate, manufacturing method of diffuser plate, display device, projection device, and lighting device

Publications (1)

Publication Number Publication Date
WO2017073251A1 true WO2017073251A1 (en) 2017-05-04

Family

ID=58630262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079345 WO2017073251A1 (en) 2015-10-29 2016-10-03 Diffuser, method for designing diffuser, method for manufacturing diffuser, display device, projection device, and illumination device

Country Status (2)

Country Link
CN (2) CN114325900A (en)
WO (1) WO2017073251A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044501A1 (en) * 2017-09-04 2019-03-07 富士フイルム株式会社 Head-mounted display
CN110161602A (en) * 2018-02-14 2019-08-23 迪睿合株式会社 Diffusing panel, the design method of diffusing panel, display device, projection arrangement and lighting device
EP3839584A4 (en) * 2018-09-21 2022-05-18 Dexerials Corporation Light-diffusing plate, image display device, and lighting device
US11726237B2 (en) 2018-09-21 2023-08-15 Dexerials Corporation Light diffuser plate, image display device, and lighting device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325900A (en) * 2015-10-29 2022-04-12 迪睿合株式会社 Diffusion plate, method for designing diffusion plate, method for manufacturing diffusion plate, display device, projection device, and illumination device
EP3916436A4 (en) * 2019-01-25 2022-11-02 Kuraray Co., Ltd. Diffusion plate
JP6841889B1 (en) 2019-11-06 2021-03-10 デクセリアルズ株式会社 Microlens array, projection image display device, microlens array design method and microlens array manufacturing method
CN111037956A (en) * 2019-12-03 2020-04-21 维吉尔泰光电科技(苏州)有限公司 Method for improving surface characteristics of diffusion plate
CN111239869B (en) * 2020-03-19 2022-02-22 宁波舜宇车载光学技术有限公司 Diffusion plate
CN112068232A (en) * 2020-08-31 2020-12-11 深圳联纳科技有限公司 Diffusion plate device, design method thereof and uniform lighting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192232A (en) * 1989-12-21 1991-08-22 Nikon Corp Focus plate
JPH08295538A (en) * 1995-04-26 1996-11-12 Ricoh Opt Ind Co Ltd Optical device and production of optical device
JP2003287603A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Microlens array, its manufacturing method and optical device
JP2004287372A (en) * 2003-01-28 2004-10-14 Seiko Epson Corp Method for manufacturing base plate with recessed part, base plate with recessed part, base plate with recessed part for microlens, microlens base plate, transmission type screen and rear type projector
JP2005274938A (en) * 2004-03-24 2005-10-06 Seiko Epson Corp Plastic lens
JP2014102311A (en) * 2012-11-19 2014-06-05 Seiko Epson Corp Microlens array substrate, method for manufacturing microlens array substrate, electro-optic device, and electronic equipment
JP2015057632A (en) * 2013-08-12 2015-03-26 旭硝子株式会社 Optical element and projection device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174359C (en) * 1999-03-04 2004-11-03 三星电子株式会社 Reflection type LCD and making method thereof
KR20020057964A (en) * 2000-07-31 2002-07-12 코닝 로체스터 포토닉스 코포레이션 Structure screens for controlled spreading of light
CN1463388A (en) * 2001-06-01 2003-12-24 凸版印刷株式会社 Micro-lens sheet and projection screen
US8031253B2 (en) * 2003-06-24 2011-10-04 Omnivision International Holding, Ltd. Image sensor having micro-lens array separated with ridge structures and method of making
JP2005114772A (en) * 2003-10-02 2005-04-28 Alps Electric Co Ltd Reflector and liquid crystal display device using the same
JP2005352404A (en) * 2004-06-14 2005-12-22 Nitto Denko Corp Wide viewing angle compensation polarizing plate, liquid crystal panel and liquid crystal display
KR20060068156A (en) * 2004-12-16 2006-06-21 삼성전자주식회사 Light diffusing member, back light assembly having the optical member, and display device having the back light assembly
CN101276008A (en) * 2007-03-26 2008-10-01 财团法人工业技术研究院 Optical element
KR20100126393A (en) * 2008-03-18 2010-12-01 세키스이가가쿠 고교가부시키가이샤 Optical element, and light source unit and liquid crystal display device provided with the optical element
JP2010181640A (en) * 2009-02-05 2010-08-19 Sharp Corp Liquid crystal display panel and method for manufacturing liquid crystal display panel
JP5310268B2 (en) * 2009-05-29 2013-10-09 凸版印刷株式会社 Optical sheet, backlight unit and display device
JP5373859B2 (en) * 2011-07-05 2013-12-18 デクセリアルズ株式会社 Lighting device
US20150241609A1 (en) * 2012-09-20 2015-08-27 Koninklijke Philips N.V. Optical device, lens, lighting device, system and method
CN104871043B (en) * 2012-12-28 2017-09-26 旭硝子株式会社 The manufacture method of optical element, projection arrangement and optical element
CN114325900A (en) * 2015-10-29 2022-04-12 迪睿合株式会社 Diffusion plate, method for designing diffusion plate, method for manufacturing diffusion plate, display device, projection device, and illumination device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192232A (en) * 1989-12-21 1991-08-22 Nikon Corp Focus plate
JPH08295538A (en) * 1995-04-26 1996-11-12 Ricoh Opt Ind Co Ltd Optical device and production of optical device
JP2003287603A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Microlens array, its manufacturing method and optical device
JP2004287372A (en) * 2003-01-28 2004-10-14 Seiko Epson Corp Method for manufacturing base plate with recessed part, base plate with recessed part, base plate with recessed part for microlens, microlens base plate, transmission type screen and rear type projector
JP2005274938A (en) * 2004-03-24 2005-10-06 Seiko Epson Corp Plastic lens
JP2014102311A (en) * 2012-11-19 2014-06-05 Seiko Epson Corp Microlens array substrate, method for manufacturing microlens array substrate, electro-optic device, and electronic equipment
JP2015057632A (en) * 2013-08-12 2015-03-26 旭硝子株式会社 Optical element and projection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044501A1 (en) * 2017-09-04 2019-03-07 富士フイルム株式会社 Head-mounted display
JPWO2019044501A1 (en) * 2017-09-04 2020-02-27 富士フイルム株式会社 Head mounted display
CN110161602A (en) * 2018-02-14 2019-08-23 迪睿合株式会社 Diffusing panel, the design method of diffusing panel, display device, projection arrangement and lighting device
EP3839584A4 (en) * 2018-09-21 2022-05-18 Dexerials Corporation Light-diffusing plate, image display device, and lighting device
US11726237B2 (en) 2018-09-21 2023-08-15 Dexerials Corporation Light diffuser plate, image display device, and lighting device

Also Published As

Publication number Publication date
CN114325900A (en) 2022-04-12
CN108351437B (en) 2021-12-21
CN108351437A (en) 2018-07-31

Similar Documents

Publication Publication Date Title
US11592156B2 (en) Diffuser plate, designing method of diffuser plate, manufacturing method of diffuser plate, display device, projection device, and lighting device
WO2017073251A1 (en) Diffuser, method for designing diffuser, method for manufacturing diffuser, display device, projection device, and illumination device
CN107430219B (en) Diffusion plate
US11378812B2 (en) Diffuser plate and method for designing diffuser plate
CN110161602B (en) Diffusion plate, method for designing diffusion plate, display device, projection device, and illumination device
JP6804830B2 (en) Diffusion plate
CN110114698B (en) Reflection type diffusion plate, display device, projection device, and illumination device
CN112534313B (en) Light diffusion plate, image display device and lighting device
US11960103B2 (en) Micro-lens array, projection type image display device, method for designing micro-lens array, and method for manufacturing micro-lens array
CN111542769B (en) Diffusion plate and optical apparatus
TW202122835A (en) Diffusion plate, display device, projection device, and illumination device
WO2022131251A1 (en) Diffusion plate, display device, projection device, lighting device, and remote sensing light source
TW202034022A (en) Diffusion plate
WO2023042798A1 (en) Diffuser plate, display device, projection device, and illumination device
WO2023190682A1 (en) Diffusion plate and device
WO2023190680A1 (en) Diffuser plate, display device, projection device, and lighting device
JP7381544B2 (en) Microlens array and projection type image display device
TW202407398A (en) Diffusion panels, display devices, projection devices and lighting devices
WO2022172918A1 (en) Diffusion plate
WO2022034926A1 (en) Optical system, display device, projection device, and illumination device
JP2023152875A (en) Diffusion plate, display device, projection device and illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859488

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15770816

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016859488

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE