WO2017071437A1 - 一种地震全向矢量散度检波器 - Google Patents
一种地震全向矢量散度检波器 Download PDFInfo
- Publication number
- WO2017071437A1 WO2017071437A1 PCT/CN2016/099824 CN2016099824W WO2017071437A1 WO 2017071437 A1 WO2017071437 A1 WO 2017071437A1 CN 2016099824 W CN2016099824 W CN 2016099824W WO 2017071437 A1 WO2017071437 A1 WO 2017071437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detector
- divergence
- seismic
- omnidirectional vector
- detectors
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
- G01V1/181—Geophones
- G01V1/184—Multi-component geophones
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/20—Arrangements of receiving elements, e.g. geophone pattern
Definitions
- the invention relates to the technical field of geophones, and in particular to an earthquake omnidirectional vector divergence detector.
- Vibration can be decomposed into linear vibration and rotational vibration; 2. Wave field divergence drives longitudinal wave, wave field rotation drives transverse wave; 3. Line vibration is a combination of divergence and curl, which includes both longitudinal waves and Containing transverse waves; 4, the vibration is only related to the rotation; 5, the body rotation is the full rotation, the surface rotation is the incomplete rotation. Therefore, only the technique of detecting line vibration can be performed, and the longitudinal and transverse waves cannot be cleanly separated. It must be a technique capable of detecting body curl or divergence, and it is possible to solve pure shear waves and pure longitudinal waves.
- the volatility of spatial motion properties can play an important role in wave field separation, signal-to-noise ratio, fidelity, imaging accuracy, and media property analysis.
- the existing acquisition technology can only detect amplitude, frequency, phase and other information, and basically does not have the function of detecting the motion properties of the wave space.
- the detection of seismic waves is realized by converting wave vibration into electrical signals (voltage, current) or digital conversion.
- the method of converting mechanical motion into electrical signals is nothing more than the application of electromagnetic detectors, capacitance detectors, piezoelectric detectors and fiber strain detectors.
- the electromagnetic detector and the capacitance detector are line vibration type and have a working direction.
- MEMS detectors are basically capacitive detectors and follow the above rules.
- Fiber strain detectors can be attributed to line vibration or pressure type, and single devices cannot determine the direction of vibration. Therefore, a single electromagnetic detector, a capacitance detector, and a fiber strain detector cannot distinguish the direction of the wave field vibration, and it does not have the function of detecting the wave field divergence.
- Piezoelectric detectors are pressure-type, and the output is related to the pressure of the surrounding liquid medium. It has no directionality and cannot distinguish the direction of vibration.
- the pressure isotropic in the liquid environment, equivalent to the wave field divergence. However, in a land-based solid environment, even if it is placed in a liquid container, the divergence measurement cannot be achieved.
- the three-component detector can obtain the wave field vibration direction ⁇ and the amplitude A(t) by the three-vector synthesis method. This is also the reason for calling it a vector detector, but it is only the line vibration vector of the measuring point, and the vibration property, the curl and the divergence cannot be detected.
- FIG. 1 is a schematic diagram of a directional response of an ideal single detector in a longitudinal wave field in the related art
- FIG. 2 is a schematic diagram of a directional response of an ideal single detector in a transverse wave field in the related art, illustrating the working direction of the detector Sex.
- the output of the detector in the longitudinal wave field is implemented based on the following formula:
- a p represents the isochronous wave field isochronal surface
- a p represents the instantaneous displacement of the wave field A p in the normal direction of the detector position
- b represents the detector Sensitivity
- ⁇ p represents the angle between the working direction of the detector and the direction of vibration of the wave field.
- the output of the detector in the shear wave field is based on the following formula:
- a s represents the isochronous surface of the transverse wave field
- a s represents the instantaneous displacement of the wave vector A s in the direction of the vibration vector of the detector position
- b represents the sensitivity of the detector
- ⁇ s represents the angle between the working direction of the detector and the direction of vibration of the wave field.
- the seismic wave detection process in the conventional technology is as follows:
- ⁇ are the Lame constants
- ⁇ is the density
- U is the displacement vector
- t is the time.
- ⁇ is the volume change coefficient
- rot is the curl.
- w rot(U)
- V s is the shear wave propagation speed.
- the invention provides an earthquake omnidirectional vector divergence detector to solve at least the problem that the seismic wave field does not have the divergence information detection or measurement function in the prior art.
- a seismic omnidirectional vector divergence detector comprising: four detectors and a support structure for supporting the four detectors such that the four The bottom surface of the detector is respectively located on one of the equilateral triangle faces of a regular tetrahedron, and the intersection of the working axis of each detector and the corresponding equilateral triangle face is located at the center of the equilateral triangle face.
- the detector is a cylindrical electromagnetic type detector, and the distance between the bottom surface of each cylindrical electromagnetic type detector and the body geometric center of the regular tetrahedron is a minimum value that each detector does not contact each other.
- the detector is a flat capacitance type detector.
- the four space vectors of the four detectors conform to a Gaussian divergence formula.
- the support structure is connected to a circular vertebrae, and an extension line of the axis of the circular vertebrae passes through one of the vertices of the regular tetrahedron and vertically passes through one of the regular tetrahedrons.
- the center of the face is connected to a circular vertebrae, and an extension line of the axis of the circular vertebrae passes through one of the vertices of the regular tetrahedron and vertically passes through one of the regular tetrahedrons. The center of the face.
- the seismic omnidirectional vector divergence detector further comprises: a spherical housing divided into an upper hemispherical shell and a lower hemispherical shell, the four detectors and the supporting structure being placed on the sphere Inside the housing, the bottom of the lower hemispherical housing is provided with a caudal vertebra, and the caudal vertebra passes through the caudal foramen of the lower hemispherical housing.
- the edges of the upper hemispherical shell and the lower hemispherical shell are respectively provided with cooperating protrusions, and the protrusions of the upper hemispherical shell and the lower hemispherical shell pass through the fixing component fixed.
- a signal line hole is disposed on the spherical housing, and a signal output line of each detector passes through the signal line hole.
- the joint gap between the upper semi-spherical shell and the lower hemispherical shell of the spherical shell, the tail spine hole and the signal wire hole are sealed and waterproofed with a silicone rubber or a rubber material.
- the support structure is a regular tetrahedral support structure, and each face of the regular tetrahedral support structure is an arbitrary curved surface or plane.
- the invention designs a specific spatial motion vector detection structure according to the Gaussian divergence formula of the field theory, so as to realize the detection of the frequency, amplitude, phase, vibration direction of the seismic wave field, especially the divergence information of the wave dynamic field, forming a brand new Earthquake omnidirectional vector divergence detector technology.
- the accuracy of the redundant calculation of the seismic wave vibration line vector is better than that of the three-component detector
- FIG. 1 is a schematic diagram of a directional response of an ideal single detector in a longitudinal wave field in the related art
- FIG. 2 is a schematic diagram of a directional response of an ideal single detector in a transverse wave field in the related art
- FIG. 3 is a schematic structural diagram of a seismic omnidirectional vector divergence detector according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of a working vector of a seismic omnidirectional vector divergence detector according to an embodiment of the present invention
- FIG. 5 is a schematic diagram showing the structure of a fully integrated equivalent Gaussian divergence according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram showing the equivalent structure of a forward and reverse rotation of a Stokes integral according to an embodiment of the present invention
- FIG. 7 is a schematic diagram of measured output of a seismic omnidirectional vector divergence detector according to an embodiment of the invention.
- FIG. 8 is a schematic diagram showing the appearance of a spherical casing of a seismic omnidirectional vector divergence detector according to an embodiment of the present invention
- FIG. 9 is a schematic diagram of the appearance of a seismic omnidirectional vector divergence detector according to an embodiment of the present invention.
- the invention provides an earthquake omnidirectional vector divergence detector which is uniformly balanced in spatial structure, which is a structural advantage that is not possessed by the detector in the prior art, and the seismic wave field can be realized by using the structural advantage Accurate detection of divergence information.
- the specific structure of the seismic omnidirectional vector divergence detector is introduced below.
- FIG. 3 is a schematic structural diagram of a seismic omnidirectional vector divergence detector according to an embodiment of the present invention.
- the seismic omnidirectional vector dispersion The detector includes: four detectors and a support structure for supporting the four detectors such that the bottom surfaces of the four detectors are respectively located on one of the equilateral triangles of a regular tetrahedron, each detector The intersection of the working axis and the corresponding equilateral triangle is at the center of the equilateral triangle.
- the working axis is a virtual axis for explaining the positional relationship.
- the working axis of the detector is not necessarily located in the center of the detector (ie, the central axis).
- the above-mentioned regular tetrahedron is not a solid structure, but a virtual spatial structure, which is intended to describe the positional relationship between the four detectors.
- the invention designs a specific spatial motion vector detection structure according to the Gaussian divergence formula of the field theory, so as to realize the detection of the frequency, amplitude, phase, vibration direction of the seismic wave field, especially the divergence information of the wave dynamic field, forming a brand new Earthquake omnidirectional vector divergence detector technology.
- the support structure of the seismic omnidirectional vector divergence detector can be designed into an arbitrary shape based on the requirements.
- the present invention does not limit this, as long as the space vector shape can be ensured.
- it may be designed in the shape of a regular tetrahedron, and the size of the regular tetrahedral support structure is generally larger than the above-described virtual tetrahedron.
- each face of the regular tetrahedral support structure can be changed to any curved surface to meet different needs.
- the material of the support structure is not limited to the solid state, and the rigidity of the support structure is related to the measurement result, so that different materials can be selected based on the demand.
- the detector in this embodiment can be at least a cylindrical electromagnetic type detector, and the distance between the bottom surface of each cylindrical electromagnetic type detector and the body geometric center of the regular tetrahedron is the minimum value that each detector does not contact each other; It is a flat capacitive detector.
- other types of detectors can be used as long as they can work normally in the seismic omnidirectional vector divergence detector, which is not limited by the present invention.
- FIG. 4 is a schematic diagram of the operation vector of a seismic omnidirectional vector divergence detector according to an embodiment of the present invention, and arrows on each face in FIG. 4 represent work vectors.
- FIG. 5 is a schematic diagram of a full integral equivalent Gaussian divergence structure according to an embodiment of the present invention
- FIG. 6 is a schematic diagram of a Stokes integral forward and reverse rotation equivalent structure according to an embodiment of the present invention, combined with FIG. 5 and FIG. Vector relationship knows:
- the divergence formula of the seismic omnidirectional vector divergence detector of the embodiment of the invention can be obtained:
- A is the wave field function
- l is the detector response vector
- i is the inner channel number of the detector.
- Div divergence
- rot curl
- V volume
- dv volume differential
- S area
- dS area differential
- m number of positive m-planes
- n i is the detector response on the i-th normal Vector.
- the seismic omnidirectional vector divergence detector is based on four axes of a virtual regular tetrahedron (ie, a stereoscopic star formed by the center line of the body of the regular tetrahedron and the center of the four positive triangle faces).
- a four-dimensional three-dimensional spatial balance structure formed by the shaft.
- a high-sensitivity wide-band full-tilt detector is mounted coaxially with the axis at the center of each of the regular triangular faces of the regular tetrahedron.
- the relationship between the amplitude response and the angle ⁇ between the own working axis and the wave field normal is out(t).
- the seismic omnidirectional vector divergence detector includes four detectors.
- FIG. 7 is a schematic diagram of the measured output of the seismic omnidirectional vector divergence detector according to an embodiment of the present invention. As shown in FIG. 7, the seismic omnidirectional vector divergence detector There are four data outputs. The total integral of the four data is the pure divergence response of the seismic wave field, that is, the Gaussian divergence theorem result, and its divergence value conforms to the mathematical physics law (that is, the linear relationship between the k-coefficient and the geodetic k-factor ratio of the skeleton material of the detector) And closely related to the embedded environment, such as the law of zero free-range divergence, etc.).
- the total vibration line vector of the seismic omnidirectional vector divergence detector can be calculated by the redundant vector calculation, which is equivalent to the vibration line vector calculated by the traditional three-component detector.
- the frequency characteristics of the seismic omnidirectional vector divergence detector are determined by the performance of the unit device used. According to the proportional relationship between the height of the regular tetrahedron and the geometric center, the direction vector 1 is positive, and the other three direction vectors are multiplied by -1.
- the arithmetic sum of the responses of the vectors in the wave field is equivalent to double sensitivity single detection. Device.
- the original data and divergence of the omnidirectional vector divergence detector can be used as the input data of the full-elastic equation, the full vector processing technique, the full vector interpretation technique, and the full vector lithology fluid technology.
- a circular cone-shaped caudal vertebra is connected to the support structure of the seismic omnidirectional vector divergence detector for convenient placement.
- the extension of the axis of the circular vertebrae passes through an apex of the regular tetrahedron and vertically passes through the center of one of the faces of the regular tetrahedron.
- the conical caudal vertebra is inserted vertically downward into the ground to facilitate fixation.
- the seismic omnidirectional vector divergence detector can also be provided with a spherical shell divided into an upper hemispherical shell and a lower hemispherical shell, four detectors and a support structure placed inside the spherical shell, and the bottom of the lower hemispherical shell.
- the caudal vertebrae are set, and the caudal vertebra passes through the caudal vertebrae of the lower hemispherical shell.
- 8 is a schematic diagram showing the appearance of a spherical casing of a seismic omnidirectional vector divergence detector according to an embodiment of the present invention. As shown in FIG.
- the spherical casing of the seismic omnidirectional vector divergence detector is divided into an upper hemispherical casing 10.
- the lower hemispherical housing 11 the circular cone-shaped tail vertebra 20 connected to the support structure of the seismic omnidirectional vector divergence detector passes through the caudal vertebra hole 21 provided at the bottom of the lower hemispherical housing 11.
- the detector can be protected to stabilize the seismic omnidirectional vector divergence detector.
- the shape of the support structure can be designed to be easily placed into the shape of the spherical housing.
- 9 is a schematic diagram of the appearance of a seismic omnidirectional vector divergence detector according to an embodiment of the present invention. As shown in FIG. 9, each vertex of a support structure of a regular tetrahedron shape is cut off to facilitate placement in a spherical housing. To ensure the accuracy of the data collected by the seismic omnidirectional vector divergence detector.
- the present embodiment provides a preferred embodiment in which the edges of the upper hemispherical shell and the lower hemispherical shell are respectively provided with mutually cooperating protrusions.
- the protrusions of the upper hemispherical housing and the lower hemispherical housing are fixed by the fixing assembly. For example, it is fixed by screws and screw holes. Thereby ensuring the stability of the seismic omnidirectional vector divergence detector in the actual operation process.
- a signal line hole may be disposed on the spherical casing, so that the signal output line of the detector passes through the signal line hole, thereby facilitating the output of the signal output line to the outside of the casing. Get data efficiently.
- the joint gap, the tail hole and the signal line hole between the upper hemispherical shell and the lower hemispherical shell of the spherical shell can be sealed and waterproof.
- silicone or rubber materials can be selected for sealing to improve the tightness of the seismic omnidirectional vector divergence detector.
- the invention realizes the solid structure of the Gaussian divergence theorem and forms the spatial structure of the seismic measurement of the divergence measurement.
- the invention can be applied to application scenarios such as onshore artificial seismic exploration and natural seismic exploration.
- the seismic omnidirectional vector divergence detector of the invention can detect the divergence of the seismic wave, and can obtain the vibration direction and the true amplitude of the wave field, and obtain more abundant seismic wave divergence information.
- the divergence characteristic of the seismic omnidirectional vector divergence detector is a feature of the detector of the rigid support structure placed on the free surface of the surface. When the detector is placed underground or inside the media, these features will be determined by the placement environment, the detector support structure material, and its contact with the outside world. It can be designed to vary with the purpose of the application. The invention is not described in detail.
- Seismic wave detection using seismic omnidirectional vector divergence detector is a new concept of seismic wave detection method, which can develop a new concept of seismic acquisition, processing and interpretation methods, and form a new series of seismic exploration technology. More than just new technologies to improve signal-to-noise ratio, sensitivity, and fidelity. Further research and application of this technology will have more discoveries of technical characteristics, and it is a new technical field of invention, discovery and development.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种地震全向矢量散度检波器,其中包括:四个检波器及支撑结构,支撑结构用于支撑四个检波器,使得四个检波器的底面分别位于一正四面体的其中一个正三角形面上,每个检波器的工作轴与对应的正三角形面的交点位于该正三角形面的中心。本发明根据场论的高斯散度公式,设计特定的空间运动矢量检测结构,以实现对地震波场的频率、振幅、相位、振动方向、尤其是波动力场的散度信息的检测,形成全新的地震全向矢量散度检波器技术。
Description
本发明涉及检波器技术领域,尤其涉及一种地震全向矢量散度检波器。
根据波动理论,波动不只表示振动,还表示振动的传播。具体地:1、振动可分解为线振动、旋振动;2、波场散度驱动纵波,波场旋度驱动横波;3、线振动是散度和旋度的共同作用,既包含纵波,也包含横波;4、旋振动只与旋度有关;5、体旋度是完全旋度,面旋度是不完全旋度。因此,只能检测线振动的技术,不能干净分离纵横波。必须是能够检测体旋度或散度的技术,才有可能解出纯横波和纯纵波。
波动的空间运动属性,包含了丰富的信息,可以在波场分离、信噪比、保真度、成像精度、介质属性分析等方面起到重要作用。但是,现有采集技术却只能检测振幅、频率、相位等信息,基本没有检测波动空间运动属性的功能。
目前地震波的检测,是将波振动转换为电信号(电压、电流)或再进行数字转换来实现。将机械运动转换为电信号的方法,不外乎应用电磁检波器、电容检波器、压电检波器和光纤应变检波器。
电磁检波器和电容检波器是线振动型,有工作方向。理想方向滤波效应为cosθ,out(t)=A(t)cosθ。A(t)和θ都是未知的,仅单个器件是求不出真振幅A(t)和夹角θ的。MEMS检波器基本属于电容型检波器,也遵循上述规律。
光纤应变检波器可归于线振动或压强型,单器件也不能确定振动方向。所以,单个电磁检波器、电容检波器和光纤应变检波器,都不能区分波场振动方向,更不具备检测波场散度旋度的功能。
压电检波器是压强型,输出与周围液态介质压强有关,无方向性,不能区分振动方向。液态环境中压强各向同性,等效于波场散度。但在陆上固态环境,即使将其置于液态容器中,也无法实现散度测量。
三分量检波器,以三矢量合成方法,可以求出波场振动方向θ和振幅A(t)。这也是称其为矢量检波器的原因,但只是测量点的线振动矢量,不能检测振动性质、旋度和散度。
综上所述,现有技术中的各类检波器不能实现地震波场全信息的检测。
图1是相关技术中理想单检波器在纵波波场中的方向性响应示意图,图2是相关技术中理想单检波器在横波波场中的方向性响应示意图,用以说明检波器的工作方向性。如图1、图2所示,检波器的输出基于下述公式实现:out=A·n=a×bcosθ。其中,A表示波场函数,矢量;n表示检波器工作方向单位矢量;a表示波场A在振动方向的瞬时振幅;b表示检波器灵敏度;θ表示检波器的工作方向与检波器位置处波场振动方向的夹角;p为纵波下标;s为横波下标。
具体地,如图1所示,检波器在纵波波场中的输出基于下述公式实现:
out=Ap·n=ap×bcosθp;其中,Ap表示纵波波场等时面;ap表示波场Ap在检波器位置的的法线方向的瞬时位移量;b表示检波器灵敏度;θp表示检波器的工作方向与波场振动方向的夹角。
如图2所示,检波器在横波波场中的输出基于下述公式实现:
out=As·n=as×bcosθs;其中,As表示横波波场等时面;as表示波场As在检波器位置的振动矢量方向的瞬时位移量;b表示检波器灵敏度;θs表示检波器的工作方向与波场振动方向的夹角。
图1、图2以及上述公式中没有包含电磁电容检波器的其它性能,只是方向性的描述。上述公式只是用来说明单个检波器,满足多矢量空间结构的方向性要求。
传统技术中的地震波检测流程如下:
根据波动方程,介质质点在力场中的运动关系如下式(1):
其中,λ、μ是拉梅常数,ρ是密度,U是位移向量,t是时间。
对公式(1)求散度,得到以下公式(2):
其中,div是散度,Vp是纵波传播速度。
对公式(1)求旋度,得到以下公式(3)有:
其中,rot是旋度。w=rot(U),Vs是横波传播速度。
在传统技术中,地震波的检测只是采集到在竖直检波器工作方向的投影,根本就不是之后就根据公式(2)演化各种方程解纵波;采集到在水平检波器工作方向的投影,之后就根据公式(3)演化各种方程解横波。在这些误差的基础上进行联合求解、联合反演。因此,其误差是显而易见的。
针对现有技术中对地震波场不具备散度信息检测或测量功能的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种地震全向矢量散度检波器,以至少解决现有技术中对地震波场不具备散度信息检测或测量功能的问题。
根据本发明的一个方面,提供了一种地震全向矢量散度检波器,其中包括:四个检波器及支撑结构,所述支撑结构用于支撑所述四个检波器,使得所述四个检波器的底面分别位于一正四面体的其中一个正三角形面上,每个检波器的工作轴与对应的正三角形面的交点位于该正三角形面的中心。
优选地,所述检波器为圆柱电磁型检波器,各个圆柱电磁型检波器的底面与所述正四面体的体几何中心的距离为各个检波器互不接触的最小值。
优选地,所述检波器为扁片电容型检波器。
优选地,所述四个检波器的四个空间矢量符合高斯散度公式。
优选地,所述检波器的振幅响应,与自身工作轴和波场法线间夹角θ的关系为out(t)=A(t)cosθ,其中A(t)为所述检波器在θ=0时对波场的响应。
优选地,所述支撑结构上连接一圆椎形尾椎,所述圆椎形尾椎的轴线的延长线经过所述正四面体的一个顶点后,垂直穿过所述正四面体的其中一个面的中心。
优选地,所述地震全向矢量散度检波器还包括:球形壳体,分为上半球形壳体和下半球形壳体,所述四个检波器及所述支撑结构放置在所述球形壳体内部,所述下半球形壳体的底部设置尾椎孔,所述尾椎穿过所述下半球形壳体的尾椎孔。
优选地,所述上半球形壳体和所述下半球形壳体的边缘分别设置有相互配合的突出部,所述上半球形壳体和所述下半球形壳体的突出部通过固定组件固定。
优选地,所述球形壳体上设置信号线孔,各个检波器的信号输出线穿过该信号线孔。
优选地,所述球形壳体的上半球形壳体和下半球形壳体之间的接合缝隙、所述尾椎孔和所述信号线孔,均以硅胶或橡胶材料密封防水。
优选地,所述支撑结构为正四面体支撑结构,所述正四面体支撑结构的每个面为任意曲面或平面。
本发明根据场论的高斯散度公式,设计特定的空间运动矢量检测结构,以实现对地震波场的频率、振幅、相位、振动方向、尤其是波动力场的散度信息的检测,形成全新的地震全向矢量散度检波器技术。
以本发明的技术方案为基础,可以达到以下目的:
1、在传统检波器功能的基础上,再增加测量地震波的散度、线矢量的功能;
2、根据矢量运算法则,冗余计算地震波振动线矢量的精度优于三分量检波器;
3、为全矢量散旋合体检波器奠定基础结构;
4、具有传统检波器不具备的空间平衡优势。
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的限定。在附图中:
图1是相关技术中理想单检波器在纵波波场中的方向性响应示意图;
图2是相关技术中理想单检波器在横波波场中的方向性响应示意图;
图3是根据本发明实施例的地震全向矢量散度检波器的结构示意图;
图4是根据本发明实施例的地震全向矢量散度检波器的工作矢量示意图;
图5是根据本发明实施例的全积分等效高斯散度结构示意图;
图6是根据本发明实施例的斯托克斯积分正反旋等效结构示意图;
图7是根据本发明实施例的地震全向矢量散度检波器实测输出示意图;
图8是根据本发明实施例的地震全向矢量散度检波器的球形壳体外观示意图;
图9是根据本发明实施例的地震全向矢量散度检波器的外观示意图。
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于
本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明提出了一种地震全向矢量散度检波器,其在空间结构上是各向均等平衡的,这是现有技术中检波器都不具备的结构优势,利用这个结构优势可实现地震波场散度信息的准确检测。下面对地震全向矢量散度检波器的具体结构进行介绍。
本发明实施例提供了一种地震全向矢量散度检波器,图3是根据本发明实施例的地震全向矢量散度检波器的结构示意图,如图3所示,该地震全向矢量散度检波器包括:四个检波器及支撑结构,该支撑结构用于支撑上述四个检波器,使得四个检波器的底面分别位于一正四面体的其中一个正三角形面上,每个检波器的工作轴与对应的正三角形面的交点位于该正三角形面的中心。
需要说明的是,上述工作轴为虚拟轴,用以说明位置关系。在实际应用中,检波器的工作轴并不一定位于检波器的正中央位置(即中心轴)。上述正四面体并非为实体结构,而是虚拟的空间结构,旨在描述四个检波器之间的位置关系。
本发明根据场论的高斯散度公式,设计特定的空间运动矢量检测结构,以实现对地震波场的频率、振幅、相位、振动方向、尤其是波动力场的散度信息的检测,形成全新的地震全向矢量散度检波器技术。
地震全向矢量散度检波器的支撑结构可以基于需求设计成任意形状,本发明对此不做限定,只要能保证空间矢量形态即可。优选地,可以设计为正四面体形状,正四面体支撑结构的尺寸一般大于上述虚拟的正四面体。优选地,正四面体支撑结构的每个面可以改变为任意曲面,从而满足不同需求。支撑结构的材料不局限于固态,支撑结构的刚度与测量结果相关,因此可基于需求选择不同材料。
本实施例中的检波器至少可以是圆柱电磁型检波器,需满足:各个圆柱电磁型检波器的底面与正四面体的体几何中心的距离为各个检波器互不接触的最小值;还可以是扁片电容型检波器。当然,也可以是其他类型的检波器,只要能够在地震全向矢量散度检波器中正常工作即可,本发明对此不做限制。
图4是根据本发明实施例的地震全向矢量散度检波器的工作矢量示意图,图4中的每个面上的箭头表示工作矢量。
图5是根据本发明实施例的全积分等效高斯散度结构示意图,图6是根据本发明实施例的斯托克斯积分正反旋等效结构示意图,结合图5和图6所示的矢量关系可知:
其中,A为波场函数,l为检波器响应矢量,i为检波器的内道序号,为采集到的第i道内部道数据,在上述全积分等效高斯散度结构上:为第一组,i=1-4,为第二组,i=5-8。div为散度,rot为旋度,V为体积,dv为体积微分,S为面积,dS为面积微分,m为正m面体的个数;ni为第i面法线上的检波器响应矢量。根据三角和差化积公式,在本特定结构上,
需要说明的是,本发明提供的地震全向矢量散度检波器是基于虚拟正四面体的四根轴(即正四面体的体中心与四个正三角面的中心连线构成的立体星型轴)形成的四均分立体空间平衡结构。在正四面体的每个正三角形面的中心分别与轴同轴安装一个高灵敏度宽频带全倾角检波器,其振幅响应与自身工作轴和波场法线间夹角θ的关系为out(t)=A(t)cosθ,其中,A(t)为检波器在θ=0时对波场的响应。
地震全向矢量散度检波器中包括四个检波器,图7是根据本发明实施例的地震全向矢量散度检波器实测输出示意图,如图7所示,地震全向矢量散度检波器共有四道数据输出。四道数据的全积分就是对地震波场的纯散度响应,即高斯散度定理结果,其散度值符合数学物理规律(即与制作检波器的骨架材料k系数和大地k系数比值为线性关系,并且和埋置环境密切相关,例如符合自由边界散度为零的规律等)。地震全向矢量散度检波器的总振动线矢量可以由冗余矢量计算求出,等同于传统三分量检波器计算出的振动线矢量。地震全向矢量散度检波器的频率特性由所采用的单元器件性能决定。根据正四面体的高与几何中心的比例关系,以方向矢量1为正,另三个方向矢量乘以-1,各矢量在波场中的响应的算术和,等效于双倍灵敏度单检波器。地震全向矢量散度检波器的原始数据和散度,可作为全弹方程、全矢量处理技术、全矢量解释技术、全矢量岩性流体技术的输入数据。
前面已经对地震全向矢量散度检波器的具体结构进行了详细描述,在实际使用过程中,为了方便放置,地震全向矢量散度检波器的支撑结构上连接一圆椎形尾椎,该圆椎形尾椎的轴线的延长线经过正四面体的一个顶点后,垂直穿过正四面体的其中一个面的中心。在正常使用过程中,该圆锥形尾椎竖直朝下插入地面,从而便于固定。
地震全向矢量散度检波器还可以设置球形壳体,分为上半球形壳体和下半球形壳体,四个检波器及支撑结构放置在球形壳体内部,下半球形壳体的底部设置尾椎孔,上述尾椎穿过下半球形壳体的尾椎孔。图8是根据本发明实施例的地震全向矢量散度检波器的球形壳体外观示意图,如图8所示,地震全向矢量散度检波器的球形壳体分为上半球形壳体10和下半球形壳体11,地震全向矢量散度检波器的支撑结构上连接的圆椎形尾椎20穿过下半球形壳体11的底部设置的尾椎孔21。通过该优选实施方式,可以保护检波器,稳固地震全向矢量散度检波器。
为了将地震全向矢量散度检波器的支撑结构及其上的四个检波器稳固放在球形壳体中,可以将支撑结构的形状设计为易于放入球形壳体的形状。图9是根据本发明实施例的地震全向矢量散度检波器的外观示意图,如图9所示,将正四面体形状的支撑结构的各个顶点削掉一块,以便于安置在球形壳体中,确保地震全向矢量散度检波器采集数据的准确性。
考虑到上半球形壳体和下半球形壳体的固定问题,本实施例提供了一种优选实施方式,即:上半球形壳体和下半球形壳体的边缘分别设置相互配合的突出部,上半球形壳体和下半球形壳体的突出部通过固定组件固定。例如,通过螺丝和螺丝孔的方式固定。从而保证地震全向矢量散度检波器在实际操作过程中的稳定性。
对于地震全向矢量散度检波器的信号输出线,可以在球形壳体上设置信号线孔,使检波器的信号输出线穿过该信号线孔,从而便于信号输出线输出到壳体外面,有效获取数据。
为了避免地震全向矢量散度检波器进水影响使用,可以在球形壳体的上半球形壳体和下半球形壳体之间的接合缝隙、尾椎孔和信号线孔,均密封防水,例如,可以选择硅胶或橡胶材料进行密封,从而提高地震全向矢量散度检波器的密封性。
本发明实现了高斯散度定理的实体结构,形成了散度测量的地震测量空间结构。本发明可适用于陆上人工地震勘探、天然地震探测等应用场景。应用本发明的地震全向矢量散度检波器可检测到地震波的散度,并可求出波场的振动方向及真振幅、可以获得更丰富的地震波散度信息。
地震全向矢量散度检波器的散度特征,为刚性支撑结构的检波器放置于地表自由表面时的特征。当检波器放置于地下或是介质内部时,这些特征将由放置环境、检波器支撑结构材料及其与外界的接触关系而确定。可随具体应用目的的变化而设计。本发明不做详细说明。
应用地震全向矢量散度检波器进行地震波检测,是一种全新理念的地震波检测方法,可发展出全新理念的地震采集、处理、解释方法,形成全新的地震勘探技术系列。不仅仅是提高信噪比、灵敏度、保真度的新技术。对该技术进一步的研究和应用,将会有更多技术特点的发现,是一个全新的发明、发现、发展的技术领域。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (11)
- 一种地震全向矢量散度检波器,其中,包括:四个检波器及支撑结构,所述支撑结构用于支撑所述四个检波器,使得所述四个检波器的底面分别位于一正四面体的其中一个正三角形面上,每个检波器的工作轴与对应的正三角形面的交点位于该正三角形面的中心。
- 根据权利要求1所述的地震全向矢量散度检波器,其中,所述检波器为圆柱电磁型检波器,各个圆柱电磁型检波器的底面与所述正四面体的体几何中心的距离为各个检波器互不接触的最小值。
- 根据权利要求1所述的地震全向矢量散度检波器,其中,所述检波器为扁片电容型检波器。
- 根据权利要求1所述的地震全向矢量散度检波器,其中,所述四个检波器的四个空间矢量符合高斯散度公式。
- 根据权利要求1所述的地震全向矢量散度检波器,其中,所述检波器的振幅响应,与自身工作轴和波场法线间夹角θ的关系为out(t)=A(t)cosθ,其中A(t)为所述检波器在θ=0时对波场的响应。
- 根据权利要求1所述的地震全向矢量散度检波器,其中,所述支撑结构上连接一圆椎形尾椎,所述圆椎形尾椎的轴线的延长线经过所述正四面体的一个顶点后,垂直穿过所述正四面体的其中一个面的中心。
- 根据权利要求6所述的地震全向矢量散度检波器,其中,所述地震全向矢量散度检波器还包括:球形壳体,分为上半球形壳体和下半球形壳体,所述四个检波器及所述支撑结构放置在所述球形壳体内部,所述下半球形壳体的底部设置尾椎孔,所述尾椎穿过所述下半球形壳体的尾椎孔。
- 根据权利要求7所述的地震全向矢量散度检波器,其中,所述上半球形壳体和所述下半球形壳体的边缘分别设置有相互配合的突出部,所述上半球形壳体和所述下半球形壳体的突出部通过固定组件固定。
- 根据权利要求7所述的地震全向矢量散度检波器,其中,所述球形壳体上设置信号线孔,各个检波器的信号输出线穿过该信号线孔。
- 根据权利要求9所述的地震全向矢量散度检波器,其中,所述球形壳体的上半球形壳体和下半球形壳体之间的接合缝隙、所述尾椎孔和所述信号线孔,均以硅胶或橡胶材料密封防水。
- 根据权利要求1所述的地震全向矢量散度检波器,其中,所述支撑结构为正四面体支撑结构,所述正四面体支撑结构的每个面为任意曲面或平面。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510713070.6A CN105388516B (zh) | 2015-10-28 | 2015-10-28 | 一种地震全向矢量散度检波器 |
CN201510713070.6 | 2015-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017071437A1 true WO2017071437A1 (zh) | 2017-05-04 |
Family
ID=55420997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/099824 WO2017071437A1 (zh) | 2015-10-28 | 2016-09-23 | 一种地震全向矢量散度检波器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105388516B (zh) |
WO (1) | WO2017071437A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110824427A (zh) * | 2019-10-21 | 2020-02-21 | 中国人民解放军陆军勤务学院 | 一种斜三棱锥声压测试装置及其空间次声源定向定位方法 |
CN116592987B (zh) * | 2023-07-17 | 2023-09-26 | 中国特种设备检测研究院 | 面内全向波动场矢量探测方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4791617A (en) * | 1986-07-11 | 1988-12-13 | Geophysical Service Inc. | Motion sensing device |
WO2002068996A1 (en) * | 2001-02-26 | 2002-09-06 | Abb Offshore Systems Limited | Seismic detection using 4-sensors |
WO2006043046A1 (en) * | 2004-10-20 | 2006-04-27 | Schlumberger Holdings Limited | Sensor configuration |
CN102341728A (zh) * | 2009-02-05 | 2012-02-01 | 格库技术有限公司 | 地震获取系统和技术 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9906995D0 (en) * | 1998-09-16 | 1999-05-19 | Geco Prakla Uk Ltd | Seismic detection apparatus and related method |
EP2114086B1 (en) * | 2008-04-30 | 2012-12-26 | Renault S.A.S. | Ironless and leakage free coil transducer motor assembly |
US20130088939A1 (en) * | 2011-10-10 | 2013-04-11 | Pascal Edme | Wavefield separation using a gradient sensor |
CN103048680B (zh) * | 2011-10-13 | 2015-06-10 | 中国科学院电子学研究所 | 基于mems技术的电化学地震检波器 |
-
2015
- 2015-10-28 CN CN201510713070.6A patent/CN105388516B/zh active Active
-
2016
- 2016-09-23 WO PCT/CN2016/099824 patent/WO2017071437A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4791617A (en) * | 1986-07-11 | 1988-12-13 | Geophysical Service Inc. | Motion sensing device |
WO2002068996A1 (en) * | 2001-02-26 | 2002-09-06 | Abb Offshore Systems Limited | Seismic detection using 4-sensors |
WO2006043046A1 (en) * | 2004-10-20 | 2006-04-27 | Schlumberger Holdings Limited | Sensor configuration |
CN102341728A (zh) * | 2009-02-05 | 2012-02-01 | 格库技术有限公司 | 地震获取系统和技术 |
Also Published As
Publication number | Publication date |
---|---|
CN105388516A (zh) | 2016-03-09 |
CN105388516B (zh) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017071438A1 (zh) | 全向矢量地震数据处理方法、装置、计算机可读存储介质及设备 | |
WO2017071440A1 (zh) | 一种地震全向矢量检波器 | |
Tape et al. | Multiscale estimation of GPS velocity fields | |
WO2017071436A1 (zh) | 一种检波器的质控方法、装置、计算机可读存储介质及设备 | |
WO2017071439A1 (zh) | 一种地震全向矢量静电悬浮检波器 | |
US9568493B2 (en) | In situ accelerometer calibration | |
BR112021003892A2 (pt) | medidor de aceleração de massa, único e multidirecional | |
WO2017071435A1 (zh) | 一种地震全向矢量旋度检波器 | |
Gushchin et al. | Numerical simulation and visualization of vortical structure transformation in the flow past a sphere at an increasing degree of stratification | |
Brokešová et al. | New portable sensor system for rotational seismic motion measurements | |
US10620252B2 (en) | Electric field imaging system | |
WO2017071437A1 (zh) | 一种地震全向矢量散度检波器 | |
WO2016001697A1 (en) | Systems and methods for geologic surface reconstruction using implicit functions | |
US20220120927A1 (en) | Neutrally buoyant particle velocity sensor | |
WO2012037292A1 (en) | Method to improve spatial sampling of vertical motion of seismic wavefields on the free surface of the earth by utilizing horizontal rotational motion and vertical motion sensors | |
Williams et al. | Experimental estimation of in vacuo structural admittance using random sources in a non-anechoic room | |
CN102914354A (zh) | 一种三维组合式水听器 | |
Zhang et al. | Multisensor and multiscale data integration method of TLS and GPR for three-dimensional detailed virtual reconstruction | |
RU2687297C1 (ru) | Низкочастотная двухкомпонентная донная сейсмическая коса | |
Kong et al. | Structural defects of monolayer wet particles during melting under vertical vibration | |
RU142159U1 (ru) | Многокомпонентный сейсморазведочный комплекс | |
Lindwall | Imaging marine geophysical environments with vector acoustics | |
Ando et al. | Designing a bathymetric sensor using absolute pressure sensors arranged on a regular polyhedron | |
Tang et al. | Surge detecting with a spherical sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16858873 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16858873 Country of ref document: EP Kind code of ref document: A1 |