WO2017071258A1 - 一种光传输方法以及光传输装置 - Google Patents

一种光传输方法以及光传输装置 Download PDF

Info

Publication number
WO2017071258A1
WO2017071258A1 PCT/CN2016/086578 CN2016086578W WO2017071258A1 WO 2017071258 A1 WO2017071258 A1 WO 2017071258A1 CN 2016086578 W CN2016086578 W CN 2016086578W WO 2017071258 A1 WO2017071258 A1 WO 2017071258A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
module
awgr
input
output
Prior art date
Application number
PCT/CN2016/086578
Other languages
English (en)
French (fr)
Inventor
蒋臣迪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017071258A1 publication Critical patent/WO2017071258A1/zh
Priority to US15/962,703 priority Critical patent/US10136199B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0032Construction using static wavelength routers (e.g. arrayed waveguide grating router [AWGR] )

Definitions

  • the present invention relates to the field of communications, and in particular, to an optical transmission method and an optical transmission device.
  • AWGR arrayed waveguide grating router
  • AWGR Arrayed Waveguide Grating Router
  • AWGR is based on wavelength routing, and only needs to modulate data in an optical interconnection network. At the wavelength of the light, AWGR can forward the data to the corresponding port without configuration.
  • the existing single AWGR can only route up to 32 optical signals, that is, the maximum size of a single AWGR includes 32 input ports and 32 outputs. The port, and then increase the size of the AWGR, the center wavelength shift of the optical signal caused by the temperature drift effect will be difficult to control. When the center wavelength shift exceeds a certain range, part of the optical signal will be lost.
  • an optical transmission apparatus comprising:
  • a filtering module a routing module, and a multiplexing module, wherein the filtering module is connected to the routing module, and the routing module is connected to the multiplexing module;
  • the filtering module includes 2N comb filters, and the filtering module performs parity splitting on the 2N input optical signal group by using the 2N comb filters to obtain a 2N road odd-wave optical signal group and a 2N-channel even-wave optical signal. And sending, to the routing module, the 2N-way odd-wave optical signal group and the 2N-channel even-wave optical signal group; wherein N is a positive integer greater than 1, and the input optical signal group includes multiple optical signals, The odd-wave optical signal group of the input optical signal group includes an odd-numbered optical signal in the input optical signal group, and the even-wave optical signal group of the input optical signal group includes an even-numbered optical signal in the input optical signal group;
  • the routing module includes at least four arrayed waveguide grating routers AWGR, and the routing module routes the 2N roads of the odd-wave optical signal group and the 2N-channel even-wave optical signal group by the at least four AWGRs to the a multiplexer module; wherein the AWGR includes N input ports and N output ports, and the AWGR is configured to convert an optical signal input by each input port to N output port outputs;
  • the multiplexer module includes 2N multiplexers, and the multiplexer module combines the 4N optical signal groups output by the routing module by the 2N combiners to obtain a 2N output optical signal group, wherein Each of the output optical signal groups includes one of each of the input optical signal groups of the 2N input optical signal group.
  • the offset of the center wavelength of the optical signal group cannot be greater than one-fifth of the wavelength interval of the optical signal group.
  • the AWGR of the size N ⁇ N can be The center wavelength offset of the optical signal group with a wavelength interval of 2w is limited to a controllable range, that is, the AWGR can accurately route the N optical signal groups at most, and the optical transmission provided by the present invention is adopted.
  • the optical transmission device since the optical transmission device performs parity division on the 2N input optical signal group with the wavelength interval w, a 2N odd-wave optical signal group with a wavelength interval of 2w and a 2N optical path optical signal with a wavelength interval of 2w are obtained.
  • the present invention can accurately route 2N input optical signals, and ensure the number of routes of the routable optical signal group is increased when the central wavelength offset of the AWGR is controllable.
  • each of the comb filters includes a first output port and a second output port, the first output port is configured to output a group of odd-wave optical signals, The second output port is configured to output an even-wave optical signal group;
  • the filtering module is connected to the routing module, and includes:
  • a first output port of the Kth comb filter in the filtering module is connected to an input port of the first AWGR in the routing module;
  • K is an odd number in the value interval [1, 2N];
  • a first output port of the Lth comb filter in the filtering module is connected to an input port of a second AWGR in the routing module;
  • L is an even number in the value interval [1, 2N];
  • a second output port of the Kth comb filter in the filtering module is connected to an input port of a third AWGR in the routing module;
  • the second output port of the Lth comb filter in the filtering module is connected to the input port of the fourth AWGR in the routing module.
  • the filtering module is connected to the routing module, including:
  • a first output port of the Kth comb filter in the filtering module is connected to a (K+1)/2th input port of the first AWGR;
  • a first output port of the Lth comb filter in the filtering module is connected to an L/2th input port of the second AWGR;
  • a second output port of the Kth comb filter in the filtering module is connected to the (K+1)/2th input port of the third AWGR;
  • the second output port of the Lth comb filter in the filtering module is connected to the L/2th input port of the fourth AWGR.
  • each of the combiner includes a first An input port for receiving the odd optical signal, the second output port for receiving the even optical signal, and the routing module being connected to the multiplexer module include:
  • the (K+1)/2th output port of the first AWGR is connected to the first input port of the Kth combiner in the multiplexer module, and the (K+1) of the fourth AWGR /2 output ports are connected to a second input port of the Kth combiner in the multiplexer module;
  • the first output port of the second AWGR is connected to the first input port of the 2Nth combiner in the multiplexer module, and the Nth output port of the third AWGR is combined with the 2Nth
  • the second input port of the wave device is connected, and the M/2+1 output port of the second AWGR is connected to the first input port of the Mth combiner in the multiplexer module, the third AWGR
  • the M/2th output port is connected to the second input port of the Mth combiner in the multiplexer module, and M is an even number in the value interval [1, 2N).
  • a second aspect provides an optical transmission method, where the method is applied to an optical transmission apparatus, where the optical transmission apparatus includes a filtering module, a routing module, and a multiplexing module, and the filtering module is connected to the routing module, and the routing A module is coupled to the multiplexer module; the method includes:
  • the optical transmission device performs parity splitting on the 2N input optical signal group by using 2N comb filters included in the filtering module to obtain a 2N road odd wave optical signal group and a 2N optical path signal group, and the 2N road station
  • the odd-wave optical signal group and the 2N-channel optical signal group are sent to the routing module; wherein N is a positive integer greater than 1, the input optical signal group includes a plurality of optical signals, and the odd-wave light of the input optical signal group
  • the signal group includes odd optical signals in the set of input optical signals, and the set of even optical signals of the set of input optical signals includes even optical signals in the set of input optical signals;
  • each output optical signal group includes the 2N road Input one of the optical signals in each of the input optical signal groups of the optical signal group.
  • the at least four arrayed waveguide grating routers AWGR included in the routing module divide the 2N-way odd-wave optical signal group and the 2N-channel even-wave light
  • the signal groups are respectively routed to the multiplexer module, including:
  • the even-wave optical signal output by the even-numbered comb filter is routed through a fourth AWGR in the routing module to a second input port of the combiner connected to the fourth AWGR.
  • the routing is performed by the 2N combiners included in the multiplexer module
  • the 4N optical signal group output by the module is combined to obtain a 2N output optical signal group, including:
  • Each of the multiplexers of the multiplexer module combines and outputs the optical signal group received from the first input port and the optical signal group received from the second input port;
  • the (K+1)/2th output port of the first AWGR is connected to the first input port of the Kth combiner in the multiplexer module, and the fourth AWGR is (K+ 1)/2 output ports are connected to the second input port of the Kth combiner in the multiplexer module; K is an odd number in the numerical interval [1, 2N]; the first of the second AWGR The output port is connected to the first input port of the 2Nth combiner in the multiplexer module, and the Nth output port of the third AWGR is connected to the second input port of the 2Nth combiner, The M/2+1 output port of the second AWGR Connected to a first input port of the Mth combiner in the multiplexer module, the M/2th output port of the third AWGR and the Mth combiner of the multiplexer module The two input ports are connected, and M is an even number in the value interval [1, 2N).
  • the optical transmission device since the optical transmission device performs parity division on the 2N input optical signal group with the wavelength interval w, a 2N odd-wave optical signal group with a wavelength interval of 2w and a 2N optical path optical signal with a wavelength interval of 2w are obtained.
  • the optical transmission device provided can accurately route 2N input optical signals. Compared with the prior art, the N ⁇ N AWGR can only route N optical signal groups.
  • the present invention increases the number of routes of the routable optical signal group.
  • FIG. 1 is a schematic diagram of routing an input optical signal group by an AWGR according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an optical transmission apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a connection between a filtering module and a routing module in the optical transmission device shown in FIG. 2;
  • FIG. 4 is a schematic diagram of a connection between a routing module and a multiplexing module in the optical transmission device shown in FIG. 2;
  • FIG. 5 is a schematic diagram of routing an eight sets of input optical signal groups by an optical transmission apparatus according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart diagram of an optical transmission method according to an embodiment of the present invention.
  • Figure 1 shows an AWGR with N input ports and N output ports, abbreviated as N ⁇ N AWGR, as shown in Figure 1, the optical signal group input from input port 1.
  • N ⁇ N AWGR the optical signal group input from input port 1.
  • Each optical signal in the middle is routed to N output ports after passing through the AWGR.
  • the AWGR outputs the optical signal group input from each input port as shown in FIG. 1 and outputs it from the output port 1.
  • Optical signal group is Output the optical signal group from output port 2 as Output the optical signal group from output port 3 as ..., output the optical signal group from the output port N as
  • the wavelength interval of the signal group is one-fifth, that is, if the wavelength interval of the input optical signal group is 50 GHz (gigahertz), the center wavelength is allowed to be shifted by 10 GHz, and if the wavelength interval of the input optical signal group is 100 GHz, The center wavelength is allowed to be shifted by 20 GHz. Due to the process limitation, the existing single AWGR can only route up to 32 optical signals, and then increase the routing scale. If the center wavelength of the optical signal is too large, some optical signals will be lost.
  • the invention provides an optical transmission method and an optical transmission device, and aims to improve the number of routes for routing optical signals while ensuring that the central wavelength offset is controllable.
  • an embodiment of the present invention provides an optical transmission device 20.
  • the optical transmission device 20 includes:
  • the filtering module 21, the routing module 22 and the multiplexer module 23 are connected to the routing module 22, and the routing module 22 is connected to the multiplexer module 23.
  • the filtering module 21 includes 2N comb filters, and the filtering module 21 performs parity splitting on the 2N input optical signal groups through the 2N comb filters to obtain a 2N odd-wave optical signal group and a 2N-channel optical signal group. And transmitting the 2N-way odd-wave optical signal group and the 2N-channel even-wave optical signal group to the routing module.
  • N is a positive integer greater than 1
  • the input optical signal group includes a plurality of optical signals
  • the odd-wave optical signal group of the input optical signal group includes odd optical signals in the input optical signal group
  • the signal group includes even optical signals in the set of input optical signals.
  • the routing module 22 includes at least four arrayed waveguide grating routers AWGR, and the routing module 22 routes the 2N-way odd-wave optical signal group and the 2N-channel even-wave optical signal group to the multiplexer module through the at least four AWGRs.
  • the AWGR includes N input ports and N output ports, and the AWGR is used to convert the optical signals input by each input port to N output port outputs.
  • the multiplexer module 23 includes 2N multiplexers, and the multiplexer module 23 combines the 4N optical signal groups output by the routing module by the 2N multiplexers to obtain a 2N output optical signal group.
  • Each of the output optical signal groups includes one of each of the input optical signal groups of the 2N input optical signal group.
  • the comb filter mentioned in this embodiment may be an optical comb filter (English name: interleaver), wherein the interleaver can work in the split mode and the multiplex mode, and the first end thereof includes One port, the second end includes two ports, an odd port and an even port.
  • interleaver English name: interleaver
  • the first end is used as an input end and the second end is used as an output end.
  • the comb filter may be in the order of wavelengths.
  • the plurality of optical signals are interleaved and divided to obtain two sets of output optical signals, wherein the optical signal group outputted from the odd port is the odd-wave optical signal group, from the even port
  • the output optical signal group is the group of the even-wave optical signals, for example, the wavelengths of 1, 2, 3, ... are input from the input terminal, the wavelets are passed through the comb filter, and the odd-port outputs are 1, 3, 5, ...
  • the optical signal is an optical signal carried by even wavelengths.
  • the interleaver When the interleaver is in the multiplex mode, the second end is used as the input end, and the first end is used as the output end. At this time, the interleaver can combine the two optical signal groups input by the odd port and the even port, that is,
  • the multiplexer mentioned in the embodiment of the present invention may also be an optical comb filter, except that the optical comb filter in the filter module operates in a split mode, and the optical comb filter in the multiplexer module works. In the combined mode.
  • the combiner in the multiplexer module can also be other optics that can be used for merging, such as a combiner.
  • the optical transmission device since the optical transmission device performs parity division on the 2N input optical signal group having the wavelength interval w, a 2N odd-wave optical signal group having a wavelength interval of 2w and a 2N channel having a wavelength interval of 2w are obtained.
  • the even-wave optical signal group uses a plurality of N ⁇ N AWGRs to route odd-wave optical signal groups with a wavelength interval of 2w and an even-wave optical signal group with a wavelength interval of 2w, which can only be compared with the prior art using N ⁇ N AWGR.
  • the optical transmission device provided by the embodiment of the present invention can accurately route 2N input optical signals, thereby ensuring that the routable is increased when the central wavelength offset of the AWGR is controllable. The number of paths of the optical signal group.
  • each comb filter can be configured to receive a group of optical signals, each comb filter including a first output port and a second output port, the first output port is configured to output a group of odd-wave optical signals, the first The second output port is configured to output an even-wave optical signal group, wherein a first output port of the K-th comb filter in the filtering module 21 is connected to an input port of the first AWGR in the routing module; K is a numerical interval [ An odd number in 1, 2N]; the first output port of the Lth comb filter in the filtering module 21 is connected to the input port of the second AWGR in the routing module; L is in the numerical interval [1, 2N] Even number; the second output port of the Kth comb filter in the filtering module 21 and the routing module The input port of the third AWGR in the block is connected; the second output port of the Lth comb filter in the filtering module 21 is connected to the input port of the fourth AWGR in the routing module.
  • the first AWGR in the routing module is used to route the odd optical signal group output by the odd comb filter in the filtering module
  • the second AWGR is used to route the output of the even comb filter in the filtering module.
  • An odd optical signal group is used to route the even optical signal group output by the odd comb filter in the filtering module
  • the fourth AWGR is used to route the even optical signal group output by the even comb filter in the filtering module.
  • the first output port of the Kth comb filter in the filtering module 21 is connected to the (K+1)/2 input ports of the first AWGR; the Lth in the filtering module 21 a first output port of the comb filter is connected to the L/2th input port of the second AWGR; a second output port of the Kth comb filter in the filtering module 21 is opposite to the third AWGR K+1)/2 input ports are connected; the second output port of the Lth comb filter in the filtering module 21 is connected to the L/2th input port of the fourth AWGR.
  • FIG. 3 is a schematic diagram of a specific connection between the filtering module 21 and the routing module 22, wherein each filter includes a first output port as shown in a of FIG. 3, and a second output port as shown in FIG. 3.
  • the a port of the first comb filter is connected to the first input port of the first AWGR, the b port of the first comb filter and the first input port of the third AWGR Connected, the a port of the second comb filter is connected to the first input port of the second AWGR, the b port of the second comb filter is connected to the first input port of the fourth AWGR, and the third comb
  • the a port of the filter is connected to the second input port of the first AWGR, the b port of the third comb filter is connected to the second input port of the third AWGR, and so on, the The a port of the 2N-1 comb filter is connected to the Nth input port of the first AWGR, and the b port of the 2N-1 comb filter
  • each of the combiner includes a first input port for receiving the odd optical signal, and a second output port for receiving the even optical signal; wherein The (K+1)/2th output port of the first AWGR is connected to the first input port of the Kth combiner in the multiplexer module, and the (K+1)/2th of the fourth AWGR The output port is connected to the second input port of the Kth combiner in the multiplexer module; the first output port of the second AWGR and the first input port of the 2Nth combiner in the multiplexer module Connected, the Nth output port of the third AWGR is connected to the second input port of the 2Nth combiner, the M/2+1 output port of the second AWGR and the Mth of the multiplexer module The first input port of the multiplexer is connected, and the M/2th output port of the third AWGR is connected to the second input port of the Mth multiplexer in the multiplexer module, where M is a numerical interval [1, Even number in 2N).
  • FIG. 4 is a schematic diagram of a specific connection between the routing module 22 and the multiplexer module 23, wherein each multiplexer includes a first input port as shown in c of FIG. 4, and a second input port such as As shown by d in FIG.
  • the c port of the first combiner is connected to the first output port of the first AWGR, and the d port is connected to the first output port of the fourth AWGR;
  • the second multiplexer The c port of the device is connected to the second output port of the second AWGR, and the d port is connected to the first output port of the third AWGR;
  • the c port of the third combiner is connected to the second output port of the first AWGR
  • the d port is connected to the second output port of the fourth AWGR; and so on, the c port of the 2N-1 combiner is connected to the Nth output port of the first AWGR, and the d port and the fourth AWGR are
  • the N output ports are connected;
  • the c port of the 2Nth combiner is connected to the first output port of the second AWGR, and the d port is connected to the Nth output port of the third AWGR.
  • the odd-numbered combiner in the multiplexer module 23 is used to combine the odd-numbered optical signal groups output by the odd-numbered comb filters in the filter module 21 and the even-numbered optical signal groups output by the even-numbered comb filters.
  • the even combiner in module 23 is used to combine the even optical signal groups output by the odd comb filter in the filter module 21 and the odd optical signal groups output by the even comb filter, so that each combiner output
  • the optical signal group includes one of all input optical signal groups.
  • the value indicates that the input port of each comb filter can be regarded as the input port of the optical transmission device, and the output port of each combiner can be regarded as the output port of the optical transmission device, so that When the optical transmission device is specifically used, it is only necessary to modulate the data to a suitable optical wavelength, and the optical transmission device can forward the optical signal in each input optical signal group to the corresponding port to realize the light. Accurate routing of signal groups.
  • the specific connection structure of the optical transmission device can be referred to FIG. 4, and details are not described herein.
  • the specific working process of the optical transmission device is specifically described below:
  • the first comb filter receives the input optical signal group.
  • the second comb filter receives the input optical signal group.
  • the third comb filter receives the input optical signal group.
  • the fourth comb filter receives the input optical signal group.
  • the fifth comb filter receives the input optical signal group.
  • the odd-wave optical signal groups sequentially received by the four input ports of the first AWGR are The odd-wave optical signal group sequentially received by the four input ports of the second AWGR is The four input ports of the third AWGR sequentially receive the set of even-wave optical signals as The four input ports of the fourth AWGR sequentially receive the set of even-wave optical signals as
  • the four output ports of the first AWGR are sequentially output.
  • the four output ports of the second AWGR are sequentially output.
  • the four output ports of the third AWGR are sequentially output.
  • the four output ports of the fourth AWGR are sequentially output
  • the first combiner outputs the first output port of the first AWGR And the output of the first output port of the fourth AWGR Combine the output to obtain the output optical signal group
  • the second combiner outputs the second output port of the second AWGR And the output of the first output port of the third AWGR Combine the output to obtain the output optical signal group
  • the third combiner outputs the second output port of the first AWGR And the output of the second output port of the fourth AWGR Combine the output to obtain the output optical signal group
  • the fourth combiner outputs the third output port of the second AWGR And the output of the second output port of the third AWGR Combine the output to obtain the output optical signal group
  • the fifth combiner outputs the third output port of the first AWGR And the output of the third output port of the fourth AWGR Combine the output to obtain the output optical signal group
  • the sixth combiner outputs the fourth output port of the second AWGR And the output of the third output port of the third AWGR Combine the output to obtain the output optical signal group
  • the optical transmission device shown in FIG. 5 implements correct routing of eight input optical signal groups, and the AWGR used in the AWGR is 4 ⁇ 4 AWGR, which is 4 ⁇ compared with the prior art.
  • the AWGR of 4 can only implement the routing of the 4-way optical signal group.
  • the number of routes for routing the optical signal can be improved while ensuring that the central wavelength offset is controllable.
  • N 4.
  • the specific value of N is not limited in the embodiment of the present invention.
  • the optical transmission apparatus provided by the embodiment of the present invention can utilize four 8 ⁇ 8 AWGRs.
  • 16 comb filters and 16 combiners route 16 input optical signal groups;
  • the optical signal transmission device is provided by the first embodiment of the present invention.
  • the optical transmission apparatus provided by the embodiment of the present invention adds a primary filtering module for performing parity splitting on the input optical signal.
  • the doubling of the wavelength interval further doubles the number of paths of the input optical signal group that can be routed by the optical transmission device.
  • the optical transmission device may further include a two-stage filtering module for performing two parity splitting on the input optical signal group to achieve a four-fold increase in the wavelength interval, and the optical transmission device further includes a two-stage combiner for routing
  • the optical signal group output by the module performs two multiplexing, that is, the number of paths of the input optical signal group that the optical transmission device can route is doubled each time the primary filtering module is added, wherein the optical transmission device includes a filtering module
  • the specific number of the steps may be set according to the actual application, which is not limited by the embodiment of the present invention.
  • the embodiment of the present invention further provides an optical transmission method, which is applied to the optical transmission device shown in the foregoing apparatus embodiment, where the optical transmission device includes a filtering module, a routing module, and a multiplexing module, and the filtering module is connected to the routing module.
  • the routing module is connected to the multiplexer module. As shown in FIG. 6, the method includes:
  • the optical transmission device performs parity splitting on the 2N input optical signal group by using 2N comb filters included in the filtering module, to obtain a 2N odd-wave optical signal group and a 2N-channel optical optical signal group, and the 2N path is used.
  • the odd-wave optical signal group and the 2N-channel optical signal group are sent to the routing module; wherein N is a positive integer greater than 1, and the input optical signal group includes a plurality of optical signals, and the odd-wave optical signal group of the input optical signal group includes the Inputting an odd-numbered optical signal in the set of optical signals, the set of even-numbered optical signals of the set of input optical signals comprising even-numbered optical signals in the set of input optical signals;
  • the optical transmission device routes the 2N path of the odd-wave optical signal group and the 2N-channel even-wave optical signal group to the multiplexer module by using at least four arrayed waveguide grating routers AWGR included in the routing module, where the AWGR includes N input ports and N output ports, the AWGR is used to convert the optical signals input by each input port to N output port outputs;
  • the optical transmission device inputs the routing module by using 2N combiners included in the multiplexer module.
  • the 4N optical signal groups are combined to obtain a 2N output optical signal group; wherein each of the output optical signal groups includes one of each of the input optical signal groups of the 2N input optical signal group.
  • step S602 includes: routing, by the first AWGR in the routing module, the odd-wave optical signal output by the odd-numbered comb filter in the filtering module to the first input port of the combiner connected to the first AWGR. Passing the odd-wave optical signal output by the even-numbered comb filter in the filtering module to the second input port of the combiner connected to the second AWGR through the second AWGR in the routing module; passing through the routing module The third AWGR routes the even-wave optical signal output by the odd-numbered comb filter to the first input port of the combiner connected to the third AWGR; and outputs the even-numbered comb filter through the fourth AWGR in the routing module The even wave optical signal is routed to a second input port of the combiner connected to the fourth AWGR.
  • step S603 includes: combining, by the each of the multiplexer modules, the optical signal group received from the first input port and the optical signal group received from the second input port;
  • the (K+1)/2th output port of the first AWGR is connected to the first input port of the Kth combiner in the multiplexer module, and the (K+1)/2th of the fourth AWGR
  • the output port is connected to the second input port of the Kth combiner in the multiplexer module;
  • K is an odd number in the value interval [1, 2N];
  • the first input port of the 2Nth combiner is connected, and the Nth output port of the third AWGR is connected to the second input port of the 2Nth combiner, the M/2+ of the second AWGR
  • One output port is connected to the first input port of the Mth combiner in the multiplexer module, the M/2th output port of the third AWGR and the Mth combiner of the multiplexer module

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光传输方法以及光传输装置,涉及通信领域,能够在保证中心波长偏移可控的情况下,提高对光信号进行路由的路数。该光传输装置包括滤波模块,路由模块以及合波模块,该滤波模块与该路由模块相连,该路由模块与该合波模块相连;该滤波模块通过2N个梳状滤波器对2N路输入光信号组进行奇偶分波,得到2N路奇波光信号组以及2N路偶波光信号组,并将该2N路该奇波光信号组以及该2N路偶波光信号组发送至该路由模块;该路由模块通过至少四个AWGR将该2N路该奇波光信号组以及该2N路偶波光信号组分别路由至该合波模块;该合波模块通过2N个合波器将该路由模块输出的4N路光信号组进行合波,得到2N路输出光信号组。

Description

一种光传输方法以及光传输装置
本申请要求于2015年10月26日提交中国专利局、申请号为201510701443.8、发明名称为“一种光传输方法以及光传输装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种光传输方法以及光传输装置。
背景技术
随着世界向更加智能化,物联化以及感知化的方向发展,数据正在以爆炸性的方式增长,数据中心网络的规模正在迅速的扩大,数据中心网络内部通讯的流量飞速增长,传统的电分组交换机,由于交换能力的限制,导致电交换难以适应数据中心的发展趋势,为此,人们开始将光纤通信技术引入到数据中心网络中,以提供低时延,高带宽的光互连服务。
具体地,现有技术通常在数据中心网络引入阵列波导光栅路由器(英文全称:Arrayed Waveguide Grating Router,简称:AWGR),AWGR是基于波长路由的,在光互连网络中只需将数据调制到合适的光波长上,无需配置,AWGR就可以将数据转发到相应的端口。
但是,由于光信号在传输过程中受到温漂效应的影响,现有的单个AWGR最多只能对32路光信号进行路由,也就是说,单个AWGR的最大规模包括32个输入端口以及32个输出端口,再增加AWGR的规模,温漂效应导致的光信号的中心波长偏移将会难以控制,当中心波长偏移超出一定范围,将会导致部分光信号丢失。
现有技术还没有合理的方案能够在保证中心波长偏移可控的情况下,提高对光信号进行路由的路数。
发明内容
本发明的目的是提供一种光传输方法以及光传输装置,能够在保证中心波长偏移可控的情况下,提高对光信号进行路由的路数。
为了达到上述目的,本发明实施例采用如下的技术方案:
第一方面,提供一种光传输装置,包括:
滤波模块,路由模块以及合波模块,所述滤波模块与所述路由模块相连,所述路由模块与所述合波模块相连;
所述滤波模块包括2N个梳状滤波器,所述滤波模块通过所述2N个梳状滤波器对2N路输入光信号组进行奇偶分波,得到2N路奇波光信号组以及2N路偶波光信号组,并将所述2N路所述奇波光信号组以及所述2N路偶波光信号组发送至所述路由模块;其中,N为大于1的正整数,输入光信号组包括多个光信号,所述输入光信号组的奇波光信号组包括所述输入光信号组中的奇数光信号,所述输入光信号组的偶波光信号组包括所述输入光信号组中的偶数光信号;
所述路由模块包括至少四个阵列波导光栅路由器AWGR,所述路由模块通过所述至少四个AWGR将所述2N路所述奇波光信号组以及所述2N路偶波光信号组分别路由至所述合波模块;其中,所述AWGR包括N个输入端口以及N个输出端口,所述AWGR用于将每个输入端口输入的光信号转换至N个输出端口输出;
所述合波模块包括2N个合波器,所述合波模块通过所述2N个合波器将所述路由模块输出的4N路光信号组进行合波,得到2N路输出光信号组,其中,每路输出光信号组包括所述2N路输入光信号组的每路输入光信号组中的一个光信号。
值得说明的是,光信号组在传输过程中,其中心波长的偏移量不能大于光信号组的波长间隔的五分之一,在现有技术中,若规模为N×N的AWGR能够将波长间隔为2w的光信号组的中心波长偏移限制在可控范围内,也就是说,该AWGR最多能够准确路由N路光信号组,则在采用本发明提供的光传 输装置时,由于光传输装置在对波长间隔为w的2N路输入光信号组进行奇偶分波后,得到波长间隔为2w的2N路奇波光信号组以及波长间隔为2w的2N路偶波光信号组,并采用多个N×N的AWGR对波长间隔为2w的奇波光信号组以及波长间隔为2w的偶波光信号组进行路由,也就是说,在AWGR的规模不变的情况下,本发明提供的光传输装置能够准确路由2N路输入光信号,保证了在AWGR的中心波长偏移可控的情况下,增加可路由光信号组的路数。
在结合第一方面的第一种可能的实现方式中,每个所述梳状滤波器包括第一输出端口和第二输出端口,所述第一输出端口用于输出奇波光信号组,所述第二输出端口用于输出偶波光信号组;所述滤波模块与所述路由模块相连,包括:
所述滤波模块中的第K个梳状滤波器的第一输出端口与所述路由模块中的第一AWGR的输入端口相连;K是数值区间[1,2N]中的奇数;
所述滤波模块中的第L个梳状滤波器的第一输出端口与所述路由模块中的第二AWGR的输入端口相连;L是数值区间[1,2N]中的偶数;
所述滤波模块中的第K个梳状滤波器的第二输出端口与所述路由模块中的第三AWGR的输入端口相连;
所述滤波模块中的第L个梳状滤波器的第二输出端口与所述路由模块中的第四AWGR的输入端口相连。
结合第一方面或者第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述滤波模块与所述路由模块相连,包括:
所述滤波模块中的第K个梳状滤波器的第一输出端口与所述第一AWGR的第(K+1)/2个输入端口相连;
所述滤波模块中的第L个梳状滤波器的第一输出端口与所述第二AWGR的第L/2个输入端口相连;
所述滤波模块中的第K个梳状滤波器的第二输出端口与所述第三AWGR的第(K+1)/2个输入端口相连;
所述滤波模块中的第L个梳状滤波器的第二输出端口与所述第四AWGR的第L/2个输入端口相连。
结合第一方面至第一方面的第二种可能的实现方式中的任一种可能的实现方式,在第一方面的第三种可能的实现方式中,每个所述合波器包括第一输入端口和第二输入端口,所述第一输出端口用于接收所述奇数光信号,所述第二输出端口用于接收所述偶数光信号;所述路由模块与所述合波模块相连,包括:
所述第一AWGR的第(K+1)/2个输出端口与所述合波模块中的第K个合波器的第一输入端口相连,所述第四AWGR的第(K+1)/2个输出端口与所述合波模块中的第K个合波器的第二输入端口相连;
所述第二AWGR的第1个输出端口与所述合波模块中的第2N个合波器的第一输入端口相连,所述第三AWGR的第N个输出端口与所述第2N个合波器的第二输入端口相连,所述第二AWGR的第M/2+1个输出端口与所述合波模块中的第M个合波器的第一输入端口相连,所述第三AWGR的第M/2个输出端口与所述合波模块中的第M个合波器的第二输入端口相连,M是数值区间[1,2N)中的偶数。
第二方面,提供一种光传输方法,所述方法应用于光传输装置,所述光传输装置包括滤波模块,路由模块以及合波模块,所述滤波模块与所述路由模块相连,所述路由模块与所述合波模块相连;所述方法包括:
光传输装置通过所述滤波模块包括的2N个梳状滤波器对2N路输入光信号组进行奇偶分波,得到2N路奇波光信号组以及2N路偶波光信号组,并将所述2N路所述奇波光信号组以及所述2N路偶波光信号组发送至所述路由模块;其中,N为大于1的正整数,输入光信号组包括多个光信号,所述输入光信号组的奇波光信号组包括所述输入光信号组中的奇数光信号,所述输入光信号组的偶波光信号组包括所述输入光信号组中的偶数光信号;
通过所述路由模块包括的至少四个阵列波导光栅路由器AWGR将所述2N路所述奇波光信号组以及所述2N路偶波光信号组分别路由至所述合波模 块;其中,所述AWGR包括N个输入端口以及N个输出端口,所述AWGR用于将每个输入端口输入的光信号转换至N个输出端口输出;
通过所述合波模块包括的2N个合波器将所述路由模块输出的4N路光信号组进行合波,得到2N路输出光信号组;其中,每路输出光信号组包括所述2N路输入光信号组的每路输入光信号组中的一个光信号。
在结合第二方面的第一种可能的实现方式中,所述通过所述路由模块包括的至少四个阵列波导光栅路由器AWGR将所述2N路所述奇波光信号组以及所述2N路偶波光信号组分别路由至所述合波模块,包括:
通过所述路由模块中的第一AWGR将所述滤波模块中的奇数梳状滤波器输出的奇波光信号路由到与所述第一AWGR相连的合波器的第一输入端口;
通过所述路由模块中的第二AWGR将所述滤波模块中的偶数梳状滤波器输出的奇波光信号路由到与所述第二AWGR相连的合波器的第二输入端口;
通过所述路由模块中的第三AWGR将所述奇数梳状滤波器输出的偶波光信号路由到与所述第三AWGR相连的合波器的第一输入端口;
通过所述路由模块中的第四AWGR将所述偶数梳状滤波器输出的偶波光信号路由到与所述第四AWGR相连的合波器的第二输入端口。
结合第二方面或者第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述通过所述合波模块包括的2N个合波器将所述路由模块输出的4N路光信号组进行合波,得到2N路输出光信号组,包括:
所述合波模块中的每个所述合波器将从第一输入端口接收到的光信号组以及从第二输入端口接收到的光信号组进行合并输出;
其中,所述第一AWGR的第(K+1)/2个输出端口与所述合波模块中的第K个合波器的第一输入端口相连,所述第四AWGR的第(K+1)/2个输出端口与所述合波模块中的第K个合波器的第二输入端口相连;K是数值区间[1,2N]中的奇数;所述第二AWGR的第1个输出端口与所述合波模块中的第2N个合波器的第一输入端口相连,所述第三AWGR的第N个输出端口与所述第2N个合波器的第二输入端口相连,所述第二AWGR的第M/2+1个输出端口 与所述合波模块中的第M个合波器的第一输入端口相连,所述第三AWGR的第M/2个输出端口与所述合波模块中的第M个合波器的第二输入端口相连,M是数值区间[1,2N)中的偶数。
采用上述方案,由于光传输装置在对波长间隔为w的2N路输入光信号组进行奇偶分波后,得到波长间隔为2w的2N路奇波光信号组以及波长间隔为2w的2N路偶波光信号组,并采用多个N×N的AWGR对波长间隔为2w的奇波光信号组以及波长间隔为2w的偶波光信号组进行路由,也就是说,在AWGR的规模不变的情况下,本发明提供的光传输装置能够准确路由2N路输入光信号,相比现有技术利用N×N的AWGR只能对N路光信号组进行路由,本发明增加可路由光信号组的路数。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的AWGR对输入光信号组进行路由的一种示意图;
图2为本发明实施例提供的一种光传输装置的结构示意图;
图3为图2所示光传输装置中滤波模块与路由模块之间的连接示意图;
图4为图2所示光传输装置中路由模块与合波模块之间的连接示意图;
图5为本发明实施例提供的光传输装置对8组输入光信号组进行路由的示意图;
图6为本发明实施例提供的一种光传输方法的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发 明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
为了使本领域的技术人员能够更容易理解本发明提供的技术方案,下面首先对AWGR的工作原理进行简单介绍。
图1所示是一个具有N个输入端口以及N个输出端口的AWGR,简称N×N的AWGR,如图1所示,从输入端口1输入的光信号组
Figure PCTCN2016086578-appb-000001
中的每个光信号,在经过AWGR后,被依次路由至N个输出端口,这样,AWGR在将如图1所示的每个输入端口输入的光信号组进行路由后,从输出端口1输出光信号组为
Figure PCTCN2016086578-appb-000002
从输出端口2输出光信号组为
Figure PCTCN2016086578-appb-000003
从输出端口3输出光信号组为
Figure PCTCN2016086578-appb-000004
……,从输出端口N输出光信号组为
Figure PCTCN2016086578-appb-000005
需要说明的是,输入光信号组中不同的光信号具有不同的载波波长,并且,为了保证光信号的正确路由,输入光信号组在传输过程中,其中心波长的偏移量不能大于输入光信号组的波长间隔的五分之一,也就是说,若输入光信号组的波长间隔为50GHz(千兆赫兹),则允许中心波长偏移10GHz,若输入光信号组的波长间隔为100GHz,则允许中心波长偏移20GHz,现有的单个AWGR由于工艺限制,最多只能对32路光信号进行路由,再提升路由规模,光信号的中心波长偏移过大将会导致部分光信号丢失。
本发明提供一种光传输方法以及光传输装置,目的是能够在保证中心波长偏移可控的情况下,提高对光信号进行路由的路数。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先,本发明实施例提供一种光传输装置20,如图2所示,该光传输装置20包括:
滤波模块21,路由模块22以及合波模块23,该滤波模块21与该路由模块22相连,该路由模块22与该合波模块23相连。
该滤波模块21包括2N个梳状滤波器,该滤波模块21通过该2N个梳状滤波器对2N路输入光信号组进行奇偶分波,得到2N路奇波光信号组以及2N路偶波光信号组,并将该2N路该奇波光信号组以及该2N路偶波光信号组发送至该路由模块。
其中,N为大于1的正整数,输入光信号组包括多个光信号,该输入光信号组的奇波光信号组包括该输入光信号组中的奇数光信号,该输入光信号组的偶波光信号组包括该输入光信号组中的偶数光信号。
该路由模块22包括至少四个阵列波导光栅路由器AWGR,该路由模块22通过该至少四个AWGR将该2N路该奇波光信号组以及该2N路偶波光信号组分别路由至该合波模块。
其中,该AWGR包括N个输入端口以及N个输出端口,该AWGR用于将每个输入端口输入的光信号转换至N个输出端口输出。
该合波模块23包括2N个合波器,该合波模块23通过该2N个合波器将该路由模块输出的4N路光信号组进行合波,得到2N路输出光信号组。
其中,每路输出光信号组包括该2N路输入光信号组的每路输入光信号组中的一个光信号。
值的说明的是,本实施例中提及的梳状滤波器可以是光学梳状滤波器(英文全称:interleaver),其中,interleaver可工作于分波模式和合波模式,并且其第一端包括一个端口,第二端包括奇端口和偶端口两个端口。
当interleaver处于分波模式时,其第一端作为输入端,第二端作为输出端,对于输入光信号组中具有不同载波波长的多个光信号,该梳状滤波器可以按照波长的顺序将所述多个光信号进行交错分波,得到的两路输出光信号组,其中,从所述奇端口输出的光信号组即为所述奇波光信号组,从所述偶端口 输出的光信号组即为所述偶波光信号组,例如,从输入端输入1,2,3,…的波长,经过梳状滤波器的分波,奇端口输出1,3,5,…的奇数波长,偶端口输出2,4,6…的偶数波长,在此情况下,所述奇波光信号组包括的奇数光信号即为奇数波长承载的光信号,所述偶波光信号组包括的偶数光信号即为偶数波长承载的光信号。
当interleaver处于合波模式时,其第二端作为输入端,第一端作为输出端,此时,该interleaver可对奇端口和偶端口输入的两路光信号组进行合波,也就是说,本发明实施例提及的合波器也可以是光学梳状滤波器,不同之处在于,滤波模块中的光学梳状滤波器工作于分波模式,合波模块中的光学梳状滤波器工作于合波模式。
上述只是举例说明,合波模块中的合波器也可以是其他可用于合波的光学器件,例如combiner。
采用上述光传输装置,由于该光传输装置在对波长间隔为w的2N路输入光信号组进行奇偶分波后,得到波长间隔为2w的2N路奇波光信号组以及波长间隔为2w的2N路偶波光信号组,并采用多个N×N的AWGR对波长间隔为2w的奇波光信号组以及波长间隔为2w的偶波光信号组进行路由,相比现有技术利用N×N的AWGR只能对N路波长间隔为2w的光信号组进行路由,本发明实施例提供的光传输装置能够准确路由2N路输入光信号,保证了在AWGR的中心波长偏移可控的情况下,增加可路由光信号组的路数。
下面详细说明本发明实施例提供的光传输装置的具体实现方式:
具体地,每个梳状滤波器可以用于接收一路光信号组,每个梳状滤波器包括第一输出端口和第二输出端口,该第一输出端口用于输出奇波光信号组,该第二输出端口用于输出偶波光信号组,其中,该滤波模块21中的第K个梳状滤波器的第一输出端口与该路由模块中的第一AWGR的输入端口相连;K是数值区间[1,2N]中的奇数;该滤波模块21中的第L个梳状滤波器的第一输出端口与该路由模块中的第二AWGR的输入端口相连;L是数值区间[1,2N]中的偶数;该滤波模块21中的第K个梳状滤波器的第二输出端口与该路由模 块中的第三AWGR的输入端口相连;该滤波模块21中的第L个梳状滤波器的第二输出端口与该路由模块中的第四AWGR的输入端口相连。
也就是说,该路由模块中的第一AWGR用于路由该滤波模块中的奇数梳状滤波器输出的奇数光信号组,第二AWGR用于路由该滤波模块中的偶数梳状滤波器输出的奇数光信号组,第三AWGR用于路由该滤波模块中的奇数梳状滤波器输出的偶数光信号组,第四AWGR用于路由该滤波模块中的偶数梳状滤波器输出的偶数光信号组。
可选地,该滤波模块21中的第K个梳状滤波器的第一输出端口与该第一AWGR的第(K+1)/2个输入端口相连;该滤波模块21中的第L个梳状滤波器的第一输出端口与该第二AWGR的第L/2个输入端口相连;该滤波模块21中的第K个梳状滤波器的第二输出端口与该第三AWGR的第(K+1)/2个输入端口相连;该滤波模块21中的第L个梳状滤波器的第二输出端口与该第四AWGR的第L/2个输入端口相连。
示例地,图3是该滤波模块21与该路由模块22之间具体的连接示意图,其中,每个滤波器包括的第一输出端口如图3中的a所示,第二输出端口如图3中的b所示,并且,第1个梳状滤波器的a端口与第一AWGR的第1个输入端口相连,第1个梳状滤波器的b端口与第三AWGR的第1个输入端口相连,第2个梳状滤波器的a端口与第二AWGR的第1个输入端口相连,第2个梳状滤波器的b端口与第四AWGR的第1个输入端口相连,第3个梳状滤波器的a端口与第一AWGR的第2个输入端口相连,第3个梳状滤波器的b端口与第三AWGR的第2个输入端口相连,依此类推,该滤波模块中的第2N-1个梳状滤波器的a端口与第一AWGR的第N个输入端口相连,第2N-1个梳状滤波器的b端口与第三AWGR的第N个输入端口相连,第2N个梳状滤波器的a端口与第二AWGR的第N个输入端口相连,第2N个梳状滤波器的b端口与第四AWGR的第N个输入端口相连。
可选地,每个该合波器包括第一输入端口和第二输入端口,该第一输出端口用于接收该奇数光信号,该第二输出端口用于接收该偶数光信号;其中, 该第一AWGR的第(K+1)/2个输出端口与该合波模块中的第K个合波器的第一输入端口相连,该第四AWGR的第(K+1)/2个输出端口与该合波模块中的第K个合波器的第二输入端口相连;该第二AWGR的第1个输出端口与该合波模块中的第2N个合波器的第一输入端口相连,该第三AWGR的第N个输出端口与该第2N个合波器的第二输入端口相连,该第二AWGR的第M/2+1个输出端口与该合波模块中的第M个合波器的第一输入端口相连,该第三AWGR的第M/2个输出端口与该合波模块中的第M个合波器的第二输入端口相连,M是数值区间[1,2N)中的偶数。
示例地,图4是该路由模块22与该合波模块23之间具体的连接示意图,其中,每个合波器包括的第一输入端口如图4中的c所示,第二输入端口如图4中的d所示,并且,第1个合波器的c端口与第一AWGR的第1个输出端口相连,d端口与第四AWGR的第1个输出端口相连;第2个合波器的c端口与第二AWGR的第2个输出端口相连,d端口与第三AWGR的第1个输出端口相连;第3个合波器的c端口与第一AWGR的第2个输出端口相连,d端口与第四AWGR的第2个输出端口相连;依此类推,第2N-1个合波器的c端口与第一AWGR的第N个输出端口相连,d端口与第四AWGR的第N个输出端口相连;第2N个合波器的c端口与第二AWGR的第1个输出端口相连,d端口与第三AWGR的第N个输出端口相连。
结合图4可知,合波模块23中的奇数合波器用于对滤波模块21中奇数梳状滤波器输出的奇数光信号组以及偶数梳状滤波器输出的偶数光信号组进行合波,合波模块23中的偶数合波器用于对滤波模块21中奇数梳状滤波器输出的偶数光信号组以及偶数梳状滤波器输出的奇数光信号组进行合波,从而使得每个合波器输出的光信号组包括所有输入光信号组中的一个光信号。值的说明的是,每个梳状滤波器的输入端口可以看做是该光传输装置的输入端口,每个合波器的输出端口可以看做是该光传输装置的输出端口,这样,在具体使用该光传输装置时,只需将数据调制到合适的光波长上,该光传输装置就可以将每一路输入光信号组中的光信号转发到相应的端口,实现对光 信号组的准确路由。
为了是本领域的技术人员更容易理解本发明实施例提供的光传输装置,下面以N=4为例对本发明实施例提供的光传输装置进行说明,如图5所示,在N=4时,该光传输装置的滤波模块21包括第1至第8个梳状滤波器,路由模块包括第一AWGR,第二AWGR,第三AWGR和第四AWGR,合波模块包括第1至第8个合波器,其中,该光传输装置的具体连接结构可以参照图4,此处不再赘述,下面具体说明该光传输装置具体的工作过程:
如图5所示,第1个梳状滤波器接收输入光信号组
Figure PCTCN2016086578-appb-000006
第2个梳状滤波器接收输入光信号组
Figure PCTCN2016086578-appb-000007
第3个梳状滤波器接收输入光信号组
Figure PCTCN2016086578-appb-000008
第4个梳状滤波器接收输入光信号组
Figure PCTCN2016086578-appb-000009
第5个梳状滤波器接收输入光信号组
Figure PCTCN2016086578-appb-000010
第6个梳状滤波器接收输入光信号组
Figure PCTCN2016086578-appb-000011
第7个梳状滤波器接收输入光信号组
Figure PCTCN2016086578-appb-000012
第8个梳状滤波器接收输入光信号组
Figure PCTCN2016086578-appb-000013
这样,每个梳状滤波器在对每路输入光信号组进行奇偶分波后,该第一AWGR的4个输入端口依次接收到的奇波光信号组为
Figure PCTCN2016086578-appb-000014
Figure PCTCN2016086578-appb-000015
该第二AWGR的4个输入端口依次接收到的奇波光信号组为
Figure PCTCN2016086578-appb-000016
该第三AWGR的4个输入端口依次接收到的偶波光信号组为
Figure PCTCN2016086578-appb-000017
Figure PCTCN2016086578-appb-000018
该第四AWGR的4个输入端口依次接收到的偶波光信号组为
Figure PCTCN2016086578-appb-000019
Figure PCTCN2016086578-appb-000020
进一步地,经过第一至第四AWGR进行路由后,该第一AWGR的4个输出端口依次输出
Figure PCTCN2016086578-appb-000021
该第二AWGR的4个输出端口依次输出
Figure PCTCN2016086578-appb-000022
Figure PCTCN2016086578-appb-000023
该第三AWGR的4个输出端口依次输出
Figure PCTCN2016086578-appb-000024
Figure PCTCN2016086578-appb-000025
该第四AWGR的4个输出端口依次输出
Figure PCTCN2016086578-appb-000026
Figure PCTCN2016086578-appb-000027
进一步地,第1个合波器的将第一AWGR的第1个输出端口输出的
Figure PCTCN2016086578-appb-000028
以及第四AWGR的第1个输出端口输出的
Figure PCTCN2016086578-appb-000029
进行合波得到输出光信号组
Figure PCTCN2016086578-appb-000030
第2个合波器的将第二AWGR的第2个输出端口输出的
Figure PCTCN2016086578-appb-000031
以及第三AWGR的第1个输出端口输出的
Figure PCTCN2016086578-appb-000032
进行合波得到输出光信号组
Figure PCTCN2016086578-appb-000033
第3个合波器的将第一AWGR的第2个输出端口输出的
Figure PCTCN2016086578-appb-000034
以及第四AWGR的第2个输出端口输出的
Figure PCTCN2016086578-appb-000035
进行合波得到输出光信号组
Figure PCTCN2016086578-appb-000036
第4个合波器的将第二AWGR的第3个输出端口输出的
Figure PCTCN2016086578-appb-000037
以及第三AWGR的第2个输出端口输出的
Figure PCTCN2016086578-appb-000038
进行合波得到输出光信号组
Figure PCTCN2016086578-appb-000039
第5个合波器的将第一AWGR的第3个输出端口输出的
Figure PCTCN2016086578-appb-000040
以及第四AWGR的第3个输出端口输出的
Figure PCTCN2016086578-appb-000041
进行合波得到输出光信号组
Figure PCTCN2016086578-appb-000042
第6个合波器的将第二AWGR的第4个输出端口输出的
Figure PCTCN2016086578-appb-000043
以及第三AWGR的第3个输出端口输出的
Figure PCTCN2016086578-appb-000044
进行合波得到输出光信号组
Figure PCTCN2016086578-appb-000045
第7个合波器的将第一AWGR的第4个输出端口输出的
Figure PCTCN2016086578-appb-000046
以及第四AWGR的第4个输出端口输出的
Figure PCTCN2016086578-appb-000047
进行合波得到输出光信号组
Figure PCTCN2016086578-appb-000048
第8个合波器的将第二AWGR的第1个输出端口输出的
Figure PCTCN2016086578-appb-000049
以及第三AWGR的第4个输出端口输出的
Figure PCTCN2016086578-appb-000050
进行合波得到输出光信号组
Figure PCTCN2016086578-appb-000051
由上述描述可知,图5所示的光传输装置实现了对8路输入光信号组进行正确路由,并且,其采用的AWGR的规模为4×4的AWGR,相比现有技术中采用4×4的AWGR仅能实现对4路光信号组进行路由,本发明实施例在能够在保证中心波长偏移可控的情况下,提高对光信号进行路由的路数。
上述只是以N=4进行举例说明,本发明实施例对N的具体取值不做限定,例如,N=8时,本发明实施例提供的光传输装置可以利用4个8×8的AWGR,16个梳状滤波器以及16个合波器对16路输入光信号组进行路由;N=32时, 本发明实施例提供的光传输装置可以利用4个32×32的AWGR,64个梳状滤波器以及64个合波器对64路输入光信号组进行路由。
由以上描述可知,相比现有技术仅利用一个AWGR对光信号组直接进行路由,本发明实施例提供的光传输装置是增加了一级滤波模块用于对输入光信号进行奇偶分波,实现波长间隔的翻倍,进而使得该光传输装置能够路由的输入光信号组的路数翻倍,基于此种思路,本领域的技术人员通过合理的推理分析应该理解到,本发明实施例提供的光传输装置还可以包括两级滤波模块,用于对输入光信号组进行两次奇偶分波,实现波长间隔增加四倍,并且,该光传输装置还包括两级合波器,用于对路由模块输出的光信号组进行两次合波,也就是说,每增加一级滤波模块,该光传输装置能够路由的输入光信号组的路数翻倍,其中,该光传输装置包括的滤波模块的具体级数可以根据实际应用设置,本发明实施例对此不做限定。
本发明实施例还提供一种光传输法,该方法应用于上述装置实施例示出的光传输装置,该光传输装置包括滤波模块,路由模块以及合波模块,该滤波模块与该路由模块相连,该路由模块与该合波模块相连。如图6所示,该方法包括:
S601、光传输装置通过该滤波模块包括的2N个梳状滤波器对2N路输入光信号组进行奇偶分波,得到2N路奇波光信号组以及2N路偶波光信号组,并将该2N路该奇波光信号组以及该2N路偶波光信号组发送至该路由模块;其中,N为大于1的正整数,输入光信号组包括多个光信号,该输入光信号组的奇波光信号组包括该输入光信号组中的奇数光信号,该输入光信号组的偶波光信号组包括该输入光信号组中的偶数光信号;
S602、该光传输装置通过该路由模块包括的至少四个阵列波导光栅路由器AWGR将该2N路该奇波光信号组以及该2N路偶波光信号组分别路由至该合波模块;其中,该AWGR包括N个输入端口以及N个输出端口,该AWGR用于将每个输入端口输入的光信号转换至N个输出端口输出;
S603、该光传输装置通过该合波模块包括的2N个合波器将该路由模块输 出的4N路光信号组进行合波,得到2N路输出光信号组;其中,每路输出光信号组包括该2N路输入光信号组的每路输入光信号组中的一个光信号。
可选地,步骤S602包括:通过该路由模块中的第一AWGR将该滤波模块中的奇数梳状滤波器输出的奇波光信号路由到与该第一AWGR相连的合波器的第一输入端口;通过该路由模块中的第二AWGR将该滤波模块中的偶数梳状滤波器输出的奇波光信号路由到与该第二AWGR相连的合波器的第二输入端口;通过该路由模块中的第三AWGR将该奇数梳状滤波器输出的偶波光信号路由到与该第三AWGR相连的合波器的第一输入端口;通过该路由模块中的第四AWGR将该偶数梳状滤波器输出的偶波光信号路由到与该第四AWGR相连的合波器的第二输入端口。
可选地,步骤S603包括:该合波模块中的每个该合波器将从第一输入端口接收到的光信号组以及从第二输入端口接收到的光信号组进行合并输出;其中,该第一AWGR的第(K+1)/2个输出端口与该合波模块中的第K个合波器的第一输入端口相连,该第四AWGR的第(K+1)/2个输出端口与该合波模块中的第K个合波器的第二输入端口相连;K是数值区间[1,2N]中的奇数;该第二AWGR的第1个输出端口与该合波模块中的第2N个合波器的第一输入端口相连,该第三AWGR的第N个输出端口与该第2N个合波器的第二输入端口相连,该第二AWGR的第M/2+1个输出端口与该合波模块中的第M个合波器的第一输入端口相连,该第三AWGR的第M/2个输出端口与该合波模块中的第M个合波器的第二输入端口相连,M是数值区间[1,2N)中的偶数。
需要说明的是,参照上述装置实施例中对于滤波模块,路由模块以及合波模块的具体描述,本发明实施例提供的光传输方法的各个步骤均可应用于上述光传输装置,为了描述的简洁性,在此不再赘述。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

  1. 一种光传输装置,其特征在于,包括:
    滤波模块,路由模块以及合波模块,所述滤波模块与所述路由模块相连,所述路由模块与所述合波模块相连;
    所述滤波模块包括2N个梳状滤波器,所述滤波模块通过所述2N个梳状滤波器对2N路输入光信号组进行奇偶分波,得到2N路奇波光信号组以及2N路偶波光信号组,并将所述2N路所述奇波光信号组以及所述2N路偶波光信号组发送至所述路由模块;其中,N为大于1的正整数,输入光信号组包括多个光信号,所述输入光信号组的奇波光信号组包括所述输入光信号组中的奇数光信号,所述输入光信号组的偶波光信号组包括所述输入光信号组中的偶数光信号;
    所述路由模块包括至少四个阵列波导光栅路由器AWGR,所述路由模块通过所述至少四个AWGR将所述2N路所述奇波光信号组以及所述2N路偶波光信号组分别路由至所述合波模块;其中,每个所述AWGR包括N个输入端口以及N个输出端口,所述AWGR用于将每个输入端口输入的光信号转换至N个输出端口输出;
    所述合波模块包括2N个合波器,所述合波模块通过所述2N个合波器将所述路由模块输出的4N路光信号组进行合波,得到2N路输出光信号组,其中,每路输出光信号组包括所述2N路输入光信号组的每路输入光信号组中的一个光信号。
  2. 根据权利要求1所述的光传输装置,其特征在于,每个所述梳状滤波器包括第一输出端口和第二输出端口,所述第一输出端口用于输出奇波光信号组,所述第二输出端口用于输出偶波光信号组;所述滤波模块与所述路由模块相连,包括:
    所述滤波模块中的第K个梳状滤波器的第一输出端口与所述路由模块中的第一AWGR的输入端口相连;K是数值区间[1,2N]中的奇数;
    所述滤波模块中的第L个梳状滤波器的第一输出端口与所述路由模块中的第二AWGR的输入端口相连;L是数值区间[1,2N]中的偶数;
    所述滤波模块中的第K个梳状滤波器的第二输出端口与所述路由模块中的第三AWGR的输入端口相连;
    所述滤波模块中的第L个梳状滤波器的第二输出端口与所述路由模块中的第四AWGR的输入端口相连。
  3. 根据权利要求2所述的光传输装置,其特征在于,所述滤波模块与所述路由模块相连,包括:
    所述滤波模块中的第K个梳状滤波器的第一输出端口与所述第一AWGR的第(K+1)/2个输入端口相连;
    所述滤波模块中的第L个梳状滤波器的第一输出端口与所述第二AWGR的第L/2个输入端口相连;
    所述滤波模块中的第K个梳状滤波器的第二输出端口与所述第三AWGR的第(K+1)/2个输入端口相连;
    所述滤波模块中的第L个梳状滤波器的第二输出端口与所述第四AWGR的第L/2个输入端口相连。
  4. 根据权利要求3所述的光传输装置,其特征在于,每个所述合波器包括第一输入端口和第二输入端口,所述第一输出端口用于接收所述奇数光信号,所述第二输出端口用于接收所述偶数光信号;所述路由模块与所述合波模块相连,包括:
    所述第一AWGR的第(K+1)/2个输出端口与所述合波模块中的第K个合波器的第一输入端口相连,所述第四AWGR的第(K+1)/2个输出端口与所述合波模块中的第K个合波器的第二输入端口相连;
    所述第二AWGR的第1个输出端口与所述合波模块中的第2N个合波器的第一输入端口相连,所述第三AWGR的第N个输出端口与所述第2N个合波器的第二输入端口相连,所述第二AWGR的第M/2+1个输出端口与所述合波模块中的第M个合波器的第一输入端口相连,所述第三AWGR的第M/2 个输出端口与所述合波模块中的第M个合波器的第二输入端口相连,M是数值区间[1,2N)中的偶数。
  5. 一种光传输方法,其特征在于,所述方法应用于光传输装置,所述光传输装置包括滤波模块,路由模块以及合波模块,所述滤波模块与所述路由模块相连,所述路由模块与所述合波模块相连;所述方法包括:
    光传输装置通过所述滤波模块包括的2N个梳状滤波器对2N路输入光信号组进行奇偶分波,得到2N路奇波光信号组以及2N路偶波光信号组,并将所述2N路所述奇波光信号组以及所述2N路偶波光信号组发送至所述路由模块;其中,N为大于1的正整数,输入光信号组包括多个光信号,所述输入光信号组的奇波光信号组包括所述输入光信号组中的奇数光信号,所述输入光信号组的偶波光信号组包括所述输入光信号组中的偶数光信号;
    通过所述路由模块包括的至少四个阵列波导光栅路由器AWGR将所述2N路所述奇波光信号组以及所述2N路偶波光信号组分别路由至所述合波模块;其中,所述AWGR包括N个输入端口以及N个输出端口,所述AWGR用于将每个输入端口输入的光信号转换至N个输出端口输出;
    通过所述合波模块包括的2N个合波器将所述路由模块输出的4N路光信号组进行合波,得到2N路输出光信号组;其中,每路输出光信号组包括所述2N路输入光信号组的每路输入光信号组中的一个光信号。
  6. 根据权利要求5所示的方法,其特征在于,所述通过所述路由模块包括的至少四个阵列波导光栅路由器AWGR将所述2N路所述奇波光信号组以及所述2N路偶波光信号组分别路由至所述合波模块,包括:
    通过所述路由模块中的第一AWGR将所述滤波模块中的奇数梳状滤波器输出的奇波光信号路由到与所述第一AWGR相连的合波器的第一输入端口;
    通过所述路由模块中的第二AWGR将所述滤波模块中的偶数梳状滤波器输出的奇波光信号路由到与所述第二AWGR相连的合波器的第二输入端口;
    通过所述路由模块中的第三AWGR将所述奇数梳状滤波器输出的偶波光信号路由到与所述第三AWGR相连的合波器的第一输入端口;
    通过所述路由模块中的第四AWGR将所述偶数梳状滤波器输出的偶波光信号路由到与所述第四AWGR相连的合波器的第二输入端口。
  7. 根据权利要求6所述的方法,其特征在于,所述通过所述合波模块包括的2N个合波器将所述路由模块输出的4N路光信号组进行合波,得到2N路输出光信号组,包括:
    所述合波模块中的每个所述合波器将从第一输入端口接收到的光信号组以及从第二输入端口接收到的光信号组进行合并输出;
    其中,所述第一AWGR的第(K+1)/2个输出端口与所述合波模块中的第K个合波器的第一输入端口相连,所述第四AWGR的第(K+1)/2个输出端口与所述合波模块中的第K个合波器的第二输入端口相连;K是数值区间[1,2N]中的奇数;所述第二AWGR的第1个输出端口与所述合波模块中的第2N个合波器的第一输入端口相连,所述第三AWGR的第N个输出端口与所述第2N个合波器的第二输入端口相连,所述第二AWGR的第M/2+1个输出端口与所述合波模块中的第M个合波器的第一输入端口相连,所述第三AWGR的第M/2个输出端口与所述合波模块中的第M个合波器的第二输入端口相连,M是数值区间[1,2N)中的偶数。
PCT/CN2016/086578 2015-10-26 2016-06-21 一种光传输方法以及光传输装置 WO2017071258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/962,703 US10136199B2 (en) 2015-10-26 2018-04-25 Optical transmission method and optical transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510701443.8 2015-10-26
CN201510701443.8A CN106612154B (zh) 2015-10-26 2015-10-26 一种光传输方法以及光传输装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/962,703 Continuation US10136199B2 (en) 2015-10-26 2018-04-25 Optical transmission method and optical transmission apparatus

Publications (1)

Publication Number Publication Date
WO2017071258A1 true WO2017071258A1 (zh) 2017-05-04

Family

ID=58613899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086578 WO2017071258A1 (zh) 2015-10-26 2016-06-21 一种光传输方法以及光传输装置

Country Status (3)

Country Link
US (1) US10136199B2 (zh)
CN (1) CN106612154B (zh)
WO (1) WO2017071258A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055082B (zh) * 2017-11-14 2020-01-21 烽火通信科技股份有限公司 一种基于c-ran系统的单纤双向光线路系统
CN108398743B (zh) * 2018-05-22 2023-10-31 浙江大学 滤波器和输入通道级联实现频谱均匀的awg路由器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023559A (zh) * 2012-12-27 2013-04-03 上海交通大学 基于资源共享保护机制的wdm-pon系统及保护方法
JP5498553B2 (ja) * 2012-10-05 2014-05-21 日本電信電話株式会社 空間光スイッチ
CN104836624A (zh) * 2015-04-17 2015-08-12 东南大学 一种基于光载波抑制技术的集中式保护无源光网络系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510261B2 (en) * 1997-06-06 2003-01-21 Novera Optics, Inc. Acousto-optic variable attenuator with active cancellation of back reflections
US6532322B1 (en) * 1997-06-06 2003-03-11 Novera Optics, Inc. Channel equalizer with acousto-optic variable attenuators
KR100342517B1 (ko) * 2000-10-04 2002-06-28 윤종용 중간단소자를 공유하는 파장교대방식 양방향 애드/드롭다중화기 및 광증폭기 모듈
US6721473B1 (en) * 2001-02-02 2004-04-13 Cheetah Omni, Llc Variable blazed grating based signal processing
US7286760B1 (en) * 2001-11-15 2007-10-23 At&T, Corp. Wavelength allocation in regional access network with optical add-drop multiplexers
US6922501B2 (en) * 2002-04-11 2005-07-26 Nortel Networks Limited Fast optical switch
US8064341B2 (en) * 2003-10-10 2011-11-22 Nortel Networks Limited Temporal-spatial burst switching
JP4530821B2 (ja) * 2004-08-16 2010-08-25 富士通株式会社 光分岐挿入装置
US9319169B2 (en) * 2010-07-07 2016-04-19 Tyco Electronics Subsea Communications Llc Orthogonally-combining interleaving filter multiplexer and systems and methods using same
KR101747453B1 (ko) * 2012-02-29 2017-06-16 한국전자통신연구원 파장 다중화 및 역다중화 기능이 통합된 배열 도파로 격자 라우터 장치
WO2013182246A1 (en) * 2012-06-08 2013-12-12 Telefonaktiebolaget L M Ericsson (Publ) Optical routing apparatus and method
US10454572B2 (en) * 2014-03-10 2019-10-22 Aeponyx Inc. Methods and systems relating to optical networks
US20160044393A1 (en) * 2014-08-08 2016-02-11 Futurewei Technologies, Inc. System and Method for Photonic Networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5498553B2 (ja) * 2012-10-05 2014-05-21 日本電信電話株式会社 空間光スイッチ
CN103023559A (zh) * 2012-12-27 2013-04-03 上海交通大学 基于资源共享保护机制的wdm-pon系统及保护方法
CN104836624A (zh) * 2015-04-17 2015-08-12 东南大学 一种基于光载波抑制技术的集中式保护无源光网络系统

Also Published As

Publication number Publication date
US10136199B2 (en) 2018-11-20
CN106612154A (zh) 2017-05-03
CN106612154B (zh) 2019-01-08
US20180249231A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
US9832550B2 (en) Radix enhancement for photonic packet switch
JP4528922B2 (ja) フレキシブル波長バンドアグリゲータ、デアグリゲータおよび階層的ハイブリッド光クロスコネクトシステム
US9417396B2 (en) Optoelectronic switch
US7430346B2 (en) Non-blocking cyclic AWG-based node architectures
EP1761103A1 (en) Non-blocking cyclic AWG-based node architectures
EP2946506B1 (en) Photonic cross-connect with reconfigurable add-drop-functionality
US10313047B2 (en) Optical wavelength selective switch, an optical network node, an optical network and methods therein
CN108476080B (zh) 多维光电子交换机
US20170245029A1 (en) Spectral-Temporal Connector for Full-Mesh Networking
WO2017071258A1 (zh) 一种光传输方法以及光传输装置
GB2530833A (en) Optoelectronic switch
US20030206743A1 (en) Cross connecting device and optical communication system
JP2001008244A (ja) 光クロスコネクト装置、光波長分割多重ネットワーク及び光波長分割多重方法
JP5982669B2 (ja) 光パスクロスコネクト装置
US20210144456A1 (en) Optoelectronic switch with reduced fibre count
US8260142B2 (en) Multi-channel optical arrayed time buffer
JP2002315027A (ja) 波長群波長変換器及びそれを用いた波長群交換機
US6853763B1 (en) Photonic switching including photonic pass-through and add/drop capabilities
JP5858474B2 (ja) 光可変フィルタおよび光可変フィルタを用いた光信号終端装置
JP2001346235A (ja) 光通信方法
EP3494658A1 (en) Optical switch
CN110870224B (zh) 光分插复用器和光通信装置
AU2015100697A4 (en) Large scale cross-connect
RU2537794C2 (ru) Оптический мультиплексор-демультиплексор с разделением направлений распространения
CN103731227A (zh) 一种新型双向光分插分复用器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16858701

Country of ref document: EP

Kind code of ref document: A1