WO2017070990A1 - 一种基于经颅多普勒的颅内血流三维信息显示方法及其系统 - Google Patents

一种基于经颅多普勒的颅内血流三维信息显示方法及其系统 Download PDF

Info

Publication number
WO2017070990A1
WO2017070990A1 PCT/CN2015/094483 CN2015094483W WO2017070990A1 WO 2017070990 A1 WO2017070990 A1 WO 2017070990A1 CN 2015094483 W CN2015094483 W CN 2015094483W WO 2017070990 A1 WO2017070990 A1 WO 2017070990A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
dimensional
intracranial
information
flow information
Prior art date
Application number
PCT/CN2015/094483
Other languages
English (en)
French (fr)
Inventor
杨弋
郑永平
罗春华
王筱毅
Original Assignee
深圳市德力凯医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市德力凯医疗设备股份有限公司 filed Critical 深圳市德力凯医疗设备股份有限公司
Priority to US15/752,159 priority Critical patent/US20180235568A1/en
Publication of WO2017070990A1 publication Critical patent/WO2017070990A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data

Definitions

  • the invention relates to the technical field of medical ultrasonic waves, in particular to a three-dimensional information display method and system for intracranial blood flow based on transcranial Doppler.
  • Ultrasound transcranial Doppler flowmetry to detect the blood flow spectrum of intracranial arteries to obtain blood flow velocity and direction, etc., has been widely used in clinical practice.
  • the following probe frequencies are commonly used for transcranial Doppler (TCD) intracranial testing: 1.0MHz, 1.6MHz or 2.0MHz pulse wave.
  • the TCD probe Compared to color Doppler ultrasound, the TCD probe has a lower frequency and a stronger penetrating power. However, the spectral image is rough and the resolution is relatively poor.
  • the existing transcranial Doppler is mainly used to detect blood flow information of a certain segment of the intracranial artery, or can give a blood flow information in the direction of the ultrasonic beam, and cannot give a blood flow distribution map of a two-dimensional plane or even a three-dimensional shape. .
  • Color ultrasound Doppler color Doppler
  • Three-dimensional imaging technology using the convex or linear array three-dimensional probe (mechanical fan sweep or area array technology) of the human body for the abdominal organs, fetuses and thyroids without high-speed moving tissues has become increasingly mature and widely used.
  • these three-dimensional imaging mainly focuses on displaying the three-dimensional structure of extracranial organs and tissues, and can also perform three-dimensional reconstruction of color blood flow by Doppler imaging technology, but it cannot be applied to the intracranial, and the product price is much higher than that of ultrasound transcranial Puller blood flow analyzer.
  • the low-frequency phased array probe of color ultrasound can be used for intracranial blood vessel detection, and can provide two-dimensional planar structure map and color blood flow display and even Doppler spectrum, but can not perform three-dimensional blood vessels (or blood flow). Imaging.
  • an object of the present invention is to provide a three-dimensional information display method and system for intracranial blood flow based on transcranial Doppler, which aims to solve the problem that three-dimensional intracranial blood flow cannot be realized in the prior art.
  • the stereoscopic distribution provides complete hemodynamic information and enables long-term continuous monitoring.
  • a transcranial Doppler-based three-dimensional information display method for intracranial blood flow comprising:
  • A using a transcranial Doppler ultrasound probe to perform multi-beam ultrasound scanning on a predetermined intracranial region, and receiving an ultrasonic echo signal;
  • blood flow information including a depth of the intracranial blood vessel, a blood flow direction relative blood flow rate, and a blood flow velocity
  • the three-dimensional image is personalized and output, and displayed to the user.
  • the intracranial blood flow three-dimensional information display method wherein the intracranial predetermined is obtained by mechanically controlling the ultrasonic probe deflection or by electronic focusing of a multi-element ultrasound probe or by mechanical control combined with electronic focusing The area is scanned for multi-beam ultrasound.
  • the intracranial blood flow three-dimensional information display method wherein the method further comprises: The three-dimensional model is sliced to calculate the diameter of the blood vessel; and the blood flow information of the blood vessel is calculated according to the diameter of the blood vessel and the blood flow velocity.
  • the method for displaying three-dimensional information of intracranial blood flow wherein the method further comprises:
  • long-range monitoring is performed on the intracranial whole blood flow condition or the blood flow information of one or more regions having preset features.
  • the intracranial blood flow three-dimensional information display method wherein the step B Also included: screening out non-blood flow information in the ultrasonic echo signal prior to performing the three-dimensional modeling operation;
  • ultrasonic echo signals of different depths are processed by different computational complexity and accuracy.
  • the intracranial blood flow three-dimensional information display method wherein the method further comprises: outputting the blood flow information to a sound card, and displaying the sound to the user in a sound form.
  • a transcranial Doppler-based intracranial blood flow three-dimensional information display system comprising: a probe scanning module for generating ultrasonic waves for multi-beam ultrasound scanning of a predetermined intracranial region; and an ultrasound receiving module for Receiving an ultrasonic echo signal; a probe scanning control module for controlling the ultrasonic probe; and a data processing module for calculating, according to the ultrasonic echo signal, a depth including a blood vessel, a blood flow direction, a relative blood flow, and a blood flow a blood flow information of the speed; a three-dimensional image drawing module, configured to visually process the data of the three-dimensional model to form a three-dimensional image and display the same to the user; and a three-dimensional imaging parameter control module, configured to display the user instruction according to the user instruction Personalize the 3D image.
  • the intracranial blood flow three-dimensional information display system wherein the system further comprises a parameter measuring module for slicing the three-dimensional model to calculate a diameter of a blood vessel; and calculating a diameter and a blood flow velocity of the blood vessel Blood flow information of blood vessels.
  • the intracranial blood flow three-dimensional information display system wherein the data processing module is further configured to: screen non-blood flow information in the ultrasonic echo signal before performing the three-dimensional modeling operation; According to the preset standard, ultrasonic echo signals of different depths are processed by different computational complexity and accuracy.
  • the intracranial blood flow three-dimensional information display system wherein the system further comprises a sound output module, configured to output the blood flow information to a sound card, and present to the user in a sound form.
  • the present invention provides a three-dimensional information display method and system for transcranial blood flow based on transcranial Doppler, and obtains blood flow at various depths of all scanning directions by performing regional ultrasound scanning on the intracranial region. Information (speed, blood flow, direction), and further through the data reconstruction to obtain a three-dimensional blood flow stereo map. And MRI, CT, DSA Such comparisons, low cost, convenient and reproducible detection, can be used for long-range monitoring of intracranial global blood flow conditions or blood flow information for one or more regions with preset features. Compared with existing transcranial Doppler or transcranial color Doppler imaging, it can greatly reduce the dependence on the operator's experience, and provide more complete and objective information for the doctor to diagnose.
  • FIG. 1 is a functional block diagram of a TCD apparatus for implementing the three-dimensional information display method of the intracranial blood flow according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for displaying a three-dimensional information of intracranial blood flow based on transcranial Doppler according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a probe scanning module adopting a mechanical control manner according to an embodiment of the present invention.
  • the invention provides a three-dimensional information display method and system for intracranial blood flow based on transcranial Doppler.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a functional block diagram of a TCD apparatus for implementing the intracranial blood flow three-dimensional information display method according to an embodiment of the present invention.
  • the TCD instrument includes a probe scanning module 100 for transmitting ultrasonic waves and performing area scanning, an ultrasonic receiving module 200, a probe scanning control module 300, and an ultrasonic emission control module 400.
  • the multi-beam ultrasound scan of the predetermined region of the intracranial can be achieved by mechanically controlling the deflection of the ultrasound probe or by electronic focusing of the multi-element ultrasound probe or by mechanical control in conjunction with electronic focusing.
  • the deflection angle of the ultrasound probe is controlled by two (or more) stepper motors to effect scanning of blood vessels within a particular region of the skull.
  • two stepper motors to effect scanning of blood vessels within a particular region of the skull.
  • the respective ends of the two connecting rods 100 and 200 are respectively connected to two stepping motors 300 and 400 on.
  • the other ends of the two links intersect at the end points and keep the two links perpendicular to each other in the same plane.
  • the intersection of the two links is intersected with the other end of the ultrasonic transducer element 500 at the end point.
  • the vibrating element passes through the elastic material 600 Fix and keep the ultrasound probe perpendicular to the plane of the two links.
  • the probe element end 500 is made of elastic material 600 Fixed, so controlling the rotation of the stepper motor to control the movement of the link allows the probe to deflect within a predetermined range of angles, thereby enabling scanning of blood vessels in a particular area.
  • the ultrasonic receiving module is configured to receive an ultrasonic echo signal
  • the probe scanning control module and the ultrasonic emission control module are respectively used to control mechanical movement of the probe (for example, controlling a stepping motor to control a deflection angle of the probe) and an emission control logic of the ultrasonic wave. It includes control of parameters such as transmit power and transmit frequency.
  • the ultrasound receiving control module is configured to implement reception of an ultrasonic echo signal or data.
  • the data storage module is used to store related data and programs, such as ultrasonic echo data, three-dimensional imaging data, and the like.
  • the data processing module is configured to perform three-dimensional modeling operations on intracranial blood flow through multi-depth, multi-angle ultrasonic echo signals. Because of the echo signal from the ultrasound probe, the velocity, direction, depth, and relative blood flow information of the blood flow can be obtained. Therefore, when the ultrasonic probe is scanned by the stepper motor, a stereoscopic model including blood flow velocity, direction, depth, and relative blood flow can be obtained. Further, the data processing module may further slice the stereo model to calculate a diameter of a blood vessel. Preferably, the data processing module can also screen out non-blood flow information in the ultrasonic echo signal before performing the three-dimensional modeling operation; According to the preset standard, ultrasonic echo signals of different depths are processed by different computational complexity and accuracy.
  • the system may further include a parameter measurement module 10 For calculating the blood flow information of the blood vessel according to the diameter of the blood vessel and the blood flow velocity.
  • the data processing module can be implemented by using any suitable electronic computing platform with certain computing power.
  • the three-dimensional image drawing module is configured to visually process the data of the three-dimensional model to form a three-dimensional image and display it to a user.
  • the three-dimensional imaging parameter control module is configured to personalize the three-dimensional image before displaying to the user according to the user instruction, for example, changing the analysis range, chromatogram, displaying corresponding blood flow information data, and the like.
  • the system may further include a sound output module 20 . It is used to output the blood flow information to a sound card and present it to the user in the form of sound. In the above manner, it is convenient for the doctor to observe and understand the blood flow from the perspective of hearing.
  • Figure 2 Shown is a three-dimensional information display method based on transcranial Doppler for intracranial blood flow according to a specific embodiment of the present invention.
  • the method includes the following steps:
  • blood flow information including depth of the intracranial blood vessel, blood flow direction, relative energy, and blood flow velocity is obtained.
  • the specific operation method may use a fast Fourier transform, a complex correlation operation, or a Doppler energy calculation.
  • the blood flow information in a plurality of directions is obtained based on the predetermined area scan, and a three-dimensional model including the blood flow information is formed by the three-dimensional modeling operation. Since it is an omnidirectional ultrasonic scan of a predetermined area, data in a plurality of directions of the area (i.e., echo information of a plurality of ultrasonic waves) can be obtained. By using common 3D modeling algorithms, integrating these data yields a stereo model.
  • the predetermined area is determined by actual conditions, such as the location of intracranial blood vessels that the doctor needs to monitor.
  • the predetermined area may also be several or ultrasonically scanned independently by dividing a large predetermined area into several small areas.
  • the images are integrated after obtaining a stereo image of a plurality of predetermined regions to obtain more complete intracranial blood vessel information.
  • two three-dimensional blood flow distribution maps can be separately scanned in the left and right side sputum windows, and a more accurate cerebral blood flow three-dimensional structure map can be obtained through image composite.
  • the data of the three-dimensional model is visualized to form a three-dimensional image; and the three-dimensional image is personalized and output according to a user instruction, and displayed to the user.
  • blood flow information such as blood flow velocity, direction, and energy at a certain position can also be marked and displayed in the three-dimensional image.
  • the pair may be obtained by mechanically controlling the deflection of the ultrasonic probe or by electronic focusing of a multi-element ultrasound probe or by mechanical control in combination with electronic focusing.
  • the method further comprises: slicing the three-dimensional model to calculate a diameter of a blood vessel; and calculating blood flow information of the blood vessel according to a diameter of the blood vessel and a blood flow velocity.
  • the above vessel diameter and blood flow information can be indicated in the blood flow segment corresponding to the three-dimensional image.
  • the left and right arterial blood flow can also be symmetrically analyzed for further diagnosis.
  • the method may further include: selecting one or more regions having preset features to perform long-term blood flow information monitoring according to the three-dimensional image.
  • the preset features are specifically determined by actual conditions and needs, such as a maximum blood flow velocity region. , the narrowest vascular area, the largest area of blood flow change. The above-mentioned long-term monitoring of specific areas can greatly facilitate the treatment and diagnosis of doctors.
  • the step B may also include screening out non-blood flow information in the ultrasonic echo signal prior to performing the three-dimensional modeling operation.
  • the ultrasonic echo signals of different depths are processed by different computational complexity and accuracy.
  • the method may further include outputting the blood flow information to the sound card and presenting to the user in a sound form. After outputting to the sound card, the blood stream information can be played out in the form of sound by accessing the corresponding audio device.
  • a method for constructing a three-dimensional image of an intracranial blood vessel using a Transcend Doppler instrument with an automatic monitoring probe :
  • the intracranial scan is performed from the left side of the window.
  • the complex echo calculation is performed on the ultrasonic echo of each line to obtain 128 Blood flow energy and direction information.
  • the data of 123008 points in the skull can be obtained from the accumulation of one side window, and a three-dimensional reconstruction of the intracranial blood flow is obtained after three-dimensional reconstruction.
  • the automatic probe is controlled to scan all the wave velocity positions displaying the blood flow information again, and the echo is subjected to fast Fourier transform to obtain blood flow parameter information of each point.
  • the intracranial scan is performed from the right side window, and the same procedure is performed to obtain a three-dimensional view of the intracranial blood flow on the right side and blood flow parameter information of each point.
  • the area of each main artery can be calculated, and the blood flow of each blood vessel can be obtained by comparing the measured flow velocity of each blood vessel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种基于经颅多普勒的颅内血流三维信息显示方法及其系统。其中,所述方法包括:A、利用经颅多普勒的超声探头对颅内预定区域进行多波束超声波扫描,并接收超声回波信号(S1);B、依据所述超声回波信号,计算获得包括颅内血管的深度、血流方向、相对血流量以及血流速度的血流信息(S2);C、基于预定区域扫描获得多个方向上的血流信息,通过三维建模运算形成包含血流信息的立体模型(S3);D、将所述立体模型的数据进行可视化处理形成三维图像;并且依据用户指令,对三维图像进行个性化调整后输出,向用户展示(S4)。其与MRI、CT、DSA等比较,价格低廉,方便并且可重复检测。还能大幅度降低对操作者经验的依赖程度,能提供更加完整客观的血流信息。

Description

一种基于经颅多普勒的颅内血流三维信息显示方法及其系统
技术领域
本发明涉及医学超声波技术领域,尤其涉及一种基于经颅多普勒的颅内血流三维信息显示方法及其系统。
背景技术
超声经颅多普勒血流分析仪探测颅内动脉的血流频谱获得血流速度及方向等信息,目前已经普遍应用于临床。经颅多普勒( TCD )颅内检测常用以下探头频率: 1.0MHz 、 1.6MHz 或 2.0MHz 脉冲波。
相对于彩色多普勒超声, TCD 探头的频率较低,穿透力较强 , 但频谱图象粗糙,分辨率相对较差。现有的经颅多普勒主要用于检测颅内动脉某一段的血流信息,或能给出一个超声波束方向上的血流信息,不能给出二维平面乃至三维立体的血流分布图。
而彩色超声多普勒(彩超)技术近年以来发展迅速。利用彩超的凸阵或线阵三维探头(机械扇扫或面阵技术)进行人体腹部器官、胎儿及甲状腺等没有高速运动组织的部位的三维成像技术已经日趋成熟并得到了广泛的应用。
但这些三维成像主要侧重于显示颅外器官及组织的三维结构,也能通过多普勒成像技术进行彩色血流的三维重建,但是不能应用于颅内,并且产品价格远高于超声经颅多普勒血流分析仪。而目前彩超的低频相控阵探头虽然可以用于颅内血管检测,并能提供二维的平面结构图和彩色血流显示甚至多普勒频谱图,但也不能进行三维血管(或血流)成像。
其它能获得颅内血流三维形态分布的技术有 MRI 、 CT 和 DSA 等高端影像设备,它们能获得很高精度的图像信息。彩超的三维成像技术目前不能同时获得所显示血流的参数数据。由于颅骨对超声信号的衰减,导致能够获得清晰图像的中高频超声波难以穿透颅骨,低频超声探头成像效果又不佳,所以现在市场上还没有能用于颅内血管及组织检测的三维探头及相关技术。
MRI 、 CT 和 DSA 等产品检测有的需要造影剂配合,对人体有一定辐射伤害。所有这些检测设备的缺点是综合价格昂贵,不方便反复检测,不能进行长程监测,可重复性差,只能获得血流在某个时间点的影像学资料,由于没有真实的血流速度、方向和能量等信息,无法对血流动力学做定量判断。
因此,现有技术还有待发展。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种基于经颅多普勒的颅内血流三维信息显示方法及其系统,旨在解决现有技术无法实现颅内血流三维立体分布的同时提供完整的血流动力学信息,实现长时间持续监测的问题。
为了达到上述目的,本发明采取了以下技术方案:
一种基于经颅多普勒的颅内血流三维信息显示方法,其中,所述方法包括:
A 、利用经颅多普勒的超声探头对颅内预定区域进行多波束超声波扫描,并接收超声回波信号;
B 、依据所述超声回波信号,计算获得包括颅内血管的深度、血流方向相对血流量以及血流速度的血流信息;
C 、基于预定区域扫描获得多个方向上的血流信息,通过三维建模运算形成包含血流信息的立体模型;
D 、将所述立体模型的数据进行可视化处理形成三维图像;并且
依据用户指令,对三维图像进行个性化调整后输出,向用户展示。
所述的颅内血流三维信息显示方法,其中,通过机械控制所述超声探头偏转或采用多阵元超声探头的电子聚焦的方式或采用机械控制结合电子聚焦的方式获得所述对颅内预定区域进行扫描的多波束超声波。
所述的颅内血流三维信息显示方法,其中,所述方法还包括: E 、对所述立体模型进行切片从而计算血管的管径;并且依据血管的管径及血流速度计算血管的血流量信息。
所述的颅内血流三维信息显示方法,其中,所述方法还包括:
依据所述三维图像,对颅内整体血流状况或选取一个或者多个具有预设特征的区域的血流信息进行长程监测。
所述的颅内血流三维信息显示方法,其中,所述步骤 B 还包括:在进行三维建模运算前,筛除超声回波信号中的非血流信息;并且
依据预设的标准,对不同深度的超声回波信号采用不同计算复杂度及准确度的运算方式进行处理。
所述的颅内血流三维信息显示方法,其中,所述方法还包括:将所述血流信息输出到声卡,以声音形式向用户展示。
一种基于经颅多普勒的颅内血流三维信息显示系统,其中,所述系统包括:探头扫描模块,用于产生超声波对颅内预定区域进行多波束超声波扫描;超声接收模块,用于接收超声回波信号;探头扫描控制模块,用于控制超声波探头;数据处理模块,用于依据所述超声回波信号,计算获得包括颅内血管的深度、血流方向、相对血流量以及血流速度的血流信息;三维图像绘制模块,用于将所述立体模型的数据进行可视化处理形成三维图像并向用户展示;以及三维成像参数控制模块,用于依据用户指令,在向用户展示前,对三维图像进行个性化调整。
所述的颅内血流三维信息显示系统,其中,所述系统还包括参数测量模块,用于对所述立体模型进行切片从而计算血管的管径;以及依据血管的管径及血流速度计算血管的血流量信息。
所述的颅内血流三维信息显示系统,其中,所述数据处理模块还用于,在进行三维建模运算前,筛除超声回波信号中的非血流信息;以及 依据预设的标准,对不同深度的超声回波信号采用不同计算复杂度及准确度的运算方式进行处理。
所述的颅内血流三维信息显示系统,其中,所述系统还包括声音输出模块,用于将所述血流信息输出到声卡,以声音形式向用户展示。
有益效果:本发明提供的一种基于经颅多普勒的颅内血流三维信息显示方法及其系统,通过对颅内进行区域性的超声扫描,从而获得所有扫描方位各个深度上的血流信息(速度、血流量、方向),并进一步通过数据重建获得三维血流立体分布图。其与 MRI 、 CT 、 DSA 等比较,价格低廉,方便并且可重复检测,能对颅内整体血流状况或选取一个或者多个具有预设特征的区域的血流信息进行长程监测。与现有的经颅多普勒或经颅彩色多普勒成像相比,能大幅度降低对操作者经验的依赖程度,还能提供更加完整客观的信息,方便医生进行诊断。
附图说明
图 1 为本发明具体实施例的用于实现所述颅内血流三维信息显示方法的 TCD 仪的功能框图。
图 2 为本发明具体实施例的基于经颅多普勒的颅内血流三维信息显示方法的方法流程图。
图 3 为本发明具体实施例的采用机械控制方式的探头扫描模块的结构示意图。
具体实施方式
本发明提供一种基于经颅多普勒的颅内血流三维信息显示方法及其系统。为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。 应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图 1 所示,为本发明具体实施例的用于实现所述颅内血流三维信息显示方法的 TCD 仪的功能框图。所述 TCD 仪包括用于发射超声波并进行区域扫描的探头扫描模块 100 、超声接收模块 200 、探头扫描控制模块 300 、超声发射控制模块 400 、超声接收控制模块 500 、数据存储模块 600 、数据处理模块 700 、三维图像绘制模块 800 以及三维成像参数控制模块 900 。
具体的,所述探头扫描模块 100 可以通过机械控制所述超声探头偏转或者采用多阵元超声探头的电子聚焦的方式或采用机械控制结合电子聚焦的方式来实现所述对颅内预定区域的多束超声波扫描。
在本发明的一个具体实施例中,通过两个(或者两个以上)的步进电机来控制超声波探头的偏转角度从而实现颅内特定区域内血管进行扫描。当然,还可以选择使用其他合适的方式实现探头的机械控制。
如图 3 所示,具体为先将两根连杆 100 及 200 的各自一端分别连接到两个步进电机 300 及 400 上。两根连杆的另一端相交于端点并保持两根连杆在同一平面内相互垂直。
然后,将两连杆交点与超声波探头振元 500 的另一端相交于端点。振元端通过弹性材料 600 固定,并保持超声探头与两连杆平面垂直。
由于探头振元端 500 是用弹性材料 600 固定的,所以控制步进电机的转动从而控制连杆的运动即可使探头在预定的角度范围内偏转,从而实现了对特定区域的血管进行扫描。
所述超声接收模块用于接收超声回波信号,探头扫描控制模块及超声发射控制模块分别用于控制探头的机械运动(例如控制步进电机从而控制探头的偏转角度)以及超声波的发射控制逻辑。其包括发射功率、发射频率等参数的控制。
所述超声接收控制模块用于实现对超声波回波信号或数据的接收。所述数据存储模块用于存储相关的数据以及程序,例如超声波回波数据、三维成像数据等等。
所述数据处理模块用于通过多深度、多角度的超声波回波信号对颅内血流进行三维建模运算。由于可从超声波探头回波信号得出血流的速度、方向、深度、相对血流量信息。因此,当通过步进电机让超声探头进行区域扫描后,就可以得到一个立体的包含血流速度、方向、深度、相对血流量的模型。进一步的,所述数据处理模块还可以对所述立体模型进行切片从而计算血管的管径。较佳的是,在进行三维建模运算前,所述数据处理模块还可以筛除超声回波信号中的非血流信息;以及 依据预设的标准,对不同深度的超声回波信号采用不同计算复杂度及准确度的运算方式进行处理。
在本发明的较佳实施例中,所述系统还可以包括参数测量模块 10 ,用于依据血管的管径及血流速度计算血管的血流量信息。所述数据处理模块具体可以使用任何合适的,具有一定运算能力的电子计算平台予以实现。
所述三维图像绘制模块用于将所述立体模型的数据进行可视化处理形成三维图像并向用户展示。所述三维成像参数控制模块则用于依据用户指令,在向用户展示前,对三维图像进行个性化调整,例如,改变分析范围,色谱,显示相应的血流信息数据等等。
更佳的是,所述系统还可以包括声音输出模块 20 。其用于将所述血流信息输出到声卡,以声音形式向用户展示。通过上述方式,能够方便医生从听觉角度观察,理解血流的情况。
如图 2 所示,为本发明具体实施例的基于经颅多普勒的颅内血流三维信息显示方法。所述方法包括如下步骤:
S1 、利用经颅多普勒的超声探头对颅内预定区域进行多波束超声波扫描,并接收超声回波信号。
S2 、依据所述超声回波信号,计算获得包括颅内血管的深度、血流方向、相对能量以及血流速度的血流信息。
上述计算的原理具体为:
1 、方向、速度及能量:利用门电路让超声波探头产生脉冲式超声波,依据多普勒频移原理,当超声波碰到颅内血管中的红细胞时会产生频移,我们通过接收超声波回波的相关数据,就可以得到血流的运动方向、速度及能量。具体的运算方法可以使用快速傅立叶变换、复相关运算或多普勒能量计算等。
2 、深度:如上所述,由于采用的是脉冲方式发射的超声波。在间隔时间和超声速度已知的前提下,可以由接收到回波的时间计算出血管与超声波探头间的距离(亦即深度)。
S3 、基于预定区域扫描获得多个方向上的血流信息,通过三维建模运算形成包含血流信息的立体模型。由于是对预定区域的全方位超声波扫描,因此可以获得该区域的多个方向上的数据(即多束超声波的回波信息)。通过使用常用的三维建模算法,整合这些数据可以得到一个立体模型。
当然,所述预定区域由实际情况所确定,例如医生需要进行监控的颅内血管的位置。所述预定区域也可以是若干个或者是将某一大的预定区域分割为几个小的区域独立进行超声扫描。
在获得若干个预定区域的立体图像后对图像进行整合从而获得更为完整的颅内血管信息。例如,可以在左右侧颞窗分别扫描获得两幅三维血流分布图,通过影像复合获得更加准确的脑血流立体结构图。
S4 、将所述立体模型的数据进行可视化处理形成三维图像;并且依据用户指令,对三维图像进行个性化调整后输出,向用户展示。在实际的显示中,还可以在三维图像中标注并显示某处的血流速度、方向、能量等血流信息。
具体的,如上所述,在本发明的具体实施例中,可以通过机械控制所述超声探头偏转或采用多阵元超声探头的电子聚焦的方式或采用机械控制结合电子聚焦的方式获得所述对颅内预定区域进行扫描的多波束超声波。
较佳的是,所述方法还包括:对所述立体模型进行切片从而计算血管的管径;并且依据血管的管径及血流速度计算血管的血流量信息。上述血管管径及血流量信息均可以在三维图像对应的血流段标示。在获得血流量信息后,还可以对左右侧的动脉血流量进行对称分析以进行进一步的诊断。
在本发明的具体实施例中,所述方法还可以包括:依据所述三维图像,选取一个或者多个具有预设特征的区域进行长时间的血流信息监测。所述预设特征具体由实际情况及需求所决定,例如最大的血流速度区域 , 最窄的血管区域 , 最大的血流变化区域。上述对特定区域的长时间监测能够为医生的治疗和诊断带来极大的便利。
为进一步的简化运算,提高图像反应速度,在本发明的较佳实施例中,所述步骤 B 还可以包括:在进行三维建模运算前,筛除超声回波信号中的非血流信息。并且依据预设的标准,对不同深度的超声回波信号采用不同计算复杂度及准确度的运算方式进行处理。
筛除非血流信息有利于数据处理模块更迅速的生成三维立体图像,减轻数据处理压力。对不同的计算复杂度及准确度的运算方式是指计算复杂度较高的运算方式通常准确度较高,而计算复杂度较低的运算通常准确度有所欠缺。由于事实并不需要对所有超声回波信号均进行例如快速傅立叶变换( FFT )这样复杂的运算。因此,依据实际情况,适当的对某些回波信号使用简单运算能够极大的降低整体的运算量。
更具体的,所述方法还可以包括:将所述血流信息输出到声卡,以声音形式向用户展示。输出到声卡后,接入相应的音频设备即可将所述血流信息以声音的形式播放出来。
实施例 1
采用德力凯公司带自动监护探头的经颅多普勒仪实现颅内血管三维图像构建的方法:
首先、从左侧颞窗对颅内进行扫描,探头的扫描线数量为 31*31=961 条,每两条线的角度差约为 1.47 °,每条扫描线上的取样点为 128 点,两个点的间隔为 1mm 。
然后,对每条线的超声回波进行复相关计算,获得 128 个血流能量及方向信息。这样从一侧颞窗累计可以得到颅内 123008 个点的数据,进行三维重建后得到一副颅内血流三维立体图。
之后,控制自动探头对所有显示有血流信息的波速位置再次扫描,对回波进行快速傅立叶变换,获得每个点的血流参数信息。
完成左侧扫描后,再从右侧颞窗对颅内进行扫描,并执行相同的程序来获得右侧的颅内血流三维立体图及每个点的血流参数信息。
最后,将左右两侧获得的血流三维立体图像进行叠加复合,产生更加完整的颅内血流三维立体图。
实际使用中,依据该图显示的血流不同段的粗细可以计算出各条主要动脉血管的面积,配合测量出来的各条血管的流速,即可得到不同血管的血流量进行对照分析。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及本发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种基于经颅多普勒的颅内血流三维信息显示方法,其特征在于,所述方法包括:
    A 、利用经颅多普勒的超声探头对颅内预定区域进行多波束超声波扫描,并接收超声回波信号;
    B 、依据所述超声回波信号,计算获得包括颅内血管的深度、血流方向、相对血流量以及血流速度的血流信息;
    C 、基于预定区域扫描获得多个方向上的血流信息,通过三维建模运算形成包含血流信息的立体模型;
    D 、将所述立体模型的数据进行可视化处理形成三维图像;并且
    依据用户指令,对三维图像进行个性化调整后输出,向用户展示。
  2. 根据权利要求 1 所述的颅内血流三维信息显示方法,其特征在于,通过机械控制所述超声探头偏转或采用多阵元超声探头的电子聚焦的方式或机械控制结合电子聚焦的方式获得所述对颅内预定区域进行扫描的多波束超声波。
  3. 根据权利要求 1 所述的颅内血流三维信息显示方法,其特征在于,所述方法还包括:
    E 、对所述立体模型进行切片从而计算血管的管径;并且
    依据血管的管径及血流速度计算血管的血流量信息。
  4. 根据权利要求 1 所述的颅内血流三维信息显示方法,其特征在于,所述方法还包括:
    依据所述三维图像,对颅内整体血流状况或选取一个或者多个具有预设特征的区域的血流信息进行长程监测。
  5. 根据权利要求 1 所述的颅内血流三维信息显示方法,其特征在于,所述步骤 B 还包括:在进行三维建模运算前,筛除超声回波信号中的非血流信息;并且
    依据预设的标准,对不同深度的超声回波信号采用不同计算复杂度及准确度的运算方式进行处理。
  6. 根据权利要求 1 所述的颅内血流三维信息显示方法,其特征在于,所述方法还包括:将所述血流信息输出到声卡,以声音形式向用户展示。
  7. 一种基于经颅多普勒的颅内血流三维信息显示系统,其特征在于,所述系统包括:
    探头扫描模块,用于产生超声波对颅内预定区域进行多波束超声波扫描;超声接收模块,用于接收超声回波信号;
    探头扫描控制模块,用于控制超声波探头;
    数据处理模块,用于依据所述超声回波信号,计算获得包括颅内血管的深度、血流方向、相对血流量以及血流速度的血流信息;
    三维图像绘制模块,用于将所述立体模型的数据进行可视化处理形成三维图像并向用户展示;以及
    三维成像参数控制模块,用于依据用户指令,在向用户展示前,对三维图像进行个性化调整。
  8. 根据权利要求 7 所述的颅内血流三维信息显示系统,其特征在于,所述系统还包括参数测量模块,用于对所述立体模型进行切片从而计算血管的管径;以及 依据血管的管径及血流速度计算血管的血流量信息。
  9. 根据权利要求 7 所述的颅内血流三维信息显示系统,其特征在于,所述数据处理模块还用于,在进行三维建模运算前,筛除超声回波信号中的非血流信息;以及
    依据预设的标准,对不同深度的超声回波信号采用不同计算复杂度及准确度的运算方式进行处理。
  10. 根据权利要求 7 所述的颅内血流三维信息显示系统,其特征在于,所述系统还包括声音输出模块,用于将所述血流信息输出到声卡,以声音形式向用户展示。
PCT/CN2015/094483 2015-10-29 2015-11-12 一种基于经颅多普勒的颅内血流三维信息显示方法及其系统 WO2017070990A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/752,159 US20180235568A1 (en) 2015-10-29 2015-11-12 Transcranial doppler-based method and system for displaying three-dimensional intracranial blood flow information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510714916.8A CN105232086A (zh) 2015-10-29 2015-10-29 一种基于经颅多普勒的颅内血流三维信息显示方法及系统
CN201510714916.8 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017070990A1 true WO2017070990A1 (zh) 2017-05-04

Family

ID=55030114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094483 WO2017070990A1 (zh) 2015-10-29 2015-11-12 一种基于经颅多普勒的颅内血流三维信息显示方法及其系统

Country Status (3)

Country Link
US (1) US20180235568A1 (zh)
CN (1) CN105232086A (zh)
WO (1) WO2017070990A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043308A (zh) * 2020-08-31 2020-12-08 深圳市德力凯医疗设备股份有限公司 一种颅内三维脑血流重建方法、存储介质及超声设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106037800A (zh) * 2016-06-24 2016-10-26 深圳市大深生物医学工程转化研究院 早产儿颅脑出血超声监控装置及中央监控系统
CN108784740B (zh) * 2017-04-28 2021-12-24 深圳迈瑞生物医疗电子股份有限公司 超声图像中血流量获得方法、超声成像系统及存储介质
CN107731293A (zh) * 2017-11-20 2018-02-23 深圳市贝斯曼精密仪器有限公司 一种半自动外周血管检测操作系统
CN108852414A (zh) * 2018-05-07 2018-11-23 深圳市德力凯医疗设备股份有限公司 一种经颅三维脑血管成像方法及系统
CN108852415A (zh) * 2018-05-07 2018-11-23 深圳市德力凯医疗设备股份有限公司 一种经颅三维脑血管复合成像方法及系统
CN108814649B (zh) * 2018-07-05 2024-04-05 河南省计量测试科学研究院 多普勒超声诊断仪血流波形模体及校准方法
CN109984773A (zh) * 2019-03-26 2019-07-09 中国科学院苏州生物医学工程技术研究所 微小血管检查与识别系统与方法
CN110584709B (zh) * 2019-08-14 2022-03-11 深圳市德力凯医疗设备股份有限公司 一种脑血流数据的采集方法、存储介质及超声设备
CN111110278B (zh) * 2019-12-30 2022-07-05 深圳市德力凯医疗设备股份有限公司 一种采集参数的配置方法、存储介质及超声设备
US11883229B2 (en) * 2020-04-10 2024-01-30 GE Precision Healthcare LLC Methods and systems for detecting abnormal flow in doppler ultrasound imaging
CN113040821B (zh) * 2021-03-02 2023-03-31 深圳市德力凯医疗设备股份有限公司 颅内脑血流三维成像去噪方法、装置、终端设备及存储介质
CN113018600B (zh) * 2021-03-06 2023-08-15 中山市人民医院 一种急诊科用输液装置
CN114366163B (zh) * 2022-01-11 2023-08-25 深圳市德力凯医疗设备股份有限公司 基于快速扫描的脑血流数据采集方法、系统及智能终端
CN116616819B (zh) * 2023-07-25 2023-09-22 南京科进实业有限公司 一种超声经颅多普勒血流分析系统、方法及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474073A (en) * 1994-11-22 1995-12-12 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic scanning for three dimensional display
EP0842638A2 (en) * 1996-11-08 1998-05-20 ATL Ultrasound, Inc. Ultrasonic diagnostic imaging system with real time volume flow calculation
CN101313855A (zh) * 2007-06-01 2008-12-03 深圳市德力凯电子有限公司 一种用于自动检测脑血流的方法
CN101347341A (zh) * 2007-07-17 2009-01-21 阿洛卡株式会社 超声波诊断装置
CN101357069A (zh) * 2007-07-24 2009-02-04 株式会社东芝 超声波诊断装置及超声波诊断装置的音响输出方法
US20100130866A1 (en) * 2008-07-16 2010-05-27 Joan Carol Main Method for determining flow and flow volume through a vessel
CN101889216A (zh) * 2007-12-07 2010-11-17 皇家飞利浦电子股份有限公司 用于对血管成像的方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733669A (en) * 1985-05-24 1988-03-29 Cardiometrics, Inc. Blood flow measurement catheter
US7346174B1 (en) * 1998-10-05 2008-03-18 Clive Smith Medical device with communication, measurement and data functions
US6524249B2 (en) * 1998-11-11 2003-02-25 Spentech, Inc. Doppler ultrasound method and apparatus for monitoring blood flow and detecting emboli
US8394025B2 (en) * 2009-06-26 2013-03-12 Uab Vittamed Method and apparatus for determining the absolute value of intracranial pressure
CN106028950B (zh) * 2013-12-12 2020-03-31 三星麦迪森株式会社 显示超声图像的设备和方法
CN106102587B (zh) * 2015-04-29 2019-06-14 深圳迈瑞生物医疗电子股份有限公司 超声血流成像显示方法及超声成像系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474073A (en) * 1994-11-22 1995-12-12 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic scanning for three dimensional display
EP0842638A2 (en) * 1996-11-08 1998-05-20 ATL Ultrasound, Inc. Ultrasonic diagnostic imaging system with real time volume flow calculation
CN101313855A (zh) * 2007-06-01 2008-12-03 深圳市德力凯电子有限公司 一种用于自动检测脑血流的方法
CN101347341A (zh) * 2007-07-17 2009-01-21 阿洛卡株式会社 超声波诊断装置
CN101357069A (zh) * 2007-07-24 2009-02-04 株式会社东芝 超声波诊断装置及超声波诊断装置的音响输出方法
CN101889216A (zh) * 2007-12-07 2010-11-17 皇家飞利浦电子股份有限公司 用于对血管成像的方法和系统
US20100130866A1 (en) * 2008-07-16 2010-05-27 Joan Carol Main Method for determining flow and flow volume through a vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043308A (zh) * 2020-08-31 2020-12-08 深圳市德力凯医疗设备股份有限公司 一种颅内三维脑血流重建方法、存储介质及超声设备

Also Published As

Publication number Publication date
CN105232086A (zh) 2016-01-13
US20180235568A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2017070990A1 (zh) 一种基于经颅多普勒的颅内血流三维信息显示方法及其系统
US9241690B2 (en) Ultrasound diagnostic apparatus and ultrasound diagnostic method
Boni et al. A reconfigurable and programmable FPGA-based system for nonstandard ultrasound methods
KR102134763B1 (ko) 다중의 어퍼처 초음파를 사용한 물질 강성의 결정
US20120259225A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP5976441B2 (ja) 超音波プローブ及び超音波診断装置
JP5905856B2 (ja) 超音波検査装置
JP5798117B2 (ja) 超音波診断装置及び超音波診断装置の作動方法
JP2008136860A (ja) 超音波診断装置およびその画像処理プログラム
WO2014050797A1 (ja) 超音波検査装置、超音波検査方法、プログラム及び記録媒体
US20180092627A1 (en) Ultrasound signal processing device, ultrasound signal processing method, and ultrasound diagnostic device
US20120238877A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP6008581B2 (ja) 超音波診断装置、超音波診断装置の制御方法、及び超音波診断プログラム
US20190328363A1 (en) Ultrasound diagnostic apparatus and ultrasound signal processing method
JP6008580B2 (ja) 超音波診断装置、超音波診断装置の制御方法、及び超音波診断プログラム
JP2006141996A (ja) 超音波ドプラ計測装置及びドプラ信号処理プログラム
JP5132620B2 (ja) 超音波診断装置
US20120238874A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
KR20170045985A (ko) 초음파 영상장치 및 그 제어방법
KR101398005B1 (ko) 소형 치료 초음파 트랜스듀서를 이용한 고강도 집속 초음파 치료 시스템
JP5470900B2 (ja) 超音波診断装置
JP2008142130A (ja) 超音波診断装置およびその制御処理プログラム
JP2021058583A (ja) 超音波診断装置、及び検査方法
US20150080732A1 (en) Ultrasound diagnostic apparatus and data processing method
JP2016107080A (ja) 超音波プローブ及び超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15752159

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: COMMUNICATION NOT DELIVERED. NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.09.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15907051

Country of ref document: EP

Kind code of ref document: A1