WO2017070953A1 - 一种上行数据传输方法及ue - Google Patents

一种上行数据传输方法及ue Download PDF

Info

Publication number
WO2017070953A1
WO2017070953A1 PCT/CN2015/093456 CN2015093456W WO2017070953A1 WO 2017070953 A1 WO2017070953 A1 WO 2017070953A1 CN 2015093456 W CN2015093456 W CN 2015093456W WO 2017070953 A1 WO2017070953 A1 WO 2017070953A1
Authority
WO
WIPO (PCT)
Prior art keywords
data transmission
time
data
channel
transmission period
Prior art date
Application number
PCT/CN2015/093456
Other languages
English (en)
French (fr)
Inventor
郑娟
官磊
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/093456 priority Critical patent/WO2017070953A1/zh
Priority to CN201580071605.2A priority patent/CN107113873B/zh
Publication of WO2017070953A1 publication Critical patent/WO2017070953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of communications, and in particular, to an uplink data transmission method and a UE (User Equipment).
  • UE User Equipment
  • the LTE device can use the licensed spectrum as the primary component carrier (CA) by means of CA (Carrier Aggregation).
  • CA Carrier Aggregation
  • the PCC) or the primary cell (PCell) the unlicensed spectrum is used as a secondary component carrier (SCC) or a secondary cell (SCell), so that the LTE device can achieve network capacity by utilizing the unlicensed spectrum resource.
  • SCC secondary component carrier
  • SCell secondary cell
  • the purpose of the shunting is to reduce the load of the licensed carrier.
  • an eNB (Evolved Node B) can perform uplink multi-user scheduling. Based on the eNB scheduling, each UE (User Equipment) served by the eNB can perform uplink data transmission at the same time or in time.
  • the UE can follow the LBT (Listening before Talk) rule, that is, before the UE sends data on a certain channel, it needs to detect whether the channel is idle or not, and only when the channel is detected to be idle. Data can be sent over this channel. Since each UE served by the eNB uses the unlicensed spectrum for uplink data transmission, the same channel is used, or energy leakage occurs when the adjacent channel is used.
  • LBT Location before Talk
  • the eNBs interfere with each other's channel interception, thereby interfering with Uplink data transmission to each other.
  • the eNB indicates that the UE1 and the UE2 use the channel A for uplink data transmission, and the UE2 listens to the channel A when the UE1 is transmitting data. Since the channel A is currently occupied by the UE1, the UE2 channel listening result is unavailable. Furthermore, UE2 does not perform uplink data transmission at the time indicated by the eNB. In fact, UE1 no longer uses channel A when UE2 indicates that UE2 performs uplink data transmission, but UE2 is in UE1. Channel interception is performed when data is being transmitted, causing UE1 to interfere with the result of UE2 channel interception, thereby causing interference to uplink transmission of UE2.
  • the embodiments of the present invention provide an uplink data transmission method and a UE.
  • the UEs served by the eNB do not interfere with each other's uplink data transmission, and can ensure the eNB uplink multi-user scheduling gain, and can implement flexible scheduling of uplink multi-users.
  • an uplink data transmission method including:
  • the first UE determines its own inactive channel and the data transmission period of the first UE.
  • the data transmission period refers to a period in which the first UE transmits uplink data through the to-be-used channel. It should be noted that, in the present invention, the first and the second do not represent the priority order, but only distinguish different UEs.
  • the inactive channel here includes a channel configured by the access network device for the UE, and also includes a channel used by the access network device for data transmission scheduled by the UE.
  • the access network device includes a base station and a cell managed by the base station, such as a serving node of the UE. Data transmission can be performed between the access network device and the UE.
  • the first UE determines to transmit data according to the preset rule
  • the first UE determines to transmit data only at other times than the preset duration in the data transmission period, that is, in the preset duration
  • the second UE does not perform channel interception on the to-be-used channel, and the second UE performs channel sensing on the to-be-used channel of the second UE in the preset duration; wherein, the first UE and the The access network devices of the second UE are the same.
  • the first UE and the second UE that are both served by the base station A access the network through the base station A.
  • the base station instructs the first UE and the second UE to use the certain channel to transmit uplink data. If the second UE performs channel sounding on the channel during the period in which the first UE uses the channel to transmit data, the result of the interception is If the channel is occupied, the second channel will not use the channel for uplink data transmission at the time indicated by the base station, affecting multi-user scheduling. Gain.
  • the second UE When the first UE does not perform data transmission within a preset duration of its own data transmission period and does not perform channel sensing on the channel, the second UE performs channel interception on the channel, and the second UE will The uplink data is transmitted through the channel at the indicated time according to the scheduling indication of the base station, so that the UEs serving the same node do not interfere with each other's data transmission, and the multi-user scheduling gain is not affected.
  • the first UE determines, before transmitting data according to a preset rule in the data transmission period, receiving the first indication signaling, and according to The first indication signaling determines an index of a time position of the time unit in which the preset duration is located.
  • the time unit described herein is any one of the time units included in the data transmission period.
  • the time unit may be a subframe but is not limited to only a subframe, but may also be a slot, an OFDM symbol, or the like.
  • the index of the time position may be an index number of the subframe, or may be a slot index number or an OFDM symbol index number.
  • the first UE may further determine an index of a time position of the time unit in which the preset duration is located according to a predefined time parameter.
  • the first UE may further determine, after the data is transmitted according to the preset rule in the data transmission period, determine a time position of the time unit of the preset duration according to any one of the two manners provided herein. index of.
  • the base station may directly notify the first UE of the index of the time position of the time unit in which the preset duration is located by using the first indication signaling.
  • the first UE can determine when to leave blank during the data transmission period (no data transmission or channel interception), and the second UE can perform channel sensing in the blank period, the first UE does not It will interfere with the result of the second UE channel listening.
  • the first UE acquires an offset that the first UE acquires the first indication signaling
  • the parameter a and the period parameter b determine an index of the time position of the time unit in which the preset duration is located according to the offset parameter a and the period parameter b.
  • the first UE determines whether to transmit data according to a preset rule in the data transmission period The second indication signaling is received, and the length of the preset duration is determined according to the second indication signaling; or the first UE determines the length of the preset duration according to the predefined duration parameter.
  • the first UE may further determine, after the data is transmitted according to the preset rule in the data transmission period, determine the length of time of the preset duration according to any one of the two manners provided herein.
  • the length of the preset duration is greater than or equal to the length of time that the second UE performs channel sensing on the to-be-used channel of the second UE.
  • the first UE can determine how long to leave blank in the data transmission period, and the second UE can perform channel interception in the blank period, and the first UE does not interfere with the result of the second UE channel interception.
  • the first UE receives a third indication signaling, where The three indication signaling is used to indicate whether the first UE transmits data according to a preset rule during the data transmission period. Determining, according to the third indication signaling, whether data is transmitted according to a preset rule in the data transmission period;
  • the first UE may further determine whether to transmit data according to a preset rule in the data transmission period according to a predefined mode parameter.
  • the first UE further needs to transmit data before Channels are used for channel transmission during the listening period to ensure Data transmission is performed after the standby channel is idle.
  • the listening period is before the data transmission period.
  • the listening period is before the data transmission period and the end time of the listening period is the same as the start time of the data transmission period.
  • the first UE determines to transmit data according to the preset rule, transmitting data through the inactive channel at a start time of the data transmission period, And the data is transmitted only at other times than the preset duration in the data transmission period. That is, the first UE does not perform data transmission or channel interception within the preset duration.
  • the channel is continuously used to transmit data during a data transmission period.
  • a first UE including:
  • a first determining unit configured to determine a to-be-used channel of the first UE and a data transmission period of the first UE, where the data transmission period is that the first UE transmits uplink data by using the to-be-used channel cycle;
  • a second determining unit configured to determine whether data is transmitted according to a preset rule in the data transmission period, that is, whether to leave data for a period of time during the transmission period without performing data transmission and channel interception;
  • the second determining is further configured to: if the first UE determines to transmit data according to the preset rule, the first UE determines to transmit only at other times than the preset duration in the data transmission period. Data, the second UE performs channel sensing on the to-be-used channel of the second UE within the preset duration; wherein the first UE is the same as the access network device of the second UE.
  • the second UE When the first UE does not perform data transmission within a preset duration of its own data transmission period and does not perform channel sensing on the channel, the second UE performs channel interception on the channel, and the second UE will The uplink data is transmitted through the channel at the indicated time according to the scheduling indication of the base station, so that the UEs serving the same node do not interfere with each other's data transmission, and the multi-user scheduling gain is not affected.
  • the The first UE also includes a receiving unit.
  • the receiving unit is configured to receive first indication signaling
  • the second determining unit is configured to determine, according to the first indication signaling received by the receiving unit, an index of a time position of a time unit in which the preset duration is located, where the time unit is included in the data transmission period Any time unit;
  • the second determining unit is configured to determine, according to the predefined time parameter, an index of a time position of the time unit in which the preset duration is located.
  • the second determining unit may further determine, after the data is transmitted according to the preset rule in the data transmission period, determine the time of the preset duration according to the received first indication signaling or a predefined time parameter.
  • the index of the time position of the unit may directly notify the first UE of the index of the time position of the time unit in which the preset duration is located by using the first indication signaling.
  • the second determining unit is configured to obtain an offset parameter carried by the first indication signaling And a period parameter b, determining an index of a time position of the time unit in which the preset duration is located according to the offset parameter a and the period parameter b.
  • the receiving unit is further configured to receive the second indication signaling
  • the second determining unit is configured to determine, according to the second indication signaling, a length of time of the preset duration
  • the second determining unit is configured to determine a length of time of the preset duration according to a predefined duration parameter.
  • the second determining unit may further determine, after the data is transmitted according to the preset rule in the data transmission period, determine the time of the preset time unit according to the second indication signaling or the predefined duration parameter. The index of the location.
  • the time length of the preset duration is greater than or equal to the second UE to the second UE The length of time that the channel is used for channel sounding.
  • the receiving unit is further configured to receive third indication signaling
  • the second determining unit is configured to: determine, according to the third indication signaling that is received by the third receiving unit, whether data is transmitted according to a preset rule in the data transmission period; And indicating whether the first UE transmits data according to a preset rule in the data transmission period;
  • the second determining unit is specifically configured to determine, according to the predefined mode parameter, whether to transmit data according to a preset rule in the data transmission period.
  • the sixth possible implementation manner of the second aspect further includes: a listening unit, a transmission unit,
  • the listening unit is configured to perform channel sensing on the to-be-used channel during a listening period; the listening period is before the data transmission period;
  • the transmitting unit is configured to: if the interception unit performs channel interception on the to-be-used channel, and the second determining unit determines to transmit data according to the preset rule, then the data transmission is performed.
  • the start time of the cycle transmits data through the inactive channel, and transmits data only at other times than the preset duration in the data transmission period.
  • a first UE including:
  • a processor configured to determine a to-be-used channel of the first UE and a data transmission period of the first UE; the data transmission period is a period in which the first UE transmits uplink data by using the inactive channel;
  • the processor is further configured to: determine whether data is transmitted according to a preset rule in the data transmission period; if the first UE determines to transmit data according to the preset rule, The first UE determines to transmit data only at other times than the preset duration in the data transmission period, and the second UE performs channel detection on the to-be-used channel of the second UE within the preset duration. Listening; wherein the first UE is the same as the access network device of the second UE.
  • the transceiver is further included
  • the transceiver is configured to receive first indication signaling
  • the processor is further configured to determine, according to the first indication signaling received by the transceiver, an index of a time position of a time unit in which the preset duration is located, where the time unit is any included in the data transmission period a time unit;
  • the processor is configured to determine, according to a predefined time parameter, an index of a time position of the time unit in which the preset duration is located.
  • the processor is specifically configured to acquire an offset parameter a and carried by the first indication signaling
  • the period parameter b determines an index of the time position of the time unit in which the preset duration is located according to the offset parameter a and the period parameter b.
  • the transceiver is further configured to receive second indication signaling
  • the processor is configured to determine, according to the second indication signaling, a length of time of the preset duration
  • the processor is configured to determine a length of time of the preset duration according to a predefined duration parameter.
  • the time length of the preset duration is greater than or equal to the second UE to the second UE The length of time that the channel is used for channel sounding.
  • the transceiver is further configured to receive third indication signaling
  • the processor is specifically configured to: according to the third indication signaling received by the third receiving unit, determine whether data is transmitted according to a preset rule in the data transmission period; the third indication signaling is used to indicate Whether the first UE transmits data according to a preset rule in the data transmission period;
  • the processor is specifically configured to determine, according to the predefined mode parameter, whether data is transmitted according to a preset rule in the data transmission period.
  • the listening module is configured to perform channel sensing on the to-be-used channel during a listening period; the listening period is before the data transmission period;
  • the processor is configured to: if the interception module performs channel interception on the to-be-used channel as being idle and determines to transmit data according to the preset rule, by using the The transceiver transmits data using the inactive channel and transmits data only at other times than the preset duration within the data transmission period.
  • FIG. 1 is a schematic diagram of a LAA-LTE system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of user equipment alignment listening during multi-user scheduling of a base station according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of an uplink data transmission method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of an FFP according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic timing diagram of a UE transmitting data by using a preset rule according to Embodiment 1 of the present invention
  • FIG. 6 is another schematic timing diagram of a UE transmitting data by using a preset rule according to Embodiment 1 of the present invention.
  • FIG. 7 is a structural block diagram of a first UE according to Embodiment 2 of the present invention.
  • FIG. 8 is another structural block diagram of a first UE according to Embodiment 2 of the present invention.
  • FIG. 9 is a structural block diagram of a first UE according to Embodiment 3 of the present invention.
  • a plurality of UEs can jointly use an unlicensed spectrum. Based on the communication of carriers on the licensed carrier's licensed spectrum, carriers on multiple unlicensed spectrums can be configured and unlicensed carrier-based communications can be assisted by licensed carriers.
  • the eNB can implement simultaneous scheduling of multiple users, and can be implemented by Frequency Division Multiplexing (FDM) in one subframe, or multiple users and multiple inputs on the same time and frequency resources.
  • FDM Frequency Division Multiplexing
  • MU-MIMO Multi-user Multi-input Multi-output
  • the uplink multi-user scheduling gain of the LAA-LTE system is also implemented in a time division multiplexing (TDM) manner to implement time-sharing scheduling of multiple users, and the time of scheduling multiple users can be continuous.
  • TDM time division multiplexing
  • the eNB schedules the UE1 to send uplink data at time T1, and schedules the UE2 to send uplink data at time T2.
  • the time resource in which the UE1 sends the uplink data and the time resource in which the UE2 sends the uplink data may be consecutive in time.
  • resource sharing on the unlicensed spectrum means that the use of a specific spectrum only specifies the limits of the emission power, out-of-band leakage, etc., to ensure The basic coexistence requirements are met between multiple devices that use the spectrum together, and the radio technology, the operating enterprise, and the service life are not limited, but the quality of the services carried by them is not guaranteed.
  • LAA-LTE considers the use of the license-free target band is the 5GHz unlicensed band opened by governments, TPC (Transmit Power Control), DFS (Dynamic Frequency Selection), channel occupied bandwidth and LBT (Listen before talk, listen first) and so on.
  • TPC Transmit Power Control
  • DFS Dynamic Frequency Selection
  • LBT Listen before talk, listen first
  • TPC is designed to prevent wireless products from transmitting excessive power to interfere with the radar.
  • DFS is to enable wireless products to actively detect the frequency used by the radar and actively select another frequency to avoid the radar frequency.
  • the channel occupied bandwidth requirement is that when the wireless communication device operates in the 5G frequency band, the occupied channel bandwidth should reach 80% to 100% of its claimed channel bandwidth.
  • the LBT specification is a coexistence strategy between systems. The wireless communication system needs to use the Listen Before Talk (LBT) rule when occupying the license-free spectrum communication. This is the main mechanism of the present invention.
  • LBT Listen Before Talk
  • each communication device needs to detect whether the current channel is idle before sending a signal on a certain channel, that is, whether it can detect that a nearby node is occupying the channel to transmit a signal.
  • the process is called Clear Channel Assessment (CCA); if the channel is detected to be idle for a period of time, the communication device can transmit a signal; if the channel is detected to be occupied, the communication device cannot currently transmit a signal. .
  • CCA Clear Channel Assessment
  • whether the channel is idle or not can be realized by means of signal detection, energy detection, and the like. If the energy is detected, the device (in the embodiment of the present invention, taking the UE as an example) listens to the energy on the unlicensed spectrum before the data is transmitted.
  • the UE When the received energy is higher than a certain energy threshold, It is considered that the unlicensed spectrum of the interception is occupied by other devices; if it is detected by the signal, the UE will receive the signal on the unlicensed spectrum before the data is transmitted. Perform sequence detection, such as detecting a reference signal or detecting a preamble. If a corresponding sequence or signal is detected, the unlicensed spectrum is also considered to be occupied by other devices.
  • each UE served by the base station follows the LBT mechanism, and when the uplink data transmission is performed using the unlicensed spectrum, it may interfere with each other's channel interception result, thereby affecting the uplink data transmission of the UE.
  • the base station instructs two UEs to use the same channel to transmit data, if one UE performs channel sounding on the channel when another UE performs data transmission, and the interception result indicates that the channel is occupied, then the UE also indicates at the time indicated by the base station. No upstream data transmission will take place.
  • the base station indicates that UE1 and UE2 use different channels, but when the frequency resource intervals of the channels used by the two are less than a certain threshold, they still interfere with each other.
  • the channels used by UE1 and UE2 are channel A and channel B, respectively, because the signal energy of UE1 transmitting data on channel A will leak to channel B to be intercepted by UE2, and the leakage energy will affect the channel detection result of UE2. Therefore, UE2 may also consider that the detection result of channel B is unavailable, and then does not use channel B to transmit data at the time indicated by the base station.
  • any user equipment of the LAA-LTE service has an explicit starting position for uplink data transmission, and since the eNB simultaneously schedules each user equipment, each user equipment performs channel Detecting at the same time. It is determined whether the channel is available. If the channel listening result indicates that the channel is available, each user equipment simultaneously performs uplink data transmission. For example, as shown in FIG.
  • the eNB in the LTE system, the eNB carries the uplink data transmission by using the DCI carried by the PDCCH (Physical Downlink Control Channel) in the subframe #n, and the UE1 and the UE2 should be in the uplink data transmission.
  • the subframe #n+3 transmits a PUSCH (Physical Uplink Shared Channel) to the eNB according to the indication information carried in the DCI (Downlink Control Information), but the UE1 and the UE2 are at #n because the LBT mechanism is to be followed.
  • PUSCH Physical Uplink Shared Channel
  • each UE does not interfere with each other's data transmission by the LBT mechanism, each UE adopts the same configuration, that is, both channel listening and data transmission are performed simultaneously, and the data transmission period is the same. This limits the flexibility of multi-user scheduling. Generally, different UEs have different requirements for uplink service transmission, and therefore the solution does not adapt to different service change characteristics of the UE.
  • the principle of the present invention is that the UE stays in the data transmission period for a period of time, does not perform data transmission and does not perform channel interception, and other UEs served by the base station can perform channel interception in the time when the UE is left blank. It does not affect the channel listening result of the UEs that the UE transmits in the data to the base station, and thus does not transmit the uplink data of the UE, thereby ensuring the gain of the uplink multi-user scheduling.
  • the configuration of the uplink transmission of the UE is not limited, and different uplink service requirements of different UEs can be used, and flexible scheduling of the uplink multi-user can be implemented.
  • An embodiment of the present invention provides an uplink data transmission method. As shown in FIG. 3, the method includes the following steps:
  • the first UE receives scheduling signaling sent by the base station.
  • the scheduling signaling may be a DCI carried by the PDCCH.
  • the base station can be an eNB.
  • the UE needs to follow the LBT mechanism for the application of the unlicensed spectrum.
  • the base station needs to use the scheduling signaling to indicate the time period during which the UE performs channel interception and uplink data transmission.
  • the period of the LBT may be a FFP (Fixed Frame Period).
  • the base station can indicate the channel interception of the UE and the period of data transmission through the FFP.
  • the first UE determines its own inactive channel and a data transmission period.
  • the data transmission period refers to a period in which the first UE transmits uplink data through the to-be-used channel.
  • the inactive channel here includes a channel configured by the access network device for the UE, and also includes a channel used by the access network device for data transmission scheduled by the UE.
  • the access network device includes a base station and a cell managed by the base station, such as a serving node of the UE. Data transmission can be performed between the access network device and the UE.
  • the UE may determine its own data transmission period according to the FFP indicated by the base station.
  • the FFP includes an IP (Idle Period) and a COT (Channel Occupancy Time).
  • the COT is the present invention
  • the UE performs channel interception at the end of the IP before transmitting the data, wherein the listening time is not less than 20 us. If the intercepted channel is determined to be idle by listening, the UE may start transmitting after ending the interception.
  • the length of the transmitted data is not greater than the time specified by the COT; if it is determined by the interception that the intercepted channel is already occupied, the device does not perform data transmission within the time of the COT specification after the end of the interception.
  • the IP time is not less than 5% of the FFP indication time, and the COT time can be from 1ms to 10ms.
  • the first UE determines whether data is transmitted according to a preset rule in the data transmission period.
  • the so-called data transmission in accordance with a preset rule in the data transmission period, that is, leaving the data transmission period for a period of time without data transmission or channel interception, the same as the first UE serving node and using the same channel with the first UE.
  • Other UEs may perform channel sensing during the first UE blanking to avoid affecting the result of channel interference of other UEs due to the first UE transmitting data.
  • the first UE may determine whether to transmit data according to a preset rule in the data transmission period according to a predefined mode parameter.
  • the method further includes: 103a: the first UE receives the third indication signaling, where the third indication signaling is used to indicate whether the first UE follows the preset rule in the data transmission period. transfer data.
  • the data may be transmitted according to the preset rule during the data transmission period according to the third indication signaling.
  • the first UE determines to transmit data according to a preset rule in the data transmission period, and determines to transmit data only at other times than the preset duration in the data transmission period.
  • the data is transmitted only at other times than the preset duration in the data transmission period, that is, data is not transmitted within a preset duration of the data transmission period, and channel sensing is not performed.
  • the first UE determines an index of a preset duration and a time position of a time unit in which the preset duration is located.
  • the preset duration that is, the UE transmits data according to a preset rule, in the data.
  • the length of time the transmission cycle is left blank.
  • the first UE may further determine an index of a time position of the time unit in which the preset duration is located according to a predefined time parameter.
  • the method further includes: 105a: the first UE receives the first indication signaling. And determining, according to the first indication signaling, an index of a time position of the time unit in which the preset duration is located.
  • time unit described herein is any one of the time units included in the data transmission period.
  • the time unit may be a subframe but is not limited to only a subframe, but may also be a slot, an OFDM symbol, or the like.
  • the index of the time position may be an index number of the subframe, or may be a slot index number or an OFDM symbol index number.
  • the time unit in which the preset duration is located may be any one of the subframes included in the data transmission period, such that UEs of different FFP periods may be scheduled in any one subframe of the uplink data transmission.
  • the first UE acquires the offset parameter a and the period parameter b carried by the first indication signaling, and determines the time of the time unit in which the preset duration is located according to the offset parameter a and the period parameter b.
  • the index of the location may directly report, by using the first indication signaling, an index of a time position of a time unit in which the preset time duration of the first UE is located, where the first UE may directly obtain the time position of the time unit in which the preset duration is located in the first indication signaling. index of.
  • the calculation symbol "mod" represents a remainder operation.
  • a and b in the formula represent the offset parameter and the period parameter, respectively.
  • the first UE determines a length of time of the preset duration according to a predefined duration parameter.
  • the method further includes: 105b: the first UE receives the second indication signaling. Determining, according to the second indication signaling, a length of time of the preset duration. It should be noted that steps 105a and 105b are in no particular order.
  • the length of the preset duration is greater than or equal to the length of time that the second UE performs channel sensing on the to-be-used channel of the second UE.
  • the length of the preset duration is not less than the length of time for the second UE to perform the CCA, and the second UE can be prevented from listening to the uplink data transmitted by other UEs served by the base station when the CCA is listening. Multi-user uplink multiplexing.
  • the preset duration must also include the duration of the UE radio from the on-off process and the duration of the radio from the off to the on process. This is because, for a UE that may use the preset rule for uplink data transmission, because the data cannot be sent within the preset duration, UE1 needs to stop sending data before the preset duration, and after the preset duration is over, it needs to be restarted. Data transmission begins, so the time required for the truncated portion may include the time from the time the UE radio is turned on to off and from off to on, such as 40 microseconds. It is necessary to integrate the duration of the channel listening by the second UE and the duration of the radio frequency on and off to finally set the length of time of the preset duration. Assuming that the time length of the UE CCA is not less than 20 microseconds, the length of the truncated portion corresponds to not less than 20 microseconds. In summary, the preset duration can be set to 40 microseconds.
  • the method further includes: the first UE further needs to perform channel transmission on the channel to be used in a listening period before transmitting data, and ensure that data is transmitted after the to-be-used channel is idle.
  • the listening period is before the data transmission period.
  • the listening period is before the data transmission period and the end time of the listening period is the same as the start time of the data transmission period.
  • the listening period described herein may be that the FFP described above includes a portion of the IP, such as the tail of the IP.
  • the first UE determines to transmit data according to the preset rule, transmitting data through the inactive channel at a start time of the data transmission period, No data is transmitted during the preset duration and channel interception is not performed on the to-be-used channel.
  • the first UE determines that after the data transmission period is transmitted according to the preset rule, the base station needs to notify the second UE to perform channel sensing within a preset duration that the first UE is left blank.
  • the index of the time position of the time unit in which the second UE is preset, and the length of the preset duration may be notified by scheduling signaling, where the second UE is in advance Perform channel interception within the duration.
  • the base station may also notify the second UE in advance through other signaling (eg, RRC signaling, physical layer signaling), and the second UE performs channel sensing in the time unit where the preset duration indicated by the base station is located.
  • the sequence of the steps 104 and 105 in the embodiment is not limited, that is, the UE may first determine to transmit data according to a preset rule during the data transmission period, and then determine the length of the preset duration and the preset duration.
  • the index of the time position of the unit may be determined in advance, and the length of the predetermined preset duration after the data is transmitted according to the preset rule in the data transmission period and The index transfer data of the time position of the time unit at the preset time.
  • the first UE first determines an index of the length of time of the preset duration and the time location of the time unit in which the preset duration is located.
  • the data is transmitted according to the preset rule, that is, the data is not transmitted during the preset duration of the transmission period, and the channel is not monitored, or the data is transmitted according to the preset rule according to the pre-stored mode parameter. .
  • the uplink data transmission method provided by the embodiment of the present invention is specifically described with reference to FIG. If the base station schedules UE1 and UE2 to perform uplink data transmission, and UE1 and UE2 adopt FFF periods of 2ms and 3ms respectively, and the interception positions are not aligned, UE1 and UE2 may affect each other because of data transmission. If UE1 does not perform data transmission in the data transmission period of the 2ms FFP, and does not perform channel transmission (that is, the data is transmitted according to the preset rule in the embodiment of the present invention), the UE2 is reserved in UE1.
  • the channel listening within the duration is not affected by the interception result of the UE1 data transmission, thereby realizing the multiplexing of the channels by multiple users, and the gain of multi-user scheduling can be guaranteed.
  • by transmitting data in a manner that the data transmission period is left blank different UEs can use different FFP periods for data transmission, and thus can adapt to uplink service requirements of different UEs.
  • the format in which the UE performs uplink data transmission is a preset format, that is, a preset duration is required.
  • UE1 and UE2 both adopt a 2ms FFP period, but the listening positions are not aligned.
  • the data transmission period of the UE1 in the FFF of 1 ms is left blank for a preset duration without performing data transmission or channel sensing (ie, according to the embodiment of the present invention.
  • the preset rule transmits data), and UE2 performs channel sensing within a preset duration that UE1 is left blank. That is to say, the UE adopts the same FFP period, and the scheduled position can also be aligned, thereby achieving scheduling flexibility.
  • the time position at which the UE sends the Sounding Reference Signal also needs to be adaptively adjusted according to whether the UE transmits data according to a preset rule. If the first UE determines to transmit data according to a preset rule, and the data transmission period includes transmission of the SRS, the time at which the SRS is transmitted may be shifted in time.
  • the uplink DMRS (Demodulation Reference Signal) may also be adaptively adjusted according to whether the UE transmits data according to a preset rule.
  • the length of the translation is the length of time that the LTE system may be the minimum data transmission unit and may not be less than the length of time corresponding to the preset duration. For example, if the preset duration is 40 ⁇ s, the minimum data transmission unit that the LTE system can recognize is the length of 1 OFDM symbol, and the length of the translation may be 1 OFDM symbol.
  • the UE may determine that the data is transmitted according to the preset rule, and the data transmission period is left blank for the preset duration without performing data transmission or channel interception, and other UEs that are the same as the UE serving node.
  • Channel interception may be performed during the period in which the UE is left blank, and is not interfered by the UE.
  • the UEs with the same service node may interfere with each other's uplink data transmission due to the LBT mechanism, which affects the gain of multi-user scheduling.
  • the invention can make the data transmission between the UEs serving the same node not interfere with each other, and does not affect the gain of the multi-user scheduling.
  • the embodiment of the present invention provides a first UE.
  • the first UE includes: a first determining unit 201 and a second determining unit 202.
  • a first determining unit 201 configured to determine a to-be-used channel of the first UE and a data transmission period of the first UE, where the data transmission period is that the first UE transmits uplink data by using the to-be-used channel Cycle.
  • the second determining unit 202 is configured to determine whether data is transmitted according to a preset rule in the data transmission period, that is, whether the data is left blank for a period of time during the transmission period. Transmission and channel listening.
  • the second determining 202 is further configured to: if the first UE determines to transmit data according to the preset rule, the first UE determines that the time is only at a preset time other than the preset duration in the data transmission period. Transmitting data, that is, not transmitting data within the preset duration and not performing channel interception on the to-be-used channel, the second UE performing channel sensing on the to-be-used channel of the second UE within the preset duration
  • the first UE is the same as the access network device of the second UE.
  • the second UE When the first UE does not perform data transmission within a preset duration of its own data transmission period and does not perform channel sensing on the channel, the second UE performs channel interception on the channel, and the second UE will The uplink data is transmitted through the channel at the indicated time according to the scheduling indication of the base station, so that the UEs serving the same node do not interfere with each other's data transmission, and the multi-user scheduling gain is not affected.
  • the first UE further includes a receiving unit 203.
  • the receiving unit 203 is configured to receive the first indication signaling.
  • the second determining unit 202 is configured to determine, according to the first indication signaling that is received by the receiving unit, an index of a time position of a time unit in which the preset duration is located, where the time unit is the data transmission period includes Any one of the time units.
  • the second determining unit 202 is configured to determine an index of a time position of the time unit in which the preset duration is located according to a predefined time parameter.
  • the second determining unit may further determine, after the data is transmitted according to the preset rule in the data transmission period, determine the time of the preset duration according to the received first indication signaling or a predefined time parameter.
  • the index of the time position of the unit may directly notify the first UE of the index of the time position of the time unit in which the preset duration is located by using the first indication signaling.
  • the second determining unit 202 is specifically configured to acquire the offset parameter a and the period parameter b carried by the first indication signaling, and determine, according to the offset parameter a and the period parameter b, the preset duration The index of the time position of the time unit.
  • the receiving unit 203 is further configured to receive the second indication signaling
  • the second determining unit 202 is configured to determine, according to the second indication signaling, a length of time of the preset duration.
  • the second determining unit 202 is configured to determine a length of time of the preset duration according to a predefined duration parameter.
  • the second determining unit 202 may further determine, after the data is transmitted according to the preset rule in the data transmission period, determine the time unit of the preset duration according to the second indication signaling or the predefined duration parameter. The index of the time position.
  • the length of the preset duration is greater than or equal to the length of time that the second UE performs channel sensing on the to-be-used channel of the second UE.
  • the receiving unit 203 is further configured to receive the third indication signaling.
  • the second determining unit 202 is configured to determine, according to the third indication signaling that is received by the third receiving unit, whether data is transmitted according to a preset rule in the data transmission period; the third indication signaling And configured to indicate whether the first UE transmits data according to a preset rule in the data transmission period.
  • the second determining unit is specifically configured to determine, according to the predefined mode parameter, whether to transmit data according to a preset rule in the data transmission period.
  • the first UE further includes a listening unit and a transmission unit.
  • the listening unit is configured to perform channel sensing on the to-be-used channel during a listening period; the listening period is before the data transmission period.
  • the transmitting unit is configured to: if the interception unit performs channel interception on the to-be-used channel, and the second determining unit determines to transmit data according to the preset rule, then the data transmission is performed.
  • the data is transmitted through the inactive channel, the data is not transmitted within the preset duration, and the listening unit does not perform channel sensing on the to-be-used channel within the preset duration.
  • the receiving unit 203 in this embodiment may be integrated in the receiver of the UE, and the transmission unit may be integrated in the transmitter of the UE, or may be integrated in the transceiver of the UE.
  • the transmitter described herein may preferably be an upstream transmitter.
  • the first determining unit 201 and the second determining unit 202 in this embodiment may be implemented in a processor of the UE, and may also be stored in a memory of the base station in the form of program code, which is called by the processor and executed.
  • the listening unit can also be integrated in the transceiver for transmitting signals to the channel and receiving the feedback signal, so that the processor of the UE obtains the result of the channel listening according to the received signal.
  • the UE provided by the embodiment of the present invention may determine that the data is transmitted according to the preset rule, and does not perform data transmission or channel interception when the data transmission period is left blank.
  • the other UEs that are the same as the UE serving node may be in the UE.
  • Channel listening is performed during the time period that is left blank, and is not interfered by the UE.
  • the UEs with the same service node may interfere with each other's uplink data transmission due to the LBT mechanism, which affects the gain of multi-user scheduling.
  • the invention can make the data transmission between the UEs serving the same node not interfere with each other, and does not affect the gain of the multi-user scheduling.
  • the embodiment of the present invention further provides a UE.
  • the first UE includes: a processor 301, a system bus 302, a memory 303, and a transceiver 304.
  • the processor 301 can be a central processing unit (English: central processing unit, abbreviation: CPU).
  • the memory 303 is configured to store the program code and transmit the program code to the processor 301.
  • the processor 301 executes the following instructions according to the program code.
  • the memory 303 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 303 may also include a non-volatile memory (English: non-volatile memory) ), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state Drive, abbreviation: SSD).
  • Memory 304 may also include a combination of the above types of memory.
  • the processor 301 and the memory 303 are connected by the system bus 302 and complete communication with each other.
  • Transceiver 304 can be implemented as an optical transceiver, an electrical transceiver, a wireless transceiver, or any combination thereof.
  • an optical transceiver can be pluggable in a small package (English: small Form-factor pluggable transceiver, abbreviation: SFP) transceiver (English: transceiver), enhanced small form-factor pluggable (English: enhanced small form-factor pluggable, abbreviation: SFP+) transceiver or 30 gigabit small package pluggable ( English: 30 Gigabit small form-factor pluggable, abbreviation: XFP) transceiver.
  • SFP small Form-factor pluggable transceiver
  • SFP+ enhanced small form-factor pluggable
  • XFP gigabit small package pluggable
  • the electrical transceiver can be an Ethernet (Ethernet) network interface controller (English: network interface controller, abbreviation: NIC).
  • the wireless transceiver can be a wireless network interface controller (English: wireless network interface controller, abbreviation: WNIC).
  • the processor 301 is configured to determine a to-be-used channel of the first UE and a data transmission period of the first UE, where the data transmission period is a period in which the first UE transmits uplink data by using the inactive channel. .
  • the processor 301 is configured to determine whether data is transmitted according to a preset rule during the data transmission period, that is, whether to leave data for a period of time during the transmission period without performing data transmission and channel interception.
  • the processor 301 is further configured to: if the first UE determines to transmit data according to the preset rule, the first UE determines to transmit only at other times than the preset duration in the data transmission period. Data, that is, not transmitting data within the preset duration and not performing channel interception on the to-be-used channel, and the second UE performs channel sensing on the to-be-used channel of the second UE within the preset duration;
  • the first UE is the same as the access network device of the second UE.
  • the second UE When the first UE does not perform data transmission within a preset duration of its own data transmission period and does not perform channel sensing on the channel, the second UE performs channel interception on the channel, and the second UE will The uplink data is transmitted through the channel at the indicated time according to the scheduling indication of the base station, so that the UEs serving the same node do not interfere with each other's data transmission, and the multi-user scheduling gain is not affected.
  • the processor 301 is further configured to receive the first indication signaling through the transceiver 304.
  • the processor 301 is configured to determine, according to the received first indication signaling, an index of a time position of a time unit in which the preset duration is located, where the time unit is any one of the time units included in the data transmission period.
  • the processor 301 is configured to determine, according to a predefined time parameter, an index of a time position of the time unit in which the preset duration is located.
  • the processor 301 may further determine, after the data is transmitted according to the preset rule in the data transmission period, determine the time unit of the preset duration according to the received first indication signaling or a predefined time parameter. The index of the time position.
  • the base station may directly notify the first UE of the index of the time position of the time unit in which the preset duration is located by using the first indication signaling.
  • the processor 301 is specifically configured to acquire an offset parameter a and a period parameter b carried by the first indication signaling, and determine, according to the offset parameter a and the period parameter b, a time unit in which the preset duration is located. The index of the time position.
  • the processor 301 is further configured to receive the second indication signaling by using the transceiver 304.
  • the processor 301 is configured to determine, according to the second indication signaling, a length of time of the preset duration.
  • the processor 301 is configured to determine a length of time of the preset duration according to a predefined duration parameter.
  • the processor 301 may further determine, after the data is transmitted according to the preset rule in the data transmission period, determine a time position of the time unit of the preset duration according to the second indication signaling or the predefined duration parameter. index of.
  • the length of the preset duration is greater than or equal to the length of time that the second UE performs channel sensing on the to-be-used channel of the second UE.
  • the processor 301 is further configured to receive the third indication signaling by the transceiver 304.
  • the processor 301 is specifically configured to: according to the third indication signaling received by the third receiving unit, determine whether data is transmitted according to a preset rule in the data transmission period; the third indication signaling is used Instructing the first UE to transmit data according to a preset rule during the data transmission period.
  • the processor 301 is specifically configured to determine, according to the predefined mode parameter, whether data is transmitted according to a preset rule in the data transmission period.
  • the processor 301 is further configured to: perform channel interception on the to-be-used channel in a listening period by using the transceiver 304 to send a received signal; the listening period is before the data transmission period.
  • the processor 301 is configured to: if the interception unit performs channel interception on the to-be-used channel as idle and determines to transmit data according to the preset rule, pass at a start time of the data transmission period And transmitting, by the inactive channel, data is not transmitted within the preset duration, and the listening unit does not perform channel sensing on the to-be-used channel within the preset duration.
  • the UE provided by the embodiment of the present invention may determine that the data is transmitted according to the preset rule, and does not perform data transmission or channel interception when the data transmission period is left blank.
  • the other UEs that are the same as the UE serving node may be in the UE.
  • Channel listening is performed during the time period that is left blank, and is not interfered by the UE.
  • the UEs with the same service node may interfere with each other's uplink data transmission due to the LBT mechanism, which affects the gain of multi-user scheduling.
  • the invention can make the data transmission between the UEs serving the same node not interfere with each other, and does not affect the gain of the multi-user scheduling.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种上行数据传输方法及UE,涉及通信领域,用于UE应用免许可频谱进行上行数据传输,能够保证eNB上行多用户调度的增益,且eNB服务的UE间不会干扰彼此的上行数据传输。包括:第一UE确定自身的待用信道以及数据传输周期,确定在数据传输周期内是否依照预设规则传输数据;若第一UE确定依照预设规则传输数据,第一UE则确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,第二UE在所述预设时长内对第二UE的待用信道进行信道侦听;其中,第一UE与第二UE的接入网设备相同。

Description

一种上行数据传输方法及UE 技术领域
本发明涉及通信领域,尤其涉及一种上行数据传输方法及UE(User Equipment,用户设备)。
背景技术
LAA-LTE(Licensed Assisted Access Using-Long Term Evolution,许可辅助接入长期演进)系统中,LTE设备可以通过CA(Carrier Aggregation,载波聚合)的方式,将许可频谱作为主成员载波(Primary Component Carrier,PCC)或主小区(Primary Cell,PCell),将免许可频谱作为辅成员载波(Secondary Component Carrier,SCC)或辅小区(Secondary Cell,SCell),这样LTE设备可以通过利用免许可频谱资源达到网络容量分流的目的,从而减小许可载波的负载。
LAA-LTE系统中eNB(Evolved Node B,演进型基站)可以进行上行多用户调度,基于eNB的调度,eNB服务的每一个UE(User Equipment,用户设备)可以同时或分时进行上行数据传输。在应用免许可频谱时,UE可以遵循LBT(Listening before Talk,先听后说)规则,即UE在某个信道上发送数据之前,需要先检测该信道是否空闲,只有当检测到该信道为空闲时,才可通过该信道发送数据。由于eNB服务的各个UE在使用免许可频谱进行上行数据传输时,会使用相同的信道,或使用相邻信道时能量泄露,因此,eNB之间会对彼此的信道侦听产生干扰,进而干扰了彼此的上行数据传输。示例的,eNB指示UE1、UE2分时使用信道A进行上行数据传输,UE2在UE1正在传输数据时对信道A进行侦听,由于信道A当前被UE1占用,因此UE2信道侦听结果就为不可用,进而UE2在eNB指示的时间上就不会进行上行数据传输。实际上,在eNB指示的UE2进行上行数据传输的时间UE1不再使用信道A,但由于UE2在UE1 正在传输数据时进行信道侦听,导致UE1对UE2信道侦听的结果产生干扰,进而对UE2的上行传输产生干扰。
发明内容
本发明的实施例提供一种上行数据传输方法及UE,eNB服务的UE间不会干扰彼此的上行数据传输,能够保证eNB上行多用户调度的增益,且可以实现上行多用户的灵活调度。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,公开了一种上行数据传输方法,包括:
第一UE确定自身的待用信道以及所述第一UE的数据传输周期。所谓数据传输周期是指所述第一UE通过所述待用信道传输上行数据的周期。需要说明的是,在本发明中,第一、第二不代表优先顺序,仅为了区分不同的UE。这里的待用信道,包括接入网设备为UE配置的信道,也包括接入网设备为UE调度的数据传输所使用的信道。其中接入网设备包括基站、以及基站管辖的小区,例如UE的服务节点。所述接入网设备与UE之间可以进行数据传输。
所述第一UE确定在所述数据传输周期内是否依照预设规则传输数据,即是否在传输周期内留空一段时间不进行数据传输和信道侦听;
若所述第一UE确定依照所述预设规则传输数据,所述第一UE则确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,即在所述预设时长内不传输数据且不对所述待用信道进行信道侦听,第二UE在所述预设时长内对所述第二UE的待用信道进行信道侦听;其中,所述第一UE与所述第二UE的接入网设备相同。示例的,所述第一UE与所述第二UE均为基站A服务的UE,均通过基站A接入网络。
现有技术中,基站指示第一UE、第二UE使用某信道传输上行数据,若第一UE使用该信道传输数据的周期内第二UE对该信道进行信道侦听,侦听的结果就是该信道被占用,那么第二信道在基站指示的时刻就不会使用该信道进行上行数据传输,影响多用户调度 的增益。当第一UE在自身的数据传输周期内的预设时长内不进行数据传输且不对该信道进行信道侦听,那么第二UE对该信道进行信道侦听的结果就是空闲,第二UE就会按照基站的调度指示在指示的时刻通过该信道传输上行数据,这样即可以使得服务于同一节点的各个UE间不会干扰彼此的数据传输,也不会影响多用户调度的增益。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一UE确定在所述数据传输周期内是否依照预设规则传输数据之前,接收第一指示信令,并根据所述第一指示信令确定所述预设时长所在时间单元的时间位置的索引。需要说明的是,这里所述的时间单元是所述数据传输周期包括的任意一个时间单元。时间单元可以是子帧但不仅仅局限于子帧,还可以是时隙、OFDM符号等。时间位置的索引可以是子帧的索引号、也可以是时隙索引号或OFDM符号索引号。
或,所述第一UE还可以根据预先定义的时间参数确定所述预设时长所在时间单元的时间位置的索引。
当然,所述第一UE还可以确定在所述数据传输周期内依照预设规则传输数据之后,根据这里提供的两种方式中的任一种确定所述预设时长的所在时间单元的时间位置的索引。另外,基站可以直接通过第一指示信令通知第一UE所述预设时长所在时间单元的时间位置的索引。
这样,第一UE就可以确定在数据传输周期内具体何时留空(不进行数据传输也不进行信道侦听),第二UE可以在留空的时间段内进行信道侦听,第一UE不会干扰到第二UE信道侦听的结果。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一UE获取所述第一UE获取所述第一指示信令携带的偏移参数a和周期参数b,根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引。
进一步,获取所述第一UE获取所述第一指示信令携带的偏移 参数a和周期参数b之后,可以根据公式X mod b=a或(X–a)mod b=0确定所述预设时长所在时间单元的时间位置的索引X。其中mod代表取余运算。
这里具体描述了在上述两种确定预设时长所在时间单元的时间位置的索引中,具体如何根据基站通知的第一指示信令确定所述预设时长所在时间单元。
结合第一方面的第一或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一UE确定在所述数据传输周期内是否依照预设规则传输数据之前,接收第二指示信令,根据所述第二指示信令确定所述预设时长的时间长度;或,所述第一UE根据预先定义的时长参数确定所述预设时长的时间长度。
当然,所述第一UE还可以确定在所述数据传输周期内依照预设规则传输数据之后,根据这里提供的两种方式中的任一种确定所述预设时长的时间长度。
进一步地,所述预设时长的时间长度大于等于所述第二UE对所述第二UE的待用信道进行信道侦听的时间的时间长度。
这样,第一UE就可以确定在数据传输周期内留空多长时间,第二UE可以在留空的时间段内进行信道侦听,第一UE不会干扰到第二UE信道侦听的结果。
结合第一方面的第一至第三种可能的实现方式中的任一种,在第一方面的第四种可能的实现方式中,所述第一UE接收第三指示信令,所述第三指示信令用于指示所述第一UE在所述数据传输周期内是否依照预设规则传输数据。可以根据所述第三指示信令确定在所述数据传输周期内是否依照预设规则传输数据;
或,所述第一UE还可以根据预先定义的模式参数确定在所述数据传输周期内是否依照预设规则传输数据。
结合第一方面或第一方面的第一至第四种可能的实现方式中的任一种,在第一方面的第五种可能的实现方式中,所述第一UE还需要在传输数据之前的侦听周期内对待用信道进行信道传输,确保 待用信道空闲后才进行数据传输。所述侦听周期在所述数据传输周期之前。优选地,所述侦听周期在所述数据传输周期之前且所述侦听周期的结束时刻与所述数据传输周期的开始时刻相同。
若对所述待用信道进行信道侦听的结果为空闲且所述第一UE确定依照所述预设规则传输数据,则在所述数据传输周期的开始时刻通过所述待用信道传输数据,且仅在所述数据传输周期内的预设时长之外的其他时刻传输数据。即所述第一UE在所述预设时长内不进行数据传输也不进行信道侦听。
另外,若所述第一UE确定不依照所述预设规则传输数据,那就在数据传输周期内持续使用该信道传输数据。
第二方面,公开了一种第一UE,包括:
第一确定单元,用于确定所述第一UE的待用信道以及所述第一UE的数据传输周期;所述数据传输周期是指所述第一UE通过所述待用信道传输上行数据的周期;
第二确定单元,用于确定在所述数据传输周期内是否依照预设规则传输数据,即是否在传输周期内留空一段时间不进行数据传输和信道侦听;
所述第二确定还用于,若所述第一UE确定依照所述预设规则传输数据,所述第一UE则确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,第二UE在所述预设时长内对所述第二UE的待用信道进行信道侦听;其中,所述第一UE与所述第二UE的接入网设备相同。
当第一UE在自身的数据传输周期内的预设时长内不进行数据传输且不对该信道进行信道侦听,那么第二UE对该信道进行信道侦听的结果就是空闲,第二UE就会按照基站的调度指示在指示的时刻通过该信道传输上行数据,这样即可以使得服务于同一节点的各个UE间不会干扰彼此的数据传输,也不会影响多用户调度的增益。
结合第二方面,在第二方面的第一种可能的实现方式中,所述 第一UE还包括接收单元。
所述接收单元用于,接收第一指示信令;
所述第二确定单元用于,根据所述接收单元接收的所述第一指示信令确定所述预设时长所在时间单元的时间位置的索引,所述时间单元是所述数据传输周期包括的任意一个时间单元;
或,所述第二确定单元用于,根据预先定义的时间参数确定所述预设时长所在时间单元的时间位置的索引。
当然,所述第二确定单元还可以确定在所述数据传输周期内依照预设规则传输数据之后,根据接收到的第一指示信令或预定义的时间参数确定所述预设时长的所在时间单元的时间位置的索引。另外,基站可以直接通过第一指示信令通知第一UE所述预设时长所在时间单元的时间位置的索引。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第二确定单元具体用于,获取所述第一指示信令携带的偏移参数a和周期参数b,根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,根据X mod b=a或(X–a)mod b=0确定所述预设时长所在时间单元的时间位置的索引X。
结合第二方面的第一至第三种可能的实现方式中的任一种,在第二方面的第四种可能的实现方式中,
所述接收单元还用于,接收第二指示信令;
所述第二确定单元用于,根据所述第二指示信令确定所述预设时长的时间长度;
或,所述第二确定单元用于,根据预先定义的时长参数确定所述预设时长的时间长度。
当然,所述第二确定单元还可以确定在所述数据传输周期内依照预设规则传输数据之后,根据第二指示信令或预定义的时长参数确定所述预设时长的所在时间单元的时间位置的索引。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式中,所述预设时长的时间长度大于等于所述第二UE对所述第二UE的待用信道进行信道侦听的时间的时间长度。
结合第二方面的第一至第五种可能的实现方式中的任一种,在第二方面的第六种可能的实现方式中,
所述接收单元还用于,接收第三指示信令;
所述第二确定单元具体用于,根据所述第三接收单元接收的所述第三指示信令确定在所述数据传输周期内是否依照预设规则传输数据;所述第三指示信令用于指示所述第一UE在所述数据传输周期内是否依照预设规则传输数据;
或,
所述第二确定单元具体用于,根据预先定义的模式参数确定在所述数据传输周期内是否依照预设规则传输数据。
结合第二方面或第二方面的第一至第五种可能的实现方式中的任一种,在第二方面的第六种可能的实现方式中,还包括侦听单元、传输单元,
所述侦听单元用于,在侦听周期内对所述待用信道进行信道侦听;所述侦听周期在所述数据传输周期之前;
所述传输单元用于,若所述侦听单元对所述待用信道进行信道侦听的结果为空闲且所述第二确定单元确定依照所述预设规则传输数据,则在所述数据传输周期的开始时刻通过所述待用信道传输数据,且仅在所述数据传输周期内的预设时长之外的其他时刻传输数据。
第三方面,公开了一种第一UE,包括:
处理器,用于确定所述第一UE的待用信道以及所述第一UE的数据传输周期;所述数据传输周期是指所述第一UE通过所述待用信道传输上行数据的周期;
所述处理器还用于,确定在所述数据传输周期内是否依照预设规则传输数据;若所述第一UE确定依照所述预设规则传输数据, 所述第一UE则确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,第二UE在所述预设时长内对所述第二UE的待用信道进行信道侦听;其中,所述第一UE与所述第二UE的接入网设备相同。
结合第三方面,在第三方面的第一种可能的实现方式中,还包括收发器,
所述收发器用于,接收第一指示信令;
所述处理器还用于,根据所述收发器接收的所述第一指示信令确定所述预设时长所在时间单元的时间位置的索引,所述时间单元是所述数据传输周期包括的任意一个时间单元;
或,所述处理器用于,根据预先定义的时间参数确定所述预设时长所在时间单元的时间位置的索引。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述处理器具体用于,获取所述第一指示信令携带的偏移参数a和周期参数b,根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述处理器具体用于,根据X mod b=a或(X–a)mod b=0确定所述预设时长所在时间单元的时间位置的索引X。
结合第三方面的第一至第三种可能的实现方式中的任一种,在第三方面的第四种可能的实现方式中,
所述收发器还用于,接收第二指示信令;
所述处理器用于,根据所述第二指示信令确定所述预设时长的时间长度;
或,所述处理器用于,根据预先定义的时长参数确定所述预设时长的时间长度。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,所述预设时长的时间长度大于等于所述第二UE对所述第二UE的待用信道进行信道侦听的时间的时间长度。
结合第三方面的第一至第五种可能的实现方式中的任一种,在第三方面的第六种可能的实现方式中,
所述收发器还用于,接收第三指示信令;
所述处理器具体用于,根据所述第三接收单元接收的所述第三指示信令确定在所述数据传输周期内是否依照预设规则传输数据;所述第三指示信令用于指示所述第一UE在所述数据传输周期内是否依照预设规则传输数据;
或,
所述处理器具体用于,根据预先定义的模式参数确定在所述数据传输周期内是否依照预设规则传输数据。
结合第三方面或第三方面的第一至第六种可能的实现方式中的任一种,在第三方面的第七种可能的实现方式中,还包括侦听模块,
所述侦听模块用于,在侦听周期内对所述待用信道进行信道侦听;所述侦听周期在所述数据传输周期之前;
所述处理器用于,若所述侦听模块对所述待用信道进行信道侦听的结果为空闲且确定依照所述预设规则传输数据,则在所述数据传输周期的开始时刻通过所述收发器利用所述待用信道传输数据,且仅在所述数据传输周期内的预设时长之外的其他时刻传输数据。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的LAA-LTE系统的示意图;
图2为本发明实施例提供的基站多用户调度时用户设备对齐侦听的示意图;
图3为本发明实施例1提供的上行数据传输方法的流程示意图;
图4为本发明实施例1提供的FFP的结构示意图;
图5为本发明实施例1提供的UE采用预设规则传输数据的时序示意图;
图6为本发明实施例1提供的UE采用预设规则传输数据的另一时序示意图;
图7为本发明实施例2提供的第一UE的结构框图;
图8为本发明实施例2提供的第一UE的另一结构框图;
图9为本发明实施例3提供的第一UE的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,LAA-LTE系统中,至少包括基站和服务于该基站的多个UE,多个UE可以共同使用免许可频谱。能够以配置运营商许可频谱上的载波进行通信为基础,配置多个免许可频谱上的载波并以许可载波为辅助进行免许可载波上通信。LAA-LTE系统相对WiFi系统的优势之一是具有上行多用户调度的增益。eNB可以实现多个用户的同时调度,具体地可以在一个子帧内通过频分复用(Frequency Division Multiplexing,FDM)的方式实现,也可以在相同的时间和频率资源上通过多用户多输入多输出(Multi-user Multi-input Multi-output,MU-MIMO)实现。此外,LAA-LTE系统的上行多用户调度增益,还体现在以时分复用(Time Division Multiplexing,TDM)的方式实现多个用户的分时调度,多个用户分时调度的时间可以是连续的,例如eNB调度UE1在T1时刻发送上行数据,调度UE2在T2时刻发送上行数据,UE1发送上行数据的时间资源和UE2发送上行数据的时间资源在时间上可以是连续的。另外,对免许可频谱做以介绍:免许可频谱上的资源共享是指对特定频谱的使用只规定发射功率、带外泄露等指标上的限制,以保证 共同使用该频谱的多个设备之间满足基本的共存要求,对无线电技术、运营企业和使用年限等不做限定,但也不保证其承载的业务的质量。
运营商利用免许可频谱资源可以达到网络容量分流的目的,但是需要遵从不同的地域和不同的频谱对免许可频段资源的规范要求。包括:LAA-LTE考虑使用的免许可目标频段是各国政府开放的5GHz的免许可频段,TPC(Transmit Power Control,发射功率控制),DFS(Dynamic Frequency Selection,动态频率选择),信道占用带宽和LBT(Listen before talk,先听后说)等等。其中,由于5.25~5.35GHz和5.47~5.725GHz是全球雷达系统的工作频段,为了避免工作在5GHz频段的无线通信设备对雷达系统造成干扰,无线通信设备必须具备TPC和DFS这两个功能。TPC是为了防止无线产品发射过大的功率来干扰雷达。DFS是为了使无线产品主动探测雷达使用的频率,并主动选择另一个频率,以避开雷达频率。信道占用带宽的要求是当无线通信设备在5G频段上工作时,其占用的信道带宽应达到其声称的信道带宽的80%~100%。LBT规范是系统间的共存策略,无线通信系统在占用免许可频谱通信时需使用先检测后发送(Listen Before Talk,LBT)规则,这是本发明主要涉及的机制。
需要说明的是,LBT的基本思想为:每个通信设备在某个信道上发送信号之前,需要先检测当前信道是否空闲,即是否可以检测到附近节点正在占用所述信道发送信号,这一检测过程被称为空闲信道评测(Clear Channel Assessment,CCA);如果在一段时间内检测到信道空闲,那么该通信设备就可以发送信号;如果检测到信道被占用,那么该通信设备当前就无法发送信号。上述过程中,检测信道是否空闲可以通过信号检测、能量检测等方式来实现。如果是通过能量检测,设备(在本发明实施例中,以UE为例说明)在数据发送之前,监听免许可频谱上的能量,当接收到的能量高于某一能量门限值,就会认为监听的免许可频谱被其他设备占用;如果是通过信号检测,UE在数据发送之前,会对免许可频谱上接收的信号 进行序列检测,例如检测参考信号或检测前导(Preamble),如果检测到对应的序列或信号,则也会认为免许可频谱被其他设备占用。
这样,基站服务的各个UE遵循LBT机制,使用免许可频谱进行上行数据传输时,就可能干扰彼此的信道侦听结果,进而影响UE的上行数据传输。若基站指示两个UE使用同样的信道传输数据,如果一个UE在另一个UE进行数据传输时对该信道进行信道侦听,侦听结果表明该信道被占用,那么该UE在基站指示的时刻也不会进行上行数据传输。或者,基站指示UE1、UE2使用不同的信道,但二者所使用的信道的频率资源间隔小于特定阈值时,还是会彼此干扰。示例的,UE1、UE2使用的信道分别为信道A和信道B,因为UE1在信道A发送数据的信号能量会泄露到UE2要侦听的信道B,此泄露能量会对UE2的信道检测结果产生影响,因此UE2通过检测,可能也会认为信道B的检测结果为不可用,进而在基站指示的时刻也不会使用信道B传输数据。
存在一种方案,能够解决UE因为LBT机制对彼此的数据传输产生干扰的问题。具体的:基于eNB的上行调度,任何一个LAA-LTE服务的用户设备,其上行数据传输都具有明确的起始位置,又由于eNB同时调度各个用户设备,那么各个用户设备会在同时进行信道侦听确定信道是否可用,若信道侦听结果表明信道可用,各个用户设备则同时进行上行数据传输。示例的,如图2所示,LTE系统中eNB在子帧#n通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)携带的DCI指示UE1、UE2进行上行数据传输,则UE1、UE2本应在子帧#n+3根据DCI(Downlink Control Information,下行控制信息)携带的指示信息发送PUSCH(Physical Uplink Shared Channel,物理上行共享信道)给eNB,但由于要遵循LBT机制,UE1、UE2在#n+3首先要进行信道侦听,若侦听结果为空闲才发送PUSCH给eNB。这样,虽然各个UE不会再因为LBT机制对彼此的数据传输产生干扰,但是各个UE均采用相同的配置,即均同时进行信道侦听,同时进行数据传输,且数据传输周期相同, 这就限制了多用户调度的灵活性。通常,不同UE对上行业务传输的要求是不同的,因此该方案不适应UE的不同业务变化特性。
本发明的原理在于:UE在自身的数据传输周期内留空一段时间,不进行数据传输也不进行信道侦听,基站服务的其他UE可以在该UE留空的时间内进行信道侦听,这样就不会因为UE在传输数据对基站服务的其他UE的信道侦听结果产生影响,进而也不会UE的上行数据传输,保证了上行多用户调度的增益。且不限制UE的上行传输的配置,能够使用不同UE的不同上行业务需求,可以实现上行多用户的灵活调度。
实施例1:
本发明实施例提供一种上行数据传输方法,如图3所示,所述方法包括以下步骤:
101、第一UE接收基站发送的调度信令。
其中,所述调度信令可以是PDCCH携带的DCI。所述基站可以是eNB。
由于UE应用免许可频谱需要先对待用的信道进行信道侦听,即需遵循LBT机制,基站需要通过调度信令指示UE进行信道侦听以及上行数据传输的时间段。LBT的周期可以是FFP(Fixed Frame Period,固定帧周期)。基站可以通过FFP指示UE信道侦听以及数据传输的周期。
102、第一UE确定自身的待用信道以及数据传输周期。
其中,所述数据传输周期是指所述第一UE通过所述待用信道传输上行数据的周期。这里的待用信道,包括接入网设备为UE配置的信道,也包括接入网设备为UE调度的数据传输所使用的信道。其中接入网设备包括基站、以及基站管辖的小区,例如UE的服务节点。所述接入网设备与UE之间可以进行数据传输。
具体实现中,UE可以根据基站指示的FFP确定自身的数据传输周期。如图4所示,FFP包括IP(Idle Period,空闲周期)和COT(Channel Occupancy Time,信道占用时间)。其中,COT即本发明 所述的数据传输周期。UE在发送数据前,会在IP的尾部进行信道侦听,其中侦听的时间不少于20us,如果通过侦听确定被侦听信道是空闲的,则该UE可以在结束侦听之后开始传输数据,传输数据的长度不大于COT所规范的时间;如果通过侦听确定被侦听信道已经被占用,则该设备在结束侦听之后的COT规范的时间内不进行数据传输。目前,根据法规约束,IP的时间不小于FFP指示时间的5%,COT的时间可以从1ms到10ms。
103、第一UE确定在所述数据传输周期内是否依照预设规则传输数据。
所谓在数据传输周期内依照预设规则传输数据,即在数据传输周期内留空一段时间不进行数据传输也不进行信道侦听,与第一UE服务节点相同且与第一UE使用相同信道的其他UE可以在第一UE留空期间进行信道侦听,以免由于第一UE传输数据对其他UE信道侦听的结果产生影响。
具体实现中,所述第一UE可以根据预先定义的模式参数确定在所述数据传输周期内是否依照预设规则传输数据。
可选的,在步骤103之前,还包括103a:第一UE接收第三指示信令,所述第三指示信令用于指示所述第一UE在所述数据传输周期内是否依照预设规则传输数据。可以根据所述第三指示信令确定在所述数据传输周期内是否依照预设规则传输数据。
104、第一UE确定在所述数据传输周期内依照预设规则传输数据,并确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据。
这里所说的仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,即在所述数据传输周期的预设时长内不传输数据,也不进行信道侦听。
105、第一UE确定预设时长的时间长度以及预设时长所在时间单元的时间位置的索引。
其中,所述预设时长,即UE依照预设规则传输数据,在数据 传输周期留空的时长。
具体实现中,所述第一UE还可以根据预先定义的时间参数确定所述预设时长所在时间单元的时间位置的索引。
可选的,可选的,在步骤105之前,还包括105a:第一UE接收第一指示信令。再根据所述第一指示信令确定所述预设时长所在时间单元的时间位置的索引。
需要说明的是,这里所述的时间单元是所述数据传输周期包括的任意一个时间单元。时间单元可以是子帧但不仅仅局限于子帧,还可以是时隙、OFDM符号等。时间位置的索引可以是子帧的索引号、也可以是时隙索引号或OFDM符号索引号。所述预设时长所在时间单元可以是数据传输周期内包括的任一个子帧内,这样使得不同FFP周期的UE可以调度在上行数据传输的任何一个子帧。
进一步,所述第一UE获取所述第一指示信令携带的偏移参数a和周期参数b,根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引。或者,基站可以直接通过第一指示信令通知第一UE预设时长所在时间单元的时间位置的索引,第一UE可以直接在第一指示信令中获取到预设时长所在时间单元的时间位置的索引。
具体地,可以根据公式X mod b=a或(X–a)mod b=0确定所述预设时长所在时间单元的时间位置的索引X。其中,计算符号“mod”代表取余运算。公式中的a、b分别代表偏移参数、周期参数。
另外,所述第一UE根据预先定义的时长参数确定所述预设时长的时间长度。
可选的,在步骤105之前,还包括105b:所述第一UE接收第二指示信令。根据所述第二指示信令确定所述预设时长的时间长度。需要说明的是,步骤105a、105b不分先后。
另外,基站在为第一UE设置预设时长的时间长度时,需要遵循以下两个规则:
第一、所述预设时长的时间长度大于等于所述第二UE对所述第二UE的待用信道进行信道侦听的时间的时间长度。这是由于预设时长的时间长度不小于第二UE进行CCA的时间长度,可以保证第二UE在进行CCA侦听时,不会监听到本基站服务的其他UE上行传输的数据,这样可以实现多用户的上行复用。
第二,所述预设时长还必须包括UE射频从打开到关闭过程持续的时长以及射频从关闭到打开过程持续的时长。这是因为对于可能采用预设规则进行上行数据传输的UE,因为在预设时长内不能发送数据,因此UE1在预设时长所在时刻之前需要停止发送数据,待预设时长结束之后,还需要重新开始发送数据,因此截短部分对应的时间需要可以包括UE射频从打开到关闭以及从关闭到打开的时间,例如40微秒。需要综合第二UE进行信道侦听的时长以及上述射频打开关闭的时长来最终设置预设时长的时间长度。假设UE CCA的时间长度是不小于20微秒,那么截短部分对应的时间长度不小于20微秒。综上,可设置预设时长为40微秒。
优选地,所述方法还包括所述第一UE还需要在传输数据之前的侦听周期内对待用信道进行信道传输,确保待用信道空闲后才进行数据传输。所述侦听周期在所述数据传输周期之前。优选的,所述侦听周期在所述数据传输周期之前且所述侦听周期的结束时刻与所述数据传输周期的开始时刻相同。这里所述的侦听周期可以是上述FFP包括IP的一部分,如IP的尾部。
若对所述待用信道进行信道侦听的结果为空闲且所述第一UE确定依照所述预设规则传输数据,则在所述数据传输周期的开始时刻通过所述待用信道传输数据,在所述预设时长内不传输数据且不对所述待用信道进行信道侦听。
优选地,所述第一UE确定在数据传输周期依照预设规则传输数据后,基站需要通知第二UE在第一UE留空的预设时长内进行信道侦听。具体地,可以通过调度信令通知第二UE预设时长所在时间单元的时间位置的索引以及预设时长的时间长度,第二UE在预 设时长内进行信道侦听。另外,基站也可以通过其他的信令(如:RRC信令,物理层信令)预先通知第二UE,第二UE在基站指示的预设时长所在时间单元进行信道侦听。
需要说明的是,本实施例中步骤104、105的先后顺序不作限定,即UE可以先确定在数据传输周期内依照预设规则传输数据,再确定预设时长的时间长度以及预设时长所在时间单元的时间位置的索引。或者,也可以预先确定预设时长的时间长度以及预设时长所在时间单元的时间位置的索引,确定在数据传输周期内依照预设规则传输数据后再根据预先确定的预设时长的时间长度以及预设时长所在时间单元的时间位置的索引传输数据。优选地,第一UE首先确定所述预设时长的时间长度以及所述预设时长所在时间单元的时间位置的索引。再通过基站的指示信令判断是否依照预设规则传输数据,即在传输周期的预设时长内不传输数据也不进行信道侦听,或者根据预先存储的模式参数确定是否依照预设规则传输数据。
另外,结合图5具体说明本发明实施例提供的上行数据传输方法。若基站调度UE1、UE2进行上行数据传输,且UE1、UE2分别采用2ms和3ms的FFP周期,侦听位置不对齐,因此UE1、UE2彼此会因为数据传输对侦听结果产生影响。若UE1在2ms的FFP中的数据传输周期留空预设时长不进行数据传输也不进行信道侦听(即本发明实施例所述的依照预设规则传输数据),UE2在UE1留空的预设时长内进行信道侦听,不会受到UE1数据传输对侦听结果的影响,从而实现了多用户对信道的复用,可以保证多用户调度的增益。另外,采用这种在数据传输周期留空的方式传输数据,可以令不同UE采用不同的FFP周期进行数据传输,进而可以适应不同UE的上行业务需求。另外,UE进行上行数据传输的格式为预设格式,即要留出预设时长。
又如图6所示,UE1、UE2均采用2ms的FFP周期,但侦听位置不对齐。同样,UE1在1ms的FFP中的数据传输周期留空预设时长不进行数据传输也不进行信道侦听(即本发明实施例所述的依照 预设规则传输数据),UE2在UE1留空的预设时长内进行信道侦听。也就是说,就是UE采用相同的FFP周期,调度的位置也可以不用对齐,从而实现调度灵活性。
需要说明的是,UE发送探测参考信号(Sounding Reference Signal,SRS)的时间位置也需要根据UE是否依照预设规则传输数据进行自适应调整。若第一UE确定依照预设规则传输数据,且数据传输周期包括SRS的发送,则SRS发送的时刻可以在时间上平移。对应的,上行DMRS(Demodulation Reference Signal,解调参考信号)也可以根据UE是否依照预设规则传输数据进行自适应调整。另外,平移的时间长度为LTE系统可以是被的最小数据传输单元对应的时长且不得小于预设时长对应的时间长度。如:若预设时长为40μs,LTE系统可以识别的最小数据传输单位为1个OFDM符号的长度,则平移的时间长度可以是1个OFDM符号。
本发明实施例提供的上行数据传输方法,UE可以确定依照预设规则传输数据,在数据传输周期留空预设时长不进行数据传输也不进行信道侦听,与该UE服务节点相同的其他UE可以在该UE留空的时间段内进行信道侦听,不会受到该UE的干扰。相比现有技术,服务节点相同的UE之间会因为LBT机制干扰了彼此的上行数据传输,影响多用户调度的增益。本发明即可以使得服务于同一节点的各个UE间不会干扰彼此的数据传输,也不会影响多用户调度的增益。
实施例2:
本发明实施例提供一种第一UE,如图7所示,所述第一UE包括:第一确定单元201和第二确定单元202。
第一确定单元201,用于确定所述第一UE的待用信道以及所述第一UE的数据传输周期;所述数据传输周期是指所述第一UE通过所述待用信道传输上行数据的周期。
第二确定单元202,用于确定在所述数据传输周期内是否依照预设规则传输数据,即是否在传输周期内留空一段时间不进行数据 传输和信道侦听。
所述第二确定202还用于,若所述第一UE确定依照所述预设规则传输数据,所述第一UE则确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,即在所述预设时长内不传输数据且不对所述待用信道进行信道侦听,第二UE在所述预设时长内对所述第二UE的待用信道进行信道侦听;其中,所述第一UE与所述第二UE的接入网设备相同。
当第一UE在自身的数据传输周期内的预设时长内不进行数据传输且不对该信道进行信道侦听,那么第二UE对该信道进行信道侦听的结果就是空闲,第二UE就会按照基站的调度指示在指示的时刻通过该信道传输上行数据,这样即可以使得服务于同一节点的各个UE间不会干扰彼此的数据传输,也不会影响多用户调度的增益。
如图8所示,所述第一UE还包括接收单元203。
所述接收单元203用于,接收第一指示信令。
所述第二确定单元202用于,根据所述接收单元接收的所述第一指示信令确定所述预设时长所在时间单元的时间位置的索引,所述时间单元是所述数据传输周期包括的任意一个时间单元。
或,所述第二确定单元202用于,根据预先定义的时间参数确定所述预设时长所在时间单元的时间位置的索引。
当然,所述第二确定单元还可以确定在所述数据传输周期内依照预设规则传输数据之后,根据接收到的第一指示信令或预定义的时间参数确定所述预设时长的所在时间单元的时间位置的索引。另外,基站可以直接通过第一指示信令通知第一UE所述预设时长所在时间单元的时间位置的索引。
所述第二确定单元202具体用于,获取所述第一指示信令携带的偏移参数a和周期参数b,根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引。
具体地,第二确定单元202根据X mod b=a或(X–a)mod b=0 确定所述预设时长所在时间单元的时间位置的索引X。
所述接收单元203还用于,接收第二指示信令;
所述第二确定单元202用于,根据所述第二指示信令确定所述预设时长的时间长度。
或,所述第二确定单元202用于,根据预先定义的时长参数确定所述预设时长的时间长度。
当然,所述第二确定单元202还可以确定在所述数据传输周期内依照预设规则传输数据之后,根据第二指示信令或预定义的时长参数确定所述预设时长的所在时间单元的时间位置的索引。
需要说明的是,所述预设时长的时间长度大于等于所述第二UE对所述第二UE的待用信道进行信道侦听的时间的时间长度。
所述接收单元203还用于,接收第三指示信令。所述第二确定单元202具体用于,根据所述第三接收单元接收的所述第三指示信令确定在所述数据传输周期内是否依照预设规则传输数据;所述第三指示信令用于指示所述第一UE在所述数据传输周期内是否依照预设规则传输数据。
或,所述第二确定单元具体用于,根据预先定义的模式参数确定在所述数据传输周期内是否依照预设规则传输数据。
所述第一UE还包括侦听单元、传输单元。
所述侦听单元用于,在侦听周期内对所述待用信道进行信道侦听;所述侦听周期在所述数据传输周期之前。
所述传输单元用于,若所述侦听单元对所述待用信道进行信道侦听的结果为空闲且所述第二确定单元确定依照所述预设规则传输数据,则在所述数据传输周期的开始时刻通过所述待用信道传输数据,在所述预设时长内不传输数据且所述侦听单元在所述预设时长内不对所述待用信道进行信道侦听。
需要说明的是,本实施例中的接收单元203可以集成在UE的接收器中,传输单元可以集成在UE的发射机中,也可以一起集成在UE的收发器中。这里所述的发射机优选的可以是上行发射器。 本实施例中的第一确定单元201和第二确定单元202可以集成在UE的处理器中实现,此外,也可以以程序代码的形式存储于基站的存储器中,由处理器调用并执行以上第一确定单元201和第二确定单元202的功能。侦听单元也可以集成在收发器中,用于对信道发射信号,接收反馈信号,以便UE的处理器根据接收到的信号得到信道侦听的结果。
本发明实施例提供的UE,可以确定依照预设规则传输数据,在数据传输周期留空预设时长不进行数据传输也不进行信道侦听,与该UE服务节点相同的其他UE可以在该UE留空的时间段内进行信道侦听,不会受到该UE的干扰。相比现有技术,服务节点相同的UE之间会因为LBT机制干扰了彼此的上行数据传输,影响多用户调度的增益。本发明即可以使得服务于同一节点的各个UE间不会干扰彼此的数据传输,也不会影响多用户调度的增益。
实施例3:
本发明实施例还提供一种UE,如图9所示,第一UE包括:处理器301、系统总线302、存储器303以及收发器304。
其中,处理器301可以为中央处理器(英文:central processing unit,缩写:CPU)。存储器303,用于存储程序代码,并将该程序代码传输给该处理器301,处理器301根据程序代码执行下述指令。存储器303可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器303也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)。存储器304还可以包括上述种类的存储器的组合。处理器301、存储器303之间通过系统总线302连接并完成相互间的通信。
收发器304可以是光收发器,电收发器,无线收发器或其任意组合实现。例如,光收发器可以是小封装可插拔(英文:small  form-factor pluggable transceiver,缩写:SFP)收发器(英文:transceiver),增强小封装可插拔(英文:enhanced small form-factor pluggable,缩写:SFP+)收发器或30吉比特小封装可插拔(英文:30 Gigabit small form-factor pluggable,缩写:XFP)收发器。电收发器可以是以太网(英文:Ethernet)网络接口控制器(英文:network interface controller,缩写:NIC)。无线收发器可以是无线网络接口控制器(英文:wireless network interface controller,缩写:WNIC)。
处理器301,用于确定所述第一UE的待用信道以及所述第一UE的数据传输周期;所述数据传输周期是指所述第一UE通过所述待用信道传输上行数据的周期。
处理器301,用于确定在所述数据传输周期内是否依照预设规则传输数据,即是否在传输周期内留空一段时间不进行数据传输和信道侦听。
所述处理器301还用于,若所述第一UE确定依照所述预设规则传输数据,所述第一UE则确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,即在所述预设时长内不传输数据且不对所述待用信道进行信道侦听,第二UE在所述预设时长内对所述第二UE的待用信道进行信道侦听;其中,所述第一UE与所述第二UE的接入网设备相同。
当第一UE在自身的数据传输周期内的预设时长内不进行数据传输且不对该信道进行信道侦听,那么第二UE对该信道进行信道侦听的结果就是空闲,第二UE就会按照基站的调度指示在指示的时刻通过该信道传输上行数据,这样即可以使得服务于同一节点的各个UE间不会干扰彼此的数据传输,也不会影响多用户调度的增益。
处理器301还有用于,通过所述收发器304接收第一指示信令。
所述处理器301用于,根据接收的所述第一指示信令确定所述预设时长所在时间单元的时间位置的索引,所述时间单元是所述数据传输周期包括的任意一个时间单元。
或,所述处理器301用于,根据预先定义的时间参数确定所述预设时长所在时间单元的时间位置的索引。
当然,所述处理器301还可以确定在所述数据传输周期内依照预设规则传输数据之后,根据接收到的第一指示信令或预定义的时间参数确定所述预设时长的所在时间单元的时间位置的索引。另外,基站可以直接通过第一指示信令通知第一UE所述预设时长所在时间单元的时间位置的索引。
所述处理器301具体用于,获取所述第一指示信令携带的偏移参数a和周期参数b,根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引。
具体地,处理器301根据X mod b=a或(X–a)mod b=0确定所述预设时长所在时间单元的时间位置的索引X。
所述处理器301还用于,通过收发器304接收第二指示信令;
所述处理器301用于,根据所述第二指示信令确定所述预设时长的时间长度。
或,所述处理器301用于,根据预先定义的时长参数确定所述预设时长的时间长度。
当然,所述处理器301还可以确定在所述数据传输周期内依照预设规则传输数据之后,根据第二指示信令或预定义的时长参数确定所述预设时长的所在时间单元的时间位置的索引。
需要说明的是,所述预设时长的时间长度大于等于所述第二UE对所述第二UE的待用信道进行信道侦听的时间的时间长度。
所述处理器301还用于,通过收发器304接收第三指示信令。所述处理器301具体用于,根据所述第三接收单元接收的所述第三指示信令确定在所述数据传输周期内是否依照预设规则传输数据;所述第三指示信令用于指示所述第一UE在所述数据传输周期内是否依照预设规则传输数据。
或,所述处理器301具体用于,根据预先定义的模式参数确定在所述数据传输周期内是否依照预设规则传输数据。
所述处理器301还用于,通过所述收发器304发送接收信号在侦听周期内对所述待用信道进行信道侦听;所述侦听周期在所述数据传输周期之前。
所述处理器301用于,若所述侦听单元对所述待用信道进行信道侦听的结果为空闲且确定依照所述预设规则传输数据,则在所述数据传输周期的开始时刻通过所述待用信道传输数据,在所述预设时长内不传输数据且所述侦听单元在所述预设时长内不对所述待用信道进行信道侦听。
本发明实施例提供的UE,可以确定依照预设规则传输数据,在数据传输周期留空预设时长不进行数据传输也不进行信道侦听,与该UE服务节点相同的其他UE可以在该UE留空的时间段内进行信道侦听,不会受到该UE的干扰。相比现有技术,服务节点相同的UE之间会因为LBT机制干扰了彼此的上行数据传输,影响多用户调度的增益。本发明即可以使得服务于同一节点的各个UE间不会干扰彼此的数据传输,也不会影响多用户调度的增益。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (24)

  1. 一种上行数据传输方法,其特征在于,包括:
    第一用户设备UE确定所述第一UE的待用信道以及所述第一UE的数据传输周期;所述数据传输周期是指所述第一UE通过所述待用信道传输上行数据的周期;
    所述第一UE确定在所述数据传输周期内是否依照预设规则传输数据;
    若所述第一UE确定依照所述预设规则传输数据,所述第一UE则确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,第二UE在所述预设时长内对所述第二UE的待用信道进行信道侦听;其中,所述第一UE与所述第二UE的接入网设备相同。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一UE接收第一指示信令,根据所述第一指示信令确定所述预设时长所在时间单元的时间位置的索引,所述时间单元是所述数据传输周期包括的任意一个时间单元;
    或,所述第一UE根据预先定义的时间参数确定所述预设时长所在时间单元的时间位置的索引。
  3. 根据权利要求2所述的方法,其特征在于,所述第一UE根据第一指示信令,确定所述预设时长所在时间单元的时间位置的索引具体包括:
    所述第一UE获取所述第一指示信令携带的偏移参数a和周期参数b,根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引包括:
    根据X mod b=a或(X–a)mod b=0确定所述预设时长所在时间单元的时间位置的索引X,其中mod代表取余运算。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述方 法还包括:
    所述第一UE接收第二指示信令,根据所述第二指示信令确定所述预设时长的时间长度;
    或,所述第一UE根据预先定义的时长参数确定所述预设时长的时间长度。
  6. 根据权利要求5所述的方法,其特征在于,所述预设时长的时间长度大于或等于所述第二UE对所述第二UE的待用信道进行信道侦听的时间的时间长度。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述所述第一UE确定在所述数据传输周期内是否依照预设规则传输数据具体包括:
    所述第一UE接收第三指示信令,根据所述第三指示信令确定在所述数据传输周期内是否依照预设规则传输数据;所述第三指示信令用于指示所述第一UE在所述数据传输周期内是否依照预设规则传输数据;
    或,所述第一UE根据预先定义的模式参数确定在所述数据传输周期内是否依照预设规则传输数据。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述第一UE在侦听周期内对所述待用信道进行信道侦听;所述侦听周期在所述数据传输周期之前;
    若对所述待用信道进行信道侦听的结果为空闲且所述第一UE确定依照所述预设规则传输数据,则在所述数据传输周期的开始时刻通过所述待用信道传输数据,且仅在所述数据传输周期内的预设时长之外的其他时刻传输数据。
  9. 一种第一用户设备UE,其特征在于,包括:
    第一确定单元,用于确定所述第一UE的待用信道以及所述第一UE的数据传输周期;所述数据传输周期是指所述第一UE通过所述待用信道传输上行数据的周期;
    第二确定单元,用于确定在所述数据传输周期内是否依照预设规则传输数据;
    所述第二确定还用于,若所述第一UE确定依照所述预设规则传输数据,所述第一UE则确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,第二UE在所述预设时长内对所述第二UE的待用信道进行信道侦听;其中,所述第一UE与所述第二UE的接入网设备相同。
  10. 根据权利要求9所述的第一UE,其特征在于,还包括接收单元,
    所述接收单元用于,接收第一指示信令;
    所述第二确定单元用于,根据所述接收单元接收的所述第一指示信令确定所述预设时长所在时间单元的时间位置的索引,所述时间单元是所述数据传输周期包括的任意一个时间单元;
    或,所述第二确定单元用于,根据预先定义的时间参数确定所述预设时长所在时间单元的时间位置的索引。
  11. 根据权利要求10所述的第一UE,其特征在于,所述第二确定单元具体用于,获取所述第一指示信令携带的偏移参数a和周期参数b,根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引。
  12. 根据权利要求11所述的第一UE,其特征在于,所述第二确定单元具体用于,根据X mod b=a或(X–a)mod b=0确定所述预设时长所在时间单元的时间位置的索引X。
  13. 根据权利要求10-12任一项所述的第一UE,其特征在于,
    所述接收单元还用于,接收第二指示信令;
    所述第二确定单元用于,根据所述第二指示信令确定所述预设时长的时间长度;
    或,所述第二确定单元用于,根据预先定义的时长参数确定所述预设时长的时间长度。
  14. 根据权利要求13所述的第一UE,其特征在于,所述预设时 长的时间长度大于等于所述第二UE对所述第二UE的待用信道进行信道侦听的时间的时间长度。
  15. 根据权利要求10-14任一项所述的第一UE,其特征在于,
    所述接收单元还用于,接收第三指示信令;
    所述第二确定单元具体用于,根据所述第三接收单元接收的所述第三指示信令确定在所述数据传输周期内是否依照预设规则传输数据;所述第三指示信令用于指示所述第一UE在所述数据传输周期内是否依照预设规则传输数据;
    或,
    所述第二确定单元具体用于,根据预先定义的模式参数确定在所述数据传输周期内是否依照预设规则传输数据。
  16. 根据权利要求9-15任一项所述的第一UE,其特征在于,还包括侦听单元、传输单元,
    所述侦听单元用于,在侦听周期内对所述待用信道进行信道侦听;所述侦听周期在所述数据传输周期之前;
    所述传输单元用于,若所述侦听单元对所述待用信道进行信道侦听的结果为空闲且所述第二确定单元确定依照所述预设规则传输数据,则在所述数据传输周期的开始时刻通过所述待用信道传输数据,且仅在所述数据传输周期内的预设时长之外的其他时刻传输数据。
  17. 一种第一用户设备UE,其特征在于,包括:
    处理器,用于确定所述第一UE的待用信道以及所述第一UE的数据传输周期;所述数据传输周期是指所述第一UE通过所述待用信道传输上行数据的周期;
    所述处理器还用于,确定在所述数据传输周期内是否依照预设规则传输数据;
    所述处理器还用于,若所述第一UE确定依照所述预设规则传输数据,所述第一UE则确定仅在所述数据传输周期内的预设时长之外的其他时刻传输数据,第二UE在所述预设时长内对所述第二UE的待用信道进行信道侦听;其中,所述第一UE与所述第二UE的接入 网设备相同。
  18. 根据权利要求17所述的第一UE,其特征在于,还包括收发器,
    所述收发器用于,接收第一指示信令;
    所述处理器用于,根据所述接收单元接收的所述第一指示信令确定所述预设时长所在时间单元的时间位置的索引,所述时间单元是所述数据传输周期包括的任意一个时间单元;
    或,所述处理器用于,根据预先定义的时间参数确定所述预设时长所在时间单元的时间位置的索引。
  19. 根据权利要求18所述的第一UE,其特征在于,所述处理器具体用于,获取所述第一指示信令携带的偏移参数a和周期参数b,根据所述偏移参数a以及所述周期参数b确定所述预设时长所在时间单元的时间位置的索引。
  20. 根据权利要求19所述的第一UE,其特征在于,所述处理器具体用于,根据X mod b=a或(X–a)mod b=0确定所述预设时长所在时间单元的时间位置的索引X。
  21. 根据权利要求18-20任一项所述的第一UE,其特征在于,
    所述收发器还用于,接收第二指示信令;
    所述处理器用于,根据所述第二指示信令确定所述预设时长的时间长度;
    或,所述处理器用于,根据预先定义的时长参数确定所述预设时长的时间长度。
  22. 根据权利要求21所述的第一UE,其特征在于,所述预设时长的时间长度大于等于所述第二UE对所述第二UE的待用信道进行信道侦听的时间的时间长度。
  23. 根据权利要求18-22任一项所述的第一UE,其特征在于,
    所述收发器还用于,接收第三指示信令;
    所述处理器具体用于,根据所述第三接收单元接收的所述第三指示信令确定在所述数据传输周期内是否依照预设规则传输数据;所述 第三指示信令用于指示所述第一UE在所述数据传输周期内是否依照预设规则传输数据;
    或,
    所述处理器具体用于,根据预先定义的模式参数确定在所述数据传输周期内是否依照预设规则传输数据。
  24. 根据权利要求17-23任一项所述的第一UE,其特征在于,还包括侦听模块,
    所述侦听模块用于,在侦听周期内对所述待用信道进行信道侦听;所述侦听周期在所述数据传输周期之前;
    所述处理器还用于,若所述侦听模块对所述待用信道进行信道侦听的结果为空闲且确定依照所述预设规则传输数据,则在所述数据传输周期的开始时刻通过所述收发器利用所述待用信道传输数据,且仅在所述数据传输周期内的预设时长之外的其他时刻传输数据。
PCT/CN2015/093456 2015-10-30 2015-10-30 一种上行数据传输方法及ue WO2017070953A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/093456 WO2017070953A1 (zh) 2015-10-30 2015-10-30 一种上行数据传输方法及ue
CN201580071605.2A CN107113873B (zh) 2015-10-30 2015-10-30 一种上行数据传输方法及ue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/093456 WO2017070953A1 (zh) 2015-10-30 2015-10-30 一种上行数据传输方法及ue

Publications (1)

Publication Number Publication Date
WO2017070953A1 true WO2017070953A1 (zh) 2017-05-04

Family

ID=58629748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093456 WO2017070953A1 (zh) 2015-10-30 2015-10-30 一种上行数据传输方法及ue

Country Status (2)

Country Link
CN (1) CN107113873B (zh)
WO (1) WO2017070953A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278123A (zh) * 2019-02-02 2020-06-12 维沃移动通信有限公司 非授权频段的信息传输方法、终端及网络设备
WO2021068849A1 (en) * 2019-10-07 2021-04-15 Mediatek Inc. Apparatuses and methods for uplink transmission in frame-based equipment (fbe) operation
CN113873555A (zh) * 2021-09-28 2021-12-31 中信科移动通信技术股份有限公司 上行能量计算方法及装置
WO2022116057A1 (zh) * 2020-12-02 2022-06-09 Oppo广东移动通信有限公司 一种资源传输方法、终端设备及网络设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076597B (zh) * 2018-08-10 2022-10-04 北京小米移动软件有限公司 Fbe的数据传输方法、装置及存储介质
WO2021159442A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Channel access enchancement for a fixed frame mode for unlicensed spectrum

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118782A (zh) * 2010-01-05 2011-07-06 中国移动通信集团公司 一种上行传输方法、系统和设备
US20150103782A1 (en) * 2013-10-14 2015-04-16 Qualcomm Incorporated Techniques for enabling asynchronous communications using unlicensed radio frequency spectrum
CN104812032A (zh) * 2015-04-10 2015-07-29 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118782A (zh) * 2010-01-05 2011-07-06 中国移动通信集团公司 一种上行传输方法、系统和设备
US20150103782A1 (en) * 2013-10-14 2015-04-16 Qualcomm Incorporated Techniques for enabling asynchronous communications using unlicensed radio frequency spectrum
CN104812032A (zh) * 2015-04-10 2015-07-29 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278123A (zh) * 2019-02-02 2020-06-12 维沃移动通信有限公司 非授权频段的信息传输方法、终端及网络设备
WO2021068849A1 (en) * 2019-10-07 2021-04-15 Mediatek Inc. Apparatuses and methods for uplink transmission in frame-based equipment (fbe) operation
WO2022116057A1 (zh) * 2020-12-02 2022-06-09 Oppo广东移动通信有限公司 一种资源传输方法、终端设备及网络设备
CN113873555A (zh) * 2021-09-28 2021-12-31 中信科移动通信技术股份有限公司 上行能量计算方法及装置
CN113873555B (zh) * 2021-09-28 2023-09-26 中信科移动通信技术股份有限公司 上行能量计算方法及装置

Also Published As

Publication number Publication date
CN107113873B (zh) 2020-07-31
CN107113873A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
US11558893B2 (en) Low latency physical uplink control channel with scheduling request and channel state information
JP6682000B2 (ja) アップリンク制御チャネル上で送信をするためのパラメータを決定するための方法
CN109644498B (zh) 针对频谱共享的新无线电先听后讲设计
US11357044B2 (en) Flexible time masks for listen-before-talk based channel access
EP2949062B1 (en) Method and apparatus for performing a measurement to discover small cells in wireless communication system
WO2017070953A1 (zh) 一种上行数据传输方法及ue
US20190140864A1 (en) Device-to-device (d2d) channel measurement techniques
CN108781424B (zh) 使用先听后说协议对信道接入进行定时校正的方法和设备
JP2019510420A (ja) キャリアアグリゲーションに関するサウンディング基準信号送信
JP2018520568A (ja) 共有周波数スペクトル帯域上のサウンディング基準信号の送信を管理するための技法
CN110710129A (zh) 用于动态tdd系统的冲突处理机制
US20140295832A1 (en) Method and apparatus of performing a discovery procedure
KR20170056527A (ko) 비면허 스펙트럼 상에서의 셀 검출, 동기화 및 측정
EP3820204B1 (en) Method for transmitting wus in wireless communication system, and device therefor
JP6494862B2 (ja) 1つ以上の制御信号を第2通信デバイスへ送信するための第1通信デバイス及びそれにおける方法
CN113574924A (zh) 用于上行链路传输的波形配置和指示
EP3412105B1 (en) Listen before talk for uplink transmission
US11463885B2 (en) Sounding reference signal enhancements for unlicensed spectrum
US20210045154A1 (en) Method and device for mitigating interference in unlicensed band
KR102225167B1 (ko) 신호 전송 방법, 신호 전송 제어 방법, 사용자 디바이스, 및 기지국
WO2021011192A1 (en) Sounding reference signal enhancements for unlicensed spectrum
KR20220018909A (ko) 사이드링크 자원의 조정 및 할당을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907015

Country of ref document: EP

Kind code of ref document: A1