WO2017069455A1 - Oxynitride phosphor, preparing method therefor, and white light emitting element - Google Patents

Oxynitride phosphor, preparing method therefor, and white light emitting element Download PDF

Info

Publication number
WO2017069455A1
WO2017069455A1 PCT/KR2016/011476 KR2016011476W WO2017069455A1 WO 2017069455 A1 WO2017069455 A1 WO 2017069455A1 KR 2016011476 W KR2016011476 W KR 2016011476W WO 2017069455 A1 WO2017069455 A1 WO 2017069455A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
metal selected
phosphor
oxynitride phosphor
oxynitride
Prior art date
Application number
PCT/KR2016/011476
Other languages
French (fr)
Korean (ko)
Inventor
이성훈
김영식
이환섭
이상준
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Publication of WO2017069455A1 publication Critical patent/WO2017069455A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an oxynitride phosphor, a method of manufacturing the same, and a white light emitting device. More specifically, the light emitting wavelength is 500 to 550 nm using a UV LED and a blue LED as a light source, and the half width is about 48 to 80 nm.
  • the present invention relates to an oxynitride phosphor characterized by a narrow oxynitride phosphor, having an excellent absorption region of 380 to 480 nm, and having an easy wavelength shift to 500 to 550 nm, a method of manufacturing the same, and a white light emitting device including the phosphor.
  • ⁇ -SiAlON Green
  • La 3 Si 6 N 11 Ce 3+ (G-Yellow) nitrides.
  • ⁇ -SiAlON is a green oxynitride phosphor, which has a narrow half width, but is not easy to shift in wavelength.
  • the green oxynitride phosphor is synthesized at high temperature and high pressure, and there is an economic disadvantage in that the manufacturing process is very complicated and the cost is high.
  • La 3 Si 6 N 11 has a wide half-width of green-yellow area, and emits rich colors to green and yellow areas, which have advantages in terms of luminance.
  • the two phosphors used in the related art have a disadvantage in that the manufacturing method is performed at high temperature and high pressure, and the nitride used as the basic raw material is unstable and expensive, and the wavelength of the phosphor is not shifted.
  • the mother is a pure nitride, when a slight oxygen inflow from the process and the raw material, its properties are deteriorated and another phase is formed, so it is necessary to work in a closed box, which results in a poor productivity.
  • the light emitting properties of the green and yellow-orange regions include a lot of color regions that cannot be used in actual display, they are not efficient.
  • the problem of the structure of the base matrix causes a decrease in reliability and needs to be improved.
  • Korean Patent Nos. 10-1297619 and 10-1235179 describe oxynitride phosphors of Formulas A and B, respectively.
  • M is at least one or more alkaline earth metal ions selected from the group consisting of Ba, Sr, Ca, Mg and Be, 0 ⁇ x ⁇ 2, 0.003 ⁇ a ⁇ 0.75.
  • M is at least one or more alkaline earth metal ions selected from the group consisting of Ba, Sr, Ca, Mg and Be, 0.01 ⁇ a ⁇ 5, 1 ⁇ b ⁇ 7, 2 ⁇ c ⁇ 13, 1 ⁇ d ⁇ 18 and 0 ⁇ e ⁇ 16.
  • ⁇ -sialon crystals (where x1 is high capacity of Li in the sialon unit lattice, x2 is high capacity of A element in the sialon unit lattice, x3 is high capacity of M element in the sialon unit lattice)
  • the parameters in the ranges of 1.2 ⁇ x1 ⁇ 2.4, 0.001 ⁇ x2 ⁇ 0.4, and 0 ⁇ x3 ⁇ 1.0 emit light of fluorescence having peaks at wavelengths in the range of 400 nm to 700 nm by irradiating the excitation source. It has been proposed with respect to a phosphor having a ⁇ -sialon crystal as a main component.
  • Patent Document 1 Korean Registered Patent No. 10-1297619
  • Patent Document 2 Korean Patent Registration No. 10-1235179
  • Patent Document 3 Korean Patent Publication No. 10-2008-0047316
  • the present invention can economically produce a phosphor having an excellent light absorption region and a wavelength shift characteristic as well as a narrow half-value width, high luminance and high color reproducibility as an oxynitride phosphor.
  • the challenge is to present a solution.
  • an object of the present invention is to provide an oxynitride phosphor having easy wavelength control and high luminance and high color reproducibility.
  • another object of the present invention is to provide an oxynitride phosphor whose half width is as narrow as 48 to 80 nm and has an excellent absorption area of 380 to 480 nm and is easy to shift wavelengths to 500 to 550 nm.
  • Another object of the present invention is to provide a novel phosphor with further improved brightness and reliability.
  • Another object of the present invention is to provide a method for efficiently preparing the oxynitride phosphors having excellent physical properties as described above.
  • the present invention provides an oxynitride phosphor represented by the following formula (1).
  • A is at least one metal selected from Li, Na, K and Rb
  • M is at least one metal selected from Ba, Sr, Ca, Mg or Zn
  • D is Gd, Y, Lu, La
  • R is one or more metals selected from Eu, Ce, Tm, Pr, Ho, Dy and Mn, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0.01 ⁇ z ⁇ 3.
  • A is at least one metal selected from Li, Na, K and Rb
  • M is a mixture of at least one oxide or nitride of a divalent metal selected from Ba, Sr, Ca, Mg or Zn
  • D is at least one mixture of oxides or nitrides of a trivalent metal selected from Gd, Y, Lu, La, Al or Ga
  • R is at least one selected from Eu, Ce, Tm, Pr, Ho, Dy and Mn.
  • the oxynitride phosphor according to the present invention emits light having a light emission wavelength of 500 to 550 nm using a UV LED and a blue LED as a light source, and has a half width of 48 to 80 nm narrow, particularly having an excellent absorption area of 380 to 480 nm. It has the characteristic of easily reproducing wavelengths from 500 to 550 nm while having high color rendering effect.
  • the oxynitride phosphor of the present invention is closer to the reference light in the white implementation in UV and blue LED, and realizes excellent cyan-green light emission and high efficiency suitable for commercialization.
  • the oxynitride phosphor according to the present invention can be implemented in blue green, and is suitable for high color rendering, and can be preferably applied to a display since high brightness and high color reproduction are possible.
  • the high temperature and high pressure are not required compared to the nitride phosphor under general application, there is an advantage in that the price is excellent.
  • Figure 1 shows the XRD pattern for the compound prepared in Example 3 according to the present invention.
  • Figure 2 shows a comparison of the XRD pattern for each compound according to the content of nitrogen in the experimental example according to the present invention.
  • Figure 3 shows a comparison of the wavelength change for each compound according to the content of nitrogen in the experimental example according to the present invention.
  • the present invention relates to a phosphor that emits light at a wavelength of 500 to 550 nm using a UV LED and a blue LED as a light source, and has a half width of about 48 to 80 nm.
  • the oxynitride phosphor according to the present invention is a phosphor represented by the following formula (1).
  • A is at least one metal selected from Li, Na, K and Rb
  • M is at least one metal selected from Ba, Sr, Ca, Mg or Zn
  • D is Gd, Y, Lu, La
  • R is one or more metals selected from Eu, Ce, Tm, Pr, Ho, Dy and Mn, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0.01 ⁇ z ⁇ 3.
  • the phosphor has an excellent absorption region of 380 ⁇ 480 nm and has the property of easy wavelength shifting to 500 ⁇ 550 nm.
  • the compound of Formula 1 may be prepared as a novel phosphor with further improved brightness and reliability.
  • the present invention includes a manufacturing method for controlling the wavelength, high brightness and high color reproducible oxynitride phosphors by substituting nitrogen in place of the nitridation and oxygen of the phosphor to the compound of the formula (1) through the synthetic process control.
  • M is at least one oxide or nitride of a divalent metal selected from Ba, Sr, Ca, Mg or Zn and D is Gd, Y, Lu, La, At least one oxide or nitride of a trivalent metal selected from Al or Ga, R is mixed with at least one metal selected from Eu, Ce, Tm, Pr, Ho, Dy, and Mn, followed by hydrogen mixed gas or nitrogen
  • An oxynitride phosphor having a composition represented by Chemical Formula 1 may be prepared by heat treatment under a reducing atmosphere of gas.
  • in order to replace the nitrogen in the manufacturing process it can be carried out by the process of heat treatment by maintaining at 900 °C 1 hour to 4 hours.
  • each element of M, Si may be used by mixing nitrogen as about 0 to 80 wt% of the raw material properties of two or more kinds of nitride raw material or the total content ratio.
  • the method for preparing a high color oxynitride phosphor according to the present invention comprises the following steps.
  • A is at least one metal selected from Li, Na, K and Rb and M is selected from Ba, Sr, Ca, Mg or Zn
  • D is at least one mixture of oxides or nitrides of trivalent metals selected from Gd, Y, Lu, La, Al or Ga
  • R is Eu, Ce, Tm, Pr, Mixing oxides or nitrides including at least one rare earth or transition metal selected from Ho, Dy and Mn
  • Charging the mixed precursor into an alumina / carbon crucible Maintaining the temperature in a reducing environment to 900 ° C. for 1 to 4 hours; After the temperature is raised to 1000 to 1400 °C in a nitrogen or hydrogen environment it can be prepared for the oxynitride phosphor of Formula 1 including the step of maintaining for 1 to 12 hours.
  • the oxynitride phosphor represented by the formula (1) having an excellent absorption region of 380 ⁇ 480 nm and easy wavelength shift to 500 ⁇ 550 nm.
  • the present invention also provides a white light emitting device comprising a UV / blue light emitting diode (LED) and an oxynitride green phosphor according to the present invention.
  • a white light emitting device comprising a UV / blue light emitting diode (LED) and an oxynitride green phosphor according to the present invention.
  • the larger the nitrogen substitution rate of the phosphor the light emission peak shifts from the blue green region to the green region. Therefore, the phosphor of the present invention can easily control the color control and brightness through the control of the light emission peak. In addition, the phosphor according to the present invention has a remarkable effect of maximizing the color control of each device according to the substitution of nitrogen.
  • by adjusting the substitution rate of nitrogen in the manufacturing process of Formula 1 includes controlling the wavelength and half width of the phosphor.
  • the oxynitride phosphor prepared according to the embodiment of the present invention has a property closer to the reference light in the white implementation in UV and blue LEDs, and can implement excellent cyan-green and high efficiency suitable for commercialization.
  • the molar ratio of sodium, barium, europium, scandinium and silicon and silicon nitride was fixed at 1: 0.9: 0.1: 1: 2, and the ratio of silicon nitride and silicon oxide was set at 2:98.
  • the prepared mixed sample was dried at 120 ° C. for 1 hour using an oven. After heated in a later reduction in the environment up to 900 °C after 4 hours, by heating the mixture to a high temperature electric furnace in a reducing atmosphere at 1200 o C for 4 hours, using the title compound corresponding to the formula (1) was prepared.
  • Example 2 Na (Ba 0.9 , Eu 0.1 ) ScSi 2 O 6 . 95 N 0 .05 production of the oxynitride phosphors
  • Example 3 Na (Ba 0.9 , Eu 0.1 ) ScSi 2 O 6 . 9 N 0 .1 production of the oxynitride phosphors
  • the wavelength change was compared and analyzed for the compounds having different nitrogen content and the compounds containing no nitrogen, such as the compounds obtained in Examples 1-3. The results are shown in FIG.
  • the XRD pattern of the phosphor prepared according to the present invention was moved to a high angle (High angle shift) as the nitrogen content ratio was increased, it was confirmed that nitrogen is structurally substituted with oxygen.
  • the phosphor of the present invention was found to be a phosphor emitting a main wavelength of 500 ⁇ 550 nm as the content ratio of nitrogen (Nitrogen) is increased by the excitation light of 380 ⁇ 480 nm light, thereby high color rendering It was confirmed that the phosphor having excellent physical properties that can be reproduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to an oxynitride phosphor, a preparing method therefor, and a white light emitting element, and more specifically, to an oxynitride phosphor characterized by the emission at an emission wavelength of even 500-550 nm using a UV LED and a blue LED as light sources and having a narrow full width at half maximum of 48-80 nm, wherein the oxynitride phosphor has an excellent absorption range of 380-480 nm and facilitates the wavelength shift to even 500-550 nm, to a preparing method therefor, and to a white light emitting element containing the phosphor.

Description

산질화물 형광체와 그 제조방법 및 백색 발광소자Oxynitride phosphors, preparation method thereof and white light emitting device
본 발명은 산질화물 형광체와 그 제조방법 및 백색 발광소자에 관한 것으로서, 더욱 상세하게는 UV LED 및 청색 LED를 광원으로 하여 발광 파장이 500 ~ 550 nm까지 발광하며, 그 반치폭이 48 ~ 80 nm 정도 좁은 산질화물 형광체를 특징으로 하며, 우수한 380 ~ 480 nm의 흡수 영역을 가지고 500 ~ 550 nm까지 파장이동이 용이한 산질화물 형광체와 그 제조방법 및 그 형광체를 포함하는 백색 발광소자에 관한 것이다.The present invention relates to an oxynitride phosphor, a method of manufacturing the same, and a white light emitting device. More specifically, the light emitting wavelength is 500 to 550 nm using a UV LED and a blue LED as a light source, and the half width is about 48 to 80 nm. The present invention relates to an oxynitride phosphor characterized by a narrow oxynitride phosphor, having an excellent absorption region of 380 to 480 nm, and having an easy wavelength shift to 500 to 550 nm, a method of manufacturing the same, and a white light emitting device including the phosphor.
종래 디스플레이용 백색 LED는 Blue chip 위에 형광체를 조합함으로써 구현된다. 현재 대표적으로 사용되는 백색 LED용 형광체로 β-SiAlON (Green), La3Si6N11:Ce3+(G-Yellow) 질화물(Nitride)계가 주를 이루고 있다. β-SiAlON은 녹색 산질화물 형광체로써 반치폭이 좁은 장점이 있으나, 파장의 이동이 용이하지 않다. 녹색 산질화물 형광체는 고온 고압에서 합성이 이루어지며, 특히 제조 공정이 매우 복잡하고, 비용이 높아진다는 점에서 경제적으로 불리한 문제가 있다.Conventional white LEDs for displays are implemented by combining phosphors on a blue chip. Phosphors mainly used for white LEDs include β-SiAlON (Green) and La 3 Si 6 N 11 : Ce 3+ (G-Yellow) nitrides. β-SiAlON is a green oxynitride phosphor, which has a narrow half width, but is not easy to shift in wavelength. The green oxynitride phosphor is synthesized at high temperature and high pressure, and there is an economic disadvantage in that the manufacturing process is very complicated and the cost is high.
La3Si6N11는 녹색-황색영역의 넓은 반치폭으로 휘도적 측면에 장점이 있는 녹색과 황색영역까지 풍부한 색을 발광하는 특성이 있다. La 3 Si 6 N 11 has a wide half-width of green-yellow area, and emits rich colors to green and yellow areas, which have advantages in terms of luminance.
이와 같이, 종래에 사용되고 있는 두 가지 형광체는 그 제조방법이 고온 고압에서 이루어지며, 기본원료로 사용되는 질화물이 불안정하고 고가이며, 형광체의 파장이동은 되지 않는 단점이 있다. 또한, 모체가 순수질화물이므로, 공정상 및 원료 물질에서 약간의 산소 유입시 그 특성이 저하되고 또 다른 상이 형성되는 어려움이 있어 밀폐된 박스에서 작업해야 하고 그에 따른 양산성이 떨어지는 단점이 있다. 또한, 녹색(Green)과 황색-주황색(Yellow-Orange) 영역의 발광 특성을 가지고 있어 실제 디스플레이에 적용시 사용하지 못하는 색 영역을 많이 포함하고 있어서, 효율적이지 못하다. 또한, 기본 모체의 구조의 문제점으로 신뢰성 저하를 초래함으로 이에 대한 개선이 필요하다.As described above, the two phosphors used in the related art have a disadvantage in that the manufacturing method is performed at high temperature and high pressure, and the nitride used as the basic raw material is unstable and expensive, and the wavelength of the phosphor is not shifted. In addition, since the mother is a pure nitride, when a slight oxygen inflow from the process and the raw material, its properties are deteriorated and another phase is formed, so it is necessary to work in a closed box, which results in a poor productivity. In addition, since the light emitting properties of the green and yellow-orange regions include a lot of color regions that cannot be used in actual display, they are not efficient. In addition, the problem of the structure of the base matrix causes a decrease in reliability and needs to be improved.
종래 산질화물 형광체로서, 한국등록특허 제10-1297619호와 제10-1235179호에서는 각각 하기 화학식 A과 화학식 B의 산질화물 형광체에 관하여 기재하고 있다.As conventional oxynitride phosphors, Korean Patent Nos. 10-1297619 and 10-1235179 describe oxynitride phosphors of Formulas A and B, respectively.
[화학식 A][Formula A]
M3-aSi6O3+3x/2N8-x:Eua M 3-a Si 6 O 3 + 3x / 2 N 8-x : Eu a
상기에서, M은 Ba, Sr, Ca, Mg 및 Be으로 이루어진 군에서 선택되는 적어도 1 개 이상의 알칼리 토금속 이온이고, 0≤x<2 이고, 0.003≤a≤0.75이다.In the above, M is at least one or more alkaline earth metal ions selected from the group consisting of Ba, Sr, Ca, Mg and Be, 0≤x <2, 0.003≤a≤0.75.
[화학식 B][Formula B]
ZnaMbSicOdNe: EuZn a M b Si c O d N e : Eu
상기에서, M은 Ba, Sr, Ca, Mg 및 Be으로 이루어진 군에서 선택되는 적어도 1 개 이상의 알칼리토금속 이온이고, 0.01≤a≤5, 1≤b≤7, 2≤c≤13, 1≤d≤18 및 0<e≤16이다.In the above, M is at least one or more alkaline earth metal ions selected from the group consisting of Ba, Sr, Ca, Mg and Be, 0.01≤a≤5, 1≤b≤7, 2≤c≤13, 1≤d ≤18 and 0 <e≤16.
또한, 한국공개특허 제10-2008-0047316호에서는 In addition, Korean Patent Publication No. 10-2008-0047316
(Lix1, Ax2, Mx3)(Si12-(m+n)Alm+n)(OnN16-n)(Li x1 , A x2 , M x3 ) (Si 12- (m + n) Al m + n ) (O n N 16-n )
으로 표시되는 α형 사이알론 결정(다만, x1은 사이알론 단위 격자중의 Li의 고용량, x2는 사이알론 단위 격자중의 A 원소의 고용량, x3은 사이알론 단위 격자중의 M 원소의 고용량)에 있어서의 파라미터가, 1.2≤x1≤2.4, 0.001≤x2≤0.4, 0≤x3≤1.0의 범위의 값이고, 여기원을 조사함으로써 파장 400 nm 내지 700 nm의 범위의 파장에서 피크를 갖는 형광을 발광하는 α형 사이알론 결정을 주성분으로 하는 형광체에 관하여 제안하고 있다.Α-sialon crystals (where x1 is high capacity of Li in the sialon unit lattice, x2 is high capacity of A element in the sialon unit lattice, x3 is high capacity of M element in the sialon unit lattice) The parameters in the ranges of 1.2 ≦ x1 ≦ 2.4, 0.001 ≦ x2 ≦ 0.4, and 0 ≦ x3 ≦ 1.0 emit light of fluorescence having peaks at wavelengths in the range of 400 nm to 700 nm by irradiating the excitation source. It has been proposed with respect to a phosphor having a α-sialon crystal as a main component.
그러나 이러한 기존에 알려진 발명들 역시 위와 같은 문제점을 모두 개선하지 못하고 여러 다양한 문제점을 그대로 가지고 있다.However, these conventionally known inventions do not all improve the above problems, but have various problems as they are.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 한국등록특허 제10-1297619호 (Patent Document 1) Korean Registered Patent No. 10-1297619
(특허문헌 2) 한국등록특허 제10-1235179호 (Patent Document 2) Korean Patent Registration No. 10-1235179
(특허문헌 3) 한국공개특허 제10-2008-0047316호(Patent Document 3) Korean Patent Publication No. 10-2008-0047316
상기한 바와 같은 종래 기술의 문제점을 해결하기 위해 본 발명은 산질화물 형광체로서 우수한 광 흡수영역과 파장이동이 용이한 특성을 가지면서 반치폭이 좁고 고휘도와 높은 색 재현성을 가지는 형광체를 경제적으로 제조할 수 있는 방안의 제시를 해결과제로 한다.In order to solve the problems of the prior art as described above, the present invention can economically produce a phosphor having an excellent light absorption region and a wavelength shift characteristic as well as a narrow half-value width, high luminance and high color reproducibility as an oxynitride phosphor. The challenge is to present a solution.
따라서 본 발명의 목적은 파장조절이 용이하고 고휘도와 높은 색 재현성을 가지는 산질화물 형광체를 제공하는데 목적이 있다.Accordingly, an object of the present invention is to provide an oxynitride phosphor having easy wavelength control and high luminance and high color reproducibility.
또한, 본 발명의 다른 목적은 반치폭이 48 ~ 80 nm 정도로 좁고 우수한 380 ~ 480 nm의 흡수 영역을 가지고 500 ~ 550 nm까지 파장이동이 용이한 산질화물 형광체를 제공하는데 있다.In addition, another object of the present invention is to provide an oxynitride phosphor whose half width is as narrow as 48 to 80 nm and has an excellent absorption area of 380 to 480 nm and is easy to shift wavelengths to 500 to 550 nm.
또한, 본 발명의 또 다른 목적은 휘도와 신뢰성이 더욱 개선된 신규한 형광체를 제공하는데 있다.Further, another object of the present invention is to provide a novel phosphor with further improved brightness and reliability.
또한, 본 발명의 또 다른 목적은 상기와 같은 우수한 물성의 산질화물 형광체를 효율적으로 제조하는 방법을 제공하는데 있다.Further, another object of the present invention is to provide a method for efficiently preparing the oxynitride phosphors having excellent physical properties as described above.
위와 같은 본 발명의 과제 해결을 위하여, 본 발명은 하기 화학식 1로 표시되는 산질화물 형광체를 제공한다.In order to solve the above problems of the present invention, the present invention provides an oxynitride phosphor represented by the following formula (1).
[화학식 1][Formula 1]
A(M1-x,Rx)(Sc1-y, Dy)Si2O7-zNz A (M 1-x , R x ) (Sc 1-y , D y ) Si 2 O 7-z N z
상기 식에서 A는 Li, Na, K 그리고 Rb에서 선택되는 1 종 이상의 금속이고, M은 Ba, Sr, Ca, Mg 또는 Zn에서 선택되는 1 종 이상의 금속이며, D는 Gd, Y, Lu, La, Al 또는 Ga에서 선택되는 1 종이상의 금속이고, R은 Eu, Ce, Tm, Pr, Ho, Dy 그리고 Mn 에서 선택되는 1 종 이상의 금속이며, 0<x≤1, 0≤y<1, 0.01<z≤3이다. Wherein A is at least one metal selected from Li, Na, K and Rb, M is at least one metal selected from Ba, Sr, Ca, Mg or Zn, and D is Gd, Y, Lu, La, One or more metals selected from Al or Ga, R is one or more metals selected from Eu, Ce, Tm, Pr, Ho, Dy and Mn, 0 <x≤1, 0≤y <1, 0.01 < z≤3.
또한, 본 발명은 A는 Li, Na, K 그리고 Rb에서 선택되는 1 종 이상의 금속이고, M는 Ba, Sr, Ca, Mg 또는 Zn에서 선택되는 2 가 금속의 산화물 내지는 질화물 1 종 이상 혼합물이며, D는 Gd, Y, Lu, La, Al 또는 Ga에서 선택되는 3 가 금속의 산화물 내지는 질화물 1 종 이상 혼합물이고, R는 Eu, Ce, Tm, Pr, Ho, Dy 그리고 Mn 에서 선택되는 1 종 이상의 희토류 내지는 전이금속을 포함한 산화물 내지 질화물을 전구체로 하여 이들 전구체를 혼합하는 단계; 상기 혼합된 전구체를 알루미나/탄소 도가니에 장입하는 단계; 수소 혼합 가스 내지는 질소 가스의 환원 분위기 하에서 열처리하는 단계를 포함하는 상기 화학식 1의 산질화물 형광체의 제조방법을 제공한다.In the present invention, A is at least one metal selected from Li, Na, K and Rb, M is a mixture of at least one oxide or nitride of a divalent metal selected from Ba, Sr, Ca, Mg or Zn, D is at least one mixture of oxides or nitrides of a trivalent metal selected from Gd, Y, Lu, La, Al or Ga, and R is at least one selected from Eu, Ce, Tm, Pr, Ho, Dy and Mn. Mixing these precursors using oxides or nitrides including rare earths or transition metals as precursors; Charging the mixed precursor into an alumina / carbon crucible; It provides a method for producing an oxynitride phosphor of Formula 1 comprising the step of heat treatment under a reducing atmosphere of hydrogen mixed gas or nitrogen gas.
본 발명에 따른 산질화물 형광체는 UV LED 및 청색 LED를 광원으로 하여 발광 파장이 500 ~ 550 nm까지 발광하며, 그 반치폭이 48 ~ 80 nm 정도 좁은 형광체로서, 특히 우수한 380 ~ 480 nm의 흡수 영역을 가지고 있으면서도 500 ~ 550 nm까지 파장이동이 용이한 특성이 있어서 고연색을 재현할 수 있는 효과가 있다.The oxynitride phosphor according to the present invention emits light having a light emission wavelength of 500 to 550 nm using a UV LED and a blue LED as a light source, and has a half width of 48 to 80 nm narrow, particularly having an excellent absorption area of 380 to 480 nm. It has the characteristic of easily reproducing wavelengths from 500 to 550 nm while having high color rendering effect.
또한, 본 발명의 산질화물 형광체는 UV 및 청색 LED에서의 백색 구현에 있어서 좀 더 기준광에 가깝고, 상업화하기에 적합한 우수한 청녹~녹색 발광 및 고효율을 구현한다.In addition, the oxynitride phosphor of the present invention is closer to the reference light in the white implementation in UV and blue LED, and realizes excellent cyan-green light emission and high efficiency suitable for commercialization.
그 뿐만 아니라, 본 발명에 따른 산질화물 형광체는 청녹색 구현이 가능하여 고연색성 조명에도 적합하며, 고휘도 고색재현이 가능하므로 디스플레이에도 바람직하게 적용할 수 있다. 또한, 일반 적용 중인 질화물 형광체에 비해 고온 고압이 필요치 않기 때문에 가격 경쟁력이 우수한 장점이 있다.In addition, the oxynitride phosphor according to the present invention can be implemented in blue green, and is suitable for high color rendering, and can be preferably applied to a display since high brightness and high color reproduction are possible. In addition, since the high temperature and high pressure are not required compared to the nitride phosphor under general application, there is an advantage in that the price is excellent.
도 1은 본 발명에 따른 실시예 3에서 제조된 화합물에 대한 XRD 패턴을 나타낸 것이다.Figure 1 shows the XRD pattern for the compound prepared in Example 3 according to the present invention.
도 2는 본 발명에 따른 실험예에서 질소의 함유량에 따른 각 화합물에 대한 XRD 패턴을 비교하여 나타낸 것이다.Figure 2 shows a comparison of the XRD pattern for each compound according to the content of nitrogen in the experimental example according to the present invention.
도 3은 본 발명에 따른 실험예에서 질소의 함유량에 따른 각 화합물에 대한 파장변화를 비교하여 나타낸 것이다.Figure 3 shows a comparison of the wavelength change for each compound according to the content of nitrogen in the experimental example according to the present invention.
이하, 본 발명을 하나의 구현한 예로써 더욱 상세하게 설명하면 다음과 같다.Hereinafter, described in more detail as an embodiment of the present invention as follows.
본 발명은 UV LED 및 청색 LED를 광원으로 하여 발광 파장이 500 ~ 550 nm까지 발광하며, 그 반치폭이 48 ~ 80 nm 정도 좁은 형광체에 관한 것이다.The present invention relates to a phosphor that emits light at a wavelength of 500 to 550 nm using a UV LED and a blue LED as a light source, and has a half width of about 48 to 80 nm.
본 발명에 따른 산질화물 형광체는 하기 화학식 1로 표시되는 형광체이다.The oxynitride phosphor according to the present invention is a phosphor represented by the following formula (1).
[화학식 1][Formula 1]
A(M1-x,Rx)(Sc1-y, Dy)Si2O7-zNz A (M 1-x , R x ) (Sc 1-y , D y ) Si 2 O 7-z N z
상기 식에서 A는 Li, Na, K 그리고 Rb에서 선택되는 1 종 이상의 금속이고, M은 Ba, Sr, Ca, Mg 또는 Zn에서 선택되는 1 종 이상의 금속이며, D는 Gd, Y, Lu, La, Al 또는 Ga에서 선택되는 1 종이상의 금속이고, R은 Eu, Ce, Tm, Pr, Ho, Dy 그리고 Mn 에서 선택되는 1 종 이상의 금속이며, 0<x≤1, 0≤y<1, 0.01<z≤3이다. Wherein A is at least one metal selected from Li, Na, K and Rb, M is at least one metal selected from Ba, Sr, Ca, Mg or Zn, and D is Gd, Y, Lu, La, One or more metals selected from Al or Ga, R is one or more metals selected from Eu, Ce, Tm, Pr, Ho, Dy and Mn, 0 <x≤1, 0≤y <1, 0.01 < z≤3.
본 발명의 바람직한 구현예에 따르면, 상기 형광체는 우수한 380 ~ 480 nm의 흡수 영역을 가지고 500 ~ 550 nm까지 파장이동이 용이한 특성을 가진다.According to a preferred embodiment of the present invention, the phosphor has an excellent absorption region of 380 ~ 480 nm and has the property of easy wavelength shifting to 500 ~ 550 nm.
본 발명의 바람직한 구현예에 따르면, 상기 화학식 1의 화합물은 휘도와 신뢰성이 더욱 개선된 신규한 형광체로 제조될 수 있다.According to a preferred embodiment of the present invention, the compound of Formula 1 may be prepared as a novel phosphor with further improved brightness and reliability.
또한, 본 발명에 따르면 상기 화학식 1의 화합물에 합성공정상 제어를 통하여 형광체의 질화 및 산소를 대신해 질소를 치환하여 파장의 조절 및 고휘도 그리고 고색재연 산질화물 형광체를 제조하는 제조방법을 포함한다. In addition, according to the present invention includes a manufacturing method for controlling the wavelength, high brightness and high color reproducible oxynitride phosphors by substituting nitrogen in place of the nitridation and oxygen of the phosphor to the compound of the formula (1) through the synthetic process control.
본 발명의 바람직한 구현예에 따르면, 상기 형광체의 제조를 위해서는 M은 Ba, Sr, Ca, Mg 또는 Zn에서 선택되는 2 가 금속의 산화물 내지는 질화물 1종 이상과 D는 Gd, Y, Lu, La, Al 또는 Ga에서 선택되는 3 가 금속의 산화물 내지는 질화물 1 종 이상, R는 Eu, Ce, Tm, Pr, Ho, Dy, 그리고 Mn 에서 선택되는 1 종 이상의 금속을 혼합한 후, 수소 혼합 가스 내지는 질소 가스의 환원 분위기 하에서 열처리하여 상기 화학식 1로 표시되는 조성의 산질화물 형광체를 제조될 수 있다. According to a preferred embodiment of the present invention, for the production of the phosphor, M is at least one oxide or nitride of a divalent metal selected from Ba, Sr, Ca, Mg or Zn and D is Gd, Y, Lu, La, At least one oxide or nitride of a trivalent metal selected from Al or Ga, R is mixed with at least one metal selected from Eu, Ce, Tm, Pr, Ho, Dy, and Mn, followed by hydrogen mixed gas or nitrogen An oxynitride phosphor having a composition represented by Chemical Formula 1 may be prepared by heat treatment under a reducing atmosphere of gas.
본 발명의 바람직한 구현예에 따르면, 상기 제조과정에서 질소의 치환을 위하여 900 ℃ 1 시간 내지 4 시간을 유지하여 열처리하는 공정으로 수행될 수 있다.According to a preferred embodiment of the present invention, in order to replace the nitrogen in the manufacturing process it can be carried out by the process of heat treatment by maintaining at 900 1 hour to 4 hours.
또한, 본 발명의 바람직한 구현예에 따르면, M, Si의 각 원소는 원료의 특성이 2 종 이상의 질화물 원료 내지는 전체 함량비에 0~80 wt% 정도로 질소를 혼용하여 사용할 수 있다.In addition, according to a preferred embodiment of the present invention, each element of M, Si may be used by mixing nitrogen as about 0 to 80 wt% of the raw material properties of two or more kinds of nitride raw material or the total content ratio.
본 발명에 따른 고연색 산질화물 형광체의 제조방법은 하기의 단계를 포함하여 이루어진다. The method for preparing a high color oxynitride phosphor according to the present invention comprises the following steps.
본 발명에 따른 고연색 산질화물 형광체의 제조방법의 바람직한 구현예에 따르면, A는 Li, Na, K 그리고 Rb에서 선택되는 1 종 이상의 금속과 M은 Ba, Sr, Ca, Mg 또는 Zn에서 선택되는 2 가 금속의 산화물 내지는 질화물 1 종 이상 혼합물, D는 Gd, Y, Lu, La, Al 또는 Ga에서 선택되는 3 가 금속의 산화물 내지는 질화물 1 종 이상 혼합물, R는 Eu, Ce, Tm, Pr, Ho, Dy 그리고 Mn 에서 선택되는 1 종 이상의 희토류 내지는 전이금속을 포함한 산화물 내지 질화물을 혼합하는 단계; 상기 혼합된 전구체를 알루미나/탄소 도가니에 장입하는 단계; 환원 환경에서 900 ℃까지 승온 후 1 내지 4 시간 유지하는 단계; 질소 내지는 수소 환경에서 1000 ℃ 내지 1400 ℃까지 승온 후 1 내지 12 시간 유지하는 단계를 포함하여 상기 화학식 1의 산질화물 형광체를 제조할 수 있다.According to a preferred embodiment of the method for producing a high color rendering oxynitride phosphor according to the present invention, A is at least one metal selected from Li, Na, K and Rb and M is selected from Ba, Sr, Ca, Mg or Zn At least one mixture of oxides or nitrides of divalent metals, D is at least one mixture of oxides or nitrides of trivalent metals selected from Gd, Y, Lu, La, Al or Ga, R is Eu, Ce, Tm, Pr, Mixing oxides or nitrides including at least one rare earth or transition metal selected from Ho, Dy and Mn; Charging the mixed precursor into an alumina / carbon crucible; Maintaining the temperature in a reducing environment to 900 ° C. for 1 to 4 hours; After the temperature is raised to 1000 to 1400 ℃ in a nitrogen or hydrogen environment it can be prepared for the oxynitride phosphor of Formula 1 including the step of maintaining for 1 to 12 hours.
상기와 같은 본 발명에 따른 형광체 제조 공정을 거치면, 우수한 380 ~ 480 nm의 흡수 영역을 가지고 500 ~ 550 nm까지 파장이동이 용이한 산질화물 형광체, 화학식 1로 표시되는 산질화물 형광체를 얻을 수 있다.Through the phosphor manufacturing process according to the present invention as described above, it is possible to obtain an oxynitride phosphor, the oxynitride phosphor represented by the formula (1) having an excellent absorption region of 380 ~ 480 nm and easy wavelength shift to 500 ~ 550 nm.
또한, 본 발명은 UV/청색 발광 다이오드 (LED: Light Emitting Diode) 및 상기 본 발명에 따른 산질화물 녹색 형광체를 포함하는 백색 발광 소자를 제공한다.The present invention also provides a white light emitting device comprising a UV / blue light emitting diode (LED) and an oxynitride green phosphor according to the present invention.
본 발명의 바람직한 구현예에 따르면, 형광체의 질소 치환율이 클수록 청녹색 영역에서 녹색 영역으로 발광피크가 이동한다. 따라서 본 발명이 형광체는 발광피크의 제어를 통하여 색 조절과 휘도를 쉽게 제어할 수 있다. 또한, 본 발명에 따른 형광체는 질소의 치환에 따른 각 소자의 용도별 색 제어를 극대화할 수 있는 현저한 효과가 있다. According to a preferred embodiment of the present invention, the larger the nitrogen substitution rate of the phosphor, the light emission peak shifts from the blue green region to the green region. Therefore, the phosphor of the present invention can easily control the color control and brightness through the control of the light emission peak. In addition, the phosphor according to the present invention has a remarkable effect of maximizing the color control of each device according to the substitution of nitrogen.
본 발명의 바람직한 구현예에 따르면, 상기 화학식 1의 제조과정에서 질소의 치환율을 조절하여 형광체의 파장과 반치폭을 조절하는 것을 포함한다.According to a preferred embodiment of the present invention, by adjusting the substitution rate of nitrogen in the manufacturing process of Formula 1 includes controlling the wavelength and half width of the phosphor.
위와 같이 본 발명의 일 구현예에 띠라 제조된 산질화물 형광체는 UV 및 청색 LED에서의 백색 구현에 있어서 좀 더 기준광에 가까운 성질을 가지며 상업화하기에 적합한 우수한 청녹~녹색 및 고효율을 구현할 수 있는 것이다. 또한, 청녹색 구현이 가능하여 고연색성 조명에도 적합하며, 고휘도 고색재현이 가능하기 때문에 디스플레이에도 적용이 가능하다. As described above, the oxynitride phosphor prepared according to the embodiment of the present invention has a property closer to the reference light in the white implementation in UV and blue LEDs, and can implement excellent cyan-green and high efficiency suitable for commercialization. In addition, it is possible to implement blue green, which is suitable for high color rendering lighting, and high brightness and high color reproduction can be applied to a display.
특히, 본 발명의 바람직한 구현예에 따르면 또한, 기존에 알려진 질화물 형광체에 비해 고온 고압이 필요치 않기 때문에 경제적인 효과가 있는 것이다.In particular, according to a preferred embodiment of the present invention, there is also an economic effect because high temperature and high pressure are not required as compared with the nitride phosphor known in the art.
이하, 본 발명을 실시예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.
실시예 1: Na(Ba0.9,Eu0.1)ScSi2O6.98N0.02 산질화물 형광체의 제조Example 1: Preparation of Na (Ba 0.9 , Eu 0.1 ) ScSi 2 O 6.98 N 0.02 oxynitride phosphor
나트륨, 바륨, 유로퓸, 스칸디늄 그리고 규소 및 질화 규소의 몰비를 1:0.9:0.1:1:2로 고정시켜 칭량하고, 이때 질화 규소와 산화 규소의 비율은 2:98 로 하였다. 이때 아세톤 및 에탄올을 사용하여 충분히 고르게 혼합하여 조성물 시료를 제조하였다. 상기 제조된 혼합 시료를 오븐을 사용하여 120 oC에서 1 시간 동안 건조하였다. 이후에 환원 환경에서 900 ℃까지 승온 후 4 시간 유지한 후, 상기 혼합물을 고온 전기로를 사용하여 1200 oC에서 4시간 동안 환원분위기에서 열처리하여 상기 화학식 1에 해당하는 표제의 화합물을 제조하였다. The molar ratio of sodium, barium, europium, scandinium and silicon and silicon nitride was fixed at 1: 0.9: 0.1: 1: 2, and the ratio of silicon nitride and silicon oxide was set at 2:98. At this time, by using acetone and ethanol sufficiently evenly mixed to prepare a composition sample. The prepared mixed sample was dried at 120 ° C. for 1 hour using an oven. After heated in a later reduction in the environment up to 900 ℃ after 4 hours, by heating the mixture to a high temperature electric furnace in a reducing atmosphere at 1200 o C for 4 hours, using the title compound corresponding to the formula (1) was prepared.
실시예 2: Na(Ba0.9,Eu0.1)ScSi2O6 . 95N0 .05 산질화물 형광체의 제조Example 2: Na (Ba 0.9 , Eu 0.1 ) ScSi 2 O 6 . 95 N 0 .05 production of the oxynitride phosphors
상기 실시예 1과 동일하게 실시하되, 규소 및 질화 규소의 몰비를 1:0.9:0.1:1:2로 고정시켜 칭량하고, 이때 질화 규소와 산화 규소의 비율은 5:95 로 하여 표제의 화합물을 제조하였다. In the same manner as in Example 1, the molar ratio of silicon and silicon nitride was fixed at 1: 0.9: 0.1: 1: 2, and the ratio of silicon nitride to silicon oxide was 5:95 to obtain the title compound. Prepared.
실시예 3: Na(Ba0.9,Eu0.1)ScSi2O6 . 9N0 .1 산질화물 형광체의 제조Example 3: Na (Ba 0.9 , Eu 0.1 ) ScSi 2 O 6 . 9 N 0 .1 production of the oxynitride phosphors
상기 실시예 1과 동일하게 실시하되, 규소 및 질화 규소의 몰비를 1:0.9:0.1:1:2로 고정시켜 칭량하고, 이때 질화 규소와 산화 규소의 비율은 1:9 로 하여 표제의 화합물을 제조하였다.In the same manner as in Example 1, the molar ratio of silicon and silicon nitride was fixed at 1: 0.9: 0.1: 1: 2, whereby the ratio of silicon nitride to silicon oxide was 1: 9 to obtain the title compound. Prepared.
실험예 1Experimental Example 1
상기 실시예 3에서 얻어진 각 화합물인 NaBaScSi2O6 . 9N0 .1에 대하여 XRD 패턴을 분석하였다. 그 결과는 도 1에 나타내었다.NaBaScSi 2 O 6 which is a compound obtained in Example 3 above . 9 XRD patterns were analyzed for N 0 .1. The results are shown in FIG.
실험예 2Experimental Example 2
질소(Nitrogen) 함유량에 따른 XRD 패턴을 확인하기 위해 상기 실시예 1-3 에서 얻어진 각 화합물과 같이 질소의 함량을 변화시킨 화합물과 질소가 함유되지 않은 화합물들에 대하여 XRD 패턴을 비교 분석하였다, 그 결과는 도 2에 나타내었다.In order to confirm the XRD pattern according to the nitrogen content, the XRD patterns were compared with respect to the compounds having no nitrogen content and the compounds having changed the nitrogen content as in the respective compounds obtained in Examples 1-3. The results are shown in FIG.
실험예 3Experimental Example 3
질소(Nitrogen) 함유량에 따른 파장변화를 확인하기 위해 상기 실시예 1-3에서 얻어진 각 화합물과 같이 질소의 함량을 변화시킨 화합물과 질소를 함유하지 않은 화합물들에 대하여 파장변화를 비교 분석하였다, 그 결과는 도 3에 나타내었다.In order to confirm the wavelength change according to the nitrogen content, the wavelength change was compared and analyzed for the compounds having different nitrogen content and the compounds containing no nitrogen, such as the compounds obtained in Examples 1-3. The results are shown in FIG.
실험예 4Experimental Example 4
질소(Nitrogen) 함유량에 따른 광특성 및 조성변화를 탐색하기 위해 다양한 질소 함량 변화를 주어 각 화합물에 대하여 광특성을 탐색하여 비교하였다. 그 결과 질소(Nitrogen) 함유량에 따른 광특성 및 조성변화는 다음 표 1과 같이 비교되었다.In order to explore the optical properties and composition changes according to the nitrogen (Nitrogen) content was given a variety of nitrogen content changes were compared by searching the optical properties for each compound. As a result, optical properties and compositional changes according to nitrogen (Nitrogen) content were compared as shown in Table 1 below.
No.No. 화합물 조성Compound composition O (mol)O (mol) N (mol)N (mol) Wavelength (nm) Wavelength (nm) FWHM (nm)FWHM (nm)
1One NaBaScSi2O7 NaBaScSi 2 O 7 77 00 505505 55.255.2
22 NaBaScSi2O6 . 92N0 .08 NaBaScSi 2 O 6 . 92 N 0 .08 6.926.92 0.080.08 507507 54.354.3
33 NaBaScSi2O6 . 84N0 .16 NaBaScSi 2 O 6 . 84 N 0 .16 6.846.84 0.160.16 509509 56.256.2
44 NaBaScSi2O6 . 76N0 .24 NaBaScSi 2 O 6 . 76 N 0 .24 6.766.76 0.240.24 510510 57.157.1
55 NaBaScSi2O6 . 68N0 .32 NaBaScSi 2 O 6 . 68 N 0 .32 6.686.68 0.320.32 513513 62.862.8
66 NaBaScSi2O6 . 6N0 .4 NaBaScSi 2 O 6 . 6 N 0 .4 6.66.6 0.40.4 516516 66.666.6
상기 실시예와 실험예들의 결과로부터, 본 발명에 따라 제조된 형광체의 XRD 패턴은 질소 함량비가 증가할수록 고각(High angle shift)으로 이동하였으며, 질소가 산소와 함께 구조적으로 치환되었음을 확인할 수 있었다. 특히, 실험결과 본 발명의 형광체는 380 ~ 480 nm의 광을 여기광으로 질소(Nitrogen)의 함량비가 증가함에 따라 주 파장이 500 ~ 550 nm까지 발광하는 형광체인 것으로 확인되었으며, 이로 인해 고연색을 재현할 수 있는 우수한 물성을 가진 형광체임을 확인하였다.From the results of the examples and experimental examples, the XRD pattern of the phosphor prepared according to the present invention was moved to a high angle (High angle shift) as the nitrogen content ratio was increased, it was confirmed that nitrogen is structurally substituted with oxygen. In particular, as a result of the experiment, the phosphor of the present invention was found to be a phosphor emitting a main wavelength of 500 ~ 550 nm as the content ratio of nitrogen (Nitrogen) is increased by the excitation light of 380 ~ 480 nm light, thereby high color rendering It was confirmed that the phosphor having excellent physical properties that can be reproduced.

Claims (8)

  1. 하기 화학식 1로 표시되는 산질화물 형광체:An oxynitride phosphor represented by Formula 1 below:
    [화학식 1][Formula 1]
    A(M1-x,Rx)(Sc1-y, Dy)Si2O7-zNz A (M 1-x , R x ) (Sc 1-y , D y ) Si 2 O 7-z N z
    상기 식에서 A는 Li, Na, K 그리고 Rb에서 선택되는 1 종 이상의 금속이고, M은 Ba, Sr, Ca, Mg 또는 Zn에서 선택되는 1 종 이상의 금속이며, D는 Gd, Y, Lu, La, Al 또는 Ga에서 선택되는 1 종이상의 금속이고, R은 Eu, Ce, Tm, Pr, Ho, Dy 그리고 Mn 에서 선택되는 1 종 이상의 금속이며, 0<x≤1, 0≤y<1, 0.01<z≤3이다.Wherein A is at least one metal selected from Li, Na, K and Rb, M is at least one metal selected from Ba, Sr, Ca, Mg or Zn, and D is Gd, Y, Lu, La, One or more metals selected from Al or Ga, R is one or more metals selected from Eu, Ce, Tm, Pr, Ho, Dy and Mn, 0 <x≤1, 0≤y <1, 0.01 < z≤3.
  2. 청구항 1에 있어서, 반치폭이 48 ~ 80 nm 이고, 380 ~ 480 nm의 흡수 영역을 가지며 500 ~ 550 nm까지 파장이동이 가능한 것을 특징으로 하는 산질화물 형광체.The oxynitride phosphor according to claim 1, having a half width of 48 to 80 nm, an absorption region of 380 to 480 nm, and a wavelength shift of 500 to 550 nm.
  3. 청구항 1에 있어서, 상기 화학식 1은 Na(Ba0.9,Eu0.1)ScSi2O6 . 98N0 . 02 ; Na(Ba0.9,Eu0.1)ScSi2O6.95N0.05 ; 또는 Na(Ba0.9,Eu0.1)ScSi2O6 . 9N0 . 1 인 것을 특징으로 하는 산질화물 형광체.The method according to claim 1, Formula 1 is Na (Ba 0.9 , Eu 0.1 ) ScSi 2 O 6 . 98 N 0 . 02 ; Na (Ba 0.9 , Eu 0.1 ) ScSi 2 O 6.95 N 0.05 ; Or Na (Ba 0.9 , Eu 0.1 ) ScSi 2 O 6 . 9 N 0 . Oxynitride phosphors, characterized in that 1 ;
  4. 산질화물 형광체를 제조하기 위하여, 하기 화학식 1에서 A는 Li, Na, K 그리고 Rb에서 선택되는 1 종 이상의 금속이고, M는 Ba, Sr, Ca, Mg 또는 Zn에서 선택되는 2 가 금속의 산화물 내지는 질화물 1 종 이상 혼합물이며, D는 Gd, Y, Lu, La, Al 또는 Ga에서 선택되는 3 가 금속의 산화물 내지는 질화물 1 종 이상 혼합물이고, R는 Eu, Ce, Tm, Pr, Ho, Dy 그리고 Mn 에서 선택되는 1 종 이상의 희토류 내지는 전이금속을 포함한 산화물 내지 질화물을 전구체로 하여 이들 전구체를 혼합하는 단계; In order to prepare an oxynitride phosphor, in Formula 1, A is at least one metal selected from Li, Na, K and Rb, and M is an oxide of a divalent metal selected from Ba, Sr, Ca, Mg or Zn, or At least one mixture of nitrides, D is at least one mixture of oxides or nitrides of a trivalent metal selected from Gd, Y, Lu, La, Al or Ga, and R is Eu, Ce, Tm, Pr, Ho, Dy and Mixing these precursors using oxides or nitrides containing at least one rare earth or transition metal selected from Mn as precursors;
    상기 혼합된 전구체를 알루미나/탄소 도가니에 장입하는 단계; 및Charging the mixed precursor into an alumina / carbon crucible; And
    도가니에 장입된 전구체 혼합물을 수소 혼합 가스 내지는 질소 가스의 환원 분위기 하에서 열처리하는 단계Heat-treating the precursor mixture charged in the crucible under a reducing atmosphere of hydrogen mixed gas or nitrogen gas
    를 포함하는 하기 화학식 1의 산질화물 형광체의 제조방법:Method for producing an oxynitride phosphor of formula 1 comprising a:
    [화학식 1][Formula 1]
    A(M1-x,Rx)(Sc1-y, Dy)Si2O7 - zNz A (M 1-x , R x ) (Sc 1-y , D y ) Si 2 O 7 - z N z
    상기 식에서 A는 Li, Na, K 그리고 Rb에서 선택되는 1 종 이상의 금속이고, M은 Ba, Sr, Ca, Mg 또는 Zn에서 선택되는 1 종 이상의 금속이며, D는 Gd, Y, Lu, La, Al 또는 Ga에서 선택되는 1 종이상의 금속이고, R은 Eu, Ce, Tm, Pr, Ho, Dy 그리고 Mn 에서 선택되는 1 종 이상의 금속이며, 0<x≤1, 0≤y<1, 0.01<z≤3이다.Wherein A is at least one metal selected from Li, Na, K and Rb, M is at least one metal selected from Ba, Sr, Ca, Mg or Zn, and D is Gd, Y, Lu, La, One or more metals selected from Al or Ga, R is one or more metals selected from Eu, Ce, Tm, Pr, Ho, Dy and Mn, 0 <x≤1, 0≤y <1, 0.01 < z≤3.
  5. 청구항 4에 있어서, 열처리하는 단계는 환원 환경에서 900 ℃까지 승온 후 1 내지 4 시간 유지하는 단계를 포함하는 것을 특징으로 하는 산질화물 형광체의 제조방법.The method of claim 4, wherein the heat treatment comprises the step of maintaining for 1 to 4 hours after the temperature is raised to 900 ℃ in a reducing environment.
  6. 청구항 4 또는 청구항 5에 있어서, 열처리하는 단계는 질소 내지는 수소 환경에서 1000 ℃ 내지 1400 ℃까지 승온 후 1 내지 12 시간 유지하는 단계를 포함하는 것을 특징으로 하는 산질화물 형광체의 제조방법.The method of claim 4 or 5, wherein the step of heat treatment comprises the step of maintaining for 1 to 12 hours after heating up to 1000 ℃ to 1400 ℃ in a nitrogen or hydrogen environment.
  7. 청구항 4에 있어서, 상기 화학식 1의 제조과정에서 질소의 치환율을 조절하여 형광체의 파장과 반치폭을 조절하는 것을 특징으로 하는 산질화물 형광체의 제조방법.The method of claim 4, wherein the wavelength and half width of the phosphor are controlled by adjusting the substitution rate of nitrogen in the preparation process of Chemical Formula 1.
  8. 청구항 1 내지 청구항 3 중에서 어느 한 항에 따른 산질화물 형광체를 포함하는 백색 발광소자.A white light emitting device comprising the oxynitride phosphor according to any one of claims 1 to 3.
PCT/KR2016/011476 2015-10-21 2016-10-13 Oxynitride phosphor, preparing method therefor, and white light emitting element WO2017069455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0146846 2015-10-21
KR1020150146846A KR101737230B1 (en) 2015-10-21 2015-10-21 Oxy-nitride phosphor and a method for manufacturing the same and white light emitting device

Publications (1)

Publication Number Publication Date
WO2017069455A1 true WO2017069455A1 (en) 2017-04-27

Family

ID=58557442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011476 WO2017069455A1 (en) 2015-10-21 2016-10-13 Oxynitride phosphor, preparing method therefor, and white light emitting element

Country Status (3)

Country Link
KR (1) KR101737230B1 (en)
TW (1) TW201732020A (en)
WO (1) WO2017069455A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434613A (en) * 2019-01-10 2020-07-21 北京理工大学 Rare earth series composite material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080296596A1 (en) * 2007-05-30 2008-12-04 Anant Achyut Setlur Novel green emitting phosphors and blends thereof
WO2012073887A1 (en) * 2010-11-30 2012-06-07 パナソニック株式会社 Phosphor and light emitting device
KR101215300B1 (en) * 2011-03-29 2012-12-26 순천대학교 산학협력단 Oxynitride phospor
KR101389089B1 (en) * 2011-06-16 2014-04-29 한국화학연구원 Method of manufacturing silicon nitride phosphor using metal silicon oxynitride phosphor
KR20150055594A (en) * 2013-11-13 2015-05-21 엘지이노텍 주식회사 Bluish green phosphor, lighit emitting device package and lighting apparatus including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080296596A1 (en) * 2007-05-30 2008-12-04 Anant Achyut Setlur Novel green emitting phosphors and blends thereof
WO2012073887A1 (en) * 2010-11-30 2012-06-07 パナソニック株式会社 Phosphor and light emitting device
KR101215300B1 (en) * 2011-03-29 2012-12-26 순천대학교 산학협력단 Oxynitride phospor
KR101389089B1 (en) * 2011-06-16 2014-04-29 한국화학연구원 Method of manufacturing silicon nitride phosphor using metal silicon oxynitride phosphor
KR20150055594A (en) * 2013-11-13 2015-05-21 엘지이노텍 주식회사 Bluish green phosphor, lighit emitting device package and lighting apparatus including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434613A (en) * 2019-01-10 2020-07-21 北京理工大学 Rare earth series composite material and preparation method and application thereof
CN111434613B (en) * 2019-01-10 2021-09-28 北京理工大学 Rare earth series composite material and preparation method and application thereof

Also Published As

Publication number Publication date
KR20170046863A (en) 2017-05-04
KR101737230B1 (en) 2017-05-18
TW201732020A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
US8007683B2 (en) Carbidonitridosilicate luminescent substance
WO2012134043A2 (en) Oxynitride-based phosphor
CN114437724B (en) Gallate-based multicolor long-afterglow luminescent material and preparation method thereof
CN101273108A (en) Silicate phosphor for uv and long-wavelength excitation and preparation method thereof
US9657222B2 (en) Silicate phosphors
CN102433114B (en) Fluorescent powder, and preparation method and application thereof
KR101244620B1 (en) Oxynitride phospors and light emitting device using the same
KR101420337B1 (en) White-light led red luminescent materials and preparation methods thereof
CN101270286B (en) White radiation fluorescent powder for LED excitated with ultraviolet and near ultraviolet and preparation method thereof
WO2016080718A1 (en) Led light-emitting device using metal-organic coordination polymer light-emitting compound
KR20130066167A (en) Phosphor, manufacturing method of phosphor and light emitting device comprising the same
WO2017069455A1 (en) Oxynitride phosphor, preparing method therefor, and white light emitting element
WO2011083885A1 (en) Oxysulfide-based red phosphor, and white led and led package using same
WO2010016740A2 (en) Red phosphor and forming method thereof for use in solid state lighting
CN101705094B (en) Near ultraviolet excited blue-green fluorescent powder for semiconductor illumination and preparation method thereof
CN110283588B (en) Fluorescent powder for white light LED for illumination display and preparation and application thereof
KR100840861B1 (en) Red light-emitting phosphors and manufacturing method thereof
WO2013191358A1 (en) Phosphor and light-emitting device including same
US8440105B2 (en) Phosphors and white light emitting devices including same
CN105131952A (en) Color-adjustable LED fluorescent powder and preparation method thereof
KR20180078448A (en) Oxy-nitride phosphor and a method for manufacturing the same
CN115911226B (en) Light emitting device and lighting apparatus
KR20130057157A (en) Oxinitride phosphor and light emitting device comprising the same
WO2012144686A1 (en) White light emitting diode having single phase phosphor
KR101639992B1 (en) Manufacturing method of oxynitride phosphor using alkaline earth metal silicates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857713

Country of ref document: EP

Kind code of ref document: A1