WO2017069263A1 - Optical scanning device - Google Patents

Optical scanning device Download PDF

Info

Publication number
WO2017069263A1
WO2017069263A1 PCT/JP2016/081326 JP2016081326W WO2017069263A1 WO 2017069263 A1 WO2017069263 A1 WO 2017069263A1 JP 2016081326 W JP2016081326 W JP 2016081326W WO 2017069263 A1 WO2017069263 A1 WO 2017069263A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
optical scanning
connection portion
mirror device
scanning device
Prior art date
Application number
PCT/JP2016/081326
Other languages
French (fr)
Japanese (ja)
Inventor
浩希 岡田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2017069263A1 publication Critical patent/WO2017069263A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present disclosure relates to an optical scanning device that scans light by controlling the traveling direction of light.
  • an optical scanning device that scans light by controlling the traveling direction of light
  • a device such as that disclosed in Japanese Patent Application Laid-Open No. 2010-197994.
  • This optical scanning device can advance laser light in a target direction by scanning laser light of different wavelengths of red, green, and blue emitted from a laser light source with a mirror device having a reflection angle variable mirror.
  • Patent Document 1 proposes a mirror device in which a mirror portion is movable in two axes by providing beam portions in different directions.
  • the optical scanning device includes a rotating unit, a mirror device, and a light emitting unit.
  • the rotating unit rotates about the first axis as a rotation axis.
  • the mirror device is located on the surface of the rotating part, and has a light reflecting surface that intersects with the first axis and can change an angle formed with the first axis.
  • the light emitting unit emits light toward the light reflecting surface.
  • FIG. 3 is a cross-sectional view taken along line II of the rotating unit and the mirror device of FIG. 2.
  • FIG. 3 is a cross-sectional view taken along the line II-II of the rotating unit and the mirror device of FIG.
  • It is a figure for demonstrating the optical scanning by the optical scanning device on a target object.
  • It is a figure for demonstrating the other example of the optical scanning by the optical scanning device on a target object.
  • FIG. 3 is a cross-sectional view taken along line II of the rotating unit and the mirror device of FIG. 2.
  • FIG. 8 is a cross-sectional view taken along line III-III of the mirror device of FIG. It is a figure which shows an example of the control circuit using the mirror device of FIG. It is a top view of the mirror device in the optical scanning device of a 3rd embodiment. It is sectional drawing in the IV-IV line of the mirror device of FIG. It is a top view of the mirror device in the optical scanning device of a 4th embodiment. It is sectional drawing in the VV line of the mirror device of FIG.
  • FIGS. 1 to 11 a right-handed XYZ coordinate system is attached.
  • FIG. 1 is a schematic diagram illustrating a state of optical scanning using the optical scanning device 300 of the first embodiment.
  • the optical scanning device 300 includes a rotating unit 100, a mirror device 10, and a light emitting unit 200. Then, the light emitted from the light emitting unit 200 is reflected by the mirror device 10 in a desired direction, so that the optical signal 500 is irradiated on the object 400.
  • FIG. 2 is a plan view of the rotating unit 100 and the mirror device 10 in the optical scanning apparatus 300
  • FIG. 3 is a cross-sectional view taken along the line II of the rotating unit 100 and the mirror device 10 in FIG. 2
  • FIG. 2 is a cross-sectional view taken along a line II-II of the part 100 and the mirror device 10.
  • the light emitting unit 200 is a device that emits light such as a laser, and may be capable of emitting light of a plurality of different wavelengths such as red, green, and blue.
  • the rotation unit 100 is a device that can be driven to rotate, such as a motor, and can rotate about a first axis (the Z axis is the first axis in FIGS. 1 to 4) as a rotation axis.
  • the mirror device 10 is located on the surface of the rotating unit 100.
  • the mirror device 10 has a light reflecting surface that intersects the first axis and can change the angle formed with the first axis.
  • the mirror device 10 includes a fixed part 1, a mirror part 2, a first connection part 3, and a first beam part 4.
  • the fixed portion 1 is a frame-like body having a square shape, a circular shape, an elliptical shape, or the like.
  • the length of one side thereof is, for example, 2 to 30 mm
  • the width of the arm constituting the fixing portion 1 (the width in the direction perpendicular to the longitudinal direction of the arm). ) Is, for example, 0.2 to 6 mm
  • the thickness of the fixing portion 1 is, for example, 0.1 to 1 mm.
  • the mirror part 2 is a member having a light reflecting surface on the main surface (+ Z side main surface).
  • the mirror unit 2 may be composed of a support member 2a having a main surface and a light reflection member 2b having a high light reflectivity, such as a metal thin film, located on the main surface. Good.
  • the shape of the mirror part 2 in plan view is a square shape, a circular shape, an elliptical shape, or the like.
  • the long side to which the first connecting part 3 is connected is, for example, 1 to 10 mm
  • the short side is, for example, 0.3 to 1 mm. It is.
  • the first connection portion 3 has one end connected to the mirror portion 2, extends in the first direction (X-axis direction), and the other end is connected to the first beam portion 4.
  • the first connection part 3 follows the deformation of the first beam part 4 due to voltage application and changes the direction of the mirror part 2 by performing a rotational motion about the first direction (X-axis direction).
  • the first connection unit 3 has a width in the Y-axis direction in a plan view of, for example, 0.01 to 0.1 mm.
  • the length in the X-axis direction is, for example, 0.10 to 2 mm, and the thickness is, for example, 0.01 to 0.3 mm.
  • the shape of the cross section (YZ cross section) perpendicular to the X-axis direction of the first connection portion 3 is not particularly limited, and may be a polygonal shape, a circular shape, an elliptical shape, or the like.
  • the first beam portion 4 connects the fixed portion 1 and the first connection portion 3 and extends so as to intersect the first direction (X-axis direction).
  • the first beam portion 4 extends from the connection portion with the first connection portion 3 in two directions of + Y direction and ⁇ Y direction, and is connected to a pair of opposing arms of the fixing portion 1.
  • the 1st beam part 4 is not limited to such a structure, The structure connected to only one arm of the fixing
  • the angle formed between the first beam portion 4 and the X axis may not be 90 ° as shown in FIG. 2, but may be an acute angle or an obtuse angle.
  • the first beam portion 4 has a structure that can be deformed by applying a voltage.
  • piezoelectric elements 7a to 7d are provided on the surface of the main body of the first beam portion 4 (the upper surface in the examples of FIGS. 2 to 4). Also good.
  • the piezoelectric elements 7a to 7d include a piezoelectric film provided with electrodes. By applying a voltage to the piezoelectric film through this electrode, the piezoelectric film is distorted, and as a result, the entire first beam portion 4 can be deformed.
  • the piezoelectric film may be formed on the entire upper surface of the first beam portion 4, and there is a portion of the piezoelectric film to which a voltage can be applied by an electrode. Functions as a piezoelectric element.
  • the first beam portion 4 has a width (length in the X-axis direction) in a plan view of, for example, 0.05 to 0.5 mm and a thickness of, for example, from the viewpoint of favorably moving the mirror portion 2. 0.01 to 0.3 mm.
  • the planar view shape of the first beam portion 4 is not limited to a linear shape, and may be a curved shape or a rectangular shape.
  • the shape of the cross section (XZ cross section) perpendicular to the extending direction (Y-axis direction) of the first beam portion 4 is not particularly limited, and may be a polygonal shape, a circular shape, an elliptical shape, or the like.
  • the first connection portion 3 has a structure in which piezoelectric elements 9a to 9b are further provided on the surface of the first connection portion 3 (upper surface in the examples of FIGS. 2 to 4). There may be.
  • the piezoelectric elements 9a to 9b include a piezoelectric film provided with electrodes.
  • the piezoelectric elements 9 a to 9 b function as sensors that read the deformation amount of the first connection portion 3. That is, the piezoelectric elements 9a to 9b are distorted by the deformation of the first connecting portion 3, and the deformation amount can be read from the voltage generated thereby.
  • the mirror device 10 can be manufactured as follows. First, a substrate such as silicon is processed using a known semiconductor micromachining method, and the fixed portion 1, the support member 2a of the mirror portion 2, the main body of the first connection portion 3, and the main body of the first beam portion 4 are integrated. To form. Next, the light reflecting member 2b is manufactured on the upper surface of the support member 2a by using a known thin film forming method, and the upper surface of the main body of the first connection portion 3 and the upper surface of the main body of the first beam portion 4 are respectively known. The piezoelectric elements 7a to 7d and 9a to 9b are manufactured by forming electrodes and piezoelectric films using a thin film forming method. The mirror device 10 can be manufactured by such a process.
  • FIG. 1 An optical signal scanning method using the optical scanning device 300 according to the first embodiment having the above-described configuration will be described below.
  • light is emitted from the light emitting unit 200 toward the light reflecting surface of the mirror device 10, and the light is reflected by the mirror unit 2 of the mirror device 10. Is incident.
  • the rotating unit 100 by rotating the rotating unit 100 while driving the first beam unit 4 of the mirror device 10 to bring the mirror unit 2 to a desired angle, the light on the object 400 is, for example, shown in FIG.
  • Such a circular shape can be scanned.
  • light can be scanned while changing the diameter in order as shown in A, B, C and D of FIG.
  • An optical signal 500 can be irradiated onto the object 400 in a two-dimensional direction.
  • the optical signal scanning method using the optical scanning device 300 is not limited to the above method, and other methods may be used.
  • the first beam unit 4 of the mirror device 10 is driven to scan linearly like A as shown in FIG. 6.
  • the rotating unit 100 by rotating the rotating unit 100, the light on the object 400 can be scanned while being sequentially shifted as in A, B, C, D, E, and F of FIG.
  • the optical signal 500 can be irradiated onto the object 400 in a two-dimensional direction.
  • the mirror device 10 that controls the traveling direction of light has a complicated configuration such as a conventional biaxial drive structure (a structure in which one mirror unit is driven biaxially).
  • a highly accurate single-axis drive structure (a structure in which one mirror unit is driven by one axis) can be used.
  • the rotating unit 100 having a simple configuration such as a motor it is possible to provide a small-sized optical scanning device that has high accuracy and can be easily manufactured.
  • optical scanning apparatus As a modification of the optical scanning device, an optical scanning device according to the second embodiment is shown below.
  • the optical scanning apparatus according to the second embodiment is different from the optical scanning apparatus according to the first embodiment in that the mirror device 20 shown in FIGS.
  • FIG. 7 is a plan view of the mirror device 20 in the optical scanning device of the second embodiment.
  • FIG. 8 is a cross-sectional view of the mirror device 20 taken along the line III-III in FIG.
  • the same components as those in the mirror device 10 shown in FIGS. 2 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the mirror device 20 is further provided with a second connecting portion 25 and a second beam portion 26 in the mirror device 10.
  • One end of the second connection portion 25 is connected to the first beam portion 4 on the extension line of the first connection portion 3 in the first direction (X-axis direction) and extends in the first direction.
  • the second beam portion 26 connects the fixing portion 1 and the second connection portion 25 and extends so as to intersect the first direction.
  • the second beam portion 26 can be deformed by applying a voltage.
  • the resonance frequency of the mirror part 2 and the first connection part 3 can be changed, and the accuracy of the mirror device 20 can be maintained higher.
  • Can do That is, by deforming the second beam portion 26, it is possible to change the rigidity of the first connecting portion 3 by applying tensile stress or compressive stress to the mirror portion 2 and the first connecting portion 3, It becomes possible to control the resonance frequency of the first connection portion 3.
  • the drive frequency applied to the piezoelectric elements 7a to 7d and the resonance frequency of the mirror unit 2 are made substantially the same even when heat or distortion occurs in the mirror device 20 due to the driving or driving environment of the mirror device 10. Can be maintained.
  • the second connection portion 25 follows the deformation of the second beam portion 26 due to the application of voltage and moves along the first direction (X-axis direction), so that the mirror portion 2 and the first connection portion 3 are moved. It has a function to apply compressive stress or tensile stress well.
  • the second connection portion 25 has a width in the direction orthogonal to the first direction (width in the Y-axis direction) when viewed in plan, for example, 0.02 to 0.4 mm, and a length in the X-axis direction, for example, 0. 0.02 to 1 mm, and the thickness is, for example, 0.01 to 0.3 mm.
  • the shape of the cross section (YZ cross section) perpendicular to the X-axis direction of the second connection portion 25 is not particularly limited, and may be a polygonal shape, a circular shape, an elliptical shape, or the like.
  • the second connection part 25 is a plan view.
  • the width in the direction perpendicular to the first direction may be 0.01 to 0.1 times the length of the first beam portion 4 in the Y-axis direction. If it is such a width
  • the piezoelectric elements 7a to 7d are arranged in the vicinity of the connection portion of the first beam portion 4 with the second connection portion 25. It is good also as a structure which is not done. With such a configuration, it is possible to reduce the stress transmitted by the second connecting portion 25 to the voltage elements 7a to 7d, and it is possible to maintain the accuracy of deformation of the first beam portion 4 by applying the voltage more satisfactorily.
  • the second beam portion 26 connects the fixed portion 1 and the second connection portion 25 and extends so as to intersect the first direction (X-axis direction).
  • the second beam portion 26 extends from the connection portion with the second connection portion 25 in two directions of + Y direction and ⁇ Y direction, and is connected to a pair of opposing arms of the fixing portion 1.
  • the 2nd beam part 26 is not limited to such a structure, The structure connected to only one arm of the fixing
  • the angle formed between the second beam portion 26 and the X axis may not be 90 ° as shown in FIG. 7, but may be an acute angle or an obtuse angle.
  • the second beam portion 26 has a structure that can be deformed by applying a voltage.
  • a structure may be a structure in which piezoelectric elements 8a to 8d are provided on the surface (upper surface in FIG. 7) of the main body of the second beam portion 26 as shown in FIG.
  • the piezoelectric elements 8a to 8d include a piezoelectric film provided with electrodes. By applying a voltage to the piezoelectric film via this electrode, the piezoelectric film is distorted, and as a result, the entire second beam portion 26 can be deformed.
  • a piezoelectric film barium titanate, lead zirconate titanate (PZT), or the like can be used.
  • the second beam part 26 has a width (length in the X-axis direction) in a plan view of, for example, 0.05 to 0.5 mm, The thickness is, for example, 0.01 to 0.3 mm.
  • the planar view shape of the second beam portion 26 is not limited to a linear shape, and may be a curved shape or a rectangular shape.
  • the shape of the cross section (XZ cross section) perpendicular to the extending direction (Y-axis direction) of the second beam portion 26 is not particularly limited, and may be a polygonal shape, a circular shape, an elliptical shape, or the like.
  • the piezoelectric elements 9a to 9b as such sensors, the piezoelectric elements 7a to 7d for deforming the first connecting portion 3, and the piezoelectric elements 28a to 28d for deforming the second beam portion 26 are shown in FIG. It is driven by a control circuit as shown.
  • a clock signal is input from an external clock to the piezoelectric elements 7a to 7d, and the deformation amount of the first connecting portion 3 is detected by the piezoelectric elements 9a to 9b.
  • the phase detector provided outside or inside the mirror device 20 reads the phase of the output from the piezoelectric elements 9a to 9b and detects the phase difference from the external clock.
  • the second beam portion 26 is deformed and automatically controlled so that the phase difference becomes a desired phase difference (in this case, a resonance phase).
  • a desired phase difference in this case, a resonance phase
  • the resonance frequency of the mirror 2 and the first connection part 3 can be automatically adjusted to the frequency of the external clock.
  • the control circuit is an external clock, the drive voltage is not increased by always driving at the resonance frequency, and a low voltage operation is possible.
  • optical scanning device As a modification of the optical scanning device, an optical scanning device according to a third embodiment is shown below.
  • the optical scanning device according to the third embodiment is different from the optical scanning device according to the first embodiment in that a mirror device 30 shown in FIGS.
  • FIG. 10 is a plan view of the mirror device 30 in the optical scanning device of the third embodiment.
  • FIG. 11 is a cross-sectional view of the mirror device 30 taken along the line IV-IV in FIG.
  • the same components as those of the mirror device 10 shown in FIGS. 2 to 4 and the mirror device 20 shown in FIGS. 7 to 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the mirror device 30 includes a second connection portion 35 and a second beam portion 36 as in the mirror device 20.
  • One end of the second connection portion 35 is connected to the first beam portion 4 on the extension line of the first connection portion 3 in the first direction (X-axis direction) and extends in the first direction.
  • the second beam portion 36 connects the fixed portion 1 and the second connection portion 25 and extends so as to intersect the first direction.
  • the mirror device 30 is different from the mirror device 20 in that the second connection unit 35 can be deformed by applying a voltage.
  • the piezoelectric elements 38 a and 38 b are provided on the surface of the main body of the second connecting portion 35 instead of the second beam portion 36.
  • Such a configuration makes it possible to change the resonance frequency of the mirror unit 2 and the first connection unit 3 and maintain the accuracy of the mirror device 30 high. That is, by deforming the second connection portion 35, the rigidity of the first connection portion 3 can be changed by applying tensile stress or compression stress to the mirror portion 2 and the first connection portion 3, It becomes possible to control the resonance frequency of the first connection portion 3. As a result, the drive frequency applied to the piezoelectric elements 7a to 7d and the resonance frequency of the mirror unit 2 are set to the same level even when heat or distortion occurs in the mirror device 30 due to the driving or driving environment of the mirror device 30. Can be maintained.
  • the second connection part 35 has one end connected to the first beam part 4 on the extension line in the first direction (X-axis direction) of the first connection part 3 and extends in the first direction.
  • the 2nd connection part 35 is a structure which can be deform
  • piezoelectric elements 38 a and 38 b may be provided on the surface of the main body of the second connection portion 35 (upper surface in FIG. 10).
  • the piezoelectric elements 38a and 38b include a piezoelectric film provided with electrodes. By applying a voltage to the piezoelectric film via this electrode, the piezoelectric film is distorted, and as a result, the entire second connecting portion 35 can be deformed.
  • the shape of the main body of the 2nd connection part 35 can be made into the same shape as the 2nd connection part 5 used with the mirror device 10.
  • the second beam portion 36 connects the fixed portion 1 and the second connection portion 35 and extends so as to intersect the first direction (X-axis direction).
  • the shape of the second beam portion 36 can be the same as that of the main body of the second beam portion 6 used in the mirror device 10.
  • a piezoelectric element may be further provided on the surface of the second beam portion 36. In this case, the driving frequency applied to the piezoelectric elements 7a to 7d and the resonance frequency of the mirror unit 2 can be maintained at the same level.
  • optical scanning apparatus As a modification of the optical scanning device, an optical scanning device according to a fourth embodiment is shown below.
  • the optical scanning apparatus according to the fourth embodiment is different from the optical scanning apparatus according to the first embodiment in that a mirror device 40 shown in FIGS.
  • FIG. 12 is a plan view of the mirror device 40 in the optical scanning device of the fourth embodiment.
  • FIG. 13 is a cross-sectional view of the mirror device 40 taken along the line VV in FIG.
  • the mirror device 40 having the same configuration as that of the mirror device 10 shown in FIGS. 2 to 4, the mirror device 20 shown in FIGS. 7 to 8, and the mirror device 30 shown in FIGS. Therefore, detailed description is omitted.
  • the mirror device 40 is further provided with a second connection unit 45 in the mirror device 10.
  • the second connection portion 45 is configured such that the second connection portion 45 connects the first beam portion 4 and the fixed portion 1 and the second connection portion 45 can be deformed by applying a voltage. This is different from the mirror device 10.
  • the piezoelectric elements 48 a and 48 b are provided on the surface of the main body of the second connection portion 45.
  • Such a configuration makes it possible to change the resonance frequency of the mirror unit 2 and the first connection unit 3 and maintain the accuracy of the mirror device 40 high. That is, by deforming the second connecting portion 45, it is possible to change the rigidity of the first connecting portion 3 by applying tensile stress or compressive stress to the mirror portion 2 and the first connecting portion 3, It becomes possible to control the resonance frequency of the first connection portion 3.
  • the drive frequency applied to the piezoelectric elements 7a to 7d and the resonance frequency of the mirror unit 2 are set to the same level even when heat or distortion occurs in the mirror device 40 due to the driving or driving environment of the mirror device 40. Can be maintained.
  • the second connection portion 45 has one end connected to the first beam portion 4 on the extension line in the first direction (X-axis direction) of the first connection portion 3 and extends in the first direction.
  • the 2nd connection part 45 is a structure which can be deform
  • piezoelectric elements 48 a and 48 b may be provided on the surface (the upper surface in FIG. 12) of the main body of the second connection portion 45.
  • the piezoelectric elements 48a and 48b include a piezoelectric film provided with electrodes. By applying a voltage to the piezoelectric film through this electrode, the piezoelectric film is distorted, and as a result, the entire second connection portion 45 can be deformed.
  • the shape of the main body of the 2nd connection part 45 can be made into the same shape as the 2nd connection part 5 used with the mirror device 10.
  • the present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the gist of the present invention.
  • the rigidity of the second connection parts 25, 35, 45 may be higher than the rigidity of the first connection part 3.
  • the resonance frequency of the mirror unit 2 and the first connection unit 3 can be controlled more efficiently, and a lower voltage operation is possible.
  • the second connection parts 25, 35, 45 have a higher elastic modulus than the first connection part 3. May be used.
  • the thickness of the second connection parts 25, 35, 45 in the Y-axis direction may be made larger than that of the first connection part 3.
  • the thickness of the second connection parts 25, 35, 45 in the Z-axis direction may be made larger than that of the first connection part 3.
  • the various optical scanning devices of the present disclosure can be applied to an image display device, an image recognition device, a measurement device, or the like.
  • the various optical scanning devices of the present disclosure are used in, for example, a copying machine, a printer, a scanner, a projector, or a laser radar device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)

Abstract

An optical scanning device (300) according to the present invention is provided with: a rotation part (100) that rotates about a first axis as a rotational axis; a mirror device (10) that is positioned on a surface of the rotation part (100), and that has a light reflective surface which intersects the first axis and of which the angle with respect to the first axis is changeable; and a light emission part (200) that emits light toward the light reflective surface.

Description

光走査装置Optical scanning device
 本開示は、光の進行方向を制御して光を走査する光走査装置に関する。 The present disclosure relates to an optical scanning device that scans light by controlling the traveling direction of light.
 光の進行方向を制御して光を走査する光走査装置として、例えば特許文献1(特開2010-197994号公報)のようなものがある。 As an optical scanning device that scans light by controlling the traveling direction of light, for example, there is a device such as that disclosed in Japanese Patent Application Laid-Open No. 2010-197994.
 この光走査装置は、レーザー光源から出射された赤、緑、青の異なる波長のレーザー光を、反射角可変ミラーを有するミラーデバイスで走査することによってレーザー光を目的の方向に進めることができる。 This optical scanning device can advance laser light in a target direction by scanning laser light of different wavelengths of red, green, and blue emitted from a laser light source with a mirror device having a reflection angle variable mirror.
 ミラーデバイスは、ミラー部と、ミラー部に接続された梁部とを有している。そして、梁部に設けられた圧電部材によって梁部を変形させ、これによってミラー部を可動させている。このようなミラーデバイスで2次元方向に光を走査する場合、特許文献1では、異なる方向の梁部を設けることによって2軸でミラー部を可動させるようにしたミラーデバイスが提案されている。 The mirror device has a mirror part and a beam part connected to the mirror part. Then, the beam portion is deformed by a piezoelectric member provided on the beam portion, thereby moving the mirror portion. When scanning light in a two-dimensional direction with such a mirror device, Patent Document 1 proposes a mirror device in which a mirror portion is movable in two axes by providing beam portions in different directions.
 本開示の一態様に係る光走査装置は、回転部と、ミラーデバイスと、光出射部とを具備する。回転部は、第1軸を回転軸として回転する。ミラーデバイスは、回転部の表面に位置しており、第1軸と交差するとともに第1軸との成す角度を変えることが可能な光反射面を有している。光出射部は、光反射面に向けて光を出射する。 The optical scanning device according to an aspect of the present disclosure includes a rotating unit, a mirror device, and a light emitting unit. The rotating unit rotates about the first axis as a rotation axis. The mirror device is located on the surface of the rotating part, and has a light reflecting surface that intersects with the first axis and can change an angle formed with the first axis. The light emitting unit emits light toward the light reflecting surface.
第1実施形態の光走査装置による光走査の状態を示す概略図である。It is the schematic which shows the state of the optical scanning by the optical scanning device of 1st Embodiment. 第1実施形態の光走査装置における回転部およびミラーデバイスの平面図である。It is a top view of the rotation part and mirror device in the optical scanning device of a 1st embodiment. 図2の回転部およびミラーデバイスのI-I線における断面図である。FIG. 3 is a cross-sectional view taken along line II of the rotating unit and the mirror device of FIG. 2. 図2の回転部およびミラーデバイスのII-II線における断面図である。FIG. 3 is a cross-sectional view taken along the line II-II of the rotating unit and the mirror device of FIG. 対象物上における光走査装置による光走査を説明するための図である。It is a figure for demonstrating the optical scanning by the optical scanning device on a target object. 対象物上における光走査装置による光走査の他の例を説明するための図である。It is a figure for demonstrating the other example of the optical scanning by the optical scanning device on a target object. 第2実施形態の光走査装置におけるミラーデバイスの平面図である。It is a top view of the mirror device in the optical scanning device of a 2nd embodiment. 図7のミラーデバイスのIII-III線における断面図である。FIG. 8 is a cross-sectional view taken along line III-III of the mirror device of FIG. 図7のミラーデバイスを用いた制御回路の一例を示す図である。It is a figure which shows an example of the control circuit using the mirror device of FIG. 第3実施形態の光走査装置におけるミラーデバイスの平面図である。It is a top view of the mirror device in the optical scanning device of a 3rd embodiment. 図10のミラーデバイスのIV-IV線における断面図である。It is sectional drawing in the IV-IV line of the mirror device of FIG. 第4実施形態の光走査装置におけるミラーデバイスの平面図である。It is a top view of the mirror device in the optical scanning device of a 4th embodiment. 図12のミラーデバイスのV-V線における断面図である。It is sectional drawing in the VV line of the mirror device of FIG.
 光走査装置の各種実施形態について、図面を参照しながら説明する。なお、図1~図11には、右手系のXYZ座標系が付されている。 Various embodiments of the optical scanning device will be described with reference to the drawings. In FIGS. 1 to 11, a right-handed XYZ coordinate system is attached.
 <第1実施形態の光走査装置>
 図1は、第1実施形態の光走査装置300を用いた光走査の状態を示す概略図である。光走査装置300は、回転部100と、ミラーデバイス10と、光出射部200とを具備している。そして、光出射部200から出射された光がミラーデバイス10で所望の方向に反射されることによって、対象物400上に光信号500が照射される。
<Optical Scanning Device of First Embodiment>
FIG. 1 is a schematic diagram illustrating a state of optical scanning using the optical scanning device 300 of the first embodiment. The optical scanning device 300 includes a rotating unit 100, a mirror device 10, and a light emitting unit 200. Then, the light emitted from the light emitting unit 200 is reflected by the mirror device 10 in a desired direction, so that the optical signal 500 is irradiated on the object 400.
 また、図2~図4は光走査装置300の部分拡大図である。つまり、図2は光走査装置300における回転部100およびミラーデバイス10の平面図、図3は図2の回転部100およびミラーデバイス10のI-I線における断面図、図4は図2の回転部100およびミラーデバイス10のII-II線における断面図である。 2 to 4 are partial enlarged views of the optical scanning device 300. FIG. 2 is a plan view of the rotating unit 100 and the mirror device 10 in the optical scanning apparatus 300, FIG. 3 is a cross-sectional view taken along the line II of the rotating unit 100 and the mirror device 10 in FIG. 2, and FIG. 2 is a cross-sectional view taken along a line II-II of the part 100 and the mirror device 10. FIG.
 光出射部200は、レーザー等の光を発するデバイスであり、例えば、赤、緑、青等の複数の異なる波長の光を出射可能なものであってもよい。また、回転部100は、モーター等の回転駆動が可能な装置であり、第1軸(図1~図4ではZ軸が第1軸である)を回転軸として回転することができる。 The light emitting unit 200 is a device that emits light such as a laser, and may be capable of emitting light of a plurality of different wavelengths such as red, green, and blue. The rotation unit 100 is a device that can be driven to rotate, such as a motor, and can rotate about a first axis (the Z axis is the first axis in FIGS. 1 to 4) as a rotation axis.
 ミラーデバイス10は、回転部100の表面に位置している。そして、ミラーデバイス10は、上記第1軸と交差するとともに第1軸との成す角度を変えることが可能な光反射面を有している。 The mirror device 10 is located on the surface of the rotating unit 100. The mirror device 10 has a light reflecting surface that intersects the first axis and can change the angle formed with the first axis.
 図2~図4は、ミラーデバイス10の一例である。このミラーデバイス10は、固定部1と、ミラー部2と、第1接続部3と、第1梁部4とを具備している。 2 to 4 show an example of the mirror device 10. The mirror device 10 includes a fixed part 1, a mirror part 2, a first connection part 3, and a first beam part 4.
 固定部1は、平面形状が四角形状や円形状、楕円形状等の枠状体である。図2に示すような四角形状の枠体20の一例としては、その一辺の長さが例えば2~30mmであり、固定部1を構成するアームの幅(アームの長手方向と直交する方向の幅)が例えば0.2~6mmであり、固定部1の厚みが例えば0.1~1mmである。 The fixed portion 1 is a frame-like body having a square shape, a circular shape, an elliptical shape, or the like. As an example of the quadrangular frame 20 as shown in FIG. 2, the length of one side thereof is, for example, 2 to 30 mm, and the width of the arm constituting the fixing portion 1 (the width in the direction perpendicular to the longitudinal direction of the arm). ) Is, for example, 0.2 to 6 mm, and the thickness of the fixing portion 1 is, for example, 0.1 to 1 mm.
 ミラー部2は、主面(+Z側の主面)に光反射面を有する部材である。ミラー部2は、例えば図3に示すように、主面を有する支持部材2aと、その主面に位置する、金属薄膜等の光反射率の高い光反射部材2bとから成るものであってもよい。 The mirror part 2 is a member having a light reflecting surface on the main surface (+ Z side main surface). For example, as shown in FIG. 3, the mirror unit 2 may be composed of a support member 2a having a main surface and a light reflection member 2b having a high light reflectivity, such as a metal thin film, located on the main surface. Good.
 ミラー部2の平面視形状は四角形状や円形状、楕円形状等である。図2に示すような平面視形状が四角形状のミラー部2の一例としては、第1接続部3が接続されている長辺が例えば1~10mmであり、短辺が例えば0.3~1mmである。 The shape of the mirror part 2 in plan view is a square shape, a circular shape, an elliptical shape, or the like. As an example of the mirror part 2 having a square shape in plan view as shown in FIG. 2, the long side to which the first connecting part 3 is connected is, for example, 1 to 10 mm, and the short side is, for example, 0.3 to 1 mm. It is.
 第1接続部3は、一端がミラー部2に接続され、第1方向(X軸方向)に延びて他端が第1梁部4と接続している。第1接続部3は、電圧印加による第1梁部4の変形に追従して、上記第1方向(X軸方向)を軸とした回転運動をすることによって、ミラー部2の向きを変える機能を有する。 The first connection portion 3 has one end connected to the mirror portion 2, extends in the first direction (X-axis direction), and the other end is connected to the first beam portion 4. The first connection part 3 follows the deformation of the first beam part 4 due to voltage application and changes the direction of the mirror part 2 by performing a rotational motion about the first direction (X-axis direction). Have
 第1接続部3は、第1梁部4の変形に追従してミラー部2を良好に動かすという観点からは、平面視したときのY軸方向の幅が、例えば0.01~0.1mmであり、X軸方向の長さが例えば0.10~2mmであり、厚みが例えば0.01~0.3mmである。また、第1接続部3のX軸方向に垂直な断面(YZ断面)の形状は、特に限定されず、多角形状や円形状、楕円形状等であってもよい。 From the viewpoint of moving the mirror unit 2 well following the deformation of the first beam unit 4, the first connection unit 3 has a width in the Y-axis direction in a plan view of, for example, 0.01 to 0.1 mm. The length in the X-axis direction is, for example, 0.10 to 2 mm, and the thickness is, for example, 0.01 to 0.3 mm. Moreover, the shape of the cross section (YZ cross section) perpendicular to the X-axis direction of the first connection portion 3 is not particularly limited, and may be a polygonal shape, a circular shape, an elliptical shape, or the like.
 第1梁部4は、固定部1および第1接続部3を接続するとともに第1方向(X軸方向)に対して交差するように延びている。図2では、第1梁部4は第1接続部3との接続部から+Y方向と-Y方向の2方向に延びており、固定部1の対向する一対のアームにそれぞれ接続されている。なお、第1梁部4はこのような構成に限定されず、第1接続部3との接続部から固定部1の1つのアームのみと接続された構成であってもよい。また、第1梁部4とX軸との成す角度は、図2のような90°でなくともよく、鋭角あるいは鈍角であってもよい。 The first beam portion 4 connects the fixed portion 1 and the first connection portion 3 and extends so as to intersect the first direction (X-axis direction). In FIG. 2, the first beam portion 4 extends from the connection portion with the first connection portion 3 in two directions of + Y direction and −Y direction, and is connected to a pair of opposing arms of the fixing portion 1. In addition, the 1st beam part 4 is not limited to such a structure, The structure connected to only one arm of the fixing | fixed part 1 from the connection part with the 1st connection part 3 may be sufficient. Further, the angle formed between the first beam portion 4 and the X axis may not be 90 ° as shown in FIG. 2, but may be an acute angle or an obtuse angle.
 第1梁部4は、電圧を印加することで変形可能な構造である。このような構造としては、図2および図4に示すように、第1梁部4の本体の表面(図2~図4の例では上面)に圧電素子7a~7dを設けた構造であってもよい。圧電素子7a~7dは、例えば圧電膜に電極を設けたものが挙げられる。この電極を介して圧電膜に電圧を印加することによって圧電膜に歪みを生じさせ、その結果、第1梁部4の全体を変形させることが可能となる。なお、第1梁部4の上面に形成された圧電素子において、圧電膜は第1梁部4の上面全面に形成されていてもよく、この圧電膜のうち電極によって電圧が印加され得る部位が圧電素子として機能する。 The first beam portion 4 has a structure that can be deformed by applying a voltage. As such a structure, as shown in FIGS. 2 and 4, piezoelectric elements 7a to 7d are provided on the surface of the main body of the first beam portion 4 (the upper surface in the examples of FIGS. 2 to 4). Also good. Examples of the piezoelectric elements 7a to 7d include a piezoelectric film provided with electrodes. By applying a voltage to the piezoelectric film through this electrode, the piezoelectric film is distorted, and as a result, the entire first beam portion 4 can be deformed. In the piezoelectric element formed on the upper surface of the first beam portion 4, the piezoelectric film may be formed on the entire upper surface of the first beam portion 4, and there is a portion of the piezoelectric film to which a voltage can be applied by an electrode. Functions as a piezoelectric element.
 第1梁部4は、ミラー部2の動きを良好に行なうという観点からは、平面視したときの幅(X軸方向の長さ)が例えば0.05~0.5mmであり、厚みが例えば0.01~0.3mmである。第1梁部4の平面視形状は直線状に限らず、曲線状や矩形状であってもよい。第1梁部4の延伸方向(Y軸方向)に垂直な断面(XZ断面)の形状は、特に限定されず、多角形状や円形状、楕円形状等であってもよい。 The first beam portion 4 has a width (length in the X-axis direction) in a plan view of, for example, 0.05 to 0.5 mm and a thickness of, for example, from the viewpoint of favorably moving the mirror portion 2. 0.01 to 0.3 mm. The planar view shape of the first beam portion 4 is not limited to a linear shape, and may be a curved shape or a rectangular shape. The shape of the cross section (XZ cross section) perpendicular to the extending direction (Y-axis direction) of the first beam portion 4 is not particularly limited, and may be a polygonal shape, a circular shape, an elliptical shape, or the like.
 また、第1接続部3は、図2および図3に示すように、第1接続部3の表面(図2~図4の例では上面)に、さらに圧電素子9a~9bを設けた構造であってもよい。圧電素子9a~9bは、例えば圧電膜に電極を設けたものが挙げられる。圧電素子9a~9bは、第1接続部3の変形量を読み取るセンサとして機能する。つまり、第1接続部3の変形によって圧電素子9a~9bが歪み、これによって生じる電圧から変形量を読み取ることができる。 Further, as shown in FIGS. 2 and 3, the first connection portion 3 has a structure in which piezoelectric elements 9a to 9b are further provided on the surface of the first connection portion 3 (upper surface in the examples of FIGS. 2 to 4). There may be. Examples of the piezoelectric elements 9a to 9b include a piezoelectric film provided with electrodes. The piezoelectric elements 9 a to 9 b function as sensors that read the deformation amount of the first connection portion 3. That is, the piezoelectric elements 9a to 9b are distorted by the deformation of the first connecting portion 3, and the deformation amount can be read from the voltage generated thereby.
 ミラーデバイス10は以下のようにして作製することができる。まず、シリコン等の基板を公知の半導体微細加工方法を用いて加工し、固定部1、ミラー部2の支持部材2a、第1接続部3の本体、および第1梁部4の本体を一体的に形成する。次に、支持部材2aの上面に公知の薄膜形成方法を用いて光反射部材2bを作製するとともに、第1接続部3の本体の上面および第1梁部4の本体の上面に、それぞれ公知の薄膜形成方法を用いて電極および圧電膜を形成することによって圧電素子7a~7d、9a~9bを作製する。このような工程によってミラーデバイス10を作製することができる。 The mirror device 10 can be manufactured as follows. First, a substrate such as silicon is processed using a known semiconductor micromachining method, and the fixed portion 1, the support member 2a of the mirror portion 2, the main body of the first connection portion 3, and the main body of the first beam portion 4 are integrated. To form. Next, the light reflecting member 2b is manufactured on the upper surface of the support member 2a by using a known thin film forming method, and the upper surface of the main body of the first connection portion 3 and the upper surface of the main body of the first beam portion 4 are respectively known. The piezoelectric elements 7a to 7d and 9a to 9b are manufactured by forming electrodes and piezoelectric films using a thin film forming method. The mirror device 10 can be manufactured by such a process.
 以上のような構成を有する第1実施形態の光走査装置300を用いた、光信号の走査方法を以下に示す。まず、図1に示すように、光出射部200からミラーデバイス10の光反射面に向けて光を出射し、ミラーデバイス10のミラー部2で光を反射させることによって、対象物400上に光を入射する。このとき、ミラーデバイス10の第1梁部4を駆動してミラー部2を所望の角度にしながら、回転部100を回転させることによって、対象物400上の光を、例えば図5に示すAのような円形状に走査することができる。さらに、ミラー部2の角度を変えながら回転部100を回転させることによって、図5のA、B、CおよびDのように、順に径を変えながら光を走査させることができ、その結果、対象物400上に2次元方向に光信号500を照射することができる。 An optical signal scanning method using the optical scanning device 300 according to the first embodiment having the above-described configuration will be described below. First, as shown in FIG. 1, light is emitted from the light emitting unit 200 toward the light reflecting surface of the mirror device 10, and the light is reflected by the mirror unit 2 of the mirror device 10. Is incident. At this time, by rotating the rotating unit 100 while driving the first beam unit 4 of the mirror device 10 to bring the mirror unit 2 to a desired angle, the light on the object 400 is, for example, shown in FIG. Such a circular shape can be scanned. Further, by rotating the rotating unit 100 while changing the angle of the mirror unit 2, light can be scanned while changing the diameter in order as shown in A, B, C and D of FIG. An optical signal 500 can be irradiated onto the object 400 in a two-dimensional direction.
 光走査装置300を用いた光信号の走査方法としては、上記方法に限定されず、他の方法でもよい。例えば、ミラーデバイス10のミラー部2で光を反射させる際、図6に示すように、ミラーデバイス10の第1梁部4を駆動してAのように線状に走査する。さらに、回転部100を回転させることによって、対象物400上の光を、図6のA、B、C、D、EおよびFのように、順にずらしながら光を走査させることができ、その結果、対象物400上に2次元方向に光信号500を照射することができる。 The optical signal scanning method using the optical scanning device 300 is not limited to the above method, and other methods may be used. For example, when the light is reflected by the mirror unit 2 of the mirror device 10, the first beam unit 4 of the mirror device 10 is driven to scan linearly like A as shown in FIG. 6. Further, by rotating the rotating unit 100, the light on the object 400 can be scanned while being sequentially shifted as in A, B, C, D, E, and F of FIG. The optical signal 500 can be irradiated onto the object 400 in a two-dimensional direction.
 このような光走査装置300によれば、光の進行方向を制御するミラーデバイス10として、従来のように2軸駆動構造(1つのミラー部を2軸で駆動させる構造)のような複雑な構成とする必要はなく、精度の高い1軸駆動構造(1つのミラー部を1軸で駆動させる構造)を用いることができる。そして、モーターのような簡単な構成の回転部100によって、光走査を補うことで、高い精度を有し、容易に作製可能な小型の光走査装置を提供することができる。 According to such an optical scanning device 300, the mirror device 10 that controls the traveling direction of light has a complicated configuration such as a conventional biaxial drive structure (a structure in which one mirror unit is driven biaxially). However, a highly accurate single-axis drive structure (a structure in which one mirror unit is driven by one axis) can be used. Further, by supplementing the optical scanning with the rotating unit 100 having a simple configuration such as a motor, it is possible to provide a small-sized optical scanning device that has high accuracy and can be easily manufactured.
 <第2実施形態の光走査装置>
 光走査装置の変形例として、第2実施形態の光走査装置を以下に示す。第2実施形態の光走査装置は、ミラーデバイス10に代えて図7~図8に示すミラーデバイス20を用いている点で第1実施形態の光走査装置と異なっている。
<Optical Scanning Device of Second Embodiment>
As a modification of the optical scanning device, an optical scanning device according to the second embodiment is shown below. The optical scanning apparatus according to the second embodiment is different from the optical scanning apparatus according to the first embodiment in that the mirror device 20 shown in FIGS.
 図7は、第2実施形態の光走査装置におけるミラーデバイス20の平面図である。また、図8は図7のIII-III線におけるミラーデバイス20の断面図である。ミラーデバイス20において図2~図4に示したミラーデバイス10と同じ構成のものには同じ符号を付しており、詳細な説明は省略する。 FIG. 7 is a plan view of the mirror device 20 in the optical scanning device of the second embodiment. FIG. 8 is a cross-sectional view of the mirror device 20 taken along the line III-III in FIG. In the mirror device 20, the same components as those in the mirror device 10 shown in FIGS. 2 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
 ミラーデバイス20は、ミラーデバイス10において、さらに第2接続部25と第2梁部26とを具備している。この第2接続部25は、第1接続部3の上記第1方向(X軸方向)の延長線上において一端が第1梁部4に接続され上記第1方向に延びている。また、第2梁部26は、固定部1および第2接続部25を接続するとともに上記第1方向に対して交差するように延びている。そして、この第2梁部26は電圧を印加することで変形可能となっている。 The mirror device 20 is further provided with a second connecting portion 25 and a second beam portion 26 in the mirror device 10. One end of the second connection portion 25 is connected to the first beam portion 4 on the extension line of the first connection portion 3 in the first direction (X-axis direction) and extends in the first direction. The second beam portion 26 connects the fixing portion 1 and the second connection portion 25 and extends so as to intersect the first direction. The second beam portion 26 can be deformed by applying a voltage.
 このような第2接続部25および第2梁部26を有することによって、ミラー部2および第1接続部3の共振周波数を変更することが可能となり、ミラーデバイス20の精度をさらに高く維持することができる。つまり、第2梁部26を変形させることで、ミラー部2および第1接続部3に対して引張応力や圧縮応力を加えて第1接続部3の剛性を変えることができ、ミラー部2および第1接続部3の共振周波数を制御することが可能となる。その結果、ミラーデバイス10の駆動時や駆動環境によって、ミラーデバイス20に熱や歪みが発生した場合でも、圧電素子7a~7dに印加する駆動周波数とミラー部2との共振周波数とを同程度に維持することができる。 By having the second connection part 25 and the second beam part 26 as described above, the resonance frequency of the mirror part 2 and the first connection part 3 can be changed, and the accuracy of the mirror device 20 can be maintained higher. Can do. That is, by deforming the second beam portion 26, it is possible to change the rigidity of the first connecting portion 3 by applying tensile stress or compressive stress to the mirror portion 2 and the first connecting portion 3, It becomes possible to control the resonance frequency of the first connection portion 3. As a result, the drive frequency applied to the piezoelectric elements 7a to 7d and the resonance frequency of the mirror unit 2 are made substantially the same even when heat or distortion occurs in the mirror device 20 due to the driving or driving environment of the mirror device 10. Can be maintained.
 第2接続部25は、電圧印加による第2梁部26の変形に追従して、上記第1方向(X軸方向)に沿って動くことによって、ミラー部2および第1接続部3に対して良好に圧縮応力または引張応力を加える機能を有する。第2接続部25は、平面視したときの第1方向に直交する方向の幅(Y軸方向の幅)が、例えば0.02~0.4mmであり、X軸方向の長さが例えば0.02~1mmであり、厚みが例えば0.01~0.3mmである。また、第2接続部25のX軸方向に垂直な断面(YZ断面)の形状は、特に限定されず、多角形状や円形状、楕円形状等であってもよい。 The second connection portion 25 follows the deformation of the second beam portion 26 due to the application of voltage and moves along the first direction (X-axis direction), so that the mirror portion 2 and the first connection portion 3 are moved. It has a function to apply compressive stress or tensile stress well. The second connection portion 25 has a width in the direction orthogonal to the first direction (width in the Y-axis direction) when viewed in plan, for example, 0.02 to 0.4 mm, and a length in the X-axis direction, for example, 0. 0.02 to 1 mm, and the thickness is, for example, 0.01 to 0.3 mm. In addition, the shape of the cross section (YZ cross section) perpendicular to the X-axis direction of the second connection portion 25 is not particularly limited, and may be a polygonal shape, a circular shape, an elliptical shape, or the like.
 第2接続部25の変形によるミラー部2の共振周波数の制御を良好にしながら、第1梁部4の電圧印加による変形を良好にするという観点から言えば、第2接続部25は、平面視したときの第1方向に直交する方向の幅(Y軸方向の幅)が第1梁部4のY軸方向の長さに対して0.01~0.1倍であってもよい。このような幅であれば、第2接続部25による応力が第1梁部4全体に伝わるのを低減でき、第1梁部4の電圧印加による変形の精度を良好に維持することができる。 From the viewpoint of improving the deformation of the first beam part 4 by applying a voltage while improving the control of the resonance frequency of the mirror part 2 by the deformation of the second connection part 25, the second connection part 25 is a plan view. In this case, the width in the direction perpendicular to the first direction (the width in the Y-axis direction) may be 0.01 to 0.1 times the length of the first beam portion 4 in the Y-axis direction. If it is such a width | variety, it can reduce that the stress by the 2nd connection part 25 is transmitted to the whole 1st beam part 4, and can maintain the precision of the deformation | transformation by the voltage application of the 1st beam part 4 favorably.
 また、第1梁部4が図2のように圧電素子7a~7dを有する構成である場合、第1梁部4における第2接続部25との接続部近傍には圧電素子7a~7dが配置されていないような構成としてもよい。このような構成であれば、第2接続部25による応力が電圧素子7a~7dに伝わるのを低減でき、第1梁部4の電圧印加による変形の精度をさらに良好に維持することができる。 Further, when the first beam portion 4 has the piezoelectric elements 7a to 7d as shown in FIG. 2, the piezoelectric elements 7a to 7d are arranged in the vicinity of the connection portion of the first beam portion 4 with the second connection portion 25. It is good also as a structure which is not done. With such a configuration, it is possible to reduce the stress transmitted by the second connecting portion 25 to the voltage elements 7a to 7d, and it is possible to maintain the accuracy of deformation of the first beam portion 4 by applying the voltage more satisfactorily.
 第2梁部26は、固定部1および第2接続部25を接続するとともに第1方向(X軸方向)に対して交差するように延びている。図7では、第2梁部26は第2接続部25との接続部から+Y方向と-Y方向の2方向に延びており、固定部1の対向する一対のアームにそれぞれ接続されている。なお、第2梁部26はこのような構成に限定されず、第2接続部25との接続部から固定部1の1つのアームのみと接続された構成であってもよい。また、第2梁部26とX軸との成す角度は、図7のような90°でなくともよく、鋭角あるいは鈍角であってもよい。 The second beam portion 26 connects the fixed portion 1 and the second connection portion 25 and extends so as to intersect the first direction (X-axis direction). In FIG. 7, the second beam portion 26 extends from the connection portion with the second connection portion 25 in two directions of + Y direction and −Y direction, and is connected to a pair of opposing arms of the fixing portion 1. In addition, the 2nd beam part 26 is not limited to such a structure, The structure connected to only one arm of the fixing | fixed part 1 from the connection part with the 2nd connection part 25 may be sufficient. Further, the angle formed between the second beam portion 26 and the X axis may not be 90 ° as shown in FIG. 7, but may be an acute angle or an obtuse angle.
 第2梁部26は、電圧を印加することで変形可能な構造である。このような構造としては、図7に示すように、第2梁部26の本体の表面(図7では上面)に圧電素子8a~8dを設けた構造であってもよい。圧電素子8a~8dは、例えば圧電膜に電極を設けたものが挙げられる。この電極を介して圧電膜に電圧を印加することによって圧電膜に歪みを生じさせ、その結果、第2梁部26の全体を変形させることが可能となる。このような圧電膜としては、チタン酸バリウムやチタン酸ジルコン酸鉛(PZT)等が用いられ得る。 The second beam portion 26 has a structure that can be deformed by applying a voltage. Such a structure may be a structure in which piezoelectric elements 8a to 8d are provided on the surface (upper surface in FIG. 7) of the main body of the second beam portion 26 as shown in FIG. Examples of the piezoelectric elements 8a to 8d include a piezoelectric film provided with electrodes. By applying a voltage to the piezoelectric film via this electrode, the piezoelectric film is distorted, and as a result, the entire second beam portion 26 can be deformed. As such a piezoelectric film, barium titanate, lead zirconate titanate (PZT), or the like can be used.
 第2梁部26は、ミラー部2の共振周波数の制御を良好に行なうという観点からは、平面視したときの幅(X軸方向の長さ)が例えば0.05~0.5mmであり、厚みが例えば0.01~0.3mmである。第2梁部26の平面視形状は直線状に限らず、曲線状や矩形状であってもよい。第2梁部26の延伸方向(Y軸方向)に垂直な断面(XZ断面)の形状は、特に限定されず、多角形状や円形状、楕円形状等であってもよい。 From the standpoint of satisfactorily controlling the resonance frequency of the mirror part 2, the second beam part 26 has a width (length in the X-axis direction) in a plan view of, for example, 0.05 to 0.5 mm, The thickness is, for example, 0.01 to 0.3 mm. The planar view shape of the second beam portion 26 is not limited to a linear shape, and may be a curved shape or a rectangular shape. The shape of the cross section (XZ cross section) perpendicular to the extending direction (Y-axis direction) of the second beam portion 26 is not particularly limited, and may be a polygonal shape, a circular shape, an elliptical shape, or the like.
 このようなセンサとしての圧電素子9a~9bと、第1接続部3の変形を行なう圧電素子7a~7dと、第2梁部26の変形を行なう圧電素子28a~28dとは、例えば図9に示すような制御回路で駆動される。図9において、外部クロックから圧電素子7a~7dへクロック信号を入力し、圧電素子9a~9bで第1接続部3の変形量を検出する。そして、ミラーデバイス20の外部または内部に設けた位相検出器で、圧電素子9a~9bからの出力の位相を読み取り、外部クロックとの位相差を検出する。この位相差に相当する電圧を圧電素子28a~28dに印加することで、第2梁部26を変形させ、位相差が所望の位相差(この場合は共振位相)になるように自動制御する。これによって、外部クロックの周波数にミラー2および第1接続部3の共振周波数を自動で合わせ込むことができる。その結果、制御回路は外部クロックでありながら、共振周波数で常に駆動することで駆動電圧も大きくならず、低電圧動作が可能となる。 The piezoelectric elements 9a to 9b as such sensors, the piezoelectric elements 7a to 7d for deforming the first connecting portion 3, and the piezoelectric elements 28a to 28d for deforming the second beam portion 26 are shown in FIG. It is driven by a control circuit as shown. In FIG. 9, a clock signal is input from an external clock to the piezoelectric elements 7a to 7d, and the deformation amount of the first connecting portion 3 is detected by the piezoelectric elements 9a to 9b. The phase detector provided outside or inside the mirror device 20 reads the phase of the output from the piezoelectric elements 9a to 9b and detects the phase difference from the external clock. By applying a voltage corresponding to this phase difference to the piezoelectric elements 28a to 28d, the second beam portion 26 is deformed and automatically controlled so that the phase difference becomes a desired phase difference (in this case, a resonance phase). Thereby, the resonance frequency of the mirror 2 and the first connection part 3 can be automatically adjusted to the frequency of the external clock. As a result, although the control circuit is an external clock, the drive voltage is not increased by always driving at the resonance frequency, and a low voltage operation is possible.
 <第3実施形態の光走査装置>
 光走査装置の変形例として、第3実施形態の光走査装置を以下に示す。第3実施形態の光走査装置は、ミラーデバイス10に代えて図10~図11に示すミラーデバイス30を用いている点で第1実施形態の光走査装置と異なっている。
<Optical Scanning Device of Third Embodiment>
As a modification of the optical scanning device, an optical scanning device according to a third embodiment is shown below. The optical scanning device according to the third embodiment is different from the optical scanning device according to the first embodiment in that a mirror device 30 shown in FIGS.
 図10は、第3実施形態の光走査装置におけるミラーデバイス30の平面図である。また、図11は図10のIV-IV線におけるミラーデバイス30の断面図である。ミラーデバイス30において図2~図4に示したミラーデバイス10および図7~図8に示したミラーデバイス20と同じ構成のものには同じ符号を付しており、詳細な説明は省略する。 FIG. 10 is a plan view of the mirror device 30 in the optical scanning device of the third embodiment. FIG. 11 is a cross-sectional view of the mirror device 30 taken along the line IV-IV in FIG. In the mirror device 30, the same components as those of the mirror device 10 shown in FIGS. 2 to 4 and the mirror device 20 shown in FIGS. 7 to 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
 ミラーデバイス30は、ミラーデバイス20と同様に、第2接続部35と第2梁部36とを具備している。この第2接続部35は、第1接続部3の上記第1方向(X軸方向)の延長線上において一端が第1梁部4に接続され上記第1方向に延びている。また、第2梁部36は、固定部1および第2接続部25を接続するとともに上記第1方向に対して交差するように延びている。そして、ミラーデバイス30は、第2接続部35が電圧を印加することで変形可能となっている点でミラーデバイス20と異なっている。図10および図11の例では、圧電素子38a、38bが、第2梁部36ではなく第2接続部35の本体の表面に設けられている。 The mirror device 30 includes a second connection portion 35 and a second beam portion 36 as in the mirror device 20. One end of the second connection portion 35 is connected to the first beam portion 4 on the extension line of the first connection portion 3 in the first direction (X-axis direction) and extends in the first direction. Further, the second beam portion 36 connects the fixed portion 1 and the second connection portion 25 and extends so as to intersect the first direction. The mirror device 30 is different from the mirror device 20 in that the second connection unit 35 can be deformed by applying a voltage. In the example of FIGS. 10 and 11, the piezoelectric elements 38 a and 38 b are provided on the surface of the main body of the second connecting portion 35 instead of the second beam portion 36.
 このような構成によって、ミラー部2および第1接続部3の共振周波数を変更することが可能となり、ミラーデバイス30の精度を高く維持することができる。つまり、第2接続部35を変形させることで、ミラー部2および第1接続部3に対して引張応力や圧縮応力を加えて第1接続部3の剛性を変えることができ、ミラー部2および第1接続部3の共振周波数を制御することが可能となる。その結果、ミラーデバイス30の駆動時や駆動環境によって、ミラーデバイス30に熱や歪みが発生した場合でも、圧電素子7a~7dに印加する駆動周波数とミラー部2との共振周波数とを同程度に維持することができる。 Such a configuration makes it possible to change the resonance frequency of the mirror unit 2 and the first connection unit 3 and maintain the accuracy of the mirror device 30 high. That is, by deforming the second connection portion 35, the rigidity of the first connection portion 3 can be changed by applying tensile stress or compression stress to the mirror portion 2 and the first connection portion 3, It becomes possible to control the resonance frequency of the first connection portion 3. As a result, the drive frequency applied to the piezoelectric elements 7a to 7d and the resonance frequency of the mirror unit 2 are set to the same level even when heat or distortion occurs in the mirror device 30 due to the driving or driving environment of the mirror device 30. Can be maintained.
 第2接続部35は、第1接続部3の第1方向(X軸方向)の延長線上において一端が第1梁部4に接続され上記第1方向に延びている。また、第2接続部35は、電圧を印加することで変形可能な構造である。このような構造としては、図10および図11に示すように、第2接続部35の本体の表面(図10では上面)に圧電素子38a、38bを設けた構造であってもよい。圧電素子38a、38bは、例えば圧電膜に電極を設けたものが挙げられる。この電極を介して圧電膜に電圧を印加することによって圧電膜に歪みを生じさせ、その結果、第2接続部35の全体を変形させることが可能となる。なお、第2接続部35の本体の形状は、ミラーデバイス10で用いた第2接続部5と同様の形状とすることができる。 The second connection part 35 has one end connected to the first beam part 4 on the extension line in the first direction (X-axis direction) of the first connection part 3 and extends in the first direction. Moreover, the 2nd connection part 35 is a structure which can be deform | transformed by applying a voltage. As such a structure, as shown in FIGS. 10 and 11, piezoelectric elements 38 a and 38 b may be provided on the surface of the main body of the second connection portion 35 (upper surface in FIG. 10). Examples of the piezoelectric elements 38a and 38b include a piezoelectric film provided with electrodes. By applying a voltage to the piezoelectric film via this electrode, the piezoelectric film is distorted, and as a result, the entire second connecting portion 35 can be deformed. In addition, the shape of the main body of the 2nd connection part 35 can be made into the same shape as the 2nd connection part 5 used with the mirror device 10. FIG.
 第2梁部36は、固定部1および第2接続部35を接続するとともに第1方向(X軸方向)に対して交差するように延びている。なお、第2梁部36の形状は、ミラーデバイス10で用いた第2梁部6の本体と同様の形状とすることができる。この第2梁部36の表面にさらに圧電素子を設けてもよい。この場合、圧電素子7a~7dに印加する駆動周波数とミラー部2との共振周波数とを、さらに良好に同程度に維持することができる。 The second beam portion 36 connects the fixed portion 1 and the second connection portion 35 and extends so as to intersect the first direction (X-axis direction). The shape of the second beam portion 36 can be the same as that of the main body of the second beam portion 6 used in the mirror device 10. A piezoelectric element may be further provided on the surface of the second beam portion 36. In this case, the driving frequency applied to the piezoelectric elements 7a to 7d and the resonance frequency of the mirror unit 2 can be maintained at the same level.
 <第4実施形態の光走査装置>
 光走査装置の変形例として、第4実施形態の光走査装置を以下に示す。第4実施形態の光走査装置は、ミラーデバイス10に代えて図12~図13に示すミラーデバイス40を用いている点で第1実施形態の光走査装置と異なっている。
<Optical Scanning Device of Fourth Embodiment>
As a modification of the optical scanning device, an optical scanning device according to a fourth embodiment is shown below. The optical scanning apparatus according to the fourth embodiment is different from the optical scanning apparatus according to the first embodiment in that a mirror device 40 shown in FIGS.
 図12は、第4実施形態の光走査装置におけるミラーデバイス40の平面図である。また、図13は図12のV-V線におけるミラーデバイス40の断面図である。ミラーデバイス40において図2~図4に示したミラーデバイス10、図7~図8に示したミラーデバイス20および図10~図11に示したミラーデバイス30と同じ構成のものには同じ符号を付しており、詳細な説明は省略する。 FIG. 12 is a plan view of the mirror device 40 in the optical scanning device of the fourth embodiment. FIG. 13 is a cross-sectional view of the mirror device 40 taken along the line VV in FIG. The mirror device 40 having the same configuration as that of the mirror device 10 shown in FIGS. 2 to 4, the mirror device 20 shown in FIGS. 7 to 8, and the mirror device 30 shown in FIGS. Therefore, detailed description is omitted.
 ミラーデバイス40は、ミラーデバイス10において、さらに第2接続部45を具備している。この第2接続部45は、第2接続部45が第1梁部4と固定部1とを接続しているとともに、第2接続部45が電圧を印加することで変形可能となっている点でミラーデバイス10と異なっている。図12および図13の例では、圧電素子48a、48bが第2接続部45の本体の表面に設けられている。 The mirror device 40 is further provided with a second connection unit 45 in the mirror device 10. The second connection portion 45 is configured such that the second connection portion 45 connects the first beam portion 4 and the fixed portion 1 and the second connection portion 45 can be deformed by applying a voltage. This is different from the mirror device 10. In the example of FIGS. 12 and 13, the piezoelectric elements 48 a and 48 b are provided on the surface of the main body of the second connection portion 45.
 このような構成によって、ミラー部2および第1接続部3の共振周波数を変更することが可能となり、ミラーデバイス40の精度を高く維持することができる。つまり、第2接続部45を変形させることで、ミラー部2および第1接続部3に対して引張応力や圧縮応力を加えて第1接続部3の剛性を変えることができ、ミラー部2および第1接続部3の共振周波数を制御することが可能となる。その結果、ミラーデバイス40の駆動時や駆動環境によって、ミラーデバイス40に熱や歪みが発生した場合でも、圧電素子7a~7dに印加する駆動周波数とミラー部2との共振周波数とを同程度に維持することができる。 Such a configuration makes it possible to change the resonance frequency of the mirror unit 2 and the first connection unit 3 and maintain the accuracy of the mirror device 40 high. That is, by deforming the second connecting portion 45, it is possible to change the rigidity of the first connecting portion 3 by applying tensile stress or compressive stress to the mirror portion 2 and the first connecting portion 3, It becomes possible to control the resonance frequency of the first connection portion 3. As a result, the drive frequency applied to the piezoelectric elements 7a to 7d and the resonance frequency of the mirror unit 2 are set to the same level even when heat or distortion occurs in the mirror device 40 due to the driving or driving environment of the mirror device 40. Can be maintained.
 第2接続部45は、第1接続部3の第1方向(X軸方向)の延長線上において一端が第1梁部4に接続され上記第1方向に延びている。また、第2接続部45は、電圧を印加することで変形可能な構造である。このような構造としては、図12および図13に示すように、第2接続部45の本体の表面(図12では上面)に圧電素子48a、48bを設けた構造であってもよい。圧電素子48a、48bは、例えば圧電膜に電極を設けたものが挙げられる。この電極を介して圧電膜に電圧を印加することによって圧電膜に歪みを生じさせ、その結果、第2接続部45の全体を変形させることが可能となる。なお、第2接続部45の本体の形状は、ミラーデバイス10で用いた第2接続部5と同様の形状とすることができる。 The second connection portion 45 has one end connected to the first beam portion 4 on the extension line in the first direction (X-axis direction) of the first connection portion 3 and extends in the first direction. Moreover, the 2nd connection part 45 is a structure which can be deform | transformed by applying a voltage. As such a structure, as shown in FIGS. 12 and 13, piezoelectric elements 48 a and 48 b may be provided on the surface (the upper surface in FIG. 12) of the main body of the second connection portion 45. Examples of the piezoelectric elements 48a and 48b include a piezoelectric film provided with electrodes. By applying a voltage to the piezoelectric film through this electrode, the piezoelectric film is distorted, and as a result, the entire second connection portion 45 can be deformed. In addition, the shape of the main body of the 2nd connection part 45 can be made into the same shape as the 2nd connection part 5 used with the mirror device 10. FIG.
 本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良などが可能である。例えば、上記のミラーデバイス10、20、30、40のいずれにおいても、第2接続部25、35、45の剛性は第1接続部3の剛性よりも高くてもよい。その場合、ミラー部2および第1接続部3の共振周波数の制御をより効率よく行なうことができ、より低電圧動作が可能となる。 The present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the gist of the present invention. For example, in any of the above mirror devices 10, 20, 30, 40, the rigidity of the second connection parts 25, 35, 45 may be higher than the rigidity of the first connection part 3. In this case, the resonance frequency of the mirror unit 2 and the first connection unit 3 can be controlled more efficiently, and a lower voltage operation is possible.
 第2接続部25、35、45の剛性を第1接続部3の剛性よりも高くする方法としては、例えば第2接続部25、35、45として第1接続部3よりも高弾性率の材料を用いてもよい。あるいは、第1接続部3よりも第2接続部25、35、45のY軸方向の太さを太くしてもよい。あるいは、第1接続部3よりも第2接続部25、35、45のZ軸方向の厚さを厚くしてもよい。 As a method for making the rigidity of the second connection parts 25, 35, 45 higher than the rigidity of the first connection part 3, for example, the second connection parts 25, 35, 45 have a higher elastic modulus than the first connection part 3. May be used. Alternatively, the thickness of the second connection parts 25, 35, 45 in the Y-axis direction may be made larger than that of the first connection part 3. Alternatively, the thickness of the second connection parts 25, 35, 45 in the Z-axis direction may be made larger than that of the first connection part 3.
 本開示の各種光走査装置は、画像表示装置、画像認識装置、または計測装置等に適用可能である。具体的には、本開示の各種光走査装置は、例えば、複写機、プリンタ、スキャナ、プロジェクタまたはレーザレーダ装置等に用いられる。 The various optical scanning devices of the present disclosure can be applied to an image display device, an image recognition device, a measurement device, or the like. Specifically, the various optical scanning devices of the present disclosure are used in, for example, a copying machine, a printer, a scanner, a projector, or a laser radar device.
1:固定部
2:ミラー部
3:第1接続部
4:第1梁部
25、35、45:第2接続部
26、36:第2梁部
10、20、30、40:ミラーデバイス
100:回転部
200:光出射部
300:光走査装置
1: fixed part 2: mirror part 3: first connecting part 4: first beam parts 25, 35, 45: second connecting part 26, 36: second beam parts 10, 20, 30, 40: mirror device 100: Rotating unit 200: Light emitting unit 300: Optical scanning device

Claims (7)

  1.  第1軸を回転軸として回転する回転部と、
    該回転部の表面に位置しており、前記第1軸と交差するとともに前記第1軸との成す角度を変えることが可能な光反射面を有するミラーデバイスと、
    前記光反射面に向けて光を出射する光出射部と
    を具備する光走査装置。
    A rotating part that rotates about a first axis as a rotation axis;
    A mirror device having a light reflecting surface that is located on the surface of the rotating portion and intersects the first axis and is capable of changing an angle formed with the first axis;
    An optical scanning device comprising: a light emitting unit that emits light toward the light reflecting surface.
  2.  前記ミラーデバイスは、
    前記回転部に固定された固定部と、
    主面に前記光反射面を有するミラー部と、
    一端が前記ミラー部に接続され第1方向に延びる第1接続部と、
    前記固定部および前記第1接続部を接続するとともに前記第1方向に対して交差するように延びており、電圧を印加することで変形可能な第1梁部と
    を具備する、請求項1に記載の光走査装置。
    The mirror device is
    A fixed part fixed to the rotating part;
    A mirror portion having the light reflecting surface on the main surface;
    A first connection portion having one end connected to the mirror portion and extending in a first direction;
    The first beam portion connecting the fixed portion and the first connection portion and extending so as to intersect the first direction and deformable by applying a voltage is provided. The optical scanning device described.
  3.  前記ミラーデバイスは、
    前記第1接続部の延長線上において一端が前記第1梁部に接続され前記第1方向に延びる第2接続部と、
    前記固定部および前記第2接続部を接続するとともに前記第1方向に対して交差するように延びており、電圧を印加することで変形可能な第2梁部と
    をさらに具備する、請求項2に記載の光走査装置。
    The mirror device is
    A second connection portion having one end connected to the first beam portion and extending in the first direction on an extension line of the first connection portion;
    A second beam portion connecting the fixing portion and the second connection portion and extending so as to intersect the first direction and deformable by applying a voltage is further provided. The optical scanning device according to 1.
  4.  前記ミラーデバイスは、
    前記第1接続部の延長線上において一端が前記第1梁部に接続され前記第1方向に延びており、電圧を印加することで変形可能な第2接続部と、
    前記固定部および前記第2接続部を接続するとともに前記第1方向に対して交差するように延びる第2梁部と
    をさらに具備する、請求項2に記載の光走査装置。
    The mirror device is
    One end of the first connection portion on the extension line is connected to the first beam portion and extends in the first direction. The second connection portion can be deformed by applying a voltage;
    The optical scanning device according to claim 2, further comprising: a second beam portion that connects the fixing portion and the second connection portion and extends so as to intersect the first direction.
  5.  前記ミラーデバイスは、
    前記第1接続部の延長線上において前記第1方向に延びており、前記固定部および前記第1梁部を接続する、電圧を印加することで変形可能な第2接続部をさらに具備する、請求項2に記載の光走査装置。
    The mirror device is
    And a second connection portion extending in the first direction on an extension line of the first connection portion, connecting the fixed portion and the first beam portion, and deformable by applying a voltage. Item 3. The optical scanning device according to Item 2.
  6.  前記第2接続部は前記第1接続部よりも剛性が高い、請求項3乃至5のいずれかに記載の光走査装置。 6. The optical scanning device according to claim 3, wherein the second connection portion has higher rigidity than the first connection portion.
  7.  前記第2接続部は前記第1接続部よりも前記第1方向に垂直な断面における断面積が大きい、請求項6に記載の光走査装置。 The optical scanning device according to claim 6, wherein the second connection portion has a larger cross-sectional area in a cross section perpendicular to the first direction than the first connection portion.
PCT/JP2016/081326 2015-10-22 2016-10-21 Optical scanning device WO2017069263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015207867 2015-10-22
JP2015-207867 2015-10-22

Publications (1)

Publication Number Publication Date
WO2017069263A1 true WO2017069263A1 (en) 2017-04-27

Family

ID=58557097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081326 WO2017069263A1 (en) 2015-10-22 2016-10-21 Optical scanning device

Country Status (1)

Country Link
WO (1) WO2017069263A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004276A (en) * 2002-05-31 2004-01-08 Nippon Signal Co Ltd:The Two-dimensional optical scanner
JP2008257226A (en) * 2007-03-15 2008-10-23 Ricoh Co Ltd Optical deflector and optical device
JP2010204142A (en) * 2009-02-27 2010-09-16 Ricoh Co Ltd Optical deflector, optical scanner and image forming apparatus
WO2011058884A1 (en) * 2009-11-16 2011-05-19 日本電気株式会社 Optical scanning device
JP4688226B2 (en) * 2004-10-27 2011-05-25 マイクロビジョン, インコーポレイテッド Inertial drive scanning apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004276A (en) * 2002-05-31 2004-01-08 Nippon Signal Co Ltd:The Two-dimensional optical scanner
JP4688226B2 (en) * 2004-10-27 2011-05-25 マイクロビジョン, インコーポレイテッド Inertial drive scanning apparatus and method
JP2008257226A (en) * 2007-03-15 2008-10-23 Ricoh Co Ltd Optical deflector and optical device
JP2010204142A (en) * 2009-02-27 2010-09-16 Ricoh Co Ltd Optical deflector, optical scanner and image forming apparatus
WO2011058884A1 (en) * 2009-11-16 2011-05-19 日本電気株式会社 Optical scanning device

Similar Documents

Publication Publication Date Title
US7515323B2 (en) Actuator, optical scanner and image forming apparatus
JP5944876B2 (en) Distance measuring device using laser light
US9134115B2 (en) Vibrating mirror element, distance measuring apparatus, and projector
US11750779B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
JP6278180B2 (en) Optical scanning device, image display device, and moving body
US10831024B2 (en) Optical scanning apparatus, image projecting apparatus, and mobile object
JP2008295174A (en) Oscillation device, light scanner using the device, image display device, and control method of oscillation device
JP2018022003A (en) Optical deflector, optical scanner, image projection device, image forming apparatus, and movable body
US11644664B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
US20190285906A1 (en) Image projection apparatus and movable body
JP2010266508A (en) Two-dimensional scanning optical scanner and image forming apparatus equipped with the same
JP2008111882A (en) Actuator, optical scanner and image forming apparatus
JP2007292918A (en) Optical scanner
WO2017069263A1 (en) Optical scanning device
JP2020101588A (en) Movable device, distance measuring device, image projection device, vehicle, and seating
JP2006224142A (en) Laser scanner and laser marking apparatus, and laser marking method
US11971537B2 (en) Light deflection device, distance measurement device, and mobile body
US11137595B2 (en) Light deflection device, image projector, laser head lamp, and mobile object
JP7338403B2 (en) Optical deflectors, image projection devices, head-up displays, laser headlamps, head-mounted displays, object recognition devices, and vehicles
JP6476296B2 (en) Mirror device
US11513341B2 (en) Microelectromechanical (MEMS) scanners for scanning laser devices
US11815627B2 (en) Mirror assembly for light steering with reduced finger thickness
JP6369357B2 (en) Scanning device
JP6732651B2 (en) Mirror device and optical scanning device
US20240027746A1 (en) Movable device, projection apparatus, head-up display, laser headlamp, head-mounted display, and object recognition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP