WO2017069109A1 - Polyarylene sulfide resin composition, molded product, and methods for producing said composition and product - Google Patents

Polyarylene sulfide resin composition, molded product, and methods for producing said composition and product Download PDF

Info

Publication number
WO2017069109A1
WO2017069109A1 PCT/JP2016/080801 JP2016080801W WO2017069109A1 WO 2017069109 A1 WO2017069109 A1 WO 2017069109A1 JP 2016080801 W JP2016080801 W JP 2016080801W WO 2017069109 A1 WO2017069109 A1 WO 2017069109A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
sulfide resin
resin
thioether
group
Prior art date
Application number
PCT/JP2016/080801
Other languages
French (fr)
Japanese (ja)
Inventor
早織 奈良
新也 宜保
井上 敏
高志 古沢
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2017546546A priority Critical patent/JPWO2017069109A1/en
Publication of WO2017069109A1 publication Critical patent/WO2017069109A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a polyarylene sulfide resin composition that can be molded under low temperature conditions and has excellent heat resistance.
  • Polyarylene sulfide resins are used in various applications such as electrical / electronic equipment parts and automobile parts, taking advantage of their excellent heat resistance and chemical resistance.
  • Various melt processing methods such as injection molding, extrusion molding, compression molding, blow molding and the like are used for molding thermoplastic resins such as polyarylene sulfide resins. It is widely used as a molding method suitable for mass production. In the injection molding method, the resin is heated to a temperature equal to or higher than the melting point to improve fluidity, and this is injected and filled into a mold heated to an appropriate temperature, cooled and solidified to obtain a molded product.
  • the appropriate mold temperature is relatively high, about 130 to 180 ° C, so the energy and time required to reheat the mold during the molding cycle greatly affect production efficiency. Therefore, it has been desired to develop a polyarylene sulfide resin that can be molded at a lower mold temperature.
  • the problem to be solved by the present invention is to provide a polyarylene sulfide resin composition that can be molded under a low temperature condition and also excellent in heat resistance, a molded product thereof, and a method for producing them.
  • the present inventors have found that in the arylene sulfide structure of the polyarylene sulfide resin, the bonding point of the arylene group is in the para position and the bonding point of the arylene group is in the para position.
  • the polyarylene sulfide resin composition obtained by melt-kneading two types of resin having both a site and a meta-position site is excellent in heat resistance while being moldable under low temperature conditions.
  • the headline and the present invention were completed.
  • the present invention is a polyarylene sulfide resin having an arylene thioether as a repeating unit, wherein the thioether and the arylene group have a para-bonding point (A), A polyarylene sulfide resin having an arylene thioether as a repeating unit, which has both a structural site (p) where the bonding point of the thioether and the arylene group is bonded at the para position and a structural site (m) bonded at the meta position. And a polyarylene sulfide resin composition comprising a resin (B).
  • the present invention is a polyarylene sulfide resin having an arylene thioether as a repeating unit, the resin (A) in which the bonding point of the thioether and the arylene group is para-position, A polyarylene sulfide resin having an arylene thioether as a repeating unit, which has both a structural site (p) where the bonding point of the thioether and the arylene group is bonded at the para position and a structural site (m) bonded at the meta position.
  • the present invention relates to a method for producing a polyarylene sulfide resin composition in which a resin (B) is melt-kneaded in a temperature range equal to or higher than the melting point of the resin (A).
  • the present invention relates to a molded article comprising the polyarylene sulfide resin composition.
  • the present invention provides a method for producing a molded article comprising a step of molding the polyarylene sulfide resin composition in a mold, wherein the mold temperature is in the range of 40 to 180 ° C. It relates to a manufacturing method.
  • the polyarylene sulfide resin composition of the present invention is a polyarylene sulfide resin having an arylene thioether as a repeating unit, the resin (A) in which the bonding point between the thioether and the arylene group is para-position, A polyarylene sulfide resin having an arylene thioether as a repeating unit, which has both a structural site (p) where the bonding point of the thioether and the arylene group is bonded at the para position and a structural site (m) bonded at the meta position.
  • Resin (B) is a polyarylene sulfide resin having an arylene thioether as a repeating unit, the resin (A) in which the bonding point between the thioether and the arylene group is para-position, A polyarylene sulfide resin having an arylene thioether as a repeating unit, which has both a structural site (p) where the bonding point of the thi
  • the polyarylene sulfide resin composition of the present invention has the following structural formula (X)
  • R 1 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and k is an integer of 1 to 4.
  • the resin (A) is a polyarylene sulfide resin having an arylene thioether as a repeating unit, and the bonding point between the thioether and the arylene group is a para-position.
  • the arylene thioether may have a substituent, and in this case, the substituent may be substituted with 1 to 4 hydrogen atoms bonded to the carbon atom of the arylene group. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group.
  • the resin (A) has the structural moiety (x) represented by the structural formula (X) as a repeating unit, and the bonding point between the thioether and the arylene group in the structural moiety (x) is a parasite. It is rank. Specifically, it is a polyarylene sulfide resin having a structural site (p) represented by the following structural formula (X1) as a repeating unit.
  • R 1 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and k is an integer of 1 to 4.
  • R 1 in the formula (X1) in the resin (A) is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group.
  • k is an integer of 2 or more
  • a plurality of R 1 present in the formula may be the same structural site, or may be different structural sites.
  • R 1 is preferably a hydrogen atom.
  • R 2 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and r is an integer of 1 to 4.
  • the resin (A) When the resin (A) has the structural site (y) in addition to the structural site (p), it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength. ) And the structural part (y), the proportion of the structural part (y) is preferably 30 mol% or less. Moreover, when the said resin (A) has the said structure site
  • the resin (A) includes, in addition to the structural sites (p) and (y), a branched structural site represented by the following structural formula (Z) and a naphthyl sulfide represented by the following structural formula (V). It may have a structural part.
  • the resin (A) When the resin (A) has these structural sites, it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength, so that the total of the structural site (p) and the structural site (y). However, it is preferably 3 mol% or less, particularly preferably 1 mol% or less.
  • R 3 and R 4 are each independently any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group; An integer of 6 and t is an integer of 1 to 3. ]
  • the melting point (Tm) of the resin (A) is preferably in the range of 270 to 300 ° C. because it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength.
  • the recrystallization temperature (Tc2) of the resin (A) is preferably in the range of 210 to 260 ° C. because it is a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength.
  • the difference ⁇ T between the melting point (Tm) of the resin (A) and the recrystallization temperature (Tc2) is a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength.
  • the range is preferable, and the range of 35 to 55 ° C. is more preferable.
  • the melt viscosity (V6) measured at 300 ° C. of the resin (A) is preferably in the range of 2 to 1000 [Pa ⁇ s] because the balance between fluidity and mechanical strength is good. A range of 500 [Pa ⁇ s] is more preferable, and a range of 2 to 200 [Pa ⁇ s] is particularly preferable.
  • the non-Newtonian index of the resin (A) is not particularly limited as long as the effect of the present invention is not impaired, but is preferably in the range of 0.90 to 2.00, and is preferably in the range of 0.90 to 1.50. More preferably, the range is 0.95 to 1.20.
  • the shear stress (SS) were measured and calculated using the following formula. The closer the non-Newtonian index (N value) is to 1, the closer it is to a linear structure, and the higher the non-Newtonian index (N value), the more branched the structure is.
  • SR is the shear rate (second ⁇ 1 )
  • SS is the shear stress (dyne / cm 2 )
  • K is a constant.
  • the resin (A) can be produced by an ordinary method for producing a polyarylene sulfide resin, specifically, a dihalogenoaromatic compound, and if necessary, a polyhalogenoaromatic compound or other copolymer component.
  • a method of polymerizing in the presence of (Method 2), a method of self-condensing p-chlorothiophenol and other copolymerization components as necessary (Method 3), and the like is versatile and preferable.
  • an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added for the purpose of adjusting the degree of polymerization during the reaction.
  • hydrous sulfidation is performed on a mixture containing at least a heated organic polar solvent and an essential raw material dihalogenoaromatic compound as necessary, and a polyhalogenoaromatic compound as an optional raw material.
  • the agent is sequentially added and reacted at a rate at which water can be removed from the reaction mixture, and the amount of water in the reaction system is controlled to be in the range of 0.02 to 0.5 mol with respect to 1 mol of the organic polar solvent.
  • Examples of the dihalogenoaromatic compound and polyhalogenoaromatic compound used as a raw material for the resin (A) include p-dihalobenzene and 4,4′-dihalodiphenyl as essential raw materials for introducing the structural moiety (p) into the resin. From the group consisting of sulfide, 2,5-dihalotoluene, 2,5-dihaloanisole, 2,5-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,5-dihaloaniline, 2,5-dihalobiphenyl, etc.
  • One or more dihalogenoaromatic compounds selected may be mentioned, and optional raw materials used as necessary include p, p′-dihalodiphenyl ether, 4,4′-dihalobenzophenone, bis (4-halophenyl) methane, 4,4 '-Dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalobiphenyl, 1,4- Halonaphthalene, 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1,2,4,5-
  • One or more polyhalogeno aromatic compounds selected from the group consisting of tetrahalobenzene, 1,4,6-trihalonaphthalene and the like can be mentioned. These may be used alone or in combination of two or more.
  • the halogen atom contained in each compound is preferably a chlorine atom or a bromine atom.
  • the post-treatment method of the reaction mixture containing the resin (A) obtained by each of the production methods is not particularly limited.
  • an acid or a base may be added to the reaction mixture after completion of the polymerization reaction as necessary.
  • the solid after distilling off the solvent is one or more with water, the solvent used during the polymerization reaction, other organic solvents such as acetone, methyl ethyl ketone, alcohol compounds, etc.
  • a method of washing twice, further neutralizing, washing with water, filtering and drying (Method 1), and the reaction mixture after completion of the polymerization reaction is added to water, acetone, methyl ethyl ketone, alcohol compound, ether compound, halogenated hydrocarbon, aromatic hydrocarbon , Precipitating solvents such as aliphatic hydrocarbons (solvents that are soluble in the solvent used during the polymerization reaction and that are poor solvents for at least polyarylene sulfide)
  • a method for precipitating solid products such as polyarylene sulfide and inorganic salts, filtering them, washing and drying (Method 2), and for the reaction mixture after completion of the polymerization reaction, was used during the polymerization reaction After adding a solvent (or an organic solvent having an equivalent solubility with respect to a low molecular weight polymer), stirring and filtering to remove the low molecular weight polymer, once with a solvent such as water, acetone, methyl ethyl
  • a method of washing several times, further neutralizing, washing with water, filtering and drying (Method 3), a method of adding water and, if necessary, an acid to the reaction mixture after completion of the polymerization reaction, and filtering and washing the washed product (Method 4)
  • a method of filtering the reaction mixture, washing with a reaction solvent one or more times as necessary, further washing with water, filtering and drying (Method 5) and the like can be mentioned.
  • the polyarylene sulfide resin may be dried in a vacuum, or in an inert gas atmosphere such as air or nitrogen. .
  • the resin (A) thus obtained has a molecular end that is a carboxyl group or an alkali metal carboxylate.
  • the resin (B) is a polyarylene sulfide resin having an arylene thioether as a repeating unit, and a structural site (p) in which the bonding point of the thioether and the arylene group is bonded at the para position, and a structural site ( m).
  • the arylene thioether may have a substituent, and in this case, the substituent may be substituted with 1 to 4 hydrogen atoms bonded to the carbon atom of the arylene group. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group.
  • the resin (B) has the structural site (x) represented by the structural formula (X) as a repeating unit, and the bonding point between the thioether and the arylene group in the structural site (x) is a parasite. It has both a structural site (p) that is a position and a structural site (m) that is a meta position.
  • a polyarylene sulfide resin having as a repeating unit both a structural moiety (p) represented by the following structural formula (X1) and a structural moiety (m) represented by the following structural formula (X2). is there.
  • R 1 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and k is an integer of 1 to 4.
  • the molar ratio [(p) / (m)] of the structural part (p) and the structural part (m) of the resin (B) can be molded under low temperature conditions, but also has good heat resistance.
  • it is preferably in the range of 99/1 to 60/40, more preferably in the range of 95/5 to 75/25.
  • R 1 in the formulas (X1) and (X2) in the resin (B) is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group. It is.
  • k is an integer of 2 or more
  • a plurality of R 1 present in the formula may be the same structural site, or may be different structural sites.
  • R 1 is preferably a hydrogen atom.
  • the resin (B) has a structural site (y) represented by any of the following structural formulas (Y1) to (Y6) in addition to the structural site (p) and the structural formula (m). Also good.
  • R 2 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and r is an integer of 1 to 4.
  • the structural part (p) When the resin (B) has the structural part (y), since it becomes a polyarylene sulfide resin composition having excellent heat resistance while being moldable under low temperature conditions, the structural part (p), It is preferable that the ratio of the structural site (y) to the total of (m) and (y) is 30 mol% or less. Moreover, when the said resin (B) has the said structure site
  • the resin (B) is represented by the structural site (p), (m), (y), a branched structural site represented by the following structural formula (Z), or the following structural formula (V). It may have a naphthyl sulfide structure site.
  • the structural sites (p), (m ) And (y), preferably 3 mol% or less, particularly preferably 1 mol% or less.
  • R 3 and R 4 are each independently any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group; An integer of 6 and t is an integer of 1 to 3. ]
  • the melting point (Tm) of the resin (B) is preferably 200 ° C. or higher because it becomes a polyarylene sulfide resin composition that can be molded under low temperature conditions and is also excellent in heat resistance. A range of 280 ° C. is more preferable.
  • the recrystallization temperature (Tc2) of the resin (B) is 200 ° C. or lower because it becomes a polyarylene sulfide resin composition having excellent heat resistance while being moldable under low temperature conditions. The temperature is preferably in the range of 130 to 160 ° C.
  • the difference ⁇ T between the melting point (Tm) of the resin (B) and the recrystallization temperature (Tc2) is 20 ° C. or higher because it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength.
  • the temperature is preferably in the range of 50 to 100 ° C.
  • the melt viscosity (V6) measured at 300 ° C. of the resin (B) is preferably in the range of 2 to 1000 [Pa ⁇ s] because the balance between fluidity and mechanical strength is good.
  • a range of 500 [Pa ⁇ s] is more preferable, and a range of 2 to 200 [Pa ⁇ s] is particularly preferable.
  • the non-Newtonian index of the resin (B) is not particularly limited as long as the effect of the present invention is not impaired, but is preferably in the range of 0.90 to 2.00, and is preferably in the range of 0.90 to 1.50. More preferably, the range is 0.95 to 1.20.
  • the resin (B) can be produced by the same method as the resin (A) described above.
  • Examples of the dihalogenoaromatic compound and polyhalogenoaromatic compound used as the raw material for the resin (B) include p-dihalobenzene and 4,4′-dihalodiphenyl as essential raw materials for introducing the structural moiety (p) into the resin. From the group consisting of sulfide, 2,5-dihalotoluene, 2,5-dihaloanisole, 2,5-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,5-dihaloaniline, 2,5-dihalobiphenyl, etc.
  • Poriharogeno aromatic least one compound which can be cited. These may be used alone or in combination of two or more.
  • the halogen atom contained in each compound is preferably a chlorine atom or a bromine atom.
  • the mass ratio of the component for introducing the structural site (p) and the component for introducing the structural site (m) is the same as that of the resin (B) described above. According to the molar ratio [(p) / (m)] between the structural site (p) and the structural site (m).
  • the resin (B) thus obtained has a molecular end that is a carboxyl group or an alkali metal carboxylate.
  • the polyarylene sulfide resin composition of the present invention is a melt-kneaded product obtained by melt-kneading the resin (A) and the resin (B).
  • the blending mass ratio [(A) / (B)] of the resin (A) and the resin (B) at this time is a polyarylene sulfide resin that can be molded under low temperature conditions and has excellent heat resistance.
  • the range is preferably from 95/5 to 40/60, more preferably from 90/10 to 70/30, because it is a composition.
  • the melting point (Tm) is 270 ° C. or more and the recrystallization temperature (Tc 2) is 210 ° C. or less. preferable. Further, it is particularly preferable that the melting point (Tm) is in the range of 270 ° C. to 290 ° C. and the recrystallization temperature (Tc 2) is in the range of 180 to 210 ° C. Further, the difference ⁇ T between the melting point (Tm) and the recrystallization temperature (Tc2) is preferably 70 ° C. or more, particularly preferably in the range of 70 to 90 ° C.
  • the melt viscosity (V6) measured at 300 ° C. of the polyarylene sulfide resin composition of the present invention is in the range of 2 to 1000 [Pa ⁇ s] because the balance between fluidity and mechanical strength is good.
  • the range is preferably 2 to 500 [Pa ⁇ s], more preferably 2 to 200 [Pa ⁇ s].
  • the non-Newtonian index of the polyarylene sulfide resin composition of the present invention is not particularly limited as long as the effects of the present invention are not impaired, but is preferably in the range of 0.90 to 2.00, preferably 0.90 to 1.50. Is more preferable, and a range of 0.95 to 1.20 is particularly preferable.
  • the polyarylene sulfide resin composition of the present invention includes a filler, a silane coupling agent, other resins, a colorant, a heat stabilizer, an ultraviolet stabilizer, and a foaming agent.
  • a rust inhibitor, a flame retardant, and a lubricant may be contained.
  • the filler may be in any shape such as fibrous, granular, plate-like, specifically, glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, Fibrous fillers such as fibers such as calcium sulfate and calcium silicate, natural fibers such as wollastonite, glass beads, glass flakes, barium sulfate, calcium sulfate, clay, pyrophyllite, bentonite, sericite, zeolite, mica And non-fibrous fillers such as mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, and glass beads. These may be used alone or in combination of two or more.
  • silane coupling agent examples include epoxy group-containing alkoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • the other resins include polyester resins, polyamide resins, polyimide resins, polyetherimide resins, polycarbonate resins, polyphenylene ether resins, polysulfone resins, polyether sulfone resins, polyether ether ketone resins, polyether ketone resins, poly Arylene resin, polyolefin resin, polypropylene resin, polytetrafluoroethylene resin, polydifluoroethylene resin, polystyrene resin, ABS resin, phenol resin, urethane resin, liquid crystal polymer, silicone resin, or other synthetic resin, or fluorine rubber And other elastomers.
  • the method for producing the polyarylene sulfide resin composition of the present invention is not particularly limited.
  • the resin (A), the resin (B) as a raw material, and the other components described above as necessary are mixed with powder, beret, fine powder.
  • a known melt kneader such as a Banbury mixer mixing roll, a single or twin screw extruder, and a knee.
  • a temperature range in which the resin temperature is equal to or higher than the melting point of the polyarylene sulfide resin composition preferably The temperature range of melting point + 10 ° C. or more, more preferably the temperature range of melting point + 10 ° C. to melting point + 100 ° C., more preferably And a method of melt-kneading at a temperature range of a point + 20 ⁇ mp + 50 ° C..
  • a typical method is melt-kneading using a single-screw or twin-screw extruder having a sufficient kneading force.
  • the polyarylene sulfide resin composition of the present invention can be used for various moldings such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, pultrusion molding, blow molding, and transfer molding. Especially, it can use suitably for an injection molding application taking advantage of the effect of this invention which can be fabricated under low temperature conditions.
  • the various conditions for molding the polyarylene sulfide resin composition of the present invention by injection molding are not particularly limited, and can be usually molded by a general method. Prior to molding, the appearance and mechanical properties of the molded product are improved by preliminary drying at a temperature of 100 to 150 ° C.
  • the cylinder temperature may be a temperature equal to or higher than the melting point of the polyarylene sulfide resin composition, but is preferably 300 ° C. or higher in order to obtain sufficient fluidity.
  • the mold temperature is usually set in the range of 130 to 180 ° C. However, since the polyarylene sulfide resin composition of the present invention has excellent low-temperature moldability, even under relatively low temperature conditions of 130 ° C. or less.
  • the mold temperature is more preferably 120 ° C. or less, and preferably in the range of 40 to 120 ° C. Therefore, the polyarylene sulfide resin composition of the present invention can be molded by molding in a mold having a mold temperature in the range of 40 to 180 ° C, more preferably in the range of 40 to 120 ° C.
  • the molded product obtained by using the polyarylene sulfide resin composition of the present invention can be used for various applications by taking advantage of its excellent heat resistance, for example, a protective / support member for a box-shaped electrical / electronic component integrated module, Multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitor cases, optical pickups, oscillators, various terminal boards, transformers, plugs, printed boards, electronics Representative of circuit, LSI, IC, tuner, speaker, microphone, headphones, small motor, magnetic head base, power module, terminal block, semiconductor, liquid crystal, FDD carriage, FDD chassis, motor brush holder, parabolic antenna, computer related parts, etc.
  • Electricity / electricity Parts VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio / video equipment parts such as audio / laser discs / compact discs / DVD discs / Blu-ray discs, lighting parts, refrigerator parts , Air conditioner parts, typewriter parts, word processor parts, home appliances such as water heaters, bath water volume, water sensor parts such as temperature sensors, office computer parts, office computer parts, telephone equipment parts, facsimile Machine-related parts represented by related parts, copier-related parts, cleaning jigs, motor parts, writers, typewriters, etc .: Optical equipment represented by microscopes, binoculars, cameras, watches, etc., precision machine-related parts; Alternators Terminal, alternator connector, IC regulator , Potentiometer base for light diamond, relay block, inhibitor switch, various valves such as exhaust gas valve, fuel-related / exhaust / intake system pipes, air intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint,
  • melt viscosity (V6) at 300 ° C. of the polyarylene sulfide resin and the polyarylene sulfide resin composition was 300 ° C. under a load of 1.96 ⁇ using a flow tester “CFT-500D” manufactured by Shimadzu Corporation. It measured after hold
  • maintaining for 6 minutes on the conditions of 10 ⁇ 6 > Pa, L / D 10 (mm) / 1 (mm).
  • the melting point (Tm) or (Tm2), recrystallization temperature (Tc2), glass transition temperature (Tg), and melt crystallization temperature (Tmc) of the polyarylene sulfide resin and the polyarylene sulfide resin composition are resin or resin.
  • the composition was melted at 350 ° C. and then rapidly cooled to prepare an amorphous film. Approximately 4 mg was weighed from this film and measured using a differential scanning calorimeter (“DSC8500” manufactured by Perkin Elmer).
  • Production Example 1 Production of polyarylene sulfide resin (A-1) In a 150 liter autoclave equipped with a pressure gauge, a thermometer, a condenser blade connected to a condenser, and a bottom valve, a 14.148 kg of a 47.55 mass% sodium hydrogen sulfide aqueous solution, 9.541 kg of 48.8 mass% sodium hydroxide aqueous solution and 38.0 kg of N-methyl-2-pyrrolidone were charged. While stirring under a nitrogen stream, the temperature was raised to 209 ° C. to distill 12.150 kg of water (the amount of water remaining was 1.13 moles per mole of sodium hydrogen sulfide).
  • the autoclave was sealed and cooled to 180 ° C., and 17.464 kg of paradichlorobenzene and 16.0 kg of N-methyl-2-pyrrolidone were charged.
  • the liquid temperature was set to 150 ° C., and nitrogen gas was used to increase the gauge pressure to 0.1 MPa, and the temperature increase was started.
  • the temperature reached 260 ° C.
  • watering was started on the top of the autoclave, and the reaction was carried out at 260 ° C. for 2 hours while adjusting the liquid temperature so as not to decrease.
  • the maximum pressure during the reaction was 0.87 MPa.
  • the temperature was lowered and sprinkling cooling at the top of the autoclave was stopped.
  • the polyarylene sulfide resin (A-1) was obtained by drying at 120 ° C. for 15 hours using a hot air circulating dryer.
  • the resulting polyarylene sulfide resin (A-1) has a melting point (Tm) of 280 ° C., a recrystallization temperature (Tc2) of 231 ° C., a difference ⁇ T between them of 49 ° C. and a melt viscosity (V6) at 300 ° C. It was 52 Pa ⁇ s.
  • Production Example 2 Production of polyarylene sulfide resin (A-2) In a 150 liter autoclave equipped with a pressure gauge, a thermometer, a condenser blade connected to a condenser, and a bottom valve, a 14.148 kg of a 47.55 mass% sodium hydrogen sulfide aqueous solution, 9.474 kg of 48.7 mass% sodium hydroxide aqueous solution and 38.0 kg of N-methyl-2-pyrrolidone were charged. While stirring under a nitrogen stream, the temperature was raised to 209 ° C. to distill 12.150 kg of water (the amount of water remaining was 1.13 moles per mole of sodium hydrogen sulfide).
  • the autoclave was sealed and cooled to 180 ° C., and 17.129 kg of paradichlorobenzene and 16.0 kg of N-methyl-2-pyrrolidone were charged.
  • the liquid temperature was set to 150 ° C., and nitrogen gas was used to increase the gauge pressure to 0.1 MPa, and the temperature increase was started.
  • the maximum pressure during the reaction was 0.86 MPa.
  • the temperature was lowered and sprinkling cooling at the top of the autoclave was stopped.
  • the bottom valve was opened, and the reaction slurry was transferred to a 150 liter flat filter and filtered under pressure at 120 ° C.
  • the mixture was stirred at 150 ° C. under reduced pressure for 2 hours to distill off N-methyl-2-pyrrolidone.
  • the obtained cake was washed and filtered with 50 kg of warm water at 70 ° C., and further washed and filtered with 25 kg of warm water 7 times.
  • the resulting polyphenylene sulfide resin (A-2) has a melting point (Tm) of 279 ° C., a recrystallization temperature (Tc 2) of 238 ° C., a difference ⁇ T between them of 41 ° C. and a melt viscosity (V6) at 300 ° C. of 612 Pa. ⁇ It was s.
  • the amount of SMAB in the autoclave was 0.097 mol per mol of sulfur atoms present in the autoclave.
  • the theoretical dehydration amount is 27.921 g. Therefore, of the remaining water amount of 621 g in the autoclave, 401 g is N-methyl-2-pyrrolidone and water. It was consumed in the hydrolysis reaction with sodium oxide and was not present in the autoclave as water, and the remaining 220 g remained in the autoclave in the form of water or crystal water.
  • the amount of water in the autoclave was 0.053 mol per mol of sulfur atoms present in the autoclave.
  • the internal temperature was cooled to 160 ° C., a mixed solution of 25.0 g of 1,3,5-trichlorobenzene and 47.492 kg of N-methyl-2-pyrrolidone was charged, and the temperature was raised to 185 ° C.
  • the amount of water in the autoclave was 0.025 mol per mol of N-methyl-2-pyrrolidone charged in Step 2.
  • the gauge pressure reached 0.00 MPa
  • the valve connected to the rectifying column was opened, and the temperature was raised to an internal temperature of 200 ° C. over 1 hour. At this time, the cooling and the valve opening were controlled so that the rectification tower outlet temperature was 110 ° C. or lower.
  • the distilled vapor of paradichlorobenzene and water was condensed by a condenser and separated by a decanter, and paradichlorobenzene was returned to the autoclave.
  • the amount of distilled water was 179 g
  • the water content in the autoclave was 41 g
  • 0.005 mol per mol of N-methyl-2-pyrrolidone charged after dehydration and 0.010 mol per mol of sulfur atoms present in the autoclave. there were.
  • the amount of SMAB in the autoclave was 0.097 mol per mol of sulfur atoms present in the autoclave, as in dehydration.
  • the temperature was raised from an internal temperature of 200 ° C. to 230 ° C.
  • the resulting polyarylene sulfide resin (A-3) has a melting point (Tm) of 284 ° C., a recrystallization temperature (Tc2) of 245 ° C., a difference ⁇ T between them of 39 ° C., and a melt viscosity (V6) at 300 ° C. 505 Pa ⁇ s.
  • the temperature was increased by pressurizing to 1 kg / cm 2 G using nitrogen gas at a liquid temperature of 150 ° C. While stirring at a liquid temperature of 220 ° C. for 3 hours, an 80 ° C. refrigerant was passed through a coil wound around the outside of the upper part of the autoclave to cool it. Thereafter, the temperature was raised, and the mixture was stirred at a liquid temperature of 260 ° C. for 3 hours. Then, the temperature was lowered and cooling of the upper part of the autoclave was stopped. The upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping. The maximum pressure during the reaction was 8.91 kg / cm 2 G.
  • the obtained slurry was washed twice with warm water and filtered to obtain a filter cake containing about 50% by mass of water.
  • 60 kg of water and 100 g of acetic acid were added to the filter cake to re-slurry, stirred at 50 ° C. for 30 minutes, and then filtered again.
  • the pH of the slurry was 4.6.
  • the operation of adding 60 kg of water to the obtained filter cake and stirring for 30 minutes and then filtering again was repeated 5 times.
  • the obtained filter cake was dried in a hot air circulating dryer at 120 ° C. for 4.5 hours to obtain a white powdered polyarylene sulfide resin (B-1).
  • the resulting polyarylene sulfide resin (B-1) has a melting point (Tm) of 230 ° C., a recrystallization temperature (Tc 2) of 155 ° C., a difference ⁇ T between them of 75 ° C., and a melt viscosity (V6) at 300 ° C. It was 45 Pa ⁇ s.
  • the resulting polyarylene sulfide resin (B-2) has a melting point (Tm) of 249 ° C., a recrystallization temperature (Tc2) of 160 ° C., a difference ⁇ T between them of 89 ° C., and a melt viscosity (V6) at 300 ° C. 22 Pa ⁇ s.
  • a polyarylene sulfide resin (B-4) was obtained in the same manner as in Production Example 4.
  • the resulting polyarylene sulfide resin (B-4) has a melting point (Tm) of 212 ° C., a recrystallization temperature (Tc2) of 147 ° C., a difference ⁇ T between them of 65 ° C., and a melt viscosity (V6) at 300 ° C. It was 21 Pa ⁇ s.
  • a polyarylene sulfide resin (B-5) was obtained in the same manner as in Production Example 4.
  • the resulting polyarylene sulfide resin (B-5) had a melt viscosity (V6) at 300 ° C. of 31 Pa ⁇ s.
  • Example 1 After mixing 60 parts by mass of polyarylene sulfide resin (A-1) and 40 parts by mass of polyarylene sulfide resin (B-1) in a powder state, a small twin-screw extruder (“Compounder 15” manufactured by DSM Explorer) Kneading is performed at a kneading temperature of 320 ° C., a rotation speed of 250 rpm, and a residence time of 1 minute, and the melt is extruded in a strand form from a head attached to the small twin-screw extruder and cut into a length of 2 mm. The pellet of the polyarylene sulfide resin composition (1) was obtained.
  • a small twin-screw extruder (“Compounder 15” manufactured by DSM Explorer) Kneading is performed at a kneading temperature of 320 ° C., a rotation speed of 250 rpm, and a residence time of 1 minute, and the melt is extruded in a
  • the melting point (Tm) and recrystallization temperature (Tc2) of the polyarylene sulfide resin composition (1) were measured, and the difference ⁇ T between them was calculated.
  • the results are shown in Table 1. The higher the melting point (Tm), the lower the recrystallization temperature (Tc2), and the larger the ⁇ T, the better the low-temperature moldability and the better the heat resistance.
  • Burr generation test The pellet obtained above was melted at 320 ° C. with an injection molding machine (“SE75DU” manufactured by Sumitomo Heavy Industries, Ltd.), and a mold for molding Type-A dumbbell specimen (surface roughness of the mold surface).
  • SE75DU injection molding machine
  • Type-A dumbbell specimen surface roughness of the mold surface.
  • the burr length ( ⁇ m) was measured and evaluated. The results are shown in Table 2.
  • the average value of the total score of five people was calculated and evaluated according to the following criteria. The results are shown in Table 2.
  • the average value of total points is 0 points. Average value of total points is more than 0 to less than 1 point ... “ ⁇ ” Average value of total points is more than 1 to 2 points ... “ ⁇ ” The average value of the total points is more than 2 points.
  • the pellet obtained above was melted at 320 ° C. with an injection molding machine (“SE75DU” manufactured by Sumitomo Heavy Industries, Ltd.), and a mold for molding a Type-A dumbbell specimen (surface of the mold surface)
  • SE75DU injection molding machine
  • a Type-A dumbbell test piece was molded at a cylinder temperature of 320 ° C. and a mold temperature of 60 ° C. using a roughness Rz value of 30 ⁇ m.
  • the surface roughness (Rz value) of the obtained test piece was measured using a scanning probe microscope (“SPM-9600” manufactured by Keyence Corporation).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Provided are: a polyarylene sulfide resin composition capable of being molded under a low temperature condition and having excellent heat resistance; a molded product thereof; and methods for producing the composition and product. More specifically, provided are: a polyarylene sulfide resin composition characterized by containing a resin (A) which is a polyarylene sulfide resin having an arylene thioether as a repeating unit, and in which the bonding point between the thioether and the arylene group is at the para position, and a resin (B) which is a polyarylene sulfide resin having an arylene thioether as a repeating unit, and which has a structural site (p) and a structural site (m) where the bonding point between the thioether and the arylene group binds at the para position and the meta position, respectively; a molded product thereof; and methods for producing the composition and product.

Description

ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法Polyarylene sulfide resin composition, molded article, and production method thereof
 本発明は、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物に関する。 The present invention relates to a polyarylene sulfide resin composition that can be molded under low temperature conditions and has excellent heat resistance.
 ポリアリーレンスルフィド樹脂は、耐熱性や耐薬品性に優れる特徴を生かし、電気・電子機器部品や自動車部品等様々な用途に用いられている。ポリアリーレンスルフィド樹脂等の熱可塑性樹脂の成形には射出成形、押出成形、圧縮成形、ブロー成形等の様々な溶融加工法が採用されており、このうち射出成形法は複雑な形状の成形物を大量生産する場合に好適な成形法として広く利用されている。射出成形法では樹脂を融点以上の温度に加熱して流動性を高め、これを適切な温度に加熱した金型に射出充填し、冷却し固化させて成形物を得る。従来のポリアリーレンスルフィド樹脂の場合、適切な金型温度は130~180℃程度と比較的高温であることから、成形サイクルにおいて金型の再加熱に要するエネルギーと時間とが生産効率に大きく影響しており、より低い金型温度で成形が可能なポリアリーレンスルフィド樹脂の開発が望まれていた。 Polyarylene sulfide resins are used in various applications such as electrical / electronic equipment parts and automobile parts, taking advantage of their excellent heat resistance and chemical resistance. Various melt processing methods such as injection molding, extrusion molding, compression molding, blow molding and the like are used for molding thermoplastic resins such as polyarylene sulfide resins. It is widely used as a molding method suitable for mass production. In the injection molding method, the resin is heated to a temperature equal to or higher than the melting point to improve fluidity, and this is injected and filled into a mold heated to an appropriate temperature, cooled and solidified to obtain a molded product. In the case of conventional polyarylene sulfide resins, the appropriate mold temperature is relatively high, about 130 to 180 ° C, so the energy and time required to reheat the mold during the molding cycle greatly affect production efficiency. Therefore, it has been desired to develop a polyarylene sulfide resin that can be molded at a lower mold temperature.
 ポリアリーレンスルフィド樹脂の低温成形性を高める方法として、パラジクロロベンゼンとメタジクロロベンゼンとを共重合させる方法が知られている(特許文献1参照)。しかしながら、この方法により得られる樹脂は低温成形性に優れる一方で、耐熱性が著しく低下してしまい、低温成形性と耐熱性とを両立し得るものではなかった。 As a method for improving the low temperature moldability of polyarylene sulfide resin, a method of copolymerizing paradichlorobenzene and metadichlorobenzene is known (see Patent Document 1). However, the resin obtained by this method is excellent in low-temperature moldability, but the heat resistance is remarkably lowered, and the low-temperature moldability and heat resistance cannot be achieved at the same time.
特開2014-051655号公報JP 2014-051655 A
 したがって本発明が解決しようとする課題は、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物、その成形品およびそれらの製造方法を提供することにある。 Therefore, the problem to be solved by the present invention is to provide a polyarylene sulfide resin composition that can be molded under a low temperature condition and also excellent in heat resistance, a molded product thereof, and a method for producing them.
 本発明者らは上記課題を解決する為、鋭意努力した結果、ポリアリーレンスルフィド樹脂のアリーレンスルフィド構造において、アリーレン基の結合点がパラ位である樹脂と、アリーレン基の結合点がパラ位である部位とメタ位である部位との両方を有する樹脂との2種類を溶融混練して得られるポリアリーレンスルフィド樹脂組成物が、低温条件での成形が可能でありながら、耐熱性にも優れることを見出し、本発明を完成するに至った。 As a result of diligent efforts to solve the above problems, the present inventors have found that in the arylene sulfide structure of the polyarylene sulfide resin, the bonding point of the arylene group is in the para position and the bonding point of the arylene group is in the para position. The polyarylene sulfide resin composition obtained by melt-kneading two types of resin having both a site and a meta-position site is excellent in heat resistance while being moldable under low temperature conditions. The headline and the present invention were completed.
 すなわち、本発明は、アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位である樹脂(A)と、
 アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位で結合する構造部位(p)と、メタ位で結合する構造部位(m)との両方を有する樹脂(B)と、を含有することを特徴とするポリアリーレンスルフィド樹脂組成物に関する。
That is, the present invention is a polyarylene sulfide resin having an arylene thioether as a repeating unit, wherein the thioether and the arylene group have a para-bonding point (A),
A polyarylene sulfide resin having an arylene thioether as a repeating unit, which has both a structural site (p) where the bonding point of the thioether and the arylene group is bonded at the para position and a structural site (m) bonded at the meta position. And a polyarylene sulfide resin composition comprising a resin (B).
 また、本発明は アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位である樹脂(A)と、
 アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位で結合する構造部位(p)と、メタ位で結合する構造部位(m)との両方を有する樹脂(B)とを、前記樹脂(A)の融点以上の温度範囲で溶融混練するポリアリーレンスルフィド樹脂組成物の製造方法に関する。
Further, the present invention is a polyarylene sulfide resin having an arylene thioether as a repeating unit, the resin (A) in which the bonding point of the thioether and the arylene group is para-position,
A polyarylene sulfide resin having an arylene thioether as a repeating unit, which has both a structural site (p) where the bonding point of the thioether and the arylene group is bonded at the para position and a structural site (m) bonded at the meta position. The present invention relates to a method for producing a polyarylene sulfide resin composition in which a resin (B) is melt-kneaded in a temperature range equal to or higher than the melting point of the resin (A).
 さらに本発明は前記ポリアリーレンスルフィド樹脂組成物からなる成形品に関する。 Furthermore, the present invention relates to a molded article comprising the polyarylene sulfide resin composition.
 さらに本発明は前記ポリアリーレンスルフィド樹脂組成物を金型内で成型する工程を有する成形品の製造方法であって、金型温度が40~180℃の範囲であることを特徴とする成形品の製造方法に関する。 Furthermore, the present invention provides a method for producing a molded article comprising a step of molding the polyarylene sulfide resin composition in a mold, wherein the mold temperature is in the range of 40 to 180 ° C. It relates to a manufacturing method.
 本発明によれば、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物、その成形品およびそれらの製造方法を提供することができる。 According to the present invention, it is possible to provide a polyarylene sulfide resin composition excellent in heat resistance while being capable of being molded under low temperature conditions, a molded product thereof, and a method for producing them.
 本発明のポリアリーレンスルフィド樹脂組成物は、アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位である樹脂(A)と、
 アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位で結合する構造部位(p)と、メタ位で結合する構造部位(m)との両方を有する樹脂(B)と、を含有することを特徴とする。
The polyarylene sulfide resin composition of the present invention is a polyarylene sulfide resin having an arylene thioether as a repeating unit, the resin (A) in which the bonding point between the thioether and the arylene group is para-position,
A polyarylene sulfide resin having an arylene thioether as a repeating unit, which has both a structural site (p) where the bonding point of the thioether and the arylene group is bonded at the para position and a structural site (m) bonded at the meta position. Resin (B).
 より好ましくは、本発明のポリアリーレンスルフィド樹脂組成物は、下記構造式(X) More preferably, the polyarylene sulfide resin composition of the present invention has the following structural formula (X)
Figure JPOXMLDOC01-appb-C000002
[式中、Rは水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかであり、kは1~4の整数である。]
で表される構造部位(x)を繰り返し単位として有するポリアリーレンスルフィド樹脂であって、前記構造部位(x)中のチオエーテルとアリーレン基の結合点がパラ位である樹脂(A)と、前記構造部位(x)中のチオエーテルとアリーレン基の結合点がパラ位である構造部位(p)とメタ位である構造部位(m)との両方を有する樹脂(B)とを含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000002
[Wherein R 1 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and k is an integer of 1 to 4. ]
A polyarylene sulfide resin having a structural part (x) represented by formula (II) as a repeating unit, wherein the thioether and the arylene group in the structural part (x) have a para-position at the bonding point, and the structure It contains a resin (B) having both a structural part (p) in which the bonding point of the thioether and the arylene group in the part (x) is in the para position and a structural part (m) in the meta position. To do.
 前記樹脂(A)は、アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位である樹脂である。前記アリーレンチオエーテルは置換基を有していてもよく、その場合、該置換基はアリーレン基の炭素原子に結合する水素原子と1~4の範囲で置換されていてもよい。該置換基としては、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかが挙げられる。 The resin (A) is a polyarylene sulfide resin having an arylene thioether as a repeating unit, and the bonding point between the thioether and the arylene group is a para-position. The arylene thioether may have a substituent, and in this case, the substituent may be substituted with 1 to 4 hydrogen atoms bonded to the carbon atom of the arylene group. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group.
 前記樹脂(A)について、より好ましくは、前記構造式(X)で表される構造部位(x)を繰り返し単位として有し、前記構造部位(x)中のチオエーテルとアリーレン基の結合点がパラ位である。具体的には、下記構造式(X1)で表される構造部位(p)を繰り返し単位として有するポリアリーレンスルフィド樹脂である。 More preferably, the resin (A) has the structural moiety (x) represented by the structural formula (X) as a repeating unit, and the bonding point between the thioether and the arylene group in the structural moiety (x) is a parasite. It is rank. Specifically, it is a polyarylene sulfide resin having a structural site (p) represented by the following structural formula (X1) as a repeating unit.
Figure JPOXMLDOC01-appb-C000003
[式中、Rは水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかであり、kは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000003
[Wherein R 1 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and k is an integer of 1 to 4. ]
 樹脂(A)における前記式(X1)中のRは水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかである。kが2以上の整数である場合、式中に複数存在するRは互いに同一の構造部位であっても良いし、それぞれ異なる構造部位であっても良い。中でも、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることからRは水素原子であることが好ましい。 R 1 in the formula (X1) in the resin (A) is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group. When k is an integer of 2 or more, a plurality of R 1 present in the formula may be the same structural site, or may be different structural sites. Especially, since it becomes a polyarylene sulfide resin composition excellent in heat resistance and mechanical strength, R 1 is preferably a hydrogen atom.
 前記樹脂(A)が、構造式(X1)で表される構造部位(p)を繰り返し単位として有する場合、前記構造部位(p)の他、下記構造式(Y1)~(Y6)の何れかで表される構造部位(y)を有していても良い。 When the resin (A) has the structural moiety (p) represented by the structural formula (X1) as a repeating unit, any one of the following structural formulas (Y1) to (Y6) in addition to the structural moiety (p) It may have a structural site (y) represented by
Figure JPOXMLDOC01-appb-C000004
[式中、Rは水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかであり、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000004
[Wherein R 2 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and r is an integer of 1 to 4. ]
 前記樹脂(A)が、前記構造部位(p)の他、前記構造部位(y)を有する場合、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることから、前記構造部位(p)と前記構造部位(y)との合計に対する前記構造部位(y)の割合が30モル%以下であることが好ましい。また、前記樹脂(A)が前記構造部位(y)を有する場合、各構造部位の結合様式はランダム共重合体、ブロック共重合体の何れであってもよい。 When the resin (A) has the structural site (y) in addition to the structural site (p), it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength. ) And the structural part (y), the proportion of the structural part (y) is preferably 30 mol% or less. Moreover, when the said resin (A) has the said structure site | part (y), either a random copolymer or a block copolymer may be sufficient as the coupling | bonding mode of each structure site | part.
 また、前記樹脂(A)は、前記構造部位(p)、(y)の他に、下記構造式(Z)で表される分岐構造部位や、下記構造式(V)で表されるナフチルスルフィド構造部位を有していても良い。前記樹脂(A)がこれらの構造部位を有する場合、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることから、前記構造部位(p)及び前記構造部位(y)との合計に対し3モル%以下であることが好ましく、1モル%以下であることが特に好ましい。 Further, the resin (A) includes, in addition to the structural sites (p) and (y), a branched structural site represented by the following structural formula (Z) and a naphthyl sulfide represented by the following structural formula (V). It may have a structural part. When the resin (A) has these structural sites, it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength, so that the total of the structural site (p) and the structural site (y). However, it is preferably 3 mol% or less, particularly preferably 1 mol% or less.
Figure JPOXMLDOC01-appb-C000005
[式中、R、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかであり、sは1~6の整数、tは1~3の整数である。]
Figure JPOXMLDOC01-appb-C000005
[Wherein R 3 and R 4 are each independently any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group; An integer of 6 and t is an integer of 1 to 3. ]
 前記樹脂(A)の融点(Tm)は、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることから、270~300℃の範囲であることが好ましい。また、前記樹脂(A)の再結晶化温度(Tc2)は、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることから、210~260℃の範囲であることが好ましい。 The melting point (Tm) of the resin (A) is preferably in the range of 270 to 300 ° C. because it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength. In addition, the recrystallization temperature (Tc2) of the resin (A) is preferably in the range of 210 to 260 ° C. because it is a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength.
 また、前記樹脂(A)の融点(Tm)と再結晶化温度(Tc2)との差ΔTは、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることから、20~75℃の範囲であることが好ましく、35~55℃の範囲であることがより好ましい。 The difference ΔT between the melting point (Tm) of the resin (A) and the recrystallization temperature (Tc2) is a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength. The range is preferable, and the range of 35 to 55 ° C. is more preferable.
 前記樹脂(A)の300℃で測定した溶融粘度(V6)は、流動性および機械的強度のバランスが良好となることから2~1000〔Pa・s〕の範囲であることが好ましく、2~500〔Pa・s〕の範囲であることがより好ましく、2~200〔Pa・s〕の範囲であることが特に好ましい。なお、本発明において溶融粘度(V6)は、ポリアリーレンスルフィド樹脂を島津製作所製フローテスター、CFT-500Dを用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に溶融粘度を測定した値とする。 The melt viscosity (V6) measured at 300 ° C. of the resin (A) is preferably in the range of 2 to 1000 [Pa · s] because the balance between fluidity and mechanical strength is good. A range of 500 [Pa · s] is more preferable, and a range of 2 to 200 [Pa · s] is particularly preferable. In the present invention, the melt viscosity (V6) is 300 ° C., load: 1.96 × 10 6 Pa, L / D = 10 (mm) using a polyarylene sulfide resin, a flow tester manufactured by Shimadzu Corporation, CFT-500D. / 1 (mm), and held for 6 minutes, then the melt viscosity is measured.
 前記樹脂(A)の非ニュートン指数は、本発明の効果を損ねない限り特に限定されないが、0.90~2.00の範囲であることが好ましく、0.90~1.50の範囲であることがより好ましく、0.95~1.20の範囲であることが特に好ましい。なお、本発明において非ニュートン指数(N値)は、キャピログラフを用いて300℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度(SR)及び剪断応力(SS)を測定し、下記式を用いて算出した値である。非ニュートン指数(N値)が1に近いほど線状に近い構造であり、非ニュートン指数(N値)が高いほど分岐が進んだ構造であることを示す。 The non-Newtonian index of the resin (A) is not particularly limited as long as the effect of the present invention is not impaired, but is preferably in the range of 0.90 to 2.00, and is preferably in the range of 0.90 to 1.50. More preferably, the range is 0.95 to 1.20. In the present invention, the non-Newtonian index (N value) is a shear rate (SR) under the conditions of 300 ° C., ratio of orifice length (L) to orifice diameter (D), L / D = 40 using a capillograph. And the shear stress (SS) were measured and calculated using the following formula. The closer the non-Newtonian index (N value) is to 1, the closer it is to a linear structure, and the higher the non-Newtonian index (N value), the more branched the structure is.
Figure JPOXMLDOC01-appb-M000006
[SRは剪断速度(秒-1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]
Figure JPOXMLDOC01-appb-M000006
[SR is the shear rate (second −1 ), SS is the shear stress (dyne / cm 2 ), and K is a constant. ]
 前記樹脂(A)は、ポリアリーレンスルフィド樹脂を製造する通常の方法にて製造することができ、具体的には、ジハロゲノ芳香族化合物と、必要に応じてポリハロゲノ芳香族化合物やその他の共重合成分とを、硫黄及び炭酸ソーダの存在下で重合させる方法(方法1)、極性溶媒中、ジハロゲノ芳香族化合物と、必要に応じてポリハロゲノ芳香族化合物やその他の共重合成分とを、スルフィド化剤等の存在下に重合させる方法(方法2)、p-クロルチオフェノールと、必要に応じてその他の共重合成分とを、自己縮合させる方法(方法3)等が挙げられる。これらの製造方法の中でも、前記方法2が汎用的であり好ましい。また、反応の際に重合度を調節する目的でカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。 The resin (A) can be produced by an ordinary method for producing a polyarylene sulfide resin, specifically, a dihalogenoaromatic compound, and if necessary, a polyhalogenoaromatic compound or other copolymer component. In the presence of sulfur and sodium carbonate (Method 1), a dihalogenoaromatic compound in a polar solvent, and a polyhalogenoaromatic compound and other copolymerization components, if necessary, as a sulfidizing agent, etc. And a method of polymerizing in the presence of (Method 2), a method of self-condensing p-chlorothiophenol and other copolymerization components as necessary (Method 3), and the like. Among these production methods, Method 2 is versatile and preferable. In addition, an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added for the purpose of adjusting the degree of polymerization during the reaction.
 上記方法2のより好ましい形態について詳述するに、例えば、少なくとも加熱した有機極性溶媒および必須原料のジハロゲノ芳香族化合物を、必要に応じてポリハロゲノ芳香族化合物を任意原料として含む混合物に、含水スルフィド化剤を水が反応混合物から除去され得る速度で逐次添加して反応させ、反応系内の水分量を前記有機極性溶媒1モルに対して0.02~0.5モルの範囲となるようコントロールしながらポリアリーレンスルフィド樹脂を製造する方法(特開平07-228699号公報参照。)や、非プロトン性極性有機溶媒中、固形のアルカリ金属硫化物の存在下で、必須原料のジハロゲノ芳香族化合物を、必要に応じてポリハロゲノ芳香族化合物ないしその他の共重合成分とを任意原料として、有機酸アルカリ金属塩量を硫黄源1モルに対して0.01~0.9モルの範囲に、反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モルの範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)等が挙げられる。 In order to describe in more detail a more preferable form of the method 2, for example, hydrous sulfidation is performed on a mixture containing at least a heated organic polar solvent and an essential raw material dihalogenoaromatic compound as necessary, and a polyhalogenoaromatic compound as an optional raw material. The agent is sequentially added and reacted at a rate at which water can be removed from the reaction mixture, and the amount of water in the reaction system is controlled to be in the range of 0.02 to 0.5 mol with respect to 1 mol of the organic polar solvent. However, a method for producing a polyarylene sulfide resin (see JP 07-228699 A), a dihalogeno aromatic compound as an essential raw material in the presence of a solid alkali metal sulfide in an aprotic polar organic solvent, If necessary, using polyhalogenoaromatic compound or other copolymerization component as an optional raw material, organic acid alkali metal salt amount A method of reacting while controlling the amount of water in the reaction system within a range of 0.01 to 0.9 mol with respect to 1 mol of sulfur source and within a range of 0.02 mol with respect to 1 mol of aprotic polar organic solvent. (See the pamphlet of WO 2010/058713).
 前記樹脂(A)の原料となるジハロゲノ芳香族化合物及びポリハロゲノ芳香族化合物としては、樹脂中に前記構造部位(p)を導入するための必須原料としてp-ジハロベンゼン、4,4’-ジハロジフェニルスルフィド、2,5-ジハロトルエン、2,5-ジハロアニソール、2,5-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,5-ジハロアニリン、2,5-ジハロビフェニル等からなる群から選ばれる一種以上のジハロゲノ芳香族化合物が挙げられ、必要に応じて用いる任意原料としてp,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、ビス(4-ハロフェニル)メタン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルホン、4,4’-ジハロビフェニル、1,4-ジハロナフタレン、1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレン等からなる群から選ばれる一種以上のポリハロゲノ芳香族化合物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the dihalogenoaromatic compound and polyhalogenoaromatic compound used as a raw material for the resin (A) include p-dihalobenzene and 4,4′-dihalodiphenyl as essential raw materials for introducing the structural moiety (p) into the resin. From the group consisting of sulfide, 2,5-dihalotoluene, 2,5-dihaloanisole, 2,5-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,5-dihaloaniline, 2,5-dihalobiphenyl, etc. One or more dihalogenoaromatic compounds selected may be mentioned, and optional raw materials used as necessary include p, p′-dihalodiphenyl ether, 4,4′-dihalobenzophenone, bis (4-halophenyl) methane, 4,4 '-Dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalobiphenyl, 1,4- Halonaphthalene, 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1,2,4,5- One or more polyhalogeno aromatic compounds selected from the group consisting of tetrahalobenzene, 1,4,6-trihalonaphthalene and the like can be mentioned. These may be used alone or in combination of two or more.
 なお、前記各化合物中に含まれるハロゲン原子は、塩素原子又は臭素原子であることが望ましい。 The halogen atom contained in each compound is preferably a chlorine atom or a bromine atom.
 前記各製造方法にて得られた樹脂(A)を含む反応混合物の後処理方法は特に制限されるものではないが、例えば、重合反応終了後の反応混合物に、必要に応じて酸又は塩基を加え、減圧又は常圧条件下で溶媒を留去した後、溶媒留去後の固形物を水や、重合反応時に用いた溶媒、アセトン、メチルエチルケトン、アルコール化合物等その他の有機溶媒等で1乃至複数回洗浄し、更に中和、水洗、濾過したのち乾燥させる方法(方法1)、重合反応終了後の反応混合物に水やアセトン、メチルエチルケトン、アルコール化合物、エーテル化合物、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(重合反応時に使用した溶媒に可溶であり、かつ、少なくともポリアリーレンスルフィドに対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィドや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法(方法2)、重合反応終了後の反応混合物に、重合反応時に用いた溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌し、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール化合物などの溶媒で1回乃至複数回洗浄し、更に中和、水洗、濾過したのち乾燥させる方法(方法3)、重合反応終了後の反応混合物に水、及び必要に応じて酸を加え、水洗物を濾過したのち乾燥させる方法(方法4)、重合反応終了後、反応混合物を濾過し、必要に応じて反応溶媒で1回乃至複数回洗浄し、更に水洗して濾過および乾燥する方法(方法5)等が挙げられる。 The post-treatment method of the reaction mixture containing the resin (A) obtained by each of the production methods is not particularly limited. For example, an acid or a base may be added to the reaction mixture after completion of the polymerization reaction as necessary. In addition, after distilling off the solvent under reduced pressure or atmospheric pressure, the solid after distilling off the solvent is one or more with water, the solvent used during the polymerization reaction, other organic solvents such as acetone, methyl ethyl ketone, alcohol compounds, etc. A method of washing twice, further neutralizing, washing with water, filtering and drying (Method 1), and the reaction mixture after completion of the polymerization reaction is added to water, acetone, methyl ethyl ketone, alcohol compound, ether compound, halogenated hydrocarbon, aromatic hydrocarbon , Precipitating solvents such as aliphatic hydrocarbons (solvents that are soluble in the solvent used during the polymerization reaction and that are poor solvents for at least polyarylene sulfide) A method for precipitating solid products such as polyarylene sulfide and inorganic salts, filtering them, washing and drying (Method 2), and for the reaction mixture after completion of the polymerization reaction, was used during the polymerization reaction After adding a solvent (or an organic solvent having an equivalent solubility with respect to a low molecular weight polymer), stirring and filtering to remove the low molecular weight polymer, once with a solvent such as water, acetone, methyl ethyl ketone, alcohol compound or the like. A method of washing several times, further neutralizing, washing with water, filtering and drying (Method 3), a method of adding water and, if necessary, an acid to the reaction mixture after completion of the polymerization reaction, and filtering and washing the washed product (Method 4) After completion of the polymerization reaction, a method of filtering the reaction mixture, washing with a reaction solvent one or more times as necessary, further washing with water, filtering and drying (Method 5) and the like can be mentioned.
  尚、上記方法1~5に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。 In the post-treatment methods exemplified in the above methods 1 to 5, the polyarylene sulfide resin may be dried in a vacuum, or in an inert gas atmosphere such as air or nitrogen. .
 このようにして得られる樹脂(A)は、その分子末端がカルボキシル基又はカルボン酸アルカリ金属塩となる。 The resin (A) thus obtained has a molecular end that is a carboxyl group or an alkali metal carboxylate.
 前記樹脂(B)は、アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位で結合する構造部位(p)と、メタ位で結合する構造部位(m)との両方を有する樹脂である。前記アリーレンチオエーテルは置換基を有していてもよく、その場合、該置換基はアリーレン基の炭素原子と結合する水素原子と1~4の範囲で置換されていてもよい。該置換基としては炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかが挙げられる。 The resin (B) is a polyarylene sulfide resin having an arylene thioether as a repeating unit, and a structural site (p) in which the bonding point of the thioether and the arylene group is bonded at the para position, and a structural site ( m). The arylene thioether may have a substituent, and in this case, the substituent may be substituted with 1 to 4 hydrogen atoms bonded to the carbon atom of the arylene group. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group.
 前記樹脂(B)について、より好ましくは、前記構造式(X)で表される構造部位(x)を繰り返し単位として有し、前記構造部位(x)中のチオエーテルとアリーレン基の結合点がパラ位である構造部位(p)と、メタ位である構造部位(m)との両方を有する。具体的には、下記構造式(X1)で表される構造部位(p)と、下記構造式(X2)で表される構造部位(m)との両方を繰り返し単位として有するポリアリーレンスルフィド樹脂である。 More preferably, the resin (B) has the structural site (x) represented by the structural formula (X) as a repeating unit, and the bonding point between the thioether and the arylene group in the structural site (x) is a parasite. It has both a structural site (p) that is a position and a structural site (m) that is a meta position. Specifically, a polyarylene sulfide resin having as a repeating unit both a structural moiety (p) represented by the following structural formula (X1) and a structural moiety (m) represented by the following structural formula (X2). is there.
Figure JPOXMLDOC01-appb-C000007
[式中、Rは水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかであり、kは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000007
[Wherein R 1 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and k is an integer of 1 to 4. ]
 前記樹脂(B)が有する前記構造部位(p)と前記構造部位(m)とのモル比率[(p)/(m)]は、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物となることから、99/1~60/40の範囲であることが好ましく、95/5~75/25の範囲であることがより好ましい。 The molar ratio [(p) / (m)] of the structural part (p) and the structural part (m) of the resin (B) can be molded under low temperature conditions, but also has good heat resistance. In order to obtain an excellent polyarylene sulfide resin composition, it is preferably in the range of 99/1 to 60/40, more preferably in the range of 95/5 to 75/25.
 前記樹脂(B)における前記式(X1)及び(X2)中のRは水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかである。kが2以上の整数である場合、式中に複数存在するRは互いに同一の構造部位であっても良いし、それぞれ異なる構造部位であっても良い。中でも、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることからRは水素原子であることが好ましい。 R 1 in the formulas (X1) and (X2) in the resin (B) is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group. It is. When k is an integer of 2 or more, a plurality of R 1 present in the formula may be the same structural site, or may be different structural sites. Especially, since it becomes a polyarylene sulfide resin composition excellent in heat resistance and mechanical strength, R 1 is preferably a hydrogen atom.
 前記樹脂(B)は、前記構造部位(p)や前記構造式(m)の他、下記構造式(Y1)~(Y6)の何れかで表される構造部位(y)を有していても良い。 The resin (B) has a structural site (y) represented by any of the following structural formulas (Y1) to (Y6) in addition to the structural site (p) and the structural formula (m). Also good.
Figure JPOXMLDOC01-appb-C000008
[式中、Rは水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかであり、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000008
[Wherein R 2 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and r is an integer of 1 to 4. ]
 前記樹脂(B)が前記構造部位(y)を有する場合、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物となることから、前記構造部位(p)、(m)、及び(y)の合計に対する前記構造部位(y)の割合が30モル%以下であることが好ましい。また、前記樹脂(B)が前記構造部位(y)を有する場合、各構造部位の結合様式はランダム共重合体、ブロック共重合体の何れであってもよい。 When the resin (B) has the structural part (y), since it becomes a polyarylene sulfide resin composition having excellent heat resistance while being moldable under low temperature conditions, the structural part (p), It is preferable that the ratio of the structural site (y) to the total of (m) and (y) is 30 mol% or less. Moreover, when the said resin (B) has the said structure site | part (y), either a random copolymer or a block copolymer may be sufficient as the coupling | bonding mode of each structure site | part.
 また、前記樹脂(B)は前記構造部位(p)、(m)、(y)の他、下記構造式(Z)で表される分岐構造部位や、下記構造式(V)で表されるナフチルスルフィド構造部位を有していても良い。前記樹脂(B)がこれらの構造部位を有する場合、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物となることから、前記構造部位(p)、(m)、(y)との合計に対し3モル%以下であることが好ましく、1モル%以下であることが特に好ましい。 The resin (B) is represented by the structural site (p), (m), (y), a branched structural site represented by the following structural formula (Z), or the following structural formula (V). It may have a naphthyl sulfide structure site. When the resin (B) has these structural sites, the polyarylene sulfide resin composition is excellent in heat resistance while being moldable under low temperature conditions. Therefore, the structural sites (p), (m ) And (y), preferably 3 mol% or less, particularly preferably 1 mol% or less.
Figure JPOXMLDOC01-appb-C000009
[式中、R、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかであり、sは1~6の整数、tは1~3の整数である。]
Figure JPOXMLDOC01-appb-C000009
[Wherein R 3 and R 4 are each independently any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group; An integer of 6 and t is an integer of 1 to 3. ]
 前記樹脂(B)の融点(Tm)は、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物となることから、200℃以上であることが好ましく、200~280℃の範囲であることがより好ましい。また、前記樹脂(B)の再結晶化温度(Tc2)は、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物となることから、200℃以下であることが好ましく、130~160℃の範囲であることが好ましい。 The melting point (Tm) of the resin (B) is preferably 200 ° C. or higher because it becomes a polyarylene sulfide resin composition that can be molded under low temperature conditions and is also excellent in heat resistance. A range of 280 ° C. is more preferable. Further, the recrystallization temperature (Tc2) of the resin (B) is 200 ° C. or lower because it becomes a polyarylene sulfide resin composition having excellent heat resistance while being moldable under low temperature conditions. The temperature is preferably in the range of 130 to 160 ° C.
 また、前記樹脂(B)の融点(Tm)と再結晶化温度(Tc2)との差ΔTは、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることから、20℃以上であることが好ましく、50~100℃の範囲であることがより好ましい。 Further, the difference ΔT between the melting point (Tm) of the resin (B) and the recrystallization temperature (Tc2) is 20 ° C. or higher because it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength. The temperature is preferably in the range of 50 to 100 ° C.
 前記樹脂(B)の300℃で測定した溶融粘度(V6)は、流動性および機械的強度のバランスが良好となることから2~1000〔Pa・s〕の範囲であることが好ましく、2~500〔Pa・s〕の範囲であることがより好ましく、2~200〔Pa・s〕の範囲であることが特に好ましい。 The melt viscosity (V6) measured at 300 ° C. of the resin (B) is preferably in the range of 2 to 1000 [Pa · s] because the balance between fluidity and mechanical strength is good. A range of 500 [Pa · s] is more preferable, and a range of 2 to 200 [Pa · s] is particularly preferable.
 前記樹脂(B)の非ニュートン指数は、本発明の効果を損ねない限り特に限定されないが、0.90~2.00の範囲であることが好ましく、0.90~1.50の範囲であることがより好ましく、0.95~1.20の範囲であることが特に好ましい。 The non-Newtonian index of the resin (B) is not particularly limited as long as the effect of the present invention is not impaired, but is preferably in the range of 0.90 to 2.00, and is preferably in the range of 0.90 to 1.50. More preferably, the range is 0.95 to 1.20.
 前記樹脂(B)は、前述した樹脂(A)と同様の方法で製造することができる。 The resin (B) can be produced by the same method as the resin (A) described above.
 前記樹脂(B)の原料となるジハロゲノ芳香族化合物及びポリハロゲノ芳香族化合物としては、樹脂中に前記構造部位(p)を導入するための必須原料としてp-ジハロベンゼン、4,4’-ジハロジフェニルスルフィド、2,5-ジハロトルエン、2,5-ジハロアニソール、2,5-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,5-ジハロアニリン、2,5-ジハロビフェニル等からなる群から選ばれる一種以上のジハロゲノ芳香族化合物、及び、前記構造部位(m)を導入するための必須原料としてm-ジハロベンゼン、2,4-ジハロトルエン、3,5-ジハロトルエン、2,4-ジハロアニソール、3,5-ジハロアニソール、2,4-ジハロ安息香酸、3,5-ジハロ安息香酸、2,4-ジハロニトロベンゼン、3,5-ジハロニトロベンゼン、2,4-ジハロアニリン、3,5-ジハロアニリン、2,4-ジハロビフェニル、3,5-ジハロビフェニル等からなる群から選ばれる一種以上のジハロゲノ芳香族化合物が挙げられ、必要に応じて用いる任意原料としてp,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、ビス(4-ハロフェニル)メタン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルホン、4,4’-ジハロビフェニル、1,4-ジハロナフタレン、1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレン等からなる群から選ばれる一種以上のポリハロゲノ芳香族化合物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the dihalogenoaromatic compound and polyhalogenoaromatic compound used as the raw material for the resin (B) include p-dihalobenzene and 4,4′-dihalodiphenyl as essential raw materials for introducing the structural moiety (p) into the resin. From the group consisting of sulfide, 2,5-dihalotoluene, 2,5-dihaloanisole, 2,5-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,5-dihaloaniline, 2,5-dihalobiphenyl, etc. One or more dihalogenoaromatic compounds selected, and m-dihalobenzene, 2,4-dihalotoluene, 3,5-dihalotoluene, 2,4-dihaloanisole as essential raw materials for introducing the structural moiety (m), 3,5-dihaloanisole, 2,4-dihalobenzoic acid, 3,5-dihalobenzoic acid, 2,4-dihalonitrobenzene, 3 And one or more dihalogenoaromatic compounds selected from the group consisting of 5-dihalonitrobenzene, 2,4-dihaloaniline, 3,5-dihaloaniline, 2,4-dihalobiphenyl, 3,5-dihalobiphenyl, etc. As an optional raw material used as necessary, p, p′-dihalodiphenyl ether, 4,4′-dihalobenzophenone, bis (4-halophenyl) methane, 4,4′-dihalodiphenyl sulfoxide, 4,4′- Dihalodiphenyl sulfone, 4,4′-dihalobiphenyl, 1,4-dihalonaphthalene, 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1 , 2,3,5-tetrahalobenzene, 1,2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene, etc. Poriharogeno aromatic least one compound which can be cited. These may be used alone or in combination of two or more.
 なお、前記各化合物中に含まれるハロゲン原子は、塩素原子又は臭素原子であることが望ましい。 The halogen atom contained in each compound is preferably a chlorine atom or a bromine atom.
 また、前記樹脂(B)の原料において、前記構造部位(p)を導入するための成分と、前記構造部位(m)を導入するための成分との質量比は、前述した樹脂(B)が有する前記構造部位(p)と前記構造部位(m)とのモル比率[(p)/(m)]に準ずる。 In the raw material of the resin (B), the mass ratio of the component for introducing the structural site (p) and the component for introducing the structural site (m) is the same as that of the resin (B) described above. According to the molar ratio [(p) / (m)] between the structural site (p) and the structural site (m).
 このようにして得られる樹脂(B)は、その分子末端がカルボキシル基又はカルボン酸アルカリ金属塩となる。 The resin (B) thus obtained has a molecular end that is a carboxyl group or an alkali metal carboxylate.
 本発明のポリアリーレンスルフィド樹脂組成物は、前記樹脂(A)と前記樹脂(B)とを溶融混練して得られる、溶融混練物である。この時の前記樹脂(A)と前記樹脂(B)との配合質量比[(A)/(B)]は、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物となることから95/5~40/60の範囲であることが好ましく、90/10~70/30の範囲であることがより好ましい。 The polyarylene sulfide resin composition of the present invention is a melt-kneaded product obtained by melt-kneading the resin (A) and the resin (B). The blending mass ratio [(A) / (B)] of the resin (A) and the resin (B) at this time is a polyarylene sulfide resin that can be molded under low temperature conditions and has excellent heat resistance. The range is preferably from 95/5 to 40/60, more preferably from 90/10 to 70/30, because it is a composition.
 本発明のポリアリーレンスルフィド樹脂組成物は、耐熱性や機械的強度に優れることから、融点(Tm)が270℃以上であり、かつ、再結晶化温度(Tc2)が210℃以下であることが好ましい。更に、融点(Tm)が270℃~290℃の範囲であり、かつ、再結晶化温度(Tc2)が180~210℃の範囲であることが特に好ましい。また、融点(Tm)と再結晶化温度(Tc2)との差ΔTは70℃以上であることが好ましく、70~90℃の範囲であることが特に好ましい。 Since the polyarylene sulfide resin composition of the present invention is excellent in heat resistance and mechanical strength, the melting point (Tm) is 270 ° C. or more and the recrystallization temperature (Tc 2) is 210 ° C. or less. preferable. Further, it is particularly preferable that the melting point (Tm) is in the range of 270 ° C. to 290 ° C. and the recrystallization temperature (Tc 2) is in the range of 180 to 210 ° C. Further, the difference ΔT between the melting point (Tm) and the recrystallization temperature (Tc2) is preferably 70 ° C. or more, particularly preferably in the range of 70 to 90 ° C.
 本発明のポリアリーレンスルフィド樹脂組成物の300℃で測定した溶融粘度(V6)は、流動性および機械的強度のバランスが良好となることから2~1000〔Pa・s〕の範囲であることが好ましく、2~500〔Pa・s〕の範囲であることがより好ましく、2~200〔Pa・s〕の範囲であることが特に好ましい。 The melt viscosity (V6) measured at 300 ° C. of the polyarylene sulfide resin composition of the present invention is in the range of 2 to 1000 [Pa · s] because the balance between fluidity and mechanical strength is good. The range is preferably 2 to 500 [Pa · s], more preferably 2 to 200 [Pa · s].
 本発明のポリアリーレンスルフィド樹脂組成物の非ニュートン指数は、本発明の効果を損ねない限り特に限定されないが、0.90~2.00の範囲であることが好ましく、0.90~1.50の範囲であることがより好ましく、0.95~1.20の範囲であることが特に好ましい。 The non-Newtonian index of the polyarylene sulfide resin composition of the present invention is not particularly limited as long as the effects of the present invention are not impaired, but is preferably in the range of 0.90 to 2.00, preferably 0.90 to 1.50. Is more preferable, and a range of 0.95 to 1.20 is particularly preferable.
本発明のポリアリーレンスルフィド樹脂組成物は、前記樹脂(A)及び前記樹脂(B)の他、充填材、シランカップリング剤、その他の樹脂、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤等の成分を含有しても良い。 In addition to the resin (A) and the resin (B), the polyarylene sulfide resin composition of the present invention includes a filler, a silane coupling agent, other resins, a colorant, a heat stabilizer, an ultraviolet stabilizer, and a foaming agent. In addition, components such as a rust inhibitor, a flame retardant, and a lubricant may be contained.
 前記充填材は、繊維状、粒状、板状などいずれの形状でも良く、具体的には、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、硫酸カルシウム、珪酸カルシウム等の繊維、ウォラストナイト等の天然繊維等の繊維状充填材や、ガラスビーズ、ガラスフレーク、硫酸バリウム、硫酸カルシウム、クレー、パイロフィライト、ベントナイト、セリサイト、ゼオライト、マイカ、雲母、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ等の非繊維状充填材が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The filler may be in any shape such as fibrous, granular, plate-like, specifically, glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, Fibrous fillers such as fibers such as calcium sulfate and calcium silicate, natural fibers such as wollastonite, glass beads, glass flakes, barium sulfate, calcium sulfate, clay, pyrophyllite, bentonite, sericite, zeolite, mica And non-fibrous fillers such as mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, and glass beads. These may be used alone or in combination of two or more.
 前記シランカップリング剤は、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物;γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物;γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物;γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the silane coupling agent include epoxy group-containing alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Compound: γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane, γ- Isocyanato group-containing alkoxysilane compounds such as isocyanatopropylethyldiethoxysilane and γ-isocyanatopropyltrichlorosilane; γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-amino Chill) aminopropyltrimethoxysilane, amino group-containing alkoxysilane compounds such as .gamma.-aminopropyltrimethoxysilane; .gamma.-hydroxypropyl trimethoxysilane, hydroxyl group-containing alkoxysilane compounds such as .gamma.-hydroxypropyl triethoxysilane and the like. These may be used alone or in combination of two or more.
 前記その他の樹脂は、例えば、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリオレフィン樹脂、ポリプロピレン樹脂、ポリ四弗化エチレン樹脂、ポリ二弗化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー、シリコーン樹脂等の合成樹脂、或いは、弗素ゴム等のエラストマーなどが挙げられる。 Examples of the other resins include polyester resins, polyamide resins, polyimide resins, polyetherimide resins, polycarbonate resins, polyphenylene ether resins, polysulfone resins, polyether sulfone resins, polyether ether ketone resins, polyether ketone resins, poly Arylene resin, polyolefin resin, polypropylene resin, polytetrafluoroethylene resin, polydifluoroethylene resin, polystyrene resin, ABS resin, phenol resin, urethane resin, liquid crystal polymer, silicone resin, or other synthetic resin, or fluorine rubber And other elastomers.
 本発明のポリアリーレンスルフィド樹脂組成物の製造方法は特に制限なく、例えば、原料の前記樹脂(A)、前記樹脂(B)、および必要に応じて前述のその他の成分を、粉末、ベレット、細片など様々な形態でリボンブレンター、ヘンシェルミキサー、Vブレンターなどに投入してドライブレンドした後、バンバリーミキサーミキシングロール、単軸または2軸の押出機およびニーターなどの公知の溶融混練機に投入し、樹脂温度がポリアリーレンスルフィド樹脂組成物(より詳細には該ポリアリーレンスルフィド樹脂組成物中の樹脂(A)および樹脂(B)の内のより高い方)の融点以上となる温度範囲、好ましくは融点+10℃以上となる温度範囲、より好ましくは融点+10℃~融点+100℃となる温度範囲、さらに好ましくは融点+20~融点+50℃となる温度範囲で溶融混練する方法などが挙げられる。なかでも十分な混練力を有する単軸または2軸の押出機を用いて溶融混練する方法が代表的である。 The method for producing the polyarylene sulfide resin composition of the present invention is not particularly limited. For example, the resin (A), the resin (B) as a raw material, and the other components described above as necessary are mixed with powder, beret, fine powder. In various forms, such as a piece, put into a ribbon blender, Henschel mixer, V blender, etc., dry blend, then feed into a known melt kneader such as a Banbury mixer mixing roll, a single or twin screw extruder, and a knee. A temperature range in which the resin temperature is equal to or higher than the melting point of the polyarylene sulfide resin composition (more specifically, the higher one of the resin (A) and the resin (B) in the polyarylene sulfide resin composition), preferably The temperature range of melting point + 10 ° C. or more, more preferably the temperature range of melting point + 10 ° C. to melting point + 100 ° C., more preferably And a method of melt-kneading at a temperature range of a point + 20 ~ mp + 50 ° C.. Among them, a typical method is melt-kneading using a single-screw or twin-screw extruder having a sufficient kneading force.
 本発明のポリアリーレンスルフィド樹脂組成物は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能である。中でも、低温条件での成形が可能である本願発明の効果を生かし、射出成形用途に好適に用いることができる。  The polyarylene sulfide resin composition of the present invention can be used for various moldings such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, pultrusion molding, blow molding, and transfer molding. Especially, it can use suitably for an injection molding application taking advantage of the effect of this invention which can be fabricated under low temperature conditions.
 本発明のポリアリーレンスルフィド樹脂組成物を射出成形にて成形する場合の各種条件は特に限定されず、通常一般的な方法にて成形することができる。成形の前には、100~150℃の温度で予備乾燥することにより、成形物の外観や機械物性が向上する。シリンダー温度はポリアリーレンスルフィド樹脂組成物の融点以上の温度であれば良いが、十分な流動性を得るためには300℃以上であることが好ましい。金型温度は通常130~180℃の範囲に設定されるが、本発明のポリアリーレンスルフィド樹脂組成物は低温成形性に優れる特徴を有することから、130℃以下の比較的低温条件であっても外観や機械物性に優れる成形物を得ることができる。金型温度は120℃以下であることがより好ましく、40~120℃の範囲であることが好ましい。したがって、本発明のポリアリーレンスルフィド樹脂組成物は金型温度が40~180℃の範囲、より好ましくは40~120℃の範囲の金型内で成型することにより成形品を製造できる。 The various conditions for molding the polyarylene sulfide resin composition of the present invention by injection molding are not particularly limited, and can be usually molded by a general method. Prior to molding, the appearance and mechanical properties of the molded product are improved by preliminary drying at a temperature of 100 to 150 ° C. The cylinder temperature may be a temperature equal to or higher than the melting point of the polyarylene sulfide resin composition, but is preferably 300 ° C. or higher in order to obtain sufficient fluidity. The mold temperature is usually set in the range of 130 to 180 ° C. However, since the polyarylene sulfide resin composition of the present invention has excellent low-temperature moldability, even under relatively low temperature conditions of 130 ° C. or less. A molded product excellent in appearance and mechanical properties can be obtained. The mold temperature is more preferably 120 ° C. or less, and preferably in the range of 40 to 120 ° C. Therefore, the polyarylene sulfide resin composition of the present invention can be molded by molding in a mold having a mold temperature in the range of 40 to 180 ° C, more preferably in the range of 40 to 120 ° C.
 本発明のポリアリーレンスルフィド樹脂組成物を用いて得られる成形品は耐熱性に優れる特徴を生かし様々な用途に用いることができ、例えば、箱型の電気・電子部品集積モジュール用保護・支持部材・複数の個別半導体またはモジュール、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、電子回路、LSI、IC、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスク・DVDディスク・ブルーレイディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品、あるいは給湯機や風呂の湯量、温度センサなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライタ、タイプライタなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクタ、ICレギュレータ、ライトディヤ用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、ブレーキパットウェアーセンサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモーター関係部品、デュストリビュータ、スタータースイッチ、イグニッションコイルおよびそのボビン、モーターインシュレータ、モーターロータ、モーターコア、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース等の自動車・車両関連部品、その他各種用途にも適用可能である。 The molded product obtained by using the polyarylene sulfide resin composition of the present invention can be used for various applications by taking advantage of its excellent heat resistance, for example, a protective / support member for a box-shaped electrical / electronic component integrated module, Multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitor cases, optical pickups, oscillators, various terminal boards, transformers, plugs, printed boards, electronics Representative of circuit, LSI, IC, tuner, speaker, microphone, headphones, small motor, magnetic head base, power module, terminal block, semiconductor, liquid crystal, FDD carriage, FDD chassis, motor brush holder, parabolic antenna, computer related parts, etc. Electricity / electricity Parts: VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio / video equipment parts such as audio / laser discs / compact discs / DVD discs / Blu-ray discs, lighting parts, refrigerator parts , Air conditioner parts, typewriter parts, word processor parts, home appliances such as water heaters, bath water volume, water sensor parts such as temperature sensors, office computer parts, office computer parts, telephone equipment parts, facsimile Machine-related parts represented by related parts, copier-related parts, cleaning jigs, motor parts, writers, typewriters, etc .: Optical equipment represented by microscopes, binoculars, cameras, watches, etc., precision machine-related parts; Alternators Terminal, alternator connector, IC regulator , Potentiometer base for light diamond, relay block, inhibitor switch, various valves such as exhaust gas valve, fuel-related / exhaust / intake system pipes, air intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint, Carburetor main body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pad wear sensor, thermostat base for air conditioner, heating hot air flow Control valve, brush holder for radiator motor, water pump impeller, turbine vane, wiper motor related parts, distributor Starter switch, ignition coil and its bobbin, motor insulator, motor rotor, motor core, starter relay, wire harness for transmission, window washer nozzle, air conditioner panel switch board, coil for fuel related electromagnetic valve, connector for fuse, horn terminal, electrical equipment It can also be applied to parts / insulators, step motor rotors, lamp sockets, lamp reflectors, lamp housings, brake pistons, solenoid bobbins, engine oil filters, parts for automobiles and vehicles such as ignition device cases, and other various uses.
 本発明を以下の実施例により更に詳細に説明するが、本発明はこれらの例に限定されるものではない。
 なお、実施例においてポリアリーレンスルフィド樹脂及びポリアリーレンスルフィド樹脂組成物の300℃での溶融粘度(V6)は、島津製作所製フローテスター『CFT-500D』を用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)の条件にて、6分間保持した後に測定した。
 また、ポリアリーレンスルフィド樹脂及びポリアリーレンスルフィド樹脂組成物の融点(Tm)又は(Tm2)、再結晶化温度(Tc2)、ガラス転移温度(Tg)、溶融結晶化温度(Tmc)は、樹脂又は樹脂組成物を350℃にて溶融させた後、急冷させて非晶性フィルムを作製し、このフィルムからおよそ4mgはかりとり、示差走査熱量計(Perkin Elmer社製『DSC8500』)を用いて測定した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
In Examples, the melt viscosity (V6) at 300 ° C. of the polyarylene sulfide resin and the polyarylene sulfide resin composition was 300 ° C. under a load of 1.96 × using a flow tester “CFT-500D” manufactured by Shimadzu Corporation. It measured after hold | maintaining for 6 minutes on the conditions of 10 < 6 > Pa, L / D = 10 (mm) / 1 (mm).
In addition, the melting point (Tm) or (Tm2), recrystallization temperature (Tc2), glass transition temperature (Tg), and melt crystallization temperature (Tmc) of the polyarylene sulfide resin and the polyarylene sulfide resin composition are resin or resin. The composition was melted at 350 ° C. and then rapidly cooled to prepare an amorphous film. Approximately 4 mg was weighed from this film and measured using a differential scanning calorimeter (“DSC8500” manufactured by Perkin Elmer).
製造例1 ポリアリーレンスルフィド樹脂(A-1)の製造
 圧力計、温度計、コンデンサーを連結した撹拌翼、及び底弁付きの150リットルオートクレーブに、47.55質量%硫化水素ナトリウム水溶液14.148kg、48.8質量%水酸化ナトリウム水溶液9.541kg、及びN-メチル-2-ピロリドン38.0kgを仕込んだ。窒素気流下で攪拌しながら209℃まで昇温して、水12.150kgを留出させた(残存する水分量は硫化水素ナトリウム1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン17.464kg及びN-メチル-2-ピロリドン16.0kgを仕込んだ。液温を150℃とし、窒素ガスを用いてゲージ圧が0.1MPaになるよう加圧して昇温を開始した。260℃になった時点でオートクレーブ上部に散水を開始し、液温が下がらないように調節しながら260℃で2時間反応した。反応中の最高圧力は0.87MPaであった。降温させると共にオートクレーブ上部の散水冷却を止め、100℃になった時点で底弁を開き、反応スラリーを150リットル平板濾過機に移送して120℃で加圧濾過した。得られたケーキを70℃の温水50kgで洗浄及び濾過し、さらに温水25kgでの洗浄及び濾過作業を4回繰り返した。熱風循環乾燥機を用いて120℃で15時間乾燥し、ポリアリーレンスルフィド樹脂(A-1)を得た。得られたポリアリーレンスルフィド樹脂(A-1)の融点(Tm)は280℃、再結晶化温度(Tc2)は231℃、両者の差ΔTは49℃、300℃での溶融粘度(V6)は52Pa・sであった。
Production Example 1 Production of polyarylene sulfide resin (A-1) In a 150 liter autoclave equipped with a pressure gauge, a thermometer, a condenser blade connected to a condenser, and a bottom valve, a 14.148 kg of a 47.55 mass% sodium hydrogen sulfide aqueous solution, 9.541 kg of 48.8 mass% sodium hydroxide aqueous solution and 38.0 kg of N-methyl-2-pyrrolidone were charged. While stirring under a nitrogen stream, the temperature was raised to 209 ° C. to distill 12.150 kg of water (the amount of water remaining was 1.13 moles per mole of sodium hydrogen sulfide). Thereafter, the autoclave was sealed and cooled to 180 ° C., and 17.464 kg of paradichlorobenzene and 16.0 kg of N-methyl-2-pyrrolidone were charged. The liquid temperature was set to 150 ° C., and nitrogen gas was used to increase the gauge pressure to 0.1 MPa, and the temperature increase was started. When the temperature reached 260 ° C., watering was started on the top of the autoclave, and the reaction was carried out at 260 ° C. for 2 hours while adjusting the liquid temperature so as not to decrease. The maximum pressure during the reaction was 0.87 MPa. The temperature was lowered and sprinkling cooling at the top of the autoclave was stopped. When the temperature reached 100 ° C., the bottom valve was opened, and the reaction slurry was transferred to a 150 liter flat filter and filtered under pressure at 120 ° C. The obtained cake was washed and filtered with 50 kg of hot water at 70 ° C., and washing and filtering with 25 kg of hot water were repeated four times. The polyarylene sulfide resin (A-1) was obtained by drying at 120 ° C. for 15 hours using a hot air circulating dryer. The resulting polyarylene sulfide resin (A-1) has a melting point (Tm) of 280 ° C., a recrystallization temperature (Tc2) of 231 ° C., a difference ΔT between them of 49 ° C. and a melt viscosity (V6) at 300 ° C. It was 52 Pa · s.
製造例2 ポリアリーレンスルフィド樹脂(A-2)の製造
 圧力計、温度計、コンデンサーを連結した撹拌翼、及び底弁付きの150リットルオートクレーブに、47.55質量%硫化水素ナトリウム水溶液14.148kg、48.7質量%水酸化ナトリウム水溶液9.474kg、及びN-メチル-2-ピロリドン38.0kgを仕込んだ。窒素気流下で攪拌しながら209℃まで昇温して、水12.150kgを留出させた(残存する水分量は硫化水素ナトリウム1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン17.129kg及びN-メチル-2-ピロリドン16.0kgを仕込んだ。液温を150℃とし、窒素ガスを用いてゲージ圧が0.1MPaになるように加圧して昇温を開始した。液温220℃で4時間撹拌したのち、さらに昇温させて260℃になった時点でオートクレーブ上部に散水を開始し、液温が下がらないように調節しながら260℃で3時間反応した。反応中の最高圧力は、0.86MPaであった。降温させると共にオートクレーブ上部の散水冷却を止め、100℃になった時点で底弁を開き、反応スラリーを150リットル平板ろ過機に移送して120℃で加圧濾過した。撹拌翼付き150リットル真空乾燥機を用い、減圧下150℃で2時間撹拌してN-メチル-2-ピロリドンを留去した。得られたケーキを70℃の温水50kgで洗浄及び濾過し、さらに温水25kgでの洗浄及び濾過作業を7回繰り返した。熱風循環乾燥機を用いて120℃で15時間乾燥し、300℃での溶融粘度(V6)が122Pa・sのポリアリーレンスルフィド樹脂中間体を得た。これを、熱風循環乾燥機を用いて250℃で4時間熱処理して、目的のポリアリーレンスルフィド樹脂(A-2)を得た。得られたポリフェニレンスルフィド樹脂(A-2)の融点(Tm)は279℃、再結晶化温度(Tc2)は238℃、両者の差ΔTは41℃、300℃での溶融粘度(V6)は612Pa・sであった。
Production Example 2 Production of polyarylene sulfide resin (A-2) In a 150 liter autoclave equipped with a pressure gauge, a thermometer, a condenser blade connected to a condenser, and a bottom valve, a 14.148 kg of a 47.55 mass% sodium hydrogen sulfide aqueous solution, 9.474 kg of 48.7 mass% sodium hydroxide aqueous solution and 38.0 kg of N-methyl-2-pyrrolidone were charged. While stirring under a nitrogen stream, the temperature was raised to 209 ° C. to distill 12.150 kg of water (the amount of water remaining was 1.13 moles per mole of sodium hydrogen sulfide). Thereafter, the autoclave was sealed and cooled to 180 ° C., and 17.129 kg of paradichlorobenzene and 16.0 kg of N-methyl-2-pyrrolidone were charged. The liquid temperature was set to 150 ° C., and nitrogen gas was used to increase the gauge pressure to 0.1 MPa, and the temperature increase was started. After stirring at a liquid temperature of 220 ° C. for 4 hours, when the temperature was further raised to 260 ° C., watering was started on the top of the autoclave, and the reaction was carried out at 260 ° C. for 3 hours while adjusting the liquid temperature so as not to decrease. The maximum pressure during the reaction was 0.86 MPa. The temperature was lowered and sprinkling cooling at the top of the autoclave was stopped. When the temperature reached 100 ° C., the bottom valve was opened, and the reaction slurry was transferred to a 150 liter flat filter and filtered under pressure at 120 ° C. Using a 150 liter vacuum dryer equipped with a stirring blade, the mixture was stirred at 150 ° C. under reduced pressure for 2 hours to distill off N-methyl-2-pyrrolidone. The obtained cake was washed and filtered with 50 kg of warm water at 70 ° C., and further washed and filtered with 25 kg of warm water 7 times. It dried at 120 degreeC for 15 hours using the hot air circulation dryer, and obtained the polyarylene sulfide resin intermediate body whose melt viscosity (V6) in 300 degreeC is 122 Pa.s. This was heat-treated at 250 ° C. for 4 hours using a hot air circulating dryer to obtain the desired polyarylene sulfide resin (A-2). The resulting polyphenylene sulfide resin (A-2) has a melting point (Tm) of 279 ° C., a recrystallization temperature (Tc 2) of 238 ° C., a difference ΔT between them of 41 ° C. and a melt viscosity (V6) at 300 ° C. of 612 Pa.・ It was s.
製造例3 ポリアリーレンスルフィド樹脂(A-3)の製造
 圧力計、温度計、コンデンサー、デカンター、精留塔を連結した撹拌翼付き150リットルオートクレーブにパラジクロロベンゼン33.222kg、N-メチル-2-ピロリドン2.280kg、47.23質量%硫化水素ナトリウム水溶液27.300kg、及び49.21質量%水酸化ナトリウム水溶液18.533gを仕込み、窒素雰囲気下で撹拌しながら173℃まで5時間掛けて昇温して、水27.300kgを留出させた後、オートクレーブを密閉した。脱水時に共沸により留出したパラジクロロベンゼンはデカンターで分離して、随時オートクレーブ内に戻した。脱水終了後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がパラジクロロベンゼン中に分散した状態であった。この組成物中のN-メチル-2-ピロリドン含有量は0.069kgであったことから、仕込んだN-メチル-2-ピロリドンの97モル%がNMPの開環体(4-(メチルアミノ)酪酸)のナトリウム塩(以下、「SMAB」と略記する。)に加水分解されていることが示された。オートクレーブ内のSMAB量は、オートクレーブ中に存在する硫黄原子1モル当たり0.097モルであった。仕込んだ硫化水素ナトリウムと水酸化ナトリウムが全量無水硫化ナトリウムに変わる場合の理論脱水量は27.921gであることから、オートクレーブ内の残水量621gの内、401gはN-メチル-2-ピロリドンと水酸化ナトリウムとの加水分解反応に消費されて、水としてオートクレーブ内に存在せず、残りの220gは水、あるいは結晶水の形でオートクレーブ内に残留していることを示していた。オートクレーブ内の水分量はオートクレーブ中に存在する硫黄原子1モル当たり0.053モルであった。
 上記脱水工程終了後に、内温を160℃に冷却し、1,3,5-トリクロロベンゼン25.0gとN-メチル-2-ピロリドン47.492kgの混合溶液を仕込み、185℃まで昇温した。オートクレーブ内の水分量は、工程2で仕込んだN-メチル-2-ピロリドン1モル当たり0.025モルであった。ゲージ圧が0.00MPaに到達した時点で、精留塔を連結したバルブを開放し、内温200℃まで1時間掛けて昇温した。この際、精留塔出口温度が110℃以下になる様に冷却とバルブ開度で制御した。留出したパラジクロロベンゼンと水の混合蒸気はコンデンサーで凝縮し、デカンターで分離して、パラジクロロベンゼンはオートクレーブへ戻した。留出水量は179g、オートクレーブ内水分量は41gであり、脱水後に仕込んだN-メチル-2-ピロリドン1モル当たり0.005モルで、オートクレーブ中に存在する硫黄原子1モル当たり0.010モルであった。オートクレーブ内のSMAB量は脱水時と同じく、オートクレーブ中に存在する硫黄原子1モル当たり0.097モルであった。次いで、内温200℃から230℃まで3時間掛けて昇温し、230℃で3時間撹拌した後、250℃まで昇温し、1時間撹拌した。内温200℃時点のゲージ圧は0.03MPaで、最終ゲージ圧は0.30MPaであった。冷却後、得られたスラリーの内、6.5kgを30リットルの水に注いで80℃で1時間撹拌した後、濾過した。このケーキを再び30リットルの温水で1時間撹拌し、洗浄した後、濾過した。この操作を4回繰り返して濾過し、熱風乾燥機を用いて120℃で一晩乾燥して白色の粉末状のポリアリーレンスルフィド樹脂(A-3)を得た。得られたポリアリーレンスルフィド樹脂(A-3)の融点(Tm)は284℃、再結晶化温度(Tc2)は245℃、両者の差ΔTは39℃、300℃での溶融粘度(V6)は505Pa・s、であった。
Production Example 3 Production of Polyarylene Sulfide Resin (A-3) 33.222 kg of paradichlorobenzene and N-methyl-2-pyrrolidone were added to a 150 liter autoclave with a stirring blade connected with a pressure gauge, thermometer, condenser, decanter and rectifying tower. 2.280 kg, 27.300 kg of 47.23 mass% sodium hydrogen sulfide aqueous solution and 18.533 g of 49.21 mass% sodium hydroxide aqueous solution were charged, and the temperature was raised to 173 ° C. over 5 hours with stirring in a nitrogen atmosphere. After distilling 27.300 kg of water, the autoclave was sealed. Paradichlorobenzene distilled by azeotropic distillation during dehydration was separated with a decanter and returned to the autoclave as needed. After completion of the dehydration, the finely divided anhydrous sodium sulfide composition was dispersed in paradichlorobenzene in the autoclave. Since the N-methyl-2-pyrrolidone content in this composition was 0.069 kg, 97 mol% of the charged N-methyl-2-pyrrolidone was an NMP ring-opened product (4- (methylamino) It was shown to be hydrolyzed to the sodium salt of butyric acid (hereinafter abbreviated as “SMAB”). The amount of SMAB in the autoclave was 0.097 mol per mol of sulfur atoms present in the autoclave. When the total amount of sodium hydrogen sulfide and sodium hydroxide charged is changed to anhydrous sodium sulfide, the theoretical dehydration amount is 27.921 g. Therefore, of the remaining water amount of 621 g in the autoclave, 401 g is N-methyl-2-pyrrolidone and water. It was consumed in the hydrolysis reaction with sodium oxide and was not present in the autoclave as water, and the remaining 220 g remained in the autoclave in the form of water or crystal water. The amount of water in the autoclave was 0.053 mol per mol of sulfur atoms present in the autoclave.
After completion of the dehydration step, the internal temperature was cooled to 160 ° C., a mixed solution of 25.0 g of 1,3,5-trichlorobenzene and 47.492 kg of N-methyl-2-pyrrolidone was charged, and the temperature was raised to 185 ° C. The amount of water in the autoclave was 0.025 mol per mol of N-methyl-2-pyrrolidone charged in Step 2. When the gauge pressure reached 0.00 MPa, the valve connected to the rectifying column was opened, and the temperature was raised to an internal temperature of 200 ° C. over 1 hour. At this time, the cooling and the valve opening were controlled so that the rectification tower outlet temperature was 110 ° C. or lower. The distilled vapor of paradichlorobenzene and water was condensed by a condenser and separated by a decanter, and paradichlorobenzene was returned to the autoclave. The amount of distilled water was 179 g, the water content in the autoclave was 41 g, 0.005 mol per mol of N-methyl-2-pyrrolidone charged after dehydration, and 0.010 mol per mol of sulfur atoms present in the autoclave. there were. The amount of SMAB in the autoclave was 0.097 mol per mol of sulfur atoms present in the autoclave, as in dehydration. Next, the temperature was raised from an internal temperature of 200 ° C. to 230 ° C. over 3 hours, stirred at 230 ° C. for 3 hours, then heated to 250 ° C. and stirred for 1 hour. The gauge pressure at an internal temperature of 200 ° C. was 0.03 MPa, and the final gauge pressure was 0.30 MPa. After cooling, 6.5 kg of the obtained slurry was poured into 30 liters of water, stirred at 80 ° C. for 1 hour, and then filtered. The cake was again stirred with 30 liters of warm water for 1 hour, washed and filtered. This operation was repeated four times, followed by filtration and drying overnight at 120 ° C. using a hot air dryer to obtain a white powdery polyarylene sulfide resin (A-3). The resulting polyarylene sulfide resin (A-3) has a melting point (Tm) of 284 ° C., a recrystallization temperature (Tc2) of 245 ° C., a difference ΔT between them of 39 ° C., and a melt viscosity (V6) at 300 ° C. 505 Pa · s.
製造例4 ポリアリーレンスルフィド樹脂(B-1)の製造
 150リットルオートクレーブに、フレーク状の硫化ナトリウム(60.9質量%)19.222kgと、N-メチル-2-ピロリドン45.0kgを仕込んだ。窒素気流下で撹拌しながら204℃まで昇温して、水4.438kgを留出させた(残存する水分量は硫化ナトリウム1モル当り1.14モル)。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン21.721kg、メタジクロロベンゼン3.833kg(両者のモル比[(p)/(m)]=85/15)及びN-メチル-2-ピロリドン18.0kgを仕込んだ。液温150℃で窒素ガスを用いて1kg/cm2 Gに加圧して昇温を開始した。液温220℃で3時間攪拌しつつ、オートクレーブ上部の外側に巻き付けたコイルに80℃の冷媒を流し冷却した。その後昇温して、液温260℃で3時間攪拌した後、降温させると共にオートクレーブ上部の冷却を止めた。オートクレーブ上部を冷却中、液温が下がらないように一定に保持した。反応中の最高圧力は8.91kg/cm2 Gであった。得られたスラリーを温水で2回洗浄及び濾過し、水を約50質量%含む濾過ケーキを得た。次に、この濾過ケーキに水60kg及び酢酸100gを加えて再スラリー化し、50℃で30分間攪拌した後、再度濾過した。この際、上記スラリーのpHは4.6であった。ここで得られた濾過ケーキに、水60kgを加え30分間攪拌した後、再度濾過する操作を5回繰り返した。得られた濾過ケーキを熱風循環乾燥機中、120℃で4.5時間乾燥し、白色粉末状のポリアリーレンスルフィド樹脂(B-1)を得た。得られたポリアリーレンスルフィド樹脂(B-1)の融点(Tm)は230℃、再結晶化温度(Tc2)は155℃、両者の差ΔTは75℃、300℃での溶融粘度(V6)は45Pa・sであった。
Production Example 4 Production of Polyarylene Sulfide Resin (B-1) A 150-liter autoclave was charged with 19.222 kg of flaky sodium sulfide (60.9 mass%) and 45.0 kg of N-methyl-2-pyrrolidone. While stirring under a nitrogen stream, the temperature was raised to 204 ° C. to distill 4.438 kg of water (the amount of water remaining was 1.14 mol per mol of sodium sulfide). Thereafter, the autoclave was sealed and cooled to 180 ° C., paradichlorobenzene 21.721 kg, metadichlorobenzene 3.833 kg (molar ratio of both [(p) / (m)] = 85/15) and N-methyl-2- 18.0 kg of pyrrolidone was charged. The temperature was increased by pressurizing to 1 kg / cm 2 G using nitrogen gas at a liquid temperature of 150 ° C. While stirring at a liquid temperature of 220 ° C. for 3 hours, an 80 ° C. refrigerant was passed through a coil wound around the outside of the upper part of the autoclave to cool it. Thereafter, the temperature was raised, and the mixture was stirred at a liquid temperature of 260 ° C. for 3 hours. Then, the temperature was lowered and cooling of the upper part of the autoclave was stopped. The upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping. The maximum pressure during the reaction was 8.91 kg / cm 2 G. The obtained slurry was washed twice with warm water and filtered to obtain a filter cake containing about 50% by mass of water. Next, 60 kg of water and 100 g of acetic acid were added to the filter cake to re-slurry, stirred at 50 ° C. for 30 minutes, and then filtered again. At this time, the pH of the slurry was 4.6. The operation of adding 60 kg of water to the obtained filter cake and stirring for 30 minutes and then filtering again was repeated 5 times. The obtained filter cake was dried in a hot air circulating dryer at 120 ° C. for 4.5 hours to obtain a white powdered polyarylene sulfide resin (B-1). The resulting polyarylene sulfide resin (B-1) has a melting point (Tm) of 230 ° C., a recrystallization temperature (Tc 2) of 155 ° C., a difference ΔT between them of 75 ° C., and a melt viscosity (V6) at 300 ° C. It was 45 Pa · s.
製造例5 ポリアリーレンスルフィド樹脂(B-2)の製造
パラジクロロベンゼンを22.999kgに、メタジクロロベンゼンを2.555kgに変更した以外は(両者のモル比[(p)/(m)]=90/10)、製造例4と同様の方法でポリアリーレンスルフィド樹脂(B-2)を得た。得られたポリアリーレンスルフィド樹脂(B-2)の融点(Tm)は249℃、再結晶化温度(Tc2)は160℃、両者の差ΔTは89℃、300℃での溶融粘度(V6)は22Pa・s、であった。
Production Example 5 Production of polyarylene sulfide resin (B-2) Except that paradichlorobenzene was changed to 22.999 kg and metadichlorobenzene was changed to 2.555 kg (molar ratio of both [(p) / (m)] = 90 / 10) A polyarylene sulfide resin (B-2) was obtained in the same manner as in Production Example 4. The resulting polyarylene sulfide resin (B-2) has a melting point (Tm) of 249 ° C., a recrystallization temperature (Tc2) of 160 ° C., a difference ΔT between them of 89 ° C., and a melt viscosity (V6) at 300 ° C. 22 Pa · s.
製造例6 ポリアリーレンスルフィド樹脂(B-3)の製造
パラジクロロベンゼンを24.276kgに、メタジクロロベンゼンを1.277kgに変更した以外は(両者のモル比[(p)/(m)]=95/5)、製造例4と同様の方法でポリアリーレンスルフィド樹脂(B-3)を得た。得られたポリアリーレンスルフィド樹脂(B-3)の融点(Tm)は265℃、再結晶化温度(Tc2)は179℃、両者の差ΔTは86℃、300℃での溶融粘度(V6)は10Pa・sであった。
Production Example 6 Production of polyarylene sulfide resin (B-3) Except that paradichlorobenzene was changed to 24.276 kg and metadichlorobenzene was changed to 1.277 kg (molar ratio of both [(p) / (m)] = 95 / 5) A polyarylene sulfide resin (B-3) was obtained in the same manner as in Production Example 4. The resulting polyarylene sulfide resin (B-3) has a melting point (Tm) of 265 ° C., a recrystallization temperature (Tc2) of 179 ° C., a difference ΔT between them of 86 ° C. and a melt viscosity (V6) at 300 ° C. 10 Pa · s.
製造例7 ポリアリーレンスルフィド樹脂(B-4)の製造
パラジクロロベンゼンを20.442kgに、メタジクロロベンゼンを5.111kgに変更した以外は(両者のモル比[(p)/(m)]=80/20)、製造例4と同様の方法でポリアリーレンスルフィド樹脂(B-4)を得た。得られたポリアリーレンスルフィド樹脂(B-4)の融点(Tm)は212℃、再結晶化温度(Tc2)は147℃、両者の差ΔTは65℃、300℃での溶融粘度(V6)は21Pa・sであった。
Production Example 7 Production of polyarylene sulfide resin (B-4) Except that paradichlorobenzene was changed to 20.442 kg and metadichlorobenzene was changed to 5.111 kg (molar ratio of both [(p) / (m)] = 80 / 20) A polyarylene sulfide resin (B-4) was obtained in the same manner as in Production Example 4. The resulting polyarylene sulfide resin (B-4) has a melting point (Tm) of 212 ° C., a recrystallization temperature (Tc2) of 147 ° C., a difference ΔT between them of 65 ° C., and a melt viscosity (V6) at 300 ° C. It was 21 Pa · s.
製造例8 ポリアリーレンスルフィド樹脂(B-5)の製造
パラジクロロベンゼンを17.887kgに、メタジクロロベンゼンを7.666kgに変更した以外は(両者のモル比[(p)/(m)]=70/30)、製造例4と同様の方法でポリアリーレンスルフィド樹脂(B-5)を得た。得られたポリアリーレンスルフィド樹脂(B-5)の300℃での溶融粘度(V6)は31Pa・sであった。
Production Example 8 Production of polyarylene sulfide resin (B-5) Except that paradichlorobenzene was changed to 17.887 kg and metadichlorobenzene was changed to 7.666 kg (molar ratio of both [(p) / (m)] = 70 / 30) A polyarylene sulfide resin (B-5) was obtained in the same manner as in Production Example 4. The resulting polyarylene sulfide resin (B-5) had a melt viscosity (V6) at 300 ° C. of 31 Pa · s.
実施例1
 ポリアリーレンスルフィド樹脂(A-1)60質量部と、ポリアリーレンスルフィド樹脂(B-1)40質量部とを粉末状態で混ぜ合わせた後、小型二軸押出機(DSM Explore社製「Compounder15」)を用いて混練温度320℃、回転数250rpm、滞留時間1分の条件で混練を行い、前記小型二軸押出機に取り付けたヘッドから溶融物をストランド状に押出し、長さ2mm大に切断して、ポリアリーレンスルフィド樹脂組成物(1)のペレットを得た。
 ポリアリーレンスルフィド樹脂組成物(1)の融点(Tm)、再結晶化温度(Tc2)を測定、両者の差ΔTを算出した。結果を表1に示す。
 融点(Tm)が高く、再結晶化温度(Tc2)が低く、ΔTが大きいほど、低温成形性に優れ、かつ、耐熱性にも優れる樹脂組成物である。
Example 1
After mixing 60 parts by mass of polyarylene sulfide resin (A-1) and 40 parts by mass of polyarylene sulfide resin (B-1) in a powder state, a small twin-screw extruder (“Compounder 15” manufactured by DSM Explorer) Kneading is performed at a kneading temperature of 320 ° C., a rotation speed of 250 rpm, and a residence time of 1 minute, and the melt is extruded in a strand form from a head attached to the small twin-screw extruder and cut into a length of 2 mm. The pellet of the polyarylene sulfide resin composition (1) was obtained.
The melting point (Tm) and recrystallization temperature (Tc2) of the polyarylene sulfide resin composition (1) were measured, and the difference ΔT between them was calculated. The results are shown in Table 1.
The higher the melting point (Tm), the lower the recrystallization temperature (Tc2), and the larger the ΔT, the better the low-temperature moldability and the better the heat resistance.
実施例2~7、及び比較例1、2
 表1に示す配合割合で各ポリアリーレンスルフィド樹脂を用い、実施例1と同様にポリアリーレンスルフィド樹脂組成物(2)~(6)及び(1’)、(2’)を製造して、その融点(Tm)、再結晶化温度(Tc2)を測定、両者の差ΔTを算出した。結果を表1に示す。
Examples 2 to 7 and Comparative Examples 1 and 2
Polyarylene sulfide resin compositions (2) to (6) and (1 ′) and (2 ′) were produced in the same manner as in Example 1 using the respective polyarylene sulfide resins at the blending ratios shown in Table 1. The melting point (Tm) and the recrystallization temperature (Tc2) were measured, and the difference ΔT between them was calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
実施例8、9、比較例3
 下記表2に示す割合で「FT-562」(ガラス繊維)以外の各成分をタンブラーで均一に混合し、配合材料とした。次に、サイドフィーダー付の小型二軸押出機(DSM Explore社製「Compounder15」)を用いて、樹脂投入部より配合材料を、サイドフィーダーより「FT-562」(ガラス繊維)を投入して、混練温度320℃、回転数200rpm、吐出量30kg/hで溶融混練を行い、前記小型二軸押出機に取り付けたヘッドから溶融物をストランド状に押出し、長さ2mm大に切断して、ポリアリーレンスルフィド樹脂組成物のペレットを得た。
Examples 8 and 9, Comparative Example 3
Ingredients other than “FT-562” (glass fiber) in the proportions shown in Table 2 below were uniformly mixed with a tumbler to obtain a blended material. Next, using a small twin-screw extruder with a side feeder (“Compounder 15” manufactured by DSM Explore), the compounding material was introduced from the resin charging portion, and “FT-562” (glass fiber) was charged from the side feeder. Melt kneading is performed at a kneading temperature of 320 ° C., a rotation speed of 200 rpm, and a discharge rate of 30 kg / h. The melt is extruded into a strand shape from a head attached to the small twin screw extruder, cut into a length of 2 mm, and polyarylene A pellet of a sulfide resin composition was obtained.
 表2中の各成分の詳細は以下の通り。
・「OSF-6040」:ダウコーニング社製「XIAMETER(登録商標)OFS-6040 Silane」 エポキシ官能性アルコキシシラン
・「CaCO」:丸尾カルシウム製「MSK-PO」
・「PE-190」:クラリアント社製「Licowax(登録商標)PE190 Powder」 高密度ポリエチレンワックス
・「AZO」:正同化学工業株式会社製酸化亜鉛
・「CS-100K」:勝田株式会社製ゼオライト
・「FT-562」:OWENSCORNING社製「FT-562」繊維径/10(μm)、繊維長/3(mm)、熱伝導率1(W/m・K)
Details of each component in Table 2 are as follows.
· "OSF-6040": manufactured by Dow Corning "XIAMETER (R) OFS-6040 Silane" epoxy-functional alkoxysilane, "CaCO 3": Maruo manufactured calcium "MSK-PO"
"PE-190": "Licowax (registered trademark) PE190 Powder" manufactured by Clariant, high density polyethylene wax "AZO": Zinc oxide manufactured by Shodo Chemical Co., Ltd. "CS-100K": Zeolite manufactured by Katsuta Corporation “FT-562”: “FT-562” manufactured by OWENSCORNING, fiber diameter / 10 (μm), fiber length / 3 (mm), thermal conductivity 1 (W / m · K)
耐熱性試験
 先で得たペレットについて、融点(Tm2)を測定した。
Heat resistance test About the pellet obtained previously, melting | fusing point (Tm2) was measured.
流動性試験
 先で得たペレットについて、1.6mm厚みのスパイラルフロー金型を用い、シリンダー温度320℃、金型温度150℃、射出圧力90MPa、6秒の条件で成形した場合のスパイラルフロー長を測定した。40cm以上を◎、40cm未満を×として評価した。
Fluidity test Using the 1.6 mm thick spiral flow mold, the spiral flow length when molded at a cylinder temperature of 320 ° C., a mold temperature of 150 ° C., an injection pressure of 90 MPa, and 6 seconds is used. It was measured. 40 cm or more was evaluated as ◎, and less than 40 cm was evaluated as x.
バリの発生試験
 先で得たペレットを射出成形機(住友重機械工業株式会社製「SE75DU」)にて320℃で溶融し、Type-Aダンベル試験片成形用金型(金型表面の表面粗さRz値30μm)を用いてシリンダー温度320℃、金型温度60℃でType-Aダンベル試験片に成形し、該金型においてゲートと反対側のガス抜き用の隙間(クリアランス20μm)に発生したバリ長(μm)を測定して評価した。その結果を表2に示す。
Burr generation test The pellet obtained above was melted at 320 ° C. with an injection molding machine (“SE75DU” manufactured by Sumitomo Heavy Industries, Ltd.), and a mold for molding Type-A dumbbell specimen (surface roughness of the mold surface). Was formed into a Type-A dumbbell test piece at a cylinder temperature of 320 ° C. and a mold temperature of 60 ° C., and was generated in a degassing gap (clearance of 20 μm) opposite to the gate in the mold. The burr length (μm) was measured and evaluated. The results are shown in Table 2.
表面白化の評価
 まず始めに比較例3で得られたペレットを射出成形機(住友重機械工業株式会社製「SE75DU」)にて320℃で溶融し、Type-Aダンベル試験片成形用金型(金型表面の表面粗さRz値30μm)を用いて、シリンダー温度320℃、金型温度140℃でType-Aダンベル試験片(表面粗さRz値80μm)に成形し、標準品とした。次に、実施例8、9および比較例3、4で得られたペレットを同じ金型を用いて、シリンダー温度320℃、金型温度60℃でType-Aダンベル試験片に成形し、試験品とした。次に、標準品と試験品との表面白化の度合いを検定員5名に比較してもらい、以下の基準で採点した。
 標準品と試験品の白化の度合いに差が無い・・・0点
 標準品に比べて試験品が白化している・・・1点
上記比較試験は日を変えてそれぞれ5回行い、検定員5名の合計点の平均値を算出し、以下の基準で評価した。その結果を表2に示す。
 合計点の平均値が0点      ・・・「◎」
 合計点の平均値が0点超~1点以下・・・「○」
 合計点の平均値が1点超~2点以下・・・「△」
 合計点の平均値が2点超~    ・・・「×」
Evaluation of Surface Whitening First, the pellets obtained in Comparative Example 3 were melted at 320 ° C. with an injection molding machine (“SE75DU” manufactured by Sumitomo Heavy Industries, Ltd.), and a mold for molding a Type-A dumbbell specimen ( Using a mold surface roughness Rz value of 30 μm, a Type-A dumbbell test piece (surface roughness Rz value 80 μm) was molded at a cylinder temperature of 320 ° C. and a mold temperature of 140 ° C. to obtain a standard product. Next, the pellets obtained in Examples 8 and 9 and Comparative Examples 3 and 4 were molded into Type-A dumbbell test pieces at the cylinder temperature of 320 ° C. and the mold temperature of 60 ° C. using the same mold. It was. Next, 5 testers compared the degree of surface whitening between the standard product and the test product and scored according to the following criteria.
There is no difference in the degree of whitening between the standard product and the test product ... 0 points The test product is whitened compared to the standard product ... 1 point The average value of the total score of five people was calculated and evaluated according to the following criteria. The results are shown in Table 2.
The average value of total points is 0 points.
Average value of total points is more than 0 to less than 1 point ... “○”
Average value of total points is more than 1 to 2 points ... "△"
The average value of the total points is more than 2 points.
表面粗さの測定
 先で得たペレットを射出成形機(住友重機械工業株式会社製「SE75DU」)にて320℃で溶融し、Type-Aダンベル試験片成形用金型(金型表面の表面粗さRz値30μm)を用いてシリンダー温度320℃、金型温度60℃でType-Aダンベル試験片を成形した。得られた試験片の表面粗さ(Rz値)を、走査型プローブ顕微鏡(キーエンス社製「SPM-9600」)を用いて測定した。
Measurement of surface roughness The pellet obtained above was melted at 320 ° C. with an injection molding machine (“SE75DU” manufactured by Sumitomo Heavy Industries, Ltd.), and a mold for molding a Type-A dumbbell specimen (surface of the mold surface) A Type-A dumbbell test piece was molded at a cylinder temperature of 320 ° C. and a mold temperature of 60 ° C. using a roughness Rz value of 30 μm. The surface roughness (Rz value) of the obtained test piece was measured using a scanning probe microscope (“SPM-9600” manufactured by Keyence Corporation).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (11)

  1.  アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位である樹脂(A)と、
     アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位で結合する構造部位(p)と、メタ位で結合する構造部位(m)との両方を有する樹脂(B)と、を含有することを特徴とするポリアリーレンスルフィド樹脂組成物。
    A polyarylene sulfide resin having an arylene thioether as a repeating unit, wherein the bonding point of the thioether and the arylene group is in the para position;
    A polyarylene sulfide resin having an arylene thioether as a repeating unit, which has both a structural site (p) where the bonding point of the thioether and the arylene group is bonded at the para position and a structural site (m) bonded at the meta position. A polyarylene sulfide resin composition comprising a resin (B).
  2. 前記樹脂(A)と(B)とが、それぞれ下記構造式(X)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子、炭素原子数1~4のアルキル基又はアルコキシ基、カルボキシ基、ニトロ基、アミノ基、フェニル基の何れかであり、kは1~4の整数である。]
    で表される構造部位(x)を繰り返し単位として有するポリアリーレンスルフィド樹脂であって、前記構造部位(x)中のチオエーテルとアリーレン基の結合点がパラ位である樹脂(A)と、
     前記構造部位(x)中のチオエーテルとアリーレン基の結合点がパラ位である構造部位(p)とメタ位である構造部位(m)との両方を有する樹脂(B)と、である請求項1記載のポリアリーレンスルフィド樹脂組成物。
    The resins (A) and (B) are each represented by the following structural formula (X)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 is any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, a carboxy group, a nitro group, an amino group, and a phenyl group, and k is an integer of 1 to 4. ]
    A polyarylene sulfide resin having as a repeating unit the structural moiety (x) represented by formula (A), wherein the bonding point between the thioether and the arylene group in the structural moiety (x) is in the para position;
    A resin (B) having both a structural moiety (p) in which the bonding point of the thioether and the arylene group in the structural moiety (x) is in the para position and a structural moiety (m) in the meta position. 2. The polyarylene sulfide resin composition according to 1.
  3.  前記樹脂(A)と前記樹脂(B)との配合質量比[(A)/(B)]が、95/5~40/60の範囲である請求項1または2記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition according to claim 1 or 2, wherein a blending mass ratio [(A) / (B)] of the resin (A) and the resin (B) is in a range of 95/5 to 40/60. object.
  4.  前記樹脂(B)が有する前記構造部位(p)と前記構造部位(m)とのモル比率[(p)/(m)]が、99/1~60/40の範囲である請求項1~3のいずれか一項記載のポリアリーレンスルフィド樹脂組成物。 The molar ratio [(p) / (m)] of the structural part (p) and the structural part (m) of the resin (B) is in the range of 99/1 to 60/40. 4. The polyarylene sulfide resin composition according to any one of 3 above.
  5. 前記樹脂(A)と樹脂(B)とが、いずれも、分子末端がカルボキシル基又はカルボン酸アルカリ金属塩のポリアリーレンスルフィド樹脂である請求項1~4のいずれか一項記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin according to any one of claims 1 to 4, wherein both the resin (A) and the resin (B) are polyarylene sulfide resins having a carboxyl group or an alkali metal carboxylate at the molecular end. Composition.
  6.  融点(Tm)が270℃以上であり、かつ、再結晶化温度(Tc2)が210℃以下である請求項1~5のいずれか一項記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition according to any one of Claims 1 to 5, wherein the melting point (Tm) is 270 ° C or higher and the recrystallization temperature (Tc2) is 210 ° C or lower.
  7.  融点(Tm)と再結晶化温度(Tc2)との差ΔTが70℃以上である請求項6記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition according to claim 6, wherein the difference ΔT between the melting point (Tm) and the recrystallization temperature (Tc2) is 70 ° C or higher.
  8.  アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位である樹脂(A)と、
     アリーレンチオエーテルを繰り返し単位として有するポリアリーレンスルフィド樹脂であって、チオエーテルとアリーレン基の結合点がパラ位で結合する構造部位(p)と、メタ位で結合する構造部位(m)との両方を有する樹脂(B)とを、前記樹脂(A)の融点以上の温度範囲で溶融混練するポリアリーレンスルフィド樹脂組成物の製造方法。
    A polyarylene sulfide resin having an arylene thioether as a repeating unit, wherein the bonding point of the thioether and the arylene group is in the para position;
    A polyarylene sulfide resin having an arylene thioether as a repeating unit, which has both a structural site (p) where the bonding point of the thioether and the arylene group is bonded at the para position and a structural site (m) bonded at the meta position. The manufacturing method of the polyarylene sulfide resin composition which melt-kneads resin (B) in the temperature range more than melting | fusing point of the said resin (A).
  9.  請求項1~7の何れか一つに記載のポリアリーレンスルフィド樹脂組成物からなる成形品。 A molded article comprising the polyarylene sulfide resin composition according to any one of claims 1 to 7.
  10.  請求項1~7の何れか一つに記載のポリアリーレンスルフィド樹脂組成物を金型内で成型する工程を有する成形品の製造方法であって、金型温度が40~180℃の範囲であることを特徴とする成形品の製造方法。 A method for producing a molded article comprising a step of molding the polyarylene sulfide resin composition according to any one of claims 1 to 7 in a mold, wherein the mold temperature is in the range of 40 to 180 ° C. A method for producing a molded product characterized by the above.
  11.  前記金型温度が、40~120℃の範囲であることを特徴とする請求項10記載の成形品の製造方法。 The method for producing a molded article according to claim 10, wherein the mold temperature is in the range of 40 to 120 ° C.
PCT/JP2016/080801 2015-10-20 2016-10-18 Polyarylene sulfide resin composition, molded product, and methods for producing said composition and product WO2017069109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017546546A JPWO2017069109A1 (en) 2015-10-20 2016-10-18 Polyarylene sulfide resin composition, molded article, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-206346 2015-10-20
JP2015206346 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017069109A1 true WO2017069109A1 (en) 2017-04-27

Family

ID=58556991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080801 WO2017069109A1 (en) 2015-10-20 2016-10-18 Polyarylene sulfide resin composition, molded product, and methods for producing said composition and product

Country Status (2)

Country Link
JP (1) JPWO2017069109A1 (en)
WO (1) WO2017069109A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100364A (en) * 2016-12-21 2018-06-28 Dic株式会社 Polyarylene sulfide resin composition, molded article and method for producing the same
JP2020063339A (en) * 2018-10-16 2020-04-23 Dic株式会社 Resin composition and molded product thereof
WO2020116434A1 (en) * 2018-12-06 2020-06-11 Dic株式会社 Resin composition and molded body thereof
WO2022030212A1 (en) * 2020-08-06 2022-02-10 株式会社クレハ Poly(phenylene sulfide) resin composition and vibration damper including same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176658A (en) * 1985-01-31 1986-08-08 Kureha Chem Ind Co Ltd Phenylene sulfide resin composition
JPS63265618A (en) * 1987-04-24 1988-11-02 Kureha Chem Ind Co Ltd Thermoformed polyarylene sulfide container and its preparation
JP2004059708A (en) * 2002-07-26 2004-02-26 Toray Ind Inc Polyarylene sulfide copolymer
JP2014051655A (en) * 2012-08-07 2014-03-20 Toray Ind Inc Copolymer polyarylene sulfide sheet for metal bonding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173353A (en) * 2010-02-25 2011-09-08 Toray Ind Inc Composite structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176658A (en) * 1985-01-31 1986-08-08 Kureha Chem Ind Co Ltd Phenylene sulfide resin composition
JPS63265618A (en) * 1987-04-24 1988-11-02 Kureha Chem Ind Co Ltd Thermoformed polyarylene sulfide container and its preparation
JP2004059708A (en) * 2002-07-26 2004-02-26 Toray Ind Inc Polyarylene sulfide copolymer
JP2014051655A (en) * 2012-08-07 2014-03-20 Toray Ind Inc Copolymer polyarylene sulfide sheet for metal bonding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100364A (en) * 2016-12-21 2018-06-28 Dic株式会社 Polyarylene sulfide resin composition, molded article and method for producing the same
JP2020063339A (en) * 2018-10-16 2020-04-23 Dic株式会社 Resin composition and molded product thereof
WO2020080289A1 (en) * 2018-10-16 2020-04-23 Dic株式会社 Resin composition and molded article thereof
CN113166491A (en) * 2018-12-06 2021-07-23 Dic株式会社 Resin composition and molded article thereof
JPWO2020116434A1 (en) * 2018-12-06 2021-02-15 Dic株式会社 Resin composition and its molded product
KR20210064337A (en) * 2018-12-06 2021-06-02 디아이씨 가부시끼가이샤 Resin composition and molded article thereof
WO2020116434A1 (en) * 2018-12-06 2020-06-11 Dic株式会社 Resin composition and molded body thereof
EP3892677A4 (en) * 2018-12-06 2022-08-24 DIC Corporation Resin composition and molded body thereof
KR102499526B1 (en) * 2018-12-06 2023-02-14 디아이씨 가부시끼가이샤 Resin composition and molded product thereof
CN113166491B (en) * 2018-12-06 2023-03-24 Dic株式会社 Resin composition and molded article thereof
WO2022030212A1 (en) * 2020-08-06 2022-02-10 株式会社クレハ Poly(phenylene sulfide) resin composition and vibration damper including same
CN115768835A (en) * 2020-08-06 2023-03-07 株式会社吴羽 Polyphenylene sulfide resin composition and vibration damping material comprising the same
JP7373668B2 (en) 2020-08-06 2023-11-02 株式会社クレハ Polyphenylene sulfide resin composition and vibration damping material containing the same

Also Published As

Publication number Publication date
JPWO2017069109A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6646877B2 (en) Polyarylene sulfide resin composition, molded article, composite molded article, and method for producing composite molded article
WO2017069109A1 (en) Polyarylene sulfide resin composition, molded product, and methods for producing said composition and product
WO2019208377A1 (en) Polyarylene sulfide resin composition, molded article, composite molded article, and method for producing foregoing
JP6624204B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
WO2013141364A1 (en) Polyarylene sulfide resin composition and molded body
JP2007291300A (en) Polyarylene sulfide composition
JP6809083B2 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
JP7047248B2 (en) Polyarylene sulfide resin composition, molded product and manufacturing method
JPH09291213A (en) Polyphenylene sulfide resin composition
JP6638297B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP6828414B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP7024932B1 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
CN113166491B (en) Resin composition and molded article thereof
JP7070811B1 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
JP7453635B1 (en) Polyarylene sulfide resin compositions, molded products and methods for producing them
JP7136372B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7136394B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7311051B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP6866609B2 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
JP6919178B2 (en) Polyarylene sulfide resin composition and molded article
JPH09235468A (en) Polyphenylene sulfide resin composition
JP2017088878A (en) Polyarylene sulfide resin composition and molded article
WO2023218850A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article
WO2022215395A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article
WO2019208374A1 (en) Poly(arylene sulfide) resin composition, molded article, composite molded article, and methods respectively for producing said products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857423

Country of ref document: EP

Kind code of ref document: A1