WO2023218850A1 - Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article - Google Patents

Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article Download PDF

Info

Publication number
WO2023218850A1
WO2023218850A1 PCT/JP2023/014952 JP2023014952W WO2023218850A1 WO 2023218850 A1 WO2023218850 A1 WO 2023218850A1 JP 2023014952 W JP2023014952 W JP 2023014952W WO 2023218850 A1 WO2023218850 A1 WO 2023218850A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyarylene sulfide
sulfide resin
parts
mass
Prior art date
Application number
PCT/JP2023/014952
Other languages
French (fr)
Japanese (ja)
Inventor
隆平 黒川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023540944A priority Critical patent/JPWO2023218850A1/ja
Publication of WO2023218850A1 publication Critical patent/WO2023218850A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to polyarylene sulfide resin compositions, polyarylene sulfide resin molded articles, and methods for producing them.
  • PAS polyarylene sulfide
  • PPS polyphenylene sulfide
  • PAS resin materials with low friction coefficients and low abrasion properties for use in sliding surfaces such as bearings and gears for example, a material containing carbon fiber, fluororesin, graphite, and metal sulfide is known (see, for example, Patent Document 1).
  • a material with a relatively high Mohs hardness, such as carbon fiber is used, there is a drawback that the friction coefficient and the amount of wear of the resin composition become large.
  • PAS resin materials using inorganic fillers having a Mohs hardness of 3.5 or less are known (for example, Patent Document 2).
  • the problem to be solved by the present invention is to provide a PAS molded product that has excellent thermal conductivity and mechanical properties and suppresses wear of the material in a sliding environment, and a PAS resin composition that can provide the molded product. and a method for producing them.
  • the present inventors combined flaky graphite with a PAS resin that exhibits a melt viscosity within a specific range, and achieved a linear expansion coefficient MD/TD ratio of 0.7 or more.
  • the present inventors have discovered that a resin composition has excellent thermal conductivity and mechanical properties, and suppresses material wear in a sliding environment, leading to the completion of the present invention.
  • the present disclosure provides a PAS resin composition for sliding members which is a mixture of PAS resin (A) and graphite (B), wherein the PAS resin (A) has a melt viscosity (V6) of 90 Pa ⁇ s or more and 350 Pa ⁇ s or less, the graphite (B) is in the form of scales, and the amount of graphite (B) blended in 100 parts by mass of the resin composition is 5 to 50 parts by mass, and the linear expansion coefficient of the resin composition is
  • the present invention relates to a PAS resin composition for sliding members, which has a MD/TD ratio of 0.5 or more.
  • the present disclosure also relates to a PAS resin molded article for a sliding member formed by molding the PAS resin composition described above.
  • the present disclosure also relates to a sliding member made of the molded product described above.
  • the present disclosure also provides a method for producing a PAS resin composition for sliding members, which includes a step of blending PAS resin (A) and graphite (B) and melting and kneading the mixture at a temperature range equal to or higher than the melting point of PAS resin (A).
  • the melt viscosity of the PAS resin (A) is 90 Pa ⁇ s or more and 350 Pa ⁇ s or less
  • the graphite (B) is scaly
  • the graphite (B) in 100 parts by mass of the resin composition is
  • the present invention relates to a method for producing a PAS resin composition for sliding members, characterized in that the blending amount is 5 to 50 parts by mass, and the ratio of MD/TD of linear expansion coefficient of the resin composition is 0.5 or more.
  • the present disclosure also relates to a method for manufacturing a molded article for a sliding member, which includes a step of manufacturing a PAS resin composition using the manufacturing method described above, and a step of melt-molding the obtained PAS resin composition.
  • a PAS resin molded product for a sliding member that includes PAS resin and flaky graphite, has excellent thermal conductivity and mechanical properties, and suppresses wear of the material in a sliding environment. It is possible to provide PAS resin compositions for sliding members that can be made into molded products and methods for producing them.
  • the PAS resin composition according to the present embodiment is a PAS resin composition for sliding members made by blending PAS resin (A) and graphite (B), and the melt viscosity (V6) of the PAS resin (A) is 90 Pa ⁇ s or more and 350 Pa ⁇ s or less, the graphite (B) is in the form of scales, and the blending amount of graphite (B) in 100 parts by mass of the resin composition is 5 to 50 parts by mass, and the resin composition
  • the product is characterized by having a linear expansion coefficient MD/TD ratio of 0.5 or more. This will be explained below.
  • PAS resin (A)> The PAS resin composition according to this embodiment contains a PAS resin as an essential component.
  • PAS resin has a resin structure in which the repeating unit is a structure in which an aromatic ring and a sulfur atom are bonded, and specifically, it has the following general formula (1)
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group.
  • the trifunctional structural moiety represented by formula (2) preferably ranges from 0.001 to 3 mol%, particularly from 0.01 to 1 mol%, based on the total number of moles with other structural moieties. It is preferable that
  • R 1 and R 2 in the formula are preferably hydrogen atoms from the viewpoint of mechanical strength of the PAS resin, in which case, Examples include those bonded at the para position represented by the following formula (3), and those bonded at the meta position represented by the following formula (4).
  • the structure in which the sulfur atom is bonded to the aromatic ring in the repeating unit at the para position represented by the general formula (3) is particularly important in terms of heat resistance and crystallinity of the PAS resin. preferable.
  • the PAS resin has not only the structural parts represented by the general formulas (1) and (2), but also the following structural formulas (5) to (8).
  • the structural moiety represented by the above may be contained in an amount of 30 mol% or less of the total of the structural moieties represented by the general formula (1) and the general formula (2).
  • the content of the structural moieties represented by the above general formulas (5) to (8) is 10 mol % or less from the viewpoint of heat resistance and mechanical strength of the PAS resin.
  • their bonding mode may be either a random copolymer or a block copolymer.
  • the PAS resin may have a naphthyl sulfide bond or the like in its molecular structure, but it is preferably 3 mol% or less, particularly 1 mol% or less, based on the total number of moles with other structural parts. It is preferable that it is below.
  • the physical properties of the PAS resin are not particularly limited as long as they do not impair the effects of the present invention, but are as follows.
  • melt viscosity (melt viscosity)
  • the melt viscosity (V6) measured at 300°C is 2 Pa ⁇ s or more because it provides a good balance between fluidity and mechanical strength. It is preferably in a range of 1000 Pa ⁇ s or less, more preferably in a range of 500 Pa ⁇ s or less, still more preferably in a range of 300 Pa ⁇ s or less.
  • the non-Newtonian index of the PAS resin used in this embodiment is not particularly limited, but is preferably in the range of 0.90 or more and 2.00 or less.
  • the non-Newtonian index is preferably in the range of 0.90 or more, more preferably in the range of 0.95 or more, and preferably in the range of 1.50 or less, more preferably 1. It is in the range of 20 or less.
  • Such PAS resins have excellent mechanical properties, fluidity, and abrasion resistance.
  • the non-Newtonian exponent (N value) is determined using a capillograph under the conditions of melting point +20°C, ratio of orifice length (L) to orifice diameter (D), and shear rate (SR ) and shear stress (SS) were measured and calculated using the following formula.
  • N value the more linear the structure is, and the higher the non-Newtonian index (N value) is, the more branched the structure is.
  • SR shear rate (sec -1 )
  • SS shear stress (dynes/cm 2 )
  • K is a constant.
  • the method for producing the PAS resin is not particularly limited, but for example (Production method 1) a dihalogeno aromatic compound is added in the presence of sulfur and sodium carbonate, and if necessary, a polyhalogeno aromatic compound or other copolymerization component is added, Polymerization method, (Production method 2) A method of polymerizing a dihalogeno aromatic compound in the presence of a sulfidating agent, etc. in a polar solvent, and adding a polyhalogeno aromatic compound or other copolymerization components if necessary.
  • Method 3 A method in which p-chlorothiophenol is self-condensed by adding other copolymerization components if necessary, (Production method 4) A diiodo aromatic compound and elemental sulfur are combined with a functional group such as a carboxy group or an amino group. Examples include a method in which melt polymerization is carried out under reduced pressure in the presence of a polymerization inhibitor that may contain. Among these methods, the method (manufacturing method 2) is preferred because it is versatile. During the reaction, an alkali metal salt of carboxylic acid or sulfonic acid, or an alkali hydroxide may be added to adjust the degree of polymerization.
  • a hydrous sulfidating agent is introduced into a heated mixture containing an organic polar solvent and a dihalogeno aromatic compound at a rate that allows water to be removed from the reaction mixture, and the dihalogeno aromatic compound is The aromatic compound and the sulfidating agent are added and reacted with the polyhalogeno aromatic compound as necessary, and the amount of water in the reaction system is adjusted to 0.02 to 0.5 mol per mol of the organic polar solvent.
  • a method for producing PAS resin by controlling the range of For example, a polyhalogeno aromatic compound or other copolymerization component is added, and an alkali metal hydrosulfide and an alkali metal salt of an organic acid are added in an amount of 0.01 to 0.9 mol per mol of the sulfur source. Particularly preferred are those obtained by a method in which the reaction is carried out while controlling the amount of water in the reaction system within a range of 0.02 mol or less per 1 mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet).
  • dihalogeno aromatic compounds include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4, 4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p '-Dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenylsulfone, 4,4'-dihalodiphenylsulfoxide, 4,4'-dihalodiphenylsulfide, and each of the above compounds
  • polyhalogeno aromatic compounds include 1,2,3-trifluor
  • the method for post-treatment of the reaction mixture containing the PAS resin obtained in the polymerization process is not particularly limited, but for example, (Post-treatment 1) After the polymerization reaction is completed, the reaction mixture is first treated as it is or treated with an acid or base. After adding, the solvent is distilled off under reduced pressure or normal pressure, and the solid after solvent distillation is mixed with water, reaction solvent (or organic solvent with equivalent solubility for low-molecular polymers), acetone, methyl ethyl ketone.
  • post-treatment 3 after the completion of the polymerization reaction, a reaction solvent (or low molecular weight After stirring, filtering to remove low molecular weight polymers, and washing once or twice with a solvent such as water, acetone, methyl ethyl ketone, alcohol, etc.
  • Post-processing 4 After the polymerization reaction is completed, water is added to the reaction mixture, and the reaction mixture is washed with water, filtered, and if necessary, an acid is added during the water washing.
  • Post-treatment 5 After the completion of the polymerization reaction, the reaction mixture is filtered, if necessary, washed with a reaction solvent once or twice or more, and further washed with water, filtered and dried, etc.
  • the method (post-treatment 4) can effectively remove metal atoms such as sodium present at the molecular ends of PAS resin, and it is possible to obtain PAS resin with low sodium content. preferable.
  • the PAS resin may be dried in vacuum, in air or in an inert gas atmosphere such as nitrogen. You can also do it with
  • the amount of PAS resin blended in the PAS resin composition of this embodiment is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 50 parts by mass or more, more preferably 60 parts by mass, based on 100 parts by mass of the resin composition.
  • the amount ranges from at least 65 parts by mass, more preferably at least 65 parts by mass, to at most 90 parts by mass, more preferably at most 80 parts by mass, even more preferably at most 75 parts by mass. This range is preferable because the resin composition exhibits good wear resistance.
  • the PAS resin composition according to this embodiment contains graphite (B) as an essential component.
  • the graphite (B) used in this embodiment preferably has a scaly shape.
  • Graphite can be broadly classified into natural graphite and artificial graphite, and either of these may be used in this embodiment.
  • the graphite used in the resin composition according to the present embodiment preferably has a fixed carbon content of 95% or more, and more preferably has a fixed carbon content of 98% or more.
  • the crystallinity of graphite is preferably 80% or more, more preferably 90% or more.
  • the average particle diameter (D 50 ) of graphite (B) used in this embodiment is not particularly limited, but it is preferable that the average particle diameter (D 50 ) of the primary particles is in the range of 0.5 ⁇ m or more, The range is preferably 500 ⁇ m or less. When the particle size of graphite (B) is within this range, it is possible to obtain a resin composition that has particularly excellent balance between fluidity during melting and mechanical properties.
  • the average particle size is the average particle size (D50) determined based on the particle size distribution measured according to a conventional method using a laser diffraction scattering particle size distribution analyzer (Microtrac MT3300EXII).
  • the amount of graphite (B) blended in the PAS resin composition of the present invention is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 5 parts by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the resin composition.
  • the amount ranges from 10 parts by weight or more, preferably 100 parts by weight or less, more preferably 50 parts by weight or less, still more preferably 30 parts by weight or less. This range is preferable because the resin composition has good processability and the molded product has excellent wear resistance and thermal conductivity.
  • the PAS resin composition according to this embodiment is a PPS resin composition that does not substantially contain a fibrous reinforcing material, but a small amount of fibrous filler is added as an optional component within a range that does not impair the effects of the present invention. can do.
  • fibrous fillers known and commonly used materials can be used as long as they do not impair the effects of the present invention.
  • glass fibers, carbon fibers, silane glass fibers, ceramic fibers, aramid fibers, metal fibers, etc. are used. can.
  • the blending amount is preferably 50 parts by mass or less, more preferably 25 parts by mass or less, based on 100 parts by mass of graphite (B). In this range, the anisotropy of the linear expansion coefficient of the resin composition can be suppressed, so the ratio of MD/TD of the linear expansion coefficient becomes large, and the abrasion resistance is excellent.
  • the PAS resin composition according to the present embodiment may contain a non-fibrous filler as an optional component within a range that does not impair the effects of the present invention.
  • a non-fibrous filler as an optional component within a range that does not impair the effects of the present invention.
  • fillers of various shapes such as plate-like and spherical shapes can be mentioned. Specifically, glass beads, glass flakes, calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, zeolite, boehmite, etc.
  • Non-fibrous fillers can be used.
  • a non-fibrous filler is not an essential component in the present disclosure, if it is blended, the amount of the filler blended is not particularly limited as long as it does not impair the effects of the present invention.
  • the amount of other fillers to be added is, for example, preferably 1 part by mass or more, more preferably 5 parts by mass or more, preferably 600 parts by mass or less, based on 100 parts by mass of the PAS resin (A).
  • the amount is preferably 200 parts by mass or less. This range is preferable because the resin composition exhibits good moldability and the molded product has excellent mechanical properties.
  • the PAS resin composition according to the present embodiment may contain a silane coupling agent as an optional component, if necessary.
  • a silane coupling agent as an optional component, if necessary.
  • the PAS resin silane coupling agent of the present disclosure is not particularly limited as long as it does not impair the effects of the present invention, but the silane coupling agent has a functional group that reacts with a carboxy group, such as an epoxy group, an isocyanato group, an amino group, or a hydroxyl group. Agents are listed as preferred.
  • silane coupling agents include epoxy groups such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane.
  • alkoxysilane compounds Containing alkoxysilane compounds, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldimethoxysilane , ⁇ -isocyanatopropylethyldiethoxysilane, ⁇ -isocyanatopropyltrichlorosilane and other isocyanato group-containing alkoxysilane compounds, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)amino Examples include amino group-containing alkoxysilane compounds such as propyltrimethoxysilane and ⁇ -aminopropy
  • the silane coupling agent is not an essential component, but if it is blended, the amount added is not particularly limited as long as it does not impair the effects of the present invention, but it can be added to 100 parts by mass of the PAS resin (A).
  • the amount is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass or less. This range is preferable because the resin composition has good corona resistance and moldability, especially mold releasability, and the molded product exhibits excellent adhesion to the epoxy resin while further improving mechanical strength.
  • the PAS resin composition according to this embodiment may contain a thermoplastic elastomer as an optional component, if necessary.
  • the thermoplastic elastomer include polyolefin elastomers, fluorine elastomers, and silicone elastomers, and among these, polyolefin elastomers are preferred.
  • the blending amount is not particularly limited as long as it does not impair the effects of the present invention, but it is preferably 0.01 parts by mass or more, more preferably 0.01 parts by mass or more, based on 100 parts by mass of PAS resin (A).
  • the amount ranges from 0.1 parts by weight or more to preferably 10 parts by weight or less, more preferably 5 parts by weight or less. This range is preferable because the impact resistance of the resulting PAS resin composition is improved.
  • the polyolefin elastomer may be a homopolymer of ⁇ -olefin, a copolymer of two or more ⁇ -olefins, or a copolymer of one or more ⁇ -olefins and a vinyl polymerizable compound having a functional group.
  • One example is merging.
  • the ⁇ -olefin includes ⁇ -olefins having a carbon atom number ranging from 2 to 8, such as ethylene, propylene, and 1-butene.
  • vinyl polymerizable compounds having the functional group examples include vinyl acetate; ⁇ , ⁇ -unsaturated carboxylic acids such as (meth)acrylic acid; Alkyl esters of unsaturated carboxylic acids; metal salts of ⁇ , ⁇ -unsaturated carboxylic acids such as ionomers (metals include alkali metals such as sodium, alkaline earth metals such as calcium, zinc, etc.); ⁇ , ⁇ -unsaturated carboxylic acids such as ionomers; Glycidyl esters of ⁇ -unsaturated carboxylic acids; ⁇ , ⁇ -unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid; derivatives of the ⁇ , ⁇ -unsaturated dicarboxylic acids (monoesters, diesters, acid anhydrides, etc.); ), etc., or two or more thereof.
  • the above-mentioned thermoplastic elastomers may be used alone or in combination of two
  • the PAS resin composition according to the present embodiment may further contain polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone, as appropriate depending on the application.
  • Resin, polyether sulfone resin, polyether ether ketone resin, polyether ketone resin, polyarylene resin, polyethylene resin, polypropylene resin, polytetrafluoroethylene resin, polydifluoroethylene resin, polystyrene resin, ABS resin, epoxy resin , phenol resin, urethane resin, liquid crystal polymer, and other synthetic resins (hereinafter simply referred to as synthetic resins) can be blended as optional components.
  • the synthetic resin is not an essential component, but if it is blended, the blending ratio is not particularly limited as long as it does not impair the effects of the present invention, and it varies depending on the purpose of the invention, so it cannot be generalized.
  • the proportion of the synthetic resin blended in the resin composition according to the present embodiment is, for example, in the range of 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of PAS resin (A). Examples include degrees of range. In other words, the ratio of PAS resin to the total of PAS resin (A) and synthetic resin is preferably in the range of (100/115) or more, and more preferably in the range of (100/105) or more, based on mass. range.
  • the PAS resin composition according to the present embodiment can also be used as a colorant, an antistatic agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, an ultraviolet absorber, a blowing agent, a flame retardant, a flame retardant aid, and a flame retardant.
  • Any known and commonly used additives such as rusting agents and mold release agents (metal salts and esters of fatty acids having 18 to 30 carbon atoms, including stearic acid and montanic acid, and polyolefin waxes such as polyethylene) may be added as necessary. It may be added as a component.
  • additives are not essential components and, for example, are preferably in the range of 0.01 parts by mass or more, and preferably 1000 parts by mass or less, more preferably 100 parts by mass, based on 100 parts by mass of the PAS resin (A). It may be used in a range of not more than 10 parts by mass, more preferably not more than 10 parts by mass, depending on the purpose and application so as not to impair the effects of the present invention.
  • the PAS resin composition according to the present embodiment is characterized in that the ratio of linear expansion coefficient MD/TD is 0.5 or more.
  • the method for adjusting the coefficient of linear expansion is not particularly limited, and the type, molecular weight, melt viscosity, content, etc. of the PAS resin contained in the resin composition, the type and content of graphite and other fillers or additives, etc. can be adjusted in various ways. This can be done by adjusting.
  • An example of a method for increasing the MD/TD ratio is to reduce the amount of a filler with a large aspect ratio, such as a fibrous filler. This is because when the blending amount of a filler with a large aspect ratio is increased, the coefficient of linear thermal expansion in the TD direction tends to become larger than that in the MD direction.
  • the MD/TD ratio of the linear expansion coefficient in the present disclosure is determined by measuring the length of the central part of the ISO Type 1A dumbbell-shaped test piece in the resin flow direction (MD) and in the direction perpendicular to the flow direction (TD), respectively, by 10 mm; This is a value calculated using a test piece cut into a rectangular parallelepiped with a width of 10 mm and a thickness of 4 mm, and measured in a temperature range of 145 to 155° C. in accordance with ISO 11359-2. The closer MD/TD is to 1, the smaller the anisotropy of the linear expansion coefficient.
  • the PAS resin composition according to this embodiment has excellent thermal conductivity.
  • the thermal conductivity is not particularly limited, it is preferably 0.5 [W/m ⁇ K] or more, and more preferably 0.6 [W/m ⁇ K] or more. In this range, melting of the resin due to frictional heat generated during sliding can be reduced, and therefore wear of the molded product can be reduced. Further, it is possible to suppress a decrease in mechanical strength and deterioration of the material in a high-temperature environment.
  • the thermal conductivity in this disclosure is measured in the thickness direction of the molded product by the method described in the Examples, according to ISO 22007-2 "Plastics - How to determine thermal conductivity and thermal diffusivity - Part 2: Transient planar heat source. (Hot Disk) Method.
  • the method for producing a PAS resin composition according to the present embodiment is a sliding member having a step of blending PAS resin (A) and graphite (B) and melting and kneading the mixture in a temperature range equal to or higher than the melting point of PAS resin (A).
  • a method for producing a PAS resin composition for use comprising: The melt viscosity of the PAS resin (A) is 90 Pa ⁇ s or more and 350 Pa ⁇ s or less, the graphite (B) is scaly, and the blending amount of graphite (B) in 100 parts by mass of the resin composition is 5 to 5. 50 parts by mass, and the ratio of MD/TD of linear expansion coefficient of the resin composition is 0.5 or more. The details will be explained below.
  • the method for producing a PAS resin composition according to the present embodiment includes the step of blending the above-mentioned essential components and melting and kneading them at a temperature range equal to or higher than the melting point of the PAS resin (A). More specifically, the PAS resin composition according to the present embodiment is formed by blending each essential component and other optional components as necessary.
  • the method for producing the resin composition according to the present embodiment is not particularly limited, but includes a method of blending essential components and optional components as necessary, and melting and kneading the mixture, more specifically, using a tumbler or Examples include a method of uniformly dry mixing using a Henschel mixer or the like, then introducing the mixture into a twin-screw extruder and melt-kneading it.
  • Melt kneading is carried out in a temperature range in which the resin temperature is equal to or higher than the melting point of the PAS resin (A), preferably in a temperature range in which the melting point is +10°C or higher, more preferably at least the melting point +10°C, even more preferably at least the melting point +20°C. This can be carried out by heating to a temperature in the range from 100° C. to 100° C., more preferably 50° C. below the melting point.
  • the melt-kneading machine is preferably a twin-screw kneading extruder from the viewpoint of dispersibility and productivity, for example, a discharge rate of the resin component in the range of 5 to 500 (kg/hr) and a screw rotation speed of 50 to 500 (rpm). It is preferable to melt and knead while appropriately adjusting the range, and melt and knead under conditions such that the ratio (discharge amount/screw rotation speed) is in the range of 0.02 to 5 (kg/hr/rpm). is even more preferable. Further, the addition and mixing of each component to the melt-kneading machine may be performed simultaneously or may be performed separately.
  • the two-screw extruder when adding graphite (B), which is an essential component, and other fibrous fillers as necessary, it is preferable to introduce the two-screw extruder from the side feeder into the extruder.
  • the position of the side feeder is preferably such that the ratio of the distance from the extruder resin input part (top feeder) to the side feeder to the total screw length of the twin-screw kneading extruder is 0.1 or more, and 0. More preferably, it is .3 or more. Moreover, it is preferable that this ratio is 0.9 or less, and it is more preferable that it is 0.7 or less.
  • the PAS resin composition according to the present embodiment obtained by melt-kneading in this manner is a molten mixture containing the above-mentioned essential components, optional components added as necessary, and components derived from these components. Therefore, the PAS resin composition according to the present embodiment has a morphology in which the PAS resin (A) forms a continuous phase and other essential components and optional components are dispersed.
  • the PAS resin composition according to the present embodiment is produced by a known method, for example, by extruding the molten resin composition into a strand shape, and then processing it into pellets, chips, granules, powder, etc. After that, it is preferable to perform preliminary drying at a temperature range of 100 to 150°C, if necessary.
  • the molded article according to this embodiment is formed by melt-molding a PAS resin composition. Moreover, the method for manufacturing a molded article according to the present embodiment includes a step of melt-molding the PAS resin composition. Therefore, the molded article according to this embodiment has a morphology in which the PAS resin (A) forms a continuous phase and other essential components and optional components are dispersed. When the PAS resin composition has such a morphology, a molded article with excellent thermal conductivity and mechanical strength can be obtained.
  • the PAS resin composition according to the present embodiment can be subjected to various molding processes such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding, but is particularly suitable for mold release. It also has excellent properties, making it suitable for injection molding applications.
  • various molding conditions are not particularly limited, and molding can be performed by a general method.
  • the resin temperature is in a temperature range above the melting point of the PAS resin (A), preferably in a temperature range above the melting point +10°C, more preferably in a temperature range from melting point +10°C to melting point +100°C, even more preferably
  • the resin composition may be injected into a mold through the resin discharge port and molded.
  • the mold temperature may be set within a known temperature range, for example, room temperature (23°C) to 300°C, preferably 130 to 190°C.
  • the method for manufacturing a molded article according to the present embodiment may include a step of subjecting the molded article to an annealing treatment.
  • the optimum conditions for the annealing treatment are selected depending on the purpose or shape of the molded product, but the annealing temperature is in a temperature range equal to or higher than the glass transition temperature of the PAS resin (A), preferably in a temperature range equal to or higher than the glass transition temperature +10°C.
  • the temperature range is more preferably 30° C. or higher than the glass transition temperature. On the other hand, it is preferably in a range of 260°C or less, more preferably in a range of 240°C or less.
  • the annealing time is not particularly limited, it is preferably in a range of 0.5 hours or more, and more preferably in a range of 1 hour or more. On the other hand, the duration is preferably 10 hours or less, and more preferably 8 hours or less. This range is preferable because not only the distortion of the resulting molded product is reduced and the crystallinity of the resin is improved, but also the thermal conductivity, mechanical properties, and fuel barrier properties are further improved.
  • the annealing treatment may be performed in air, it is preferably performed in an inert gas such as nitrogen gas.
  • the PAS resin molded product according to this embodiment is characterized by excellent thermal conductivity and sliding properties, and is therefore particularly suitable for sliding parts. Specifically, it can be suitably used for sliding parts such as gears, bearings, cages, robot arms, etc. Further, the molded product of the present disclosure is not limited to a sliding component, but can also be a regular resin molded product such as the following.
  • protection and support members for box-shaped electric/electronic component integrated modules multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitor cases, optical pickups, Oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, Electrical and electronic parts such as parabolic antennas and computer-related parts; VTR parts, television parts, irons, hair dryers, rice cooker parts, microwave oven parts, audio parts, audio, laser discs, compact discs, DVD discs, and Blu-ray discs.
  • Household and office electrical appliances such as audio/video equipment parts such as disks, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, and plumbing equipment parts such as water heaters, bath water quantity and temperature sensors, etc.
  • Product parts Office computer-related parts, telephone-related parts, facsimile-related parts, copying machine-related parts, cleaning jigs, motor parts, lighters, typewriters, etc.
  • Machine-related parts microscopes, binoculars, cameras, watches
  • Optical equipment and precision machinery related parts such as alternator terminals, alternator connectors, brush holders, slip rings, IC regulators, potentiometer bases for light dimmers, relay blocks, inhibitor switches, various valves such as exhaust gas valves, and fuel related parts.
  • Various exhaust and intake system pipes air intake nozzle snorkel, intake manifold, engine cooling water joint, carburetor main body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crank Shaft position sensor,
  • Examples 1 to 7 and Comparative Examples 1 to 7 Each material was blended according to the composition components and blending amounts listed in Table 1. After that, these compounded materials were put into a vented twin-screw extruder "TEX-30 ⁇ (product name)" manufactured by Japan Steel Works, Ltd., and the resin component discharge rate was 30 kg/hr, the screw rotation speed was 200 rpm, and the resin temperature was set at 320°C. Pellets of the resin composition were obtained by melt-kneading. Glass fibers and carbon fibers were fed from a side feeder (S/T ratio 0.5), and other materials were uniformly mixed in advance in a tumbler and fed from a top feeder. After drying the obtained resin composition pellets in a gear oven at 140° C. for 2 hours, various test pieces were prepared by injection molding, and the following tests were conducted.
  • TEX-30 ⁇ product name
  • the screw rotation speed was 200 rpm
  • the resin temperature was set at 320°C.
  • Pellets of the resin composition were obtained by melt-kn
  • Measurement conditions A Pressure: 150 KPa, rotation speed: 0.3 m/sec, measurement time: 60 minutes, temperature environment: 23°C, using the two test pieces obtained by molding with an injection molding machine, under the measurement conditions, the Suzuki A formula abrasion test was conducted.
  • Measurement condition B Pressure: 500 KPa, rotation speed: 0.3 m/sec, measurement time: 60 minutes, temperature environment: 23°C, using the two test pieces obtained by molding with an injection molding machine, the Suzuki A formula abrasion test was conducted.
  • A-1 PPS resin (melt viscosity (V6) 150 Pa ⁇ s)
  • A-2 PPS resin (melt viscosity (V6) 250 Pa ⁇ s)
  • a-3 PPS resin (melt viscosity (V6) 35 Pa ⁇ s)
  • B-1 Graphite, scaly, average particle diameter (D 50 ) 50 ⁇ m
  • b-2 Graphite, amorphous, average particle diameter (D 50 ) 30 ⁇ m
  • C-1 PTFE resin
  • D-1 Silicone resin
  • F-1 Carbon fiber (chopped strand, fiber diameter 6 ⁇ m)
  • F-2 Carbon fiber (chopped strand, fiber diameter 6 ⁇ m)
  • F-3 Glass fiber (chopped strand, fiber diameter 10.5 ⁇ m)
  • Tables 1 and 2 show that the molded products obtained from the resin compositions of Examples have excellent tensile properties and thermal conductivity compared to Comparative Examples, and have reduced wear coefficients and specific wear amounts, and have good sliding properties. It can be seen that it exhibits movement.

Abstract

The present invention provides a polyarylene sulfide (PAS) resin molded article that has excellent thermal conductivity and mechanical characteristics and suppresses wear of materials in a sliding environment, a PAS resin composition that can provide said molded article, and methods for producing the resin composition and the molded article. More specifically, a PAS resin composition for a sliding member, obtained by blending a PAS resin with graphite, the PAS resin composition being characterized in that the melt viscosity (V6) of the PAS resin is 90-350 Pa∙s inclusive, the graphite is scaly, the amount of graphite blended is 5-50 mass parts per 100 mass parts of the resin composition, and the MD/TD ratio of the linear expansion coefficients of the resin composition is 0.5 or more; a molded article; and methods for producing the resin composition and the molded article.

Description

ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法Polyarylene sulfide resin compositions, molded products and methods for producing them
 本発明は、ポリアリーレンスルフィド樹脂組成物、ポリアリーレンスルフィド樹脂成形品およびそれらの製造方法に関する。 The present invention relates to polyarylene sulfide resin compositions, polyarylene sulfide resin molded articles, and methods for producing them.
 近年、生産性、成形性に優れ、かつ高耐熱性を有するエンジニアリングプラスチックが開発され、軽量でもあることから金属材料に代わる材料として電気、電子機器や自動車用等の部材として幅広く使用されている。特にポリフェニレンサルファイド(以下、PPSと表す)樹脂に代表されるポリアリーレンスルフィド(以下、PASと表す)樹脂は、耐熱性に優れつつ、かつ、機械的強度、耐薬品性、成形加工性、寸法安定性にも優れるため、自動車部品や電気電子などの分野で、広範に利用されている。 In recent years, engineering plastics have been developed that have excellent productivity, moldability, and high heat resistance, and because they are lightweight, they are widely used as materials for electrical and electronic equipment, automobiles, etc. as an alternative to metal materials. In particular, polyarylene sulfide (hereinafter referred to as PAS) resins, represented by polyphenylene sulfide (hereinafter referred to as PPS) resins, have excellent heat resistance, mechanical strength, chemical resistance, moldability, and dimensional stability. Because of its excellent properties, it is widely used in fields such as automobile parts and electrical and electronics.
 一方、金属の樹脂材料への置換が進むに伴い、軸受けや歯車など摺動面に用いるための低摩擦係数・低摩耗性な樹脂材料の要求が増加している。摺動用材料として用いるPAS樹脂材料としては、例えば、炭素繊維、フッ素樹脂、黒鉛および金属硫化物を配合した材料が知られている(例えば、特許文献1参照)。しかしながら、炭素繊維のようなモース硬度の比較的高い材料を用いた場合、樹脂組成物の摩擦係数や磨耗量が大きくなるという欠点がある。また、モース硬度3.5以下の無機充填剤を用いたPAS樹脂材料が知られている(例えば、特許文献2)。 On the other hand, as the replacement of metals with resin materials progresses, there is an increasing demand for resin materials with low friction coefficients and low abrasion properties for use in sliding surfaces such as bearings and gears. As a PAS resin material used as a sliding material, for example, a material containing carbon fiber, fluororesin, graphite, and metal sulfide is known (see, for example, Patent Document 1). However, when a material with a relatively high Mohs hardness, such as carbon fiber, is used, there is a drawback that the friction coefficient and the amount of wear of the resin composition become large. Further, PAS resin materials using inorganic fillers having a Mohs hardness of 3.5 or less are known (for example, Patent Document 2).
特開2019-85470号公報JP2019-85470A 特開2002-332406号公報Japanese Patent Application Publication No. 2002-332406
 しかしながら、これらの方法では、得られる樹脂組成物及び成形品の摺動性は向上するが、放熱性や機械的性質が不十分であり、高温環境下でも優れた摺動性及び強度を呈する樹脂成形品を満足に得ることはできなかった。 However, although these methods improve the sliding properties of the resulting resin compositions and molded products, they have insufficient heat dissipation properties and mechanical properties, and resins that exhibit excellent sliding properties and strength even in high-temperature environments are insufficient. It was not possible to obtain a satisfactory molded product.
 そこで、本発明が解決しようとする課題は、熱伝導率や機械的特性に優れ、かつ、摺動環境下における材料の摩耗を抑制するPAS成形品、当該成形品を提供可能なPAS樹脂組成物およびそれらの製造方法を提供することである。 Therefore, the problem to be solved by the present invention is to provide a PAS molded product that has excellent thermal conductivity and mechanical properties and suppresses wear of the material in a sliding environment, and a PAS resin composition that can provide the molded product. and a method for producing them.
 本発明者らは、上記の課題を解決すべく鋭意検討した結果、特定範囲の溶融粘度を示すPAS樹脂に鱗片状黒鉛を組み合わせ、線膨張係数のMD/TDの比が0.7以上を示す樹脂組成物が、熱伝導率や機械的特性に優れ、かつ、摺動環境下における材料の摩耗を抑制することを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors combined flaky graphite with a PAS resin that exhibits a melt viscosity within a specific range, and achieved a linear expansion coefficient MD/TD ratio of 0.7 or more. The present inventors have discovered that a resin composition has excellent thermal conductivity and mechanical properties, and suppresses material wear in a sliding environment, leading to the completion of the present invention.
 すなわち、本開示は、PAS樹脂(A)と黒鉛(B)を配合してなる摺動部材用PAS樹脂組成物であって、PAS樹脂(A)の溶融粘度(V6)が90Pa・s以上かつ350Pa・s以下であり、黒鉛(B)が鱗片状であり、かつ、前記樹脂組成物100質量部における黒鉛(B)の配合量が5~50質量部であり、樹脂組成物の線膨張係数のMD/TDの比が0.5以上であることを特徴とする摺動部材用PAS樹脂組成物に関する。 That is, the present disclosure provides a PAS resin composition for sliding members which is a mixture of PAS resin (A) and graphite (B), wherein the PAS resin (A) has a melt viscosity (V6) of 90 Pa·s or more and 350 Pa·s or less, the graphite (B) is in the form of scales, and the amount of graphite (B) blended in 100 parts by mass of the resin composition is 5 to 50 parts by mass, and the linear expansion coefficient of the resin composition is The present invention relates to a PAS resin composition for sliding members, which has a MD/TD ratio of 0.5 or more.
 また、本開示は、前記記載のPAS樹脂組成物を成形してなる摺動部材用PAS樹脂成形品に関する。 The present disclosure also relates to a PAS resin molded article for a sliding member formed by molding the PAS resin composition described above.
 また、本開示は、前記記載の成形品からなる摺動部材に関する。 The present disclosure also relates to a sliding member made of the molded product described above.
 また、本開示は、PAS樹脂(A)と黒鉛(B)を配合し、PAS樹脂(A)の融点以上の温度範囲で溶融混錬する工程を有する摺動部材用PAS樹脂組成物の製造方法であって、PAS樹脂(A)の溶融粘度が90Pa・s以上かつ350Pa・s以下であり、黒鉛(B)が鱗片状であり、かつ、前記樹脂組成物100質量部における黒鉛(B)の配合量が5~50質量部であり、樹脂組成物の線膨張係数のMD/TDの比が0.5以上であることを特徴とする摺動部材用PAS樹脂組成物の製造方法に関する。 The present disclosure also provides a method for producing a PAS resin composition for sliding members, which includes a step of blending PAS resin (A) and graphite (B) and melting and kneading the mixture at a temperature range equal to or higher than the melting point of PAS resin (A). The melt viscosity of the PAS resin (A) is 90 Pa·s or more and 350 Pa·s or less, the graphite (B) is scaly, and the graphite (B) in 100 parts by mass of the resin composition is The present invention relates to a method for producing a PAS resin composition for sliding members, characterized in that the blending amount is 5 to 50 parts by mass, and the ratio of MD/TD of linear expansion coefficient of the resin composition is 0.5 or more.
 また、本開示は、前記記載の製造方法でPAS樹脂組成物を製造する工程、得られたPAS樹脂組成物を溶融成形する工程を有する摺動部材用成形品の製造方法に関する。 The present disclosure also relates to a method for manufacturing a molded article for a sliding member, which includes a step of manufacturing a PAS resin composition using the manufacturing method described above, and a step of melt-molding the obtained PAS resin composition.
 本発明によれば、PAS樹脂と、鱗片状黒鉛とを含み、熱伝導率や機械的特性に優れ、かつ、摺動環境下における材料の摩耗を抑制する摺動部材用PAS樹脂成形品、当該成形品を提供可能な摺動部材用PAS樹脂組成物およびそれらの製造方法を提供することができる。 According to the present invention, there is provided a PAS resin molded product for a sliding member that includes PAS resin and flaky graphite, has excellent thermal conductivity and mechanical properties, and suppresses wear of the material in a sliding environment. It is possible to provide PAS resin compositions for sliding members that can be made into molded products and methods for producing them.
 本実施形態に係るPAS樹脂組成物は、PAS樹脂(A)と黒鉛(B)を配合してなる摺動部材用PAS樹脂組成物であって、PAS樹脂(A)の溶融粘度(V6)が90Pa・s以上かつ350Pa・s以下であり、黒鉛(B)が鱗片状であり、かつ、前記樹脂組成物100質量部における黒鉛(B)の配合量が5~50質量部であり、樹脂組成物の線膨張係数のMD/TDの比が0.5以上であることを特徴とする。以下、説明する。 The PAS resin composition according to the present embodiment is a PAS resin composition for sliding members made by blending PAS resin (A) and graphite (B), and the melt viscosity (V6) of the PAS resin (A) is 90 Pa·s or more and 350 Pa·s or less, the graphite (B) is in the form of scales, and the blending amount of graphite (B) in 100 parts by mass of the resin composition is 5 to 50 parts by mass, and the resin composition The product is characterized by having a linear expansion coefficient MD/TD ratio of 0.5 or more. This will be explained below.
<PAS樹脂(A)>
 本実施形態に係るPAS樹脂組成物は、必須成分としてPAS樹脂を配合してなる。
<PAS resin (A)>
The PAS resin composition according to this embodiment contains a PAS resin as an essential component.
 PAS樹脂は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記一般式(1) PAS resin has a resin structure in which the repeating unit is a structure in which an aromatic ring and a sulfur atom are bonded, and specifically, it has the following general formula (1)
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1~4の範囲のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位と、必要に応じてさらに下記一般式(2)
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group.) and, if necessary, the following general formula (2)
Figure JPOXMLDOC01-appb-C000002
で表される3官能性の構造部位と、を繰り返し単位とする樹脂である。式(2)で表される3官能性の構造部位は、他の構造部位との合計モル数に対して0.001~3モル%の範囲が好ましく、特に0.01~1モル%の範囲であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
It is a resin whose repeating unit is a trifunctional structural moiety represented by the following. The trifunctional structural moiety represented by formula (2) preferably ranges from 0.001 to 3 mol%, particularly from 0.01 to 1 mol%, based on the total number of moles with other structural moieties. It is preferable that
 ここで、前記一般式(1)で表される構造部位は、特に該式中のR及びRは、前記PAS樹脂の機械的強度の点から水素原子であることが好ましく、その場合、下記式(3)で表されるパラ位で結合するもの、及び下記式(4)で表されるメタ位で結合するものが挙げられる。 Here, in the structural moiety represented by the general formula (1), particularly R 1 and R 2 in the formula are preferably hydrogen atoms from the viewpoint of mechanical strength of the PAS resin, in which case, Examples include those bonded at the para position represented by the following formula (3), and those bonded at the meta position represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000003
 これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記一般式(3)で表されるパラ位で結合した構造であることが前記PAS樹脂の耐熱性や結晶性の面で好ましい。
Figure JPOXMLDOC01-appb-C000003
Among these, the structure in which the sulfur atom is bonded to the aromatic ring in the repeating unit at the para position represented by the general formula (3) is particularly important in terms of heat resistance and crystallinity of the PAS resin. preferable.
 また、前記PAS樹脂は、前記一般式(1)や(2)で表される構造部位のみならず、下記の構造式(5)~(8) In addition, the PAS resin has not only the structural parts represented by the general formulas (1) and (2), but also the following structural formulas (5) to (8).
Figure JPOXMLDOC01-appb-C000004
で表される構造部位を、前記一般式(1)と一般式(2)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本開示では上記一般式(5)~(8)で表される構造部位は10モル%以下であることが、PAS樹脂の耐熱性、機械的強度の点から好ましい。前記PAS樹脂中に、上記一般式(5)~(8)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
Figure JPOXMLDOC01-appb-C000004
The structural moiety represented by the above may be contained in an amount of 30 mol% or less of the total of the structural moieties represented by the general formula (1) and the general formula (2). In particular, in the present disclosure, it is preferable that the content of the structural moieties represented by the above general formulas (5) to (8) is 10 mol % or less from the viewpoint of heat resistance and mechanical strength of the PAS resin. When the PAS resin contains structural moieties represented by the above general formulas (5) to (8), their bonding mode may be either a random copolymer or a block copolymer.
 また、前記PAS樹脂は、その分子構造中に、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。 Further, the PAS resin may have a naphthyl sulfide bond or the like in its molecular structure, but it is preferably 3 mol% or less, particularly 1 mol% or less, based on the total number of moles with other structural parts. It is preferable that it is below.
 また、PAS樹脂の物性は、本発明の効果を損ねない限り特に限定されないが、以下の通りである。 Further, the physical properties of the PAS resin are not particularly limited as long as they do not impair the effects of the present invention, but are as follows.
(溶融粘度)
 本実施形態に用いるPAS樹脂の溶融粘度は特に限定されないが、流動性および機械的強度のバランスが良好となることから、300℃で測定した溶融粘度(V6)が、好ましくは2Pa・s以上の範囲であり、そして、好ましくは1000Pa・s以下の範囲、より好ましくは500Pa・s以下の範囲であり、さらに好ましくは300Pa・s以下の範囲である。ただし、溶融粘度(V6)の測定は、PAS樹脂を島津製作所製フローテスター、CFT-500Dを用いて行い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に測定した溶融粘度の測定値とする。
(melt viscosity)
Although the melt viscosity of the PAS resin used in this embodiment is not particularly limited, it is preferable that the melt viscosity (V6) measured at 300°C is 2 Pa·s or more because it provides a good balance between fluidity and mechanical strength. It is preferably in a range of 1000 Pa·s or less, more preferably in a range of 500 Pa·s or less, still more preferably in a range of 300 Pa·s or less. However, the melt viscosity (V6) of the PAS resin was measured using a Shimadzu flow tester, CFT-500D, at 300°C, load: 1.96 x 10 6 Pa, L/D = 10 (mm)/ This is the measured value of melt viscosity measured after holding at 1 (mm) for 6 minutes.
(非ニュートン指数)
 本実施形態に用いるPAS樹脂の非ニュートン指数は特に限定されないが、0.90以上から、2.00以下の範囲であることが好ましい。直鎖状PAS樹脂を用いる場合には、非ニュートン指数が、好ましくは0.90以上の範囲、より好ましくは0.95以上の範囲から、好ましくは1.50以下の範囲、より好ましくは1.20以下の範囲である。このようなPAS樹脂は機械的物性、流動性、耐磨耗性に優れる。ただし、本開示において非ニュートン指数(N値)は、キャピログラフを用いて融点+20℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度(SR)及び剪断応力(SS)を測定し、下記式を用いて算出した値である。非ニュートン指数(N値)が1に近いほど線状に近い構造であり、非ニュートン指数(N値)が高いほど分岐が進んだ構造であることを示す。
(non-Newtonian index)
The non-Newtonian index of the PAS resin used in this embodiment is not particularly limited, but is preferably in the range of 0.90 or more and 2.00 or less. When using a linear PAS resin, the non-Newtonian index is preferably in the range of 0.90 or more, more preferably in the range of 0.95 or more, and preferably in the range of 1.50 or less, more preferably 1. It is in the range of 20 or less. Such PAS resins have excellent mechanical properties, fluidity, and abrasion resistance. However, in the present disclosure, the non-Newtonian exponent (N value) is determined using a capillograph under the conditions of melting point +20°C, ratio of orifice length (L) to orifice diameter (D), and shear rate (SR ) and shear stress (SS) were measured and calculated using the following formula. The closer the non-Newtonian index (N value) is to 1, the more linear the structure is, and the higher the non-Newtonian index (N value) is, the more branched the structure is.
Figure JPOXMLDOC01-appb-M000005
[ただし、SRは剪断速度(秒-1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]
Figure JPOXMLDOC01-appb-M000005
[where SR is shear rate (sec -1 ), SS is shear stress (dynes/cm 2 ), and K is a constant. ]
(製造方法)
 前記PAS樹脂の製造方法としては特に限定されないが、例えば(製造法1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(製造法2)極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(製造法3)p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法、(製造法4)ジヨード芳香族化合物と単体硫黄を、カルボキシ基やアミノ基等の官能基を有していてもよい重合禁止剤の存在下、減圧させながら溶融重合させる方法、等が挙げられる。これらの方法のなかでも、(製造法2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記(製造法2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることによりPAS樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの範囲の有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。ジハロゲノ芳香族化合物の具体的な例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18の範囲のアルキル基を有する化合物が挙げられ、ポリハロゲノ芳香族化合物としては1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
(Production method)
The method for producing the PAS resin is not particularly limited, but for example (Production method 1) a dihalogeno aromatic compound is added in the presence of sulfur and sodium carbonate, and if necessary, a polyhalogeno aromatic compound or other copolymerization component is added, Polymerization method, (Production method 2) A method of polymerizing a dihalogeno aromatic compound in the presence of a sulfidating agent, etc. in a polar solvent, and adding a polyhalogeno aromatic compound or other copolymerization components if necessary. Method 3) A method in which p-chlorothiophenol is self-condensed by adding other copolymerization components if necessary, (Production method 4) A diiodo aromatic compound and elemental sulfur are combined with a functional group such as a carboxy group or an amino group. Examples include a method in which melt polymerization is carried out under reduced pressure in the presence of a polymerization inhibitor that may contain. Among these methods, the method (manufacturing method 2) is preferred because it is versatile. During the reaction, an alkali metal salt of carboxylic acid or sulfonic acid, or an alkali hydroxide may be added to adjust the degree of polymerization. Among the above methods (Production method 2), a hydrous sulfidating agent is introduced into a heated mixture containing an organic polar solvent and a dihalogeno aromatic compound at a rate that allows water to be removed from the reaction mixture, and the dihalogeno aromatic compound is The aromatic compound and the sulfidating agent are added and reacted with the polyhalogeno aromatic compound as necessary, and the amount of water in the reaction system is adjusted to 0.02 to 0.5 mol per mol of the organic polar solvent. A method for producing PAS resin (see JP-A-07-228699) by controlling the range of For example, a polyhalogeno aromatic compound or other copolymerization component is added, and an alkali metal hydrosulfide and an alkali metal salt of an organic acid are added in an amount of 0.01 to 0.9 mol per mol of the sulfur source. Particularly preferred are those obtained by a method in which the reaction is carried out while controlling the amount of water in the reaction system within a range of 0.02 mol or less per 1 mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet). Specific examples of dihalogeno aromatic compounds include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4, 4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p '-Dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenylsulfone, 4,4'-dihalodiphenylsulfoxide, 4,4'-dihalodiphenylsulfide, and each of the above compounds Examples of polyhalogeno aromatic compounds include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3, Examples include 5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1,2,4,5-tetrahalobenzene, and 1,4,6-trihalonaphthalene. Further, the halogen atom contained in each of the above compounds is preferably a chlorine atom or a bromine atom.
 重合工程により得られたPAS樹脂を含む反応混合物の後処理方法としては、特に制限されるものではないが、例えば、(後処理1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、或いは、(後処理2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともPASに対しては貧溶媒である溶媒)を沈降剤として添加して、PASや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、(後処理3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法、(後処理4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法、(後処理5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、更に水洗浄、濾過および乾燥する方法、等が挙げられる。これらの方法のなかでも、(後処理4)の方法が、PAS樹脂の分子末端に存在するナトリウム等の金属原子を効果的に除去することができ、ナトリウム含有量の少ないPAS樹脂を得られるため好ましい。 The method for post-treatment of the reaction mixture containing the PAS resin obtained in the polymerization process is not particularly limited, but for example, (Post-treatment 1) After the polymerization reaction is completed, the reaction mixture is first treated as it is or treated with an acid or base. After adding, the solvent is distilled off under reduced pressure or normal pressure, and the solid after solvent distillation is mixed with water, reaction solvent (or organic solvent with equivalent solubility for low-molecular polymers), acetone, methyl ethyl ketone. , a method of washing with a solvent such as alcohol once or twice or more, and further neutralizing, washing with water, filtering and drying, or (Post-treatment 2) After the polymerization reaction is completed, the reaction mixture is added with water, acetone, methyl ethyl ketone, or alcohol. Solvents such as esters, ethers, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic hydrocarbons (solvents that are soluble in the polymerization solvent used and are at least poor solvents for PAS) as precipitants. Alternatively, (post-treatment 3) after the completion of the polymerization reaction, a reaction solvent (or low molecular weight After stirring, filtering to remove low molecular weight polymers, and washing once or twice with a solvent such as water, acetone, methyl ethyl ketone, alcohol, etc. (Post-processing 4) After the polymerization reaction is completed, water is added to the reaction mixture, and the reaction mixture is washed with water, filtered, and if necessary, an acid is added during the water washing. (Post-treatment 5) After the completion of the polymerization reaction, the reaction mixture is filtered, if necessary, washed with a reaction solvent once or twice or more, and further washed with water, filtered and dried, etc. Among these methods, the method (post-treatment 4) can effectively remove metal atoms such as sodium present at the molecular ends of PAS resin, and it is possible to obtain PAS resin with low sodium content. preferable.
 尚、上記(後処理1)~(後処理5)に例示したような後処理方法において、PAS樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。 In addition, in the post-treatment methods exemplified in (Post-treatment 1) to (Post-treatment 5) above, the PAS resin may be dried in vacuum, in air or in an inert gas atmosphere such as nitrogen. You can also do it with
 本実施形態のPAS樹脂組成物においてPAS樹脂の配合量は、本発明の効果を損ねなければ特に限定されないが、樹脂組成物100質量部に対して、好ましくは50質量部以上、より好ましくは60質量部以上、さらに好ましくは65質量部以上の範囲から、好ましくは90質量部以下、より好ましくは80質量部以下、さらに好ましくは75質量部以下の範囲である。かかる範囲において、樹脂組成物が良好な耐摩耗性を呈するため好ましい。 The amount of PAS resin blended in the PAS resin composition of this embodiment is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 50 parts by mass or more, more preferably 60 parts by mass, based on 100 parts by mass of the resin composition. The amount ranges from at least 65 parts by mass, more preferably at least 65 parts by mass, to at most 90 parts by mass, more preferably at most 80 parts by mass, even more preferably at most 75 parts by mass. This range is preferable because the resin composition exhibits good wear resistance.
<黒鉛(B)>
 本実施形態に係るPAS樹脂組成物は、黒鉛(B)を必須成分として配合してなる。本実施形態に用いられる黒鉛(B)の形状は、鱗片状が好ましい。
<Graphite (B)>
The PAS resin composition according to this embodiment contains graphite (B) as an essential component. The graphite (B) used in this embodiment preferably has a scaly shape.
 黒鉛には、大別して天然黒鉛と人造黒鉛があり、本実施形態にはこれらのいずれを用いてもよい。本実施形態に係る樹脂組成物に用いられる黒鉛としては、固定炭素含有量が95%以上のものが好ましく、より好ましくは固定炭素含有量が98%以上のものである。また、黒鉛の結晶化度は80%以上であることが好ましく、より好ましくは90%以上である。固定炭素含有量が大きく、結晶化度の高い黒鉛を用いることにより、特に熱伝導性が良好な樹脂組成物を得ることが出来る。 Graphite can be broadly classified into natural graphite and artificial graphite, and either of these may be used in this embodiment. The graphite used in the resin composition according to the present embodiment preferably has a fixed carbon content of 95% or more, and more preferably has a fixed carbon content of 98% or more. Further, the crystallinity of graphite is preferably 80% or more, more preferably 90% or more. By using graphite with a high fixed carbon content and high crystallinity, a resin composition with particularly good thermal conductivity can be obtained.
 本実施形態に用いられる黒鉛(B)の平均粒子径(D50)は、特に限定されないが、1次粒子での平均粒子径(D50)が0.5μm以上の範囲であることが好ましく、500μm以下の範囲であることが好ましい。黒鉛(B)の粒子径が該範囲にある場合に、特に溶融時の流動性と機械的特性のバランスに優れる樹脂組成物を得ることが出来る。なお、当該平均粒子径は、レーザー回折散乱式粒度分布測定機(Microtrac MT3300EXII)を用いて常法に従って測定した粒度分布に基づき求められる平均粒子径(D50)である。 The average particle diameter (D 50 ) of graphite (B) used in this embodiment is not particularly limited, but it is preferable that the average particle diameter (D 50 ) of the primary particles is in the range of 0.5 μm or more, The range is preferably 500 μm or less. When the particle size of graphite (B) is within this range, it is possible to obtain a resin composition that has particularly excellent balance between fluidity during melting and mechanical properties. The average particle size is the average particle size (D50) determined based on the particle size distribution measured according to a conventional method using a laser diffraction scattering particle size distribution analyzer (Microtrac MT3300EXII).
 本発明のPAS樹脂組成物において黒鉛(B)の配合量は、本発明の効果を損ねなければ特に限定されないが、樹脂組成物100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上の範囲から、好ましくは100質量部以下、より好ましくは50質量部以下、さらに好ましくは30質量部以下の範囲である。かかる範囲において、樹脂組成物が良好な加工性を有しつつ、かつ、成形品の耐摩耗性及び熱伝導率に優れるため好ましい。 The amount of graphite (B) blended in the PAS resin composition of the present invention is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 5 parts by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the resin composition. The amount ranges from 10 parts by weight or more, preferably 100 parts by weight or less, more preferably 50 parts by weight or less, still more preferably 30 parts by weight or less. This range is preferable because the resin composition has good processability and the molded product has excellent wear resistance and thermal conductivity.
 本実施形態に係るPAS樹脂組成物は、実質的に繊維状強化材を含まないPPS樹脂組成物であるが、本発明の効果を損なわない範囲で、少量の繊維状充填剤を任意成分として配合することができる。これら繊維状充填剤としては本発明の効果を損なうものでなければ公知慣用の材料を用いることもでき、例えば、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維等が使用できる。繊維状充填剤を配合する場合、その配合量は、黒鉛(B)100質量部に対して、好ましくは50質量部以下、より好ましくは25質量部以下の範囲である。かかる範囲において、樹脂組成物の線膨張係数の異方性を抑制できるため線膨張係数のMD/TDの比が大きくなり、耐摩耗性に優れる。 The PAS resin composition according to this embodiment is a PPS resin composition that does not substantially contain a fibrous reinforcing material, but a small amount of fibrous filler is added as an optional component within a range that does not impair the effects of the present invention. can do. As these fibrous fillers, known and commonly used materials can be used as long as they do not impair the effects of the present invention. For example, glass fibers, carbon fibers, silane glass fibers, ceramic fibers, aramid fibers, metal fibers, etc. are used. can. When blending a fibrous filler, the blending amount is preferably 50 parts by mass or less, more preferably 25 parts by mass or less, based on 100 parts by mass of graphite (B). In this range, the anisotropy of the linear expansion coefficient of the resin composition can be suppressed, so the ratio of MD/TD of the linear expansion coefficient becomes large, and the abrasion resistance is excellent.
 本実施形態に係るPAS樹脂組成物は、本発明の効果を損なわない範囲で、非繊維状充填剤を任意成分として配合することができる。例えば、板状や球状など、さまざまな形状の充填剤等が挙げられる。具体的には、ガラスビーズ、ガラスフレーク、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、クレー、パイロフィライト、ベントナイト、セリサイト、マイカ、タルク、アタパルジャイト、フェライト、ケイ酸カルシウム、ゼオライト、ベーマイト等の非繊維状充填剤が使用できる。 The PAS resin composition according to the present embodiment may contain a non-fibrous filler as an optional component within a range that does not impair the effects of the present invention. For example, fillers of various shapes such as plate-like and spherical shapes can be mentioned. Specifically, glass beads, glass flakes, calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, zeolite, boehmite, etc. Non-fibrous fillers can be used.
 本開示において非繊維状充填剤は必須成分ではないが、配合する場合、その配合量は本発明の効果を損ねなければ特に限定されるものではない。他の充填剤の配合量としては、例えば、PAS樹脂(A)100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上の範囲から、好ましくは600質量部以下、より好ましくは200質量部以下の範囲である。かかる範囲において、樹脂組成物が良好な成形性を示し、かつ、成形品が機械的性質に優れるため好ましい。 Although a non-fibrous filler is not an essential component in the present disclosure, if it is blended, the amount of the filler blended is not particularly limited as long as it does not impair the effects of the present invention. The amount of other fillers to be added is, for example, preferably 1 part by mass or more, more preferably 5 parts by mass or more, preferably 600 parts by mass or less, based on 100 parts by mass of the PAS resin (A). The amount is preferably 200 parts by mass or less. This range is preferable because the resin composition exhibits good moldability and the molded product has excellent mechanical properties.
 本実施形態に係るPAS樹脂組成物は、必要に応じて、シランカップリング剤を任意成分として配合することができる。本開示のPAS樹脂シランカップリング剤としては、本発明の効果を損ねなければ特に限定されないが、カルボキシ基と反応する官能基、例えば、エポキシ基、イソシアナト基、アミノ基または水酸基を有するシランカップリング剤が好ましいものとして挙げられる。このようなシランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。本開示においてシランカップリング剤は必須成分ではないが、配合する場合、その配合量は、本発明の効果を損ねなければその添加量は特に限定されないが、PAS樹脂(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下までの範囲である。かかる範囲において、樹脂組成物が良好な耐コロナ性と成形性、特に離形性を有し、かつ成形品がエポキシ樹脂と優れた接着性を呈しつつ、さらに機械的強度が向上するため好ましい。 The PAS resin composition according to the present embodiment may contain a silane coupling agent as an optional component, if necessary. The PAS resin silane coupling agent of the present disclosure is not particularly limited as long as it does not impair the effects of the present invention, but the silane coupling agent has a functional group that reacts with a carboxy group, such as an epoxy group, an isocyanato group, an amino group, or a hydroxyl group. Agents are listed as preferred. Examples of such silane coupling agents include epoxy groups such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. Containing alkoxysilane compounds, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane , γ-isocyanatopropylethyldiethoxysilane, γ-isocyanatopropyltrichlorosilane and other isocyanato group-containing alkoxysilane compounds, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)amino Examples include amino group-containing alkoxysilane compounds such as propyltrimethoxysilane and γ-aminopropyltrimethoxysilane, and hydroxyl group-containing alkoxysilane compounds such as γ-hydroxypropyltrimethoxysilane and γ-hydroxypropyltriethoxysilane. In the present disclosure, the silane coupling agent is not an essential component, but if it is blended, the amount added is not particularly limited as long as it does not impair the effects of the present invention, but it can be added to 100 parts by mass of the PAS resin (A). The amount is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass or less. This range is preferable because the resin composition has good corona resistance and moldability, especially mold releasability, and the molded product exhibits excellent adhesion to the epoxy resin while further improving mechanical strength.
 本実施形態に係るPAS樹脂組成物は、必要に応じて、熱可塑性エラストマーを任意成分として配合することができる。熱可塑性エラストマーとしては、ポリオレフィン系エラストマー、弗素系エラストマーまたはシリコーン系エラストマーが挙げられ、このうちポリオレフィン系エラストマーが好ましいものとして挙げられる。これらのエラストマーを添加する場合、その配合量は、本発明の効果を損ねなければ特に限定されないが、PAS樹脂(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下までの範囲である。かかる範囲において、得られるPAS樹脂組成物の耐衝撃性が向上するため好ましい。 The PAS resin composition according to this embodiment may contain a thermoplastic elastomer as an optional component, if necessary. Examples of the thermoplastic elastomer include polyolefin elastomers, fluorine elastomers, and silicone elastomers, and among these, polyolefin elastomers are preferred. When adding these elastomers, the blending amount is not particularly limited as long as it does not impair the effects of the present invention, but it is preferably 0.01 parts by mass or more, more preferably 0.01 parts by mass or more, based on 100 parts by mass of PAS resin (A). The amount ranges from 0.1 parts by weight or more to preferably 10 parts by weight or less, more preferably 5 parts by weight or less. This range is preferable because the impact resistance of the resulting PAS resin composition is improved.
 例えば、前記ポリオレフィン系エラストマーは、α-オレフィンの単独重合体、または2以上のα-オレフィンの共重合体、1または2以上のα-オレフィンと、官能基を有するビニル重合性化合物との共重合体が挙げられる。この際、前記α-オレフィンとしては、エチレン、プロピレン、1-ブテン等の炭素原子数が2以上から8以下までの範囲のα-オレフィンが挙げられる。また、前記官能基としては、カルボキシ基、酸無水物基(-C(=O)OC(=O)-)、エポキシ基、アミノ基、水酸基、メルカプト基、イソシアネート基、オキサゾリン基等が挙げられる。そして、前記官能基を有するビニル重合性化合物としては、酢酸ビニル;(メタ)アクリル酸等のα,β-不飽和カルボン酸;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のα,β-不飽和カルボン酸のアルキルエステル;アイオノマー等のα,β-不飽和カルボン酸の金属塩(金属としてはナトリウムなどのアルカリ金属、カルシウムなどのアルカリ土類金属、亜鉛等);グリシジルメタクリレート等のα,β-不飽和カルボン酸のグリシジルエステル等;マレイン酸、フマル酸、イタコン酸等のα,β-不飽和ジカルボン酸;前記α,β-不飽和ジカルボン酸の誘導体(モノエステル、ジエステル、酸無水物)等の1種または2種以上が挙げられる。上述の熱可塑性エラストマーは、単独で用いても、2種以上を組み合わせて用いてもよい。 For example, the polyolefin elastomer may be a homopolymer of α-olefin, a copolymer of two or more α-olefins, or a copolymer of one or more α-olefins and a vinyl polymerizable compound having a functional group. One example is merging. In this case, the α-olefin includes α-olefins having a carbon atom number ranging from 2 to 8, such as ethylene, propylene, and 1-butene. Further, examples of the functional group include a carboxy group, an acid anhydride group (-C(=O)OC(=O)-), an epoxy group, an amino group, a hydroxyl group, a mercapto group, an isocyanate group, an oxazoline group, etc. . Examples of vinyl polymerizable compounds having the functional group include vinyl acetate; α,β-unsaturated carboxylic acids such as (meth)acrylic acid; Alkyl esters of unsaturated carboxylic acids; metal salts of α, β-unsaturated carboxylic acids such as ionomers (metals include alkali metals such as sodium, alkaline earth metals such as calcium, zinc, etc.); α, β-unsaturated carboxylic acids such as ionomers; Glycidyl esters of β-unsaturated carboxylic acids; α,β-unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid; derivatives of the α,β-unsaturated dicarboxylic acids (monoesters, diesters, acid anhydrides, etc.); ), etc., or two or more thereof. The above-mentioned thermoplastic elastomers may be used alone or in combination of two or more.
 更に、本実施形態に係るPAS樹脂組成物は、上記成分に加えて、さらに用途に応じて、適宜、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四フッ化エチレン樹脂、ポリ二フッ化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂(以下、単に合成樹脂という)を任意成分として配合することができる。特に、フッ素系樹脂を配合すると摺動性がより向上するため好ましい。本開示において前記合成樹脂は必須成分ではないが、配合する場合、その配合の割合は本発明の効果を損ねなければ特に限定されるものではなく、また、それぞれの目的に応じて異なり、一概に規定することはできないが、本実施形態に係る樹脂組成物中に配合する合成樹脂の割合として、例えばPAS樹脂(A)100質量部に対し5質量部以上の範囲であり、15質量部以下の範囲の程度が挙げられる。換言すれば、PAS樹脂(A)と合成樹脂との合計に対してPAS樹脂の割合は質量基準で、好ましくは(100/115)以上の範囲であり、より好ましくは(100/105)以上の範囲である。 Furthermore, in addition to the above components, the PAS resin composition according to the present embodiment may further contain polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone, as appropriate depending on the application. Resin, polyether sulfone resin, polyether ether ketone resin, polyether ketone resin, polyarylene resin, polyethylene resin, polypropylene resin, polytetrafluoroethylene resin, polydifluoroethylene resin, polystyrene resin, ABS resin, epoxy resin , phenol resin, urethane resin, liquid crystal polymer, and other synthetic resins (hereinafter simply referred to as synthetic resins) can be blended as optional components. In particular, it is preferable to incorporate a fluororesin because the sliding properties are further improved. In the present disclosure, the synthetic resin is not an essential component, but if it is blended, the blending ratio is not particularly limited as long as it does not impair the effects of the present invention, and it varies depending on the purpose of the invention, so it cannot be generalized. Although it cannot be specified, the proportion of the synthetic resin blended in the resin composition according to the present embodiment is, for example, in the range of 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of PAS resin (A). Examples include degrees of range. In other words, the ratio of PAS resin to the total of PAS resin (A) and synthetic resin is preferably in the range of (100/115) or more, and more preferably in the range of (100/105) or more, based on mass. range.
 また本実施形態に係るPAS樹脂組成物は、その他にも着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、および離型剤(ステアリン酸やモンタン酸を含む炭素原子数18~30の脂肪酸の金属塩やエステル、ポリエチレン等のポリオレフィン系ワックスなど)等の公知慣用の添加剤を必要に応じ、任意成分として配合してもよい。これらの添加剤は必須成分ではなく、例えば、PAS樹脂(A)100質量部に対して、好ましくは0.01質量部以上の範囲であり、そして、好ましくは1000質量部以下、より好ましくは100質量部以下、さらに好ましくは10質量部以下の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。 In addition, the PAS resin composition according to the present embodiment can also be used as a colorant, an antistatic agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, an ultraviolet absorber, a blowing agent, a flame retardant, a flame retardant aid, and a flame retardant. Any known and commonly used additives such as rusting agents and mold release agents (metal salts and esters of fatty acids having 18 to 30 carbon atoms, including stearic acid and montanic acid, and polyolefin waxes such as polyethylene) may be added as necessary. It may be added as a component. These additives are not essential components and, for example, are preferably in the range of 0.01 parts by mass or more, and preferably 1000 parts by mass or less, more preferably 100 parts by mass, based on 100 parts by mass of the PAS resin (A). It may be used in a range of not more than 10 parts by mass, more preferably not more than 10 parts by mass, depending on the purpose and application so as not to impair the effects of the present invention.
 また、本実施形態に係るPAS樹脂組成物は、線膨張係数のMD/TDの比が0.5以上であることを特徴とする。線膨張係数の調整方法は、特に限定されず、樹脂組成物に含まれるPAS樹脂の種類、分子量、溶融粘度、含有量等、黒鉛その他の充填剤又は添加剤の種類や含有量等を、種々調整することにより行うことができる。MD/TDの比を大きくする方法としては、例えば、繊維状充填剤等のアスペクト比の大きい充填剤の配合量を小さくすることが挙げられる。これは、アスペクト比の大きい充填剤の配合量を増加させた場合、MD方向に対してTD方向の線熱膨張係数が大きくなる傾向にあるためである。 Furthermore, the PAS resin composition according to the present embodiment is characterized in that the ratio of linear expansion coefficient MD/TD is 0.5 or more. The method for adjusting the coefficient of linear expansion is not particularly limited, and the type, molecular weight, melt viscosity, content, etc. of the PAS resin contained in the resin composition, the type and content of graphite and other fillers or additives, etc. can be adjusted in various ways. This can be done by adjusting. An example of a method for increasing the MD/TD ratio is to reduce the amount of a filler with a large aspect ratio, such as a fibrous filler. This is because when the blending amount of a filler with a large aspect ratio is increased, the coefficient of linear thermal expansion in the TD direction tends to become larger than that in the MD direction.
 PAS樹脂組成物の線膨張係数のMD/TDの比がかかる範囲において、摺動時に発生する摩擦熱による樹脂組成物の膨張の異方性を抑制することができるため、摩耗を抑制することができる。なお、本開示における線膨張係数のMD/TDの比は、ISO Type 1Aダンベル形状試験片の中央部分を樹脂流動方向(MD)及び流動方向に対して直角方向(TD)それぞれに長さ10mm、幅10mm、厚さ4mmの直方体に切り出したものを試験片とし、ISO11359-2に準拠して温度範囲145~155℃間で測定した値を用いて算出した値である。MD/TDが1に近いほど、線膨張係数の異方性が小さいことを示す。 In the range of the MD/TD ratio of the linear expansion coefficient of the PAS resin composition, it is possible to suppress the anisotropy of expansion of the resin composition due to frictional heat generated during sliding, and therefore it is possible to suppress wear. can. Note that the MD/TD ratio of the linear expansion coefficient in the present disclosure is determined by measuring the length of the central part of the ISO Type 1A dumbbell-shaped test piece in the resin flow direction (MD) and in the direction perpendicular to the flow direction (TD), respectively, by 10 mm; This is a value calculated using a test piece cut into a rectangular parallelepiped with a width of 10 mm and a thickness of 4 mm, and measured in a temperature range of 145 to 155° C. in accordance with ISO 11359-2. The closer MD/TD is to 1, the smaller the anisotropy of the linear expansion coefficient.
 また、本実施形態に係るPAS樹脂組成物は、熱伝導率に優れる。熱伝導率は特に限定されるものではないが、0.5〔W/m・K〕以上が好ましく、0.6〔W/m・K〕以上がより好ましい。かかる範囲において、摺動時に発生する摩擦熱による樹脂の溶融を低減することができるため、成形品の摩耗を低減することができる。また、高温環境下における機械的強度の低下や材料の劣化を抑制することができる。なお、本開示における熱伝導率は、実施例に記載の方法で、成形品の厚み方向をISO 22007-2「プラスチック-熱伝導率及び熱拡散係数の求め方-第2部:過渡的平面熱源(ホットディスク)法」に準拠して測定した値である。 Furthermore, the PAS resin composition according to this embodiment has excellent thermal conductivity. Although the thermal conductivity is not particularly limited, it is preferably 0.5 [W/m·K] or more, and more preferably 0.6 [W/m·K] or more. In this range, melting of the resin due to frictional heat generated during sliding can be reduced, and therefore wear of the molded product can be reduced. Further, it is possible to suppress a decrease in mechanical strength and deterioration of the material in a high-temperature environment. The thermal conductivity in this disclosure is measured in the thickness direction of the molded product by the method described in the Examples, according to ISO 22007-2 "Plastics - How to determine thermal conductivity and thermal diffusivity - Part 2: Transient planar heat source. (Hot Disk) Method.
<PAS樹脂組成物の製造方法>
 本実施形態に係るPAS樹脂組成物の製造方法は、PAS樹脂(A)と黒鉛(B)を配合し、PAS樹脂(A)の融点以上の温度範囲で溶融混錬する工程を有する摺動部材用PAS樹脂組成物の製造方法であって、
 PAS樹脂(A)の溶融粘度が90Pa・s以上かつ350Pa・s以下であり、黒鉛(B)が鱗片状でありかつ、前記樹脂組成物100質量部における黒鉛(B)の配合量が5~50質量部であり、樹脂組成物の線膨張係数のMD/TDの比が0.5以上であることを特徴とする。以下、詳述する。
<Method for manufacturing PAS resin composition>
The method for producing a PAS resin composition according to the present embodiment is a sliding member having a step of blending PAS resin (A) and graphite (B) and melting and kneading the mixture in a temperature range equal to or higher than the melting point of PAS resin (A). A method for producing a PAS resin composition for use, comprising:
The melt viscosity of the PAS resin (A) is 90 Pa·s or more and 350 Pa·s or less, the graphite (B) is scaly, and the blending amount of graphite (B) in 100 parts by mass of the resin composition is 5 to 5. 50 parts by mass, and the ratio of MD/TD of linear expansion coefficient of the resin composition is 0.5 or more. The details will be explained below.
 本実施形態に係るPAS樹脂組成物の製造方法は、上記必須成分を配合し、PAS樹脂(A)の融点以上の温度範囲で溶融混錬する工程を有する。より詳しくは、本実施形態に係るPAS樹脂組成物は、各必須成分、および、必要に応じてその他の任意成分を配合してなる。本実施形態に係る樹脂組成物を製造する方法としては、特に限定されないが、必須成分と必要に応じて任意成分を配合して、溶融混錬する方法、より詳しくは、必要に応じてタンブラーまたはヘンシェルミキサー等で均一に乾式混合し、次いで、二軸押出機に投入して溶融混練する方法が挙げられる The method for producing a PAS resin composition according to the present embodiment includes the step of blending the above-mentioned essential components and melting and kneading them at a temperature range equal to or higher than the melting point of the PAS resin (A). More specifically, the PAS resin composition according to the present embodiment is formed by blending each essential component and other optional components as necessary. The method for producing the resin composition according to the present embodiment is not particularly limited, but includes a method of blending essential components and optional components as necessary, and melting and kneading the mixture, more specifically, using a tumbler or Examples include a method of uniformly dry mixing using a Henschel mixer or the like, then introducing the mixture into a twin-screw extruder and melt-kneading it.
 溶融混錬は、樹脂温度がPAS樹脂(A)の融点以上となる温度範囲、好ましくは該融点+10℃以上となる温度範囲、より好ましくは該融点+10℃以上、さらに好ましくは該融点+20℃以上から、好ましくは該融点+100℃以下、より好ましくは該融点+50℃以下までの範囲の温度に加熱して行うことができる。 Melt kneading is carried out in a temperature range in which the resin temperature is equal to or higher than the melting point of the PAS resin (A), preferably in a temperature range in which the melting point is +10°C or higher, more preferably at least the melting point +10°C, even more preferably at least the melting point +20°C. This can be carried out by heating to a temperature in the range from 100° C. to 100° C., more preferably 50° C. below the melting point.
 前記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5~500(kg/hr)の範囲と、スクリュー回転数50~500(rpm)の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02~5(kg/hr/rpm)の範囲となる条件下に溶融混練することがさらに好ましい。また、溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。例えば、前記成分のうち、必須成分の黒鉛(B)や必要に応じて他の繊維状充填剤を添加する場合は、前記二軸混練押出機のサイドフィーダーから該押出機内に投入することが分散性の観点から好ましい。かかるサイドフィーダーの位置は、前記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部(トップフィーダー)から該サイドフィーダーまでの距離の比率が、0.1以上であることが好ましく、0.3以上であることがより好ましい。また、かかる比率は0.9以下であることが好ましく、0.7以下であることがより好ましい。 The melt-kneading machine is preferably a twin-screw kneading extruder from the viewpoint of dispersibility and productivity, for example, a discharge rate of the resin component in the range of 5 to 500 (kg/hr) and a screw rotation speed of 50 to 500 (rpm). It is preferable to melt and knead while appropriately adjusting the range, and melt and knead under conditions such that the ratio (discharge amount/screw rotation speed) is in the range of 0.02 to 5 (kg/hr/rpm). is even more preferable. Further, the addition and mixing of each component to the melt-kneading machine may be performed simultaneously or may be performed separately. For example, when adding graphite (B), which is an essential component, and other fibrous fillers as necessary, it is preferable to introduce the two-screw extruder from the side feeder into the extruder. Preferable from a gender perspective. The position of the side feeder is preferably such that the ratio of the distance from the extruder resin input part (top feeder) to the side feeder to the total screw length of the twin-screw kneading extruder is 0.1 or more, and 0. More preferably, it is .3 or more. Moreover, it is preferable that this ratio is 0.9 or less, and it is more preferable that it is 0.7 or less.
 このように溶融混練して得られる本実施形態に係るPAS樹脂組成物は、前記必須成分と、必要に応じて加える任意成分およびそれらの由来成分を含む溶融混合物である。このため、本実施形態に係るPAS樹脂組成物は、PAS樹脂(A)が連続相を形成し、他の必須成分や任意成分が分散されたモルフォロジーを有する。本実施形態に係るPAS樹脂組成物は、該溶融混練後に、公知の方法、例えば、溶融状態の樹脂組成物をストランド状に押出成形した後、ペレット、チップ、顆粒、粉末などの形態に加工してから、必要に応じて100~150℃の温度範囲で予備乾燥を施すことが好ましい。 The PAS resin composition according to the present embodiment obtained by melt-kneading in this manner is a molten mixture containing the above-mentioned essential components, optional components added as necessary, and components derived from these components. Therefore, the PAS resin composition according to the present embodiment has a morphology in which the PAS resin (A) forms a continuous phase and other essential components and optional components are dispersed. After the melt-kneading, the PAS resin composition according to the present embodiment is produced by a known method, for example, by extruding the molten resin composition into a strand shape, and then processing it into pellets, chips, granules, powder, etc. After that, it is preferable to perform preliminary drying at a temperature range of 100 to 150°C, if necessary.
<PAS樹脂成形品、PAS樹脂成形品の製造方法>
 本実施形態に係る成形品はPAS樹脂組成物を溶融成形してなる。また、本実施形態に係る成形品の製造方法は、前記PAS樹脂組成物を溶融成形する工程を有する。このため、本実施形態に係る成形品は、PAS樹脂(A)が連続相を形成し、他の必須成分や任意成分が分散されたモルフォロジーを有する。PAS樹脂組成物が、かかるモルフォロジーを有することにより、熱伝導性および機械的強度に優れた成形品が得られる。
<PAS resin molded product, manufacturing method of PAS resin molded product>
The molded article according to this embodiment is formed by melt-molding a PAS resin composition. Moreover, the method for manufacturing a molded article according to the present embodiment includes a step of melt-molding the PAS resin composition. Therefore, the molded article according to this embodiment has a morphology in which the PAS resin (A) forms a continuous phase and other essential components and optional components are dispersed. When the PAS resin composition has such a morphology, a molded article with excellent thermal conductivity and mechanical strength can be obtained.
 本実施形態に係るPAS樹脂組成物は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に離形性にも優れるため射出成形用途に適している。射出成形にて成形する場合、各種成形条件は特に限定されず、通常一般的な方法にて成形することができる。例えば、射出成形機内で、樹脂温度がPAS樹脂(A)の融点以上の温度範囲、好ましくは該融点+10℃以上の温度範囲、より好ましくは融点+10℃~融点+100℃の温度範囲、さらに好ましくは融点+20~融点+50℃の温度範囲で前記PAS樹脂組成物を溶融する工程を経た後、樹脂吐出口よりを金型内に注入して成形すればよい。その際、金型温度も公知の温度範囲、例えば、室温(23℃)~300℃、好ましくは130~190℃に設定すればよい。 The PAS resin composition according to the present embodiment can be subjected to various molding processes such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding, but is particularly suitable for mold release. It also has excellent properties, making it suitable for injection molding applications. When molding is performed by injection molding, various molding conditions are not particularly limited, and molding can be performed by a general method. For example, in the injection molding machine, the resin temperature is in a temperature range above the melting point of the PAS resin (A), preferably in a temperature range above the melting point +10°C, more preferably in a temperature range from melting point +10°C to melting point +100°C, even more preferably After going through the process of melting the PAS resin composition at a temperature range of melting point +20 to +50° C., the resin composition may be injected into a mold through the resin discharge port and molded. At this time, the mold temperature may be set within a known temperature range, for example, room temperature (23°C) to 300°C, preferably 130 to 190°C.
 本実施形態に係る成形品の製造方法は、前記成形品にアニール処理する工程を有してもよい。アニール処理は、成形品の用途あるいは形状等により最適な条件が選ばれるが、アニール温度はPAS樹脂(A)のガラス転移温度以上の温度範囲、好ましくは該ガラス転移温度+10℃以上の温度範囲であり、より好ましくは該ガラス転移温度+30℃以上の温度範囲である。一方、260℃以下の範囲であることが好ましく、240℃以下の範囲であることがより好ましい。アニール時間は特に限定されないが、0.5時間以上の範囲であることが好ましく、1時間以上の範囲であることがより好ましい。一方、10時間以下の範囲であることが好ましく、8時間以下の範囲であることがより好ましい。かかる範囲において、得られる成形品のひずみが低減し、かつ、樹脂の結晶性が向上するだけでなく、熱伝導率、機械的特性および燃料バリア性がさらに向上するため好ましい。アニール処理は空気中で行ってもよいが、窒素ガス等の不活性ガス中で行うことが好ましい。 The method for manufacturing a molded article according to the present embodiment may include a step of subjecting the molded article to an annealing treatment. The optimum conditions for the annealing treatment are selected depending on the purpose or shape of the molded product, but the annealing temperature is in a temperature range equal to or higher than the glass transition temperature of the PAS resin (A), preferably in a temperature range equal to or higher than the glass transition temperature +10°C. The temperature range is more preferably 30° C. or higher than the glass transition temperature. On the other hand, it is preferably in a range of 260°C or less, more preferably in a range of 240°C or less. Although the annealing time is not particularly limited, it is preferably in a range of 0.5 hours or more, and more preferably in a range of 1 hour or more. On the other hand, the duration is preferably 10 hours or less, and more preferably 8 hours or less. This range is preferable because not only the distortion of the resulting molded product is reduced and the crystallinity of the resin is improved, but also the thermal conductivity, mechanical properties, and fuel barrier properties are further improved. Although the annealing treatment may be performed in air, it is preferably performed in an inert gas such as nitrogen gas.
 本実施形態に係るPAS樹脂成形品は、熱伝導率および摺動特性に優れることを特徴としたものであるから、特に摺動部品に好適である。具体的には、ギヤ、軸受け、保持器、ロボットアーム等といった摺動部品に好適に用いることができる。また、本開示の成形品は摺動部品のみではなく、以下のような通常の樹脂成形品とすることもできる。例えば箱型の電気・電子部品集積モジュール用保護・支持部材・複数の個別半導体またはモジュール、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モータ、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスク・DVDディスク・ブルーレイディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品、あるいは給湯機や風呂の湯量、温度センサなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライタ、タイプライタなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクタ、ブラシホルダー、スリップリング、ICレギュレータ、ライトディマ用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、ブレーキパットウェアーセンサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、温度センサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモーター関係部品、デュストリビュータ、スタータースイッチ、イグニッションコイル及びそのボビン、モーターインシュレータ、モーターロータ、モーターコア、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース等の自動車・車両関連部品が挙げられ、その他各種用途にも適用可能である。 The PAS resin molded product according to this embodiment is characterized by excellent thermal conductivity and sliding properties, and is therefore particularly suitable for sliding parts. Specifically, it can be suitably used for sliding parts such as gears, bearings, cages, robot arms, etc. Further, the molded product of the present disclosure is not limited to a sliding component, but can also be a regular resin molded product such as the following. For example, protection and support members for box-shaped electric/electronic component integrated modules, multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitor cases, optical pickups, Oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, Electrical and electronic parts such as parabolic antennas and computer-related parts; VTR parts, television parts, irons, hair dryers, rice cooker parts, microwave oven parts, audio parts, audio, laser discs, compact discs, DVD discs, and Blu-ray discs. Household and office electrical appliances, such as audio/video equipment parts such as disks, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, and plumbing equipment parts such as water heaters, bath water quantity and temperature sensors, etc. Product parts: Office computer-related parts, telephone-related parts, facsimile-related parts, copying machine-related parts, cleaning jigs, motor parts, lighters, typewriters, etc.Machine-related parts: microscopes, binoculars, cameras, watches Optical equipment and precision machinery related parts such as alternator terminals, alternator connectors, brush holders, slip rings, IC regulators, potentiometer bases for light dimmers, relay blocks, inhibitor switches, various valves such as exhaust gas valves, and fuel related parts.・Various exhaust and intake system pipes, air intake nozzle snorkel, intake manifold, engine cooling water joint, carburetor main body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crank Shaft position sensor, temperature sensor, air flow meter, brake pad wear sensor, thermostat base for air conditioner, heating hot air flow control valve, brush holder for radiator motor, water pump impeller, turbine vane, wiper motor related parts, dust distributor, Starter switches, ignition coils and their bobbins, motor insulators, motor rotors, motor cores, starter relays, transmission wire harnesses, window washer nozzles, air conditioner panel switch boards, fuel-related electromagnetic valve coils, fuse connectors, horn terminals, electrical equipment Automotive and vehicle related parts include insulating plates, step motor rotors, lamp sockets, lamp reflectors, lamp housings, brake pistons, solenoid bobbins, engine oil filters, ignition cases, etc., and can also be applied to various other uses. .
 以下、実施例、比較例を用いて説明するが、本発明はこれら実施例に限定されるものではない。なお、以下、特に断りが無い場合「%」や「部」は質量基準とする。 The present invention will be explained below using Examples and Comparative Examples, but the present invention is not limited to these Examples. In addition, hereinafter, unless otherwise specified, "%" and "part" are based on mass.
<実施例1~7及び比較例1~7>
 表1に記載する組成成分および配合量にしたがい、各材料を配合した。その後、株式会社日本製鋼所製ベント付2軸押出機「TEX-30α(製品名)」にこれら配合材料を投入し、樹脂成分吐出量30kg/hr、スクリュー回転数200rpm、設定樹脂温度320℃で溶融混練して樹脂組成物のペレットを得た。ガラス繊維および炭素繊維はサイドフィーダー(S/T比0.5)から投入し、それ以外の材料はタンブラーで予め均一に混合しトップフィーダーから投入した。得られた樹脂組成物のペレットを140℃ギヤオーブンで2時間乾燥した後、射出成形することで各種試験片を作製し、下記の試験を行った。
<Examples 1 to 7 and Comparative Examples 1 to 7>
Each material was blended according to the composition components and blending amounts listed in Table 1. After that, these compounded materials were put into a vented twin-screw extruder "TEX-30α (product name)" manufactured by Japan Steel Works, Ltd., and the resin component discharge rate was 30 kg/hr, the screw rotation speed was 200 rpm, and the resin temperature was set at 320°C. Pellets of the resin composition were obtained by melt-kneading. Glass fibers and carbon fibers were fed from a side feeder (S/T ratio 0.5), and other materials were uniformly mixed in advance in a tumbler and fed from a top feeder. After drying the obtained resin composition pellets in a gear oven at 140° C. for 2 hours, various test pieces were prepared by injection molding, and the following tests were conducted.
<評価> <Evaluation>
(1)引張特性の測定
 得られたペレットをシリンダー温度310℃に設定した住友重機製射出成形機(SE-75D-HP)に供給し、金型温度140℃に温調したISO Type 1Aダンベル片成形用金型を用いて射出成形を行い、ISO Type-Aダンベル片を得た。なお、ウェルド部を含まない試験片となるよう1点ゲートから樹脂を射出して作製したものとした。得られたダンベル片をISO 527-1および2に準拠した測定方法で引張強さ及び引張伸びを測定した。測定結果を表1及び表2に示す。
(1) Measurement of tensile properties The obtained pellets were supplied to a Sumitomo Heavy Industries injection molding machine (SE-75D-HP) whose cylinder temperature was set at 310°C, and molded into ISO Type 1A dumbbell pieces whose mold temperature was controlled at 140°C. Injection molding was performed using a molding die to obtain an ISO Type-A dumbbell piece. Note that the resin was injected from a single point gate to produce a test piece that did not include a weld portion. The tensile strength and tensile elongation of the obtained dumbbell pieces were measured using a measuring method based on ISO 527-1 and 2. The measurement results are shown in Tables 1 and 2.
(2)線熱膨張係数の測定
 上記(1)と同様に作製したISO Type 1Aダンベル片の中央部分を長さ10mm、幅10mm、厚さ4mmの直方体に切り出したものを線熱膨張係数試験片とし、ISO11359-2に準拠した測定方法で、測定温度範囲145~155℃間の、試験片の樹脂流動方向(MD)及び流動方向に対して直角方向(TD)それぞれの線熱膨張係数(1/K)を測定した。得られた値を用いて、MD/TDの線熱膨張係数比率を算出した。測定結果を表1及び表2に示す。
(2) Measurement of Linear Thermal Expansion Coefficient The center part of the ISO Type 1A dumbbell piece prepared in the same manner as in (1) above was cut out into a rectangular parallelepiped with a length of 10 mm, a width of 10 mm, and a thickness of 4 mm, and a linear thermal expansion coefficient test piece was obtained. The coefficient of linear thermal expansion (1 /K) was measured. Using the obtained values, the linear thermal expansion coefficient ratio of MD/TD was calculated. The measurement results are shown in Tables 1 and 2.
(3)摩耗試験
 得られたペレットをシリンダー温度310℃に設定した住友重機製射出成形機(SE-75D-HP)に供給し、140℃に温調した金型を用いて内径20mm、外径25mm、高さ15.0mmの円筒状試験片を得た。この円筒状試験片について、鈴木式磨耗試験機を用いて、以下の各測定条件下において、摩擦係数と比摩耗量〔10-3[mm/(N×km)]〕を測定した。測定結果を表1及び表2に示す。
測定条件A:
圧力:150KPa、回転速度:0.3m/sec、測定時間:60分、温度環境:23℃、射出成形機で成形して得られた前記試験片2個を用い、前記測定条件下で前記鈴木式磨耗試験を行った。
測定条件B:
圧力:500KPa、回転速度:0.3m/sec、測定時間:60分、温度環境:23℃、射出成形機で成形して得られた前記試験片2個を用い、上記試験条件にて前記鈴木式磨耗試験を行った。
(3) Abrasion test The obtained pellets were supplied to a Sumitomo Heavy Industries injection molding machine (SE-75D-HP) whose cylinder temperature was set at 310°C, and molded with an inner diameter of 20 mm and an outer diameter using a mold whose temperature was controlled to 140°C. A cylindrical test piece with a diameter of 25 mm and a height of 15.0 mm was obtained. Regarding this cylindrical test piece, the friction coefficient and specific wear amount [10 −3 [mm 3 /(N×km)]] were measured under the following measurement conditions using a Suzuki type abrasion tester. The measurement results are shown in Tables 1 and 2.
Measurement conditions A:
Pressure: 150 KPa, rotation speed: 0.3 m/sec, measurement time: 60 minutes, temperature environment: 23°C, using the two test pieces obtained by molding with an injection molding machine, under the measurement conditions, the Suzuki A formula abrasion test was conducted.
Measurement condition B:
Pressure: 500 KPa, rotation speed: 0.3 m/sec, measurement time: 60 minutes, temperature environment: 23°C, using the two test pieces obtained by molding with an injection molding machine, the Suzuki A formula abrasion test was conducted.
(4)熱伝導率の測定(ホットディスク法)
 得られたペレットをシリンダー温度310℃に設定した住友重機製射出成形機(SE-75D-HP)に供給し、140℃に温調した金型を用いて、ISO D2シート(60mm×60mm×厚み2mm)を得た。得られた試験片の深さ方向について、ISO 22007-2「プラスチック-熱伝導率及び熱拡散係数の求め方-第2部:過渡的平面熱源(ホットディスク)法」に準拠して、熱伝導率(W/m・K)を測定した。測定結果を表1及び表2に示す。
(4) Measurement of thermal conductivity (hot disk method)
The obtained pellets were supplied to a Sumitomo Heavy Industries injection molding machine (SE-75D-HP) whose cylinder temperature was set to 310°C, and using a mold whose temperature was controlled to 140°C, an ISO D2 sheet (60 mm x 60 mm x thickness 2 mm) was obtained. Thermal conductivity was measured in the depth direction of the obtained test piece in accordance with ISO 22007-2 "Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient planar heat source (hot disk) method". The rate (W/m·K) was measured. The measurement results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
A-1:PPS樹脂(溶融粘度(V6)150Pa・s)
A-2:PPS樹脂(溶融粘度(V6)250Pa・s)
a-3:PPS樹脂(溶融粘度(V6)35Pa・s)
B-1:黒鉛、鱗片状、平均粒子径(D50)50μm
b-2:黒鉛、不定形、平均粒子径(D50)30μm
C-1:PTFE樹脂
D-1:シリコーン樹脂
F-1:炭素繊維(チョップドストランド、繊維径6μm)
F-2:炭素繊維(チョップドストランド、繊維径6μm)
F-3:ガラス繊維(チョップドストランド、繊維径10.5μm)
A-1: PPS resin (melt viscosity (V6) 150 Pa・s)
A-2: PPS resin (melt viscosity (V6) 250 Pa・s)
a-3: PPS resin (melt viscosity (V6) 35 Pa・s)
B-1: Graphite, scaly, average particle diameter (D 50 ) 50 μm
b-2: Graphite, amorphous, average particle diameter (D 50 ) 30 μm
C-1: PTFE resin D-1: Silicone resin F-1: Carbon fiber (chopped strand, fiber diameter 6 μm)
F-2: Carbon fiber (chopped strand, fiber diameter 6 μm)
F-3: Glass fiber (chopped strand, fiber diameter 10.5 μm)
 表1及び表2から、実施例の樹脂組成物から得られた成形品は比較例と対比して引張特性と熱伝導率とに優れながら、摩耗係数や比摩耗量が低減され、良好な摺動性を呈することがわかる。 Tables 1 and 2 show that the molded products obtained from the resin compositions of Examples have excellent tensile properties and thermal conductivity compared to Comparative Examples, and have reduced wear coefficients and specific wear amounts, and have good sliding properties. It can be seen that it exhibits movement.

Claims (9)

  1.  ポリアリーレンスルフィド樹脂(A)と黒鉛(B)を配合してなる摺動部材用ポリアリーレンスルフィド樹脂組成物であって、
     ポリアリーレンスルフィド樹脂(A)の溶融粘度(V6)が90Pa・s以上かつ350Pa・s以下であり、
     黒鉛(B)が鱗片状であり、かつ、前記樹脂組成物100質量部における黒鉛(B)の配合量が5~50質量部であり、
     樹脂組成物の線膨張係数のMD/TDの比が0.5以上であることを特徴とする摺動部材用ポリアリーレンスルフィド樹脂組成物。
    (ただし、線膨張係数はISO Type 1Aダンベル形状試験片の中央部分を長さ10mm、幅10mm、厚さ4mmの直方体に切り出したものを試験片とし、ISO11359-2に準拠して温度範囲145~155℃間で測定した値である)。
    A polyarylene sulfide resin composition for sliding members comprising a polyarylene sulfide resin (A) and graphite (B),
    The melt viscosity (V6) of the polyarylene sulfide resin (A) is 90 Pa·s or more and 350 Pa·s or less,
    Graphite (B) is in the form of scales, and the amount of graphite (B) in 100 parts by mass of the resin composition is 5 to 50 parts by mass,
    A polyarylene sulfide resin composition for a sliding member, characterized in that the ratio of MD/TD of linear expansion coefficient of the resin composition is 0.5 or more.
    (However, the coefficient of linear expansion is determined by cutting out the central part of an ISO Type 1A dumbbell-shaped test piece into a rectangular parallelepiped with a length of 10 mm, width of 10 mm, and thickness of 4 mm, and a temperature range of 145 to 145 mm in accordance with ISO 11359-2. (Values measured at 155°C).
  2.  前記樹脂組成物100質量部におけるポリアリーレンスルフィド樹脂(A)の配合量が50~90質量部であることを特徴とする請求項1記載の摺動部材用ポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition for sliding members according to claim 1, wherein the amount of polyarylene sulfide resin (A) blended in 100 parts by mass of the resin composition is 50 to 90 parts by mass.
  3.  溶融混練物である請求項1又は2に記載の摺動部材用ポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition for sliding members according to claim 1 or 2, which is a melt-kneaded product.
  4.  請求項1~3の何れか一項に記載の摺動部材用ポリアリーレンスルフィド樹脂組成物を溶融成形してなる摺動部材用成形品。 A molded article for a sliding member obtained by melt-molding the polyarylene sulfide resin composition for a sliding member according to any one of claims 1 to 3.
  5.  請求項4記載の成形品からなる摺動部材。 A sliding member made of the molded product according to claim 4.
  6.  ポリアリーレンスルフィド樹脂(A)と黒鉛(B)を配合し、ポリアリーレンスルフィド樹脂(A)の融点以上の温度範囲で溶融混錬する工程を有する摺動部材用ポリアリーレンスルフィド樹脂組成物の製造方法であって、
     ポリアリーレンスルフィド樹脂(A)の溶融粘度が90Pa・s以上かつ350Pa・s以下であり、
     黒鉛(B)が鱗片状であり、
     樹脂組成物の線膨張係数のMD/TDの比が0.5以上であることを特徴とする摺動部材用ポリアリーレンスルフィド樹脂組成物の製造方法。
    (ただし、線膨張係数はISO Type 1Aダンベル形状試験片の中央部分を長さ10mm、幅10mm、厚さ4mmの直方体に切り出したものを試験片とし、ISO11359-2に準拠して温度範囲145~155℃間で測定した値である)。
    A method for producing a polyarylene sulfide resin composition for sliding members, comprising a step of blending polyarylene sulfide resin (A) and graphite (B) and melting and kneading the mixture at a temperature range equal to or higher than the melting point of polyarylene sulfide resin (A). And,
    The melt viscosity of the polyarylene sulfide resin (A) is 90 Pa·s or more and 350 Pa·s or less,
    Graphite (B) is scaly,
    A method for producing a polyarylene sulfide resin composition for a sliding member, characterized in that the resin composition has a linear expansion coefficient MD/TD ratio of 0.5 or more.
    (However, the coefficient of linear expansion is determined by cutting out the central part of an ISO Type 1A dumbbell-shaped test piece into a rectangular parallelepiped with a length of 10 mm, width of 10 mm, and thickness of 4 mm, and a temperature range of 145 to 145 mm in accordance with ISO 11359-2. (Values measured at 155°C).
  7.  前記樹脂組成物100質量部におけるポリアリーレンスルフィド樹脂(A)の配合量が50~90質量部であることを特徴とする請求項6記載の摺動部材用ポリアリーレンスルフィド樹脂組成物の製造方法。 The method for producing a polyarylene sulfide resin composition for sliding members according to claim 6, wherein the amount of polyarylene sulfide resin (A) blended in 100 parts by mass of the resin composition is 50 to 90 parts by mass.
  8.  請求項1~3の何れか一項に記載のポリアリーレンスルフィド樹脂組成物を溶融成形する工程を有する摺動部材用成形品の製造方法。 A method for producing a molded article for a sliding member, comprising the step of melt-molding the polyarylene sulfide resin composition according to any one of claims 1 to 3.
  9.  請求項1~3の何れか一項に記載のポリアリーレンスルフィド樹脂組成物を溶融成形してなる、摺動部材の製造方法。 A method for producing a sliding member, which is obtained by melt-molding the polyarylene sulfide resin composition according to any one of claims 1 to 3.
PCT/JP2023/014952 2022-05-10 2023-04-13 Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article WO2023218850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023540944A JPWO2023218850A1 (en) 2022-05-10 2023-04-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022077453 2022-05-10
JP2022-077453 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023218850A1 true WO2023218850A1 (en) 2023-11-16

Family

ID=88730118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014952 WO2023218850A1 (en) 2022-05-10 2023-04-13 Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article

Country Status (2)

Country Link
JP (1) JPWO2023218850A1 (en)
WO (1) WO2023218850A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711135A (en) * 1993-06-22 1995-01-13 Toray Ind Inc Polyphenylene sulfide resin composition
JP2007302822A (en) * 2006-05-12 2007-11-22 Toray Ind Inc Polyphenylene sulfide resin composition
JP2016147955A (en) * 2015-02-12 2016-08-18 Dic株式会社 Polyarylene sulfide resin composition and molded article of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711135A (en) * 1993-06-22 1995-01-13 Toray Ind Inc Polyphenylene sulfide resin composition
JP2007302822A (en) * 2006-05-12 2007-11-22 Toray Ind Inc Polyphenylene sulfide resin composition
JP2016147955A (en) * 2015-02-12 2016-08-18 Dic株式会社 Polyarylene sulfide resin composition and molded article of the same

Also Published As

Publication number Publication date
JPWO2023218850A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6646877B2 (en) Polyarylene sulfide resin composition, molded article, composite molded article, and method for producing composite molded article
JP6624204B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP5510624B2 (en) Polyarylene sulfide resin composition and molded article
JP6809083B2 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
JPWO2018066637A1 (en) Polyarylene sulfide resin composition, molded article and production method
JP6797360B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP6638297B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP7024932B1 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
WO2023218850A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article
JP7139571B2 (en) Polyarylene sulfide resin composition and molded article
JP7311051B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP6753470B2 (en) Polyarylene sulfide resin composition, molded product and manufacturing method
JP7453635B1 (en) Polyarylene sulfide resin compositions, molded products and methods for producing them
JP7136372B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7136394B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
WO2020116434A1 (en) Resin composition and molded body thereof
JP7334873B1 (en) Polyarylene sulfide resin mixture, resin composition, molded article, and method for producing the same
JP7107466B1 (en) Polyarylene sulfide resin composition, method for producing polyarylene sulfide resin composition, molded article, method for producing molded article
JP7070811B1 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
JP7136381B1 (en) Polyarylene sulfide resin composition, method for producing polyarylene sulfide resin composition, molded article, method for producing molded article
WO2024004389A1 (en) Gear mechanism, arm mechanism for robot, and robot
WO2024084884A1 (en) Forced extraction molded article, polyarylene sulfide resin composition and method for producing forced extraction molded article
WO2022215395A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article
WO2024080093A1 (en) Poly(arylene sulfide) resin composition, molded article, and production methods therefor
JP2024040672A (en) Polyarylene sulfide resin compositions, molded products, and methods for producing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803332

Country of ref document: EP

Kind code of ref document: A1