WO2017068719A1 - Rotating electric machine device - Google Patents

Rotating electric machine device Download PDF

Info

Publication number
WO2017068719A1
WO2017068719A1 PCT/JP2015/079982 JP2015079982W WO2017068719A1 WO 2017068719 A1 WO2017068719 A1 WO 2017068719A1 JP 2015079982 W JP2015079982 W JP 2015079982W WO 2017068719 A1 WO2017068719 A1 WO 2017068719A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
flow path
motor
cooling
cooling flow
Prior art date
Application number
PCT/JP2015/079982
Other languages
French (fr)
Japanese (ja)
Inventor
敦明 横山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/079982 priority Critical patent/WO2017068719A1/en
Publication of WO2017068719A1 publication Critical patent/WO2017068719A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the present invention relates to a rotating electrical machine apparatus including a rotating electrical machine and a power converter.
  • Patent Document 1 discloses a technique in which a rotating electrical machine and a power conversion device are integrated by sharing a single housing.
  • the power conversion device includes a power module that houses a power semiconductor element, a smoothing capacitor, and the like as inverter components.
  • the housing is provided with a common cooling water channel that cools the rotating electrical machine and the power conversion device.
  • a bus bar which is a conductive connecting member is used for connection between the coil of the rotating electrical machine and the power converter. At that time, heat generated in the coil of the rotating electrical machine is transmitted to the power conversion device via the bus bar, resulting in a high temperature of the power conversion device.
  • Patent Document 1 since the technology of Patent Document 1 only cools the power conversion device by a cooling water channel shared with the rotating electrical machine, it is difficult to suppress heat transfer from the rotating electrical machine to the power conversion device via the bus bar. is there.
  • an object of the present invention is to suppress heat transfer from the rotating electrical machine to the power converter.
  • the first cooling flow path of the rotating electrical machine and the second cooling flow path of the power converter are communicated with each other by the third cooling flow path of the support member.
  • a heat generating component is attached to the support member that supports the power conversion device in a thermally connected state.
  • the support member is cooled by the cooling medium flowing through the third cooling flow path, and the heat generating component is cooled by the cooled support member.
  • the heat transfer from the heat generation component to the power conversion device is suppressed by cooling the heat generation component that is thermally connected to the support member, thereby increasing the temperature of the power conversion device. Can be suppressed.
  • FIG. 1 is an exploded perspective view of a rotating electrical machine apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view including a motor terminal corresponding to the AA cross section of FIG.
  • FIG. 3 is a perspective view showing the periphery of the connection portion between the tray and the resin molded bus bar according to the second embodiment of the present invention.
  • 4 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 5 is an exploded perspective view showing a state where the resin molded bus bar is removed from the tray of FIG. 3.
  • 6A is a perspective view of a bus bar corresponding to the U-phase among the three bus bars shown in FIG. FIG.
  • FIG. 6B is a perspective view of a bus bar corresponding to the V phase among the three bus bars shown in FIG. 3.
  • 6C is a perspective view of a bus bar corresponding to the W phase among the three bus bars shown in FIG. 3.
  • FIG. 7 is a perspective view showing the periphery of the tray according to the third embodiment of the present invention.
  • FIG. 8A is a perspective view of a bus bar corresponding to the U-phase among the three bus bars shown in FIG.
  • FIG. 8B is a perspective view of a bus bar corresponding to the V-phase among the three bus bars shown in FIG. 7.
  • FIG. 8C is a perspective view of a bus bar corresponding to the W phase among the three bus bars shown in FIG. 7.
  • 9 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 1 is an exploded perspective view of the rotating electrical machine apparatus according to the first embodiment of the present invention.
  • the rotating electrical machine apparatus of FIG. 1 includes a motor 1 as a rotating electrical machine and an inverter 3 as a power converter electrically connected to the motor 1.
  • the inverter 3 is mounted and supported on a metal tray 5 as a support member.
  • the rotating electrical machine apparatus here is mounted on, for example, a vehicle, and the motor 1 is used for driving the vehicle.
  • the motor 1 is, for example, a three-phase AC synchronous motor.
  • the inverter 3 includes various electronic components such as a power module 7, a smoothing capacitor (not shown), and a control board, and converts power from a power source (not shown) to output power to be supplied to the motor 1.
  • the inverter 3 converts a direct current fed from a high-voltage battery for driving a vehicle through a junction box into a three-phase alternating current by a power semiconductor and supplies the three-phase alternating current to the motor 1.
  • the three-phase alternating current is a current corresponding to the target torque at a frequency synchronized with the motor rotation speed, and is generated by switching the semiconductor switching element with a PWM signal.
  • the motor 1 includes a housing 9 that is also used as the inverter 3.
  • the housing 9 includes a motor housing 15 that houses the rotor 11 and the stator 13 of the motor 1, and an inverter housing 17 that houses the inverter 3. Therefore, the rotating electrical machine apparatus of the present embodiment is an electromechanical integrated type in which the motor 1 and the inverter 3 are integrated.
  • the motor housing 15 has a substantially cylindrical shape, and an opening formed on one side of the motor 1 in the rotation axis direction is closed by an end plate 19. The opening formed on the side opposite to the end plate 19 of the motor housing 15 is closed by a reduction gear housing 23 of the reduction gear 21 connected to the output shaft (rotating shaft) of the motor 1.
  • the inverter housing 17 has a substantially rectangular parallelepiped shape, and the upper end portion 17a side located in the upper portion in FIG.
  • a tray mounting portion 17b for mounting and mounting the tray 5 is formed inside the motor housing 15 with respect to the upper end portion 17a of the inverter housing 17.
  • the tray mounting portion 17b protrudes from the surrounding four wall portions inside the rectangular parallelepiped inverter housing 17.
  • the tray 5 that supports the inverter 3 is attached to the tray attachment portion 17b using, for example, bolts 25 or the like.
  • the plate-like cover 27 is attached to the upper end portion 17a of the inverter housing 17 using, for example, bolts 29 or the like.
  • the motor housing 15 includes a motor cooling channel 15a as a first cooling channel.
  • the power module 7 of the inverter 3 is obtained by integrating a semiconductor switching element or the like by resin molding, and a PM cooling channel 7a as a second cooling channel is provided in the resin mold part.
  • the tray 5 that supports the inverter 3 includes a tray cooling channel 5 a as a third cooling channel on the lower surface in FIG. 2 on the side opposite to the inverter 3 (on the motor housing 15 side). ing.
  • the tray cooling flow path 5 a is formed by, for example, welding and fixing the flow path forming member 31 to the lower surface of the tray 5.
  • the flow path forming member 31 is attached to the lower surface of the tray 5 so as to meander, for example.
  • the tray cooling channel 5 a is connected to the PM cooling channel 7 a of the power module 7 by providing a through hole 5 b in the tray 5, for example.
  • Two communication connection portions between the tray cooling flow path 5a and the PM cooling flow path 7a through such a through hole 5b are set.
  • One of the through holes 5b is used as an inlet for cooling liquid from the tray cooling flow path 5a to the PM cooling flow path 7a, and the other through hole 5b is used for cooling liquid from the PM cooling flow path 7a to the tray cooling flow path 5a. Take the exit.
  • the coolant flowing through the tray cooling flow path 5a for a certain distance flows into the PM cooling flow path 7a from one through hole 5b and flows for a certain distance.
  • a cooling liquid is introduced into the tray cooling flow path 5 a from a cooling liquid inlet 35 provided on the side of the inverter housing 17.
  • the coolant that has flowed through the PM cooling flow path 7a for a certain distance flows out from the other through hole 5b to the tray cooling flow path 5a and flows for a certain distance. Thereby, the tray 5 and the power module 7 are cooled by the coolant.
  • the motor 1 is cooled by the coolant flowing into the motor cooling channel 15a from the channel connecting pipe 33.
  • the coolant that has flowed through the motor cooling passage 15 a is discharged to the outside from a coolant outlet 37 provided on the side of the motor housing 15.
  • the tray cooling flow path 5a and the PM cooling flow path 7a are connected to each other via the through hole 5b, and the tray cooling flow path 5a and the motor cooling flow path 15a are connected via the flow path connecting pipe 33. They are in communication with each other. Therefore, the motor cooling channel 15a that is the first cooling channel and the PM cooling channel 7a that is the second cooling channel communicate with each other via the tray cooling channel 5a that is the third cooling channel. It is connected.
  • the speed reducer 21 may be cooled by flowing a coolant through a speed reducer cooling flow path 23 a provided in the speed reducer housing 23.
  • the stator coil lead portions 39 (39U, 39V, 39W) corresponding to the U phase, V phase, and W phase in the stator 13 of the motor 1 are connected to one end of the motor terminal 41 (41U, 41V, 41W), respectively.
  • the other end of the motor terminal 41 (41U, 41V, 41W) includes a bent connection portion 41a (41Ua, 41Va, 41Wa) that bends toward the power module 7 side.
  • one end of a bus bar 43 (43U, 43V, 43W) corresponding to the U phase, V phase, and W phase is connected and fixed by a bolt 45 on the end portion of the power module 7 on the side where the end plate 19 is located.
  • the other end of the bus bar 43 (43U, 43V, 43W) is connected and fixed using a bolt 47 to the bent connection portion 41a (41Ua, 41Va, 41Wa) of the motor terminal 41 (41U, 41V, 41W).
  • stator coil lead portion 39 of the motor 1 and the power module 7 are connected to each other via the motor terminal 41 and the bus bar 43.
  • the motor terminal 41 and the bus bar 43 constitute a conductive connection member.
  • a current sensor 49 is attached to the bus bar 43 (43U, 43V, 43W) as shown in FIG.
  • the current sensor 49 detects a current flowing from the power module 7 toward the bus bar 43. In FIG. 1, the current sensor 49 is omitted.
  • the current sensor 49, the inverter 3 including the power module 7 and the smoothing capacitor, the motor terminal 41, and the bus bar 43 constitute a heat generating component.
  • the tray 5 is formed with a connection fixing portion 5c that is bent toward the upper bent connection portion 41a (41Ua, 41Va, 41Wa) at the end protruding toward the motor terminal 41 side. Yes.
  • the connection fixing portion 5c is substantially parallel to the motor terminal 41 (41U, 41V, 41W), and the resin plate 51 made of an electrically insulating material is interposed between the motor terminal 41 (41U, 41V, 41W). Has been placed.
  • the resin plate 51 uses a material having higher thermal conductivity.
  • connection fixing portion 5c of the tray 5, the motor terminal 41 (41U, 41V, 41W), and the resin plate 51 are fixed by, for example, a clip 53, which is a resin fixture made of an electrically insulating material. That is, the motor terminal 41 that is a heat generating component is attached in a state of being thermally connected to the connection fixing portion 5c of the tray 5 that is a support member. Therefore, the connection fixing part 5c of the tray 5 constitutes a thermal connection part to which the motor terminal 41 is thermally connected.
  • the heat generated in the stator coil is transmitted from the motor terminal 41 to the power module 7 through the bus bar 43, contrary to the current flow.
  • the tray 5 is cooled by the coolant flowing through the tray cooling flow path 5 a while being connected to the motor terminal 41. For this reason, most of the heat transmitted from the stator coil to the motor terminal 41 is transmitted to the tray 5 before being transmitted to the bus bar 43 to cool the motor terminal 41.
  • the cooling liquid that flows through the tray cooling flow path 5 a and cools the tray 5 is also used as the cooling liquid that flows through the motor cooling flow path 15 a of the motor 1 and the PM cooling flow path 7 a of the power module 7. For this reason, it is not necessary to separately provide a dedicated cooling path for cooling the tray 5, the cooling structure can be simplified correspondingly, and the manufacturing cost can be kept low.
  • connection fixing portion 5c which is a thermal connection portion to which the motor terminal 41 of the tray 5 is thermally connected, is made of a metal having high thermal conductivity. For this reason, the cooling effect with respect to the motor terminal 41 is further enhanced as compared with the case where the thermal connection portion is made of another substance such as a resin.
  • a part of the tray cooling flow path 5a is brought as close to the motor terminal 41 as possible. 2) Increase the heat capacity by increasing the cross-sectional area (volume) of the tray 5. 3) The resin plate 51 is made thinner. 4) The region where the connection fixing portion 5c of the tray 5 and the motor terminal 41 are thermally connected is further increased.
  • FIG. 3 shows a portion where the tray 5A of the second embodiment is thermally connected to the bus bar 43A (43UA, 43VA, 43WA) and the motor terminal 41A (41UA, 41VA, 41WA).
  • the tray 5 ⁇ / b> A has a plate-like tray body 5 ⁇ / b> Aa as a whole, and includes a bending portion 5 ⁇ / b> Ab at one corner of the tray body 5 ⁇ / b> Aa.
  • a resin molded bus bar 55 as a heat generating component is attached to the bending portion 5Ab.
  • the tray 5A is attached to the inverter housing 17 of the motor 1 of FIG. 1 in the same manner as the tray 5 of the first embodiment. At that time, the tray 5A has a bent shape portion 5Ab to which the resin molded bus bar 55 is mounted, and thus the overall shape is different from that of the tray 5 of the first embodiment. It becomes.
  • the bent portion 5Ab is formed of side walls 5Ab1 and 5Ab2 rising from the two side edges at the corner of the tray body 5Aa at an angle of approximately 90 degrees, and parallel to the tray body 5Aa from the end of the side walls 5Ab1 and 5Ab2. And folding walls 5Ab3 and 5Ab4 that bend so as to be folded back toward each other.
  • the front end side of the folded walls 5Ab3 and 5Ab4 is an opening 5Ac facing the side walls 5Ab1 and 5Ab2.
  • the tray body 5Aa includes an opposing wall 5Aa1 that faces the folded walls 5Ab3 and 5Ab4. Therefore, the folding walls 5Ab3, 5Ab4 and the opposing wall 5Aa1 constitute two opposing surfaces that oppose each other. Moreover, side wall 5Ab1 and 5Ab2 comprise one connection surface which connects the one edge parts of two opposing surfaces. The two opposing surfaces and one connection surface function as a plurality of cooling surfaces in the thermal connection portion.
  • the resin mold bus bar 55 includes a bus bar 43A (43UA, 43VA, 43WA) as a heat generating portion main body and a resin molding portion 57 that integrally molds the bus bar 43A with resin.
  • the resin molding portion 57 is attached to the folding molding portion 5Ab of the tray 5A so as to cover the three cooling surfaces of the folding walls 5Ab3, 5Ab4, the opposing wall 5Aa1, and the side walls 5Ab1, 5Ab2 of the tray 5A.
  • the resin molding portion 57 includes an upper wall 57a that covers the outer wall of the folded walls 5Ab3 and 5Ab4 in close contact with the outer wall, a lower wall 57b that covers the outer wall of the opposing wall 5Aa1, and a side wall 5Ab1. , 5Ab2 and a side wall 57c that covers the outer surface in close contact with the outer surface.
  • the upper wall 57a, the lower wall 57b, and the side wall 57c are bent in a substantially L shape in accordance with the corners of the tray 5A.
  • the upper wall 57a includes a motor-side upper wall 57a1 and a PM-side upper wall 57a2
  • the lower wall 57b includes a motor-side lower wall 57b1 and a PM-side lower wall 57b2
  • the side wall 57c includes the motor-side side wall 57c1 and the PM.
  • Side wall 57c2 Side wall 57c2.
  • the bus bar 43UA includes a motor side fixing portion 43UAa connected and fixed to the motor terminal 41UA and a PM side fixing portion 43UAb connected and fixed to the power module 7.
  • a part of the motor side fixing portion 43UAa is embedded in the motor side upper wall 57a1 of the resin molding portion 57, and the tip side protrudes outside from the motor side upper wall 57a1 as shown in FIG. 3 and is fixed to the motor terminal 41UA by the bolt 59.
  • the Part of the PM-side fixing portion 43UAb is embedded in the PM-side upper wall 57a2 of the resin molding portion 57, and the tip side protrudes outside from the PM-side upper wall 57a2 and is fixed to the power module 7 by the bolt 61.
  • An extension portion 43UAc is formed between the motor side fixing portion 43UAa and the PM side fixing portion 43UAb.
  • the extension portion 43UAc bends 90 degrees with respect to the motor side fixing portion 43UAa, is parallel to the PM side fixing portion 43UAb, and is embedded in the motor side upper wall 57a1 and the PM side upper wall 57a2.
  • the extension 43UAc is arranged in parallel to the folding walls 5Ab3 and 5Ab4 in a state of facing the folding walls 5Ab3 and 5Ab4 of the tray 5.
  • the bus bar 43VA includes a motor side fixing portion 43VAa connected and fixed to the motor terminal 41VA and a PM side fixing portion 43VAb fixed and connected to the power module 7.
  • a part of the motor side fixing portion 43VAa is embedded in the motor side upper wall 57a1 and the motor side side wall 57c1, and the tip side protrudes from the motor side upper wall 57a1 to the outside as shown in FIG. 3, and is fixed to the motor terminal 41VA by a bolt 63.
  • the Part of the PM-side fixing portion 43VAb is mainly embedded in the PM-side upper wall 57a2, and the tip side protrudes outside from the PM-side upper wall 57a2 as shown in FIG.
  • An extension portion 43VAc is formed between the motor side fixing portion 43VAa and the PM side fixing portion 43VAb.
  • the extension 43VAc includes a motor side extension 43VAc1 and a PM side extension 43VAc2.
  • the motor side extension 43VAc1 is bent 90 degrees with respect to the motor side fixing part 43VAa, is parallel to the PM side fixing part 43VAb, and is mainly embedded in the motor side lower wall 57b1.
  • the motor side extension 43VAc1 is arranged in parallel to the facing wall 5Aa1 in a state of facing the facing wall 5Aa1 of the tray 5.
  • the PM side extension portion 43VAc2 is bent 90 degrees with respect to the PM side fixing portion 43VAb and is embedded in the PM side wall 57c2.
  • the PM side extension 43VAc2 is arranged in parallel to the side wall 5Ab2 in a state of facing the side wall 5Ab2 of the tray 5.
  • the bus bar 43WA includes a motor side fixing portion 43WAa connected and fixed to the motor terminal 41WA, and a PM side fixing portion 43WAb connected and fixed to the power module 7.
  • a part of the motor side fixing portion 43WAa is embedded in the motor side upper wall 57a1 and the motor side side wall 57c1, and the tip side protrudes from the motor side upper wall 57a1 to the outside as shown in FIG. 3 and is fixed to the motor terminal 41WA by a bolt 67.
  • the Part of the PM-side fixing portion 43WAb is mainly embedded in the PM-side upper wall 57a2, and the tip side protrudes outside from the PM-side upper wall 57a2 as shown in FIG.
  • An extension portion 43WAc is formed between the motor side fixing portion 43WAa and the PM side fixing portion 43WAb.
  • the extension portion 43WAc includes a motor side extension portion 43WAc1 and a PM side extension portion 43WAc2.
  • the motor side extension portion 43WAc1 is bent 90 degrees with respect to the motor side fixing portion 43WAa, is parallel to the PM side fixing portion 43WAb, and is embedded in the motor side lower wall 57b1 and the PM side lower wall 57b2.
  • the motor side extension 43WAc1 is arranged in parallel to the facing wall 5Aa1 in a state of facing the facing wall 5Aa1 of the tray 5.
  • the PM side extension portion 43WAc2 is bent 90 degrees with respect to the PM side fixing portion 43WAb, and is embedded in the main PM side wall 57c2.
  • the PM side extension 43WAc2 is arranged in parallel to the side wall 5Ab2 in a state of facing the side wall 5Ab2 of the tray 5.
  • the lower surface of the tray body 5Aa opposite to the power module 7 is provided with a tray cooling channel (not shown) similar to the tray cooling channel 5a in the first embodiment. Similar to the first embodiment, the tray cooling flow path is connected to both the PM cooling flow path 7a and the motor cooling flow path 15a shown in FIG.
  • the heat generated in the stator coil of the motor 1 is transmitted to the motor terminal 41A and then to the bus bar 43A.
  • the bus bar 43A is integrally formed with the resin molding portion 57, and the resin molding portion 57 is fixed in close contact with the outer surface of the folding molding portion 5Ab of the tray 5A.
  • the entire tray 5A including the bent portion 5Ab is cooled by a coolant flowing through a tray cooling flow path (not shown).
  • a tray cooling flow path (not shown).
  • the transmission of heat transmitted to the motor terminal 41A to the power module 7 is suppressed. Therefore, heat transfer to the power module 7 of heat generated in the stator coil of the motor 1 is suppressed, and the overall temperature of the inverter 3 including the power module 7 is suppressed.
  • the temperature of the current sensor is suppressed from increasing, and the current detection accuracy is improved.
  • the second embodiment includes a folding wall 5Ab3, 5Ab4, an opposing wall 5Aa1, and side walls 5Ab1, 5Ab2, each of the walls 5Ab3, 5Ab4, 5Aa1, 5Ab1, and 5Ab2 having three cooling surfaces.
  • a resin molded portion 57 is provided so as to cover it. For this reason, the resin mold bus bar 55 including the bus bar 43A and the resin molding portion 57 is efficiently cooled from the inside where the bending molding portion 5Ab is located by the tray 5A cooled by the coolant.
  • the folding wall 5Ab3, 5Ab4, the opposing wall 5Aa1, and the side walls 5Ab1, 5Ab2 that are thermal connection portions of the tray 5A of the second embodiment have thermal conductivity. Consists of high metal. For this reason, the cooling effect with respect to the motor terminal 41A is further enhanced as compared with the case where the thermal connection portion is made of another substance such as a resin.
  • the bus bar 43A (43UA, 43VA, 43WA) is extended so as to be provided along the extending direction of the bending portion 5Ab of the tray 5A. For this reason, the heat dissipation area of the bus bar 43A with respect to the tray 5 is significantly larger than that of the first embodiment, and the cooling effect on the bus bar 43A is increased.
  • the bus bar 43A is integrally formed with the resin molding portion 57 to form a resin molded bus bar 55, and the resin molded bus bar 55 is fitted into the folding molding portion 5Ab of the tray 5A. For this reason, the mounting of the resin molded bus bar 55 to the tray 5A can be automated and simplified, and the assembly workability is improved.
  • the bending portion 5Ab of the tray 5 in the second embodiment is provided at one corner of the rectangular tray main body 5Aa, but is provided linearly along one side of the rectangular shape of the tray main body 5Aa. May be.
  • the resin mold bus bar 55 is also formed in a straight line shape in accordance with the bending portion 5Ab. However, if the bending portion 5Ab is provided at one corner of the tray main body 5Aa, the entire tray 5 including the bending portion 5Ab can be made more compact.
  • a resin having high thermal conductivity is applied to the contact surface between the bent molding part 5Ab and the resin molding part 57.
  • the contact pressure is further increased by using an interference fit between the bent molded portion 5Ab and the resin molded portion 57 as an interference fit.
  • FIG. 7 is a perspective view corresponding to FIG. 3 according to the third embodiment.
  • the tray 5B is made of resin.
  • the tray 5B includes tray cooling flow paths 5Ba and 5Bb through which the coolant flows.
  • the tray cooling flow paths 5Ba and 5Bb are formed by integrally forming the flow path forming pipes 71 and 73 on the resin tray 5B.
  • the tray 5B is attached to the inverter housing 17 of the motor 1 of FIG. 1 in the same manner as the tray 5 of the first embodiment. At that time, since the overall shape of the tray 5B is slightly different from that of the tray 5 of the first embodiment, a slight change in the shape of the inverter housing 17 may be required.
  • the flow path forming pipe 71 has one end 71a protruding from the side surface of the tray 5B to the outside, and the coolant flows into the tray cooling flow path 5Ba from the one end 71a.
  • the other end 71b of the flow path forming pipe 71 is connected to a PM cooling flow path (not shown) in the power module 7, and the coolant flowing out from the other end 71b flows into the PM cooling flow path.
  • the coolant flowing through the PM cooling flow path flows into the tray cooling flow path 5Bb from one end 73a of the flow path forming pipe 73.
  • the other end 73b of the flow path forming tube 73 protrudes from the lower surface of the tray 5B opposite to the power module 7.
  • the coolant flowing through the tray cooling flow path 5Bb flows out from the other end 73b and flows into the motor cooling flow path 15a shown in FIG.
  • a bus bar 43B (43UB, 43VB, 43WB) is integrally formed on the tray 5B.
  • the bus bar 43UB includes a motor side fixing portion 43UBa connected and fixed to the motor terminal 41UB and a PM side fixing portion 43UBb connected and fixed to the power module 7.
  • the front end side of the motor side fixing portion 43UBa protrudes from the side portion of the tray 5B and is fixed to the motor terminal 41UB by a bolt 75.
  • the PM side fixing portion 43UBb protrudes outward from the surface of the tray 5B and is fixed to the power module 7 with bolts 77.
  • An extension portion 43UBc is formed between the motor side fixing portion 43UBa and the PM side fixing portion 43UBb.
  • the extension portion 43UBc includes a portion that is substantially L-shaped while being bent 90 degrees with respect to the motor-side fixing portion 43UBa.
  • a portion of the extension 43UBc that is substantially L-shaped is disposed along one side of the bent portion of the flow path forming tube 73.
  • the bus bar 43VB includes a motor side fixing portion 43VBa connected and fixed to the motor terminal 41VB and a PM side fixing portion 43VBb connected and fixed to the power module 7.
  • the front end side of the motor side fixing portion 43VBa protrudes from the side portion of the tray 5B and is fixed to the motor terminal 41VB by the bolt 79.
  • the PM side fixing portion 43VBb protrudes outward from the surface of the tray 5B and is fixed to the power module 7 with bolts 81.
  • An extension portion 43VBc is formed between the motor side fixing portion 43VBa and the PM side fixing portion 43VBb.
  • the extension portion 43VBc is provided with a portion that is substantially L-shaped while being formed on the same plane with respect to the motor-side fixing portion 43VBa.
  • the portion of the extension 43VBc that is substantially L-shaped is disposed along the lower side in FIG. 7 in the bent portion of the flow path forming tube 73.
  • the bus bar 43WB includes a motor side fixing portion 43WBa connected and fixed to the motor terminal 41WB and a PM side fixing portion 43WBb connected and fixed to the power module 7.
  • the front end side of the motor side fixing portion 43WBa protrudes from the side portion of the tray 5B and is fixed to the motor terminal 41WB by a bolt 83.
  • the PM side fixing portion 43WBb protrudes outward from the surface of the tray 5B and is fixed to the power module 7 with a bolt 85.
  • An extension portion 43WBc is formed between the motor side fixing portion 43WBa and the PM side fixing portion 43WBb.
  • the extension portion 43WBc includes a portion that is substantially L-shaped while being bent 90 degrees with respect to the motor-side fixing portion 43WBa.
  • a portion of the extension portion 43WBc that is substantially L-shaped is disposed along the other side portion of the bent portion of the flow path forming tube 73.
  • the flow path forming pipe 73 having the tray cooling flow path 5Bb has the bus bars 43UB, 43WB, and 43VB extending on the left and right sides and the lower side. It is in a state surrounded by 43UBc, 43WBc, and 43VBc.
  • the heat generated in the stator coil of the motor 1 is transmitted to the motor terminal 41B and then to the bus bar 43B.
  • the bus bar 43B is integrally formed with the resin tray 5B, and the tray 5B is cooled by the coolant flowing through the tray cooling flow paths 5Ba and 5Bb. Since the tray 5B is cooled, the bus bar 43B is also cooled.
  • the extensions 43UBc, 43VBc, 43WBc of the bus bars 43B (43UB, 43VB, 43WB) are provided along the extending direction of the flow path forming pipe 73 including the tray cooling flow path 5Bb. Has been placed. For this reason, the thermal radiation area
  • the bus bar 43B (43UB, 43VB, 43WB) is disposed so as to surround the periphery of the flow path forming pipe 73 including the tray cooling flow path 5Bb.
  • the two bus bars 43UB and 43WB are arranged on both sides of the tray cooling flow path 5Bb with the tray cooling flow path 5Bb in between, and one bus bar 43VB is arranged below the tray cooling flow path 5Bb.
  • the bus bar 43B (43UB, 43VB, 43WB) is efficiently cooled by the coolant flowing through one tray cooling flow path 5Bb.
  • the tray 5B is made of resin. For this reason, the weight reduction of the tray 5B can be achieved.
  • flow path forming pipes 71 and 73 having tray cooling flow paths 5Ba and 5Bb and a bus bar 43B are integrally formed on the tray 5B. For this reason, the operation
  • the flow path forming pipes 71 and 73 and the bus bar 43B are integrally formed on the resin tray 5B.
  • the bus bar 43B may be integrally formed.
  • the tray 5B is resin-molded in a state of being divided into two in the upper and lower directions in FIG. Thereby, a tray cooling flow path is formed in the tray 5B, and it is not necessary to integrally form the flow path forming pipes 71 and 73 in the tray 5B, thereby reducing the number of parts.
  • a flow path forming tube 87 may be provided on the opposite side of the extension portion 43WBc to the flow path forming tube 73 with the extension portion 43WBc of the bus bar 43WB in between. That is, the tray cooling flow path may be provided on both sides of the bus bar with the bus bar interposed therebetween. Thereby, the cooling effect with respect to a bus-bar increases more.
  • the coolant that flows through the tray cooling flow path and cools the trays 5A and 5B is the motor cooling flow path 15a of the motor 1 and the power module. 7 is also used as a coolant flowing through the PM cooling flow path 7a. For this reason, it is not necessary to separately provide a dedicated cooling path for cooling the trays 5A and 5B, the cooling structure can be simplified correspondingly, and the manufacturing cost can be kept low.
  • the present invention can be applied not only to an inverter as a power converter, but also to a DC-DC converter, and the present invention can be applied to a generator as well as a motor as a rotating electrical machine.
  • the tray 5 is attached to the inverter housing 17, but may be attached to other parts such as a motor housing.
  • the three bus bars 43A of the second embodiment shown in FIGS. 3 and 4 are not limited to the shapes shown in FIGS. 6A, 6B, and 6C. It is only necessary that the three bus bars 43A are integrally formed with the resin molding portion 57 in a state where they are electrically insulated from each other and electrically insulated from the metal tray 5A. In this case, the bus bar 43A has a longer heat dissipation effect by making the length in the extending direction longer.
  • the three bus bars 43B of the third embodiment shown in FIG. 7 are not limited to the shapes shown in FIGS. 8A, 8B, and 8C.
  • the three bus bars 43B may be formed integrally with the resin tray 5B while being electrically insulated from each other.
  • the bus bar 43 ⁇ / b> B further increases the heat dissipation effect by increasing the length of the portion provided alongside the flow path forming pipe 73.
  • the present invention is applied to a rotating electrical machine apparatus including a rotating electrical machine and a power converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

A supporting member (5) that supports a power conversion device (3) is attached to a rotating electric machine (1). The rotating electric machine (1) is provided with a first cooling flow channel (15a), the power conversion device (3) is provided with a second cooling flow channel (7a), and the supporting member (5) is provided with a third cooling flow channel (5a). The first cooling flow channel (15a) and the second cooling flow channel (7a) are in communication with each other via the third cooling flow channel (5a). A heat generating component (41) is attached to the supporting member (5) in a state of being thermally connected to the supporting member.

Description

回転電機装置Rotating electrical machine equipment
 本発明は、回転電機と電力変換装置とを備える回転電機装置に関する。 The present invention relates to a rotating electrical machine apparatus including a rotating electrical machine and a power converter.
 特許文献1には、回転電機と電力変換装置とが、一つのハウジングを共有することで一体化された技術が開示されている。電力変換装置は、インバータ部品として、パワー半導体素子を収容するパワーモジュールや平滑コンデンサなどを備えている。ハウジングには、回転電機と電力変換装置とを冷却する共有の冷却用水路が設けられている。 Patent Document 1 discloses a technique in which a rotating electrical machine and a power conversion device are integrated by sharing a single housing. The power conversion device includes a power module that houses a power semiconductor element, a smoothing capacitor, and the like as inverter components. The housing is provided with a common cooling water channel that cools the rotating electrical machine and the power conversion device.
特開2011-182480号公報JP 2011-182480 A
 回転電機のコイルと電力変換装置との接続には、導電接続部材であるバスバーが用いられる。その際、回転電機のコイルで発生した熱がバスバーを介して電力変換装置に伝達されるので、電力変換装置の高温化を招く。しかし、特許文献1の技術は、回転電機と共有の冷却用水路によって電力変換装置を冷却しているだけなので、回転電機から電力変換装置へのバスバーを介しての熱伝達を抑制するのは困難である。 A bus bar which is a conductive connecting member is used for connection between the coil of the rotating electrical machine and the power converter. At that time, heat generated in the coil of the rotating electrical machine is transmitted to the power conversion device via the bus bar, resulting in a high temperature of the power conversion device. However, since the technology of Patent Document 1 only cools the power conversion device by a cooling water channel shared with the rotating electrical machine, it is difficult to suppress heat transfer from the rotating electrical machine to the power conversion device via the bus bar. is there.
 そこで、本発明は、回転電機から電力変換装置への熱伝達を抑制することを目的としている。 Therefore, an object of the present invention is to suppress heat transfer from the rotating electrical machine to the power converter.
 本発明は、回転電機の第1の冷却流路と電力変換装置の第2の冷却流路とが支持部材の第3の冷却流路によって互いに連通している。電力変換装置を支持する支持部材には、発熱部品が熱的に接続された状態で取り付けられている。 In the present invention, the first cooling flow path of the rotating electrical machine and the second cooling flow path of the power converter are communicated with each other by the third cooling flow path of the support member. A heat generating component is attached to the support member that supports the power conversion device in a thermally connected state.
 本発明によれば、支持部材が第3の冷却流路を流れる冷却媒体によって冷却され、当該冷却された支持部材によって発熱部品が冷却される。支持部材に支持される電力変換装置は、支持部材に熱的に接続された発熱部品が冷却されることによって、発熱部品から電力変換装置への熱伝達が抑制され、電力変換装置の高温化を抑制できる。 According to the present invention, the support member is cooled by the cooling medium flowing through the third cooling flow path, and the heat generating component is cooled by the cooled support member. In the power conversion device supported by the support member, the heat transfer from the heat generation component to the power conversion device is suppressed by cooling the heat generation component that is thermally connected to the support member, thereby increasing the temperature of the power conversion device. Can be suppressed.
図1は、本発明の第1の実施形態に係わる回転電機装置の分解斜視図である。FIG. 1 is an exploded perspective view of a rotating electrical machine apparatus according to the first embodiment of the present invention. 図2は、図1のA-A断面に相当するモータ端子を含む断面図である。FIG. 2 is a cross-sectional view including a motor terminal corresponding to the AA cross section of FIG. 図3は、本発明の第2の実施形態に係わるトレイと樹脂モールドバスバーとの接続部周辺を示す斜視図である。FIG. 3 is a perspective view showing the periphery of the connection portion between the tray and the resin molded bus bar according to the second embodiment of the present invention. 図4は、図3のB-B断面図である。4 is a cross-sectional view taken along the line BB of FIG. 図5は、図3のトレイから樹脂モールドバスバーを外した状態と示す分解斜視図である。FIG. 5 is an exploded perspective view showing a state where the resin molded bus bar is removed from the tray of FIG. 3. 図6Aは、図3に示す三つのバスバーのうちU相に対応するバスバーの斜視図である。6A is a perspective view of a bus bar corresponding to the U-phase among the three bus bars shown in FIG. 図6Bは、図3に示す三つのバスバーのうちV相に対応するバスバーの斜視図である。FIG. 6B is a perspective view of a bus bar corresponding to the V phase among the three bus bars shown in FIG. 3. 図6Cは、図3に示す三つのバスバーのうちW相に対応するバスバーの斜視図である。6C is a perspective view of a bus bar corresponding to the W phase among the three bus bars shown in FIG. 3. 図7は、本発明の第3の実施形態に係わるトレイの周辺を示す斜視図である。FIG. 7 is a perspective view showing the periphery of the tray according to the third embodiment of the present invention. 図8Aは、図7に示す三つのバスバーのうちU相に対応するバスバーの斜視図である。FIG. 8A is a perspective view of a bus bar corresponding to the U-phase among the three bus bars shown in FIG. 図8Bは、図7に示す三つのバスバーのうちV相に対応するバスバーの斜視図である。FIG. 8B is a perspective view of a bus bar corresponding to the V-phase among the three bus bars shown in FIG. 7. 図8Cは、図7に示す三つのバスバーのうちW相に対応するバスバーの斜視図である。FIG. 8C is a perspective view of a bus bar corresponding to the W phase among the three bus bars shown in FIG. 7. 図9は、図7のC-C断面図である。9 is a cross-sectional view taken along the line CC of FIG.
 以下、本発明を実施するための形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
 図1は、本発明の第1の実施形態に係わる回転電機装置の分解斜視図である。図1の回転電機装置は、回転電機としてのモータ1と、モータ1に電気的に接続される電力変換装置としてのインバータ3とを備えている。インバータ3は、支持部材としての金属製のトレイ5上に取り付けられて支持されている。ここでの回転電機装置は、例えば車両に搭載され、モータ1が車両駆動用として使用される。 FIG. 1 is an exploded perspective view of the rotating electrical machine apparatus according to the first embodiment of the present invention. The rotating electrical machine apparatus of FIG. 1 includes a motor 1 as a rotating electrical machine and an inverter 3 as a power converter electrically connected to the motor 1. The inverter 3 is mounted and supported on a metal tray 5 as a support member. The rotating electrical machine apparatus here is mounted on, for example, a vehicle, and the motor 1 is used for driving the vehicle.
 モータ1は、例えば三相交流同期型モータである。インバータ3は、パワーモジュール7や図示しない平滑コンデンサ、制御基板などの各種電子部品を備え、図示しない電源からの電力を変換してモータ1に供給するための電力を出力する。 The motor 1 is, for example, a three-phase AC synchronous motor. The inverter 3 includes various electronic components such as a power module 7, a smoothing capacitor (not shown), and a control board, and converts power from a power source (not shown) to output power to be supplied to the motor 1.
 具体的には、インバータ3は、車両の駆動用高電圧バッテリからジャンクションボックスを介して給電される直流電流を、パワー半導体によって三相交流電流に変換してモータ1に供給する。三相交流電流は、モータ回転数に同期した周波数で目標トルクに応じた値の電流であり、PWM信号によって半導体スイッチング素子をスイッチングすることによって生成される。 Specifically, the inverter 3 converts a direct current fed from a high-voltage battery for driving a vehicle through a junction box into a three-phase alternating current by a power semiconductor and supplies the three-phase alternating current to the motor 1. The three-phase alternating current is a current corresponding to the target torque at a frequency synchronized with the motor rotation speed, and is generated by switching the semiconductor switching element with a PWM signal.
 モータ1は、インバータ3と兼用のハウジング9を備えている。ハウジング9は、モータ1のロータ11及びステータ13を収容するモータハウジング15と、インバータ3を収容するインバータハウジング17とを有する。したがって、本実施形態の回転電機装置は、モータ1とインバータ3とが一体化した機電一体型である。 The motor 1 includes a housing 9 that is also used as the inverter 3. The housing 9 includes a motor housing 15 that houses the rotor 11 and the stator 13 of the motor 1, and an inverter housing 17 that houses the inverter 3. Therefore, the rotating electrical machine apparatus of the present embodiment is an electromechanical integrated type in which the motor 1 and the inverter 3 are integrated.
 モータハウジング15は、ほぼ円筒形状であり、モータ1の回転軸方向の一方に形成された開口部は、エンドプレート19によって閉塞される。モータハウジング15のエンドプレート19と反対側に形成される開口部は、モータ1の出力軸(回転軸)に接続される減速機21の減速機ハウジング23によって閉塞される。 The motor housing 15 has a substantially cylindrical shape, and an opening formed on one side of the motor 1 in the rotation axis direction is closed by an end plate 19. The opening formed on the side opposite to the end plate 19 of the motor housing 15 is closed by a reduction gear housing 23 of the reduction gear 21 connected to the output shaft (rotating shaft) of the motor 1.
 インバータハウジング17は、ほぼ直方体形状であり、モータハウジング15と反対側の図1中で上部に位置する上端部17a側が開口している。インバータハウジング17の上端部17aよりもモータハウジング15側の内部に、トレイ5を載置して取り付けるためのトレイ取付部17bが形成されている。トレイ取付部17bは、直方体形状のインバータハウジング17の内部において周囲四方の壁部から突出している。 The inverter housing 17 has a substantially rectangular parallelepiped shape, and the upper end portion 17a side located in the upper portion in FIG. A tray mounting portion 17b for mounting and mounting the tray 5 is formed inside the motor housing 15 with respect to the upper end portion 17a of the inverter housing 17. The tray mounting portion 17b protrudes from the surrounding four wall portions inside the rectangular parallelepiped inverter housing 17.
 インバータ3を支持するトレイ5を、トレイ取付部17bに例えばボルト25などを利用して取り付ける。トレイ5をトレイ取付部17bに取り付けた状態で、プレート状のカバー27を、例えばボルト29などを利用してインバータハウジング17の上端部17aに取り付ける。 The tray 5 that supports the inverter 3 is attached to the tray attachment portion 17b using, for example, bolts 25 or the like. With the tray 5 attached to the tray attachment portion 17b, the plate-like cover 27 is attached to the upper end portion 17a of the inverter housing 17 using, for example, bolts 29 or the like.
 モータハウジング15は、第1の冷却流路としてのモータ冷却流路15aを備えている。インバータ3のパワーモジュール7は、半導体スイッチング素子などを樹脂モールド成形して一体化したもので、樹脂モールド部に第2の冷却流路としてのPM冷却流路7aを設けている。 The motor housing 15 includes a motor cooling channel 15a as a first cooling channel. The power module 7 of the inverter 3 is obtained by integrating a semiconductor switching element or the like by resin molding, and a PM cooling channel 7a as a second cooling channel is provided in the resin mold part.
 インバータ3を支持するトレイ5は、図2に示すように、インバータ3と反対側(モータハウジング15側)の図2中で下面に、第3の冷却流路としてのトレイ冷却流路5aを備えている。トレイ冷却流路5aは、例えば、トレイ5の下面に、流路形成部材31を溶接固定することで形成される。流路形成部材31は、トレイ5の下面に対し例えば蛇行するようにして取り付ける。 As shown in FIG. 2, the tray 5 that supports the inverter 3 includes a tray cooling channel 5 a as a third cooling channel on the lower surface in FIG. 2 on the side opposite to the inverter 3 (on the motor housing 15 side). ing. The tray cooling flow path 5 a is formed by, for example, welding and fixing the flow path forming member 31 to the lower surface of the tray 5. The flow path forming member 31 is attached to the lower surface of the tray 5 so as to meander, for example.
 トレイ冷却流路5aは、図2に示すように、例えばトレイ5に貫通孔5bを設けることで、パワーモジュール7のPM冷却流路7aに連通接続する。このような貫通孔5bを介してのトレイ冷却流路5aとPM冷却流路7aとの連通接続部を、二箇所設定する。そのうち一方の貫通孔5bを、トレイ冷却流路5aからPM冷却流路7aへの冷却液の入口とし、他方の貫通孔5bを、PM冷却流路7aからトレイ冷却流路5aへの冷却液の出口とする。 As shown in FIG. 2, the tray cooling channel 5 a is connected to the PM cooling channel 7 a of the power module 7 by providing a through hole 5 b in the tray 5, for example. Two communication connection portions between the tray cooling flow path 5a and the PM cooling flow path 7a through such a through hole 5b are set. One of the through holes 5b is used as an inlet for cooling liquid from the tray cooling flow path 5a to the PM cooling flow path 7a, and the other through hole 5b is used for cooling liquid from the PM cooling flow path 7a to the tray cooling flow path 5a. Take the exit.
 つまり、トレイ冷却流路5aを一定距離流れる冷却液は、一方の貫通孔5bからPM冷却流路7aに流入して一定距離流れる。トレイ冷却流路5aには、例えばインバータハウジング17の側部に設けた冷却液入口35から冷却液が導入される。PM冷却流路7aを一定距離流れた冷却液は、他方の貫通孔5bからトレイ冷却流路5aに流出して一定距離流れる。これにより、トレイ5及びパワーモジュール7が冷却液によって冷却される。 That is, the coolant flowing through the tray cooling flow path 5a for a certain distance flows into the PM cooling flow path 7a from one through hole 5b and flows for a certain distance. For example, a cooling liquid is introduced into the tray cooling flow path 5 a from a cooling liquid inlet 35 provided on the side of the inverter housing 17. The coolant that has flowed through the PM cooling flow path 7a for a certain distance flows out from the other through hole 5b to the tray cooling flow path 5a and flows for a certain distance. Thereby, the tray 5 and the power module 7 are cooled by the coolant.
 他方の貫通孔5bからトレイ冷却流路5aに流出して一定距離流れた冷却液は、図1に示す流路連結管33に流出する。すなわち、流路連結管33の図1中で上部側の一端は、トレイ冷却流路5aに連通接続している。流路連結管33の図1中で下部側の他端33aは、モータハウジング15のモータ冷却流路15aに連通接続する。流路連結管33からモータ冷却流路15aに冷却液が流入することで、モータ1が冷却される。モータ冷却流路15aを流れた冷却液は、モータハウジング15の側部に設けてある冷却液出口37から外部に排出される。 The coolant that has flowed out from the other through-hole 5b to the tray cooling flow path 5a and has flowed for a certain distance flows out to the flow path connecting pipe 33 shown in FIG. That is, one end on the upper side in FIG. 1 of the flow path connecting pipe 33 is connected to the tray cooling flow path 5a. The other end 33 a on the lower side of the flow path connecting pipe 33 in FIG. 1 is connected to the motor cooling flow path 15 a of the motor housing 15. The motor 1 is cooled by the coolant flowing into the motor cooling channel 15a from the channel connecting pipe 33. The coolant that has flowed through the motor cooling passage 15 a is discharged to the outside from a coolant outlet 37 provided on the side of the motor housing 15.
 以上から、トレイ冷却流路5aとPM冷却流路7aとは、貫通孔5bを介して互いに連通接続し、トレイ冷却流路5aとモータ冷却流路15aとは、流路連結管33を介して互いに連通接続している。したがって、第1の冷却流路であるモータ冷却流路15aと、第2の冷却流路であるPM冷却流路7aとは、第3の冷却流路であるトレイ冷却流路5aを介して連通接続されている。なお、減速機ハウジング23に設けてある減速機冷却流路23aに冷却液を流して減速機21を冷却してもよい。 From the above, the tray cooling flow path 5a and the PM cooling flow path 7a are connected to each other via the through hole 5b, and the tray cooling flow path 5a and the motor cooling flow path 15a are connected via the flow path connecting pipe 33. They are in communication with each other. Therefore, the motor cooling channel 15a that is the first cooling channel and the PM cooling channel 7a that is the second cooling channel communicate with each other via the tray cooling channel 5a that is the third cooling channel. It is connected. The speed reducer 21 may be cooled by flowing a coolant through a speed reducer cooling flow path 23 a provided in the speed reducer housing 23.
 モータ1のステータ13におけるU相、V相、W相の各相に対応するステータコイルの引出部39(39U,39V,39W)は、モータ端子41(41U,41V,41W)の一端にそれぞれ接続されている。モータ端子41(41U,41V,41W)の他端は、パワーモジュール7側に向けて屈曲する屈曲接続部41a(41Ua,41Va,41Wa)を備えている。 The stator coil lead portions 39 (39U, 39V, 39W) corresponding to the U phase, V phase, and W phase in the stator 13 of the motor 1 are connected to one end of the motor terminal 41 (41U, 41V, 41W), respectively. Has been. The other end of the motor terminal 41 (41U, 41V, 41W) includes a bent connection portion 41a (41Ua, 41Va, 41Wa) that bends toward the power module 7 side.
 一方、パワーモジュール7のエンドプレート19が位置する側の端部上に、U相、V相、W相に対応するバスバー43(43U,43V,43W)の一端がボルト45により接続固定されている。バスバー43(43U,43V,43W)の他端は、モータ端子41(41U,41V,41W)の屈曲接続部41a(41Ua,41Va,41Wa)にボルト47を用いて接続固定される。 On the other hand, one end of a bus bar 43 (43U, 43V, 43W) corresponding to the U phase, V phase, and W phase is connected and fixed by a bolt 45 on the end portion of the power module 7 on the side where the end plate 19 is located. . The other end of the bus bar 43 (43U, 43V, 43W) is connected and fixed using a bolt 47 to the bent connection portion 41a (41Ua, 41Va, 41Wa) of the motor terminal 41 (41U, 41V, 41W).
 したがって、モータ1のステータコイルの引出部39とパワーモジュール7とは、モータ端子41及びバスバー43を介して互いに接続されている。モータ端子41及びバスバー43は、導電接続部材を構成している。 Therefore, the stator coil lead portion 39 of the motor 1 and the power module 7 are connected to each other via the motor terminal 41 and the bus bar 43. The motor terminal 41 and the bus bar 43 constitute a conductive connection member.
 バスバー43(43U,43V,43W)には、図2に示すように電流センサ49が取り付けられている。電流センサ49は、パワーモジュール7からバスバー43に向けて流れる電流を検出する。なお、図1では電流センサ49を省略している。
電流センサ49、パワーモジュール7や平滑コンデンサなどを含むインバータ3、モータ端子41及びバスバー43は、発熱部品を構成している。
A current sensor 49 is attached to the bus bar 43 (43U, 43V, 43W) as shown in FIG. The current sensor 49 detects a current flowing from the power module 7 toward the bus bar 43. In FIG. 1, the current sensor 49 is omitted.
The current sensor 49, the inverter 3 including the power module 7 and the smoothing capacitor, the motor terminal 41, and the bus bar 43 constitute a heat generating component.
 トレイ5は、図2に示すように、モータ端子41側に向けて突出した端部に、上方の屈曲接続部41a(41Ua,41Va,41Wa)に向けて屈曲する接続固定部5cが形成されている。接続固定部5cは、モータ端子41(41U,41V,41W)に対してほぼ平行であって、モータ端子41(41U,41V,41W)との間に、電気的絶縁材料からなる樹脂プレート51が配置されている。樹脂プレート51は、熱伝導率がより高い物質を使用する。 As shown in FIG. 2, the tray 5 is formed with a connection fixing portion 5c that is bent toward the upper bent connection portion 41a (41Ua, 41Va, 41Wa) at the end protruding toward the motor terminal 41 side. Yes. The connection fixing portion 5c is substantially parallel to the motor terminal 41 (41U, 41V, 41W), and the resin plate 51 made of an electrically insulating material is interposed between the motor terminal 41 (41U, 41V, 41W). Has been placed. The resin plate 51 uses a material having higher thermal conductivity.
 トレイ5の接続固定部5cと、モータ端子41(41U,41V,41W)と、樹脂プレート51とは、電気的絶縁材料からなる樹脂製の固定具である例えばクリップ53によって固定される。すなわち、発熱部品であるモータ端子41は、支持部材であるトレイ5の接続固定部5cに、熱的に接続された状態で取り付けられている。よって、トレイ5の接続固定部5cは、モータ端子41が熱的に接続される熱的接続部を構成する。 The connection fixing portion 5c of the tray 5, the motor terminal 41 (41U, 41V, 41W), and the resin plate 51 are fixed by, for example, a clip 53, which is a resin fixture made of an electrically insulating material. That is, the motor terminal 41 that is a heat generating component is attached in a state of being thermally connected to the connection fixing portion 5c of the tray 5 that is a support member. Therefore, the connection fixing part 5c of the tray 5 constitutes a thermal connection part to which the motor terminal 41 is thermally connected.
 次に、第1の実施形態の作用を説明する。 Next, the operation of the first embodiment will be described.
 パワーモジュール7から、バスバー43(43U,43V,43W)及びモータ端子41(41U,41V,41W)を通してモータ1のステータ13に三相電流が供給される際には、特に高出力時に銅損が集中することでステータコイルが高温となる。 When three-phase current is supplied from the power module 7 to the stator 13 of the motor 1 through the bus bar 43 (43U, 43V, 43W) and the motor terminal 41 (41U, 41V, 41W), copper loss occurs particularly at high output. By concentrating, the stator coil becomes hot.
 ステータコイルで発生した熱は、電流の流れとは逆に、モータ端子41からバスバー43を経てパワーモジュール7に伝達される。このときトレイ5は、モータ端子41に接続された状態で、トレイ冷却流路5aを流れる冷却液によって冷却されている。このため、ステータコイルからモータ端子41に伝達される熱の大部分は、バスバー43に伝達される前にトレイ5に伝達されてモータ端子41が冷却される。 The heat generated in the stator coil is transmitted from the motor terminal 41 to the power module 7 through the bus bar 43, contrary to the current flow. At this time, the tray 5 is cooled by the coolant flowing through the tray cooling flow path 5 a while being connected to the motor terminal 41. For this reason, most of the heat transmitted from the stator coil to the motor terminal 41 is transmitted to the tray 5 before being transmitted to the bus bar 43 to cool the motor terminal 41.
 モータ端子41が冷却されることで、ステータコイルで発生した熱のパワーモジュール7への熱伝達が抑制され、パワーモジュール7を含むインバータ3全体の高温化が抑制される。バスバー43の高温化も抑制されるので、バスバー43に取り付けられている電流センサ49の高温化も抑制されて、電流検出精度が向上する。 When the motor terminal 41 is cooled, heat transfer from the heat generated in the stator coil to the power module 7 is suppressed, and the overall temperature of the inverter 3 including the power module 7 is suppressed. Since the high temperature of the bus bar 43 is also suppressed, the high temperature of the current sensor 49 attached to the bus bar 43 is also suppressed, and the current detection accuracy is improved.
 トレイ冷却流路5aを流れてトレイ5を冷却する冷却液は、モータ1のモータ冷却流路15a及びパワーモジュール7のPM冷却流路7aを流れる冷却液と兼用している。このため、トレイ5を冷却するための専用の冷却経路を別途設ける必要がなく、その分冷却構造を簡素化でき、製造コストも低く抑えることができる。 The cooling liquid that flows through the tray cooling flow path 5 a and cools the tray 5 is also used as the cooling liquid that flows through the motor cooling flow path 15 a of the motor 1 and the PM cooling flow path 7 a of the power module 7. For this reason, it is not necessary to separately provide a dedicated cooling path for cooling the tray 5, the cooling structure can be simplified correspondingly, and the manufacturing cost can be kept low.
 第1の実施形態は、トレイ5のモータ端子41が熱的に接続される熱的接続部である接続固定部5cが、熱伝導率の高い金属で構成されている。このため、熱的接続部を例えば樹脂などの他の物質とした場合に比較して、モータ端子41に対する冷却効果がより高まる。 In the first embodiment, the connection fixing portion 5c, which is a thermal connection portion to which the motor terminal 41 of the tray 5 is thermally connected, is made of a metal having high thermal conductivity. For this reason, the cooling effect with respect to the motor terminal 41 is further enhanced as compared with the case where the thermal connection portion is made of another substance such as a resin.
 モータ端子41に対する冷却効果をより高めるには、以下に述べる方策がある。1)トレイ冷却流路5aの一部を極力モータ端子41に近付ける。2)トレイ5の断面積(体積)を大きくして熱容量を大きくする。3)樹脂プレート51の板厚をより薄くする。4)トレイ5の接続固定部5cとモータ端子41とが熱的に接続される領域をより増大させる。 In order to further enhance the cooling effect on the motor terminal 41, there are the following measures. 1) A part of the tray cooling flow path 5a is brought as close to the motor terminal 41 as possible. 2) Increase the heat capacity by increasing the cross-sectional area (volume) of the tray 5. 3) The resin plate 51 is made thinner. 4) The region where the connection fixing portion 5c of the tray 5 and the motor terminal 41 are thermally connected is further increased.
 次に、本発明の第2の実施形態について説明する。 Next, a second embodiment of the present invention will be described.
 図3は、第2の実施形態のトレイ5Aが、バスバー43A(43UA,43VA,43WA)及びモータ端子41A(41UA,41VA,41WA)に対して熱的に接続される部分を示している。トレイ5Aは、図4及び図5に示すように、全体が矩形状で板状のトレイ本体5Aaを有し、トレイ本体5Aaにおける一つの角部に折曲成形部5Abを備えている。折曲成形部5Abには、発熱部品としての樹脂モールドバスバー55を取り付けている。 FIG. 3 shows a portion where the tray 5A of the second embodiment is thermally connected to the bus bar 43A (43UA, 43VA, 43WA) and the motor terminal 41A (41UA, 41VA, 41WA). As shown in FIGS. 4 and 5, the tray 5 </ b> A has a plate-like tray body 5 </ b> Aa as a whole, and includes a bending portion 5 </ b> Ab at one corner of the tray body 5 </ b> Aa. A resin molded bus bar 55 as a heat generating component is attached to the bending portion 5Ab.
 トレイ5Aは、第1の実施形態のトレイ5と同様に図1のモータ1のインバータハウジング17に取り付けられる。その際、トレイ5Aは、樹脂モールドバスバー55が装着される折曲成形部5Abを備えるなど、第1の実施形態のトレイ5と全体の形状が異なるので、インバータハウジング17の多少の形状変更が必要となる。 The tray 5A is attached to the inverter housing 17 of the motor 1 of FIG. 1 in the same manner as the tray 5 of the first embodiment. At that time, the tray 5A has a bent shape portion 5Ab to which the resin molded bus bar 55 is mounted, and thus the overall shape is different from that of the tray 5 of the first embodiment. It becomes.
 折曲成形部5Abは、トレイ本体5Aaの角部における二つの側縁からほぼ90度の角度で立ち上がる側壁5Ab1,5Ab2と、側壁5Ab1,5Ab2の端部からトレイ本体5Aaに対して平行にかつ内側に向けて折り返すように屈曲する折返壁5Ab3,5Ab4とを有する。折返壁5Ab3,5Ab4の先端側は、側壁5Ab1,5Ab2に対向する開口部5Acとなっている。 The bent portion 5Ab is formed of side walls 5Ab1 and 5Ab2 rising from the two side edges at the corner of the tray body 5Aa at an angle of approximately 90 degrees, and parallel to the tray body 5Aa from the end of the side walls 5Ab1 and 5Ab2. And folding walls 5Ab3 and 5Ab4 that bend so as to be folded back toward each other. The front end side of the folded walls 5Ab3 and 5Ab4 is an opening 5Ac facing the side walls 5Ab1 and 5Ab2.
 トレイ本体5Aaは、折返壁5Ab3,5Ab4に対向する対向壁5Aa1を備える。したがって、折返壁5Ab3,5Ab4と対向壁5Aa1とは、互いに対向する二つの対向面を構成する。また、側壁5Ab1,5Ab2は、二つの対向面の一方の端部同士を接続する一つの接続面を構成する。二つの対向面と一つの接続面は、熱的接続部における複数の冷却面として機能する。 The tray body 5Aa includes an opposing wall 5Aa1 that faces the folded walls 5Ab3 and 5Ab4. Therefore, the folding walls 5Ab3, 5Ab4 and the opposing wall 5Aa1 constitute two opposing surfaces that oppose each other. Moreover, side wall 5Ab1 and 5Ab2 comprise one connection surface which connects the one edge parts of two opposing surfaces. The two opposing surfaces and one connection surface function as a plurality of cooling surfaces in the thermal connection portion.
 樹脂モールドバスバー55は、発熱部本体としてのバスバー43A(43UA,43VA,43WA)と、バスバー43Aを樹脂により一体成形する樹脂成形部57とを備えている。樹脂成形部57は、トレイ5Aの折返壁5Ab3,5Ab4と対向壁5Aa1と、側壁5Ab1,5Ab2と、の三つの冷却面を覆うようにして、トレイ5Aの折曲成形部5Abに取り付けている。 The resin mold bus bar 55 includes a bus bar 43A (43UA, 43VA, 43WA) as a heat generating portion main body and a resin molding portion 57 that integrally molds the bus bar 43A with resin. The resin molding portion 57 is attached to the folding molding portion 5Ab of the tray 5A so as to cover the three cooling surfaces of the folding walls 5Ab3, 5Ab4, the opposing wall 5Aa1, and the side walls 5Ab1, 5Ab2 of the tray 5A.
 すなわち、樹脂成形部57は、折返壁5Ab3,5Ab4の外表面に対して密着した状態で覆う上壁57aと、対向壁5Aa1の外表面に対して密着した状態で覆う下壁57bと、側壁5Ab1,5Ab2の外表面に対して密着した状態で覆う側壁57cとを備える。 That is, the resin molding portion 57 includes an upper wall 57a that covers the outer wall of the folded walls 5Ab3 and 5Ab4 in close contact with the outer wall, a lower wall 57b that covers the outer wall of the opposing wall 5Aa1, and a side wall 5Ab1. , 5Ab2 and a side wall 57c that covers the outer surface in close contact with the outer surface.
 上壁57a、下壁57b、側壁57cは、トレイ5Aの角部に合わせてほぼL字形状に屈曲している。上壁57aは、モータ側上壁57a1とPM側上壁57a2とを備え、下壁57bは、モータ側下壁57b1とPM側下壁57b2とを備え、側壁57cは、モータ側側壁57c1とPM側側壁57c2とを備える。 The upper wall 57a, the lower wall 57b, and the side wall 57c are bent in a substantially L shape in accordance with the corners of the tray 5A. The upper wall 57a includes a motor-side upper wall 57a1 and a PM-side upper wall 57a2, the lower wall 57b includes a motor-side lower wall 57b1 and a PM-side lower wall 57b2, and the side wall 57c includes the motor-side side wall 57c1 and the PM. Side wall 57c2.
 バスバー43UAは、図6Aに示すように、モータ端子41UAに接続固定されるモータ側固定部43UAaと、パワーモジュール7に接続固定されるPM側固定部43UAbとを備える。 As shown in FIG. 6A, the bus bar 43UA includes a motor side fixing portion 43UAa connected and fixed to the motor terminal 41UA and a PM side fixing portion 43UAb connected and fixed to the power module 7.
 モータ側固定部43UAaは、一部が樹脂成形部57のモータ側上壁57a1に埋設され、先端側が図3のようにモータ側上壁57a1から外部に突出してボルト59によりモータ端子41UAに固定される。PM側固定部43UAbは、一部が樹脂成形部57のPM側上壁57a2に埋設され、先端側がPM側上壁57a2から外部に突出してボルト61によりパワーモジュール7に固定される。 A part of the motor side fixing portion 43UAa is embedded in the motor side upper wall 57a1 of the resin molding portion 57, and the tip side protrudes outside from the motor side upper wall 57a1 as shown in FIG. 3 and is fixed to the motor terminal 41UA by the bolt 59. The Part of the PM-side fixing portion 43UAb is embedded in the PM-side upper wall 57a2 of the resin molding portion 57, and the tip side protrudes outside from the PM-side upper wall 57a2 and is fixed to the power module 7 by the bolt 61.
 モータ側固定部43UAaとPM側固定部43UAbとの間には、延長部43UAcが形成される。延長部43UAcは、モータ側固定部43UAaに対して90度屈曲し、PM側固定部43UAbに対して平行であり、モータ側上壁57a1及びPM側上壁57a2に埋設されている。延長部43UAcは、トレイ5の折返壁5Ab3,5Ab4に対向する状態で折返壁5Ab3,5Ab4に対して平行に配置される。 An extension portion 43UAc is formed between the motor side fixing portion 43UAa and the PM side fixing portion 43UAb. The extension portion 43UAc bends 90 degrees with respect to the motor side fixing portion 43UAa, is parallel to the PM side fixing portion 43UAb, and is embedded in the motor side upper wall 57a1 and the PM side upper wall 57a2. The extension 43UAc is arranged in parallel to the folding walls 5Ab3 and 5Ab4 in a state of facing the folding walls 5Ab3 and 5Ab4 of the tray 5.
 バスバー43VAは、図6Bに示すように、モータ端子41VAに接続固定されるモータ側固定部43VAaと、パワーモジュール7に接続固定されるPM側固定部43VAbとを備える。 As shown in FIG. 6B, the bus bar 43VA includes a motor side fixing portion 43VAa connected and fixed to the motor terminal 41VA and a PM side fixing portion 43VAb fixed and connected to the power module 7.
 モータ側固定部43VAaは、一部がモータ側上壁57a1及びモータ側側壁57c1に埋設され、先端側が図3のようにモータ側上壁57a1から外部に突出してボルト63によりモータ端子41VAに固定される。PM側固定部43VAbは、一部が主としてPM側上壁57a2に埋設され、先端側が図3のようにPM側上壁57a2から外部に突出してボルト65によりパワーモジュール7に固定される。 A part of the motor side fixing portion 43VAa is embedded in the motor side upper wall 57a1 and the motor side side wall 57c1, and the tip side protrudes from the motor side upper wall 57a1 to the outside as shown in FIG. 3, and is fixed to the motor terminal 41VA by a bolt 63. The Part of the PM-side fixing portion 43VAb is mainly embedded in the PM-side upper wall 57a2, and the tip side protrudes outside from the PM-side upper wall 57a2 as shown in FIG.
 モータ側固定部43VAaとPM側固定部43VAbとの間には、延長部43VAcが形成される。延長部43VAcは、モータ側延長部43VAc1とPM側延長部43VAc2とを備える。 An extension portion 43VAc is formed between the motor side fixing portion 43VAa and the PM side fixing portion 43VAb. The extension 43VAc includes a motor side extension 43VAc1 and a PM side extension 43VAc2.
 モータ側延長部43VAc1は、モータ側固定部43VAaに対して90度屈曲し、PM側固定部43VAbに対して平行であり、主としてモータ側下壁57b1に埋設される。モータ側延長部43VAc1は、トレイ5の対向壁5Aa1に対向する状態で対向壁5Aa1に対して平行に配置される。 The motor side extension 43VAc1 is bent 90 degrees with respect to the motor side fixing part 43VAa, is parallel to the PM side fixing part 43VAb, and is mainly embedded in the motor side lower wall 57b1. The motor side extension 43VAc1 is arranged in parallel to the facing wall 5Aa1 in a state of facing the facing wall 5Aa1 of the tray 5.
 PM側延長部43VAc2は、PM側固定部43VAbに対して90度屈曲し、PM側側壁57c2に埋設される。PM側延長部43VAc2は、トレイ5の側壁5Ab2に対向する状態で側壁5Ab2に対して平行に配置される。 The PM side extension portion 43VAc2 is bent 90 degrees with respect to the PM side fixing portion 43VAb and is embedded in the PM side wall 57c2. The PM side extension 43VAc2 is arranged in parallel to the side wall 5Ab2 in a state of facing the side wall 5Ab2 of the tray 5.
 バスバー43WAは、図6Cに示すように、モータ端子41WAに接続固定されるモータ側固定部43WAaと、パワーモジュール7に接続固定されるPM側固定部43WAbとを備える。 As shown in FIG. 6C, the bus bar 43WA includes a motor side fixing portion 43WAa connected and fixed to the motor terminal 41WA, and a PM side fixing portion 43WAb connected and fixed to the power module 7.
 モータ側固定部43WAaは、一部がモータ側上壁57a1及びモータ側側壁57c1に埋設され、先端側が図3のようにモータ側上壁57a1から外部に突出してボルト67によりモータ端子41WAに固定される。PM側固定部43WAbは、一部が主としてPM側上壁57a2に埋設され、先端側が図3のようにPM側上壁57a2から外部に突出してボルト69によりパワーモジュール7に固定される。 A part of the motor side fixing portion 43WAa is embedded in the motor side upper wall 57a1 and the motor side side wall 57c1, and the tip side protrudes from the motor side upper wall 57a1 to the outside as shown in FIG. 3 and is fixed to the motor terminal 41WA by a bolt 67. The Part of the PM-side fixing portion 43WAb is mainly embedded in the PM-side upper wall 57a2, and the tip side protrudes outside from the PM-side upper wall 57a2 as shown in FIG.
 モータ側固定部43WAaとPM側固定部43WAbとの間には、延長部43WAcが形成される。延長部43WAcは、モータ側延長部43WAc1とPM側延長部43WAc2とを備える。 An extension portion 43WAc is formed between the motor side fixing portion 43WAa and the PM side fixing portion 43WAb. The extension portion 43WAc includes a motor side extension portion 43WAc1 and a PM side extension portion 43WAc2.
 モータ側延長部43WAc1は、モータ側固定部43WAaに対して90度屈曲し、PM側固定部43WAbに対して平行であり、モータ側下壁57b1及びPM側下壁57b2に埋設される。モータ側延長部43WAc1は、トレイ5の対向壁5Aa1に対向する状態で対向壁5Aa1に対して平行に配置される。 The motor side extension portion 43WAc1 is bent 90 degrees with respect to the motor side fixing portion 43WAa, is parallel to the PM side fixing portion 43WAb, and is embedded in the motor side lower wall 57b1 and the PM side lower wall 57b2. The motor side extension 43WAc1 is arranged in parallel to the facing wall 5Aa1 in a state of facing the facing wall 5Aa1 of the tray 5.
 PM側延長部43WAc2は、PM側固定部43WAbに対して90度屈曲し、主としてのPM側側壁57c2に埋設される。PM側延長部43WAc2は、トレイ5の側壁5Ab2に対向する状態で側壁5Ab2に対して平行に配置される。 The PM side extension portion 43WAc2 is bent 90 degrees with respect to the PM side fixing portion 43WAb, and is embedded in the main PM side wall 57c2. The PM side extension 43WAc2 is arranged in parallel to the side wall 5Ab2 in a state of facing the side wall 5Ab2 of the tray 5.
 トレイ本体5Aaのパワーモジュール7と反対側の下面には、第1の実施形態におけるトレイ冷却流路5aと同様な図示しないトレイ冷却流路を備えている。当該トレイ冷却流路は、第1の実施形態と同様に、図1に示すPM冷却流路7aとモータ冷却流路15aとの双方に連通接続される。 The lower surface of the tray body 5Aa opposite to the power module 7 is provided with a tray cooling channel (not shown) similar to the tray cooling channel 5a in the first embodiment. Similar to the first embodiment, the tray cooling flow path is connected to both the PM cooling flow path 7a and the motor cooling flow path 15a shown in FIG.
 次に、第2の実施形態の作用を説明する。 Next, the operation of the second embodiment will be described.
 第2の実施形態は、モータ1のステータコイルで発生した熱は、モータ端子41Aに伝達された後、バスバー43Aに伝達される。一方、バスバー43Aは、樹脂成形部57に一体成形されており、樹脂成形部57は、トレイ5Aの折曲成形部5Abの外表面に密着した状態で固定されている。 In the second embodiment, the heat generated in the stator coil of the motor 1 is transmitted to the motor terminal 41A and then to the bus bar 43A. On the other hand, the bus bar 43A is integrally formed with the resin molding portion 57, and the resin molding portion 57 is fixed in close contact with the outer surface of the folding molding portion 5Ab of the tray 5A.
 このときトレイ5Aは、図示しないトレイ冷却流路を流れる冷却液によって折曲成形部5Abを含む全体が冷却されている。折曲成形部5Abが冷却されることで、折曲成形部5Abに密着した状態で固定されている樹脂成形部57が冷却され、さらに樹脂成形部57に埋設されるバスバー43Aも冷却される。 At this time, the entire tray 5A including the bent portion 5Ab is cooled by a coolant flowing through a tray cooling flow path (not shown). By cooling the bending part 5Ab, the resin molding part 57 fixed in close contact with the bending part 5Ab is cooled, and the bus bar 43A embedded in the resin molding part 57 is also cooled.
 バスバー43Aが冷却されることで、モータ端子41Aに伝達される熱のパワーモジュール7への伝達が抑制される。よって、モータ1のステータコイルで発生した熱のパワーモジュール7への熱伝達が抑制されて、パワーモジュール7を含むインバータ3全体の高温化が抑制される。なお、第2の実施形態においても、図示していないが電流センサの高温化が抑制されて電流検出精度が向上する。 When the bus bar 43A is cooled, the transmission of heat transmitted to the motor terminal 41A to the power module 7 is suppressed. Therefore, heat transfer to the power module 7 of heat generated in the stator coil of the motor 1 is suppressed, and the overall temperature of the inverter 3 including the power module 7 is suppressed. In the second embodiment as well, although not shown, the temperature of the current sensor is suppressed from increasing, and the current detection accuracy is improved.
 第2の実施形態は、トレイ5Aが、三つの冷却面となる、折返壁5Ab3,5Ab4と、対向壁5Aa1と、側壁5Ab1,5Ab2とを備え、各壁5Ab3,5Ab4,5Aa1,5Ab1,5Ab2を覆うように樹脂成形部57が設けられている。このため、バスバー43A及び樹脂成形部57を含む樹脂モールドバスバー55は、冷却液で冷却されているトレイ5Aによって、折曲成形部5Abが位置する内側から効率よく冷却される。 The second embodiment includes a folding wall 5Ab3, 5Ab4, an opposing wall 5Aa1, and side walls 5Ab1, 5Ab2, each of the walls 5Ab3, 5Ab4, 5Aa1, 5Ab1, and 5Ab2 having three cooling surfaces. A resin molded portion 57 is provided so as to cover it. For this reason, the resin mold bus bar 55 including the bus bar 43A and the resin molding portion 57 is efficiently cooled from the inside where the bending molding portion 5Ab is located by the tray 5A cooled by the coolant.
 また、第2の実施形態のトレイ5Aも、第1の実施形態のトレイ5と同様に、熱的接続部となる折返壁5Ab3,5Ab4、対向壁5Aa1、側壁5Ab1,5Ab2が、熱伝導率の高い金属で構成されている。このため、熱的接続部を例えば樹脂などの他の物質とした場合に比較して、モータ端子41Aに対する冷却効果がより高まる。 Similarly to the tray 5 of the first embodiment, the folding wall 5Ab3, 5Ab4, the opposing wall 5Aa1, and the side walls 5Ab1, 5Ab2 that are thermal connection portions of the tray 5A of the second embodiment have thermal conductivity. Consists of high metal. For this reason, the cooling effect with respect to the motor terminal 41A is further enhanced as compared with the case where the thermal connection portion is made of another substance such as a resin.
 第2の実施形態は、バスバー43A(43UA,43VA,43WA)が、トレイ5Aの折曲成形部5Abの延設方向に沿って併設するようにして延設されている。このため、バスバー43Aのトレイ5に対する放熱領域が、第1の実施形態に比較して格段に大きくなり、バスバー43Aに対する冷却効果が増大する。 In the second embodiment, the bus bar 43A (43UA, 43VA, 43WA) is extended so as to be provided along the extending direction of the bending portion 5Ab of the tray 5A. For this reason, the heat dissipation area of the bus bar 43A with respect to the tray 5 is significantly larger than that of the first embodiment, and the cooling effect on the bus bar 43A is increased.
 また、第2の実施形態は、バスバー43Aを樹脂成形部57に一体成形して樹脂モールドバスバー55とし、当該樹脂モールドバスバー55をトレイ5Aの折曲成形部5Abに嵌め込むようにしている。このため、樹脂モールドバスバー55のトレイ5Aへの取り付けを自動化して簡便化でき、組み付け作業性が向上する。 Further, in the second embodiment, the bus bar 43A is integrally formed with the resin molding portion 57 to form a resin molded bus bar 55, and the resin molded bus bar 55 is fitted into the folding molding portion 5Ab of the tray 5A. For this reason, the mounting of the resin molded bus bar 55 to the tray 5A can be automated and simplified, and the assembly workability is improved.
 なお、第2の実施形態におけるトレイ5の折曲成形部5Abは、矩形状のトレイ本体5Aaの一つの角部に設けているが、トレイ本体5Aaの矩形の一辺部に沿って直線状に設けてもよい。樹脂モールドバスバー55も折曲成形部5Abに合わせて直線状とする。しかし、折曲成形部5Abをトレイ本体5Aaの一つの角部に設けたほうが、折曲成形部5Abを含むトレイ5の全体をよりコンパクトにできる。 Note that the bending portion 5Ab of the tray 5 in the second embodiment is provided at one corner of the rectangular tray main body 5Aa, but is provided linearly along one side of the rectangular shape of the tray main body 5Aa. May be. The resin mold bus bar 55 is also formed in a straight line shape in accordance with the bending portion 5Ab. However, if the bending portion 5Ab is provided at one corner of the tray main body 5Aa, the entire tray 5 including the bending portion 5Ab can be made more compact.
 また、折曲成形部5Abと樹脂成形部57との間の伝熱性をより高めるために、以下の方策が考えられる。折曲成形部5Abと樹脂成形部57との間の接触面に熱伝導性の高い樹脂を塗布する。折曲成形部5Abと樹脂成形部57との嵌め合いを締り嵌めとして接圧をより高める。 Further, in order to further enhance the heat transfer between the bent molded portion 5Ab and the resin molded portion 57, the following measures can be considered. A resin having high thermal conductivity is applied to the contact surface between the bent molding part 5Ab and the resin molding part 57. The contact pressure is further increased by using an interference fit between the bent molded portion 5Ab and the resin molded portion 57 as an interference fit.
 次に、第3の実施形態について説明する。 Next, a third embodiment will be described.
 図7は、第3の実施形態による図3に対応する斜視図である。第3の実施形態は、トレイ5Bを樹脂で構成している。トレイ5Bは、冷却液が流れるトレイ冷却流路5Ba,5Bbを内部に備えている。トレイ冷却流路5Ba,5Bbは、樹脂製のトレイ5Bに、流路形成管71,73を一体成形することで形成される。 FIG. 7 is a perspective view corresponding to FIG. 3 according to the third embodiment. In the third embodiment, the tray 5B is made of resin. The tray 5B includes tray cooling flow paths 5Ba and 5Bb through which the coolant flows. The tray cooling flow paths 5Ba and 5Bb are formed by integrally forming the flow path forming pipes 71 and 73 on the resin tray 5B.
 トレイ5Bは、第1の実施形態のトレイ5と同様に図1のモータ1のインバータハウジング17に取り付けられる。その際、トレイ5Bは、第1の実施形態のトレイ5と全体の形状が多少異なるので、インバータハウジング17の多少の形状変更が必要となる場合がある。 The tray 5B is attached to the inverter housing 17 of the motor 1 of FIG. 1 in the same manner as the tray 5 of the first embodiment. At that time, since the overall shape of the tray 5B is slightly different from that of the tray 5 of the first embodiment, a slight change in the shape of the inverter housing 17 may be required.
 流路形成管71は、一端71aがトレイ5Bの側面から外部に突出しており、一端71aから冷却液がトレイ冷却流路5Ba内に流入する。流路形成管71の他端71bは、パワーモジュール7内における図示しないPM冷却流路に接続され、他端71bから流出する冷却液がPM冷却流路に流入する。 The flow path forming pipe 71 has one end 71a protruding from the side surface of the tray 5B to the outside, and the coolant flows into the tray cooling flow path 5Ba from the one end 71a. The other end 71b of the flow path forming pipe 71 is connected to a PM cooling flow path (not shown) in the power module 7, and the coolant flowing out from the other end 71b flows into the PM cooling flow path.
 PM冷却流路を流れる冷却液は、流路形成管73の一端73aからトレイ冷却流路5Bbに流入する。流路形成管73の他端73bは、トレイ5Bのパワーモジュール7と反対側の下面に突出している。トレイ冷却流路5Bbを流れる冷却液は、他端73bから流出して、図1に示すモータ冷却流路15aに流入する。 The coolant flowing through the PM cooling flow path flows into the tray cooling flow path 5Bb from one end 73a of the flow path forming pipe 73. The other end 73b of the flow path forming tube 73 protrudes from the lower surface of the tray 5B opposite to the power module 7. The coolant flowing through the tray cooling flow path 5Bb flows out from the other end 73b and flows into the motor cooling flow path 15a shown in FIG.
 トレイ5Bには、さらにバスバー43B(43UB,43VB,43WB)が一体成形されている。バスバー43UBは、図8Aに示すように、モータ端子41UBに接続固定されるモータ側固定部43UBaと、パワーモジュール7に接続固定されるPM側固定部43UBbとを備える。 Further, a bus bar 43B (43UB, 43VB, 43WB) is integrally formed on the tray 5B. As shown in FIG. 8A, the bus bar 43UB includes a motor side fixing portion 43UBa connected and fixed to the motor terminal 41UB and a PM side fixing portion 43UBb connected and fixed to the power module 7.
 モータ側固定部43UBaは、先端側がトレイ5Bの側部から外部に突出して、ボルト75によりモータ端子41UBに固定される。PM側固定部43UBbは、先端側がトレイ5Bの表面から外部に突出して、ボルト77によりパワーモジュール7に固定される。 The front end side of the motor side fixing portion 43UBa protrudes from the side portion of the tray 5B and is fixed to the motor terminal 41UB by a bolt 75. The PM side fixing portion 43UBb protrudes outward from the surface of the tray 5B and is fixed to the power module 7 with bolts 77.
 モータ側固定部43UBaとPM側固定部43UBbとの間には、延長部43UBcが形成される。延長部43UBcは、モータ側固定部43UBaに対して90度屈曲しつつほぼL字形状となる部位を備えている。延長部43UBcのほぼL字形状となる部位は、流路形成管73の屈曲した部分における一方の側部に沿って配置されている。 An extension portion 43UBc is formed between the motor side fixing portion 43UBa and the PM side fixing portion 43UBb. The extension portion 43UBc includes a portion that is substantially L-shaped while being bent 90 degrees with respect to the motor-side fixing portion 43UBa. A portion of the extension 43UBc that is substantially L-shaped is disposed along one side of the bent portion of the flow path forming tube 73.
 バスバー43VBは、図8Bに示すように、モータ端子41VBに接続固定されるモータ側固定部43VBaと、パワーモジュール7に接続固定されるPM側固定部43VBbとを備える。 As shown in FIG. 8B, the bus bar 43VB includes a motor side fixing portion 43VBa connected and fixed to the motor terminal 41VB and a PM side fixing portion 43VBb connected and fixed to the power module 7.
 モータ側固定部43VBaは、先端側がトレイ5Bの側部から外部に突出して、ボルト79によりモータ端子41VBに固定される。PM側固定部43VBbは、先端側がトレイ5Bの表面から外部に突出して、ボルト81によりパワーモジュール7に固定される。 The front end side of the motor side fixing portion 43VBa protrudes from the side portion of the tray 5B and is fixed to the motor terminal 41VB by the bolt 79. The PM side fixing portion 43VBb protrudes outward from the surface of the tray 5B and is fixed to the power module 7 with bolts 81.
 モータ側固定部43VBaとPM側固定部43VBbとの間には、延長部43VBcが形成される。延長部43VBcは、モータ側固定部43VBaに対して同一平面上に形成されつつほぼL字形状となる部位を備えている。延長部43VBcのほぼL字形状となる部位は、流路形成管73の屈曲した部分における図7中で下方の側部に沿って配置されている。 An extension portion 43VBc is formed between the motor side fixing portion 43VBa and the PM side fixing portion 43VBb. The extension portion 43VBc is provided with a portion that is substantially L-shaped while being formed on the same plane with respect to the motor-side fixing portion 43VBa. The portion of the extension 43VBc that is substantially L-shaped is disposed along the lower side in FIG. 7 in the bent portion of the flow path forming tube 73.
 バスバー43WBは、図8Cに示すように、モータ端子41WBに接続固定されるモータ側固定部43WBaと、パワーモジュール7に接続固定されるPM側固定部43WBbとを備える。 As shown in FIG. 8C, the bus bar 43WB includes a motor side fixing portion 43WBa connected and fixed to the motor terminal 41WB and a PM side fixing portion 43WBb connected and fixed to the power module 7.
 モータ側固定部43WBaは、先端側がトレイ5Bの側部から外部に突出して、ボルト83によりモータ端子41WBに固定される。PM側固定部43WBbは、先端側がトレイ5Bの表面から外部に突出して、ボルト85によりパワーモジュール7に固定される。 The front end side of the motor side fixing portion 43WBa protrudes from the side portion of the tray 5B and is fixed to the motor terminal 41WB by a bolt 83. The PM side fixing portion 43WBb protrudes outward from the surface of the tray 5B and is fixed to the power module 7 with a bolt 85.
 モータ側固定部43WBaとPM側固定部43WBbとの間には、延長部43WBcが形成される。延長部43WBcは、モータ側固定部43WBaに対して90度屈曲しつつほぼL字形状となる部位を備えている。延長部43WBcのほぼL字形状となる部位は、流路形成管73の屈曲した部分における他方の側部に沿って配置されている。 An extension portion 43WBc is formed between the motor side fixing portion 43WBa and the PM side fixing portion 43WBb. The extension portion 43WBc includes a portion that is substantially L-shaped while being bent 90 degrees with respect to the motor-side fixing portion 43WBa. A portion of the extension portion 43WBc that is substantially L-shaped is disposed along the other side portion of the bent portion of the flow path forming tube 73.
 図7のC-C断面図である図9に示すように、トレイ冷却流路5Bbを備える流路形成管73は、左右両側方と下方の三方が、バスバー43UB,43WB,43VBの各延長部43UBc,43WBc,43VBcに囲まれた状態となる。 As shown in FIG. 9 which is a CC cross-sectional view of FIG. 7, the flow path forming pipe 73 having the tray cooling flow path 5Bb has the bus bars 43UB, 43WB, and 43VB extending on the left and right sides and the lower side. It is in a state surrounded by 43UBc, 43WBc, and 43VBc.
 次に、第3の実施形態の作用を説明する。 Next, the operation of the third embodiment will be described.
 第3の実施形態は、モータ1のステータコイルで発生した熱は、モータ端子41Bに伝達された後、バスバー43Bに伝達される。一方、バスバー43Bは、樹脂製のトレイ5Bに一体成形されており、トレイ5Bは、トレイ冷却流路5Ba,5Bbを流れる冷却液により冷却されている。トレイ5Bが冷却されていることにより、バスバー43Bも冷却される。 In the third embodiment, the heat generated in the stator coil of the motor 1 is transmitted to the motor terminal 41B and then to the bus bar 43B. On the other hand, the bus bar 43B is integrally formed with the resin tray 5B, and the tray 5B is cooled by the coolant flowing through the tray cooling flow paths 5Ba and 5Bb. Since the tray 5B is cooled, the bus bar 43B is also cooled.
 バスバー43Bが冷却されることで、モータ端子41Bに伝達される熱のパワーモジュール7への伝達が抑制される。よって、モータ1のステータコイルで発生した熱のパワーモジュール7への熱伝達が抑制されて、パワーモジュール7を含むインバータ3全体の高温化が抑制される。なお、第3の実施形態においても、図示していないが電流センサの高温化が抑制されて電流検出精度が向上する。 When the bus bar 43B is cooled, transmission of heat transmitted to the motor terminal 41B to the power module 7 is suppressed. Therefore, heat transfer to the power module 7 of heat generated in the stator coil of the motor 1 is suppressed, and the overall temperature of the inverter 3 including the power module 7 is suppressed. In the third embodiment as well, although not shown, the temperature of the current sensor is suppressed from being increased, and the current detection accuracy is improved.
 第3の実施形態は、バスバー43B(43UB,43VB,43WB)の延長部43UBc,43VBc,43WBcが、トレイ冷却流路5Bbを備える流路形成管73の延設方向に沿って併設するようにして配置されている。このため、バスバー43Bの冷却液に対する放熱領域がより増大し、バスバー43Bに対する冷却効果が高まる。 In the third embodiment, the extensions 43UBc, 43VBc, 43WBc of the bus bars 43B (43UB, 43VB, 43WB) are provided along the extending direction of the flow path forming pipe 73 including the tray cooling flow path 5Bb. Has been placed. For this reason, the thermal radiation area | region with respect to the cooling fluid of the bus bar 43B increases more, and the cooling effect with respect to the bus bar 43B increases.
 第3の実施形態は、図9に示すように、バスバー43B(43UB,43VB,43WB)が、トレイ冷却流路5Bbを備える流路形成管73の周囲を囲むように配置されている。その際、二つのバスバー43UB,43WBは、トレイ冷却流路5Bbを間にしてトレイ冷却流路5Bbの両側に配置され、一つのバスバー43VBは、トレイ冷却流路5Bbの下側に配置されている。このため、バスバー43B(43UB,43VB,43WB)は、一つのトレイ冷却流路5Bbを流れる冷却液によって効率よく冷却される。 In the third embodiment, as shown in FIG. 9, the bus bar 43B (43UB, 43VB, 43WB) is disposed so as to surround the periphery of the flow path forming pipe 73 including the tray cooling flow path 5Bb. At that time, the two bus bars 43UB and 43WB are arranged on both sides of the tray cooling flow path 5Bb with the tray cooling flow path 5Bb in between, and one bus bar 43VB is arranged below the tray cooling flow path 5Bb. . For this reason, the bus bar 43B (43UB, 43VB, 43WB) is efficiently cooled by the coolant flowing through one tray cooling flow path 5Bb.
 第3の実施形態は、トレイ5Bが樹脂で構成されている。このため、トレイ5Bの軽量化を達成できる。 In the third embodiment, the tray 5B is made of resin. For this reason, the weight reduction of the tray 5B can be achieved.
 第3の実施形態は、トレイ冷却流路5Ba,5Bbを備える流路形成管71,73及びバスバー43Bがトレイ5Bに一体成形されている。このため、第2の実施形態のように樹脂モールドバスバーをトレイに組み付けるような作業が不要となり、製造がより簡素化され、組み付け作業性が向上する。 In the third embodiment, flow path forming pipes 71 and 73 having tray cooling flow paths 5Ba and 5Bb and a bus bar 43B are integrally formed on the tray 5B. For this reason, the operation | work which assembles a resin mold bus bar to a tray like 2nd Embodiment becomes unnecessary, manufacture is simplified more, and assembly | attachment workability | operativity improves.
 なお、第3の実施形態は、樹脂製のトレイ5Bに流路形成管71,73及びバスバー43Bを一体成形しているが、バスバー43Bのみを一体成形してもよい。この場合、トレイ5Bを図7中で上下二つに分割した状態で樹脂成形し、二つの樹脂成形品の互いの対向面に、トレイ冷却流路となる断面半円形の凹部を形成する。これにより、トレイ5B内にトレイ冷却流路が形成され、トレイ5Bに流路形成管71,73を一体成形する必要がなくなって部品点数が削減される。 In the third embodiment, the flow path forming pipes 71 and 73 and the bus bar 43B are integrally formed on the resin tray 5B. However, only the bus bar 43B may be integrally formed. In this case, the tray 5B is resin-molded in a state of being divided into two in the upper and lower directions in FIG. Thereby, a tray cooling flow path is formed in the tray 5B, and it is not necessary to integrally form the flow path forming pipes 71 and 73 in the tray 5B, thereby reducing the number of parts.
 第3の実施形態は、例えば図9に示すように、バスバー43WBの延長部43WBcを間にして延長部43WBcの流路形成管73と反対側に流路形成管87を設けてもよい。つまり、バスバーを間にしてバスバーの両側にトレイ冷却流路を設けてもよい。これにより、バスバーに対する冷却効果がより高まる。 In the third embodiment, for example, as shown in FIG. 9, a flow path forming tube 87 may be provided on the opposite side of the extension portion 43WBc to the flow path forming tube 73 with the extension portion 43WBc of the bus bar 43WB in between. That is, the tray cooling flow path may be provided on both sides of the bus bar with the bus bar interposed therebetween. Thereby, the cooling effect with respect to a bus-bar increases more.
 また、第2、第3の実施形態は、第1の実施形態と同様に、トレイ冷却流路を流れてトレイ5A,5Bを冷却する冷却液が、モータ1のモータ冷却流路15a及びパワーモジュール7のPM冷却流路7aを流れる冷却液と兼用している。このため、トレイ5A,5Bを冷却するための専用の冷却経路を別途設ける必要がなく、その分冷却構造を簡素化でき、製造コストも低く抑えることができる。 Further, in the second and third embodiments, similarly to the first embodiment, the coolant that flows through the tray cooling flow path and cools the trays 5A and 5B is the motor cooling flow path 15a of the motor 1 and the power module. 7 is also used as a coolant flowing through the PM cooling flow path 7a. For this reason, it is not necessary to separately provide a dedicated cooling path for cooling the trays 5A and 5B, the cooling structure can be simplified correspondingly, and the manufacturing cost can be kept low.
 以上、本発明の実施形態について説明したが、これらの実施形態は本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。 As mentioned above, although embodiment of this invention was described, these embodiment is only the mere illustration described in order to make an understanding of this invention easy, and this invention is not limited to the said embodiment. The technical scope of the present invention is not limited to the specific technical matters disclosed in the above embodiment, but includes various modifications, changes, alternative techniques, and the like that can be easily derived therefrom.
 例えば、電力変換装置としてインバータに限らず、DC-DCコンバータにも本発明を適用でき、回転電機としてモータに限らず発電機にも本発明を適用できる。 For example, the present invention can be applied not only to an inverter as a power converter, but also to a DC-DC converter, and the present invention can be applied to a generator as well as a motor as a rotating electrical machine.
 上記した実施形態では、トレイ5をインバータハウジング17に取り付けているが、モータハウジングなど他の部位に取り付けてもよい。 In the above-described embodiment, the tray 5 is attached to the inverter housing 17, but may be attached to other parts such as a motor housing.
 図3、図4に示す第2の実施形態の三つのバスバー43Aは、図6A、図6B、図6Cに示した形状に限定されるものではない。三つのバスバー43Aが、互いに電気的に絶縁された状態で、かつ、金属製のトレイ5Aに対して電気的に絶縁された状態で、樹脂成形部57に一体成形されるものであればよい。この場合、バスバー43Aは、延設方向の長さをより長くすることで、放熱効果がより高まる。 The three bus bars 43A of the second embodiment shown in FIGS. 3 and 4 are not limited to the shapes shown in FIGS. 6A, 6B, and 6C. It is only necessary that the three bus bars 43A are integrally formed with the resin molding portion 57 in a state where they are electrically insulated from each other and electrically insulated from the metal tray 5A. In this case, the bus bar 43A has a longer heat dissipation effect by making the length in the extending direction longer.
 図7に示す第3の実施形態の三つのバスバー43Bについても、図8A、図8B、図8Cに示した形状に限定されるものではない。三つのバスバー43Bが、互いに電気的に絶縁された状態で、樹脂製のトレイ5Bに一体成形されるものであればよい。この場合、バスバー43Bは、流路形成管73に併設される部分の長さをより長くすることで、放熱効果がより高まる。 The three bus bars 43B of the third embodiment shown in FIG. 7 are not limited to the shapes shown in FIGS. 8A, 8B, and 8C. The three bus bars 43B may be formed integrally with the resin tray 5B while being electrically insulated from each other. In this case, the bus bar 43 </ b> B further increases the heat dissipation effect by increasing the length of the portion provided alongside the flow path forming pipe 73.
 本発明は、回転電機と電力変換装置とを備える回転電機装置に適用される。 The present invention is applied to a rotating electrical machine apparatus including a rotating electrical machine and a power converter.
 1 モータ(回転電機)
 3 インバータ(電力変換装置、発熱部品)
 5,5A 金属製のトレイ(支持部材)
 5c トレイの接続固定部(熱的接続部)
 5a トレイ冷却流路(第3の冷却流路)
 5B 樹脂製のトレイ(支持部材)
 5Ba,5Bb トレイ冷却流路(第3の冷却流路)
 7 パワーモジュール(発熱部品)
 7a PM冷却流路(第2の冷却流路)
 15a モータ冷却流路(第1の冷却流路)
 41,41A,41B モータ端子(導電接続部材、発熱部品)
 43,43B バスバー(導電接続部材、発熱部品)
 43A バスバー(導電接続部材、発熱部本体、発熱部品)
 49 電流センサ(発熱部品)
 55 樹脂モールドバスバー(発熱部品)
1 Motor (Rotating electric machine)
3 Inverter (power converter, heat-generating component)
5,5A Metal tray (support member)
5c Tray connection fixing part (thermal connection part)
5a Tray cooling channel (third cooling channel)
5B Resin tray (support member)
5Ba, 5Bb Tray cooling channel (third cooling channel)
7 Power modules (heat generating parts)
7a PM cooling flow path (second cooling flow path)
15a Motor cooling flow path (first cooling flow path)
41, 41A, 41B Motor terminal (conductive connection member, heat generating component)
43, 43B Bus bar (conductive connection member, heat generating component)
43A Bus bar (conductive connection member, heat generating body, heat generating component)
49 Current sensor (heat-generating component)
55 Resin Molded Bus Bar (Heat-generating parts)

Claims (9)

  1.  第1の冷却流路を備える回転電機と、
     前記回転電機に接続され、第2の冷却流路を備える電力変換装置と、
     前記電力変換装置を支持し 、第3の冷却流路を備える支持部材と、を有し、
     前記第1の冷却流路と前記第2の冷却流路とが、前記第3の冷却流路を介して連通し、
     前記支持部材に発熱部品が熱的に接続された状態で取り付けられていることを特徴とする回転電機装置。
    A rotating electrical machine comprising a first cooling flow path;
    A power converter connected to the rotating electrical machine and provided with a second cooling flow path;
    A support member that supports the power conversion device and includes a third cooling flow path;
    The first cooling channel and the second cooling channel communicate with each other via the third cooling channel;
    A rotating electrical machine apparatus, wherein the heat generating component is attached to the support member in a thermally connected state.
  2.  前記支持部材の前記発熱部品が熱的に接続される熱的接続部が金属で構成されていることを特徴とする請求項1に記載の回転電機装置。 The rotating electrical machine apparatus according to claim 1, wherein a thermal connection portion to which the heat generating component of the support member is thermally connected is made of metal.
  3.  前記支持部材の熱的接続部は、前記発熱部品に対して複数の冷却面を備えていることを特徴とする請求項2に記載の回転電機装置。 The rotating electrical machine apparatus according to claim 2, wherein the thermal connection portion of the support member includes a plurality of cooling surfaces for the heat generating component.
  4.  前記発熱部品は、発熱部本体と、前記発熱部本体を樹脂により一体成形した樹脂成形部と、を備え、
     前記支持部材の熱的接続部は、前記複数の冷却面として、互いに対向する二つの対向面と、前記二つの対向面の一方の端部同士を接続する一つの接続面と、前記接続面に対向する開口部と、を備え、
     前記発熱部品の樹脂成形部は、前記支持部材の二つの対向面及び一つの接続面の三つの冷却面を覆うようにして取り付けられていることを特徴とする請求項3に記載の回転電機装置。
    The heat generating component includes a heat generating portion main body, and a resin molded portion in which the heat generating portion main body is integrally formed of resin,
    The thermal connection portion of the support member includes, as the plurality of cooling surfaces, two opposing surfaces facing each other, one connection surface connecting one end of the two opposing surfaces, and the connection surface. An opposing opening,
    4. The rotating electrical machine apparatus according to claim 3, wherein the resin molding portion of the heat generating component is attached so as to cover three cooling surfaces of two opposing surfaces and one connection surface of the support member. .
  5.  前記支持部材は、樹脂で構成されていることを特徴とする請求項1に記載の回転電機装置。 The rotating electrical machine apparatus according to claim 1, wherein the support member is made of resin.
  6.  前記第3の冷却流路及び前記発熱部品は、前記樹脂製の支持部材に一体成形されていることを特徴とする請求項5に記載の回転電機装置。 6. The rotating electrical machine apparatus according to claim 5, wherein the third cooling flow path and the heat generating component are integrally formed with the resin support member.
  7.  前記発熱部品は、前記支持部材の内部において前記第3の冷却流路を間にして当該第3の冷却流路の両側に配置されていることを特徴とする請求項6に記載の回転電機装置。 The rotating electrical machine apparatus according to claim 6, wherein the heat generating component is disposed on both sides of the third cooling flow path with the third cooling flow path in the support member. .
  8.  前記第3の冷却流路は、前記支持部材の内部において前記発熱部品を間にして当該発熱部品の両側に配置されていることを特徴とする請求項6または7に記載の回転電機装置。 The rotating electrical machine apparatus according to claim 6 or 7, wherein the third cooling flow path is disposed on both sides of the heat generating component with the heat generating component in between in the support member.
  9.  前記発熱部品は、前記回転電機と前記電力変換装置とを接続する導電接続部材であることを特徴とする請求項1ないし8のいずれか1項に記載の回転電機装置。 The rotating electrical machine apparatus according to any one of claims 1 to 8, wherein the heat generating component is a conductive connection member that connects the rotating electrical machine and the power converter.
PCT/JP2015/079982 2015-10-23 2015-10-23 Rotating electric machine device WO2017068719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079982 WO2017068719A1 (en) 2015-10-23 2015-10-23 Rotating electric machine device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079982 WO2017068719A1 (en) 2015-10-23 2015-10-23 Rotating electric machine device

Publications (1)

Publication Number Publication Date
WO2017068719A1 true WO2017068719A1 (en) 2017-04-27

Family

ID=58556780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079982 WO2017068719A1 (en) 2015-10-23 2015-10-23 Rotating electric machine device

Country Status (1)

Country Link
WO (1) WO2017068719A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031959A (en) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd Bus bar
JP2013106473A (en) * 2011-11-15 2013-05-30 Hitachi Automotive Systems Ltd Inverter device and electric driving system
JP2014072939A (en) * 2012-09-28 2014-04-21 Hitachi Automotive Systems Ltd Electric power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031959A (en) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd Bus bar
JP2013106473A (en) * 2011-11-15 2013-05-30 Hitachi Automotive Systems Ltd Inverter device and electric driving system
JP2014072939A (en) * 2012-09-28 2014-04-21 Hitachi Automotive Systems Ltd Electric power conversion device

Similar Documents

Publication Publication Date Title
JP6406443B2 (en) Drive device
JP6409968B2 (en) Mechanical and electric integrated rotating electrical machine
JP5823020B2 (en) Power converter
US9123693B2 (en) Mold module utilized as power unit of electric power steering apparatus and electric power steering apparatus
JP5836879B2 (en) Inverter device
US20090243443A1 (en) Drive unit
JP5373150B2 (en) Capacitor module
JP6361396B2 (en) Electronic control unit and rotating electric machine using the same
JP2015198168A (en) Electronic device, power converter and dynamo-electric machine
JP5178455B2 (en) Power converter
JP2017229174A (en) Rotary electric machine
JP2017163771A (en) Dynamo-electric machine
CN107786070B (en) Intelligent power module, motor controller and vehicle
JP2010011671A (en) Power convertor
JP5268880B2 (en) Power converter
JP6115430B2 (en) Power converter
JP5619235B2 (en) Power converter
CN109861463A (en) The cooling structure of driving controller connection motor
WO2017068719A1 (en) Rotating electric machine device
WO2019244502A1 (en) Electric power converter
JP2019221048A (en) Electric power conversion device
JP6631332B2 (en) Power converter
JP6680083B2 (en) Mechatronic integrated drive unit
JP7327211B2 (en) power converter
JP7081525B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP