WO2017067190A1 - 机械振动装置 - Google Patents

机械振动装置 Download PDF

Info

Publication number
WO2017067190A1
WO2017067190A1 PCT/CN2016/086402 CN2016086402W WO2017067190A1 WO 2017067190 A1 WO2017067190 A1 WO 2017067190A1 CN 2016086402 W CN2016086402 W CN 2016086402W WO 2017067190 A1 WO2017067190 A1 WO 2017067190A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
mechanical vibration
mechanical
piezoelectric
component
Prior art date
Application number
PCT/CN2016/086402
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
博立码杰通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 博立码杰通讯(深圳)有限公司 filed Critical 博立多媒体控股有限公司
Publication of WO2017067190A1 publication Critical patent/WO2017067190A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods
    • H02N2/008Means for controlling vibration frequency or phase, e.g. for resonance tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods

Definitions

  • the present invention relates to a system for effecting conversion between mechanical vibrational energy and electrical energy, and more particularly to a mechanical vibration device operating in a resonant state.
  • mechanical vibrations need to be avoided as much as possible, as vibration may reduce energy utilization efficiency and generate noise.
  • mechanical vibration is the desired mode of operation, and devices in such applications can be referred to as mechanical vibration devices.
  • Mechanical vibration components in mechanical vibration devices are typically designed to operate in a resonant state to achieve maximum output power.
  • a conventional mechanical vibration device as shown in Fig. 1, includes a drive coil Ld and a mechanical vibration element Mr, each of which is fixed to a base AA.
  • Ld directly accesses a source signal VS through a set of inputs, and VS can also be called a drive signal.
  • Mr is a magnetic component, and N and S are their north and south magnetic poles, respectively.
  • the magnetic field generated by Ld interacts with Mr and drives Mr to vibrate.
  • the mechanical vibration element is independent of the circuit loop, whereas in other mechanical vibration devices, the mechanical vibration element may also be part of a circuit loop, such as a mechanical vibration device utilizing a piezoelectric effect.
  • the piezoelectric effect has been widely utilized since its discovery.
  • examples of utilizing the positive piezoelectric effect include an energy harvester, a vibration measuring device, and the like; an example using an inverse piezoelectric effect (i.e., by applying a voltage to a piezoelectric material to generate a deformation) Including ultrasonic motors, piezoelectric fans, etc.
  • FIG. 2 A schematic diagram of a circuit structure of a common piezoelectric fan can be referred to FIG. 2. It comprises two piezoelectric elements PE1 and PE2, and the two source signals VS1 and VS2 are respectively outputted as drive signals VD1 and VD2 through respective voltage/current regulators M1 and M2 to drive the two piezoelectric elements.
  • the piezoelectric element acts as a mechanical vibration element and an electronic component in the circuit loop.
  • the source signal can be generated, for example, using a pulse width modulated PW M circuit.
  • the piezoelectric element adopts a monolithic piezoelectric ceramic piece, and the driving circuit can be directly driven in the circuit loop.
  • the line terminal provided to the mechanical vibration element is called the drive end.
  • a set of driving terminals V+ and V- which provide a driving signal in Fig. 2 are respectively connected to the front and back sides of the piezoelectric element. In this case, fan blades (not shown
  • the piezoelectric element in FIG. 2 can be equivalent to the circuit configuration shown in FIG. Where Cpl and Cp2 represent the capacitances of PE1 and PE2, respectively, and Rpl and Rp2 represent PE1 and PE, respectively.
  • the leakage resistance of 2 indicates that the two circuit loops can be connected in common.
  • the frequency of the source signal used to drive the mechanical vibration device matches the mechanical resonance frequency of the mechanical vibration device.
  • matching means the same or close, so that the mechanical vibration element can resonate by a change in the electrical signal.
  • frequency refers to the circular frequency ⁇
  • mechanical motion frequency f which is usually expressed in terms of "times/second”
  • CO 2 tf
  • a mechanical vibration device comprising at least one set of inputs or at least one set of outputs, further comprising at least one mechanical vibration element.
  • the mechanical vibrating element is used to generate mechanical vibration driven by electrical energy, and the electric energy used for driving is input from the input terminal; or, for generating electrical energy output at the output end by its own mechanical vibration.
  • the circuit circuit to which the input end or the output end belongs includes at least one inductance element and at least one capacitance element connected in series, and the parameters of the circuit loop are configured such that the circuit resonance frequency of the circuit circuit is opposite to the mechanical resonance frequency of the mechanical vibration element match.
  • a mechanical vibration device is a piezoelectric device including at least one set of inputs, each set of inputs for accessing a source signal; at least one piezoelectric element, the same ⁇ acts as a mechanical vibration element and a capacitive element in the circuit loop; at least one set of drive ends, each set of drive ends for driving one piezoelectric element; at least one inductance element, connected in series via at least one set of inputs and at least one set of drives
  • the parameters of the circuit loop are configured such that the circuit resonant frequency of the circuit loop matches the mechanical resonant frequency of the piezoelectric element driven by the circuit loop, or The frequency of the source signal of the road matches.
  • mechanical resonance frequency should not be understood as the mechanical resonance frequency of the isolated or separated mechanical vibration component, but the mechanical resonance frequency of the mechanical vibration component in the current installation state. This is usually related to the mechanical structure to which the mechanical vibrating element is fixedly attached, and can be calculated by well-known mathematical means according to the actual device structure, or obtained by experimental measurement.
  • the inductance circuit and the capacitance element are simultaneously introduced in the circuit loop, so that the circuit circuit is formed as an oscillation circuit, and thus can have a circuit resonance frequency.
  • circuit parameters such as inductance or capacitance values
  • the circuit resonant frequency is matched to the mechanical resonant frequency so that the circuit loop can also operate in a resonant state, resulting in higher energy efficiency or higher power density.
  • the piezoelectric device causes the drive circuit to be formed as an oscillation circuit by introducing an inductance element in a drive circuit of the piezoelectric element, and thus may have a circuit resonance frequency.
  • circuit parameters such as inductance values
  • the circuit resonance frequency is matched to the mechanical resonance frequency or the frequency of the source signal, so that the drive circuit can also operate in a resonance state, so that a sufficiently high drive voltage can be easily generated, resulting in reduced power consumption. And improve the performance of the piezoelectric device.
  • FIG. 1 is a schematic view of a conventional vibration fan
  • FIG. 2 is a schematic view of a conventional piezoelectric fan
  • FIG. 3 is an equivalent circuit diagram of the piezoelectric element of FIG. 2;
  • FIG. 4 is a schematic diagram of an equivalent circuit of a piezoelectric device in accordance with the present invention.
  • FIG. 5 is a schematic view of a vibration fan of Embodiment 1;
  • FIG. 6 is a schematic view of an electromagnetic speaker of Embodiment 2;
  • FIG. 7 is a schematic view of an electromagnetic speaker of Embodiment 3.
  • FIG. 8 is a schematic view of a vibrating mixer of Embodiment 4.
  • FIG. 9 is a schematic view of a vibration type washing machine of Embodiment 5; 10 is a schematic view of a piezoelectric fan of Embodiment 6;
  • FIG. 11 is a schematic diagram of an equivalent circuit of FIG. 10;
  • FIG. 12 is a schematic view of a piezoelectric fan of Embodiment 7;
  • FIG. 13 is a schematic view of a piezoelectric motor of Embodiment 8.
  • FIG. 14 is a schematic view of a piezoelectric speaker of Embodiment 9;
  • FIG. 15 is a schematic view of a piezoelectric speaker of Embodiment 10.
  • the mechanical vibration device according to the present invention may be a device for realizing the conversion between mechanical vibration energy and electric energy of any structure/function/use.
  • the mechanical vibration device according to the present invention may include the following two types:
  • the device may be a device that converts electrical energy into mechanical energy, which may be referred to simply as an "EtM" device.
  • the device has at least one set of inputs for inputting electrical energy.
  • the circuit circuit included in the device is a drive circuit for driving the vibration of the mechanical component.
  • the device may specifically be a vibration fan, an acoustic sounding unit, a blender or a vibrating washing machine.
  • the device may also be a device that converts mechanical energy into electrical energy, which may be referred to simply as an "MtE" device.
  • the device has at least one set of outputs for outputting electrical energy.
  • the circuit circuit included in the device is a vibration energy harvesting and conversion circuit.
  • the device may specifically be a vibration energy harvester
  • input/output refers to a port in which a circuit loop exchanges energy with the outside. When the power flows into the loop, it is an input, and when the power flows out of the loop, it is an output. It is easy to understand that for those devices that are reversible, the same set of physical ports can act as either an input or an output.
  • the mechanical vibration device may include the following two types:
  • the mechanical vibration element is not included in the circuit loop, in other words, from the perspective of circuit connection, the mechanical vibration element is independent of the circuit loop.
  • the circuit loop interacts with the mechanical vibration element through the active element.
  • This type of device is hereinafter referred to as a Class I device.
  • the active element may be an inductive element or a capacitive element, and the specific type may be selected according to the coupling mode (ie, the interaction relationship) between it and the mechanical vibration element.
  • the component may also be referred to as a "drive component”, and if the circuit loop is used to collect vibrational energy, the active component may also be referred to as a "driven component.”
  • an element that is opposite in nature to the active element may be referred to as a "conjugated element.”
  • Concentric to the inductive component is a capacitive component, and the capacitive component is conjugated to an inductive component.
  • conjugation is meant that two elements (inductive or capacitive elements) have equal impedance values but opposite signs at a particular frequency (in the present invention, the resonant frequency). It will be readily understood that one mechanical vibrating element may correspond to one or more active elements and vice versa. Similarly, the conjugate element can also be one or more.
  • a mechanical vibration element is included in the circuit loop, and the mechanical vibration element acts as an inductive element or a capacitive element.
  • This type of device is hereinafter referred to as a class II device.
  • the mechanical vibration element itself acts as a "active element”
  • the circuit loop also includes a "conjugated element” of opposite nature.
  • Piezoelectric devices are a class II "EtM” device that is widely used. It should be noted that, based on the reversible characteristics of the piezoelectric element, the piezoelectric device can also be easily designed as a Class II "MtE” device, and will not be described herein. Referring to FIG.
  • an equivalent circuit diagram of a piezoelectric device includes: a set of inputs for accessing a source signal VS; a piezoelectric element, which is equivalent in the circuit a parallel capacitor Cp and a drain resistor Rp; a group driving end for outputting a driving signal VD for driving the piezoelectric element; an inductance element, connected in series with the piezoelectric element, which is equivalent to a series inductance Li and a resistor in the circuit Ri.
  • the frequency of the source signal is co(s), which is usually the frequency of the drive signal.
  • the two different names of the source signal and the drive signal are used herein to represent only the signals observed from different locations of the circuit.
  • the source signal is consistent with the frequency of the generated drive signal, and may have a difference in amplitude and phase.
  • the piezoelectric device preferably operates in a resonant state, co(s) is generally close to or equal to the mechanical resonance frequency o(m) of the piezoelectric element.
  • the circuit resonance frequency of the circuit loop can be made to be equal to the mechanical resonance frequency ⁇ ( ⁇ ) of the piezoelectric element driven by the circuit loop. Match, or match the frequency co(s) of the source signal of the circuit loop. This allows the drive circuit to also operate in a resonant state.
  • the leakage resistance Rp of the piezoelectric element is much larger than its capacitive reactance l/(co(s)*Cp), so for simplicity, Rp can be regarded as a bypass when calculating co(c).
  • the drive circuit can be easily operated in a resonant state by adjusting the parameters of the introduced inductance element.
  • the driver circuit may also contain more circuit components, and the piezoelectric component and the inductor component may also be equivalent to a more precise circuit structure, without affecting the application based on the above basic idea of the present invention.
  • Piezoelectric devices in accordance with the present invention can have a variety of rich implementations.
  • the input can have multiple groups, and each input is used to access one source signal.
  • the frequencies of these source signals may be the same or different.
  • the source signal referred to herein may have a set frequency or a set frequency range.
  • the frequency of the source signal co(s) refers to the center frequency within the frequency range.
  • the frequency coverage of the source signal can be designed to have a deviation from the center frequency of no more than ⁇ 8%, where B% can be determined according to the accuracy requirements of the system for the frequency.
  • a wide continuum can be divided into multiple sub-bands, each as a source signal, so that each signal can be resonant Drive.
  • the driving end of the piezoelectric device may also have multiple groups, and each group of driving ends is used to drive one piezoelectric element.
  • a source signal can drive only one set of driving ends to drive one piezoelectric element; one source signal can also correspond to multiple sets of parallel driving ends, driving a plurality of parallel piezoelectric elements, in this case, multiple sets of driving Piezoelectric elements that are individually driven at the ends typically have matching mechanical resonant frequencies.
  • the phase of the voltage output from each set of drivers can be designed according to the needs of the application, for example the same, or vice versa, or evenly distributed over a period (2 ⁇ ). For example, there are three sets of drivers, and the phase is delayed by 2 ⁇ /3.
  • the phase delay of the driver can be derived from different source signals or from the same source signal through the component that produces the phase delay. Of course, the delayed source signal can also be considered as a different source signal.
  • the piezoelectric element can be designed in various structural forms as needed in an application scenario.
  • the piezoelectric element may be, for example, a one-piece structure as shown in FIG. 2, or a two-piece composite structure.
  • two piezoelectric ceramic sheets may be overlapped to form one piezoelectric element, and two driving signals may be used.
  • One of the driving ends connects the two faces away from the two ceramic sheets, and the other connects the two faces immediately adjacent to the two ceramic sheets.
  • the blades for amplifying the vibration can usually be sandwiched between two ceramic sheets. If the blades are made of a conductive material, for example, metal blades, the blades can be directly used as electricity. Extremely, connect a drive end to it.
  • the electrode for conducting the driving signal covered by the surface of the piezoelectric element may be an integral body, that is, each surface is formed as one electrode.
  • the electrodes on the surface of the component can also be segmented.
  • different electrode regions separated by the surface of a single physical component can be connected. More than two sets of drive terminals are driven by different drive signals.
  • the single physical element can equally be considered as two piezoelectric elements having the same mechanical resonant frequency and is still considered a variation within the scope of the invention.
  • the piezoelectric elements mentioned below all refer to piezoelectric elements having a single electrode surface, and will not be described again.
  • Each piezoelectric element is formed in series with a corresponding set of driving ends, a set of input terminals and an inductive element as a circuit loop.
  • a set of inputs can be shared by multiple circuit loops to drive a plurality of piezoelectric elements.
  • An inductive component can also be shared by multiple circuit loops. Based on the circuit analysis described above, if the piezoelectric elements driven by more than two circuit loops are substantially identical and have matching mechanical resonant frequencies, these circuit loops can share the same inductive component, whether or not the circuit loops are used.
  • the same source signal (the frequency of the source signal needs to be basically the same).
  • each circuit loop can usually be configured with its own inductive component.
  • these circuit loops can also share the same inductive component, but in this case, it is also necessary to design other parameters in the circuit loop, such as the capacitance of the piezoelectric component, so that at different resonant frequencies In the case of using the same inductance, the resonance condition can also be satisfied.
  • a mechanical vibration device in accordance with the present invention can be referred to in FIG. 5 as a Class I "EtM" device, which can be, for example, a vibrating fan.
  • the mechanical vibration device includes a drive circuit and a mechanical vibration element Mr.
  • the driving circuit includes an inductor L d and a capacitor Cc connected in series, and a source signal VS is connected to the driving circuit through the transformer TT.
  • the Ld is fixed to the base AA and is mechanically integrated with the Mr.
  • Mr is a magnetic component, and N and S are their north and south magnetic poles, respectively.
  • the magnetic field generated by Ld interacts with Mr and drives Mr to vibrate.
  • Ld serves as an active element
  • Cc functions as a conjugated element
  • the active component is a capacitor
  • the conjugate component is an inductor.
  • the circuit can be adjusted by adjusting the parameters of the conjugate element
  • the resonant frequency of the loop is adjusted to match the mechanical resonant frequency of the mechanical vibrating element.
  • the frequency of vs the circuit loop and the mechanical vibration component can work in the resonance state at the same time.
  • the conjugate element is redundant because it is not used to drive the vibration element.
  • a conjugate element is necessary and can produce the following advantageous effects:
  • the mechanical motion and the current motion of the mechanical vibration device can be in a resonance state.
  • the drive circuit is in resonance, its power factor is close to one.
  • the VS in this embodiment can be generated by an alternating current power generator.
  • the VS as an output can be connected to the rectifier circuit.
  • the rectified current for example, can be used to charge an external device.
  • FIG. 6 Another embodiment of the mechanical vibration device according to the present invention can be referred to as Figure 6, which is a Class I "EtM" device, which may be, for example, an electromagnetic speaker.
  • the main difference compared to the embodiment 1 is that there are a plurality of vibrating elements, and each vibrating element has a different resonant frequency.
  • an excellent acoustic speaker needs to be able to cover an audio range of 20 Hz to 20,000 Hz.
  • a wide frequency range can be divided into multiple sub-spectral segments with different center frequencies, and a wide range of signals can be divided into multiple source signals according to sub-spectral segments, each The source signals drive the vibrating elements whose resonant frequency is the same as the center frequency of the sub-segment to which they belong.
  • spectral segments Five spectral segments are exemplarily used in the embodiment, and the center frequencies are respectively ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5.
  • Audio Amplifier The ADA divides the source signal into five source signals Vl(col), V2(co2), V3(co3), V4(co4), and V5(co5) according to these five segments.
  • Each source signal Vi(coi) is respectively connected to the corresponding In the driving circuit, for example, the ADA can form a circuit loop by respectively connecting the inductance and the capacitor in series with each group through the ground line.
  • Ldi serves as an active element
  • Cci acts as a conjugated element. Since the circuit circuits of different frequencies have independent active components and conjugate components, the circuit parameters can be easily configured to meet the resonance conditions of the machine and the circuit, so that the speaker can achieve excellent results. Moreover, since the driving circuit operates in a resonance state, a large volume can be generated with a small source signal, thereby reducing the power amplification factor of the analog amplifier, and even eliminating the analog amplifier used in the conventional audio. This not only makes it possible to drive the loudspeakers with all-digital signals, but also saves space and cost, which is of great value for applications in portable products, especially mobile phones.
  • Fig. 7 is a Class I "EtM" device, which may be, for example, an electromagnetic speaker.
  • EtM Class I
  • the main difference is that a plurality of circuit circuits having different resonance frequencies share the same common element.
  • the mechanical structure and the driving method in this embodiment are similar to those in Embodiment 2.
  • the ADA divides the sound source signal into five source signals Vi(coi) according to five spectrum segments, and drives five magnetic waves through five active elements Ldi respectively.
  • another driving inductance Ld5' is connected in series to the driving circuit to which Ld5 belongs, which indicates that the circuit circuit of the present invention may include other electronic components of the same type as the active component in addition to the active component.
  • the five drive circuits share the capacitance Ccs, that is, each Ldi is connected in series with Ccs.
  • the common component is a capacitor used as a conjugate component, and in other embodiments, the shared common component may also be an inductor.
  • This embodiment can bring about a significant reduction in cost and space requirements, which is very important for the application of the audio system in portable products (such as mobile phones, MP3 players, etc.), therefore, the optimized design of this embodiment is also quite Attractive.
  • Example 4 Another embodiment of the mechanical vibration device according to the present invention can be referred to FIG. 8, which is a Class I "EtM” device, which can be, for example, a vibrating mixer.
  • EtM Class I
  • FIG. 8 is a Class I "EtM” device, which can be, for example, a vibrating mixer.
  • the mechanical vibration device includes a drive circuit and a mechanical vibration element.
  • the driving circuit includes a driving motor Ldd and a tunable capacitor Ccm connected in series, wherein Ldd acts as an inductive component, a source signal VS is connected to the driving circuit, and VS can be generated by an alternating current power generator.
  • the mechanical vibration element is a stirring rod Mrr which is mounted on the driving motor Ldd for eccentric rotation, and is used to agitate the agitated material contained in the container BB.
  • Ldd is an active element
  • Ccm is a conjugated element.
  • the conjugate element in this embodiment is a parameter-adjustable component
  • the device further includes an amplitude measuring component Ame for measuring the amplitude of the vibrating component and outputting a corresponding measurement signal.
  • the resonant frequency may drift during use.
  • the amplitude measuring component and the parameter-adjustable conjugate component can find a new resonant frequency and re-adjust the circuit parameters to the values required for resonance. This allows the high performance of the device to be maintained for a long time.
  • the parameter adjustable element can also be an active element.
  • Fig. 9 is a Class I "EtM” device, which may be, for example, a vibratory washing machine.
  • the mechanical vibration device includes a plurality of driving circuits and a plurality of mechanical vibration elements having the same resonance frequency.
  • four are exemplified, and a device including a larger number of vibration elements can be analogized.
  • Each of the driving circuits includes an inductance Ldc which acts as an active element to drive the corresponding magnetic vibrating element Mrc.
  • the four drive circuits share a capacitor Ccs that acts as a conjugate element.
  • Mrc are fixed on the wall of the cylindrical container BBr.
  • the mounting positions of the four Mrc are evenly spaced, opposite each other.
  • the bottom of the container BBr can be fixed to the ground or fixed to other mounting brackets, and the inductor Ldc can be fixed to the device around the container (not shown).
  • the container BBr can be used to hold water and clothing, and the inductor Ldc can be attached to the outer casing of the washing machine.
  • the four Mrc are divided into two groups according to their installation positions, and the two Mrcs whose positions are opposite belong to the same group, and accordingly, the driving circuits are also divided into two groups.
  • Two source signals, VS1 and VS2, whose frequency is co(s) are respectively connected to a group of driving circuits. In other words, each source signal controls two Mrc driving circuits.
  • VS1 and VS2 can be generated by an AC power generator.
  • standing wave vibration or traveling wave vibration can be generated by the phase change of the voltage of the source signal.
  • a traveling wave is usually generated on a single vibrating element, but can be synthesized as a traveling wave or a standing wave on an object in which a plurality of vibrating elements interact (for example, a container BBr).
  • a container BBr an object in which a plurality of vibrating elements interact
  • the container when the phases of VS 1 and VS2 having the same frequency are the same and the diameter of the container satisfies a certain condition (for example, the diameter is an integral multiple of the wavelength), the container will generate standing wave vibration, when the phases of VS1 and VS2 are different. At 90 degrees ⁇ , the container will produce traveling wave vibration.
  • Existing vibrating devices typically only produce one type of mechanical wave, standing wave or traveling wave.
  • the mechanical vibration device of the present embodiment can have a rich vibration form, and the device can be controlled to operate in a standing wave or traveling wave state by adjusting the phase of the voltage or current of the source signal driving the respective vibration elements.
  • FIG. 10 and FIG. 11 Another embodiment of the mechanical vibration device according to the present invention can be referred to FIG. 10 and FIG. 11.
  • the mechanical vibration device is a piezoelectric device belonging to a class II "EtM" device, specifically a piezoelectric fan.
  • the circuit structure can be referred to Figure 10. Compared with Figure 2, the difference is that the inductance component is added to the circuit loop and the voltage/current regulator is omitted.
  • the device specifically includes two piezoelectric elements PE1 and PE2, and the added inductance element L10 is shared by two circuit loops that drive PE1 and PE2, respectively.
  • two source signals having the same frequency are generated by the PWM circuit.
  • the end of the PWM and PE1 connection and the end of the PWM and L10 connection can be regarded as the first group of inputs, providing the source signal VS1; the end of the PWM and PE2 connection and the end of the PWM and L10 connection can be regarded as the second group of inputs, Source signal VS2.
  • the drive signal VD1 can be much larger than the source signal, so that the piezoelectric element produces a sufficiently large amplitude.
  • the boosting device e.g., the voltage/current regulator of Fig. 2
  • the boosting device can be omitted in this embodiment.
  • the inductive reactance and the capacitive reactance cancel each other, so that the circuit loop as a whole has a resistive property, and thus the power factor is close to 1, which can effectively improve the overall power factor of the device and improve energy utilization. effectiveness.
  • the phases may be different.
  • the phases of the source signals VS1 and VS2 may be oppositely configured such that the corresponding VD1 and VD2 are opposite in phase. This makes it possible to reduce the noise generated by the piezoelectric fan at a position away from the mechanical vibration sources PE1 and PE2 due to the opposite phases of the vibrations, so that the perceived vibrations cancel each other out.
  • the piezoelectric fan may have a greater number of blades, such as N-pieces.
  • the effect of reducing noise at a long distance can be achieved by evenly distributing the phase of the N drive signal within a 2 ⁇ period. More broadly, as long as the sum of the vibration vectors of the bismuth piezoelectric element (which can be equated to the voltage vector of the drive signal in the case of symmetry) is zero, the effect of canceling each other at a distance can be achieved.
  • FIG. 12 is a piezoelectric device belonging to a class II "EtM” device, specifically a piezoelectric fan.
  • the device specifically comprises two piezoelectric elements PE1 and PE2, which are acted upon by partial coils of the transformer and shared by two circuit loops driving PE1 and PE2, respectively.
  • the low voltage output of the autotransformer (the transformer in which the primary coil and the secondary coil are located in the same winding) is used as the source signal VS, and the partial coil L20 that the transformer provides the low voltage output is used as the inductance element.
  • Both ends of the L20 can be considered as a set of inputs that provide a source signal that is shared by two circuit loops that drive PE1 and P E2, respectively.
  • a source signal that is shared by two circuit loops that drive PE1 and P E2, respectively.
  • Two sets of driving terminals providing driving signals VD1 and VD2 are connected in parallel, and connected to the piezoelectric element in an opposite manner
  • the number of piezoelectric elements in this embodiment can be naturally expanded.
  • 2N piezoelectric elements are divided into two groups, each group of N, one group is driven by the connection mode of PE1, and the other group is driven by the connection mode of PE2, thereby obtaining a multi-piece piezoelectric fan.
  • the inductance effect of the transformer is utilized to make the structure of the piezoelectric device more compact, further reducing cost and power consumption.
  • a single or three phase transformer may also be employed, with the primary or secondary coil of the transformer acting as an inductive component.
  • FIG. 13 is a piezoelectric device, belonging to a class II "ETM" device, specifically a piezoelectric motor, especially a Polyhedral ultrasonic motor.
  • the device specifically includes three sets of inputs and 3*2 piezoelectric elements PE.
  • the three source signals VS1, VS2, and VS3 have the same frequency, but the phase is sequentially shifted by 2 ⁇ /3.
  • Each piezoelectric element has the same performance parameters, which are respectively fixed to each side of a hexahedron and therefore have the same mechanical resonance frequency.
  • the piezoelectric elements are divided into three groups, two in each group, and two piezoelectric elements in the same group share one source signal.
  • Inductor element L30 is shared by six circuit loops that drive six piezoelectric elements, respectively. Since the polyhedron in which the piezoelectric element is usually fixed is made of metal, it is used as a common grounding circuit in the present embodiment, and L30 is connected in series between the polyhedron and the common ground.
  • the common inductance element is also used to operate the respective circuit circuits in the resonance state.
  • the hexahedron to which the piezoelectric element is fixed in the present embodiment can be used as a stator of a piezoelectric motor or as a mover.
  • Piezoelectric motors generally require a higher voltage to be applied in order to obtain a larger output power. Based on the present embodiment, only a small source signal is required due to circuit resonance, and a higher piezoelectric element can be produced. The drive voltage, resulting in higher mechanical amplitude and output power. Also, piezoelectric motors typically exhibit significant capacitive impedance and generally have a poor power factor (e.g., less than 0.5). Based on this embodiment, the piezoelectric motor can be made to have a resistance property, and the power factor of the piezoelectric motor can be greatly improved.
  • circuit structure of this embodiment can also be applied to other forms of piezoelectric motors, such as disk ultrasonic motors.
  • FIG. 14 is a piezoelectric device belonging to a class II "EtM” device, specifically a piezoelectric speaker.
  • EtM class II piezoelectric speaker
  • each piezoelectric element is connected in series with an inductance element whose driving circuit operates in a resonance state.
  • the inductive components L41, L42, L43 ⁇ L44, and L45 are connected in series with 'PE1', PE2, PE3, PE4, and PE5 to form a circuit loop.
  • circuit circuits of different frequencies each have independent inductance elements, circuit parameters can be easily configured to satisfy resonance conditions, so that the speaker can achieve excellent effects.
  • the driving circuit since the driving circuit operates in the resonance state, a large volume can be generated with a small source signal, so that the analog amplifier used in the conventional audio can be omitted. This not only makes it possible to drive the loudspeakers with all-digital signals, but also saves space and cost, and is of great value for applications such as mobile phones.
  • FIG. 15 is a piezoelectric device belonging to a Class II "EtM" device, specifically a piezoelectric speaker.
  • EtM Class II
  • a plurality of circuit circuits having different resonance frequencies still share the same inductance element.
  • This embodiment is similar to Embodiment 9.
  • the audio amplifier ADA divides the sound source signal into five frequency segments as five signal sources according to five center frequencies, each driving one piezoelectric element.
  • five different resonant frequency circuit loops use the same inductive component L50.
  • the driving circuit to which Ld5 belongs is also connected with another inductor Ld5'.
  • the piezoelectric element can be connected in parallel with another capacitor, such as capacitor C5 in parallel with PE5 in FIG.
  • This extra capacitance does not participate in the mechanical vibration of the piezoelectric element, but its parameters can be adjusted to meet the design requirements of the circuit parameters.
  • the circuit resonance frequency referred to in the present invention does not only consider the parameters of the active component and the conjugated component, but the parameters of all the inductances and capacitances in the entire circuit loop.

Abstract

一种机械振动装置,包括至少一组输入端或者至少一组输出端,还包括至少一个机械振动元件(Mr,Mr1-Mr5,Mrr,Mrc,PE1-PE5,PE)。机械振动元件用于在输入端输入的电能的驱动下产生机械振动;或者,用于通过自身的机械振动在输出端产生电能输出。其中,输入端或输出端所属的电路回路中包括串联的至少一个电感元件(Ld,TT,Ld1-Ld5,Ld5',Ldd,Ldc,Li,L10,L20,L30,L41-L45,L50)和至少一个电容元件(Cc,Cc1-Cc5,Ccs,Ccm,Cp),电路回路的参数被配置为,使得该电路回路的电路共振频率与机械振动元件的机械共振频率相匹配。通过在电路回路中同时引入电感元件和电容元件,使得能够通过配置电路参数令装置的电路部分与机械部分同时工作于共振状态,从而能够提升装置的性能,具有更高的能量效率或者更高的功率密度。

Description

说明书 发明名称:机械振动装置
技术领域
[0001] 本发明涉及用于实现机械振动能与电能之间的转换的系统, 具体涉及一种工作 在共振状态下的机械振动装置。
[0002] 背景技术
[0003] 在一些应用中, 机械振动是需要尽量避免的, 因为振动可能会降低能量的利用 效率并产生噪声。 但是在另一些应用中, 机械振动是所需要的工作模式, 可以 将此类应用中的装置称为机械振动装置。 机械振动装置中的机械振动元件通常 被设计为工作在共振状态下, 以获得最大的输出功率。
[0004] 一种传统的机械振动装置 (振动风扇) 如图 1所示, 其包括驱动线圈 Ld和机械 振动元件 Mr, 各自固定在基座 AA上。 在简单的情况下, Ld直接通过一组输入端 接入一路源信号 VS, VS也可称为驱动信号。 Mr为磁性元件, N和 S分别为其南 北磁极。 在 VS的驱动下, Ld产生的磁场与 Mr发生相互作用, 驱动 Mr产生振动。
[0005] 在图 1所示的装置中, 机械振动元件独立于电路回路, 然而在另一些机械振动 装置中, 机械振动元件也可以是电路回路的一部分, 例如利用压电效应的机械 振动装置。
[0006] 压电效应自发现以来已得到广泛的利用。 其中, 利用正压电效应 (即通过压电 材料的形变产生电势差) 的例子包括能量收集器、 震动测量装置等; 利用逆压 电效应 (即通过向压电材料加电压以产生形变) 的例子包括超声电机、 压电风 扇等。
[0007] 一种常见的压电风扇的电路结构示意图可参考图 2。 其包括两个压电元件 PE1和 PE2, 两路源信号 VS1和 VS2分别通过各自的电压 /电流调节器 Ml和 M2后输出为 驱动信号 VD1和 VD2, 以驱动两个压电元件。 在这个例子中, 压电元件同吋充当 为机械振动元件和电路回路中的电子元件。 源信号例如可采用脉冲宽度调制 PW M电路来产生。
[0008] 图 2中, 压电元件采用单片式的压电陶瓷片, 可以将电路回路中直接将驱动信 号提供给机械振动元件的线路端子称为驱动端。 图 2中提供驱动信号的一组驱动 端 V+和 V-分别连接在压电元件的正面和反面。 这种情况下, 风扇叶片 (未图示
) 可粘贴于陶瓷片的正面或反面。
[0009] 由于压电元件通常表现为容性元件, 图 2中的压电元件可等效为图 3所示的电路 结构。 其中, Cpl和 Cp2分别表示 PE1和 PE2的电容, Rpl和 Rp2分别表示 PE1和 PE
2的漏电阻, 虚线表示两个电路回路可以共地连接。
[0010] 对于机械振动装置而言, 为提高性能, 一般都令其工作在其机械共振频率附近
, 即, 驱动机械振动装置所使用的源信号的频率与机械振动装置的机械共振频 率相匹配。 本文中, 所称"匹配"是指相同或接近, 使得能够通过电信号的变化令 机械振动元件产生共振。 此外, 简明起见, 本文中所称"频率"均指圆频率 ω, 对 于通常采用"次 /秒"来表示的机械运动频率 f, 可按照周知的公式 CO=2 tf进行换算
, 不再赘述。
[0011] 由于在传统的机械振动装置中, 常常只考虑到驱动信号与机械共振频率的匹配
, 使得其仍然有被进一步优化的必要, 以获得更高的能量效率, 更高的功率密 度, 或者更高的性价比。
[0012] 发明内容
[0013] 依据本发明提供一种机械振动装置, 包括至少一组输入端或者至少一组输出端 , 还包括至少一个机械振动元件。 机械振动元件用于在电能的驱动下产生机械 振动, 且驱动所使用的电能是从输入端输入的; 或者, 用于通过自身的机械振 动在输出端产生电能输出。 其中, 输入端或输出端所属的电路回路中包括串联 的至少一个电感元件和至少一个电容元件, 电路回路的参数被配置为, 使得该 电路回路的电路共振频率与机械振动元件的机械共振频率相匹配。
[0014] 在一些实施例中, 依据本发明的机械振动装置是一种压电装置, 包括至少一组 输入端, 每组输入端用于接入一路源信号; 至少一个压电元件, 其同吋充当为 机械振动元件和电路回路中的电容元件; 至少一组驱动端, 每组驱动端用于驱 动一个压电元件; 至少一个电感元件, 串联在经过至少一组输入端和至少一组 驱动端的电路回路中, 该电路回路的参数被配置为, 使得电路回路的电路共振 频率与该电路回路所驱动的压电元件的机械共振频率相匹配, 或者与该电路回 路的源信号的频率相匹配。
[0015] 需要说明的是, 本文中所称"机械共振频率"不应被理解为孤立的或分离的机械 振动元件的机械共振频率, 而是机械振动元件在当前安装状态下的机械共振频 率, 这通常与机械振动元件所固定连接的机械结构有关, 可根据实际装置结构 , 采用公知数学手段进行计算, 或者通过实验测量来获得。
[0016] 在传统的机械振动装置的电路回路中, 由于并不会将电路参数与机械共振频率 一起进行设计, 往往并不同吋配置用于产生振荡的电感和电容元件。 而依据本 发明的机械振动装置, 通过在电路回路中同吋引入电感元件和电容元件, 使得 电路回路形成为振荡回路, 并因此可以具有电路共振频率。 通过配置电路参数 , 例如电感值或电容值, 使得电路共振频率与机械共振频率相匹配, 使得电路 回路也能工作于共振状态, 从而能够获得更高的能量效率, 或者更高的功率密 度。
[0017] 具体地, 依据本发明的压电装置通过在压电元件的驱动电路中引入电感元件, 使得驱动电路形成为振荡回路, 并因此可以具有电路共振频率。 通过配置电路 参数, 例如电感值, 使得电路共振频率与机械共振频率或源信号的频率相匹配 , 使得驱动电路也能工作于共振状态, 从而能够容易地产生足够高的驱动电压 , 使得功耗降低并提升压电装置的性能。
[0018] 以下结合附图, 对依据本发明的具体示例进行详细说明。
[0019] 附图说明
[0020] 图 1是现有一种振动风扇的示意图;
[0021] 图 2是现有一种压电风扇的示意图;
[0022] 图 3是图 2中压电元件的等效电路示意图;
[0023] 图 4是依据本发明的压电装置的一种等效电路示意图;
[0024] 图 5是实施例 1的振动风扇的示意图;
[0025] 图 6是实施例 2的电磁式扬声器的示意图;
[0026] 图 7是实施例 3的电磁式扬声器的示意图;
[0027] 图 8是实施例 4的振动式搅拌机的示意图;
[0028] 图 9是实施例 5的振动式洗衣机的示意图; [0029] 图 10是实施例 6的压电风扇的示意图;
[0030] 图 11是图 10的等效电路示意图;
[0031 ] 图 12是实施例 7的压电风扇的示意图;
[0032] 图 13是实施例 8的压电马达的示意图;
[0033] 图 14是实施例 9的压电扬声器的示意图;
[0034] 图 15是实施例 10的压电扬声器的示意图。
[0035] 具体实施方式
[0036] 依据本发明的机械振动装置可以是任意结构 /功能 /用途的实现机械振动能与电 能之间的转换的装置。 一方面, 根据能量的转换方式, 依据本发明的机械振动 装置可包括如下两种类型:
[0037] 在一些实施方式中, 装置可以是将电能转换为机械能的装置, 可简称为 "EtM" 装置。 在这种情况下, 装置具有至少一组输入端, 用于输入电能。 装置所包含 的电路回路是用于驱动机械元件振动的驱动电路。 装置具体可以是振动风扇、 音响的发声单元、 搅拌机或振动式洗衣机等。
[0038] 在另一些实施方式中, 装置也可以是将机械能转换为电能的装置, 可简称为" MtE"装置。 在这种情况下, 装置具有至少一组输出端, 用于输出电能。 装置所 包含的电路回路是振动能量收集和转换电路。 装置具体可以是振动能量收集器
[0039] 本文所称输入端 /输出端是指电路回路与外部进行能量交换的端口, 电能流入 回路中则为输入端, 电能从回路中流出则为输出端。 容易理解, 对于那些功能 可逆的装置, 同一组物理端口既可以充当为输入端也可以充当为输出端。
[0040] 另一方面, 根据机械振动元件与电路回路的关系, 依据本发明的机械振动装置 可包括如下两种类型:
[0041] 在一些实施方式中, 电路回路中不包含机械振动元件, 换言之, 从电路连接的 角度来看, 机械振动元件是独立于电路回路之外的。 电路回路通过作用元件与 机械振动元件发生相互作用。 以下将这一类型的装置称为 I类装置。 作用元件可 以是电感元件也可以是电容元件, 具体类型可根据其与机械振动元件之间的耦 合方式 (即相互作用关系) 来选择。 若电路回路用于驱动机械振动元件, 则作 用元件也可被称为"驱动元件", 若电路回路用于收集振动能量, 则作用元件也可 被称为 "被驱动元件"。 电路回路中, 与作用元件性质相反的元件可以被称为"共 轭元件"。 与电感元件共轭的是电容元件, 与电容元件共轭的是电感元件。 所称" 共轭", 是指两种元件 (电感或电容元件) 在特定频率 (本发明中指共振频率) 下, 阻抗值相等但符号相反。 容易理解, 一个机械振动元件可以对应一个或多 个作用元件, 反之亦然。 类似地, 共轭元件也可以是一个或多个。
[0042] 在另一些实施方式中, 电路回路中包含机械振动元件, 机械振动元件充当为电 感元件或者电容元件。 以下将这一类型的装置称为 II类装置。 在这种情况下, 机 械振动元件自身即充当为"作用元件", 电路回路中还包括与其性质相反的 "共轭 元件"。
[0043] 由于" EtM"装置的应用更为广泛, 以下均以其为例进行介绍, 包括 I类" EtM"装 置和 II类" EtM"装置。 容易理解, 这些示例中的结构和电路的设计原理, 在逆转 能量转换方式后, 可同样适用于 "MtE"装置。
[0044] 压电装置是用途广泛的 II类" EtM"装置。 需要说明的是, 基于压电元件的可逆 特性, 压电装置也能容易地被设计为 II类" MtE"装置, 在此不再赘述。 依据本发 明的压电装置的一种等效电路示意图可参考图 4, 该压电装置包括: 一组输入端 , 用于接入一路源信号 VS; —个压电元件, 其在电路中等效为并联的电容 Cp和 漏电阻 Rp; —组驱动端, 用于输出驱动压电元件的驱动信号 VD; —个电感元件 , 与压电元件串联, 其在电路中等效为串联的电感 Li和电阻 Ri。
[0045] 假定源信号的频率为 co(s), 通常情况下, 也即为驱动信号的频率。 本文中使用 源信号与驱动信号这两个不同的名称仅为表示从电路的不同位置观察到的信号
, 通常源信号与所生成的驱动信号频率一致, 而可能具有振幅和相位的差异。 考虑到压电装置最好工作于共振状态, 因此 co(s)—般接近或等于压电元件的机械 共振频率o(m)。
[0046] 通过配置电路回路中各元件的参数, 例如 Cp和 /或 Li, 可使得电路回路的电路 共振频率0^)与该电路回路所驱动的压电元件的机械共振频率 ω(ιη)相匹配, 或者 与该电路回路的源信号的频率 co(s)相匹配。 由此即可使得驱动电路也工作于共振 状态。 [0047] 通常, 压电元件的漏电阻 Rp远大于其容抗 l/(co(s)*Cp), 因此简单起见, 在计算 co(c)吋可以将 Rp视为幵路。 由此, 在简单情况下,
Figure imgf000008_0001
p)。 显然, 对于已经设计好的压电装置, 通过调整所引入的电感元件的参数就能 够容易地使驱动电路工作于共振状态。 在实际应用中, 驱动电路还可包含更多 的电路元件, 压电元件和电感元件也可以等效为更加精确的电路结构, 均不影 响基于本发明的上述基本思路的应用。
[0048] 依据本发明的压电装置可以有各种丰富的实现形式。 例如, 输入端可以有多组 , 每组输入端用于接入一路源信号。 这些源信号的频率可以相同也可以不同。 需要说明的是, 本文中所称源信号可以有设定的频率, 也可以覆盖设定的频率 范围, 在后一种情况下, 源信号的频率 co(s)指该频率范围内的中心频率。 为了获 得良好的共振效果, 源信号的频率覆盖范围可设计为对中心频率的偏离度不超 过±8%, 其中 B%可根据系统对频率的精度要求来确定。 在一些特别的应用中, 例如需要覆盖宽的音频范围的音响, 可以将一个较宽的连续谱段划分为多个子 谱段, 每一个作为一路源信号, 以使得每一路信号都能以共振方式进行驱动。
[0049] 压电装置的驱动端也可以有多组, 每组驱动端用于驱动一个压电元件。 一路源 信号可以仅对应一组驱动端, 驱动一个压电元件; 一路源信号也可以同吋对应 多组并联的驱动端, 驱动多个并联的压电元件, 在这种情况下, 多组驱动端各 自驱动的压电元件通常具有相匹配的机械共振频率。 每组驱动端输出的电压的 相位可以根据应用的需要进行设计, 例如相同, 或相反, 或在一个周期 (2π)内间 隔均匀地分布。 例如, 有三组驱动端, 相位依次延迟 2π/3。 驱动端的相位延迟可 来源于不同的源信号, 也可以由相同的源信号经过产生相位延迟的元件后得到 。 当然, 也可以将延迟后的源信号视为不同的源信号。
[0050] 作为压电装置中的能量转换元件, 压电元件可按照应用场景的需要被设计为各 种结构形式。 压电元件可以是例如图 2中所示的单片式结构, 也可以是双片式的 复合结构, 例如可以由两片相同的压电陶瓷片重叠构成一个压电元件, 驱动信 号的两个驱动端中的一个连接两片陶瓷片远离的两个面, 另一个则连接两个陶 瓷片紧邻的两个面。 这种情况下, 用于放大振动的叶片通常可夹在两片陶瓷片 之间, 若叶片采用导电材料制作, 例如采用金属叶片, 则可直接将叶片作为电 极, 将一个驱动端与其连接。
[0051] 在简单的情况下, 压电元件表面覆盖的用于传导驱动信号的电极可以是一个整 体, 即每一面形成为一个电极。 然而在某些应用中, 为实现更为复杂的振动模 式或者某些额外的功能, 也可以对元件表面的电极进行分割, 在这种情况下, 单个物理元件表面分割出的不同电极区域可以连接两组以上的驱动端, 从而由 不同的驱动信号驱动。 因此该单个物理元件可等效地被视为两个具有相同机械 共振频率的压电元件, 仍视为在本发明范围内的一种变化。 简明起见, 以下提 及的压电元件均指表面为单个电极的压电元件, 不再赘述。
[0052] 每个压电元件与相应的一组驱动端、 一组输入端和一个电感元件串联形成为一 个电路回路。 其中, 一组输入端可以被多个电路回路共享从而驱动多个压电元 件。 一个电感元件同样也可以被多个电路回路共享。 基于上文所描述的电路分 析可知, 若两个以上的电路回路所驱动的压电元件基本相同且具有相匹配的机 械共振频率, 则这些电路回路可共享同一电感元件, 无论这些电路回路是否使 用同一路源信号 (源信号的频率需要基本一致) 。 若两个电路回路采用不同频 率的源信号, 为便于电路设计, 通常可以为每个电路回路配置各自的电感元件 。 不过, 为了节省空间和成本, 这些电路回路也可以共享同一电感元件, 只是 在这种情况下, 还需要对电路回路中的其他参数进行设计, 例如压电元件的电 容, 以使得在不同共振频率的情况下使用相同的电感也能满足共振条件。
[0053] 以下对依据本发明的机械振动装置进行举例说明。
[0054] 实施例 1
[0055] 依据本发明的机械振动装置的一种实施方式可参考图 5, 是一种 I类 "EtM"装置 , 例如可以是一种振动风扇。
[0056] 该机械振动装置包括驱动电路和机械振动元件 Mr。 驱动电路包括串联的电感 L d和电容 Cc, 一路源信号 VS通过变压器 TT接入到驱动电路中。 Ld固定在基座 AA 上, 且与 Mr在机械结构上连为一体。 Mr为磁性元件, N和 S分别为其南北磁极。 在 VS的驱动下, Ld产生的磁场与 Mr发生相互作用, 驱动 Mr产生振动。
[0057] 本实施例中, Ld充当为作用元件, 而 Cc充当为共轭元件。 在其他实施方式中, 若作用元件为电容, 则共轭元件为电感。 可通过调整共轭元件的参数, 将电路 回路的共振频率调整到与机械振动元件的机械共振频率一致。 然后即可通过调 整 vs的频率让电路回路和机械振动元件同吋工作在共振状态。 当然, 除了作用 元件和共轭元件以外, 电路回路中还可以有其他的电容或电感元件, 例如图 5中 的 ττ。
[0058] 对于传统的机械振动装置而言, 共轭元件是多余的, 因为其并不用于驱动振动 元件。 而在本发明中共轭元件则是必须的, 并且能够产生如下有益效果:
[0059] 1.通过使用共轭元件能够使机械振动装置的机械运动和电流运动同吋处于共振 状态。 当驱动电路处于共振状态吋, 其功率因数接近于 1。
[0060] 2.在共振状态下, 驱动电路对于外部电源的要求大幅降低, 而驱动效率和功率 密度却大幅提升。 并且由于对外部电源的电压和电流的要求降低, 装置的安全 性和寿命都可以提高, 成本也可以降低。
[0061] 本实施例中的 VS可以由交流电源发生器产生。 在其他实施方式中, 若将本实 施例设计为" MtE"装置, 则作为输出的 VS可以连接到整流电路。 整流后的电流, 例如, 可用于对外部设备进行充电。
[0062] 实施例 2
[0063] 依据本发明的机械振动装置的另一种实施方式可参考图 6, 是一种 I类 "EtM"装 置, 例如可以是一种电磁式扬声器。 与实施例 1相比, 主要区别在于有多个振动 元件, 且每个振动元件有不同的共振频率。
[0064] 通常, 一个优秀的音响的扬声器需要能够覆盖 20赫兹到 2万赫兹的音频范围。
即便是用于语音的扬声器, 也需要覆盖 200赫兹到 8000赫兹的音频范围。 在这类 应用中, 为了仍然能够利用共振的优势, 可以将较宽的频率范围划分为多个中 心频率不同的子谱段, 将宽范围的信号按照子谱段划分为多个源信号, 每个源 信号驱动共振频率与其所属的子谱段的中心频率相同的振动元件。
[0065] 本实施例中示例性地使用了五个频谱段, 中心频率分别为 ω1、 ω2、 ω3、 ω4、 ω5。 音频放大器 ADA将音源信号按照这五个频谱段划分为五路源信号 Vl(col)、 V2(co2)、 V3(co3)、 V4(co4)、 V5(co5)。
[0066] 装置相应地包括五个驱动电路和五个磁性振动元件 Mri, 每个驱动电路包括串 联的电感 Ldi和电容 Cci, 其中 i=l,2,3,4,5。 每一路源信号 Vi(coi)分别接入到相应的 驱动电路中, 例如, ADA可以通过接地线分别与各组串联的电感和电容形成电 路回路。
[0067] 磁性振动元件 Mri—端固定在基座 AA上, 另一端可自由振动, 例如, 在 Ldi产 生的磁场的作用下产生振动。
[0068] 本实施例中, Ldi充当为作用元件, 而 Cci充当为共轭元件。 由于不同频率的电 路回路均具有独立的作用元件和共轭元件, 因此可以容易地配置电路参数来满 足机械和电路的共振条件, 使得扬声器能够达到优秀的效果。 并且, 由于驱动 电路工作于共振状态, 能够以较小的源信号产生较大的音量, 从而可以降低对 模拟放大器的功率放大倍数的要求, 甚至省去传统音响中使用的模拟放大器。 这不仅使得采用全数字信号来驱动扬声器成为可能, 也进一步节省了空间和成 本, 对于在便携式产品 (尤其是手机) 中的应用, 具有巨大的价值。
[0069] 实施例 3
[0070] 依据本发明的机械振动装置的另一种实施方式可参考图 7, 是一种 I类 "EtM"装 置, 例如可以是一种电磁式扬声器。 与实施例 2相比, 主要区别在于多个共振频 率不同的电路回路共享同一公共元件。
[0071] 本实施例中的机械结构以及驱动方式与实施例 2类似, ADA将音源信号按照五 个频谱段划分为五路源信号 Vi(coi), 分别通过五个作用元件 Ldi驱动五个磁性振 动元件 Mri, 其中 i=l,2,3,4,5。 图 7中, Ld5所属的驱动电路中还串联有另一个电感 Ld5', 这表明本发明的电路回路中, 除了作用元件以外, 还可以包括其他与作用 元件相同类型的电子元件。
[0072] 五个驱动电路共享电容 Ccs, 即, 每个 Ldi均与 Ccs串联。 通过配置各个电感元 件的电感值, 即, 令 Ldi=coi*coi/CcS, 就能够在共用同一个共轭元件的情况下, 实现多个共振频率下的共振。
[0073] 本实施例中, 公共元件为用作共轭元件的电容, 在其他实施方式中, 共享的公 共元件也可以是电感。 本实施例能够带来成本以及空间需求的明显减低, 这对 于音响系统在便携式产品 (例如手机、 MP3播放器等) 中的应用而言是非常重要 的, 因此, 本实施例的优化设计同样颇具吸引力。
[0074] 实施例 4 [0075] 依据本发明的机械振动装置的另一种实施方式可参考图 8, 是一种 I类 "EtM"装 置, 例如可以是一种振动式搅拌机。
[0076] 该机械振动装置包括驱动电路和机械振动元件。 驱动电路包括串联的驱动电机 Ldd和可调电容 Ccm, 其中 Ldd充当为电感元件, 一路源信号 VS接入到驱动电路 中, VS可以由交流电源发生器产生。
[0077] 机械振动元件是一个安装在驱动电机 Ldd上作偏心旋转的搅拌杆 Mrr, 用于搅拌 承装于容器 BB中的被搅拌物。 本实施例中, Ldd为作用元件, Ccm为共轭元件。
[0078] 工作吋, Ldd在频率为 co(s)的 VS的驱动下带动 Mrr旋转, 由于 Mrr的旋转方式是 偏心的, 因此会产生振动, 该振动的共振频率被设计为与 co(s)—致。 本实施例中 机械振动所产生的振动波为行波。 通过调节共轭元件 Ccm的参数, 使得 co(S)*co(s) *Ldd*Ccm=l , 即可使得机械振动和电路振动同吋处于共振状态, 从而大幅降低 对交流电源发生器输出的 VS的电压和电流的要求。
[0079] 作为一种优选的实施方式, 本实施例中的共轭元件为参数可调的元件, 且装置 还包括有振幅测量元件 Ame, 用于测量振动元件的振幅并输出相应的测量信号。 对于某些机械振动装置, 在使用过程中共振频率可能会发生漂移, 使用振幅测 量元件配合参数可调的共轭元件能够寻找到新的共振频率并将电路参数重新调 节到共振所需要的数值。 这使得装置的高性能能够长期得到保持。 在其他实施 方式中, 参数可调的元件也可以是作用元件。
[0080] 实施例 5
[0081] 依据本发明的机械振动装置的另一种实施方式可参考图 9, 是一种 I类 "EtM"装 置, 例如可以是一种振动式洗衣机。
[0082] 该机械振动装置包括多个驱动电路和多个共振频率相同的机械振动元件, 本实 施例中以四个为例进行说明, 包含更多数量振动元件的装置可以类推。 每个驱 动电路包括电感 Ldc, 其充当作用元件分别驱动对应的磁性振动元件 Mrc。 四个 驱动电路共享充当共轭元件的电容 Ccs。
[0083] 四个 Mrc固定在筒状容器 BBr的筒壁上, 优选地, 四个 Mrc的安装位置间隔均匀 , 彼此两两相对。 容器 BBr的底部可以固定在地面上或固定在其他安装支架上, 电感 Ldc可固定在容器周围的器件上 (未图示) 。 当装置用作超声波洗衣机吋, 容器 BBr可用于承装水和衣物, 电感 Ldc则可固定在洗衣机的外壳上。
[0084] 四个 Mrc按照其安装位置被分为两组, 位置相对的两个 Mrc属于同一组, 相应 地, 驱动电路也被分为两组。 两路频率均为 co(s)的源信号 VS1和 VS2分别接入到 一组驱动电路中, 换言之, 每一路源信号控制两个 Mrc的驱动电路。 VS1和 VS2 可以由交流电源发生器产生。
[0085] 由于多个振动元件的共振频率相同, 通过源信号的电压的相位变化可产生驻波 振动或行波振动。 需要说明的是, 单个振动元件上产生的通常是行波, 但可以 在多个振动元件共同作用的物体上 (例如容器 BBr) 合成为行波或驻波。 例如在 本实施例中, 当频率相同的 VS 1和 VS2相位相同并且容器的直径满足一定条件吋 (例如直径为波长的整数倍) , 则容器将产生驻波振动, 当 VS1和 VS2的相位相 差为 90度吋, 容器将产生行波振动。
[0086] 现有的振动装置通常只产生一种机械波, 驻波或行波。 而本实施例机械振动装 置能够具有丰富的振动形态, 可以通过调整驱动各个振动元件的源信号的电压 或电流的相位, 让装置可控地工作于驻波或行波状态。
[0087] 实施例 6
[0088] 依据本发明的机械振动装置的另一种实施方式可参考图 10和图 11, 该机械振动 装置是压电装置, 属于 II类" EtM"装置, 具体是一种压电风扇。 其电路结构可参 考图 10, 与图 2相比区别在于在电路回路中增加了电感元件并省去了电压 /电流调 节器。 该装置具体包括两个压电元件 PE1和 PE2, 增加的电感元件 L10由分别驱动 PE1和 PE2的两个电路回路所共享。
[0089] 本实施例中, 通过 PWM电路产生两路频率一致的源信号。 PWM与 PE1连接的 一端以及 PWM与 L10连接的一端可视为第一组输入端, 提供源信号 VS1 ; PWM 与 PE2连接的一端以及 PWM与 L10连接的一端可视为第二组输入端, 提供源信号 VS2。
[0090] 图 10的等效电路可参考图 11, 其中, 假设 PE1和 PE2具有基本相同的性能参数 , 均被等效地表示为并联的电容 Cp和电阻 Rp, L10等效地表示为串联的电感 Li和 电阻 Ri。 PEl和 PE2具有相匹配的机械共振频率, 因此它们的驱动电路可共享同 一个电感元件。 由前文的分析可知, 图 11中两个电路回路的共振频率均为 co(c)=l (Li*Cp) , 可以容易地通过配置 Li使得 co(c)与 VS1和 VS2的频率 co(s)相匹配。 当 然也可以对图 11或者实际所采用的电路结构进行更精确地计算, 以更准确地配 置电路参数, 在此不予赘述, 具体计算方式不构成对本发明的限定。
[0091] 当图 11中的电路工作于共振模式吋:
[0092] 一方面, 由于 Rp的值一般很大, 因此整个电路回路的电阻基本等于 Ri。 而通常 电感元件的阻抗是较小的, 因此这将使得电路的整体阻抗降低, 从而节省能耗
[0093] 另一方面, 由于 PE1上的驱动信号 VDl=VSl*((l/(co(c)*Cp))/Ri), 从而有 VD1/V Sl=l/(W(c)*Cp*Ri) , 而压电元件的容抗 l/(co(c)*Cp)可以容易地被配置为远大于 Ri
, 因此, 驱动信号 VD1可以比源信号大得多, 从而使得压电元件产生足够大的振 幅。 对于 PE2, 情况也与此类似, 这也是本实施例中可以省去升压装置 (例如图 2中的电压 /电流调节器) 的原因。
[0094] 再一方面, 对于共振状态下的电路回路, 感抗与容抗互相抵消, 使得电路回路 整体呈电阻性质, 从而功率因数接近为 1, 能够有效改善装置整体的功率因数, 提高能量利用效率。
[0095] 此外, 虽然驱动信号 VD1与 VD2频率相同, 但其相位可以不同, 例如可以将源 信号 VS1与 VS2的相位配置为相反, 使得相应的 VD1与 VD2相位相反。 这使得在 远离机械振动源 PE1和 PE2的地方, 由于其振动的相位相反而使得感受到的振动 互相抵消, 能够减少压电风扇产生的噪音。
[0096] 在其他实施方式中, 压电风扇可以具有更多数量的扇叶, 例如 N片。 可通过将 N路驱动信号的相位均匀分布在一个 2π周期内, 来达到在远距离处减小噪音的效 果。 更广义而言, 只要使得 Ν片压电元件的振动矢量 (在对称的情况下可等同于 驱动信号的电压矢量) 的和为 0, 均可达到在远处彼此振动抵消的效果。
[0097] 实施例 7
[0098] 依据本发明的机械振动装置的另一种实施方式可参考图 12, 该机械振动装置是 压电装置, 属于 II类 "EtM"装置, 具体是一种压电风扇。 与实施例 6相比, 其结构 更为精简。 该装置具体包括两个压电元件 PE1和 PE2, 电感元件 L20由变压器的部 分线圈来充当, 且由分别驱动 PE1和 PE2的两个电路回路所共享。 [0099] 本实施例中, 采用自耦变压器 (初级线圈与次级线圈位于同一绕组的变压器) 的低压输出作为源信号 VS, 且变压器提供低压输出的部分线圈 L20即作为电感元 件。 L20的两端可视为提供源信号的一组输入端, 该组输入端由分别驱动 PE1和 P E2的两个电路回路所共享。 电路回路的共振条件分析可参照实施例 6, 不再赘述
[0100] 提供驱动信号 VD1和 VD2的两组驱动端并联, 且以相反的方式连接到压电元件
, 使得 VD1和 VD2的相位相反, 因此有降低远距离噪声的优点。
[0101] 本实施例中的压电元件的数量可以很自然地进行扩展。 例如将 2N个压电元件分 为两组, 每组 N个, 一组以 PE1的连接方式进行驱动, 另一组以 PE2的连接方式 进行驱动, 由此获得多片式的压电风扇。
[0102] 本实施例中, 利用变压器的电感效应, 使得压电装置的结构更加精简, 进一步 降低成本和功耗。 在其他实施方式中, 还可以采用单相或三相变压器, 以变压 器的初级或次级线圈来充当电感元件。
[0103] 实施例 8
[0104] 依据本发明的机械振动装置的另一种实施方式可参考图 13, 该机械振动装置是 压电装置, 属于 II类" EtM"装置, 具体是一种压电马达, 尤其是一种多面体超声 电机。 该装置具体包括三组输入端和 3*2个压电元件 PE。 三路源信号 VS1、 VS2 和 VS3具有相同的频率, 只是相位依次错幵 2π/3。 各个压电元件具有相同的性能 参数, 分别固定于一六面体的每一面, 因此也具有相同的机械共振频率。 压电 元件分为三组, 每组两个, 同一组中的两个压电元件共享一路源信号。 电感元 件 L30由分别驱动六个压电元件的六个电路回路所共享。 由于通常固定压电元件 的多面体由金属制成, 因此本实施例中将其作为共用的接地电路, 并在多面体 与共地端之间串联 L30。
[0105] 由于各路源信号频率相同, 各个压电元件的机械共振频率也相同, 因此本实施 例同样采用共用电感元件的方式来使得各个电路回路工作于共振状态。 本实施 例中固定有压电元件的六面体既可以作为压电马达的定子, 也可以作为动子。
[0106] 本实施例中, 采用三相电压作为源信号来驱动该压电马达, 在其他实施方式中 , 也可以采用 M相电压来驱动。 一般而言, 可采用 M路源信号和 M*N个压电元件 , M和 N为正整数, 每路源信号分别通过 N组驱动端驱动 N个压电元件, 相应地 , 压电片需要固定于一 M*N面体的每一面。
[0107] 压电马达通常需要施加较高的电压才能获得较大的输出功率, 基于本实施例, 由于电路共振的原因, 只需要较小的源信号, 即可在压电元件上产生较高的驱 动电压, 从而产生较高的机械振幅和输出功率。 并且, 压电马达通常呈明显的 容性阻抗, 其功率因数一般较差 (例如, 小于 0.5) 。 基于本实施例, 可使压电 马达呈电阻性质, 可大幅度提高压电马达的功率因数。
[0108] 本实施例电路结构也可应用于其他形式的压电马达, 例如盘式超声电机。
[0109] 实施例 9
[0110] 依据本发明的机械振动装置的另一种实施方式可参考图 14, 该机械振动装置是 压电装置, 属于 II类 "EtM"装置, 具体是一种压电扬声器。 与实施例 6至实施例 8 相比, 区别在于装置中具有多个共振频率。
[0111] 本实施例中示例性地使用了五个频谱段, 中心频率分别为 ω1、 ω2、 ω3、 ω4、 ω5。 音频放大器 ADA将音源信号按照这五个频谱段划分为五路源信号 Vl(col)、 V2(co2)、 V3(co3)、 V4(co4)、 V5(co5), 分别驱动不同的压电元件来发声。 本实施 例中, 每一个压电元件均串联有使其驱动电路工作于共振状态的电感元件。 如 图 14所示, 电感元件 L41、 L42、 L43^ L44、 L45分另 'J与 PE1、 PE2、 PE3、 PE4、 PE5串联并形成电路回路。
[0112] 本实施例中, 由于不同频率的电路回路均具有独立的电感元件, 因此可以容易 地配置电路参数来满足共振条件, 使得扬声器能够达到优秀的效果。 并且, 由 于驱动电路工作于共振状态, 能够以较小的源信号产生较大的音量, 从而可以 省去传统音响中使用的模拟放大器。 这不仅使得采用全数字信号来驱动扬声器 成为可能, 也进一步节省了空间和成本, 对于尤其是手机等应用而言, 具有巨 大的价值。
[0113] 实施例 10
[0114] 依据本发明的机械振动装置的另一种实施方式可参考图 15, 该机械振动装置是 压电装置, 属于 II类 "EtM"装置, 具体是一种压电扬声器。 与实施例 9相比, 多个 共振频率不同的电路回路仍然共用同一电感元件。 [0115] 本实施例与实施例 9类似, 音频放大器 ADA将音源信号按照五个中心频率划分 为五个频谱段作为五路源信号, 各自驱动一个压电元件。 不过本实施例中, 五 个不同共振频率的电路回路使用同一电感元件 L50。 这可以通过配置各个压电元 件的电容值来实现, 即, 令 Cp(j)=coj*coj/Li, 其中, Cp(j)为压电元件 PEj的电容值 , coj为 PEj的驱动信号的中心频率 (也是 PEj的机械共振频率) , j=l,2,...,5, Li为 L50的电感值。
[0116] 与实施例 3中, Ld5所属的驱动电路中还串联有另一个电感 Ld5', 的情况类似, 压电元件也可并联另一个电容, 例如图 15中与 PE5并联的电容 C5。 这个额外的电 容并不参与压电元件的机械振动, 但是可以通过调整其参数来满足对电路参数 的设计需要。 换言之, 本发明中所称的电路共振频率, 并非只考虑作用元件和 共轭元件的参数, 而是整个电路回路中所有电感和电容的参数。
[0117] 虽然, 限制压电元件的电容值会为压电元件的结构设计带来一定的困难, 可能 会限制扬声器的效果。 但是, 本实施例能够带来成本以及空间需求的进一步明 显减低, 这对于扬声器在便携式产品 (例如手机、 MP3播放器等) 中的应用而言 是非常重要的, 因此, 本实施例的优化设计同样颇具吸引力。
[0118] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种机械振动装置, 包括:
至少一组输入端, 用于输入电能; 或者, 至少一组输出端, 用于输出 电能;
至少一个机械振动元件, 用于在电能的驱动下产生机械振动, 所述驱 动所使用的电能从所述输入端输入; 或者, 用于通过自身的机械振动 在所述输出端产生电能输出;
其特征在于,
所述输入端或输出端所属的电路回路中包括串联的至少一个电感元件 和至少一个电容元件, 所述电路回路的参数被配置为, 使得所述电路 回路的电路共振频率与所述机械振动元件的机械共振频率相匹配。
[权利要求 2] 如权利要求 1所述的装置, 其特征在于,
所述电路回路中不包含所述机械振动元件, 所述电路回路通过作用元 件与所述机械振动元件发生相互作用, 所述作用元件为电感元件或者 电容元件; 或者,
所述电路回路中包含所述机械振动元件, 所述机械振动元件充当为电 感元件或者电容元件。
[权利要求 3] 如权利要求 2所述的装置, 其特征在于,
所述电路回路通过电感元件与所述机械振动元件发生相互作用, 所述 电感元件与所述机械振动元件在机械结构上连为一体; 或者, 所述机械振动元件为压电元件, 其充当为所述电路回路中的电容元件
[权利要求 4] 如权利要求 2或 3所述的装置, 其特征在于,
包括两个以上的机械振动元件, 每个机械振动元件分别被相应的电路 回路驱动, 每个电路回路的电路共振频率与所驱动的机械振动元件的 机械共振频率相匹配, 不同电路回路的电路共振频率不同或相同。
[权利要求 5] 如权利要求 4所述的装置, 其特征在于,
每个电路回路包括所述输入端, 从所述输入端输入的驱动信号的相位 能够被调整, 以使得所述装置整体的机械振动为行波振动或驻波振动
[权利要求 6] 如权利要求 4所述的装置, 其特征在于,
每个电路回路的电路共振频率相同, 每个电路回路用于驱动相应的机 械振动元件的电压的相位相同, 或相反, 或在一个周期内间隔均匀地 分布。
[权利要求 7] 如权利要求 4-6任意一项所述的装置, 其特征在于, 各个电路回路共 享同一公共元件, 所述公共元件为电感元件或电容元件
在电路回路中不包含机械振动元件的情况下, 所述公共元件和所述作 用元件中的一者为电感元件而另一者为电容元件; 在电路回路中包含机械振动元件的情况下, 所述公共元件和所述机械 振动元件中的一者为电感元件而另一者为电容元件。
[权利要求 8] 如权利要求 1至 7任意一项所述的装置, 其特征在于, 包括以下特征中 的一种或多种:
所述电感元件由变压器的初级或次级线圈, 或者电机的驱动线圈来充 当;
所述电感元件或电容元件为参数可调的元件;
所述装置还包括振幅测量元件, 用于测量所述机械振动元件的振幅并 输出相应的测量信号; 所述测量信号用于确定所述机械振动元件的共 振频率, 使得能够通过对参数可调的元件进行调整, 将电路参数调节 到共振所需要的数值。
[权利要求 9] 一种机械振动装置, 所述机械振动装置为压电装置, 其特征在于, 包 括,
至少一组输入端, 每组输入端用于接入一路源信号,
至少一个压电元件,
至少一组驱动端, 每组驱动端用于驱动一个压电元件,
至少一个电感元件, 串联在经过至少一组输入端和至少一组驱动端的 电路回路中, 所述电路回路的参数被配置为, 使得所述电路回路的电 路共振频率与该电路回路所驱动的压电元件的机械共振频率相匹配, 或者与该电路回路的源信号的频率相匹配。
如权利要求 9所述的装置, 其特征在于,
包括两组以上的驱动端, 其中至少两组驱动端各自驱动的压电元件具 有相匹配的机械共振频率, 该两组驱动端所属的电路回路共享同一电 感元件。
如权利要求 9所述的装置, 其特征在于,
包括两组以上的输入端, 用于接入不同频率的源信号,
还包括与输入端数目对应的压电元件和驱动端, 每个压电元件的机械 共振频率不同,
每组输入端分别与对应的压电元件、 驱动端形成电路回路, 各个电路 回路共享同一电感元件。
如权利要求 9至 11任意一项所述的装置, 其特征在于,
所述电感元件由变压器的初级或次级线圈来充当,
所述压电元件为 2N个压电片, N为正整数, 用于充当电感元件的线圈 的两端即作为输入端用于提供所述源信号,
2N个压电片分别通过 2N组驱动端与所述输入端连接形成电路回路, 其中 N组驱动端与另外的 N组驱动端的连接方式相反以使得输出的电 压的相位相反。
如权利要求 12所述的装置, 其特征在于,
所述压电片用于作为风扇的叶片, 或者用于固定风扇的叶片。
如权利要求 9所述的装置, 其特征在于,
包括 M组输入端和 M*N个压电元件以及对应数目的驱动端, M和 N为 正整数,
接入的 M路源信号具有相同的频率, 且每一路源信号的电压的相位在 一个周期中以 2π/Μ为间隔均与地分布, 各个压电元件具有相同的机 械共振频率,
每组输入端分别通过 Ν组驱动端驱动 Ν个压电元件, 所形成的 Μ*Ν个 电路回路共享同一电感元件。
[权利要求 15] 如权利要求 14所述的装置, 其特征在于,
所述压电片用于固定于一 M*N面体的每一面, 以形成为压电马达的 定子或动子。
PCT/CN2016/086402 2015-10-23 2016-06-20 机械振动装置 WO2017067190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510692072.1 2015-10-23
CN201510692072.1A CN106612081B (zh) 2015-10-23 2015-10-23 压电装置

Publications (1)

Publication Number Publication Date
WO2017067190A1 true WO2017067190A1 (zh) 2017-04-27

Family

ID=58556593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086402 WO2017067190A1 (zh) 2015-10-23 2016-06-20 机械振动装置

Country Status (2)

Country Link
CN (1) CN106612081B (zh)
WO (1) WO2017067190A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767449B (zh) * 2020-12-14 2022-06-11 國立高雄師範大學 具阻抗匹配之壓電片發電電路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311093A (en) * 1991-03-06 1994-05-10 Canon Kabushiki Kaisha Driving circuit for vibration driven motor
JPH10201267A (ja) * 1996-12-27 1998-07-31 Canon Inc 振動型駆動装置の駆動回路および振動型アクチュエーター装置
CN1795604A (zh) * 2003-04-02 2006-06-28 高压马达乌普萨拉有限公司 运行在共振附近宽范围的机电马达
CN1825744A (zh) * 2005-02-25 2006-08-30 三星电机株式会社 压电超声波电机驱动器
CN102067420A (zh) * 2008-04-15 2011-05-18 佩尔皮图姆有限公司 用于将机械振动能转换成电能的机电发电机及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420190B (zh) * 2007-10-26 2011-02-16 博立码杰通讯(深圳)有限公司 超声电机的驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311093A (en) * 1991-03-06 1994-05-10 Canon Kabushiki Kaisha Driving circuit for vibration driven motor
JPH10201267A (ja) * 1996-12-27 1998-07-31 Canon Inc 振動型駆動装置の駆動回路および振動型アクチュエーター装置
CN1795604A (zh) * 2003-04-02 2006-06-28 高压马达乌普萨拉有限公司 运行在共振附近宽范围的机电马达
CN1825744A (zh) * 2005-02-25 2006-08-30 三星电机株式会社 压电超声波电机驱动器
CN102067420A (zh) * 2008-04-15 2011-05-18 佩尔皮图姆有限公司 用于将机械振动能转换成电能的机电发电机及方法

Also Published As

Publication number Publication date
CN106612081A (zh) 2017-05-03
CN106612081B (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
US10693299B2 (en) Self-tuning resonant power transfer systems
JP2011083078A (ja) 送電装置、受電装置、および電力伝送システム
CN102447399A (zh) 自适应谐波减少设备和方法
CN103269197A (zh) 一种抑制低压大功率多相变频电机高频振动系统及方法
GB2440571A (en) Drive for an inductive coupling with a changing magnetic field direction
JPS60229498A (ja) 電気‐音響装置
WO2017067190A1 (zh) 机械振动装置
CN106804020A (zh) 振动发声器件
DE60332047D1 (de) Filternetzwerk
KR20160106077A (ko) 무선 전력 전송 장치 및 그 제조 방법
KR101651731B1 (ko) 휴대용 초음파 미용장치
CN108616214B (zh) 一种消除双三相电机pwm频率噪声的驱动拓扑
JP6183243B2 (ja) 電力伝送システム、受電装置及び送電装置
CN104868672A (zh) 一种无铁芯双定子电机
CN109451403A (zh) 一种微型平板扬声器换能器振膜结构及具有该换能器振膜的扬声器
Rebeiro et al. Two converter based operation of a brushless doubly fed reluctance machine
CN208850052U (zh) 扬声器
CN104638860B (zh) 谐波自励混合磁极交流励磁机
CN208623564U (zh) 一种声波摆动微电机
CN111654181A (zh) 一种变流器控制方法及装置
CN108111955A (zh) 一种可扬声终端设备和扬声供电电路
Watkins Circumventing Efficiency and Bass Extension Limitations
Biryukov et al. SAW based tube rotation with wireless power transfer
RU2485715C1 (ru) Способ возбуждения стержневого гидроакустического преобразователя
US4942560A (en) Sonar projector array drive signal source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856631

Country of ref document: EP

Kind code of ref document: A1