WO2017067032A1 - 一种gnss信号接收天线 - Google Patents

一种gnss信号接收天线 Download PDF

Info

Publication number
WO2017067032A1
WO2017067032A1 PCT/CN2015/094524 CN2015094524W WO2017067032A1 WO 2017067032 A1 WO2017067032 A1 WO 2017067032A1 CN 2015094524 W CN2015094524 W CN 2015094524W WO 2017067032 A1 WO2017067032 A1 WO 2017067032A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pattern
antenna
signal receiving
gnss signal
Prior art date
Application number
PCT/CN2015/094524
Other languages
English (en)
French (fr)
Inventor
叶雷
Original Assignee
叶雷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 叶雷 filed Critical 叶雷
Publication of WO2017067032A1 publication Critical patent/WO2017067032A1/zh
Priority to US15/954,113 priority Critical patent/US20180233809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/247Supports; Mounting means by structural association with other equipment or articles with receiving set with frequency mixer, e.g. for direct satellite reception or Doppler radar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the present application relates to the field of electromagnetic field and microwave technology, and in particular to a GNSS signal receiving antenna.
  • GNSS Global Navigation Satellite System
  • global, regional and enhanced such as GPS in the United States, Glonass in Russia, Galileo in Europe, and Beidou satellite navigation system in China. And related enhancement systems.
  • the GNSS antenna is mainly used for the transmitting or receiving antenna of the same-frequency forwarding system.
  • the antenna is composed of a radome, a microstrip radiator, a bottom plate and a high-frequency output socket, and is used for a GPS navigation and positioning system as a receiving antenna.
  • the commonly used GNSS receiving antenna pattern basically realizes hemispherical radiation.
  • Existing GNSS receiving antennas are omnidirectional antennas and can only receive right-hand circularly polarized signals.
  • the present invention provides a GNSS signal receiving antenna, which can be formed as an omnidirectional antenna or a directional antenna, and can receive both a conventional right-handed circularly polarized signal and a left-handed circularly polarized signal.
  • the GNSS signal receiving antenna of the present invention includes:
  • At least one antenna unit wherein the antenna unit includes: a substrate; a radiation pattern formed on the first surface of the substrate, including four sub-patterns enclosing a rectangular shape; and a feed line pattern formed on the substrate Two sides;
  • a low noise amplifier connected to a feeder pattern of the antenna unit
  • each of the sub-patterns includes a first portion, a second portion, and a third portion that are in communication with each other; the first portion is in communication with the second portion, and the second portion is in communication with the third portion, the first portion and
  • the third part is a rectangle symmetrically arranged with respect to the second part and having the same shape; the end and phase of the third part of each sub-pattern
  • the side portions of the first portion of the adjacent next sub-pattern are disposed oppositely such that the four sub-patterns enclose a rectangular shape, and the four sub-images are not in communication with each other.
  • the second portion is rectangular.
  • the width of the second portion is smaller than the width of the first portion and the third portion.
  • the axes of the first portion, the second portion and the third portion of the sub-pattern are arranged in a straight line.
  • the feed line pattern is at least partially disposed at a position corresponding to a lower portion of the first portion of each sub-pattern.
  • the sub-pattern is a hollow pattern
  • the feed pattern is a conductive pattern
  • the antenna comprises one of the antenna units and is an omnidirectional antenna.
  • the antenna comprises four antenna units arranged in an array manner, which is a directional antenna.
  • the antenna can receive both the conventional right-hand circularly polarized signal and can also receive The left-hand circularly polarized signal, and can be arranged through the antenna unit array so that the antenna has a relatively strong directivity, and can be networked according to the requirements of the phased array sequence to adapt to different high-tech requirements of the GNSS signal receiving process.
  • FIG. 1 is a side view of a GNSS signal receiving antenna according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of an antenna unit according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a radiation pattern of an antenna unit according to an embodiment of the present invention.
  • FIG. 4 is a frequency characteristic diagram of an antenna unit according to an embodiment of the present invention.
  • 5a-5c are schematic views of a GNSS signal receiving antenna according to a first embodiment of the present invention.
  • Figure 6 is a front elevational view of a GNSS signal receiving antenna of a second embodiment of the present invention.
  • Figure 7 is a side view of a GNSS signal receiving antenna of a second embodiment of the present invention.
  • FIG. 8 is a frequency characteristic diagram of an antenna unit according to an embodiment of the present invention.
  • 9a to 9c are views showing a direction of a GNSS signal receiving antenna according to a second embodiment of the present invention.
  • Figure 1 is a side view of a GNSS signal receiving antenna of a first embodiment of the present invention.
  • the GNSS signal receiving antenna of the present embodiment includes an antenna unit 1, a low noise amplifier 2, and a supporting member 3.
  • FIG. 2 is a schematic diagram of an antenna unit according to an embodiment of the present invention.
  • 3 is a schematic diagram of a radiation pattern of an antenna unit according to an embodiment of the present invention.
  • the antenna unit 1 includes a substrate 11, a radiation pattern 12, and a feed pattern 13.
  • the substrate 11 may be formed of a material such as ceramic, FR-4 material, polytetrafluoroethylene, epoxy resin, or silicon dioxide.
  • a radiation pattern 12 is formed on the first side of the substrate 11, which includes four sub-patterns 121, 122, 123, and 124 that are enclosed in a rectangular shape.
  • each of the sub-patterns includes a first portion a, a second portion b, and a third portion c that are in communication with each other.
  • the first portion a is in communication with the second portion b
  • the second portion b is in communication with the third portion c
  • the first portion a and the third portion c being rectangularly disposed symmetrically with respect to the second portion b and having the same shape.
  • the axes of the first portion a, the second portion b, and the third portion c are arranged in a straight line.
  • the second portion b is also formed in a rectangular shape having a smaller width than the first portion a and the third portion c, so that the sub-patterns 121-124 are respectively formed as dumbbell-shaped patterns composed of rectangles.
  • the sub-patterns 121-124 are hollowed out to form a pattern on the conductive material layer.
  • the conductive material may be a metal conductive material such as gold, silver or copper or an oxide conductive material such as ITO.
  • the four sub-patterns 121-124 are circumferentially encircled. Specifically, one end of one sub-pattern is disposed opposite to a portion of the side of the next adjacent sub-pattern near the end.
  • each sub-pattern is disposed opposite to the side a1 of the first portion a of the adjacent next sub-pattern such that the four sub-patterns enclose a rectangular shape and four sub-patterns Phase Not connected to each other.
  • the antenna unit thus formed can receive either a right-handed circularly polarized signal or a left-handed circularly polarized signal.
  • the GNSS signal receiving antenna of the present embodiment forms a GNSS-R receiving antenna or a GNSS-L receiving antenna through one of the antenna elements.
  • the feed pattern 13 is disposed on the second surface of the substrate 11 opposite to the first surface. At least a conductive pattern at a corresponding location of the first portion a of each sub-pattern is included.
  • the low noise amplifier 2 is electrically connected to the feed pattern 13, receives the GNSS electromagnetic signal received via the radiation pattern, is amplified, and is transmitted to a signal processing system connected to the GNSS receiving antenna.
  • the low noise amplifier 2 may be a low noise amplifier employing an SMA interface.
  • the support device 3 is used as a carrier for mounting the antenna unit 1 and the low noise amplifier 2, the low noise amplifier 2 is mounted on the side of the support device 3, and the antenna unit 1 is mounted in an insulating manner on the support device 3 corresponding mounting surface.
  • the support device 3 can be made of an aluminum alloy material.
  • the indicators of the antenna unit are as follows:
  • the size of the antenna unit can be 280mm*280mm*53mm, and the number is one.
  • the indicators used for the low noise amplifier 2 are as follows:
  • FIG. 4 the frequency characteristic diagram of the S11 port is shown in FIG. 4, and the direction obtained by the antenna test is shown in FIGS. 5a-5c.
  • Figure 5a is the antenna versus frequency The pattern of the 1.18G Hz electromagnetic wave in the main polarization direction wave and the cross polarization direction wave
  • FIG. 5b is the direction of the antenna in the main polarization direction wave and the cross polarization direction wave for the electromagnetic wave with a frequency of 1.26G Hz
  • Fig. 5c is a view of the antenna in the main polarization direction wave and the cross polarization direction wave for the electromagnetic wave having a frequency of 1.575 GHz.
  • the antenna of the present embodiment can have a larger gain for the main polarization direction wave in all directions while suppressing the influence of the cross-polarization wave.
  • the present embodiment obtains an omnidirectional GNSS signal receiving antenna by arranging the radiation pattern into four sub-patterns enclosing a rectangular shape, and the ends of the third portion of each sub-pattern are disposed opposite to the sides of the first portion, so that the antenna It can receive either a traditional right-hand circularly polarized signal or a left-hand circularly polarized signal.
  • 6 and 7 are a front view and a side view, respectively, of a GNSS signal receiving antenna of a second embodiment of the present invention.
  • the GNSS signal receiving antenna of the present embodiment includes four antenna elements 1a to 1d arranged in an array manner, a low noise amplifier 2, and a supporting member 3.
  • the antenna elements 1a-1d form an array antenna of two rows and two columns.
  • the radiation pattern and the feeding pattern of the antenna elements 1a-1d may be formed on the same substrate, that is, the four antenna units 1a-1d share the same substrate.
  • the radiation pattern and the feed pattern of the antenna elements 1a-1d may also be formed on different substrates, for example, each antenna unit uses a separate substrate.
  • the low noise amplifier 2 can be mounted on the side of the support member 3 to take out signals received by the antenna units 1a-1d.
  • the directivity of the antenna can be adjusted by feeding the phase adjustment of the signals received by the different antenna elements, so that the GNSS signal receiving antenna of the present embodiment can realize the directional characteristic and receive the GNSS signals in a direction.
  • the frequency characteristic diagram of the S11 port is shown in FIG. 8, and the direction obtained by the antenna test is shown in FIGS. 9a-9c.
  • 9a is a diagram of the antenna in the main polarization direction wave and the cross polarization direction wave of the electromagnetic wave with a frequency of 1.19 GHz; FIG.
  • the antenna of the embodiment can have a larger gain in the main polarization direction wave in the main direction, and suppress the influence of the cross-polarization wave, and has better directivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

公开了一种GNSS信号接收天线,其天线单元的辐射图案包括围成矩形的四个子图案,每个所述子图案包括相互连通的第一部分、第二部分和第三部分;所述第一部分与所述第二部分连通,第二部分相对于第三部分连通,所述第一部分和第三部分为相对于第二部分对称设置且形状相同的矩形;每个子图案的第三部分的端部与相邻的下一个子图案的第一部分的侧部相对设置以使得所述四个子图案围成矩形形状,且四个子图案之间相互不连通。由此,可以使得GNSS信号接收天线既可以接收右旋圆极化信号,也可以接收左旋圆极化信号。同时,在使用多个天线单元构成阵列天线时,可以对GNSS信号进行定向接收。

Description

一种GNSS信号接收天线
本申请要求了2015年10月19日提交的、申请号为2015208117579、发明名称为“一种GNSS信号接收天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电磁场与微波技术领域,具体涉及一种GNSS信号接收天线。
背景技术
全球导航卫星系统(Global Navigation Satellite System,GNSS)是指所有的卫星导航系统,包括全球的、区域的和增强的,如美国的GPS、俄罗斯的Glonass、欧洲的Galileo、中国的北斗卫星导航系统,以及相关的增强系统。
GNSS天线,主要用于同频转发系统作发射或接收天线使用,天线由天线罩、微带辐射器、底板和高频输出插座等部分组成,用于GPS导航、定位系统作接收天线使用。现常用的GNSS接收天线方向图基本实现了半球形辐射。现有的GNSS接收天线均为全向天线,且仅能接收右旋圆极化信号。
发明内容
有鉴于此,本发明提供一种GNSS信号接收天线,既可以形成为全向天线也可以形成为定向天线,并且既可以接收传统的右旋圆极化信号,也可以接收左旋圆极化信号。
本发明的GNSS信号接收天线包括:
至少一个天线单元,其中,所述天线单元包括:基板;辐射图案,形成在所述基板的第一面,包括围成矩形形状的四个子图案;以及,馈线图案,形成在所述基板的第二面;
低噪声放大器,与所述天线单元的馈线图案连接;
其中,每个所述子图案包括相互连通的第一部分、第二部分和第三部分;所述第一部分与所述第二部分连通,第二部分相对于第三部分连通,所述第一部分和第三部分为相对于第二部分对称设置且形状相同的矩形;每个子图案的第三部分的端部与相 邻的下一个子图案的第一部分的侧部相对设置以使得所述四个子图案围成矩形形状,且四个子图像之间相互不连通。
优选地,所述第二部分为矩形。
优选地,所述第二部分的宽度小于所述第一部分和第三部分的宽度。
优选地,所述子图案的第一部分、第二部分和第三部分的轴线沿直线排列。
优选地,所述馈线图案至少部分设置于每个子图案的第一部分下方所对应的位置。
优选地,所述子图案为镂空图案,所述馈电图案为导电图案。
优选地,所述天线包括一个所述天线单元,为全向天线。
优选地,所述天线包括四个阵列方式排布的天线单元,为定向天线。
通过将辐射图案设置为围成矩形形状的四个子图案,且每个子图案第三部分的端部与第一部分的侧部相对设置使得天线既可以接收传统的右旋圆极化信号,也可以接收左旋圆极化信号,并且可以通过天线单元阵列化设置使得天线具有相当强的方向性,可按照相控阵列序列要求进行组网,以适应GNSS信号接收处理的不同高技术要求。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1是本发明第一实施例的GNSS信号接收天线的侧视图;
图2是本发明实施例的天线单元的示意图;
图3是本发明实施例的天线单元的辐射图案示意图;
图4是本发明实施例的天线单元的频率特性图;
图5a-图5c是本发明第一实施例的GNSS信号接收天线的方向图;
图6是本发明第二实施例的GNSS信号接收天线的正视图;
图7是本发明第二实施例的GNSS信号接收天线的侧视图;
图8是本发明实施例的天线单元的频率特性图
[根据细则26改正18.12.2015] 
图9a-图9c是本发明第二实施例的GNSS信号接收天线的方向图。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说 没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1是本发明第一实施例的GNSS信号接收天线的侧视图。
如图1所示,本实施例的GNSS信号接收天线包括一个天线单元1、低噪声放大器2和支撑部件3。
图2是本发明实施例的天线单元的示意图。图3是本发明实施例的天线单元的辐射图案示意图。
如图2和图3所示,天线单元1包括基板11、辐射图案12以及馈电图案13。其中,基板11可以由通常为陶瓷、FR-4材料、聚四氟乙烯、环氧树脂、二氧化硅等材料形成。辐射图案12形成在所述基板11的第一面,其包括围成矩形形状的四个子图案121、122、123和124。
其中,每个所述子图案包括相互连通的第一部分a、第二部分b和第三部分c。所述第一部分a与所述第二部分b连通,第二部分b与第三部分c连通,所述第一部分a和第三部分c为相对于第二部分b对称设置且形状相同的矩形。第一部分a、第二部分b和第三部分c的轴线沿直线排列。在本实施例中,第二部分b也形成为矩形,其宽度小于第一部分a和第三部分c,从而使得子图案121-124分别形成为由矩形组成的哑铃状图案。在本实施例中子图案121-124为在导电材料层上镂空形成图案。所述导电材料可以为金、银、铜等金属导电材料也可以为ITO等氧化物导电材料。
在相互位置设置上,四个子图案121-124以循环方式围成矩形。具体地,一个子图案的一侧端部与下一个相邻的子图案的侧边靠近端部的部分相对设置。
更具体地,每个子图案的第三部分c的端部c1与相邻的下一个子图案的第一部分a的侧部a1相对设置以使得所述四个子图案围成矩形形状,且四个子图案之间相 互不连通。
由此形成的天线单元既可以接收右旋圆极化信号,也可以接收左旋圆极化信号。由此,本实施例的GNSS信号接收天线通过一个所述的天线单元来形成GNSS-R接收天线或GNSS-L接收天线。
同时,馈电图案13设置在基板11上与第一面相对的第二面上。至少包括位于每个子图案的第一部分a的对应的位置的导电图形。
低噪声放大器2与所述馈电图案13导电连接,接收经由辐射图案接收的GNSS电磁信号,进行放大后传输到与所述GNSS接收天线连接的信号处理系统中。优选地,所述低噪声放大器2可以为采用SMA接口的低噪声放大器。
所述支撑装置3用于作为安装所述天线单元1和低噪声放大器2的载体,所述低噪声放大器2安装在所述支撑装置3的侧边,天线单元1以绝缘的方式安装在支撑装置3对应的安装面。所述支撑装置3可以采用铝合金材料制成。
在一个优选实施方式中,所述天线单元的指标如下:
1)频率范围(Frequency Range):GPS L1/L2、BD2B1/B2/B3
2)阻抗(Impedance):50Ω
4)天线轴比(Axial Ratio):≤3dB
5)输出驻波(VSWR):≤1.5
6)接口:SMA
天线单元的尺寸可以为280mm*280mm*53mm,数量为1个。
低噪声放大器的2采用的指标如下:
1)频率范围(Frequency Range):GPS L1/L2、BD2B1/B2/B3
2)增益(LNA Gain):≥40dB
3)噪声系数(Noise Figure):≤2.0dB
4)输出驻波(VSWRo):≤2.0
5)带内平坦度:±2dB
6)工作电压(Operation Voltage):5VDC
7)工作电流(Operation Current):≤60mA@5V
8)接口:SMA。
对应地,对于采用上述指标的GNSS信号接收天线,其S11端口的频率特征图如图4所示,其天线测试获得的方向图如图5a-5c所示。其中,图5a是天线对于频率 为1.19G赫兹的电磁波在主极化方向波以及交叉极化方向波的方向图;图5b是天线对于频率为1.26G赫兹的电磁波在主极化方向波以及交叉极化方向波的方向图;图5c是天线对于频率为1.575G赫兹的电磁波在主极化方向波以及交叉极化方向波的方向图。根据图5a-图5c可知,在上述频段,本实施例的天线均能在所有方向对主极化方向波具有较大的增益,同时抑制交叉极化波的影响。
由此,本实施例通过将辐射图案设置为围成矩形形状的四个子图案,且每个子图案第三部分的端部与第一部分的侧部相对设置从而获取全向GNSS信号接收天线,使得天线既可以接收传统的右旋圆极化信号,也可以接收左旋圆极化信号。
图6和图7分别是本发明第二实施例的GNSS信号接收天线的正视图和侧视图。
如图6和图7所示,本实施例的GNSS信号接收天线包括4个阵列方式排布的天线单元1a-1d、低噪声放大器2以及支撑部件3。在本实施例中,天线单元1a-1d形成一个两行两列的阵列天线。
每个天线单元1a-1d的辐射图案和馈电图案的设置方式与第一实施例相同,在此不再赘述。需要说明的是,在本实施例中,天线单元1a-1d的辐射图案和馈电图案可以形成在同一个基板上,也即,四个天线单元1a-1d共用同一个基板。可选地,天线单元1a-1d的辐射图案和馈电图案也可以形成在不同的基板上,例如,每个天线单元使用独立的基板。
低噪声放大器2可以安装在支撑部件3的侧面,将天线单元1a-1d接收的信号引出。
通过使用多个阵列排布的天线单元,通过将不同天线单元接收的信号馈电相位调整可以调整天线的方向性,从而本实施例的GNSS信号接收天线可以实现定向特性,定向地接收GNSS信号。对于本实施例的GNSS信号接收天线,其S11端口的频率特征图如图8所示,其天线测试获得的方向图如图9a-9c所示。其中,图9a是天线对于频率为1.19G赫兹的电磁波在主极化方向波以及交叉极化方向波的方向图;图9b是天线对于频率为1.26G赫兹的电磁波在主极化方向波以及交叉极化方向波的方向图;图9c是天线对于频率为1.575G赫兹的电磁波在主极化方向波以及交叉极化方向波的方向图。根据图9a-图9c可知,在上述频段,本实施例的天线均能在主方向对主极化方向波具有较大的增益,同时抑制交叉极化波的影响,具有较好的方向性。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、 等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种GNSS信号接收天线,包括:
    至少一个天线单元,其中,所述天线单元包括:基板;辐射图案,形成在所述基板的第一面,包括围成矩形形状的四个子图案;以及,馈线图案,形成在所述基板的第二面;
    低噪声放大器,与所述天线单元的馈线图案连接;
    其中,每个所述子图案包括相互连通的第一部分、第二部分和第三部分;所述第一部分与所述第二部分连通,第二部分相对于第三部分连通,所述第一部分和第三部分为相对于第二部分对称设置且形状相同的矩形;每个子图案的第三部分的端部与相邻的下一个子图案的第一部分的侧部相对设置以使得所述四个子图案围成矩形形状,且四个子图像之间相互不连通。
  2. 根据权利要求1所述的GNSS信号接收天线,其特征在于,所述第二部分为矩形。
  3. 根据权利要求2所述的GNSS信号接收天线,其特征在于,所述第二部分的宽度小于所述第一部分和第三部分的宽度。
  4. 根据权利要求1所述的GNSS信号接收天线,其特征在于,所述子图案的第一部分、第二部分和第三部分的轴线沿直线排列。
  5. 根据权利要求1所述的GNSS信号接收天线,其特征在于,所述馈线图案至少部分设置于每个子图案的第一部分下方所对应的位置。
  6. 根据权利要求1-5中任一项所述的GNSS信号接收天线,其特征在于,所述子图案为镂空图案,所述馈电图案为导电图案。
  7. 根据权利要求1-5中任一项所述的GNSS信号接收天线,其特征在于,所述天线包括一个所述天线单元,为全向天线。
  8. 根据权利要求1-5中任一项所述的GNSS信号接收天线,其特征在于,所述天线包括四个阵列方式排布的天线单元,为定向天线。
PCT/CN2015/094524 2015-10-19 2015-11-13 一种gnss信号接收天线 WO2017067032A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/954,113 US20180233809A1 (en) 2015-10-19 2018-04-16 Gnss signal receiving antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520811757.9U CN205039248U (zh) 2015-10-19 2015-10-19 一种gnss信号接收天线
CN2015208117579 2015-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/954,113 Continuation US20180233809A1 (en) 2015-10-19 2018-04-16 Gnss signal receiving antenna

Publications (1)

Publication Number Publication Date
WO2017067032A1 true WO2017067032A1 (zh) 2017-04-27

Family

ID=55298120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094524 WO2017067032A1 (zh) 2015-10-19 2015-11-13 一种gnss信号接收天线

Country Status (3)

Country Link
US (1) US20180233809A1 (zh)
CN (1) CN205039248U (zh)
WO (1) WO2017067032A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037937A (zh) * 2018-08-06 2018-12-18 北方工业大学 一种应用于卫星定位的宽波束圆极化天线
CN110752442A (zh) * 2019-10-16 2020-02-04 西安空间无线电技术研究所 一种宽波束低宽角轴比圆极化天线单元及其辐射方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786793A (en) * 1996-03-13 1998-07-28 Matsushita Electric Works, Ltd. Compact antenna for circular polarization
CN1229530A (zh) * 1997-06-18 1999-09-22 京都陶瓷株式会社 广角圆形极化天线
US20120299789A1 (en) * 2010-01-29 2012-11-29 Daniel Orban Circularly polarized antenna and feeding network
CN103326132A (zh) * 2013-05-22 2013-09-25 北京航空航天大学 功率等分旋转馈电的16单元微带阵列天线
CN103606756A (zh) * 2013-10-25 2014-02-26 深圳市摩天射频技术有限公司 一种小型圆极化天线

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201939A1 (en) * 2002-04-29 2003-10-30 Reece John K. Integrated dual or quad band communication and GPS band antenna
US7164385B2 (en) * 2005-06-06 2007-01-16 Receptec Holdings, Llc Single-feed multi-frequency multi-polarization antenna
EP1744399A1 (en) * 2005-07-12 2007-01-17 Galileo Joint Undertaking Multi-band antenna for satellite positioning system
JP4735368B2 (ja) * 2006-03-28 2011-07-27 富士通株式会社 平面アンテナ
KR100917847B1 (ko) * 2006-12-05 2009-09-18 한국전자통신연구원 전방향 복사패턴을 갖는 평면형 안테나
US7427957B2 (en) * 2007-02-23 2008-09-23 Mark Iv Ivhs, Inc. Patch antenna
EP2458680B1 (de) * 2009-09-10 2016-07-27 Delphi Delco Electronics Europe GmbH Antenne für den Empfang zirkular polarisierter Satellitenfunksignale
WO2011053107A1 (en) * 2009-10-30 2011-05-05 Laird Technologies, Inc. Omnidirectional multi-band antennas
KR101872460B1 (ko) * 2011-01-27 2018-06-29 갈트로닉스 코포레이션 리미티드 광대역 이중 편파 안테나
JP5463577B2 (ja) * 2012-03-16 2014-04-09 株式会社Nttドコモ デュアルアンテナ装置
US9647338B2 (en) * 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
BR112015024425A2 (pt) * 2013-04-25 2017-07-18 Ericsson Telefon Ab L M nó para cobertura em aranha-céu
JP6402962B2 (ja) * 2013-07-17 2018-10-10 パナソニックIpマネジメント株式会社 高周波モジュール
WO2015058154A2 (en) * 2013-10-20 2015-04-23 Oahu Group, Llc Method and system for determining object motion
US9793963B2 (en) * 2013-11-27 2017-10-17 Avago Technologies General Ip (Singapore) Pte. Integrated circuit with antenna arrays and methods for use therewith
IL231026B (en) * 2014-02-18 2018-07-31 Mti Wireless Edge Ltd A patch-type antenna array with dual polarization and wideband and the methods useful thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786793A (en) * 1996-03-13 1998-07-28 Matsushita Electric Works, Ltd. Compact antenna for circular polarization
CN1229530A (zh) * 1997-06-18 1999-09-22 京都陶瓷株式会社 广角圆形极化天线
US20120299789A1 (en) * 2010-01-29 2012-11-29 Daniel Orban Circularly polarized antenna and feeding network
CN103326132A (zh) * 2013-05-22 2013-09-25 北京航空航天大学 功率等分旋转馈电的16单元微带阵列天线
CN103606756A (zh) * 2013-10-25 2014-02-26 深圳市摩天射频技术有限公司 一种小型圆极化天线

Also Published As

Publication number Publication date
US20180233809A1 (en) 2018-08-16
CN205039248U (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
US10511101B2 (en) Wireless communication module
US9590314B2 (en) Circularly polarized connected-slot antenna
Massa A dual frequency microstrip patch antenna for high-precision GPS applications
Lin et al. Polarization reconfigurable wheel-shaped antenna with conical-beam radiation pattern
KR100917847B1 (ko) 전방향 복사패턴을 갖는 평면형 안테나
Lu et al. A high-isolation dual-polarization microstrip patch antenna with quasi-cross-shaped coupling slot
US9692141B2 (en) Antenna array of inverted-L elements optionally for use as a base station antenna
TWI416797B (zh) Wide - frequency circularly polarized circular slot antenna
CN105576353B (zh) 一种螺旋天线
KR20080039901A (ko) 위성 측위 시스템을 위한 다중 밴드 안테나
TW200532988A (en) Circular polarised array antenna
US10770794B2 (en) Single-element patch antenna with pattern control
US11196175B2 (en) Antenna device
US20200411974A1 (en) Spiral antenna
US8810471B2 (en) Circularly polarized ceramic patch antenna having extended ground for vehicle
US8106841B2 (en) Antenna structure
WO2017067032A1 (zh) 一种gnss信号接收天线
CN109873249A (zh) 一种带空气背腔的微带导航天线
JP2005286794A (ja) アンテナユニット
KR101105443B1 (ko) Gps용 세라믹 패치 안테나
JP2006121219A (ja) 多共振平面アンテナ
KR101288237B1 (ko) 원형 편파 및 선형 편파 수신을 위한 패치 안테나
WO2016032355A1 (en) Antenna system with reduced multipath reception
Jeong et al. Compact circularly polarized antenna with a capacitive feed for GPS/GLONASS applications
KR101142083B1 (ko) 스파이럴 슬롯 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906548

Country of ref document: EP

Kind code of ref document: A1