WO2017066929A1 - Modified epoxy resin and curable resin composition comprising same - Google Patents

Modified epoxy resin and curable resin composition comprising same Download PDF

Info

Publication number
WO2017066929A1
WO2017066929A1 PCT/CN2015/092376 CN2015092376W WO2017066929A1 WO 2017066929 A1 WO2017066929 A1 WO 2017066929A1 CN 2015092376 W CN2015092376 W CN 2015092376W WO 2017066929 A1 WO2017066929 A1 WO 2017066929A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
modified epoxy
curable resin
combinations
Prior art date
Application number
PCT/CN2015/092376
Other languages
French (fr)
Inventor
Andong Liu
Yuanqiao Rao
Moo Young Lee
Original Assignee
Dow Global Technologies Llc
Rohm And Haas Electronic Materials Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Llc, Rohm And Haas Electronic Materials Llc filed Critical Dow Global Technologies Llc
Priority to PCT/CN2015/092376 priority Critical patent/WO2017066929A1/en
Publication of WO2017066929A1 publication Critical patent/WO2017066929A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/444Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/066Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with chain extension or advancing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to a modified epoxy resin and a curable resin composition comprising the same.
  • OLED organic light emitting diode
  • One approach to extend the life time of electronic devices is to employ a glass frit as the sealing material between glass substrates of an assembly comprising an electronic device to produce a hermetic package.
  • Glass frit needs high processing temperatures and lacks flexibility, making it unsuitable for flexible devices.
  • Glass frit also normally requires the use of an organic sealant.
  • Glass flake-loaded organic sealants or glass rods, through softening, have been used as sealant materials with high barrier property, but they also lack flexibility.
  • Conventional epoxy-based sealant materials provide flexibility, but do not have sufficient barrier property and may also suffer from incomplete curing.
  • EDHAMS diglycidyl ether of 4, 4’-dihydroxy- ⁇ -methylstilbene
  • thermosetting epoxy resin suitable for sealing electronic devices which provides improved barrier properties.
  • the present invention provides a novel modified epoxy resin and a curable resin composition comprising the modified epoxy resin.
  • the curable resin composition upon curing has improved barrier properties as compared to EDHAMS upon curing.
  • the curable resin composition of the present invention is suitable as adhesives, sealants and/or encapsulants for electronic devices.
  • the present invention is a modified epoxy resin having the structure of formula (I) :
  • Structure B is an aromatic mesogenic moiety
  • n is an integer of from 1 to 100
  • Structure A has the following structure:
  • each R 1 is independently hydrogen, a hydrocarbyl group having from 1 to 12 carbon atoms, a hydrocarbyloxy group having from 1 to 12 carbon atoms, a halogen, -NO 2 , -CN, or combinations thereof.
  • the present invention is a process of preparing the modified epoxy resin of the first aspect.
  • the process comprises:
  • each R 1 is independently hydrogen, a hydrocarbyl group having from 1 to 12 carbon atoms, a hydrocarbyloxy group having from 1 to 12 carbon atoms, a halogen, -NO 2 , -CN, or combinations thereof.
  • the present invention is a curable resin composition
  • a curable resin composition comprising:
  • the present invention is an electronic device comprising at least one layer obtained by curing the resin composition of the third aspect.
  • the modified epoxy resin of the present invention has the structure of formula (I) :
  • Structure B is an aromatic mesogenic moiety
  • n is an integer of from 1 to 100
  • Structure A has the following structure:
  • each R 1 is independently hydrogen, a hydrocarbyl group having from 1 to 12 carbon atoms, a hydrocarbyloxy group having from 1 to 12 carbon atoms, a halogen, -NO 2 , -CN, or combinations thereof.
  • Examples of hydrocarbyl groups include -CH 3 , -CH 2 CH 3 , and -CH 2 CH 2 CH 3 .
  • Examples of hydrocarbyloxy groups include -OCH 3 , -OCH 2 CH 3 , -OCH 2 CH 2 CH 3 .
  • each R 1 can be the same or different.
  • Each R 1 may be independently a hydrocarbyl or hydrocarbyloxy group having from 1 to 6 or from 1 to 4 carbon atoms.
  • Each R 1 can also be independently a halogen selected from chlorine or bromine.
  • each R 1 is independently selected from hydrogen, chlorine, or -CH 3 . More preferably, each R 1 is hydrogen.
  • n can be an integer of 1 or more, 5 or more, 10 or more, 15 or more, or even 20 or more, and at the same time, 100 or less, 90 or less, 70 or less, 60 or less, 50 or less, 40 or less, or even 30 or less.
  • Structure A in formula (I) is preferably selected from the following structure:
  • Structure B in formula (I) can be an aromatic mesogenic moiety.
  • “Aromatic mesogenic moiety” refers to an aromatic structure moiety which can prompt molecules to form liquid crystal state.
  • Aromatic mesogenic moiety is usually a rigid chain comprising a bridged bond (-X-) in the center of the aromatic mesogenic moiety, where both side of the bridged bond connect with benzene rings to form a conjugate system.
  • the aromatic mesogenic moiety useful in the present invention may have the structure of formula (B) :
  • Structure B is preferably selected from one of the structure of formulae (B1) through (B7) :
  • More preferred Structure B has the structure of formula (B1) or (B3) .
  • the modified epoxy resin of the present invention may be selected from one or more of the following structure (1) through (10) , wherein n is as defined in formula (I) above:
  • the modified epoxy resin of the present invention may have a weight average molecular weight of from 500 or more, or even 1,000 or more, and at the same time, 15,000 or less, 10,000 or less, or even 8,000 or less.
  • the weight average molecular weight may be determined by gel permeation chromatography (GPC) using a polystyrene standard.
  • the process of preparing the modified epoxy resin of the present invention comprises: reacting a raw material epoxy compound with a difunctional hydroxyl-containing compound comprising an aromatic mesogenic moiety.
  • the raw material epoxy compound useful for preparing the modified epoxy resin has the structure of formula (C) :
  • the difunctional hydroxyl-containing compound useful for preparing the modified epoxy resin comprises one or more aromatic mesogenic moieties which can be the same or different.
  • the difunctional hydroxyl-containing compound may have the following structure:
  • the difunctional hydroxyl-containing compound useful for preparing the modified epoxy resin may be selected from the following compounds:
  • the difunctional hydroxyl-containing compound useful for preparing the modified epoxy resin is 4, 4’-dihydroxy- ⁇ -methylsilbene.
  • the molar ratio of the raw material epoxy compound having the structure of formula (C) and the difunctional hydroxyl-containing compound may be in a range from 100: 99 to 100: 10, from 27: 26 to 27:20, or from 27: 26 to 27: 25.
  • reaction of the raw material epoxy compound and the difunctional hydroxyl-containing compound may be conducted in the presence of one or more catalysts.
  • suitable catalysts in preparing the modified epoxy resin include tris (dimethylaminomethyl) phenol, tetrabutylammonium bromide, ethyltriphenyl phosphonium acetate, or mixtures thereof.
  • Preferred catalyst is ethyltriphenyl phosphonium acetate.
  • the reaction time may be from 1 to 10 hours or from 2 to 6 hours.
  • the reaction may be conducted at temperature ranging from 110°C to 150°C or from 120°C to 140°C.
  • the modified epoxy resin of the present invention may be used in various applications including, for example, coatings, adhesives, electrical laminates, structural laminates, structural composites, moldings, castings, and encapsulations.
  • the curable resin composition of the present invention comprises (a) one or more modified epoxy resins described above, and (b) one or more hardeners.
  • the hardeners useful in the present invention may include, for example, primary and secondary polyamines, carboxylic acids and anhydrides thereof, aromatic hydroxyl containing compounds, imidazoles, guanidines, urea-aldehyde resins, melamine-aldehydes resins, alkoxylated urea-aldehyde resins, alkoxylated melamine-aldehyde resins, aliphatic amines, cycloaliphatic amines, aromatic amines, and combinations thereof.
  • Particularly suitable hardeners include, for example, methylene dianiline, dicyandiamide, ethylene diamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, urea- formaldehyde resins, melamine-formaldehyde resins, methylolated urea-formaldehyde resins, methylolated melamine-formaldehyde resins, phenol-formaldehyde novolac resins, cresol-formaldehyde novolac resins, sulpfanilamide, diaminodiphenylsulpfone, diethyltoluenediamine, t-butyltoluenediamine, bis-4-aminocyclohexylmethane, isophoronediamine, diaminocyclohexane, hexamethylenediamine, piperazine, aminoethylpiperazine, 2, 5-dimethyl-2, 5-he
  • the hardeners are employed in an amount, which will effectively cure the modified epoxy resin.
  • the hardeners may be used in an amount, for example, from 0.95: 1 to 1.2: 1, or from 1: 1 to 1.05: 1, equivalents of hardener per equivalent of the modified epoxy resin.
  • the curable resin composition of the present invention may further comprise other additives such as solvents or diluents, fillers such as clay, pigments, dyes, flow modifiers, thickeners, reinforcing agents, mold release agents, wetting agents, stabilizers, fire retardant agents, surfactants, and combinations thereof.
  • additives such as solvents or diluents, fillers such as clay, pigments, dyes, flow modifiers, thickeners, reinforcing agents, mold release agents, wetting agents, stabilizers, fire retardant agents, surfactants, and combinations thereof.
  • pigments and/or dyes useful in the curable resin composition comprises copper (II) 2, 9, 16, 23-tetra-ter-butyl-29, copper (II) 2, 3, 9, 10, 16, 17, 23, 24-octakis (octyloxy) -29H, 31H-phthalocyanine, nickel (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29H, 31H-phthalocyanine, Zinc 2, 9, 16, 23-tetra-tert-butyl-29H, 31H-phthalocyanine, cobalt (II) phthalocyanine, copper (II) tetrakis (4-cumylphenoxy) phthalocyanine, zinc phthalocyanine, copper phthalocyanine, or mixtures thereof.
  • the pigments and/or dyes may be added in quantities to provide the curable resin composition with the desired color.
  • the pigments and/or dyes may be present in an amount of from 0 to 50 weight percent (wt%) , from 0.5 wt% to 40 wt%, or from 1 wt% to 30 wt%, based on the total weight of the curable resin composition.
  • suitable solvents or diluents useful in the curable epoxy resin composition include hydrocarbons, ketones, glycol ethers, aliphatic ethers, cyclic ethers, esters, amides, and combinations thereof.
  • Particularly suitable solvents or diluents include, for example, toluene, benzene, xylene, methyl ethyl ketone, methyl isobutyl ketone, diethylene glycol methyl ether, dipropylene glycol methyl ether, dimethylfonnamide, N- methylpyrrolidinone, tetrahydrofuran, propylene glycol methyl ether, and combinations thereof.
  • the solvents or diluents may be present in an amount of from 0 to 99 wt%, from 50 wt% to 99 wt%, or from 80 wt% to 99 wt%, based on the total weight of the curable resin composition.
  • Thickeners, flow modifiers and the like useful in the curable resin composition may be present in an amount of from 0 to 10 wt%, from 0.5 wt% to 6 wt%, or from 0.5 wt% to 4 wt%, based on the total weight of the curable resin composition.
  • Suitable reinforcing materials useful in the curable resin composition may include natural and synthetic fibers in the form of woven fabric, mats, monofilament, multifilament, unidirectional fibers, rovings, random fibers or filaments, inorganic fillers or whiskers, hollow spheres, and the like.
  • Examples of reinforcing materials include, glass, ceramics, nylon, rayon, cotton, aramid, graphite, polyalkylene terephthalates, polyethylene, polypropylene, polyesters, and combinations thereof.
  • the reinforcing materials may be present in an amount of from 0 to 80 wt%, from 0.1 wt% to 50 wt%, or from 1 wt% to 50 wt%, based on the total weight of the curable resin composition.
  • Suitable fillers useful in the curable resin composition may include, for example, inorganic oxides, ceramic microspheres, plastic microspheres, glass microspheres, inorganic whiskers, CaCO 3 , and combinations thereof.
  • the fillers can be employed in an amount from 0 to 95 wt%, from 10 wt% to 80 wt%, or from 40 wt% to 60 wt%, based on the total weight of the curable resin composition.
  • the curable resin composition of the present invention also comprises nanoparticles of organic clay.
  • the organic clay may include, for example, organic quaternary ammonium salt modified clay, trimethylstearyl ammonium chloride modified clay, dimethyl distearyl ammonium chloride modified clay, methyl tristeary ammonium chloride modified clay, or mixtures thereof.
  • the nanoparticles of organic clay may have a layered structure.
  • the average particle size of the nanoparticles of organic clay may be in a range of 1 nanometer (nm) to 5,000 nm, and preferably in the range of 50 nm to 500 nm.
  • the amount of the nanoparticles of organic clay in the curable resin composition of the present invention may be 0 or more, 0.1 wt% or more, 0.5 wt% or more, or even 1 wt% or more, and at the same time, 50 wt% or less, 45 wt % or less, 40 wt% or less, or even 35 wt% or less, based on the weight of the modified epoxy resin.
  • the curable resin composition of the present invention may be in the form of an adhesive film, a barrier film, a sealant, or an encapsulant for an electronic device. More preferably, the curable resin composition of the present invention is in the form of a sealant for an electronic device.
  • Curing of the curable epoxy resin composition of the present invention may be carried out from room temperature (23 ⁇ 2°C) up to 250°C, for predetermined periods of time which may be from minutes up to hours.
  • the curing conditions may be dependent on the various components used in the curable resin composition such as the hardener used in the composition. Generally, the time for curing or partially curing the epoxy resin composition may be from 2 minutes to 24 days, from 0.5 hour to 7 days, or from one hour to 24 hours.
  • the curing reaction conditions include, for example, carrying out the curing reaction under a temperature, generally in the range of from 60°C to 250°C, from 50°C to 230°C, or from 100°C to 200°C.
  • the present invention also provides an electronic device comprising at least one layer obtained by curing the curable resin composition of the present invention.
  • the electronic device may be flexible. Flexible electronic devices refer to bendable, rollable and foldable electronic devices, which can be bent without being damaged.
  • the present invention also provides an electronic device comprising at least two inorganic or hybrid substrates hermetically sealed by the curable resin composition.
  • suitable inorganic or hybrid substrates include inorganic substrates such as glass and indium tin oxide (ITO) glass; organic substrates such as polyethylene terephthalate (PET) , polyethylene naphthalate (PEN) , and polyimide (PI) ; a multilayer of the inorganic/organic substrates.
  • ITO indium tin oxide
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • a multilayer of the inorganic/organic substrates Preferred substrate is ITO glass; the inorganic substrate coated with PET, PEN or PI; a multilayer comprising one or more layers of the inorganic substrate and one or more layers of the organic substrate.
  • the electronic devices are flexible.
  • OLED organic light emitting diode
  • the curable resin composition of the present invention is particularly suitable as a sealant for OLED devices to protect the organic light emitting layer and/or electrodes in the OLED from oxygen and/or water.
  • the curable resin composition provides electronic devices with lower water vapor transmission rate (WVTR) , thus longer life, as compared to EDHAMS.
  • the WVTR values of barrier films are measured at 25°C and 90% relative humidity (RH) , or at 38°C and 100%RH, respectively, following ASTM method F-1249, and using a MOCON PERMATRAN-W 3/33 instrument (MOCON Inc., Minnesota, USA) .
  • the calibration of the instrument for WVTR measurements is performed using polyester standard films provided by MOCON Inc.
  • the RH sensors are calibrated using saturated salt solutions.
  • water vapor that permeated through the film sample is carried by dry nitrogen gas to an infrared detector. Duplicate samples are used for each measurement.
  • PI film Kerpton HN film manufactured by DuPont
  • a curable resin composition is applied to the PI film, then cured to form a coating layer on the PI film, that is, a bilayer structure.
  • WVTR measurement the permeability of bare PI film (WVTR PI film ) is measured, then that of the bilayer (WVTR Bilayer ) is measured.
  • WVTR coating layer the permeation rate for the coating layer itself (WVTR coating layer ) is calculated.
  • Molecular weight measurement of polymers is carried out in tetrahydrofuran (THF) (flow rate: 1 mL/min) at 40°C with Agilent 1200 equipped with a Agilent Refractive Index detector and Two Mixed E columns (7.8mm x 300mm) in tandem.
  • PL Polystyrene (PS) Narrow standards Part No. : 2010-0101
  • molecular weights ranging from 19,760 to 580 g/mol, polynom 3 fitness are used for calibration.
  • GPC curve of Polymer 1 showed many peaks in the range of low molar mass, which indicates that Polymer 1 also contained small amounts of monomers, dimers, and trimers.
  • acetic acid complex (70% solids in methanol) (0.03g, 0.20 wt% of the diphenol and diglycidylether reactants used) was added to the reactor and heating continued to 130°C. After 6 hours at 130°C, the reaction product was cooled to room temperature and poured into a mixture of 1: 1 methanol-water to precipitate a white solid.
  • the reaction diagram of preparing the copolymer of bi-naphenyl epoxy and biphenyl diol is shown below.
  • GPC curve of Polymer 2 showed many peaks in the range of low molar mass, which indicates that Polymer 2 also contained small amounts of monomers, dimers, and trimers.
  • Curable epoxy resin composition of Comp Ex A was prepared based on formulations listed in Table 1.
  • a release agent (Yinjing LR-13, U.S. YINJING International (H. K) Co. Ltd. ) was coated on a glass plate (100 mm by 150 mm) . Copper tape with a thickness of 50 ⁇ m was bonded on the glass plate for controlling the thickness of the film.
  • EDHAMS and sulphanilamide (SAA) were melted at 150°C, respectively, and then were mixed together at this temperature. The obtained mixture was poured onto the surface of heated glass plate (the surface temperature being about 150 °C) immediately. Another glass plate was covered slowly to avoid any air bubbles and press the plates slightly.
  • Curable epoxy resin composition of Comp Ex B was prepared based on formulations listed in Table 1.
  • a release agent was coated on a glass plate (100 mm by 150 mm) . Copper tape with a thickness of 50 ⁇ m was bonded on the glass plate for controlling the thickness of the film.
  • EDHAMS was melted at 150°C. 2 wt% of nanoparticles of organic clay (NANOCOR I. 30P) was added and stirred for 1 hour. Then, SAA was melted at 150°C and mixed with the mixture of EDHAMS and organic clay nanoparticles at this temperature. The mixture was poured onto the surface of heated glass plate (the surface temperature being about 150°C) immediately. Another glass plate was covered slowly to avoid any air bubbles and press the plates slightly. The sample plates were then cured for 2 hours at 100°C, 2 hours at 150°C and finally 2 hours at 180°C in an oven. WVTR properties of the cured samples were evaluated according to the test method described above and results are listed in Table 2.
  • Curable epoxy resin composition of Ex 3 was prepared based on formulations listed in Table 1.20 wt% Polymer 1 was dissolved into N-methylpyrrolidone (NMP) by mechanical stirring for 30 min. Then 8 wt% SAA was added into the obtained solution and stirred for 10 min. Afterwards, the solution was coated on a PI film with a thickness of 5 mil (127 ⁇ m) by blade coating. The gap between blade and PI film was 100 ⁇ m. After coating, the samples were cured for 1 hour at 150°C in an oven. WVTR properties of the cured samples were evaluated according to the test method described above and results are listed in Table 2.
  • Curable epoxy resin composition of Ex 4 was prepared based on formulations listed in Table 1.20 wt% Polymer 2 was dissolved into NMP by mechanical stirring for 30 min. Then 33 wt% of nanoparticles of organic clay (NANOCOR I. 30P) was added and stirred for 1 hour. 8 wt% SAA was added into the obtained solution and stirred for 10 min. Afterwards, the solution was coated on a PI film with a thickness of 5 mil (127 ⁇ m) by blade coating. The gap between blade and the PI film was 100 ⁇ m. After coating, the samples were cured for 1 hour at 150°C in an oven. WVTR properties of the cured samples were evaluated according to the test method described above and results are listed in Table 2.
  • Curable epoxy resin composition of Ex 5 was prepared based on formulations listed in Table 1.20 wt% Polymer 1 was dissolved into N-methylpyrrolidone (NMP) by mechanical stirring for 30 min. Then 8 wt% SAA was added into the solution and stirred for 10 min. Afterwards, the solution was coated on a PI film with a thickness of 5 mil (127 ⁇ m) by blade coating. The gap between blade and the PI film was 100 ⁇ m. After coating, the samples were cured for 1 hour at 150°C in an oven, followed by heating the oven to 300°C and maintaining for 40 min. WVTR properties of the cured samples were evaluated according to the test method described above and results are listed in Table 2.
  • *Wt% herein is based on the total weight of the curable epoxy resin composition.
  • Polymer 1 and Polymer 2 of the present invention both provided cured samples with better moisture barrier performance even after heating at 300°C for 40 min.

Abstract

Provided are a modified epoxy resin, a process of preparing the modified epoxy resin, and a curable resin composition comprising the modified resin. The curable resin composition is capable of providing improved barrier properties.

Description

[Title established by the ISA under Rule 37.2] Modified Epoxy Resin and Curable Resin Composition Comprising Same FIELD OF THE INVENTION
The present invention relates to a modified epoxy resin and a curable resin composition comprising the same.
INTRODUCTION
Electronic devices, such as organic light emitting diode (OLED) devices, are typically sensitive to moisture and oxygen. In order to protect the devices and prolong their life time, a sealant is usually applied to the frame of the devices as a barrier.
One approach to extend the life time of electronic devices is to employ a glass frit as the sealing material between glass substrates of an assembly comprising an electronic device to produce a hermetic package. Glass frit needs high processing temperatures and lacks flexibility, making it unsuitable for flexible devices. Glass frit also normally requires the use of an organic sealant. Glass flake-loaded organic sealants or glass rods, through softening, have been used as sealant materials with high barrier property, but they also lack flexibility. Conventional epoxy-based sealant materials provide flexibility, but do not have sufficient barrier property and may also suffer from incomplete curing.
Attempts to improve barrier properties of epoxy-based sealant materials include introducing mesogenic moieties into epoxy resins, for example, diglycidyl ether of 4, 4’-dihydroxy-α-methylstilbene (EDHAMS) . However, the barrier property of EDHAMS-containing materials is still unsatisfactory, particularly for electronic devices.
Therefore, there exists a need for a modified thermosetting epoxy resin suitable for sealing electronic devices which provides improved barrier properties.
SUMMARY OF THE INVENTION
The present invention provides a novel modified epoxy resin and a curable resin composition comprising the modified epoxy resin. The curable resin composition upon curing has improved barrier properties as compared to EDHAMS upon curing. The curable resin composition of the present invention is suitable as adhesives, sealants and/or encapsulants for electronic devices.
In a first aspect, the present invention is a modified epoxy resin having the structure of formula (I) :
Figure PCTCN2015092376-appb-000001
wherein Structure B is an aromatic mesogenic moiety, n is an integer of from 1 to 100, and Structure A has the following structure:
Figure PCTCN2015092376-appb-000002
wherein m is 1 or 2; and each R1 is independently hydrogen, a hydrocarbyl group having from 1 to 12 carbon atoms, a hydrocarbyloxy group having from 1 to 12 carbon atoms, a halogen, -NO2, -CN, or combinations thereof.
In a second aspect, the present invention is a process of preparing the modified epoxy resin of the first aspect. The process comprises:
reacting a raw material epoxy compound and a difunctional hydroxyl-containing compound comprising an aromatic mesogenic moiety in the presence of a catalyst, wherein the molar ratio of the raw material epoxy compound and the difunctional hydroxyl-containing compound is in a range from 100: 99 to 100: 10; and
wherein the raw material epoxy compound has the structure of
Figure PCTCN2015092376-appb-000003
wherein m is 1 or 2; and each R1 is independently hydrogen, a hydrocarbyl group having from 1 to 12 carbon atoms, a hydrocarbyloxy group having from 1 to 12 carbon atoms, a halogen, -NO2, -CN, or combinations thereof.
In a third aspect, the present invention is a curable resin composition comprising:
(a) the modified epoxy resin of the first aspect, and (b) a hardener.
In a fourth aspect, the present invention is an electronic device comprising at least one layer obtained by curing the resin composition of the third aspect.
DETAILED DESCRIPTION OF THE INVENTION
The modified epoxy resin of the present invention has the structure of formula (I) :
Figure PCTCN2015092376-appb-000004
wherein Structure B is an aromatic mesogenic moiety, n is an integer of from 1 to 100, and Structure A has the following structure:
Figure PCTCN2015092376-appb-000005
wherein m is 1 or 2; and each R1 is independently hydrogen, a hydrocarbyl group having from 1 to 12 carbon atoms, a hydrocarbyloxy group having from 1 to 12 carbon atoms, a halogen, -NO2, -CN, or combinations thereof.
“Hydrocarbyl group” in the present invention has the structure of - (CH2ZCH3, wherein Z=0-12. Examples of hydrocarbyl groups include -CH3, -CH2CH3, and -CH2CH2CH3.
“Hydrocarbyloxy group” in the present invention has the structure of -O (CH2ZCH3, wherein Z=0-12. Examples of hydrocarbyloxy groups include -OCH3, -OCH2CH3, -OCH2CH2CH3.
In formula (I) , each R1 can be the same or different. Each R1 may be independently a hydrocarbyl or hydrocarbyloxy group having from 1 to 6 or from 1 to 4 carbon atoms. Each R1 can also be independently a halogen selected from chlorine or bromine. Preferably, each R1 is independently selected from hydrogen, chlorine, or -CH3. More preferably, each R1 is hydrogen.
In formula (I) , n can be an integer of 1 or more, 5 or more, 10 or more, 15 or more, or even 20 or more, and at the same time, 100 or less, 90 or less, 70 or less, 60 or less, 50 or less, 40 or less, or even 30 or less.
Structure A in formula (I) is preferably selected from the following structure:
Figure PCTCN2015092376-appb-000006
Structure B in formula (I) can be an aromatic mesogenic moiety. “Aromatic mesogenic moiety” refers to an aromatic structure moiety which can prompt molecules to form liquid crystal state. Aromatic mesogenic moiety is usually a rigid chain comprising a bridged bond (-X-) in the center of the aromatic mesogenic moiety, where both side of the bridged bond connect with benzene rings to form a conjugate system. The aromatic mesogenic moiety useful in the present invention may have the structure of formula (B) :
Figure PCTCN2015092376-appb-000007
wherein p is an integer of from 0 to 3; each R2 is independently selected from hydrogen, a hydrocarbyl group having from 1 to 12 carbon atoms, a hydrocarbyloxy group having from 1 to 12 carbon atoms, a halogen, -NO2, -CN or combinations thereof; and X is selected from -CR1=CR1-, -CR1=CR1-CR1=CR1-, -CR1=N-N=CR1-, -CR1=N-, -N=N-, -CR1=CR1-CO-O-CH2-, -CR1=CR1-CO-O-CH2-CH2-, -CH2-O-CO-CR1=CR1-, -CH2-CH2-O-CO-CR1=CR1-, -CR1=CR1=CO-O-, -O-COCR1=CR1-, -CO-NH-, -NH-CO-, -CO-NH-NH-CO-, -C=C-, -C=C-C=C-, -CO-S-, -S-CO-, or combinations thereof; wherein each R1 is independently selected from H, -CH3, -CH2CH3, -CN, or combinations thereof, and preferred R1 is H. Preferably, each R2 is H.
Structure B is preferably selected from one of the structure of formulae (B1) through (B7) :
Figure PCTCN2015092376-appb-000008
Figure PCTCN2015092376-appb-000009
Figure PCTCN2015092376-appb-000010
or combinations thereof.
More preferred Structure B has the structure of formula (B1) or (B3) .
The modified epoxy resin of the present invention may be selected from one or more of the following structure (1) through (10) , wherein n is as defined in formula (I) above:
Figure PCTCN2015092376-appb-000011
Figure PCTCN2015092376-appb-000012
The modified epoxy resin of the present invention may have a weight average molecular weight of from 500 or more, or even 1,000 or more, and at the same time, 15,000 or less, 10,000 or less, or even 8,000 or less. The weight average molecular weight may be determined by gel permeation chromatography (GPC) using a polystyrene standard.
The process of preparing the modified epoxy resin of the present invention comprises: reacting a raw material epoxy compound with a difunctional hydroxyl-containing compound comprising an aromatic mesogenic moiety. The raw material epoxy compound useful for preparing the modified epoxy resin has the structure of formula (C) :
Figure PCTCN2015092376-appb-000013
wherein m and each R1 are as defined in formula (I) above.
The difunctional hydroxyl-containing compound useful for preparing the modified epoxy resin comprises one or more aromatic mesogenic moieties which can be the same or different. The difunctional hydroxyl-containing compound may have the following structure:
Figure PCTCN2015092376-appb-000014
wherein each R2, X and p are as defined in formula (B) above.
The difunctional hydroxyl-containing compound useful for preparing the modified epoxy resin may be selected from the following compounds:
Figure PCTCN2015092376-appb-000015
Figure PCTCN2015092376-appb-000016
Figure PCTCN2015092376-appb-000017
or mixtures thereof.
Preferably, the difunctional hydroxyl-containing compound useful for preparing the modified epoxy resin is 4, 4’-dihydroxy-α-methylsilbene.
In preparing the modified epoxy resin of the present invention, the molar ratio of the raw material epoxy compound having the structure of formula (C) and the difunctional hydroxyl-containing compound may be in a range from 100: 99 to 100: 10, from 27: 26 to 27:20, or from 27: 26 to 27: 25. In the process of preparing the modified epoxy resin, reaction of the raw material epoxy compound and the difunctional hydroxyl-containing compound may be conducted in the presence of one or more catalysts. Examples of suitable catalysts in preparing the modified epoxy resin include tris (dimethylaminomethyl) phenol, tetrabutylammonium bromide, ethyltriphenyl phosphonium acetate, or mixtures thereof. Preferred catalyst is ethyltriphenyl phosphonium acetate. The reaction time may be from 1 to 10 hours or from 2 to 6 hours. The reaction may be conducted at temperature ranging from 110℃ to 150℃ or from 120℃ to 140℃.
The modified epoxy resin of the present invention may be used in various applications including, for example, coatings, adhesives, electrical laminates, structural laminates, structural composites, moldings, castings, and encapsulations.
The curable resin composition of the present invention comprises (a) one or more modified epoxy resins described above, and (b) one or more hardeners.
The hardeners useful in the present invention may include, for example, primary and secondary polyamines, carboxylic acids and anhydrides thereof, aromatic hydroxyl containing compounds, imidazoles, guanidines, urea-aldehyde resins, melamine-aldehydes resins, alkoxylated urea-aldehyde resins, alkoxylated melamine-aldehyde resins, aliphatic amines, cycloaliphatic amines, aromatic amines, and combinations thereof. Particularly suitable hardeners include, for example, methylene dianiline, dicyandiamide, ethylene diamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, urea- formaldehyde resins, melamine-formaldehyde resins, methylolated urea-formaldehyde resins, methylolated melamine-formaldehyde resins, phenol-formaldehyde novolac resins, cresol-formaldehyde novolac resins, sulpfanilamide, diaminodiphenylsulpfone, diethyltoluenediamine, t-butyltoluenediamine, bis-4-aminocyclohexylmethane, isophoronediamine, diaminocyclohexane, hexamethylenediamine, piperazine, aminoethylpiperazine, 2, 5-dimethyl-2, 5-hexanediamine, 1, 12-dodecanediamine, tris-3-aminopropylamine, and combinations thereof. Preferred hardener is sulpfanilamide (also known as 4-aminobenzenesulpfonamide) .
The hardeners are employed in an amount, which will effectively cure the modified epoxy resin. Generally, the hardeners may be used in an amount, for example, from 0.95: 1 to 1.2: 1, or from 1: 1 to 1.05: 1, equivalents of hardener per equivalent of the modified epoxy resin.
The curable resin composition of the present invention may further comprise other additives such as solvents or diluents, fillers such as clay, pigments, dyes, flow modifiers, thickeners, reinforcing agents, mold release agents, wetting agents, stabilizers, fire retardant agents, surfactants, and combinations thereof.
Examples of pigments and/or dyes useful in the curable resin composition comprises copper (II) 2, 9, 16, 23-tetra-ter-butyl-29, copper (II) 2, 3, 9, 10, 16, 17, 23, 24-octakis (octyloxy) -29H, 31H-phthalocyanine, nickel (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29H, 31H-phthalocyanine, Zinc 2, 9, 16, 23-tetra-tert-butyl-29H, 31H-phthalocyanine, cobalt (II) phthalocyanine, copper (II) tetrakis (4-cumylphenoxy) phthalocyanine, zinc phthalocyanine, copper phthalocyanine, or mixtures thereof. The pigments and/or dyes may be added in quantities to provide the curable resin composition with the desired color. For example, the pigments and/or dyes may be present in an amount of from 0 to 50 weight percent (wt%) , from 0.5 wt% to 40 wt%, or from 1 wt% to 30 wt%, based on the total weight of the curable resin composition.
Examples of suitable solvents or diluents useful in the curable epoxy resin composition include hydrocarbons, ketones, glycol ethers, aliphatic ethers, cyclic ethers, esters, amides, and combinations thereof. Particularly suitable solvents or diluents include, for example, toluene, benzene, xylene, methyl ethyl ketone, methyl isobutyl ketone, diethylene glycol methyl ether, dipropylene glycol methyl ether, dimethylfonnamide, N- methylpyrrolidinone, tetrahydrofuran, propylene glycol methyl ether, and combinations thereof. The solvents or diluents may be present in an amount of from 0 to 99 wt%, from 50 wt% to 99 wt%, or from 80 wt% to 99 wt%, based on the total weight of the curable resin composition.
Thickeners, flow modifiers and the like useful in the curable resin composition may be present in an amount of from 0 to 10 wt%, from 0.5 wt% to 6 wt%, or from 0.5 wt% to 4 wt%, based on the total weight of the curable resin composition.
Suitable reinforcing materials useful in the curable resin composition may include natural and synthetic fibers in the form of woven fabric, mats, monofilament, multifilament, unidirectional fibers, rovings, random fibers or filaments, inorganic fillers or whiskers, hollow spheres, and the like. Examples of reinforcing materials include, glass, ceramics, nylon, rayon, cotton, aramid, graphite, polyalkylene terephthalates, polyethylene, polypropylene, polyesters, and combinations thereof. The reinforcing materials may be present in an amount of from 0 to 80 wt%, from 0.1 wt% to 50 wt%, or from 1 wt% to 50 wt%, based on the total weight of the curable resin composition.
Suitable fillers useful in the curable resin composition may include, for example, inorganic oxides, ceramic microspheres, plastic microspheres, glass microspheres, inorganic whiskers, CaCO3, and combinations thereof. The fillers can be employed in an amount from 0 to 95 wt%, from 10 wt% to 80 wt%, or from 40 wt% to 60 wt%, based on the total weight of the curable resin composition.
Preferably, the curable resin composition of the present invention also comprises nanoparticles of organic clay. The organic clay may include, for example, organic quaternary ammonium salt modified clay, trimethylstearyl ammonium chloride modified clay, dimethyl distearyl ammonium chloride modified clay, methyl tristeary ammonium chloride modified clay, or mixtures thereof. The nanoparticles of organic clay may have a layered structure. The average particle size of the nanoparticles of organic clay may be in a range of 1 nanometer (nm) to 5,000 nm, and preferably in the range of 50 nm to 500 nm. The amount of the nanoparticles of organic clay in the curable resin composition of the present invention may be 0 or more, 0.1 wt% or more, 0.5 wt% or more, or even 1 wt% or more, and at the same time, 50 wt% or less, 45 wt % or less, 40 wt% or less, or even 35 wt% or less, based on the weight of the modified epoxy resin.
The curable resin composition of the present invention may be in the form of an adhesive film, a barrier film, a sealant, or an encapsulant for an electronic device. More preferably, the curable resin composition of the present invention is in the form of a sealant for an electronic device. Curing of the curable epoxy resin composition of the present invention may be carried out from room temperature (23±2℃) up to 250℃, for predetermined periods of time which may be from minutes up to hours. The curing conditions may be dependent on the various components used in the curable resin composition such as the hardener used in the composition. Generally, the time for curing or partially curing the epoxy resin composition may be from 2 minutes to 24 days, from 0.5 hour to 7 days, or from one hour to 24 hours. The curing reaction conditions include, for example, carrying out the curing reaction under a temperature, generally in the range of from 60℃ to 250℃, from 50℃ to 230℃, or from 100℃ to 200℃.
The present invention also provides an electronic device comprising at least one layer obtained by curing the curable resin composition of the present invention. The electronic device may be flexible. Flexible electronic devices refer to bendable, rollable and foldable electronic devices, which can be bent without being damaged.
The present invention also provides an electronic device comprising at least two inorganic or hybrid substrates hermetically sealed by the curable resin composition. Examples of suitable inorganic or hybrid substrates, which can be employed in the present invention, include inorganic substrates such as glass and indium tin oxide (ITO) glass; organic substrates such as polyethylene terephthalate (PET) , polyethylene naphthalate (PEN) , and polyimide (PI) ; a multilayer of the inorganic/organic substrates. Preferred substrate is ITO glass; the inorganic substrate coated with PET, PEN or PI; a multilayer comprising one or more layers of the inorganic substrate and one or more layers of the organic substrate. Preferably, the electronic devices are flexible.
Preferred examples of the electronic devices in which the curable resin composition of the present invention may be employed include organic light emitting diode (OLED) devices such as OLED display televisions and phones and LCD televisions and phones.
The curable resin composition of the present invention is particularly suitable as a sealant for OLED devices to protect the organic light emitting layer and/or electrodes in the OLED from oxygen and/or water. The curable resin composition provides electronic devices  with lower water vapor transmission rate (WVTR) , thus longer life, as compared to EDHAMS.
EXAMPLES
Some embodiments of the invention will now be described in the following Examples, wherein all parts and percentages are by weight unless otherwise specified. The following materials are used in the examples:
Figure PCTCN2015092376-appb-000018
The following standard analytical equipment and methods are used in the Examples. Water vapor transmission rate (WVTR)
The WVTR values of barrier films are measured at 25℃ and 90% relative humidity (RH) , or at 38℃ and 100%RH, respectively, following ASTM method F-1249, and using a MOCON PERMATRAN-W 3/33 instrument (MOCON Inc., Minnesota, USA) . The calibration of the instrument for WVTR measurements is performed using polyester standard films provided by MOCON Inc. The RH sensors are calibrated using saturated salt solutions. During testing, water vapor that permeated through the film sample is carried by dry nitrogen gas to an infrared detector. Duplicate samples are used for each measurement.
When a polyimide (PI) film (Kapton HN film manufactured by DuPont) is used as a substrate, a curable resin composition is applied to the PI film, then cured to form a coating layer on the PI film, that is, a bilayer structure. In the WVTR measurement, the permeability of bare PI film (WVTRPI film) is measured, then that of the bilayer (WVTRBilayer) is measured. Through the following equation, the permeation rate for the coating layer itself (WVTRcoating layer) is calculated.
Figure PCTCN2015092376-appb-000019
Gel Permeation Chromatography (GPC) Analysis
Molecular weight measurement of polymers is carried out in tetrahydrofuran (THF) (flow rate: 1 mL/min) at 40℃ with Agilent 1200 equipped with a Agilent Refractive Index detector and Two Mixed E columns (7.8mm x 300mm) in tandem. PL Polystyrene (PS) Narrow standards (Part No. : 2010-0101) with molecular weights ranging from 19,760 to 580 g/mol, polynom 3 fitness are used for calibration.
Synthesis of 1, 5-Diglycidoxy naphthalene
A mixture of 1, 5-dihydroxy naphthalene (49.25g) , benzyltrimethylammonium bromide (2.09g) and epichlorohydrin (481ml) was placed in a three-neck flask and refluxed for 40 minutes (min) . NaOH (24.6g) was dissolved in 139ml of water to prepare 15% NaOH aqueous solution. Then the solution was added into the flask dropwise over a period of 3 hours under reflux. The reaction was carried out for an additional hour at room temperature. The excess epichlorohydrin was removed by vacuum distillation and the final product was washed with water and methanol. A white powder was obtained by recrystallization from  isopropyl alcohol and chloroform.
Synthesis of 2, 2’-Diglycidoxy-1, 1’-binaphthalene
A mixture of 2, 2’-Dihydroxy-1, 1’-binaphthalene (88.04g) ,benzyltrimethylammonium bromide (2.09g) and epichlorohydrin (481ml) was placed in a three-neck flask and refluxed for 40 min. NaOH (24.6g) was dissolved in 139ml of water to prepare 15% NaOH aqueous solution. Then the solution was added into the flask dropwise over a period of 3 hours under reflux. The reaction was carried out for an additional hour at room temperature. The excess epichlorohydrin was removed by vacuum distillation and the final product was washed with water and methanol. A white powder was obtained by recrystallization from isopropyl alcohol and chloroform.
Example (Ex) 1 Copolymer of naphenyl epoxy and biphenyl diol (Polymer 1)
7.35g 1, 5-Diglycidoxy naphthalene (Mw: 272.30; 27 mmol) , [1, 1'-biphenyl] -4, 4'-diol (BPD) (4.65g, 25 mmol) , and cyclohexanone (50.0g, 53 mL) were added to a flask and heated with stirring under a nitrogen atmosphere to provide a 90℃ solution. Once the 90 ℃ reaction temperature was reached, ethyltriphenylphosphonium acetate. acetic acid complex (70% solids in methanol) (0.03g, 0.20 wt% of the diphenol and diglycidylether reactants used) was added to the reactor and heating continued to 130℃. After 6 hours at 130℃, the reaction product was cooled to room temperature and poured into a mixture of 1: 1 methanol-water to precipitate a white solid. The reaction diagram of preparing the copolymer of naphenyl epoxy and biphenyl diol ( “Polymer 1” ) is shown below:
Figure PCTCN2015092376-appb-000020
The obtained Polymer 1 had the following properties: PS equivalent number average molecular weight (Mn) =2,120 g/mol, PS equivalent weight average molecular weight (Mw) =4,603 g/mol, and polydispersity index (PDI) =2.17. In addition, GPC curve of Polymer 1 showed many peaks in the range of low molar mass, which indicates that Polymer 1 also contained small amounts of monomers, dimers, and trimers.
Ex 2 Copolymer of bi-naphenyl epoxy and biphenyl diol (Polymer 2)
11.25g 2, 2'-Diglycidoxy-1, 1'-binaphthalene (Mw: 389.6; epoxide equivalent weight (EEW) =215g/eq, 27 mmol) , [1, 1'-biphenyl] -4, 4'-diol (BPD) (4.65g, 25 mmol) , and cyclohexanone (50.0g, 53 mL) were added to a flask and heated with stirring under a nitrogen atmosphere to provide a 90℃ solution. Once the 90℃ reaction temperature was reached, ethyltriphenylphosphonium acetate. acetic acid complex (70% solids in methanol) (0.03g, 0.20 wt% of the diphenol and diglycidylether reactants used) was added to the reactor and heating continued to 130℃. After 6 hours at 130℃, the reaction product was cooled to room temperature and poured into a mixture of 1: 1 methanol-water to precipitate a white solid. The reaction diagram of preparing the copolymer of bi-naphenyl epoxy and biphenyl diol is shown below.
Figure PCTCN2015092376-appb-000021
The obtained Polymer 2 had the following properties: PS equivalent Mn=1,867 g/mol, PS equivalent Mw=3,069 g/mol, and PDI=1.64. In addition, GPC curve of Polymer 2 showed many peaks in the range of low molar mass, which indicates that Polymer 2 also contained small amounts of monomers, dimers, and trimers.
Comparative (Comp) Ex A
Curable epoxy resin composition of Comp Ex A was prepared based on formulations listed in Table 1. A release agent (Yinjing LR-13, U.S. YINJING International (H. K) Co. Ltd. ) was coated on a glass plate (100 mm by 150 mm) . Copper tape with a thickness of 50 μm was bonded on the glass plate for controlling the thickness of the film. EDHAMS and sulphanilamide (SAA) were melted at 150℃, respectively, and then were mixed together at this temperature. The obtained mixture was poured onto the surface of heated glass plate (the surface temperature being about 150 ℃) immediately. Another glass plate was covered  slowly to avoid any air bubbles and press the plates slightly. The sample plates were then cured for 2 hours at 100℃, 2 hours at 150℃ and finally 2 hours at 180℃ in an oven (Shanghai Jing Hong Lab Equipment Co., Ltd. ) . WVTR properties of the cured samples were evaluated according to the test method described above and results are listed in Table 2.
Comp Ex B
Curable epoxy resin composition of Comp Ex B was prepared based on formulations listed in Table 1. A release agent was coated on a glass plate (100 mm by 150 mm) . Copper tape with a thickness of 50 μm was bonded on the glass plate for controlling the thickness of the film. EDHAMS was melted at 150℃. 2 wt% of nanoparticles of organic clay (NANOCOR I. 30P) was added and stirred for 1 hour. Then, SAA was melted at 150℃ and mixed with the mixture of EDHAMS and organic clay nanoparticles at this temperature. The mixture was poured onto the surface of heated glass plate (the surface temperature being about 150℃) immediately. Another glass plate was covered slowly to avoid any air bubbles and press the plates slightly. The sample plates were then cured for 2 hours at 100℃, 2 hours at 150℃ and finally 2 hours at 180℃ in an oven. WVTR properties of the cured samples were evaluated according to the test method described above and results are listed in Table 2.
Ex 3
Curable epoxy resin composition of Ex 3 was prepared based on formulations listed in Table 1.20 wt% Polymer 1 was dissolved into N-methylpyrrolidone (NMP) by mechanical stirring for 30 min. Then 8 wt% SAA was added into the obtained solution and stirred for 10 min. Afterwards, the solution was coated on a PI film with a thickness of 5 mil (127 μm) by blade coating. The gap between blade and PI film was 100 μm. After coating, the samples were cured for 1 hour at 150℃ in an oven. WVTR properties of the cured samples were evaluated according to the test method described above and results are listed in Table 2.
Ex 4
Curable epoxy resin composition of Ex 4 was prepared based on formulations listed in Table 1.20 wt% Polymer 2 was dissolved into NMP by mechanical stirring for 30 min. Then 33 wt% of nanoparticles of organic clay (NANOCOR I. 30P) was added and stirred for 1 hour. 8 wt% SAA was added into the obtained solution and stirred for 10 min. Afterwards, the solution was coated on a PI film with a thickness of 5 mil (127 μm) by blade coating. The gap between blade and the PI film was 100 μm. After coating, the samples were cured for 1  hour at 150℃ in an oven. WVTR properties of the cured samples were evaluated according to the test method described above and results are listed in Table 2.
Ex 5
Curable epoxy resin composition of Ex 5 was prepared based on formulations listed in Table 1.20 wt% Polymer 1 was dissolved into N-methylpyrrolidone (NMP) by mechanical stirring for 30 min. Then 8 wt% SAA was added into the solution and stirred for 10 min. Afterwards, the solution was coated on a PI film with a thickness of 5 mil (127 μm) by blade coating. The gap between blade and the PI film was 100 μm. After coating, the samples were cured for 1 hour at 150℃ in an oven, followed by heating the oven to 300℃ and maintaining for 40 min. WVTR properties of the cured samples were evaluated according to the test method described above and results are listed in Table 2.
Table 1
Figure PCTCN2015092376-appb-000022
*Wt% herein is based on the total weight of the curable epoxy resin composition.
As shown in Table 2, as compared to EDHAMS, Polymer 1 and Polymer 2 of the present invention both provided cured samples with better moisture barrier performance even after heating at 300℃ for 40 min.
Table 2
Figure PCTCN2015092376-appb-000023

Claims (17)

  1. A modified epoxy resin having the structure of formula (I) :
    Figure PCTCN2015092376-appb-100001
    wherein Structure B is an aromatic mesogenic moiety, n is an integer of from 1 to 100, and Structure A has the following structure:
    Figure PCTCN2015092376-appb-100002
    wherein m is 1 or 2; and each R1 is independently hydrogen, a hydrocarbyl group having from 1 to 12 carbon atoms, a hydrocarbyloxy group having from 1 to 12 carbon atoms, a halogen, -NO2, -CN, or combinations thereof.
  2. The modified epoxy resin of claim 1, wherein Structure A is selected from the following structure:
    Figure PCTCN2015092376-appb-100003
  3. The modified epoxy resin of claim 1, wherein Structure B is an aromatic mesogenic moiety having the following structure:
    Figure PCTCN2015092376-appb-100004
    wherein p is an integer of from 0 to 3; each R2 is independently selected from hydrogen, a hydrocarbyl having from 1 to 12 carbon atoms, a hydrocarbyloxy having from 1 to 12 carbon atoms, a halogen, -NO2, -CN, or combinations thereof; and X is selected from -CR1=CR1-, -CR1=CR1-CR1=CR1-, -CR1=N-N=CR1-, -CR1=N-, -N=N-, -CR1=CR1-CO-O-CH2-, -CR1=CR1-CO-O-CH2-CH2-, -CH2-O-CO-CR1=CR1-, -CH2-CH2-O-CO-CR1=CR1-, -CR1=CR1=CO-O-, -O-COCR1=CR1-, -CO-NH-, -NH-CO-, -CO-NH-NH-CO-, -C=C-, -C=C-C=C-, -CO-S-, -S-CO-, or combinations thereof; wherein each R1 is independently selected from H, -CH3, -CH2CH3, -CN, or combinations thereof.
  4. The modified epoxy resin of claim 1, wherein Structure B is selected from the following structure:
    Figure PCTCN2015092376-appb-100005
    Figure PCTCN2015092376-appb-100006
    or combinations thereof.
  5. The modified epoxy resin of claim 1, wherein n is an integer of from 5 to 30.
  6. The modified epoxy resin of claim 1, wherein the modified epoxy resin is selected from one of the following structure (1) through (10) :
    Figure PCTCN2015092376-appb-100007
    Figure PCTCN2015092376-appb-100008
    Figure PCTCN2015092376-appb-100009
  7. A process of preparing the modified epoxy resin of any one of claims 1-6, comprising:
    reacting a raw material epoxy compound and a difunctional hydroxyl-containing compound comprising an aromatic mesogenic moiety in the presence of a catalyst, wherein the molar ratio of the raw material epoxy compound and the difunctional hydroxyl-containing compound is in a range from 100: 99 to 100: 10; and
    wherein the raw material epoxy compound has the structure of
    Figure PCTCN2015092376-appb-100010
    wherein m is 1 or 2; and each R1 is independently hydrogen, a hydrocarbyl group having from 1 to 12 carbon atoms, a hydrocarbyloxy group having from 1 to 12 carbon atoms, a halogen, -NO2, -CN, or combinations thereof.
  8. The process of claim 7, wherein the raw material epoxy compound is selected from 2, 2’ -Diglycidoxy-1, 1’ -binaphthalene or 1, 5-Diglycidoxy naphthalene.
  9. The process of claim 7, wherein the difunctional hydroxyl-containing compound is selected from the following compounds:
    Figure PCTCN2015092376-appb-100011
    Figure PCTCN2015092376-appb-100012
    or mixtures thereof.
  10. A curable resin composition, comprising:
    (a) a modified epoxy resin of any one of claims 1-6, and
    (b) a hardener.
  11. The curable resin composition of claim 10, wherein the hardener is selected from primary and secondary polyamines, carboxylic acids and anhydrides thereof, aromatic hydroxyl containing compounds, imidazoles, guanidines, urea-aldehyde resins, melamine-aldehydes resins, alkoxylated urea-aldehyde resins, alkoxylated melamine-aldehyde resins, aliphatic amines, cycloaliphatic amines, aromatic amines, and combinations thereof.
  12. The curable resin composition of claim 10, further comprising nanoparticles of organic clay.
  13. The curable resin composition of claim 12, wherein the nanoparticles of organic clay is present in an amount ranging from 0.1 wt% to 50 wt%, based on the total weight of the curable resin composition.
  14. The curable resin composition of claim 10, wherein the curable resin composition is in the form of an adhesive film, a barrier film, a sealant, or an encapsulant for an electronic device.
  15. An electronic device comprising at least one layer obtained by curing the resin composition of any one of claims 10-14.
  16. The electronic device of claim 15, wherein the electronic device is flexible.
  17. The electronic device of claim 15, wherein the electronic device is an organic light emitting diode device.
PCT/CN2015/092376 2015-10-21 2015-10-21 Modified epoxy resin and curable resin composition comprising same WO2017066929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/092376 WO2017066929A1 (en) 2015-10-21 2015-10-21 Modified epoxy resin and curable resin composition comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/092376 WO2017066929A1 (en) 2015-10-21 2015-10-21 Modified epoxy resin and curable resin composition comprising same

Publications (1)

Publication Number Publication Date
WO2017066929A1 true WO2017066929A1 (en) 2017-04-27

Family

ID=58556619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092376 WO2017066929A1 (en) 2015-10-21 2015-10-21 Modified epoxy resin and curable resin composition comprising same

Country Status (1)

Country Link
WO (1) WO2017066929A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044977A1 (en) * 2017-08-31 2019-03-07 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2019064546A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2019077688A1 (en) * 2017-10-17 2019-04-25 日立化成株式会社 Production methods for glassy liquid-crystalline epoxy resin and glassy liquid-crystalline epoxy resin composition, storage methods for liquid-crystalline epoxy resin and liquid-crystalline epoxy resin composition, glassy liquid-crystalline epoxy resin and glassy liquid-crystalline epoxy resin composition, liquid-crystalline epoxy resin and liquid-crystalline epoxy resin composition, and production method for cured epoxy resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283969A (en) * 1986-06-02 1987-12-09 Teijin Ltd Polyepoxy compound and halogen-containing aryl glycidyl ether type and production thereof
JP2010047728A (en) * 2008-08-25 2010-03-04 Nippon Steel Chem Co Ltd Epoxy resin composition and molding
KR20100081962A (en) * 2009-01-07 2010-07-15 한국생산기술연구원 Epoxy resin having side functional group and thermosetting polymer composite comprising the same
KR20100082321A (en) * 2009-01-08 2010-07-16 한국생산기술연구원 New epoxy resin and thermosetting polymer composite comprising the same
EP2832759A1 (en) * 2012-03-27 2015-02-04 DIC Corporation Epoxy resin, method for producing epoxy resin, epoxy resin composition, cured product thereof, and heat-dissipating resin material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283969A (en) * 1986-06-02 1987-12-09 Teijin Ltd Polyepoxy compound and halogen-containing aryl glycidyl ether type and production thereof
JP2010047728A (en) * 2008-08-25 2010-03-04 Nippon Steel Chem Co Ltd Epoxy resin composition and molding
KR20100081962A (en) * 2009-01-07 2010-07-15 한국생산기술연구원 Epoxy resin having side functional group and thermosetting polymer composite comprising the same
KR20100082321A (en) * 2009-01-08 2010-07-16 한국생산기술연구원 New epoxy resin and thermosetting polymer composite comprising the same
EP2832759A1 (en) * 2012-03-27 2015-02-04 DIC Corporation Epoxy resin, method for producing epoxy resin, epoxy resin composition, cured product thereof, and heat-dissipating resin material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044977A1 (en) * 2017-08-31 2019-03-07 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6504533B1 (en) * 2017-08-31 2019-04-24 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
CN110869409A (en) * 2017-08-31 2020-03-06 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
CN110869409B (en) * 2017-08-31 2022-05-31 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
WO2019064546A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2019077688A1 (en) * 2017-10-17 2019-04-25 日立化成株式会社 Production methods for glassy liquid-crystalline epoxy resin and glassy liquid-crystalline epoxy resin composition, storage methods for liquid-crystalline epoxy resin and liquid-crystalline epoxy resin composition, glassy liquid-crystalline epoxy resin and glassy liquid-crystalline epoxy resin composition, liquid-crystalline epoxy resin and liquid-crystalline epoxy resin composition, and production method for cured epoxy resin
JPWO2019077688A1 (en) * 2017-10-17 2019-11-14 日立化成株式会社 Method for producing glassy liquid crystalline epoxy resin and glassy liquid crystalline epoxy resin composition, method for storing liquid crystalline epoxy resin and liquid crystalline epoxy resin composition, glassy liquid crystalline epoxy resin and glassy liquid crystalline epoxy resin composition, Liquid crystalline epoxy resin, liquid crystalline epoxy resin composition, and method for producing cured epoxy resin
US10597485B2 (en) 2017-10-17 2020-03-24 Hitachi Chemical Company, Ltd. Production methods for glassy liquid-crystalline epoxy resin and glassy liquid-crystalline epoxy resin composition, storage methods for liquid-crystalline epoxy resin and liquid-crystalline epoxy resin composition, glassy liquid-crystalline epoxy resin and glassy liquid-crystalline epoxy resin composition, liquid-crystalline epoxy resin and liquid-crystalline epoxy resin composition, and production method for cured epoxy resin

Similar Documents

Publication Publication Date Title
CN102307924B (en) Homogeneous bismaleimide - triazine - epoxy compositions useful for the manufacture of electrical laminates
KR20160110175A (en) Oxazolidone ring-containing epoxy resin, method for producing the thereof, epoxy resin composition and cured product
JP5719562B2 (en) High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product
JP5557033B2 (en) Phosphorus atom-containing oligomer, production method thereof, curable resin composition, cured product thereof, and printed wiring board
JP5458916B2 (en) Method for producing phosphorus atom-containing phenols, phosphorus atom-containing phenols, curable resin composition, cured product thereof, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, for semiconductor sealing material Resin composition and resin composition for interlayer insulation material for build-up substrate
KR20070043716A (en) Epoxy resin, epoxy resin composition, and cured product thereof
TWI425019B (en) Liquid epoxy resin, epoxy resin composition and hardened product
KR101408535B1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
WO2017066929A1 (en) Modified epoxy resin and curable resin composition comprising same
JP2009051937A (en) Epoxy resin composition, cured product thereof, and new epoxy resin
JP5049408B2 (en) Thermosetting resin composition having benzoxazine ring, method for producing the same, molded product and cured product
US20160001528A1 (en) Electrical component
JP2017115035A (en) Thermosetting molding material, method for producing the same, and semiconductor sealing material
JP6783121B2 (en) Allyl group-containing resin, its manufacturing method, resin varnish and laminated board manufacturing method
CN116670199A (en) Epoxy resin, method for producing same, curable resin composition, and cured product thereof
JP2011195748A (en) Curable resin composition, cured article thereof, process for production of phosphorus-containing phenol, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for encapsulating material of semiconductor, and resin composition for interlayer insulating material for build-up substrate
JP5590405B2 (en) Novel phosphorus atom-containing epoxy resin, production method thereof, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, And resin composition for interlayer insulation material for build-up substrate
WO2006121030A1 (en) Epoxy resin, method for producing same and use thereof
WO2020080292A1 (en) Curable resin composition, cured product, and sheet-form molded article
JP4509539B2 (en) Epoxy resin composition sheet
JP7230285B1 (en) Epoxy resin, curable resin composition, and cured product thereof
TWI837297B (en) Ester compounds, resin compositions, hardeners, and build-up films
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP5004147B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
KR101910134B1 (en) Modified epoxy resin and the method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906447

Country of ref document: EP

Kind code of ref document: A1