WO2017065451A1 - 바나듐계 중공 파티클 - Google Patents

바나듐계 중공 파티클 Download PDF

Info

Publication number
WO2017065451A1
WO2017065451A1 PCT/KR2016/011154 KR2016011154W WO2017065451A1 WO 2017065451 A1 WO2017065451 A1 WO 2017065451A1 KR 2016011154 W KR2016011154 W KR 2016011154W WO 2017065451 A1 WO2017065451 A1 WO 2017065451A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
hollow
particles
particle
oxide
Prior art date
Application number
PCT/KR2016/011154
Other languages
English (en)
French (fr)
Inventor
황경준
김춘성
최철민
진성호
Original Assignee
나노에스디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노에스디 주식회사 filed Critical 나노에스디 주식회사
Publication of WO2017065451A1 publication Critical patent/WO2017065451A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the technology disclosed herein relates to a vanadium-based hollow particle related technology.
  • the present invention relates to a vanadium-based hollow particle, and more specifically, a vanadium-based oxide is a spherical particle having a hollow and a desired nano-sized film thickness, and has a hollow internal structure like an egg shell (table tennis ball) according to the hollow shape of the particle. It includes hollow particles with internal structure entangled like hollow or sponge, and has the advantage of lowering thermal conductivity due to hollow structure, can be used as spherical itself, and egg shells (milling) when grinding spherical particles using milling.
  • Ball hollow particles are broken into a plate shape, and particles having a sponge-like internal structure have air traps intertwined with twigs on the plate, and have an average particle diameter of 100 nm or less even with particles of 100 nm or more due to the thin film thickness.
  • the present invention relates to a vanadium-based hollow particle related technology capable of reducing heat transfer or heat loss and providing an insulation effect.
  • Metal oxide hollow particles originate from metal oxides or polymer materials, and are mainly applied to fields such as transporters and catalysts such as drugs, cosmetics, dyes, and inks.
  • vanadium-based oxides can provide dual switching temperatures, allowing a wider range of choices for infrared and electricity applications, which can be applied to various applications such as coatings for smart windows or automotive glass under practical temperature conditions in the form of powder. This has been disclosed.
  • the application range may be very wide, but unlike other metal oxides, it is difficult to implement through general spray pyrolysis. That is, in the case of gas phase synthesis such as spray pyrolysis, droplets of the precursor are generated through the nozzle. Since the droplet size is several microns, it is not only difficult to manufacture nanoporous particles of 100 nm or less, but additionally, vanadium oxide.
  • thermochromic Phase M-Monoclinic Phase
  • the blocking in the transmission of infrared rays consists of two routes: reflection and absorption. It is also a limitation to be solved, and it is necessary to study the technology that can be solved together.
  • the technique disclosed in the present specification has been proposed to solve the above problems, and provides hollow vanadium oxide having a spherical structure as a particle having a vanadium-based oxide as a hollow and a desired nano-sized film thickness, but having a plate shape according to the hollow shape.
  • the technology related to vanadium hollow particles that can be provided in the form of a sponge and have a transmittance to infrared rays, similar to vanadium particles having an average particle diameter of 100 nm or less, lower thermal conductivity, direct heat transfer or heat loss from the outside, and impart an insulating effect. To provide.
  • the particles are hollow vanadium oxide of spherical structure, hollow vanadium oxide of milled flat structure, and crushed Vanadium based hollow containing at least one vanadium oxide of the hollow vanadium oxide of the flat phase structure, wherein the hollow has a hollow structure or a sponge structure, the thickness of the shell constituting the at least one vanadium oxide is 150nm or less Provide particles.
  • preparing a spray solution comprising a vanadium precursor and a reducing agent preparing a spray solution comprising a vanadium precursor and a reducing agent; And spray spraying pyrolysis of the spray solution under an O 2 -containing atmosphere, thereby providing a method of manufacturing a vanadium-based hollow particle.
  • the optical insulation material including the vanadium-based hollow particles described above and having a light energy transmittance of 10% to 80% according to an external temperature change is provided.
  • a spherical hollow particle and a hollow structure such as a ping pong ball or a hollow structure or a spherical hollow or spherical hollow particles such as a sponge are broken into spherical hollow particles such as a ping pong ball and a twig shape on a plate
  • a vanadium-based hollow particle with a sponge-like structure with an air trap of and having an external IR switching layer with film thickness control By providing a vanadium-based hollow particle with a sponge-like structure with an air trap of and having an external IR switching layer with film thickness control, the following effects can be provided:
  • a large sized vanadium-based hollow particle such as particles having a size of 100 nm or more, which is easy to manufacture due to a thin film of 100 nm or less, it can exhibit a thermochromic effect similar to that of 100 nm vanadium particles. Therefore, mass production is possible.
  • Lower thermal conductivity can provide selective heat absorption.
  • It can reduce direct heat transfer or heat loss from outside and give heat insulation effect.
  • it can be added to paint or window-coated polymer to provide low thermal conductivity due to its structural properties during curing, reducing heat transfer or heat loss from the outside, and injecting full-wavelength sunlight into the interior at low temperatures. Due to the effect, it is possible to selectively block light in the infrared region only in a high temperature environment.
  • the particles have a thin film or a thin structure in which nano dots are connected, the particles can be broken without much stress, thereby providing an advantage that the lattice structure does not change during milling.
  • 1 is a view showing the average particle diameter and cumulative coefficient of the size of the vanadium-based hollow particles obtained as an embodiment of the technology disclosed herein.
  • FIG. 2 is a view showing the morphology of vanadium-based hollow particles obtained as an embodiment of the technology disclosed herein, (a) to (d) is a photograph showing the particle surface with or without nano dot shape, (e) and (f) is a view showing the inner sponge structure or a completely empty structure of the particles, it can be seen that the thickness of the shell constituting vanadium oxide through (f) is 150nm or less.
  • FIG. 3 illustrates a milled flat hollow hollow vanadium oxide formed by a weak ball milling process of hollow vanadium oxide of spherical structure as an embodiment of the technology disclosed herein, the left side being a magnification ⁇ 10000; The right side corresponds to the drawing of magnification x5000.
  • FIG. 4 is a diagram illustrating an XRD spectrum as an embodiment of the technology disclosed herein, wherein the maximum of the strongest reflection (major reflection) is in the range of 2 theta 25 ° to 2 theta 30 ° and the maximum of one additional reflection Or the maximum of multiple additional reflections (second reflection) is in the range of 2 theta 35 ° to 2 theta 39 ° and the maximum of another additional reflection or the maximum of multiple additional reflections (third reflection) is 2 theta 53 °.
  • the intensity ratio of each second reflection to the primary reflection in the range of 2 to theta 57 ° is 0.05 or more .
  • FIG. 5 shows a thermochromic effect in which vanadium-based hollow particles provided as an embodiment of the technology disclosed herein are 10% to 80% lower than the transmittance at low temperatures at high temperatures depending on the external temperature.
  • FIG. 6 is a vanadium-based hollow particle provided as an embodiment of the technology disclosed herein as an external hydrophobic layer of a paint layer, and shows a blocking mechanism before infrared rays are absorbed into the paint layer due to reduced thermal conductivity.
  • FIG. 7 is a graph comparing heat insulation (heat shielding) effect with temperature change over time when vanadium-based hollow particles provided as an embodiment of the technology disclosed herein are included in a general paint.
  • the flake structure in which the egg shell is broken is preferably used as vanadium oxide having a spherical structure with a blurred boundary of nano dots or hollow vanadium oxide having a flat structure.
  • the at least one vanadium oxide may be at least one selected from vanadium dioxide, vanadium trioxide, vanadium tetraoxide, and vanadium pentoxide, and vanadium dioxide may provide both a thermochromic effect and a low thermal conductivity effect.
  • the at least one vanadium oxide is a bio-template, hollow metal oxide or polymer such as hollow silica, carbon spheres, polymethyl methacrylate (PMMA) beads, nano cam, hollow TiO 2, etc. It may be supported on the beads.
  • a spray solution manufacturing step comprising a vanadium precursor and a reducing agent; And spray pyrolysis of the spray solution under an O 2 -containing atmosphere, thereby providing a method of manufacturing a thermochromic vanadium particle.
  • the spray solution is one or more vanadium precursor concentration of 0.001M to 1.0M selected from vanadium pentoxide, vanadil chloride, vanadil sulfate and hydrate thereof and hydrazine, oxalic acid, sodium borohydride, sodium hyposulfate, sodium thiosulfate, nitric acid, hydrochloric acid And sulfuric acid, acetic acid, and salts or hydrates thereof may include one or more reducing agent concentrations of 0.01M to 5M and a reduced vanadium compound.
  • the vanadium precursor concentration may be in the range of 0.1M to 4M, or 0.2M to 1M, the reducing agent concentration may be in the range of 0.01M to 5M, preferably 0.05M to 3M, more preferably 0.1M to 2M. .
  • the spray solution is selected from Ti, Zr, Mo, Nb, Tc, Ru, Rh, Fe, Pd, Sn, Sb, Te, Ce, Pr, Tb, Hf, Ta, Rs, Os, Ir, Pt, and Sm
  • One or more doping materials may be further included as needed.
  • the doping material may be included in the range of 0.01 to 10wt%, preferably 0.1 to 7wt%, more preferably 0.2 to 5wt% based on the content of the vanadium precursor.
  • the spray solution is 10 to 40000 rpm, 50 to 10000 rpm, or 100 to 5000 rpm at a speed of 15 to 98 °C, 20 to 95 °C, or 23 to 87 °C 10 minutes to 72 hours, 20 minutes to 48 hours or 30 minutes to Stirring for 36 hours.
  • the spray solution may further comprise controlling the droplet size.
  • the droplet size control is not limited thereto, but may be performed by, for example, a microfilter, a baffle, or a vibration.
  • the droplet size control may be performed by a combination of a microfilter and a vibration or a combination of a baffle and a vibration. Performing both microfilters, baffles and vibrations can maximize spray pyrolysis efficiency.
  • the vibration may be performed at an amplitude of 10 mm or less in a size of 0.01 Hz to 300 KHz.
  • the vibration may preferably be 0.1 Hz to 200 KHz, more preferably 1 Hz to 100 KHz, and may be effective to maximize spray pyrolysis efficiency within this range.
  • the spray pyrolysis can be applied to various temperature conditions in a variety of ways, for example temperature conditions of 150 °C to 1960 °C under an inert gas containing oxygen or air using an atomizer, nebulize, or ultrasonic nebulizer This can be done at
  • the process temperature is preferably 200 ° C to 1500 ° C, more preferably 350 ° C to 1000 ° C range, and a small amount of oxygen is injected into the inert atmosphere such as nitrogen or argon as the process gas or optionally the external air It can be added by leaking, wherein the content of oxygen is 100ppm to 10% (wherein% is the weight percentage of oxygen based on the content of inert atmosphere), preferably 200ppm to 5%, more preferably 400ppm to It may be 0.5%, and it is possible to prevent the production of vanadium-based oxides having unwanted oxidation water within this range.
  • the vanadium-based hollow particles formed in the spray solution manufacturing step, or a monoclinic crystal structure formed in the spray pyrolysis step and has a particle size of 200nm or less to support the vanadium-based particles in the hollow material; may further include a.
  • the monoclinic crystal structure may preferably have a particle size of 10 nm to 200 nm, more preferably 150 nm or less, even more preferably 10 nm to 100 nm or less.
  • the phase transition temperature (T c , which may be referred to as switching temperature) of tungsten-doped vanadium dioxide prepared in hollow silica is significantly lowered around a certain temperature, such as around 40 ° C.
  • the phase transition can be made for the material.
  • the phase transition temperature (T c ) of the tungsten-doped vanadium dioxide may be, for example, 20 to 70 ° C, preferably 22 to 60 ° C, more preferably 24 to 50 ° C.
  • Synthesized vanadium-based hollow particles may be black, yellow or in the middle.
  • thermochromic vanadium-based hollow particles described above, and 10% to 80% lower than the transmittance at a low transmittance at a high temperature of light energy transmittance according to the external temperature change Paper provides an optical insulating material having a band.
  • the light energy transmitted here is defined as follows.
  • the transmittance of light energy according to the external temperature change is defined as follows.
  • T1 means a low temperature of the switching temperature
  • T2 means a high temperature of the switching temperature
  • the switching temperature as a reference of the T1 can be designed within 25 to 68 °C depending on the intended use
  • T1 The low temperature at means below the designed switching temperature and the high temperature at T2 means above the designed switching temperature.
  • the light source may be a light source having 500 nm to 100000 nm including sunlight.
  • the optical product includes an optical hard coating film having infrared absorption and reflection performance, a paint outer layer, a paint containing vanadium dioxide, glass embedded with vanadium dioxide, a fiber containing vanadium dioxide, and vanadium dioxide. It may be a transparent or translucent protective layer, and the insulating material may be paint, window coating paper polymer, or the like.
  • Particle application to the paint may be provided as a hydrophobic polymer layer containing the particles that protect the periphery of the paint layer from ultraviolet absorption.
  • the hydrophobic polymer herein refers to a material having a contact angle between the flat polymer sample and water exceeding 70 °.
  • the hydrophobic layer requires an additional surface treatment for hydrophobic, for example, to add fluorocarbon, hydrocarbon, polyhydroxyl, metal oxide, and the like. In fact, at low temperatures, infrared rays are absorbed by the paint layer or building walls, but at high temperatures, infrared rays are reflected, and some of them are absorbed so that infrared rays do not reach the paint layers and building walls.
  • Infrared rays are absorbed by the hydrophobic layer containing particles. Even though the hollow structure has low thermal conductivity, heat absorbed through infrared rays may not be easily transferred to the lower paint layer, and may also have an advantage of preventing contamination since it has hydrophobic characteristics.
  • the weak ball mill process may be replaced with a weak physical process that is not subjected to stress.
  • the ball mill process is used as a ball material using a polymer, glass, ceramic or metal balls such as Teflon, PMMA, the size of the ball 20 ⁇ m to 5cm, preferably 10 ⁇ m to 1cm, more preferably 500 ⁇ m to 500mm
  • the rotational speed of the ball mill may be carried out under 10rpm to 1000rpm, preferably 30rpm to 700rpm, more preferably 50rpm to 500rpm conditions.
  • a spray solution containing a vanadium pentoxide concentration of 0.001 M to 1.0 M as the vanadium precursor and a concentration of 0.01 M to 5 M of the nitric acid as the reducing agent was prepared.
  • the spray solution was reduced to VO 4+ by stirring (23 ° C. to 87 ° C., 100 rpm to 5000 rpm, 30 minutes to 36 hours condition), and the color of the reaction solution was found to change from yellow to blue.
  • hollow silica of 5 nm to 1000 nm was dispersed so that the vanadium precursor was adsorbed onto the silica surface.
  • the sprayed solution having a controlled droplet size was spray pyrolyzed at 150 ° C. to 196 ° C. under a nitrogen atmosphere containing 100 ppm to 10% of O 2 using an atomizer (ultra sonic nebulizer) to obtain a particle size of 10 ⁇ m.
  • a vanadium-based hollow particle having a degree of D 50 of about 840 nm and a Dmax of about 9450 nm was prepared.
  • various nanodot and sponge structures shown in FIG. 2 were provided under the following temperature condition control.
  • the structures (e) and (g) are obtained by controlling the content of thermally decomposable polymers, salts, nitric acid (or oxalic acid), and the ratio of vanadium and polymer (or salt, nitric acid (or oxalic acid)) is
  • the hollow structure (nano dot size: 5 nm to 50 nm) shown as (g) was produced in the case of the weight ratio of 5: 1 to 1: 2, and the sponge phase shown as (e) when the ratio was the weight ratio exceeding 1: 2 ( A hollow structure (with an air trap) was created.
  • Figure 3 is a milling formed in a weak ball mill process of hollow vanadium oxide of spherical structure (ball size 500 ⁇ m to 500 m, ball mill rotation speed of 50 rpm to 500 rpm) as an embodiment of the technology disclosed herein
  • a hollow vanadium oxide having a flattened flat structure the left side of which is a diagram of magnification ⁇ 10000, and the right side of the figure corresponds to a diagram of magnification ⁇ 5000.
  • FIG. 4 is a diagram illustrating an XRD spectrum as one embodiment of the technique disclosed herein, wherein the maximum of the strongest reflection (major reflection) is the largest of the strongest reflection (major reflection) of 2 theta 25 ° to 2 theta 30 °.
  • the maximum of one additional reflection or the maximum of multiple additional reflections (second reflection) is in the range of 2 theta 35 ° to 2 theta 39 ° and the maximum or multiple additional reflections of another additional reflection (the second reflection) 3 reflection) is in the range of 2 theta 53 ° to 2 theta 57 ° and the intensity ratio of each second reflection to the main reflection is 0.05 or more.
  • Obtained bracket Particle BET Specific surface area is Hollow Particles 2m 2 / g to 10m 2 / g, the hollow has a sponge structure Particles 15 m 2 / g to 100m 2 Of g 2m mixed particles 2 / g to 100m 2 / g.
  • Example 1 was repeated, except that tungsten was included as a doping material within the range of 1 to 3 wt%, and the light energy transmittance of the obtained particles was repeated. Is shown in FIG. 5.
  • FIG. 5 shows a thermochromic effect in which vanadium-based hollow particles provided as an embodiment of the technology disclosed herein are 10% to 80% lower than the transmittance at low temperatures at high temperatures depending on the external temperature.
  • the phase transition temperature (T c , switching temperature) of the tungsten-doped vanadium dioxide exhibits a difference in light energy transmittance of 20% or more at 33 ° C. and 43 ° C. within a range of 24 to 50 ° C. It could be confirmed that the material Mick.
  • FIG. 6 As a hydrophobic layer application on a paint layer, such as a building exterior wall, FIG. 6 is presented.
  • Figure 6 applies the provided vanadium-based hollow particles as the outer hydrophobic layer of the paint layer, due to the reduced thermal conductivity can not only be blocked before the infrared rays are absorbed by the paint layer, it can also provide an antifouling effect by hydrophobic.
  • heat insulation (heat shielding) characteristics were measured according to temperature and prepared in FIG. 7. As shown in FIG. 7, the substantial heat shielding effect ranged from 5 ° C to 10 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

바나듐계 파티클로서, 상기 파티클은 구형 구조의 중공(hollow) 바나듐 옥사이드, 밀링된 편평상 구조의 중공 바나듐 옥사이드, 및 파쇄된 플랫상 구조의 중공 바나듐 옥사이드 중에서 적어도 하나의 바나듐 옥사이드를 포함하고, 여기서 상기 중공은 비어있는 구조이거나, 혹은 스펀지 구조를 갖고, 상기 적어도 하나의 바나듐 옥사이드를 구성하는 껍질의 두께는 150nm 이하인 바나듐계 중공 파티클을 제공한다.

Description

바나듐계 중공 파티클
본 명세서에 개시된 기술은 바나듐계 중공 파티클 관련 기술에 관한 것이다. 바나듐계 중공 파티클에 관한 것으로서, 보다 상세하게는 바나듐계 산화물을 중공과 원하는 나노 사이즈의 막 두께를 갖는 구형 파티클로서 파티클의 중공의 형태에 따라 계란 껍질(탁구공)처럼 속이 빈 내부 구조를 가진 구형 중공이나 스펀지처럼 얽힌 내부 구조를 가진 중공 파티클을 포함하며, 중공 구조로 인하여 열 전도도가 낮아지는 잇점(장점)이 있으며 구형 자체로 사용할 수도 있고, 구형 파티클을 밀링을 이용한 파쇄 가공시 계란 껍질(탁구공) 형태의 중공 파티클은 판상형태로 깨어지고 스폰지와 같은 내부 구조를 갖는 파티클은 판상위에 나뭇가지처럼 얽힌 에어 트랩을 갖으며, 얇은 막의 두께로 인하여 100 nm 이상의 파티클로도 평균 입경이 100nm 이하인 바나듐계 파티클과 흡사한 적외선에 대한 투과성, 낮아진 열전도도, 외부로부터 직접적인 열 전달이나 열 손실을 줄이고 단열 효과를 부여할 수 있는 바나듐계 중공 파티클 관련 기술에 관한 것이다.
금속산화물 중공입자는 금속산화물 또는 고분자 재료에서 출발한 것으로서, 주로 약물, 화장품, 염료, 잉크 등의 수송체와 촉매 등의 분야에 응용되고 있다. 특히, 바나듐계 산화물의 경우 이중의 스위칭 온도를 제공할 수 있어 적외선과 전기의 활용에 대한 선택폭이 넓어져 분말 등의 형태로 실질적인 온도 조건하에서 스마트 윈도우 또는 자동차 유리용 코팅 등 다양한 분야에 적용 가능성이 개시되었다.
상기 바나듐계 산화물을 100nm 이하 등의 나노 수준으로 제공할 경우 적용처 범위는 매우 넓어질 수 있을 것이나, 기타 금속산화물과는 달리 일반적인 분무열분해(spray pyrolysis)를 통해서는 구현이 어려운 단점을 갖는다. 즉, 분무열분해 공정과 같은 기상합성법의 경우에는 노즐을 통하여 전구체의 액적을 발생시키게 되는데, 발생하는 액적의 크기가 수 마이크론(micron) 이므로 100nm 이하의 나노중공입자를 제조하기 어려울 뿐 아니라 추가적으로 바나디움 산화물의 경우 V2O3, V2O5, V6O11,VO2(A상), VO2(B상) 20개 이상 형태의 옥사이드 형태로 존재하며 써모크로믹(thermochromic)을 갖는 VO2(M상-Monoclinic 상)은 특정한 환경에서만 제조되므로 현재까지 대량 생산이 불가능한 것으로 알려져 왔다. 2006년 Bonex Wakufwa Mwakikunga 등이 처음으로 대량생산이 가능한 울트라소닉 네뷸라이져 스프레이 ㅍ피롤리시스(tra sonic nebulizer Spray pyrolysis)로 VO2를 제조하였으나 순수한 M상을 얻지 못하였고 VO2외 다른 옥사이드 형태 V2O3, V2O5 등이 대량 공존하며 그들이 제시한 데이터는 4~7% 이내의 낮은 써모크로믹 특성을 보여 스프레이 피롤리시스로 VO2(M상) 제조의 한계를 보여주었다. 이후 스프레이 피롤리스로 VO2(M상) 제조는 학계에서 더 이상 시도되지 않았으며 Yangfeng Gao 등은 최근 Review를 통하여 VO2(M 상)의 대량 생산가능한 기술이 없다고 평가하였다.
Bonex Wakufwa Mwakikunga 등은 바나듐 트리클로라이드와 혼합된 ammonium meta-vanadate, NH4VO3 + VCl3(coded AMVC)의 화학반응을 이용하여 준비한 전구체를 사용한 스프레이 피롤리시스를 시도하였으나 VO2 이외에 V2O3 등이 포함되었고, 벌크한 VO2(M상)을 밀링 등 심각한 스트레스를 주어 파쇄하여 100nm 이하로 만들 경우 lattice 구조가 변하여 기능을 잃게 된다. 이는 특히 바나듐계 산화물의 두께가 100nm 이상일 경우 반도체 특성을 갖는 구조의 적외선 투과도가 급격히 감소하기 때문으로 사료된다.
바나듐계 산화물을 파티클로 제공시 상술한 사이즈에 대한 단점뿐 아니라, 적외선 투과시 차단이 반사와 흡수의 두 가지 루트로 이루어지는데 이때 흡수된 적외선이 열의 형태로 파티클을 통해 건축, 자동차, 기계, 전자제품 구조물 혹은 외관 케이스 형태의 내부로 전달되는 점 또한 해결하여야 할 제약사항에 해당하며, 이를 함께 해결할 수 있는 기술에 대한 연구가 필요한 실정이다.
[선행문헌 정보]
미국등록특허 4,401,690호 및 미국등록특허 5,427,763호
본 명세서에 개시된 기술은 상기 문제점을 해결하기 위하여 제안된 것으로, 바나듐계 산화물을 중공과 원하는 나노 사이즈의 막 두께를 갖는 파티클로서 구형 구조의 중공(hollow) 바나듐 옥사이드를 제공하되 중공의 형태에 따라 판상 또는 스펀지 형태로 제공하면서, 평균 입경이 100nm 이하인 바나듐계 파티클과 흡사한 적외선에 대한 투과성, 낮아진 열전도도, 외부로부터 직접적인 열 전달이나 열 손실을 줄이고 단열 효과를 부여할 수 있는 바나듐계 중공 파티클 관련 기술을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 명세서에 개시된 기술의 일 구현예에 따르면, 바나듐계 파티클로서, 상기 파티클은 구형 구조의 중공(hollow) 바나듐 옥사이드, 밀링된 편평상 구조의 중공 바나듐 옥사이드, 및 파쇄된 플랫상 구조의 중공 바나듐 옥사이드 중에서 적어도 하나의 바나듐 옥사이드를 포함하고, 여기서 상기 중공은 비어있는 구조이거나, 혹은 스펀지 구조를 갖고, 상기 적어도 하나의 바나듐 옥사이드를 구성하는 껍질의 두께는 150nm 이하인 바나듐계 중공 파티클을 제공한다.
또한 본 명세서에 개시된 기술의 일 구현예에 따르면, 바나듐 전구물질과 환원제를 포함하는 분무 용액 제조단계; 및 분무 용액을 O2 함유 분위기 하에 분무 열분해하는 단계;를 포함하는 바나듐계 중공 파티클의 제조방법을 제공한다.
본 명세서에 개시된 기술의 일 구현예에 따르면, 상술한 바나듐계 중공 파티클을 포함하고 외부 온도 변화에 따른 빛에너지 투과도가 10% 내지 80% 대역을 갖는 광학 단열 재료를 제공한다.
본 명세서에 개시된 기술에 따르면, 구형 중공인 파티클이며 내부 구조가 탁구공처럼 속이 깨끗하게 빈 구조 또는 구형 중공이나 내부가 이를 파쇄한 판상 구조나 스폰지와 같은 구형 중공 파티클이 파쇄되어 판상위에 나뭇가지 형태의 에어 트랩(air trap)을 갖는 스폰지와 같은 구조를 띠고 막 두께 제어로 외부 IR 스위칭 층을 갖는 바나듐계 중공 파티클을 제공함으로써 다음과 같은 효과를 제공할 수 있다:
1. 100nm 이하의 얇은 막으로 인하여 제조가 용이한 100 nm 이상의 크기를 갖는 파티클 등 제조가 용이한 큰 사이즈의 바나듐계 중공 파티클을 사용하여 100nm 사이즈의 바나듐 파티클과 흡사한 써모크로믹 효과를 발휘할 수 있으므로 대량 생산이 가능하다.
2. 열 전도도를 낮추어 선택적인 열 흡수를 제공할 수 있다.
3. 외부로부터 직접적인 열 전달이나 열 손실을 줄이고 단열 효과를 부여할 수 있다. 구체적인 예로, 페인트나 창문 코팅지 폴리머 등에 첨가되어 경화시 구조적인 특성으로 인하여 낮은 열 전도도를 제공할 수 있어 외부로부터 열 전달 혹은 열 손실을 줄이고 저온에서는 전 파장의 태양광선을 내부로 유입하다가 써모크로믹 효과로 인하여 고온 환경에서만 적외선 영역의 빛을 선택적으로 차단할 수 있다.
4. 상기 외부 IR 스위층 층에 소수성(hydrophobic) 기능을 추가함으로써 층의 오염 또한 효과적으로 방지할 수 있다.
5. 상기 파티클은 얇은 막을 갖거나 나노 도트가 연결된 얇은 구조를 가지므로 많은 스트레스를 가하지 않고 파쇄할 수 있으므로 밀링시 lattice 구조가 변하지 않는 잇점을 제공할 수 있다.
도 1은 본 명세서에 개시된 기술의 일 구현예로서 수득된 바나듐계 중공 파티클의 사이즈의 평균 입경과 누적 계수를 나타낸 도면이다.
도 2은 본 명세서에 개시된 기술의 일 구현예로서 수득된 바나듐계 중공 파티클의 모폴로지를 나타낸 도면으로서, (a) 내지 (d)는 나노 도트 형상을 갖거나 갖지않는 파티클 표면을 도시한 사진이고, (e) 및 (f)는 파티클의 내부 스펀지 구조 혹은 완전히 비어있는 구조를 도시한 도면으로, (f)를 통해 바나듐 옥사이드를 구성하는 껍질의 두께는 150nm 이하인 것을 확인할 수 있다.
도 3은 본 명세서에 개시된 기술의 일 구현예로서 구형 구조의 중공(hollow) 바나듐 옥사이드의 약한 볼밀 공정으로 형성된 밀링된 편평상 구조의 중공 바나듐 옥사이드를 도시한 도면으로 좌측은 배율x10000의 도면이고, 우측은 배율x5000의 도면에 해당한다.
도 4는 본 명세서에 개시된 기술의 일 구현예로서 XRD 스펙트럼을 도시한 도면으로, 가장 강한 반사(주요 반사)의 최대가 2 쎄타 25° 내지 2 쎄타 30°의 범위에 있고 하나의 추가적인 반사의 최대 또는 다수의 추가적인 반사(제2 반사)의 최대가 2 쎄타 35° 내지 2 쎄타 39°의 범위에 있고 또 하나의 추가적인 반사의 최대 또는 다수의 추가적인 반사(제3 반사)의 최대가 2 쎄타 53° 내지 2 쎄타 57°의 범위에 있고 주요 반사에 대한 각각의 제2 반사의 강도 비율이 0.05 이상을 보이는 도면이다.
도 5는 본 명세서에 개시된 기술의 일 구현예로서 제공된 바나듐계 중공 파티클이 외부 온도에 따라 높은 온도에서 투과도가 낮은 온도 때의 투과도보다 10%~80% 낮아지는 써모크로믹(thermochromic) 효과를 보이는 도면이다.
도 6은 본 명세서에 개시된 기술의 일 구현예로서 제공된 바나듐계 중공 파티클을 페인트층의 외부 하이드로포빅 레이어로서 적용한 것으로, 저감된 열전도도로 인하여 적외선이 페인트층에 흡수되기 전에 차단 기전을 보이는 도면이다.
도 7은 본 명세서에 개시된 기술의 일 구현예로서 제공된 바나듐계 중공 파티클을 일반 페인트에 포함시킨 경우 시간 경과별 온도 변화에 따른 단열(차열)효과를 대비한 그래프이다.
평한 모양을 가진 편상은 반사시 일정한 방향으로 반사할 수 있기 때문이다. 이는 막대 형태나 피라미드 등 다른 형태로부터 얻기 어려운 효과에 해당한다. 제조의 편의상 계란 껍질이 깨어진 편상 구조는 나노 도트의 경계가 희미한 구형 구조의 바나듐 옥사이드 혹은 편평상 구조의 중공 바나듐 옥사이드를 이용하는 것이 바람직하다. 상기 적어도 하나의 바나듐 옥사이드는 이산화바나듐, 삼산화바나듐, 사산화바나듐, 및 오산화바나듐 중에서 선택된 1종 이상일 수 있고, 이산화바나듐인 것이 써모크로믹 효과와 저 열전도도 효과를 함께 제공할 수 있어 바람직하다.
상기 적어도 하나의 바나듐 옥사이드는 중공상 실리카, 카본 스피어(carbon sphere), 폴리메틸메타크릴레이트(PMMA) 비드, 나노 슈가(nano suger), 중공상 TiO2 등과 같은 바이오 템플레이트, 중공상 금속 산화물 혹은 고분자 비드에 담지된 것일 수 있다.
본 명세서에 개시된 기술의 다른 구현예에 따르면, 바나듐 전구물질과 환원제를 포함하는 분무 용액 제조단계; 및 분무 용액을 O2 함유 분위기하에 분무 열분해하는 단계;를 포함하는 써모크로믹 바나듐계 파티클의 제조방법을 제공할 수 있다.
상기 분무 용액은 오산화바나듐, 바나딜클로라이드, 바나딜설페이트 및 그 수화물 중에서 선택된 1종 이상의 바나듐 전구물질 농도 0.001M 내지 1.0M과 히드라진, 옥살산, 소듐 보로하이드라이드, 차아황산나트륨, 티오황산나트륨, 질산, 염산, 황산, 초산 및 그 염 혹은 수화물 중에서 선택된 1종 이상의 환원제 농도 0.01M 내지 5M을 포함하고 환원된 바나듐 화합물을 포함하는 것일 수 있다.
상기 바나듐 전구물질 농도는 0.1M 내지 4M, 혹은 0.2M 내지 1M 범위 내일 수 있고, 상기 환원제 농도는 0.01M 내지 5M, 바람직하게는 0.05M 내지 3M, 더욱 바람직하게는 0.1M 내지 2M 범위 내일 수 있다.
상기 분무 용액은 Ti, Zr, Mo, Nb, Tc, Ru, Rh, Fe, Pd, Sn, Sb, Te, Ce, Pr, Tb, Hf, Ta, Rs, Os, Ir, Pt, 및 Sm 중에서 선택된 1 이상의 도핑 물질을 필요에 따라 더 포함할 수 있다. 상기 도핑 물질은 일례로, 바나듐 전구물질의 함량 기준으로 0.01 내지 10wt%, 바람직하게는 0.1 내지 7wt%, 더욱 바람직하게는 0.2 내지 5wt% 범위로 포함될 수 있다.
상기 분무 용액은 15 내지 98℃, 20 내지 95℃, 혹은 23 내지 87℃에서 10 내지 40000rpm, 50 내지 10000rpm, 혹은 100 내지 5000rpm의 속도로 10분 내지 72시간, 20분 내지 48시간 혹은 30분 내지 36시간 동안 교반하는 단계를 포함할 수 있다.
상기 분무 용액은 액적(droplet) 사이즈를 제어하는 단계를 더 포함할 수 있다. 상기 액적 사이즈 제어는 이에 특정하는 것은 아니나 일례로 마이크로필터, 배플, 진동 등으로 수행할 수 있고, 바람직하게는 마이크로필터와 진동의 조합, 혹은 배플과 진동의 조합으로 수행할 수 있으며, 더욱 바람직하게는 마이크로필터와 배플 및 진동을 모두 수행하는 것이 분무 열분해 효율을 극대화할 수 있다.
상기 진동은 일례로 0.01Hz 내지 300 KHz 사이즈를 진폭 10mm 이하로 수행할 수 있다. 상기 진동은 바람직하게는 0.1Hz 내지 200 KHz, 보다 바람직하게는 1Hz 내지 100KHz일 수 있고, 이 범위 내에서 분무 열분해 효율을 극대화하기에 효과적일 수 있다.
상기 분무 열분해는 다양한 방식으로 다양한 온도 조건을 적용할 수 있는 것으로, 일례로 아토마이저, 네뷸라이즈, 또는 울트라소닉 네뷸라이저를 사용하여 산소 혹은 공기를 포함하는 불활성 가스 하에 150℃ 내지 1960℃의 온도 조건에서 수행할 수 있다. 상기 공정 온도는 바람직하게는 200℃ 내지 1500℃, 보다 바람직하게는 350℃ 내지 1000℃ 범위를 적용할 수 있고, 공정가스로는 질소나 아르곤 등의 불활성 분위기에 소량의 산소를 주입하거나 혹은 임의로 외부공기를 누설시켜 추가할 수 있는 것으로, 여기서 산소의 함량은 100ppm 내지 10%(여기서 %는 불활성 분위기 함량을 기준으로 한 산소의 중량%이다), 바람직하게는 200ppm 내지 5%, 보다 바람직하게는 400ppm 내지 0.5%일 수 있고, 이 범위 내에서 원치않는 산화수를 갖는 바나듐계 산화물의 생성을 막을 수 있다.
상기 분무 용액 제조 단계에서 형성된 바나듐계 중공 파티클, 혹은 분무 열분해 단계에서 형성된 단사정계의 결정구조를 갖고 입자 크기가 200nm 이하인 바나듐계 파티클을 중공상 물질에 담지하는 단계;를 더 포함할 수 있다. 상기 단사정계 결정구조는 바람직하게는 10nm 내지 200nm, 보다 바람직하게는 150nm 이하, 보다 더 바람직하게는 10nm 내지 100nm 이하의 입자크기를 갖는 것일 수 있다.
일례로, 중공상 실리카에 제조된 텅스텐 도핑된 이산화바나듐의 상전이 온도(Tc, 스위칭 온도라 칭할 수 있음)는 특정 온도 부근, 예컨대 약 40℃ 부근으로 현저히 낮춰져 적외선에 대한 투과 및 반사 특성을 가지는 재료에 대한 상전이가 이루어질 수 있다.
상기 텅스텐 도핑된 이산화바나듐의 상전이 온도(Tc)는 일례로 20 내지 70℃, 바람직하게는 22 내지 60℃, 보다 바람직하게는 24 내지 50℃일 수 있다. 합성된 바나듐계 중공 파티클은 검은색, 황색 또는 그 중간의 색을 띨 수 있다.
본 명세서에 개시된 기술의 다른 구현예에 따르면, 상술한 써모크로믹 바나듐계 중공 파티클을 포함하고 외부 온도 변화에 따른 빛에너지 투과도가 높은 온도에서 투과도가 낮은 온도 때의 투과율보다 10% 내지 80% 낮아지는 대역을 갖는 광학 단열 재료를 제공한다.
여기서 투과되는 빛에너지는 다음과 같이 정의된다.
Figure PCTKR2016011154-appb-I000001
(iλ는 이산화바나듐 복합체를 투과하는 빛의 spectral irradiance을, 그리고 Tλ는 특정 파장에서의 이산화바나듐 복합체의 transmittance를 의미한다)
외부 온도 변화에 따른 빛에너지의 투과정도는 다음과 같이 정의된다.
(E(T1)-E(T2))/E(T1)*100
(T1은 스위칭 온도 중 저온을 의미하고, T2는 스위칭 온도 중 고온을 의미한다) 참고로, 상기 T1,T2의 기준이 되는 스위칭 온도는 사용되는 용도에 따라 25 내지 68℃ 내로 설계가능한 것으로, T1에서 저온이란 설계된 스위칭 온도 미만을 의미하며 T2에서 고온이란 설계된 스위칭 온도이상을 의미한다.
상기 빛의 광원은 태양빛을 포함한 500nm 내지 100000nm을 가지고 있는 광원이 될 수 있다. 특히, 상기 광학 제품은 적외선 흡수 및 반사 성능을 갖는 광학 하드 코팅 필름, 페인트 외부층, 이산화바나듐을 포함한 페인트, 이산화바나듐이 임베드(embed)된 유리, 이산화바나듐이 함유된 섬유, 이산화바나듐이 포함된 투명 혹은 반투명 보호층일 수 있고, 상기 단열 재료는 페인트, 창문 코팅지 폴리머등 일 수 있다.
상기 페인트에 파티클 적용은 페인트층의 외곽을 자외선 흡수로부터 보호하는 해당 파티클이 포함된 하이드로포빅 폴리머 레이어로서 제공될 수 있다. 여기서 하이드로포빅 폴리머란 평평한 폴리머샘플과 물과의 접촉각(Contact angle)이 70°를 초과하는 물질을 의미한다. 상기 하이드로포빅 레이어는 하이드로 포빅을 위한 추가 표면 처리가 필요한 것으로, 일례로 플루오로카본, 하이드로카본, 폴리히드록실, 메탈 옥사이드 등을 추가하는 것이다. 실제로 저온에서는 적외선을 통과시켜 적외선이 페인트층이나 건물 벽에 흡수되지만, 고온에서는 적외선을 반사, 일부는 흡수하여 적외선이 페인트층 및 건물 벽에 도달되지 못하는데 파티클을 포함하는 하이드로 포빅층에 적외선이 흡수되더라도 열 전도도가 낮은 중공 구조이므로 적외선을 통해 흡수된 열이 하단 페인트층에 쉽게 전달되지 않을 뿐 아니라 하이드로포빅 특성을 가지므로 오염을 방지하는 장점도 갖을 수 있다.
또한 편평상 구조의 중공 바나듐옥사이드를 제조하도록 약한 볼밀 공정을 더 포함할 수 있다. 이때 상기 약한 볼밀 공정은 스트레스가 가해지지 않는 약한 물리적 공정으로 대체할 수 있다. 이때 사용하는 볼밀 공정은 볼 재질로서 테플론이나 PMMA등 폴리머 내지 유리와 세라믹 또는 Metal 볼을 이용하고, 볼의 사이즈는 20㎛ 내지 5cm, 바람직하게는 10㎛ 내지 1cm, 더욱 바람직하게는 500㎛ 내지 500mm를 이용하며, 볼밀의 회전속도는 10rpm 내지 1000rpm, 바람직하게는 30rpm 내지 700rpm, 더욱 바람직하게는 50rpm 내지 500rpm 조건하에 수행할 수 있다.
이하 본 명세서에 개시된 기술을 구체적인 실시예들을 들어 설명하고자 하나, 하기 실시예는 예시하는 것일 뿐 본 명세서에 개시된 기술의 기술적 사상이 이하의 실시예들에 의해 제한되는 것은 아니고 다양한 변경 및 수정이 가능함은 당업자에게 있어 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
<실시예 1 내지 6, 비교예1>
<구형 구조의 바나듐계 옥사이드의 제조>
바나듐 전구물질로서 오산화바나듐 농도 0.001M 내지 1.0M과 환원제로서 질산 농도 0.01M 내지 5M을 포함하는 분무 용액을 제조하였다. 상기 분무 용액은 교반(23℃ 내지 87℃, 100rpm 내지 5000rpm, 30분 내지 36시간 조건)에 의해 VO4+로 환원되었고, 반응된 용액의 색은 노란색에서 푸른색으로의 변색을 확인하였다. 그런 다음 선택 공정으로서, 5nm 내지 1000nm의 중공형 실리카를 분산하여 실리카 표면에 바나듐 전구물질이 흡착되도록 하였다.
<분무 열분해>
수득된 액적 사이즈가 제어된 분무 용액을 아토마이져(atomizer, 울트라소닉 nebulizer)을 사용하여 O2 100ppm 내지 10% 함유 질소 분위기하에 150℃ 내지 196℃ 에서 분무 열분해하는 단계를 거쳐 입자 크기가 10㎛ 정도, D50 대략 840nm, Dmax 대략 9450nm인 바나듐계 중공 파티클을 제조하였다.
구체적으로, 도 2에 도시한 다양한 나노도트와 스펀지 구조는 다음과 같은 온도 조건 제어로 제공하였다. (a): 200 내지 500℃, (b):300 내지 600℃, (c):400 내지 700℃, (d)600℃ 이상.
참고로, (e) 구조와 (g) 구조는 열 분해가능한 폴리머, 염, 질산(혹은 옥살산)의 함량을 조절하여 수득된 것으로, 바나듐과 폴리머(또는 염, 질산(혹은 옥살산))의 비율이 5:1 내지 1:2의 중량비인 경우 (g)로서 도시한 중공 구조(나노 도트 사이즈: 5nm 내지 50nm)가 생성되었고, 비율이 1:2 초과 중량비인 경우 (e) 로서 도시한 스펀지상(에어 트랩을 갖는) 중공 구조가 생성되었다.
도 3은 본 명세서에 개시된 기술의 일 구현예로서 구형 구조의 중공(hollow) 바나듐 옥사이드의 약한 볼밀 공정으로(테프론 재질의 볼 사이즈 500㎛ 내지 500m, 볼밀의 회전속도 50rpm 내지 500rpm 조건)으로 형성된 밀링된 편평상 구조의 중공 바나듐 옥사이드를 도시한 도면으로 좌측은 배율x10000의 도면이고, 우측은 배율x5000의 도면에 해당한다.
제조된 (a)구조에 대한 XRD 스펙트럼을 도 4에 도시하였다. 도 4는 본 명세서에 개시된 기술의 일 구현예로서 XRD 스펙트럼을 도시한 도면으로, 가장 강한 반사(주요 반사)의 최대가 가장 강한 반사(주요 반사)의 최대가 2 쎄타 25° 내지 2 쎄타 30°의 범위에 있고 하나의 추가적인 반사의 최대 또는 다수의 추가적인 반사(제2 반사)의 최대가 2 쎄타 35° 내지 2 쎄타 39°의 범위에 있고 또 하나의 추가적인 반사의 최대 또는 다수의 추가적인 반사(제3 반사)의 최대가 2 쎄타 53° 내지 2 쎄타 57°의 범위에 있고 주요 반사에 대한 각각의 제2 반사의 강도 비율이 0.05 이상을 보이는 도면이다.
이로써 본 명세서에 따라 스프레이로 파이롤리시스로 제조되면서 순수하게 VO2(M상)을 갖는 파티클(즉, 중공 구조를 가지며 XRD 분석으로 VO2(M상)외 피크가 포함되지 않음)을 제조할 수 있는 것을 확인하였다.
수득된 파티클의 BET 비표면적은 중공이 비어있는 파티클이 2m 2 /g 내지 10m 2 /g이고, 중공이 스펀지 구조를 갖는 파티클이 15m 2 /g 내지 100m 2 / g이고 , 혼합 파티클이 2m 2 /g 내지 100m 2 /g이었다.
<텅스텐 도핑 실험>
나아가 실시예1의 <구형 구조의 바나듐계 옥사이드의 제조>에서 텅스텐을 도핑물질로서 1 내지 3wt% 범위 내에서 포함한 것을 제외하고는 실시예 1과 동일한 공정을 반복하고 수득된 파티클에 대한 빛에너지 투과도를 도 5에 도시하였다. 도 5는 본 명세서에 개시된 기술의 일 구현예로서 제공된 바나듐계 중공 파티클이 외부 온도에 따라 높은 온도에서 투과도가 낮은 온도 때의 투과도보다 10%~80% 낮아지는 써모크로믹(thermochromic) 효과를 보이는 도면으로서, 도 5를 참조하면, 상기 텅스텐 도핑된 이산화바나듐의 상전이 온도(Tc, 스위칭 온도)는 24 내지 50℃ 범위 내인 33℃와 43℃에서 20% 이상의 빛에너지 투과도 차이를 발휘하여 써모크로믹 물질임을 확인할 수 있었다.
<페인트 단열 재료로서의 적용예>
건물 외벽 등의 페인트 층 상에 하이드로포빅 레이어 적용예로서, 도 6을 제시하였다. 도 6은 제공된 바나듐계 중공 파티클을 페인트층의 외부 하이드로포빅 레이어로서 적용한 것으로, 저감된 열전도도로 인하여 적외선이 페인트층에 흡수되기 전에 차단될 뿐 아니라 하이드로포빅에 의한 오염 방지효과를 제공할 수 있다.
또한 온도에 따른 단열(차열) 특성을 측정하고 도 7에 대비하였다. 도 7에서 보듯이, 실질적인 차열 효과는 5℃ 내지 10℃ 범위에 달하였다.
이같은 광학 재료 및 열전도도 저감에 따른 단열 재료로서의 적용예 결과는 본 명세서에 개시된 기술에 따른 바나듐계 산화물을 중공과 원하는 나노 사이즈의 막 두께를 갖는 파티클로서 제공함으로써 평균 입경이 100nm 이하인 바나듐계 파티클과 흡사한 적외선에 대한 투과성을 제공하고, 열 전도도 또한 중공 형태에 의해 낮아지므로 외부로부터 직접적인 열 전달이나 열 손실을 줄이고 단열 효과를 부여할 수 있는 것을 확인하였다.

Claims (16)

  1. 바나듐계 파티클로서, 상기 파티클은 구형 구조의 중공(hollow) 바나듐 옥사이드, 밀링된 편평상 구조의 중공 바나듐 옥사이드, 및 파쇄된 플랫상 구조의 중공 바나듐 옥사이드 중에서 적어도 하나의 바나듐 옥사이드를 포함하고,
    여기서 상기 중공은 비어있는 구조이거나, 혹은 스펀지 구조를 갖고,
    상기 적어도 하나의 바나듐 옥사이드를 구성하는 껍질의 두께는 150nm 이하인 바나듐계 중공 파티클.
  2. 제1 항에 있어서,
    상기 구형 구조의 바나듐 옥사이드는 입자 크기가 0.01㎛ 내지 10㎛이고, 평균 입경(D50)이 1000nm 이하이고, 최대 직경(Dmax)이 10㎛ 이하인 바나듐계 중공 파티클.
  3. 제1 항에 있어서,
    상기 파티클의 BET 비표면적은, 중공이 비어있는 파티클이 2m2/g 내지 10m2/g 범위 내이고, 중공이 스펀지 구조를 갖는 파티클이 15m2/g 내지 100m2/g 범위 내이고, 혼합 파티클이 2m2/g 내지 100m2/g 범위 내인 바나듐계 중공 파티클.
  4. 제1 항에 있어서,
    상기 적어도 하나의 바나듐 옥사이드는 표면에 연속 혹은 불연속하여 나노 도트가 사이즈 5nm 내지 400nm 범위 내로 형성된 바나듐계 중공 파티클.
  5. 제1 항에 있어서,
    상기 적어도 하나의 바나듐 옥사이드는 바나듐 전구물질과 환원제를 출발 물질로 하고 Ti, Zr, Mo, Nb, Tc, Ru, Rh, Fe, Pd, Sn, Sb, Te, Ce, Pr, Tb, Hf, Ta, Rs, Os, Ir, Pt, 및 Sm 중에서 선택된 1 이상의 도핑 물질을 포함하여 구성된 바나듐계 중공 파티클.
  6. 제5 항에 있어서,
    상기 바나듐 전구물질은 오산화바나듐, 바나딜클로라이드, 바나딜설페이트 및 그 수화물 중에서 선택된 1종 이상이고, 상기 환원제는 히드라진, 옥살산, 소듐 보로하이드라이드, 차아황산나트륨, 티오황산나트륨, 질산, 염산, 황산, 초산 및 그 염 혹은 수화물 중에서 선택된 1종 이상인 바나듐계 중공 파티클.
  7. 제1 항에 있어서,
    상기 밀링된 편평상 구조의 중공 바나듐 옥사이드는 가로(최장 길이),세로(최장 길이), 두께가 각각 3㎛이하, 3㎛이하, 200 nm이하인 바나듐계 중공 파티클.
  8. 제1 항에 있어서,
    상기 적어도 하나의 바나듐 옥사이드는 중공의 형태에 따라 단순 판상 구조이거나 혹은 에어 트랩이 구비된 판상 구조를 갖는 바나듐계 중공 파티클.
  9. 제1 항에 있어서,
    상기 바나듐 옥사이드는 이산화바나듐인 바나듐계 중공 파티클.
  10. 제1 항에 있어서,
    상기 적어도 하나의 바나듐 옥사이드는 바이오 템플레이트, 중공상 금속 산화물 혹은 고분자 비드에 담지된 것인 바나듐계 중공 파티클.
  11. 바나듐 전구물질과 환원제를 포함하는 분무 용액 제조단계; 및
    분무 용액을 O2 함유 분위기하에 분무 열분해하는 단계;를 포함하는 바나듐계 중공 파티클의 제조방법.
  12. 제11 항에 있어서,
    상기 분무 용액은 오산화바나듐, 바나딜클로라이드, 바나딜설페이트 및 그 수화물 중에서 선택된 1종 이상의 바나듐 전구물질 농도 0.001M 내지 1.0M과 히드라진, 옥살산, 소듐 보로하이드라이드, 차아황산나트륨, 티오황산나트륨, 질산, 염산, 황산, 초산 및 그 염 혹은 수화물 중에서 선택된 1종 이상의 환원제 농도 0.01M 내지 5M을 포함하고 환원된 바나듐 화합물을 포함하는 것인 바나듐계 중공 파티클의 제조방법.
  13. 제11 항에 있어서,
    상기 분무 용액은 Ti, Zr, Mo, Nb, Tc, Ru, Rh, Fe, Pd, Sn, Sb, Te, Ce, Pr, Tb, Hf, Ta, Rs, Os, Ir, Pt, 및 Sm 중에서 선택된 1 이상의 도핑 물질을 포함하는 바나듐계 중공 파티클의 제조방법.
  14. 제11 항에 있어서,
    상기 분무 열분해는 아토마이저, 네뷸라이즈, 또는 울트라소닉 네뷸라이저를 사용하여 산소 혹은 공기를 포함하는 불활성 가스 하에 150℃ 내지 1960℃의 온도 조건에서 수행하는 바나듐계 중공 파티클의 제조방법.
  15. 제1 항 내지 제10 항 중 어느 한 항의 파티클을 포함하고 외부 온도 변화에 따른 빛에너지 투과도가 10% 내지 80% 대역을 갖는 광학 단열 재료.
  16. 제15 항에 있어서,
    상기 재료는 광학 하드 코팅 필름, 페인트 외부층, 이산화바나듐을 포함한 페인트, 이산화바나듐이 임베드(embed)된 유리, 이산화바나듐이 함유된 섬유, 이산화바나듐이 포함된 투명 혹은 반투명 보호층인 광학 단열 재료.
PCT/KR2016/011154 2015-10-12 2016-10-06 바나듐계 중공 파티클 WO2017065451A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150142349A KR101751803B1 (ko) 2015-10-12 2015-10-12 바나듐계 중공 파티클
KR10-2015-0142349 2015-10-12

Publications (1)

Publication Number Publication Date
WO2017065451A1 true WO2017065451A1 (ko) 2017-04-20

Family

ID=58517407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011154 WO2017065451A1 (ko) 2015-10-12 2016-10-06 바나듐계 중공 파티클

Country Status (2)

Country Link
KR (1) KR101751803B1 (ko)
WO (1) WO2017065451A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676393A (zh) * 2018-05-30 2018-10-19 陈建峰 一种增透镀膜液的制备方法
CN110467230A (zh) * 2019-09-09 2019-11-19 湖北大学 相变温度可调的RuxV1-xO2合金半导体薄膜材料、制备方法及其在智能窗中的应用
CN112174207A (zh) * 2020-10-16 2021-01-05 成都先进金属材料产业技术研究院有限公司 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法
CN112209443A (zh) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 单超声雾化微波法制备m相二氧化钒的方法
CN112209440A (zh) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 制备m相二氧化钒纳米粉体的工艺方法
CN112239229A (zh) * 2020-10-19 2021-01-19 成都先进金属材料产业技术研究院有限公司 超声雾化法制备球形vo2纳米粉体的方法及装置
CN116002754A (zh) * 2022-12-13 2023-04-25 大连融科储能集团股份有限公司 一种高纯度小晶粒钒氧化物其制备方法及应用
CN113511688B (zh) * 2021-08-25 2023-05-26 杭州恒毅智创科技有限公司 一种FeVO4空心球的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102587282B1 (ko) * 2020-08-28 2023-10-12 한국세라믹기술원 나노판상체 바나듐산화물이 담지된 탈질촉매 및 그의 제조 방법
CN112209442B (zh) * 2020-10-16 2022-07-29 成都先进金属材料产业技术研究院股份有限公司 盐辅助超声热解法制备m相二氧化钒纳米粉体的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427763A (en) * 1994-04-15 1995-06-27 Mcdonnel Douglas Corp. Method for making vanadium dioxide powders
JP2010031235A (ja) * 2008-06-30 2010-02-12 National Institute Of Advanced Industrial & Technology サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク
KR101387138B1 (ko) * 2012-10-19 2014-04-21 한국세라믹기술원 중공상 실리카에 담지된 텅스텐 도핑 이산화바나듐 복합체의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427763A (en) * 1994-04-15 1995-06-27 Mcdonnel Douglas Corp. Method for making vanadium dioxide powders
JP2010031235A (ja) * 2008-06-30 2010-02-12 National Institute Of Advanced Industrial & Technology サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク
KR101387138B1 (ko) * 2012-10-19 2014-04-21 한국세라믹기술원 중공상 실리카에 담지된 텅스텐 도핑 이산화바나듐 복합체의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAWTON, STANLEY A. ET AL.: "Synthesis of Vanadium Oxide Powders by Evaporative Decomposition of Solutions", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 78, no. 1, 1995, pages 104 - 108 *
PAN, ANQIANG ET AL.: "Template-free Synthesis of VO2 Hollow Microspheres with Various Interiors and their Conversion into V205 for Lithium-ion Batteries", ANGEWANDTE CHEMIE, vol. 125, no. 8, 2013, pages 2282 - 2286 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676393A (zh) * 2018-05-30 2018-10-19 陈建峰 一种增透镀膜液的制备方法
CN110467230A (zh) * 2019-09-09 2019-11-19 湖北大学 相变温度可调的RuxV1-xO2合金半导体薄膜材料、制备方法及其在智能窗中的应用
CN112174207A (zh) * 2020-10-16 2021-01-05 成都先进金属材料产业技术研究院有限公司 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法
CN112209443A (zh) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 单超声雾化微波法制备m相二氧化钒的方法
CN112209440A (zh) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 制备m相二氧化钒纳米粉体的工艺方法
CN112174207B (zh) * 2020-10-16 2022-05-24 成都先进金属材料产业技术研究院有限公司 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法
CN112239229A (zh) * 2020-10-19 2021-01-19 成都先进金属材料产业技术研究院有限公司 超声雾化法制备球形vo2纳米粉体的方法及装置
CN113511688B (zh) * 2021-08-25 2023-05-26 杭州恒毅智创科技有限公司 一种FeVO4空心球的制备方法
CN116002754A (zh) * 2022-12-13 2023-04-25 大连融科储能集团股份有限公司 一种高纯度小晶粒钒氧化物其制备方法及应用

Also Published As

Publication number Publication date
KR20170043017A (ko) 2017-04-20
KR101751803B1 (ko) 2017-07-06

Similar Documents

Publication Publication Date Title
WO2017065451A1 (ko) 바나듐계 중공 파티클
Zhu et al. Recent advances in nanotechnology-based functional coatings for the built environment
Li et al. Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows
Tao et al. Sol-gel based antireflective coatings with superhydrophobicity and exceptionally low refractive indices built from trimethylsilanized hollow silica nanoparticles
Iskandar Nanoparticle processing for optical applications–A review
Karthik et al. High performance broad band antireflective coatings using a facile synthesis of ink-bottle mesoporous MgF2 nanoparticles for solar applications
CA2620724C (en) Coating with infrared and ultraviolet blocking characteristics
Kang et al. Transparent (NH4) xWO3 colloidal dispersion and solar control foils: Low temperature synthesis, oxygen deficiency regulation and NIR shielding ability
El Nahrawy et al. Structural investigation and optical properties of Fe, Al, Si, and Cu–ZnTiO3 nanocrystals
US8303853B2 (en) Method of producing a metallic nanoparticle inorganic composite, metallic nanoparticle inorganic composite, and plasmon waveguide
Devi et al. Solgel synthesis and structural characterization of silver-silica nanocomposites
Amin et al. Structural and optical properties of thermally annealed TiO 2–SiO 2 binary thin films synthesized by sol–gel method
Yadav et al. Synthesis of PbS–Al2O3 nanocomposites by sol–gel process and studies on their optical properties
Li et al. Selective photochromism in a self-coated WO3/WO3− x homojunction: enhanced solar modulation efficiency, high luminous transmittance and fast self-bleaching rate
Ye et al. SiO2/TiO2/Ag multilayered microspheres: Preparation, characterization, and enhanced infrared radiation property
Kim et al. Processing and characterization of porous TiO2 coatings
El-Nahhal et al. Silica, mesoporous silica and its thiol functionalized silica coated MgO and Mg (OH) 2 materials
Kim et al. Nanosheet coated dual-shell TiO2 sphere with high solar reflectance for thermal-shield materials
Du et al. One-step synthesis of SiO2 nanomesh for antireflection and self-cleaning of solar cell
KR101387138B1 (ko) 중공상 실리카에 담지된 텅스텐 도핑 이산화바나듐 복합체의 제조 방법
Shen et al. Oxygen defect-induced small polaron transfer for controlling the near-infrared absorption coefficient of hexagonal cesium tungsten bronze nanocrystals
Sakka Handbook of Advanced Ceramics: Chapter 11.1. 2. Sol–Gel Process and Applications
JP2001042144A (ja) フォトニック結晶およびフォトニック結晶層付基材
Wu et al. Hollow core-shell nanocoatings with gradient refractive index structure for enhanced photovoltaic performance
Ban et al. Fabrication of titania films by sol–gel method using transparent colloidal aqueous solutions of anatase nanocrystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 19.06.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16855668

Country of ref document: EP

Kind code of ref document: A1