WO2017064945A1 - Vehicle fuel injection device and control device - Google Patents

Vehicle fuel injection device and control device Download PDF

Info

Publication number
WO2017064945A1
WO2017064945A1 PCT/JP2016/076241 JP2016076241W WO2017064945A1 WO 2017064945 A1 WO2017064945 A1 WO 2017064945A1 JP 2016076241 W JP2016076241 W JP 2016076241W WO 2017064945 A1 WO2017064945 A1 WO 2017064945A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
delivery pipe
low
pipe
Prior art date
Application number
PCT/JP2016/076241
Other languages
French (fr)
Japanese (ja)
Inventor
将巳 中村
智行 高川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017064945A1 publication Critical patent/WO2017064945A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/54Arrangement of fuel pressure regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a vehicle fuel injection device and a control device that controls the operation of the fuel injection device.
  • a fuel injection device that includes both an in-cylinder injector that injects fuel into a cylinder of an engine and a port injector that injects fuel into an intake port.
  • This fuel injection device controls the in-cylinder injector (also referred to as “in-cylinder injector”) and the port injector (also referred to as “intake passage injector”) according to the operating state, The fuel can be injected by combining the internal fuel injection and the internal port fuel injection.
  • the fuel injection ratio by the intake manifold injector may increase, and the fuel injection ratio by the in-cylinder injector may decrease accordingly. For this reason, the amount of fuel flowing through the high-pressure fuel system decreases or the flow rate becomes completely zero.
  • the high-pressure fuel pump increases the pressure of the low-pressure fuel. Since this high-pressure fuel pump is attached to the cylinder head, the amount of heat received from the internal combustion engine tends to be large.
  • a high-pressure pump that pressurizes fuel to be supplied to an in-cylinder injector includes a detour that can supply fuel supplied to the high-pressure pump to the port injector when the in-cylinder injector is stopped. Is disclosed. With this configuration, it is possible to prevent the fuel from staying in the high-pressure pump even when the in-cylinder fuel injection is not performed. Therefore, the fuel can be made difficult to receive heat from the engine, and the temperature of the fuel can be suppressed.
  • Patent Document 1 since the fuel injection device described in Patent Document 1 needs to provide a detour in the high-pressure pump in order to suppress the high temperature of the fuel, a pump having a special structure is necessary and lacks versatility. There is a demand for a fuel injection device that can suppress the high temperature of the fuel with a simpler configuration.
  • the present disclosure has been made in view of such problems, and an object of the present disclosure is to provide a fuel injection device for a vehicle that can suitably suppress an increase in fuel temperature and a control device that controls the operation of the fuel injection device. There is to do.
  • a fuel tank that stores fuel, a low-pressure pump that discharges fuel in the fuel tank, and a port that injects fuel into an intake port of an engine mounted on a vehicle
  • a low-pressure delivery pipe that has an injection unit and supplies fuel discharged from the low-pressure pump to the port injection unit; a high-pressure pump that pressurizes and discharges fuel discharged from the low-pressure pump; and a cylinder of the engine
  • a high-pressure delivery pipe for supplying fuel discharged from the high-pressure pump to the in-cylinder injection section; and from the fuel tank to the intake port via the low-pressure delivery pipe Is connected between the low pressure fuel system and the high pressure delivery pipe, and the fuel inside the high pressure delivery pipe can be discharged to the low pressure fuel system
  • a fuel injection device and a discharge pipe configured to allow increasing the discharge amount of the high-pressure pump.
  • fuel is stored in a fuel tank that stores fuel, a low-pressure pump that discharges fuel in the fuel tank, and an intake port of an engine mounted on the vehicle.
  • a low-pressure delivery pipe having a port injection unit for injecting, and supplying fuel discharged from the low-pressure pump to the port injection unit; a high-pressure pump for pressurizing and discharging fuel discharged from the low-pressure pump; and the engine
  • a cylinder injection section for injecting fuel into the cylinder, a high pressure delivery pipe for supplying the fuel discharged from the high pressure pump to the cylinder injection section, and the fuel tank through the low pressure delivery pipe Connected between the low-pressure fuel system up to the intake port and the high-pressure delivery pipe, the fuel inside the high-pressure delivery pipe can be discharged to the low-pressure fuel system.
  • a discharge pipe configured to be capable of increasing the discharge amount of the high-pressure pump, and a flow rate adjusting unit that is provided in the discharge pipe and adjusts the flow rate of the fuel flowing through the discharge pipe.
  • a controller for controlling the operation of the apparatus wherein the controller acquires information relating to a fuel temperature in the high-pressure pump, and controls the operation of the flow rate adjusting unit to increase the flow rate when the fuel temperature is higher than a predetermined value.
  • a control device is provided.
  • This configuration enables the fuel to be discharged from the high pressure delivery pipe to the low pressure fuel system, and the discharge of fuel inside the high pressure delivery pipe is promoted.
  • By increasing the amount of fuel discharged from the high-pressure delivery pipe it becomes easier to discharge the fuel from the high-pressure pump to the high-pressure delivery pipe, and the discharge amount of the high-pressure pump can be increased.
  • By increasing the discharge amount of the high-pressure pump it is possible to reduce the fuel staying inside the high-pressure pump, which is easy to receive heat from the engine side. As a result, the high temperature of the fuel is suitably suppressed.
  • FIG. 1 is a diagram illustrating a schematic configuration of a fuel injection device for a vehicle according to a first embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing each process of fuel release control performed by the fuel injection device shown in FIG.
  • FIG. 3 is a flowchart showing each process of the fuel pressure reduction control performed by the fuel injection device shown in FIG.
  • FIG. 4 is a diagram for explaining the effect of the fuel pressure reduction control.
  • FIG. 5 is a diagram showing a schematic configuration of a modified example of the first embodiment.
  • FIG. 6 is a diagram illustrating a schematic configuration of a fuel injection device for a vehicle according to a second embodiment of the present disclosure.
  • FIG. 7 is a flowchart showing each process of the fuel release control performed by the fuel injection device shown in FIG.
  • FIG. 8 is a flowchart showing each process of the fuel pressure reduction control performed by the fuel injection device shown in FIG.
  • the fuel injection device 10 is a device for supplying fuel to the engine 1 mounted on the vehicle. Although an in-line four-cylinder gasoline engine is illustrated as the engine 1 in FIG. 1, the fuel injection device 10 of the present embodiment can be applied to other engines.
  • the engine 1 includes four cylinders 5, and each cylinder 5 is connected to a common surge tank 3 through a corresponding intake port 4. That is, the engine 1 includes four intake ports 4, and each intake port 4 is connected to communicate between one of the four cylinders 5 and the surge tank 3.
  • An intake duct 2 is connected to the surge tank 3, and a throttle valve 6 is disposed inside the intake duct 2.
  • an in-cylinder injector 19 for injecting fuel into the cylinder
  • a port injector 15 for injecting fuel into the intake port 4.
  • the fuel injection control by the in-cylinder injector 19 and the port injector 15, the ignition control of the engine 1, and the throttle opening control by the throttle valve 6 are performed by an engine ECU (Electronic Control Unit) based on various information of the vehicle.
  • ECU Electronic Control Unit
  • Each of the port injectors 15 is connected to a low pressure delivery pipe 14.
  • the low pressure delivery pipe 14 is a fuel distribution pipe shared by the injectors 15, and supplies fuel discharged from the low pressure pump 12 provided in the fuel tank 11 to each of the port injectors 15.
  • the inlet of the low pressure delivery pipe 14 is connected to the low pressure side pipe 13 b of the supply pipe 13.
  • the supply pipe 13 supplies the fuel discharged from the low pressure pump 12 to the low pressure delivery pipe 14 and a high pressure pump 16 described later.
  • the supply pipe 13 has a branch portion 13a that branches a pipeline from a single inlet into a low-pressure side pipe 13b and a high-pressure side pipe 13c that go to two outlets.
  • the inlet of the supply pipe 13 is connected to the outlet of the low pressure pump 12.
  • the outlet of the low pressure side pipe 13 b is connected to the inlet of the low pressure delivery pipe 14.
  • the outlet of the high pressure side pipe 13 c is connected to the inlet of the high pressure pump 16.
  • the supply pipe 13 can branch and supply the fuel discharged from the low-pressure pump 12 to the low-pressure delivery pipe 14 and the high-pressure pump 16 by the branch portion 13a.
  • the fuel tank 11 is provided with a low pressure pump 12.
  • the low pressure pump 12 sucks the fuel stored in the fuel tank 11, pressurizes it with a relatively low pressure (for example, about 0.3 MPa), and then discharges it to the supply pipe 13.
  • Each of the in-cylinder injectors 19 is connected to a high-pressure delivery pipe 18.
  • the high-pressure delivery pipe 18 is a fuel distribution pipe shared by the injectors 19 and supplies the fuel supplied from the fuel tank 11 to each of the in-cylinder injectors 19.
  • the inlet of the high pressure delivery pipe 18 is connected to the outlet of the high pressure delivery pipe 17.
  • the high pressure delivery pipe 17 is connected to the outlet of the high pressure pump 16.
  • the high-pressure pump 16 is provided between the high-pressure side pipe 13c of the supply pipe 13 and the high-pressure delivery pipe 17, and pressurizes the fuel introduced from the high-pressure side pipe 13c at a relatively high pressure (for example, about 3.0 MPa). From the high pressure delivery pipe 17 to the high pressure delivery pipe 18. In other words, the high pressure pump 16 pressurizes and discharges the fuel discharged from the low pressure pump 12, and the high pressure delivery pipe 18 supplies the fuel discharged from the high pressure pump 16 to each of the in-cylinder injectors 19. .
  • a relatively high pressure for example, about 3.0 MPa
  • the drive control of the low pressure pump 12 is performed by the engine ECU.
  • the high-pressure pump 16 is directly connected to the crankshaft of the engine 1 and is driven according to the operation of the engine 1.
  • the high-pressure pump 16 does not discharge fuel to the high-pressure delivery pipe 18 in a situation where fuel is not supplied by the in-cylinder injector 19 in the high-pressure delivery pipe 18 by providing a check valve or the like at the discharge port, for example. It is configured as follows.
  • low-pressure fuel system a configuration in which low-pressure fuel is supplied from the fuel tank 11 to the intake port 4 via the low-pressure pump 12, the low-pressure delivery pipe 14, and the port injector 15 is referred to as “low-pressure fuel system”.
  • high-pressure fuel system A configuration in which high-pressure fuel is supplied to each cylinder 5 through the high-pressure pump 16, the high-pressure delivery pipe 18, and the in-cylinder injector 19 is referred to as “high-pressure fuel system”.
  • the fuel injection device 10 includes the fuel tank 11, the low pressure pump 12, the supply pipe 13, the low pressure delivery pipe 14, the port injector 15, the high pressure pump 16, the high pressure delivery pipe 18, and the in-cylinder injector. 19 is provided. Furthermore, the fuel injection device 10 includes a discharge pipe 20, a solenoid valve 21 (flow rate adjustment unit), a temperature sensor 22, a pressure sensor 23, and a control unit 24.
  • the discharge pipe 20 is connected to the low pressure delivery pipe 14 so that fuel can be discharged from the high pressure delivery pipe 18.
  • the outlet of the discharge pipe 20 is connected to the high pressure delivery pipe 18 and the outlet is connected to the low pressure delivery pipe 14.
  • the solenoid valve 21 is provided inside the discharge pipe 20.
  • the electromagnetic valve 21 can adjust the flow rate of the fuel flowing through the discharge pipe 20 according to its opening.
  • the opening degree of the electromagnetic valve 21 is controlled in accordance with a control command from the control unit 24.
  • the temperature sensor 22 is provided at the inlet of the high-pressure pump 16 and measures the temperature of the fuel that stays in or flows through the high-pressure pump 16.
  • the pressure sensor 23 is provided in the high pressure delivery pipe 18 and measures the fuel pressure inside the high pressure delivery pipe. Information measured by the temperature sensor 22 and the pressure sensor 23 is output to the control unit 24.
  • the control unit 24 controls the operation of the electromagnetic valve 21. More specifically, the control unit 24 opens the electromagnetic valve 21 when the fuel temperature is higher than a predetermined value based on the fuel temperature in the high-pressure pump 16 measured by the temperature sensor 22, thereby providing a high-pressure delivery. Control is performed to increase the flow rate of fuel discharged from the pipe 18 via the discharge pipe 20.
  • this control is referred to as “fuel release control”
  • the discharge pipe 20 and the electromagnetic valve 21 that are elements related to the fuel release control in the fuel injection device 10 are referred to as “relief mechanism”.
  • the control unit 24 is physically configured as a computer system including a CPU (controller) 24a, a ROM, a RAM, and an input / output interface (not shown).
  • the control unit 24 is mounted as a part of an engine ECU of a vehicle on which the fuel injection device 10 is mounted, for example.
  • the control unit 24 is a component of the fuel injection device 10 as described above, and can also be expressed as a “control device” that controls the operation of the fuel injection device 10 by controlling the electromagnetic valve 21.
  • step S101 the fuel temperature (actual fuel temperature) in the high-pressure pump 16 is detected based on the information measured by the temperature sensor 22.
  • This actual fuel temperature is typically the situation where fuel injection by the in-cylinder injector 19 provided in the high-pressure delivery pipe 18 is not executed, and the electromagnetic valve 21 is closed and fuel is discharged from the discharge pipe 20.
  • This is the temperature of the fuel that is not discharged into the high-pressure delivery pipe 18 and stays in the vicinity of the inlet of the high-pressure pump 16 in a state where it is not discharged.
  • the actual fuel temperature is estimated by the control unit 24 based on various vehicle information (for example, engine water temperature, outside air temperature, etc.) in addition to the configuration directly measured by the temperature sensor 22 as shown in FIG. It may be a configuration.
  • step S102 it is determined whether the actual fuel temperature detected in step S101 is equal to or higher than a predetermined upper limit fuel temperature (actual fuel temperature ⁇ upper limit fuel temperature). As a result of the determination in step S102, when the actual fuel temperature is equal to or higher than the predetermined upper limit fuel temperature (Yes in step S102), the process proceeds to step S103. Otherwise (No in step S102), the process proceeds to step S105.
  • a predetermined upper limit fuel temperature actual fuel temperature ⁇ upper limit fuel temperature
  • step S103 it is determined whether or not fuel injection by the port injector 15 is being executed in the low pressure delivery pipe 14. As a result of the determination in step S103, if fuel injection is being performed in the low pressure delivery pipe 14 (Yes in step S103), the process proceeds to step S105, and if fuel injection is not being performed (No in step S103). Proceed to step S104.
  • step S104 when, as a result of the determination in steps S102 and S103, the actual fuel temperature is equal to or higher than a predetermined upper limit fuel temperature, and fuel injection is not being performed in the low pressure delivery pipe 14.
  • the state in which fuel injection is not being executed in the low-pressure delivery pipe 14 is a feasible condition for the fuel release control in the present embodiment. Therefore, in step S104, the feasible condition is satisfied, so the solenoid valve 21 is opened and the fuel release control is performed.
  • the fuel inside the high pressure delivery pipe 18 is discharged to the low pressure delivery pipe 14 via the discharge pipe 20.
  • step S105 the actual fuel temperature is lower than the predetermined upper limit fuel temperature as a result of the determination in step S102, and it is not necessary to perform the fuel release control, or in the low pressure delivery pipe 14 as a result of the determination in step S103. Since the fuel injection is being executed and does not satisfy the requirements for enabling the fuel release control, the solenoid valve 21 is closed and the fuel release control is stopped. When the process of step S105 is completed, this control flow ends.
  • step S106 it is determined whether or not the temperature (fuel temperature) of the fuel in the high-pressure pump 16 has decreased due to the fuel release control in step S104.
  • the control unit 24 can acquire the fuel temperature information by the same method as in step S101, for example. If the result of determination in step S106 is that the fuel temperature has decreased (Yes in step S106), the relief mechanism (discharge pipe 20, electromagnetic valve 21) is diagnosed as normal in step S107, and The process ends. On the other hand, if the fuel temperature is not lowered despite the fuel release control (No in step S106), some abnormality has occurred in the relief mechanism in step S108, and the fuel is properly discharged. It is diagnosed that it is not, and the processing of this control flow is terminated. By the processing of steps S106 to S108, the abnormality diagnosis of the relief mechanism can be performed simultaneously with the fuel release control, and when the abnormality occurs, it can be promptly notified to the vehicle driver and the maintenance staff.
  • the fuel injection device 10 includes a direct injection control that directly injects fuel into the cylinder 5 using the in-cylinder injector 19 and a port injection that injects fuel into the intake port 4 using the port injector 15.
  • a configuration is used in which two types of fuel injection methods are used together with control.
  • the direct injection control is stopped and only the port injection control is performed, the high pressure pump 16 is driven as the engine 1 is driven, but the fuel in the high pressure delivery pipe 18 is not discharged.
  • the fuel introduced into the high-pressure pump 16 stays in the vicinity of the inlet without being discharged.
  • the port injection control and the direct injection control are used together and the frequency of the direct injection control is low, the fuel tends to stay in the high pressure pump 16.
  • the staying fuel When the fuel stays in the high-pressure pump 16 in this way, the staying fuel easily receives a heat from the engine 1 side and rises in temperature. Therefore, the fuel may partially vaporize. When the fuel in the high-pressure pump 16 is vaporized, sufficient fuel cannot be discharged from the high-pressure pump 16 to the high-pressure delivery pipe 18 side. As a result, the fuel injection amount by the in-cylinder injector 19 becomes insufficient in the high-pressure fuel system. There is a risk of adversely affecting the operational stability of the engine 1.
  • the fuel injection device 10 of the present embodiment includes a discharge pipe 20 connected between the high-pressure delivery pipe 18 and the low-pressure delivery pipe 14.
  • the discharge pipe 20 enables the fuel to be discharged from the high pressure delivery pipe 18 to the low pressure delivery pipe 14, and the discharge of the fuel inside the high pressure delivery pipe 18 is promoted.
  • By increasing the discharge amount of the high-pressure pump 16 it is possible to reduce the fuel staying inside the high-pressure pump 16, which is easy to receive heat from the engine 1 side.
  • the fuel injection device 10 of the present embodiment can favorably suppress the high temperature of the fuel. Further, by suppressing the increase in the temperature of the fuel, it is possible to suppress the vaporization of the fuel, and it is possible to suitably prevent the problem that the fuel injection amount becomes insufficient in the high-pressure fuel system. Moreover, since the discharge amount of the high-pressure pump 16 can be increased even if an existing general-purpose product is diverted to the high-pressure pump 16, it is possible to suppress an increase in fuel temperature with a simple configuration.
  • the fuel injection device 10 of the present embodiment includes an electromagnetic valve 21 that is provided in the discharge pipe 20 and adjusts the flow rate of the fuel flowing through the discharge pipe 20, and a control unit 24 that controls the operation of the electromagnetic valve 21.
  • the control unit 24 opens the electromagnetic valve 21 when the fuel temperature in the high-pressure pump 16 is higher than a predetermined upper limit fuel temperature, thereby allowing the fuel flowing through the discharge pipe 20 to flow.
  • Implement fuel release control to increase the flow rate.
  • the discharge amount of the high-pressure pump 16 is increased and the fuel staying inside the high-pressure pump 16 is increased.
  • the fuel discharge amount can be continuously controlled by adjusting the opening degree of the electromagnetic valve 21, for example, the discharge amount is increased or decreased according to the degree of deviation of the fuel temperature from the upper limit fuel temperature, and the rate of decrease in the fuel temperature.
  • the fuel release control can be performed with high accuracy, for example, by increasing / decreasing the fuel consumption rate or by increasing the emission amount when the fuel temperature lowers slowly. Thereby, the fuel temperature can be maintained at a predetermined temperature, and the fuel injection amount can be stabilized.
  • the controller 24 is used for the port of the low pressure delivery pipe 14 when the fuel temperature is higher than a predetermined upper limit fuel temperature, as shown in steps S103 to S105 in FIG.
  • the fuel release control is performed to control the solenoid valve 21 so that the fuel flows through the discharge pipe 20.
  • high-pressure fuel is introduced, so that pulsation occurs in the fuel pressure inside the low-pressure delivery pipe 14.
  • the fuel injection using the port injector 15 is not executed in the low pressure delivery pipe 14
  • the fuel injection amount fluctuates due to the influence of the fuel pressure pulsation, which may deteriorate the accuracy of the injection control.
  • “the fuel injection using the port injector 15 is not executed in the low pressure delivery pipe 14” is set as a feasible condition for the fuel release control, so that the low pressure delivery is performed while the port injector 15 is in operation. It is possible to prevent the fuel from being discharged into the pipe 14, and thus it is possible to suitably suppress the increase in the temperature of the fuel by the fuel release control while reducing the influence of the fuel pressure pulsation on the port injection.
  • control unit 24 can perform another control using the elements (the discharge pipe 20 and the electromagnetic valve 21) of the fuel injection device 10 related to the fuel release control. Specifically, based on the fuel pressure inside the high-pressure delivery pipe 18 measured by the pressure sensor 23, the control unit 24 opens the solenoid valve 21 when the fuel pressure is higher than the target fuel pressure by a predetermined amount. Then, the exhaust pipe 20 is connected to perform control to reduce the fuel pressure of the high-pressure delivery pipe 18.
  • this control is referred to as “fuel pressure reduction control”.
  • step S201 the fuel pressure (actual fuel pressure) in the high-pressure delivery pipe 18 is detected based on the information measured by the pressure sensor 23.
  • the actual fuel pressure may be a configuration estimated by the control unit 24 based on various types of vehicle information in addition to the configuration directly measured by the pressure sensor 23 as shown in FIG.
  • step S202 it is determined whether or not the actual fuel pressure detected in step S201 is higher than a predetermined target fuel pressure by a predetermined value or more. As a result of the determination in step S202, when the actual fuel pressure is higher than the target fuel pressure by a predetermined value or more (Yes in step S202), the process proceeds to step S203. Otherwise (No in step S202), the process proceeds to step S205.
  • step S203 it is determined whether or not fuel injection by the port injector 15 is being executed in the low pressure delivery pipe 14. As a result of the determination in step S203, if fuel injection is being performed in the low pressure delivery pipe 14 (Yes in step S203), the process proceeds to step S205, and if fuel injection is not being performed (No in step S203). Proceed to step S204.
  • step S204 when the actual fuel pressure is higher than the target fuel pressure by a predetermined value or more and fuel injection is not being performed in the low-pressure delivery pipe 14 as a result of the determination in steps S202 and S203.
  • the state in which fuel injection is not being executed in the low pressure delivery pipe 14 is a feasible condition for the fuel pressure reduction control in the present embodiment. Therefore, in step S204, since the feasible condition is satisfied, the solenoid valve 21 is opened and the fuel pressure reduction control is performed. As a result, the fuel pressure inside the high-pressure delivery pipe 18 is extracted from the discharge pipe 20 to the low-pressure delivery pipe 14.
  • step S206 When the process of step S204 is completed, the process proceeds to step S206.
  • step S205 as a result of the determination in step S202, the difference between the actual fuel pressure and the target fuel pressure is less than a predetermined value, and it is not necessary to perform the fuel pressure reduction control.
  • step S203 the low-pressure delivery pipe 14 Since the fuel injection is being performed in step S3 and the fuel pressure reduction control enablement requirement is not satisfied, the solenoid valve 21 is closed and the fuel pressure reduction control is stopped.
  • step S206 it is determined whether or not the fuel pressure (fuel pressure) in the high-pressure delivery pipe 18 is reduced by performing the fuel release control in step S204.
  • the control unit 24 can acquire fuel pressure information by the same method as in step S201. If the result of determination in step S206 is that the fuel pressure has decreased (Yes in step S206), the relief mechanism (discharge pipe 20, electromagnetic valve 21) is diagnosed as normal in step S207, and the processing of this control flow is performed. Exit. On the other hand, if the fuel pressure is not reduced despite the fuel pressure reduction control (No in step S206), some abnormality has occurred in the relief mechanism in step S208, and the fuel pressure is appropriately reduced. It is diagnosed that it is not, and the processing of this control flow is terminated. By the processing in steps S206 to S208, the abnormality diagnosis of the relief mechanism can be performed simultaneously with the fuel pressure reduction control, and when the abnormality occurs, it can be promptly notified to the driver of the vehicle and the maintenance staff.
  • the effect of fuel pressure reduction control will be described with reference to FIG.
  • the vertical axis in FIG. 4 represents the fuel pressure of the high-pressure delivery pipe 18, and the horizontal axis represents time.
  • the graph A shown in FIG. 4 shows the time transition of the target fuel pressure.
  • Graph B shows a time transition of the fuel pressure when the fuel pressure reduction control is performed using the relief mechanism (discharge pipe 20, electromagnetic valve 21) of the present embodiment.
  • Graph C shows a time transition of the fuel pressure by a configuration that does not have a relief mechanism as a comparative example and does not perform fuel pressure reduction control.
  • the target fuel pressure is reduced stepwise as shown in graph A of FIG.
  • Such a situation includes, for example, when a fuel cut occurs or when a state change occurs during transient operation.
  • the fuel pressure may not decrease sufficiently or the fuel pressure may decrease slowly.
  • the fuel pressure can be released from the high pressure delivery pipe 18 through the discharge pipe 20, so that the fuel pressure can be quickly lowered to the target fuel pressure as shown in graph B, and the fuel pressure follows. Can be improved.
  • steps S203 to S205 of FIG. 3 by making the fuel pressure reduction control feasible condition that "the fuel injection using the port injector 15 is not executed in the low pressure delivery pipe 14", It is possible to prevent high-pressure fuel from being discharged to the low-pressure delivery pipe 14 while the port injector 15 is in operation, thereby reducing the influence of fuel pressure pulsation on the port injection and fuel pressure tracking by fuel pressure reduction control. Can be improved.
  • a fuel that is discharged from the high-pressure delivery pipe to the low-pressure delivery pipe through the discharge pipe 20 by providing an electromagnetic valve 21 on the flow path inside the discharge pipe 20 and controlling the opening and closing of the electromagnetic valve 21.
  • the electromagnetic valve 21 can be replaced with another element.
  • a leak mechanism 30 can be provided on the flow path of the discharge pipe 20 instead of the electromagnetic valve 21.
  • the leak mechanism 30 is a hole provided so as to reduce the inner diameter of the discharge pipe 20.
  • the leak mechanism 30 can circulate fuel between the high-pressure delivery pipe 18 and the low-pressure delivery pipe 14 with a certain flow resistance.
  • the discharge pipe 20 is configured so that the high-pressure delivery pipe 18 and the low-pressure delivery pipe 14 are always communicated with each other by providing the leak mechanism 30 in the flow path, and the inner diameter is communicated without providing the leak mechanism 30.
  • the flow rate of the fuel discharged from the high-pressure delivery pipe 18 can be suppressed.
  • fuel injection device 10A fuel discharge from the high pressure delivery pipe 18 can be promoted to increase the discharge amount of the high pressure pump 16, and the fuel pressure in the high pressure delivery pipe 18 can be maintained well. Therefore, the fuel injection device 10 ⁇ / b> A can also achieve the same effects as the fuel injection device 10, that is, suppression of the high temperature of the fuel and improvement in fuel pressure followability.
  • solenoid valve 21 can be replaced with another element that can adjust the flow rate of the discharge pipe 20.
  • the fuel injection device 110 according to the second embodiment is different from that of the first embodiment in that one end of the discharge pipe 120 is connected to one of the intake ports 4 instead of the low pressure delivery pipe 14. Different from the fuel injection device 10.
  • the fuel injection device 110 of the second embodiment when the electromagnetic valve 21 is opened during the fuel release control, the fuel discharged from the high-pressure delivery pipe 18 is supplied to the relief mechanism (the discharge pipe 120, the electromagnetic valve 21). It is discharged into the connected intake port 4 and mixed with air introduced from the intake duct 2 to be introduced into each cylinder 5 as an air-fuel mixture. Further, when the fuel pressure reduction control is performed, the fuel pressure is released from the high pressure delivery pipe 18 to the intake port 4.
  • the flowchart shown in FIG. 7 is basically the same procedure as the flowchart of the fuel release control in the first embodiment shown in FIG.
  • Each process of steps S301, S302, and S307 to S309 is the same as steps S101, S102, and S106 to S108 in the flowchart of FIG.
  • a series of processes in the flowchart shown in FIG. 7 is repeatedly performed by the control unit 124 at predetermined intervals, for example.
  • the control unit 124 is configured as a computer system including a CPU (controller) 124a, a ROM, a RAM, and an input / output interface (not shown).
  • step S303 fuel injection by the port injector 15 of the intake port 4 to which the relief mechanism is connected is stopped.
  • step S304 the fuel injection amount control of the intake port 4 is performed using the solenoid valve 21 of the relief mechanism. That is, when the fuel release control is performed, the control unit 124 stops the port injector 15 of the intake port 4 to which the exhaust pipe 120 is connected and is supplied from the exhaust pipe 120 to the intake port 4 by the electromagnetic valve 21. Control the amount of fuel.
  • the control unit 124 when performing the fuel release control, performs air-fuel ratio control (lambda control) using the electromagnetic valve 21 instead of the port injector 15 in the intake port 4 to which the relief mechanism is connected.
  • air-fuel ratio control (lambda control)
  • the fuel inside the high-pressure delivery pipe 18 can be discharged from the discharge pipe 120 to the intake port 4 and the amount of fuel flowing into the cylinder 5 to which the intake port 4 is connected can also be controlled.
  • step S302 determines whether the actual fuel temperature is less than the predetermined upper limit fuel temperature. If the result of determination in step S302 is that the actual fuel temperature is less than the predetermined upper limit fuel temperature, the fuel release control is stopped as shown in steps S305 to S306 below.
  • step S305 the electromagnetic valve 21 is closed and the fuel injection amount control to the intake port 4 by the electromagnetic valve 21 is stopped.
  • step S306 fuel injection is performed by the port injector 15 of the intake port 4 to which the relief mechanism is connected.
  • the control unit 124 performs air-fuel ratio control using the port injector 15 as usual in the intake port 4 to which the relief mechanism is connected.
  • air-fuel ratio control of the intake port 4 may be performed by using the port injector 15 and the electromagnetic valve 21 in combination instead of steps S303 to S304.
  • the control unit 124 controls the solenoid valve 21 so that the fuel injection amount by the port injector 15 is reduced and the fuel flows through the discharge pipe 120. Further, the control unit 124 controls the amount of fuel supplied to the intake port 4 by the electromagnetic valve 21 or the port injector 15.
  • FIG. 8 is basically the same procedure as the flowchart of the fuel pressure reduction control in the first embodiment shown in FIG.
  • Each process of steps S401, S402, and S407 to S409 is the same as steps S201, S202, and S206 to S208 in the flowchart of FIG.
  • step S403 to S404 fuel pressure reduction control shown in steps S403 to S404 is performed.
  • the processes in steps S403 to S404 are the same as those in steps S303 to S304 in FIG. Instead, air-fuel ratio control is performed using the electromagnetic valve 21.
  • the fuel pressure inside the high-pressure delivery pipe 18 can be extracted from the discharge pipe 20 to the intake port 4, and the amount of fuel flowing into the cylinder 5 to which the intake port 4 is connected can also be controlled.
  • step S404 proceeds to step S407.
  • step S402 determines whether the difference between the actual fuel pressure and the target fuel pressure is less than a predetermined value. If the result of determination in step S402 is that the difference between the actual fuel pressure and the target fuel pressure is less than a predetermined value, the fuel pressure reduction control is stopped as shown in steps S405 to S406.
  • the processes in steps S405 to S406 are the same as those in steps S305 to S306 in FIG. 7.
  • the control unit 124 performs the port injector as usual in the intake port 4 to which the relief mechanism is connected. 15 is used to perform air-fuel ratio control.
  • step S406 is completed, the control flow ends.
  • the fuel injection device 110 according to the second embodiment is provided with a relief mechanism (the discharge pipe 120 and the electromagnetic valve 21), thereby suppressing the increase in fuel temperature and improving the fuel pressure followability according to the first embodiment.
  • the same effect as the device 10 can be obtained.
  • the exhaust pipes 20 and 120 for discharging the fuel from the high-pressure delivery pipe 18 are illustrated as being connected to the low-pressure delivery pipe 14, the fuel tank 11, or the intake port 4 as outlets.
  • the outlet may be connected to an element other than the above.
  • the discharge pipes 20 and 120 only need to be connected between the low pressure fuel system from the fuel tank 11 through the low pressure delivery pipe 14 to the intake port 4 and the high pressure delivery pipe 18. Further, the discharge pipes 20 and 120 may be configured so that the fuel inside the high-pressure delivery pipe 18 can be discharged to the low-pressure fuel system and the discharge amount of the high-pressure pump 16 can be increased.
  • the discharge pipes 20 and 120 are connected to the fuel tank 11 downstream from the branch part 13a of the supply pipe 13 in the low-pressure fuel system.
  • the downstream side of the branch portion 13a of the low-pressure fuel system means any of the low-pressure side pipe 13b, the low-pressure delivery pipe 14, the intake port 4 of the supply pipe 13, or the piping system connecting these elements. This is the place.
  • the high-temperature fuel recirculated from the high-pressure delivery pipe 18 by the discharge pipes 20 and 120 is not introduced into the high-pressure pump 16 as it is, but is injected from the port injector 15 or stored in the fuel tank 11. Therefore, the fuel temperature reduction of the high-pressure pump 16 can be effectively promoted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A fuel injection device (10) having: a low-pressure pump (12) that discharges fuel from a fuel tank (11); a low-pressure delivery pipe (14) that supplies the fuel discharged from the low-pressure pump (12) to port injectors (15) that inject fuel into intake ports (4) of an engine (1); a high-pressure pump (16) that pressurizes and discharges the fuel discharged from the low-pressure pump (12); a high-pressure delivery pipe (18) that supplies the fuel discharged from the high-pressure pump (16) to cylinder injectors (19) that inject fuel into cylinders (5) of the engine (1); and a discharge pipe (20) that is connected between the high-pressure delivery pipe (18) and the low-pressure delivery pipe (14) of the low-pressure fuel system from the fuel tank (11) to the intake ports (4), and is configured so as to be capable of discharging fuel in the high-pressure delivery pipe (18) to the low-pressure fuel system and of increasing the discharge amount of the high-pressure pump (16).

Description

車両の燃料噴射装置及び制御装置Vehicle fuel injection device and control device 関連出願の相互参照Cross-reference of related applications
 本願は、2015年10月16日に出願された日本国特許出願第2015-204265号に基づくものであり、この開示をもってその内容を本明細書中に開示したものとする。 This application is based on Japanese Patent Application No. 2015-204265 filed on October 16, 2015, and the contents thereof are disclosed in this specification.
 本開示は、車両の燃料噴射装置、及び、この燃料噴射装置の動作を制御する制御装置に関する。 The present disclosure relates to a vehicle fuel injection device and a control device that controls the operation of the fuel injection device.
 近年、エンジンの気筒内に燃料を噴射する筒内用インジェクタと、吸気ポートに燃料を噴射するポート用インジェクタとの双方を備える燃料噴射装置が知られている。この燃料噴射装置は、運転状態に応じて筒内用インジェクタ(「筒内噴射用インジェクタ」とも表記する)とポート用インジェクタ(「吸気通路噴射用インジェクタ」とも表記する)とを制御して、筒内燃料噴射とポート内燃料噴射を組み合わせて燃料を噴射させることができる。 2. Description of the Related Art Recently, a fuel injection device is known that includes both an in-cylinder injector that injects fuel into a cylinder of an engine and a port injector that injects fuel into an intake port. This fuel injection device controls the in-cylinder injector (also referred to as “in-cylinder injector”) and the port injector (also referred to as “intake passage injector”) according to the operating state, The fuel can be injected by combining the internal fuel injection and the internal port fuel injection.
 このような燃料噴射装置では、内燃機関運転状態によっては、吸気通路噴射用インジェクタによる燃料噴射比率が大きくなって、その分、筒内噴射用インジェクタによる燃料噴射比率が低下することがある。このために高圧燃料系に流れる燃料量が減少したり、あるいは完全に流量ゼロとなったりする。 In such a fuel injection device, depending on the operating state of the internal combustion engine, the fuel injection ratio by the intake manifold injector may increase, and the fuel injection ratio by the in-cylinder injector may decrease accordingly. For this reason, the amount of fuel flowing through the high-pressure fuel system decreases or the flow rate becomes completely zero.
 高圧燃料系では高圧燃料ポンプにより低圧燃料を高圧化することになるが、この高圧燃料ポンプはシリンダヘッドに取り付けられているため、内燃機関からの受熱量も大きい傾向にある。 In the high-pressure fuel system, the high-pressure fuel pump increases the pressure of the low-pressure fuel. Since this high-pressure fuel pump is attached to the cylinder head, the amount of heat received from the internal combustion engine tends to be large.
 このため吸気通路噴射用インジェクタによる燃料噴射比率が増加した場合、高圧燃料系での燃料流量が低下するため、高圧燃料系が、流動燃料の熱容量によって奪い去られる熱量が極めて小さくなり、あるいは全くなくなる。このことにより高圧燃料系が高温化する場合がある。 For this reason, when the fuel injection ratio by the intake manifold injector increases, the fuel flow rate in the high-pressure fuel system decreases, so the amount of heat taken away by the heat capacity of the flowing fuel becomes very small or not at all. . This may cause the high pressure fuel system to become hot.
 この高温化により内部の燃料温度が極めて高くなり、燃料の飽和蒸気圧が高圧燃料系内の圧力より高くなると高圧燃料系内でのベーパーの発生を促して、筒内噴射用インジェクタによる燃料噴射量に影響し、内燃機関運転安定性に悪影響を及ぼすおそれがある。このような現象を防止するためには、燃料供給経路上の燃料の気化を抑制する、すなわち、燃料の高温化を抑制することが有効である。例えば特許文献1には、筒内用インジェクタに供給する燃料を加圧する高圧ポンプにおいて、筒内用インジェクタ停止時に高圧ポンプに供給される燃料をポート用インジェクタに供給することができる迂回路を備える構成が開示されている。この構成により、筒内燃料噴射を実施しないときにも高圧ポンプ内に燃料が滞留することを回避できるので、燃料がエンジンから熱を受けにくくすることができ、燃料の高温化を抑制できる。 When the internal fuel temperature becomes extremely high due to this high temperature, and the saturated vapor pressure of the fuel becomes higher than the pressure in the high-pressure fuel system, the generation of vapor in the high-pressure fuel system is promoted, and the fuel injection amount by the in-cylinder injector May adversely affect the operation stability of the internal combustion engine. In order to prevent such a phenomenon, it is effective to suppress the vaporization of the fuel on the fuel supply path, that is, to suppress the high temperature of the fuel. For example, in Patent Document 1, a high-pressure pump that pressurizes fuel to be supplied to an in-cylinder injector includes a detour that can supply fuel supplied to the high-pressure pump to the port injector when the in-cylinder injector is stopped. Is disclosed. With this configuration, it is possible to prevent the fuel from staying in the high-pressure pump even when the in-cylinder fuel injection is not performed. Therefore, the fuel can be made difficult to receive heat from the engine, and the temperature of the fuel can be suppressed.
米国特許出願公開第2012/0279474号明細書US Patent Application Publication No. 2012/0279474
 しかしながら、特許文献1に記載の燃料噴射装置は、燃料の高温化を抑制するために高圧ポンプ内に迂回路を設ける必要があるため、特殊構造のポンプが必要であり汎用性に欠ける。より簡易な構成で燃料の高温化を抑制できる燃料噴射装置が望まれている。 However, since the fuel injection device described in Patent Document 1 needs to provide a detour in the high-pressure pump in order to suppress the high temperature of the fuel, a pump having a special structure is necessary and lacks versatility. There is a demand for a fuel injection device that can suppress the high temperature of the fuel with a simpler configuration.
 本開示はこのような課題に鑑みてなされたものであり、その目的は、燃料の高温化を好適に抑制できる車両の燃料噴射装置、及び、この燃料噴射装置の動作を制御する制御装置を提供することにある。 The present disclosure has been made in view of such problems, and an object of the present disclosure is to provide a fuel injection device for a vehicle that can suitably suppress an increase in fuel temperature and a control device that controls the operation of the fuel injection device. There is to do.
 上記課題を解決するために、本開示では、燃料を貯留する燃料タンクと、前記燃料タンク内の燃料を吐出する低圧ポンプと、車両に搭載されたエンジンの吸気ポートの内部へ燃料を噴射するポート噴射部を有し、前記低圧ポンプから吐出された燃料を前記ポート噴射部へ供給する低圧デリバリパイプと、前記低圧ポンプから吐出された燃料を加圧して吐出する高圧ポンプと、前記エンジンの気筒の内部へ燃料を噴射する筒内噴射部を有し、前記高圧ポンプから吐出された燃料を前記筒内噴射部へ供給する高圧デリバリパイプと、前記燃料タンクから前記低圧デリバリパイプを経て前記吸気ポートまでの低圧燃料系と、前記高圧デリバリパイプとの間に接続され、前記高圧デリバリパイプの内部の燃料を前記低圧燃料系に排出可能であり、かつ、前記高圧ポンプの吐出量を増加可能に構成される排出パイプと、を備える燃料噴射装置を提供する。 In order to solve the above problems, in the present disclosure, a fuel tank that stores fuel, a low-pressure pump that discharges fuel in the fuel tank, and a port that injects fuel into an intake port of an engine mounted on a vehicle A low-pressure delivery pipe that has an injection unit and supplies fuel discharged from the low-pressure pump to the port injection unit; a high-pressure pump that pressurizes and discharges fuel discharged from the low-pressure pump; and a cylinder of the engine A high-pressure delivery pipe for supplying fuel discharged from the high-pressure pump to the in-cylinder injection section; and from the fuel tank to the intake port via the low-pressure delivery pipe Is connected between the low pressure fuel system and the high pressure delivery pipe, and the fuel inside the high pressure delivery pipe can be discharged to the low pressure fuel system, Provides a fuel injection device and a discharge pipe configured to allow increasing the discharge amount of the high-pressure pump.
 同様に、上記課題を解決するために、本開示では、燃料を貯留する燃料タンクと、前記燃料タンク内の燃料を吐出する低圧ポンプと、車両に搭載されたエンジンの吸気ポートの内部へ燃料を噴射するポート噴射部を有し、前記低圧ポンプから吐出された燃料を前記ポート噴射部へ供給する低圧デリバリパイプと、前記低圧ポンプから吐出された燃料を加圧して吐出する高圧ポンプと、前記エンジンの気筒の内部へ燃料を噴射する筒内噴射部を有し、前記高圧ポンプから吐出された燃料を前記筒内噴射部へ供給する高圧デリバリパイプと、前記燃料タンクから前記低圧デリバリパイプを経て前記吸気ポートまでの低圧燃料系と、前記高圧デリバリパイプとの間に接続され、前記高圧デリバリパイプの内部の燃料を前記低圧燃料系に排出可能であり、かつ、前記高圧ポンプの吐出量を増加可能に構成される排出パイプと、前記排出パイプに設けられ、前記排出パイプを流れる燃料の流量を調整する流量調整部と、を備える車両の燃料噴射装置の動作を制御する制御装置であって、前記高圧ポンプ内の燃料温度に関する情報を取得し、前記燃料温度が所定値より高いときに前記流量調整部の動作を制御して前記流量を増やすコントローラを備える制御装置を提供する。 Similarly, in order to solve the above problems, in the present disclosure, fuel is stored in a fuel tank that stores fuel, a low-pressure pump that discharges fuel in the fuel tank, and an intake port of an engine mounted on the vehicle. A low-pressure delivery pipe having a port injection unit for injecting, and supplying fuel discharged from the low-pressure pump to the port injection unit; a high-pressure pump for pressurizing and discharging fuel discharged from the low-pressure pump; and the engine A cylinder injection section for injecting fuel into the cylinder, a high pressure delivery pipe for supplying the fuel discharged from the high pressure pump to the cylinder injection section, and the fuel tank through the low pressure delivery pipe Connected between the low-pressure fuel system up to the intake port and the high-pressure delivery pipe, the fuel inside the high-pressure delivery pipe can be discharged to the low-pressure fuel system. And a discharge pipe configured to be capable of increasing the discharge amount of the high-pressure pump, and a flow rate adjusting unit that is provided in the discharge pipe and adjusts the flow rate of the fuel flowing through the discharge pipe. A controller for controlling the operation of the apparatus, wherein the controller acquires information relating to a fuel temperature in the high-pressure pump, and controls the operation of the flow rate adjusting unit to increase the flow rate when the fuel temperature is higher than a predetermined value. A control device is provided.
 この構成により、高圧デリバリパイプから低圧燃料系に燃料を排出することが可能となり、高圧デリバリパイプの内部の燃料の排出が促進される。高圧デリバリパイプから燃料の排出量が増えることにより、高圧ポンプから高圧デリバリパイプへ燃料を吐出しやすくなり、高圧ポンプの吐出量を増加させることが可能となる。高圧ポンプの吐出量を増加することで、エンジン側からの熱を受けやすかった、高圧ポンプの内部に滞留する燃料を減らすことができる。この結果、燃料の高温化が好適に抑制される。 This configuration enables the fuel to be discharged from the high pressure delivery pipe to the low pressure fuel system, and the discharge of fuel inside the high pressure delivery pipe is promoted. By increasing the amount of fuel discharged from the high-pressure delivery pipe, it becomes easier to discharge the fuel from the high-pressure pump to the high-pressure delivery pipe, and the discharge amount of the high-pressure pump can be increased. By increasing the discharge amount of the high-pressure pump, it is possible to reduce the fuel staying inside the high-pressure pump, which is easy to receive heat from the engine side. As a result, the high temperature of the fuel is suitably suppressed.
 本開示によれば、燃料の高温化を好適に抑制できる車両の燃料噴射装置及び制御装置を提供することができる。 According to the present disclosure, it is possible to provide a fuel injection device and a control device for a vehicle that can suitably suppress a high temperature of fuel.
図1は、本開示の第1実施形態に係る車両の燃料噴射装置の概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a fuel injection device for a vehicle according to a first embodiment of the present disclosure. 図2は、図1に示す燃料噴射装置により実施される燃料リリース制御の各処理を示すフローチャートである。FIG. 2 is a flowchart showing each process of fuel release control performed by the fuel injection device shown in FIG. 図3は、図1に示す燃料噴射装置により実施される燃圧低減制御の各処理を示すフローチャートである。FIG. 3 is a flowchart showing each process of the fuel pressure reduction control performed by the fuel injection device shown in FIG. 図4は、燃圧低減制御の効果を説明するための図である。FIG. 4 is a diagram for explaining the effect of the fuel pressure reduction control. 図5は、第1実施形態の変形例の概略構成を示す図である。FIG. 5 is a diagram showing a schematic configuration of a modified example of the first embodiment. 図6は、本開示の第2実施形態に係る車両の燃料噴射装置の概略構成を示す図である。FIG. 6 is a diagram illustrating a schematic configuration of a fuel injection device for a vehicle according to a second embodiment of the present disclosure. 図7は、図6に示す燃料噴射装置により実施される燃料リリース制御の各処理を示すフローチャートである。FIG. 7 is a flowchart showing each process of the fuel release control performed by the fuel injection device shown in FIG. 図8は、図6に示す燃料噴射装置により実施される燃圧低減制御の各処理を示すフローチャートである。FIG. 8 is a flowchart showing each process of the fuel pressure reduction control performed by the fuel injection device shown in FIG.
 以下、添付図面を参照しながら本開示の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
[第1実施形態]
 図1~4を参照して第1実施形態について説明する。まず図1を参照して本開示の第1実施形態に係る車両の燃料噴射装置の構成について説明する。以下の説明では本実施形態に係る「車両の燃料噴射装置」を単に「燃料噴射装置10」と表記する。
[First Embodiment]
The first embodiment will be described with reference to FIGS. First, the configuration of the fuel injection device for a vehicle according to the first embodiment of the present disclosure will be described with reference to FIG. In the following description, the “vehicle fuel injection device” according to the present embodiment is simply referred to as “fuel injection device 10”.
 図1に示すように、燃料噴射装置10は、車両に搭載されるエンジン1に燃料を供給するための装置である。図1にはエンジン1として直列4気筒ガソリンエンジンが例示されているが、本実施形態の燃料噴射装置10はこれ以外のエンジンにも適用することができる。 As shown in FIG. 1, the fuel injection device 10 is a device for supplying fuel to the engine 1 mounted on the vehicle. Although an in-line four-cylinder gasoline engine is illustrated as the engine 1 in FIG. 1, the fuel injection device 10 of the present embodiment can be applied to other engines.
 図1に示すように、エンジン1は、4つの気筒5を備え、各気筒5はそれぞれに対応する吸気ポート4を介して共通のサージタンク3に接続されている。つまり、エンジン1は、4つの吸気ポート4を備え、各吸気ポート4は、4つの気筒5のうちの1つとサージタンク3との間を連通するよう接続されている。サージタンク3には吸気ダクト2が接続され、吸気ダクト2の内部にはスロットルバルブ6が配置されている。 As shown in FIG. 1, the engine 1 includes four cylinders 5, and each cylinder 5 is connected to a common surge tank 3 through a corresponding intake port 4. That is, the engine 1 includes four intake ports 4, and each intake port 4 is connected to communicate between one of the four cylinders 5 and the surge tank 3. An intake duct 2 is connected to the surge tank 3, and a throttle valve 6 is disposed inside the intake duct 2.
 各気筒5に対しては、筒内に向けて燃料を噴射するための筒内用インジェクタ19(筒内噴射部)と、吸気ポート4の内部に向けて燃料を噴射するためのポート用インジェクタ15(ポート噴射部)とがそれぞれ設けられている。筒内用インジェクタ19及びポート用インジェクタ15による燃料噴射制御やエンジン1の点火制御、スロットルバルブ6によるスロットル開度制御は、車両の各種情報に基づいてエンジンECU(Electronic Control Unit)により行われる。 For each cylinder 5, an in-cylinder injector 19 (in-cylinder injection unit) for injecting fuel into the cylinder, and a port injector 15 for injecting fuel into the intake port 4. (Port injection unit) are provided. The fuel injection control by the in-cylinder injector 19 and the port injector 15, the ignition control of the engine 1, and the throttle opening control by the throttle valve 6 are performed by an engine ECU (Electronic Control Unit) based on various information of the vehicle.
 ポート用インジェクタ15のそれぞれは、低圧デリバリパイプ14に接続される。低圧デリバリパイプ14は、各インジェクタ15に共有の燃料分配管であり、燃料タンク11内に設けられる低圧ポンプ12から吐出された燃料をポート用インジェクタ15のそれぞれに供給する。低圧デリバリパイプ14の入口は、供給パイプ13の低圧側パイプ13bと接続される。 Each of the port injectors 15 is connected to a low pressure delivery pipe 14. The low pressure delivery pipe 14 is a fuel distribution pipe shared by the injectors 15, and supplies fuel discharged from the low pressure pump 12 provided in the fuel tank 11 to each of the port injectors 15. The inlet of the low pressure delivery pipe 14 is connected to the low pressure side pipe 13 b of the supply pipe 13.
 供給パイプ13は、低圧ポンプ12から吐出された燃料を、低圧デリバリパイプ14及び後述する高圧ポンプ16に供給する。供給パイプ13は、単一の入口からの管路を、2つの出口に向かう低圧側パイプ13b及び高圧側パイプ13cに分岐する分岐部13aを有する。供給パイプ13の入口は低圧ポンプ12の出口に接続される。低圧側パイプ13bの出口は低圧デリバリパイプ14の入口に接続される。高圧側パイプ13cの出口は高圧ポンプ16の入口に接続される。供給パイプ13は、分岐部13aによって、低圧ポンプ12から吐出された燃料を、低圧デリバリパイプ14及び高圧ポンプ16に分岐して供給することができる。 The supply pipe 13 supplies the fuel discharged from the low pressure pump 12 to the low pressure delivery pipe 14 and a high pressure pump 16 described later. The supply pipe 13 has a branch portion 13a that branches a pipeline from a single inlet into a low-pressure side pipe 13b and a high-pressure side pipe 13c that go to two outlets. The inlet of the supply pipe 13 is connected to the outlet of the low pressure pump 12. The outlet of the low pressure side pipe 13 b is connected to the inlet of the low pressure delivery pipe 14. The outlet of the high pressure side pipe 13 c is connected to the inlet of the high pressure pump 16. The supply pipe 13 can branch and supply the fuel discharged from the low-pressure pump 12 to the low-pressure delivery pipe 14 and the high-pressure pump 16 by the branch portion 13a.
 燃料タンク11には低圧ポンプ12が設けられている。低圧ポンプ12は、燃料タンク11内に貯留されている燃料を吸入し、比較的低い圧力(例えば0.3MPa程度)で加圧してから、供給パイプ13へ吐出する。 The fuel tank 11 is provided with a low pressure pump 12. The low pressure pump 12 sucks the fuel stored in the fuel tank 11, pressurizes it with a relatively low pressure (for example, about 0.3 MPa), and then discharges it to the supply pipe 13.
 筒内用インジェクタ19のそれぞれは、高圧デリバリパイプ18に接続されている。高圧デリバリパイプ18は、各インジェクタ19に共有の燃料分配管であり、燃料タンク11から供給された燃料を筒内用インジェクタ19のそれぞれに供給する。高圧デリバリパイプ18の入口は高圧送出パイプ17の出口に接続されている。高圧送出パイプ17は高圧ポンプ16の出口に接続されている。 Each of the in-cylinder injectors 19 is connected to a high-pressure delivery pipe 18. The high-pressure delivery pipe 18 is a fuel distribution pipe shared by the injectors 19 and supplies the fuel supplied from the fuel tank 11 to each of the in-cylinder injectors 19. The inlet of the high pressure delivery pipe 18 is connected to the outlet of the high pressure delivery pipe 17. The high pressure delivery pipe 17 is connected to the outlet of the high pressure pump 16.
 高圧ポンプ16は、供給パイプ13の高圧側パイプ13cと、高圧送出パイプ17との間に設けられ、高圧側パイプ13cから導入された燃料を比較的高圧(例えば3.0MPa程度)で加圧してから、高圧送出パイプ17を介して高圧デリバリパイプ18へ吐出する。言い換えると、高圧ポンプ16は、低圧ポンプ12から吐出された燃料を加圧して吐出し、また、高圧デリバリパイプ18は、高圧ポンプ16から吐出された燃料を筒内用インジェクタ19のそれぞれへ供給する。 The high-pressure pump 16 is provided between the high-pressure side pipe 13c of the supply pipe 13 and the high-pressure delivery pipe 17, and pressurizes the fuel introduced from the high-pressure side pipe 13c at a relatively high pressure (for example, about 3.0 MPa). From the high pressure delivery pipe 17 to the high pressure delivery pipe 18. In other words, the high pressure pump 16 pressurizes and discharges the fuel discharged from the low pressure pump 12, and the high pressure delivery pipe 18 supplies the fuel discharged from the high pressure pump 16 to each of the in-cylinder injectors 19. .
 低圧ポンプ12の駆動制御はエンジンECUにより行われる。高圧ポンプ16はエンジン1のクランク軸と直結されており、エンジン1の運転に応じて駆動する。なお、高圧ポンプ16は、例えば吐出口にチェック弁等を設けることによって、高圧デリバリパイプ18内の筒内用インジェクタ19による燃料供給が行われていない状況では、高圧デリバリパイプ18へ燃料を吐出しないよう構成されている。 The drive control of the low pressure pump 12 is performed by the engine ECU. The high-pressure pump 16 is directly connected to the crankshaft of the engine 1 and is driven according to the operation of the engine 1. The high-pressure pump 16 does not discharge fuel to the high-pressure delivery pipe 18 in a situation where fuel is not supplied by the in-cylinder injector 19 in the high-pressure delivery pipe 18 by providing a check valve or the like at the discharge port, for example. It is configured as follows.
 本実施形態では、燃料タンク11から低圧ポンプ12、低圧デリバリパイプ14及びポート用インジェクタ15を経て吸気ポート4に低圧燃料を供給する構成を「低圧燃料系」と表記する。また、高圧ポンプ16、高圧デリバリパイプ18、及び筒内用インジェクタ19を経て各気筒5に高圧燃料を供給する構成を「高圧燃料系」と表記する。 In the present embodiment, a configuration in which low-pressure fuel is supplied from the fuel tank 11 to the intake port 4 via the low-pressure pump 12, the low-pressure delivery pipe 14, and the port injector 15 is referred to as “low-pressure fuel system”. A configuration in which high-pressure fuel is supplied to each cylinder 5 through the high-pressure pump 16, the high-pressure delivery pipe 18, and the in-cylinder injector 19 is referred to as “high-pressure fuel system”.
 本実施形態に係る燃料噴射装置10は、上記の燃料タンク11、低圧ポンプ12、供給パイプ13、低圧デリバリパイプ14、ポート用インジェクタ15、高圧ポンプ16、高圧デリバリパイプ18、及び、筒内用インジェクタ19を備える。さらに燃料噴射装置10は、排出パイプ20と、電磁弁21(流量調整部)と、温度センサ22と、圧力センサ23と、制御部24と、を備える。 The fuel injection device 10 according to this embodiment includes the fuel tank 11, the low pressure pump 12, the supply pipe 13, the low pressure delivery pipe 14, the port injector 15, the high pressure pump 16, the high pressure delivery pipe 18, and the in-cylinder injector. 19 is provided. Furthermore, the fuel injection device 10 includes a discharge pipe 20, a solenoid valve 21 (flow rate adjustment unit), a temperature sensor 22, a pressure sensor 23, and a control unit 24.
 排出パイプ20は、高圧デリバリパイプ18から低圧デリバリパイプ14に燃料を排出可能に接続される。排出パイプ20の入口は高圧デリバリパイプ18に接続され、出口は低圧デリバリパイプ14に接続される。 The discharge pipe 20 is connected to the low pressure delivery pipe 14 so that fuel can be discharged from the high pressure delivery pipe 18. The outlet of the discharge pipe 20 is connected to the high pressure delivery pipe 18 and the outlet is connected to the low pressure delivery pipe 14.
 電磁弁21は、排出パイプ20の内部に設けられる。電磁弁21は、その開度によって排出パイプ20を流れる燃料の流量を調整することができる。電磁弁21の開度は、制御部24からの制御指令に応じて制御される。 The solenoid valve 21 is provided inside the discharge pipe 20. The electromagnetic valve 21 can adjust the flow rate of the fuel flowing through the discharge pipe 20 according to its opening. The opening degree of the electromagnetic valve 21 is controlled in accordance with a control command from the control unit 24.
 温度センサ22は、高圧ポンプ16の入口に設けられ、高圧ポンプ16の内部に滞留する、または内部を流れる燃料温度を計測する。圧力センサ23は、高圧デリバリパイプ18に設けられ、高圧デリバリパイプの内部の燃料圧力を計測する。温度センサ22及び圧力センサ23により計測された情報は制御部24に出力される。  The temperature sensor 22 is provided at the inlet of the high-pressure pump 16 and measures the temperature of the fuel that stays in or flows through the high-pressure pump 16. The pressure sensor 23 is provided in the high pressure delivery pipe 18 and measures the fuel pressure inside the high pressure delivery pipe. Information measured by the temperature sensor 22 and the pressure sensor 23 is output to the control unit 24.
 制御部24は、電磁弁21の動作を制御する。より詳細には、制御部24は、温度センサ22により計測された高圧ポンプ16内の燃料温度に基づいて、この燃料温度が所定値より高いときに電磁弁21を開弁することによって、高圧デリバリパイプ18から排出パイプ20を介して排出される燃料の流量を増やす制御を行う。以降では、この制御を「燃料リリース制御」と表記し、燃料噴射装置10においてこの燃料リリース制御に係る要素である排出パイプ20及び電磁弁21を「リリーフ機構」と表記する。 The control unit 24 controls the operation of the electromagnetic valve 21. More specifically, the control unit 24 opens the electromagnetic valve 21 when the fuel temperature is higher than a predetermined value based on the fuel temperature in the high-pressure pump 16 measured by the temperature sensor 22, thereby providing a high-pressure delivery. Control is performed to increase the flow rate of fuel discharged from the pipe 18 via the discharge pipe 20. Hereinafter, this control is referred to as “fuel release control”, and the discharge pipe 20 and the electromagnetic valve 21 that are elements related to the fuel release control in the fuel injection device 10 are referred to as “relief mechanism”.
 制御部24は、物理的には、CPU(コントローラ)24a、並びに図示しないROM、RAM、及び入出力インタフェース等を備えたコンピュータシステムとして構成される。制御部24は、例えば燃料噴射装置10が搭載される車両のエンジンECUの一部として実装される。制御部24は、上記のように燃料噴射装置10の一要素であると共に、電磁弁21の制御によって燃料噴射装置10の動作を制御する「制御装置」であるとも表現することができる。 The control unit 24 is physically configured as a computer system including a CPU (controller) 24a, a ROM, a RAM, and an input / output interface (not shown). The control unit 24 is mounted as a part of an engine ECU of a vehicle on which the fuel injection device 10 is mounted, for example. The control unit 24 is a component of the fuel injection device 10 as described above, and can also be expressed as a “control device” that controls the operation of the fuel injection device 10 by controlling the electromagnetic valve 21.
 図2を参照して、第1実施形態における燃料リリース制御の詳細について説明する。図2に示すフローチャートは、制御部24により例えば所定周期ごとに繰り返し実施される。 Details of the fuel release control in the first embodiment will be described with reference to FIG. The flowchart shown in FIG. 2 is repeatedly performed by the control unit 24 at predetermined intervals, for example.
 ステップS101では、温度センサ22により測定される情報に基づいて高圧ポンプ16内の燃料温度(実燃温)が検知される。この実燃温とは、典型的には、高圧デリバリパイプ18に設けられた筒内用インジェクタ19による燃料噴射が実行されていない状況、かつ、電磁弁21が閉弁され排出パイプ20から燃料が排出されていない状況において、高圧デリバリパイプ18に吐出されず高圧ポンプ16の入口近傍に滞留している燃料の温度である。なお、実燃温は、図1に示すように温度センサ22により直接計測される構成の他にも、車両の各種情報(例えばエンジン水温、外気温など)に基づいて制御部24により推定される構成であってもよい。ステップS101の処理が完了するとステップS102に進む。 In step S101, the fuel temperature (actual fuel temperature) in the high-pressure pump 16 is detected based on the information measured by the temperature sensor 22. This actual fuel temperature is typically the situation where fuel injection by the in-cylinder injector 19 provided in the high-pressure delivery pipe 18 is not executed, and the electromagnetic valve 21 is closed and fuel is discharged from the discharge pipe 20. This is the temperature of the fuel that is not discharged into the high-pressure delivery pipe 18 and stays in the vicinity of the inlet of the high-pressure pump 16 in a state where it is not discharged. The actual fuel temperature is estimated by the control unit 24 based on various vehicle information (for example, engine water temperature, outside air temperature, etc.) in addition to the configuration directly measured by the temperature sensor 22 as shown in FIG. It may be a configuration. When the process of step S101 is completed, the process proceeds to step S102.
 ステップS102では、ステップS101にて検知された実燃温が所定の上限燃温以上か否かが判定される(実燃温≧上限燃温)。ステップS102の判定の結果、実燃温が所定の上限燃温以上であるとき(ステップS102のYes)にはステップS103に進み、そうでない場合(ステップS102のNo)にはステップS105に進む。 In step S102, it is determined whether the actual fuel temperature detected in step S101 is equal to or higher than a predetermined upper limit fuel temperature (actual fuel temperature ≧ upper limit fuel temperature). As a result of the determination in step S102, when the actual fuel temperature is equal to or higher than the predetermined upper limit fuel temperature (Yes in step S102), the process proceeds to step S103. Otherwise (No in step S102), the process proceeds to step S105.
 ステップS103では、低圧デリバリパイプ14にてポート用インジェクタ15による燃料噴射が実行中か否かが判定される。ステップS103の判定の結果、低圧デリバリパイプ14にて燃料噴射が実行中である場合(ステップS103のYes)にはステップS105に進み、燃料噴射が実行されていない場合(ステップS103のNo)にはステップS104に進む。 In step S103, it is determined whether or not fuel injection by the port injector 15 is being executed in the low pressure delivery pipe 14. As a result of the determination in step S103, if fuel injection is being performed in the low pressure delivery pipe 14 (Yes in step S103), the process proceeds to step S105, and if fuel injection is not being performed (No in step S103). Proceed to step S104.
 ステップS104に進むのは、ステップS102,S103の判定の結果、実燃温が所定の上限燃温以上であり、かつ、低圧デリバリパイプ14にて燃料噴射が実行されていない状態のときである。このとき、高圧ポンプ16の内部の燃料温度が高温状態であり気化する虞があるため、これを防止すべく燃料リリース制御を実施する必要がある。また、「低圧デリバリパイプ14にて燃料噴射が実行されていない状態であること」は、本実施形態における燃料リリース制御の実施可能条件である。したがって、ステップS104では、実施可能条件を満たすので、電磁弁21が開かれ燃料リリース制御が実施される。これにより高圧デリバリパイプ18の内部の燃料が排出パイプ20を介して低圧デリバリパイプ14に排出される。ステップS104の処理が完了するとステップS106に進む。 The process proceeds to step S104 when, as a result of the determination in steps S102 and S103, the actual fuel temperature is equal to or higher than a predetermined upper limit fuel temperature, and fuel injection is not being performed in the low pressure delivery pipe 14. At this time, since the fuel temperature inside the high-pressure pump 16 is in a high temperature state and may be vaporized, it is necessary to perform fuel release control to prevent this. Further, “the state in which fuel injection is not being executed in the low-pressure delivery pipe 14” is a feasible condition for the fuel release control in the present embodiment. Therefore, in step S104, the feasible condition is satisfied, so the solenoid valve 21 is opened and the fuel release control is performed. As a result, the fuel inside the high pressure delivery pipe 18 is discharged to the low pressure delivery pipe 14 via the discharge pipe 20. When the process of step S104 is completed, the process proceeds to step S106.
 ステップS105では、ステップS102の判定の結果、実燃温が所定の上限燃温未満であり、燃料リリース制御の実施が不要であるか、または、ステップS103の判定の結果、低圧デリバリパイプ14にて燃料噴射が実行中であり、燃料リリース制御の実施可能要件を満たさない状態であるので、電磁弁21が閉じられ燃料リリース制御は停止される。ステップS105の処理が完了すると本制御フローを終了する。 In step S105, the actual fuel temperature is lower than the predetermined upper limit fuel temperature as a result of the determination in step S102, and it is not necessary to perform the fuel release control, or in the low pressure delivery pipe 14 as a result of the determination in step S103. Since the fuel injection is being executed and does not satisfy the requirements for enabling the fuel release control, the solenoid valve 21 is closed and the fuel release control is stopped. When the process of step S105 is completed, this control flow ends.
 ステップS106では、ステップS104の燃料リリース制御の実施によって、高圧ポンプ16内の燃料の温度(燃温)が低下しているか否かが判定される。制御部24は、例えばステップS101と同様の手法により燃温の情報を取得できる。ステップS106の判定の結果、燃温が低下している場合(ステップS106のYes)には、ステップS107にてリリーフ機構(排出パイプ20、電磁弁21)が正常と診断されて、本制御フローの処理を終了する。一方、燃料リリース制御を実施したにも関わらず燃温が低下していない場合(ステップS106のNo)には、ステップS108にてリリーフ機構に何らかの異常が発生しており燃料の排出が適切に行われていないと診断されて、本制御フローの処理を終了する。ステップS106~S108の処理によって、燃料リリース制御と同時に、リリーフ機構の異常診断も行うことができ、異常発生時には迅速に車両の運転者や整備担当者に報知することができる。 In step S106, it is determined whether or not the temperature (fuel temperature) of the fuel in the high-pressure pump 16 has decreased due to the fuel release control in step S104. The control unit 24 can acquire the fuel temperature information by the same method as in step S101, for example. If the result of determination in step S106 is that the fuel temperature has decreased (Yes in step S106), the relief mechanism (discharge pipe 20, electromagnetic valve 21) is diagnosed as normal in step S107, and The process ends. On the other hand, if the fuel temperature is not lowered despite the fuel release control (No in step S106), some abnormality has occurred in the relief mechanism in step S108, and the fuel is properly discharged. It is diagnosed that it is not, and the processing of this control flow is terminated. By the processing of steps S106 to S108, the abnormality diagnosis of the relief mechanism can be performed simultaneously with the fuel release control, and when the abnormality occurs, it can be promptly notified to the vehicle driver and the maintenance staff.
 本実施形態の燃料噴射装置10は、筒内用インジェクタ19を用いて気筒5内に燃料を直接噴射する直噴制御と、ポート用インジェクタ15を用いて吸気ポート4内に燃料を噴射するポート噴射制御との2種類の燃料噴射手法を併用する構成をとる。直噴制御を中止してポート噴射制御のみが実施される場合には、高圧ポンプ16はエンジン1の駆動に伴って駆動するものの、高圧デリバリパイプ18内の燃料が排出されないため、供給パイプ13から高圧ポンプ16に導入される燃料は吐出されず入口近傍に滞留する。同様に、ポート噴射制御と直噴制御が併用され、かつ、直噴制御の実施頻度が低い場合にも、高圧ポンプ16に燃料が滞留しやすくなる。このように高圧ポンプ16に燃料が滞留すると、この滞留する燃料がエンジン1側からの熱を受けて昇温しやすいため、燃料が部分的に気化する虞がある。高圧ポンプ16内の燃料に気化が生じると、高圧ポンプ16から充分な燃料を高圧デリバリパイプ18側に吐出できなくなり、この結果、高圧燃料系において筒内用インジェクタ19による燃料噴射量が不十分となり、エンジン1の運転安定性に悪影響を及ぼす虞がある。 The fuel injection device 10 according to the present embodiment includes a direct injection control that directly injects fuel into the cylinder 5 using the in-cylinder injector 19 and a port injection that injects fuel into the intake port 4 using the port injector 15. A configuration is used in which two types of fuel injection methods are used together with control. When the direct injection control is stopped and only the port injection control is performed, the high pressure pump 16 is driven as the engine 1 is driven, but the fuel in the high pressure delivery pipe 18 is not discharged. The fuel introduced into the high-pressure pump 16 stays in the vicinity of the inlet without being discharged. Similarly, even when the port injection control and the direct injection control are used together and the frequency of the direct injection control is low, the fuel tends to stay in the high pressure pump 16. When the fuel stays in the high-pressure pump 16 in this way, the staying fuel easily receives a heat from the engine 1 side and rises in temperature. Therefore, the fuel may partially vaporize. When the fuel in the high-pressure pump 16 is vaporized, sufficient fuel cannot be discharged from the high-pressure pump 16 to the high-pressure delivery pipe 18 side. As a result, the fuel injection amount by the in-cylinder injector 19 becomes insufficient in the high-pressure fuel system. There is a risk of adversely affecting the operational stability of the engine 1.
 このような問題に対して、本実施形態の燃料噴射装置10は、高圧デリバリパイプ18と低圧デリバリパイプ14との間に接続される排出パイプ20を備える。この排出パイプ20によって、高圧デリバリパイプ18から低圧デリバリパイプ14に燃料を排出することが可能となり、高圧デリバリパイプ18の内部の燃料の排出が促進される。高圧デリバリパイプ18から燃料の排出量が増えることにより、高圧ポンプ16から高圧デリバリパイプ18へ燃料を吐出しやすくなり、高圧ポンプ16の吐出量を増加させることが可能となる。高圧ポンプ16の吐出量を増加することで、エンジン1側からの熱を受けやすかった、高圧ポンプ16の内部に滞留する燃料を減らすことができる。また、燃料の排出先を分岐部13aより下流側の低圧デリバリパイプ14とすることで、排出された高温の燃料が再度高圧ポンプ16に導入されることを回避できる。これらの結果、本実施形態の燃料噴射装置10は、燃料の高温化を好適に抑制できる。そして、燃料の高温化を抑制できることにより、燃料のベーパー化を抑制でき、高圧燃料系において燃料噴射量が不十分となるという問題の発生を好適に防止できる。また、高圧ポンプ16に既存の汎用品を流用しても高圧ポンプ16の吐出量を増加可能であるので、簡易な構成で燃料の高温化を抑制できる。 For such a problem, the fuel injection device 10 of the present embodiment includes a discharge pipe 20 connected between the high-pressure delivery pipe 18 and the low-pressure delivery pipe 14. The discharge pipe 20 enables the fuel to be discharged from the high pressure delivery pipe 18 to the low pressure delivery pipe 14, and the discharge of the fuel inside the high pressure delivery pipe 18 is promoted. By increasing the amount of fuel discharged from the high-pressure delivery pipe 18, it becomes easier to discharge the fuel from the high-pressure pump 16 to the high-pressure delivery pipe 18, and the discharge amount of the high-pressure pump 16 can be increased. By increasing the discharge amount of the high-pressure pump 16, it is possible to reduce the fuel staying inside the high-pressure pump 16, which is easy to receive heat from the engine 1 side. In addition, by setting the fuel discharge destination to the low pressure delivery pipe 14 on the downstream side of the branching portion 13a, it is possible to avoid the discharged high temperature fuel from being introduced into the high pressure pump 16 again. As a result, the fuel injection device 10 of the present embodiment can favorably suppress the high temperature of the fuel. Further, by suppressing the increase in the temperature of the fuel, it is possible to suppress the vaporization of the fuel, and it is possible to suitably prevent the problem that the fuel injection amount becomes insufficient in the high-pressure fuel system. Moreover, since the discharge amount of the high-pressure pump 16 can be increased even if an existing general-purpose product is diverted to the high-pressure pump 16, it is possible to suppress an increase in fuel temperature with a simple configuration.
 また、本実施形態の燃料噴射装置10は、排出パイプ20に設けられ、排出パイプ20を流れる燃料の流量を調整する電磁弁21と、電磁弁21の動作を制御する制御部24とを備える。制御部24は、図2のステップS102,S104に示すように、高圧ポンプ16内の燃料温度が所定の上限燃温より高いときに、電磁弁21を開くことによって、排出パイプ20に流れる燃料の流量を増やす燃料リリース制御を実施する。これにより、高圧ポンプ16内の燃料温度が高温となり、高圧燃料系内でベーパーが発生する可能性が高い状況において、高圧ポンプ16の吐出量を増加させ、高圧ポンプ16の内部に滞留する燃料を減らすことができるので、適切なタイミングで燃料の高温化を抑制できる。また、電磁弁21の開度を調整することにより燃料の排出量を連続的に制御できるので、例えば燃料温度の上限燃温からの乖離度合いに応じて排出量を増減させて燃料温度の低下速度を増減させる、または、燃温が下がるスピードが遅い場合に排出量を増やして燃温を速やかに下げるなど、燃料リリース制御を高精度に行うことができる。これにより、燃温を所定温度に保つことも可能となり、燃料噴射量を安定化できる。一方、図2のステップS102,S105に示すように、高圧ポンプ16内の燃料温度が所定の上限燃温以下のときには、燃料リリース制御を実施せず電磁弁21が閉じられ高圧デリバリパイプ18からの燃料の排出が無くなるので、高圧燃料系内でベーパーが発生して燃料噴射量が不十分となる可能性が低い状況では、高圧ポンプ16の吐出量を低減して無駄な燃料の流れを抑制できる。 Further, the fuel injection device 10 of the present embodiment includes an electromagnetic valve 21 that is provided in the discharge pipe 20 and adjusts the flow rate of the fuel flowing through the discharge pipe 20, and a control unit 24 that controls the operation of the electromagnetic valve 21. As shown in steps S102 and S104 of FIG. 2, the control unit 24 opens the electromagnetic valve 21 when the fuel temperature in the high-pressure pump 16 is higher than a predetermined upper limit fuel temperature, thereby allowing the fuel flowing through the discharge pipe 20 to flow. Implement fuel release control to increase the flow rate. As a result, in a situation where the fuel temperature in the high-pressure pump 16 becomes high and vapor is likely to be generated in the high-pressure fuel system, the discharge amount of the high-pressure pump 16 is increased and the fuel staying inside the high-pressure pump 16 is increased. Since it can reduce, the high temperature of a fuel can be suppressed at an appropriate timing. Further, since the fuel discharge amount can be continuously controlled by adjusting the opening degree of the electromagnetic valve 21, for example, the discharge amount is increased or decreased according to the degree of deviation of the fuel temperature from the upper limit fuel temperature, and the rate of decrease in the fuel temperature. The fuel release control can be performed with high accuracy, for example, by increasing / decreasing the fuel consumption rate or by increasing the emission amount when the fuel temperature lowers slowly. Thereby, the fuel temperature can be maintained at a predetermined temperature, and the fuel injection amount can be stabilized. On the other hand, as shown in steps S102 and S105 of FIG. 2, when the fuel temperature in the high-pressure pump 16 is equal to or lower than a predetermined upper limit fuel temperature, the fuel release control is not performed and the electromagnetic valve 21 is closed and the high-pressure delivery pipe 18 Since there is no fuel discharge, it is possible to suppress the flow of useless fuel by reducing the discharge amount of the high-pressure pump 16 in a situation where vapor is generated in the high-pressure fuel system and the fuel injection amount is unlikely to be insufficient. .
 また、本実施形態の燃料噴射装置10では、制御部24は、図2のステップS103~S105に示すように、燃料温度が所定の上限燃温より高いとき、かつ、低圧デリバリパイプ14のポート用インジェクタ15が停止しているとき、燃料リリース制御を実施して排出パイプ20に燃料が流れるように電磁弁21を制御する。高圧デリバリパイプ18から排出パイプ20を介して低圧デリバリパイプ14に燃料が排出されるとき、高圧の燃料が導入されるため、低圧デリバリパイプ14の内部の燃料の圧力に脈動が発生する。このとき低圧デリバリパイプ14において、ポート用インジェクタ15を用いたポート噴射制御が実施されていると、燃圧脈動の影響により燃料噴射量が変動し、噴射制御の精度が悪化する虞がある。本実施形態では「低圧デリバリパイプ14にてポート用インジェクタ15を用いた燃料噴射が実行されていないこと」を燃料リリース制御の実施可能条件とすることによって、ポート用インジェクタ15が作動中に低圧デリバリパイプ14に燃料が排出されることを防止することができ、これにより、ポート噴射への燃圧脈動による影響を低減しつつ、燃料リリース制御により燃料の高温化を好適に抑制できる。 Further, in the fuel injection device 10 of the present embodiment, the controller 24 is used for the port of the low pressure delivery pipe 14 when the fuel temperature is higher than a predetermined upper limit fuel temperature, as shown in steps S103 to S105 in FIG. When the injector 15 is stopped, the fuel release control is performed to control the solenoid valve 21 so that the fuel flows through the discharge pipe 20. When fuel is discharged from the high-pressure delivery pipe 18 to the low-pressure delivery pipe 14 via the discharge pipe 20, high-pressure fuel is introduced, so that pulsation occurs in the fuel pressure inside the low-pressure delivery pipe 14. At this time, if the port injection control using the port injector 15 is performed in the low pressure delivery pipe 14, the fuel injection amount fluctuates due to the influence of the fuel pressure pulsation, which may deteriorate the accuracy of the injection control. In the present embodiment, “the fuel injection using the port injector 15 is not executed in the low pressure delivery pipe 14” is set as a feasible condition for the fuel release control, so that the low pressure delivery is performed while the port injector 15 is in operation. It is possible to prevent the fuel from being discharged into the pipe 14, and thus it is possible to suitably suppress the increase in the temperature of the fuel by the fuel release control while reducing the influence of the fuel pressure pulsation on the port injection.
 また、制御部24は、上記の燃料リリース制御に係る燃料噴射装置10の要素(排出パイプ20及び電磁弁21)を利用して、別の制御を行うこともできる。具体的には、制御部24は、圧力センサ23により計測された高圧デリバリパイプ18の内部の燃料圧力に基づいて、この燃料圧力が目標燃圧より所定量高いときに、電磁弁21を開弁して排出パイプ20を連通させることで、高圧デリバリパイプ18の燃圧を低減させる制御を行う。以降では、この制御を「燃圧低減制御」と表記する。 Further, the control unit 24 can perform another control using the elements (the discharge pipe 20 and the electromagnetic valve 21) of the fuel injection device 10 related to the fuel release control. Specifically, based on the fuel pressure inside the high-pressure delivery pipe 18 measured by the pressure sensor 23, the control unit 24 opens the solenoid valve 21 when the fuel pressure is higher than the target fuel pressure by a predetermined amount. Then, the exhaust pipe 20 is connected to perform control to reduce the fuel pressure of the high-pressure delivery pipe 18. Hereinafter, this control is referred to as “fuel pressure reduction control”.
 図3を参照して、第1実施形態における燃圧低減制御の詳細について説明する。図3に示すフローチャートは、制御部24により例えば所定周期ごとに繰り返し実施される。 Details of the fuel pressure reduction control in the first embodiment will be described with reference to FIG. The flowchart shown in FIG. 3 is repeatedly performed by the control unit 24 at predetermined intervals, for example.
 ステップS201では、圧力センサ23により測定される情報に基づいて高圧デリバリパイプ18内の燃料圧力(実燃圧)が検知される。なお、実燃圧は、図1に示すように圧力センサ23により直接計測される構成の他にも、車両の各種情報に基づいて制御部24により推定される構成であってもよい。ステップS201の処理が完了するとステップS202に進む。 In step S201, the fuel pressure (actual fuel pressure) in the high-pressure delivery pipe 18 is detected based on the information measured by the pressure sensor 23. The actual fuel pressure may be a configuration estimated by the control unit 24 based on various types of vehicle information in addition to the configuration directly measured by the pressure sensor 23 as shown in FIG. When the process of step S201 is completed, the process proceeds to step S202.
 ステップS202では、ステップS201にて検知された実燃圧が所定の目標燃圧より所定値以上高いか否かが判定される。ステップS202の判定の結果、実燃圧が目標燃圧より所定値以上高いとき(ステップS202のYes)にはステップS203に進み、そうでない場合(ステップS202のNo)にはステップS205に進む。  In step S202, it is determined whether or not the actual fuel pressure detected in step S201 is higher than a predetermined target fuel pressure by a predetermined value or more. As a result of the determination in step S202, when the actual fuel pressure is higher than the target fuel pressure by a predetermined value or more (Yes in step S202), the process proceeds to step S203. Otherwise (No in step S202), the process proceeds to step S205.
 ステップS203では、低圧デリバリパイプ14にてポート用インジェクタ15による燃料噴射が実行中か否かが判定される。ステップS203の判定の結果、低圧デリバリパイプ14にて燃料噴射が実行中である場合(ステップS203のYes)にはステップS205に進み、燃料噴射が実行されていない場合(ステップS203のNo)にはステップS204に進む。 In step S203, it is determined whether or not fuel injection by the port injector 15 is being executed in the low pressure delivery pipe 14. As a result of the determination in step S203, if fuel injection is being performed in the low pressure delivery pipe 14 (Yes in step S203), the process proceeds to step S205, and if fuel injection is not being performed (No in step S203). Proceed to step S204.
 ステップS204に進むのは、ステップS202,S203の判定の結果、実燃圧が目標燃圧より所定値以上高く、かつ、低圧デリバリパイプ14にて燃料噴射が実行されていない状態のときである。このとき、高圧デリバリパイプ18の内部の燃料圧力と目標燃圧との較差が大きい状態であるため、これを解消すべく燃圧低減制御を実施する必要がある。また、「低圧デリバリパイプ14にて燃料噴射が実行されていない状態であること」は、本実施形態における燃圧低減制御の実施可能条件である。したがって、ステップS204では、実施可能条件を満たすので、電磁弁21が開かれ燃圧低減制御が実施される。これにより高圧デリバリパイプ18の内部の燃圧が排出パイプ20から低圧デリバリパイプ14へ抜かれる。ステップS204の処理が完了するとステップS206に進む。 The process proceeds to step S204 when the actual fuel pressure is higher than the target fuel pressure by a predetermined value or more and fuel injection is not being performed in the low-pressure delivery pipe 14 as a result of the determination in steps S202 and S203. At this time, since the difference between the fuel pressure inside the high-pressure delivery pipe 18 and the target fuel pressure is large, it is necessary to perform fuel pressure reduction control to eliminate this. Further, “the state in which fuel injection is not being executed in the low pressure delivery pipe 14” is a feasible condition for the fuel pressure reduction control in the present embodiment. Therefore, in step S204, since the feasible condition is satisfied, the solenoid valve 21 is opened and the fuel pressure reduction control is performed. As a result, the fuel pressure inside the high-pressure delivery pipe 18 is extracted from the discharge pipe 20 to the low-pressure delivery pipe 14. When the process of step S204 is completed, the process proceeds to step S206.
 ステップS205では、ステップS202の判定の結果、実燃圧と目標燃圧との較差が所定値未満であり、燃圧低減制御の実施が不要であるか、または、ステップS203の判定の結果、低圧デリバリパイプ14にて燃料噴射が実行中であり、燃圧低減制御の実施可能要件を満たさない状態であるので、電磁弁21が閉じられ燃圧低減制御は停止される。ステップS205の処理が完了すると本制御フローを終了する。 In step S205, as a result of the determination in step S202, the difference between the actual fuel pressure and the target fuel pressure is less than a predetermined value, and it is not necessary to perform the fuel pressure reduction control. Alternatively, as a result of the determination in step S203, the low-pressure delivery pipe 14 Since the fuel injection is being performed in step S3 and the fuel pressure reduction control enablement requirement is not satisfied, the solenoid valve 21 is closed and the fuel pressure reduction control is stopped. When the process of step S205 is completed, the control flow ends.
 ステップS206では、ステップS204の燃料リリース制御の実施によって、高圧デリバリパイプ18内の燃料圧力(燃圧)が低下しているか否かが判定される。制御部24は、例えばステップS201と同様の手法により燃圧の情報を取得できる。ステップS206の判定の結果、燃圧が低下している場合(ステップS206のYes)には、ステップS207にてリリーフ機構(排出パイプ20、電磁弁21)が正常と診断されて、本制御フローの処理を終了する。一方、燃圧低減制御を実施したにも関わらず燃圧が低下していない場合(ステップS206のNo)には、ステップS208にてリリーフ機構に何らかの異常が発生しており燃圧の低減が適切に行われていないと診断されて、本制御フローの処理を終了する。ステップS206~S208の処理によって、燃圧低減制御と同時に、リリーフ機構の異常診断も行うことができ、異常発生時には迅速に車両の運転者や整備担当者に報知することができる。 In step S206, it is determined whether or not the fuel pressure (fuel pressure) in the high-pressure delivery pipe 18 is reduced by performing the fuel release control in step S204. For example, the control unit 24 can acquire fuel pressure information by the same method as in step S201. If the result of determination in step S206 is that the fuel pressure has decreased (Yes in step S206), the relief mechanism (discharge pipe 20, electromagnetic valve 21) is diagnosed as normal in step S207, and the processing of this control flow is performed. Exit. On the other hand, if the fuel pressure is not reduced despite the fuel pressure reduction control (No in step S206), some abnormality has occurred in the relief mechanism in step S208, and the fuel pressure is appropriately reduced. It is diagnosed that it is not, and the processing of this control flow is terminated. By the processing in steps S206 to S208, the abnormality diagnosis of the relief mechanism can be performed simultaneously with the fuel pressure reduction control, and when the abnormality occurs, it can be promptly notified to the driver of the vehicle and the maintenance staff.
 図4を参照して燃圧低減制御の効果を説明する。図4の縦軸は高圧デリバリパイプ18の燃圧を表し、横軸は時間を表す。また、図4に示すグラフAは目標燃圧の時間推移を示す。グラフBは、本実施形態のリリーフ機構(排出パイプ20、電磁弁21)を用いて燃圧低減制御を実施した場合の燃圧の時間推移を示す。グラフCは、比較例としてのリリーフ機構を持たず、燃圧低減制御を行わない構成による燃圧の時間推移を示す。 The effect of fuel pressure reduction control will be described with reference to FIG. The vertical axis in FIG. 4 represents the fuel pressure of the high-pressure delivery pipe 18, and the horizontal axis represents time. Moreover, the graph A shown in FIG. 4 shows the time transition of the target fuel pressure. Graph B shows a time transition of the fuel pressure when the fuel pressure reduction control is performed using the relief mechanism (discharge pipe 20, electromagnetic valve 21) of the present embodiment. Graph C shows a time transition of the fuel pressure by a configuration that does not have a relief mechanism as a comparative example and does not perform fuel pressure reduction control.
 図4のグラフAに示すように、目標燃圧がステップ状に低減する場合を考える。このような状況は、例えばフューエルカット時や、過渡運転における状態変化が生じたとき、などが挙げられる。このような目標燃圧の変動に応じて、グラフCに示すように比較例の構成では、燃圧が充分に下がらない、または、燃圧が下がるのが遅い場合がある。このとき、本実施形態の燃圧低減制御では、高圧デリバリパイプ18から排出パイプ20を通じて燃圧を抜くことができるので、グラフBに示すように燃圧を目標燃圧まで速やかに下げることが可能となり、燃圧追従性を向上できる。 Suppose that the target fuel pressure is reduced stepwise as shown in graph A of FIG. Such a situation includes, for example, when a fuel cut occurs or when a state change occurs during transient operation. In accordance with such a variation in the target fuel pressure, in the configuration of the comparative example as shown in the graph C, the fuel pressure may not decrease sufficiently or the fuel pressure may decrease slowly. At this time, in the fuel pressure reduction control of the present embodiment, the fuel pressure can be released from the high pressure delivery pipe 18 through the discharge pipe 20, so that the fuel pressure can be quickly lowered to the target fuel pressure as shown in graph B, and the fuel pressure follows. Can be improved.
 また、図3のステップS203~S205に示すように、「低圧デリバリパイプ14にてポート用インジェクタ15を用いた燃料噴射が実行されていないこと」を燃圧低減制御の実施可能条件とすることによって、ポート用インジェクタ15が作動中に低圧デリバリパイプ14に高圧の燃料が排出されることを防止することができ、これにより、ポート噴射への燃圧脈動による影響を低減しつつ、燃圧低減制御により燃圧追従性を向上できる。 Further, as shown in steps S203 to S205 of FIG. 3, by making the fuel pressure reduction control feasible condition that "the fuel injection using the port injector 15 is not executed in the low pressure delivery pipe 14", It is possible to prevent high-pressure fuel from being discharged to the low-pressure delivery pipe 14 while the port injector 15 is in operation, thereby reducing the influence of fuel pressure pulsation on the port injection and fuel pressure tracking by fuel pressure reduction control. Can be improved.
[第1実施形態の変形例]
 図5を参照して第1実施形態の変形例について説明する。第1実施形態では、排出パイプ20の内部の流路上に電磁弁21を設け、電磁弁21の開閉を制御することによって、高圧デリバリパイプから排出パイプ20を介して低圧デリバリパイプに排出される燃料の流量を制御する構成を示したが、電磁弁21を別の要素に置き換えることも可能である。例えば図5に示すように、燃料噴射装置10Aにおいて、排出パイプ20の流路上に電磁弁21の代わりにリーク機構30を設けることができる。
[Modification of First Embodiment]
A modification of the first embodiment will be described with reference to FIG. In the first embodiment, a fuel that is discharged from the high-pressure delivery pipe to the low-pressure delivery pipe through the discharge pipe 20 by providing an electromagnetic valve 21 on the flow path inside the discharge pipe 20 and controlling the opening and closing of the electromagnetic valve 21. However, the electromagnetic valve 21 can be replaced with another element. For example, as shown in FIG. 5, in the fuel injection device 10 </ b> A, a leak mechanism 30 can be provided on the flow path of the discharge pipe 20 instead of the electromagnetic valve 21.
 リーク機構30は、排出パイプ20の内径を縮径するように設けられる孔部である。リーク機構30は、高圧デリバリパイプ18と低圧デリバリパイプ14との間で、一定の流れ抵抗を与えて燃料を流通させることができる。排出パイプ20は、流路内にリーク機構30が設けられることにより、高圧デリバリパイプ18と低圧デリバリパイプ14との間を常時連通させると共に、リーク機構30を設けずに内径のままで連通させる構成と比べて、高圧デリバリパイプ18から排出される燃料の流量を抑制することができる。これにより、燃料噴射装置10Aでは、高圧デリバリパイプ18からの燃料排出を促進して高圧ポンプ16の吐出量を増加できると共に、高圧デリバリパイプ18内の燃圧を良好に維持できる。したがって、燃料噴射装置10Aも、燃料の高温化の抑制、及び、燃圧追従性の向上という燃料噴射装置10と同様の効果を奏することができる。 The leak mechanism 30 is a hole provided so as to reduce the inner diameter of the discharge pipe 20. The leak mechanism 30 can circulate fuel between the high-pressure delivery pipe 18 and the low-pressure delivery pipe 14 with a certain flow resistance. The discharge pipe 20 is configured so that the high-pressure delivery pipe 18 and the low-pressure delivery pipe 14 are always communicated with each other by providing the leak mechanism 30 in the flow path, and the inner diameter is communicated without providing the leak mechanism 30. As compared with, the flow rate of the fuel discharged from the high-pressure delivery pipe 18 can be suppressed. Thus, in the fuel injection device 10A, fuel discharge from the high pressure delivery pipe 18 can be promoted to increase the discharge amount of the high pressure pump 16, and the fuel pressure in the high pressure delivery pipe 18 can be maintained well. Therefore, the fuel injection device 10 </ b> A can also achieve the same effects as the fuel injection device 10, that is, suppression of the high temperature of the fuel and improvement in fuel pressure followability.
 また、電磁弁21を、排出パイプ20の流量を調整できる別の要素に置き換えることもできる。 Also, the solenoid valve 21 can be replaced with another element that can adjust the flow rate of the discharge pipe 20.
[第2実施形態]
 図6~8を参照して第2実施形態について説明する。図6に示すように、第2実施形態に係る燃料噴射装置110は、排出パイプ120の一端部が低圧デリバリパイプ14ではなく吸気ポート4の1つに接続される点で、第1実施形態の燃料噴射装置10と異なる。第2実施形態の燃料噴射装置110では、燃料リリース制御の実施時に電磁弁21が開弁されると、高圧デリバリパイプ18から排出される燃料は、リリーフ機構(排出パイプ120、電磁弁21)が接続される吸気ポート4の内部に排出され、吸気ダクト2から導入された空気と混合されて混合気となって各気筒5に導入される。また、燃圧低減制御の実施時には、高圧デリバリパイプ18からこの吸気ポート4へ燃圧が抜かれる。
[Second Embodiment]
The second embodiment will be described with reference to FIGS. As shown in FIG. 6, the fuel injection device 110 according to the second embodiment is different from that of the first embodiment in that one end of the discharge pipe 120 is connected to one of the intake ports 4 instead of the low pressure delivery pipe 14. Different from the fuel injection device 10. In the fuel injection device 110 of the second embodiment, when the electromagnetic valve 21 is opened during the fuel release control, the fuel discharged from the high-pressure delivery pipe 18 is supplied to the relief mechanism (the discharge pipe 120, the electromagnetic valve 21). It is discharged into the connected intake port 4 and mixed with air introduced from the intake duct 2 to be introduced into each cylinder 5 as an air-fuel mixture. Further, when the fuel pressure reduction control is performed, the fuel pressure is released from the high pressure delivery pipe 18 to the intake port 4.
 図7を参照して、第2実施形態における燃料リリース制御の詳細について説明する。図7に示すフローチャートは、基本的には図2に示した第1実施形態における燃料リリース制御のフローチャートと同様の手順である。ステップS301,S302、S307~S309の各処理は、図2のフローチャートのステップS101,S102,S106~S108と同一なので説明を省略する。図7に示すフローチャートの一連の処理は、制御部124により例えば所定周期ごとに繰り返し実施される。なお、制御部124は、第1実施形態同様に、CPU(コントローラ)124a、並びに図示しないROM、RAM、及び入出力インタフェース等を備えたコンピュータシステムとして構成される。 Details of the fuel release control in the second embodiment will be described with reference to FIG. The flowchart shown in FIG. 7 is basically the same procedure as the flowchart of the fuel release control in the first embodiment shown in FIG. Each process of steps S301, S302, and S307 to S309 is the same as steps S101, S102, and S106 to S108 in the flowchart of FIG. A series of processes in the flowchart shown in FIG. 7 is repeatedly performed by the control unit 124 at predetermined intervals, for example. As in the first embodiment, the control unit 124 is configured as a computer system including a CPU (controller) 124a, a ROM, a RAM, and an input / output interface (not shown).
 ステップS302の判定の結果、実燃温が所定の上限燃温以上である場合には、以下のステップS303~S304に示す燃料リリース制御が実施される。まずステップS303では、リリーフ機構が接続される吸気ポート4のポート用インジェクタ15による燃料噴射が停止される。次にステップS304では、リリーフ機構の電磁弁21を用いて、この吸気ポート4の燃料噴射量制御が実施される。つまり、制御部124は、燃料リリース制御を実施するとき、排出パイプ120が接続される吸気ポート4のポート用インジェクタ15を停止すると共に、電磁弁21により排出パイプ120から吸気ポート4に供給される燃料量を制御する。言い換えると、制御部124は、燃料リリース制御を実施するとき、リリーフ機構が接続される吸気ポート4において、ポート用インジェクタ15の代わりに電磁弁21を用いて空燃比制御(ラムダ制御)を行う。これにより高圧デリバリパイプ18の内部の燃料を排出パイプ120から吸気ポート4に排出できると共に、この吸気ポート4が接続される気筒5への燃料流入量も制御できる。ステップS304の処理が完了するとステップS307に進む。 If the result of determination in step S302 is that the actual fuel temperature is equal to or higher than a predetermined upper limit fuel temperature, fuel release control shown in steps S303 to S304 below is performed. First, in step S303, fuel injection by the port injector 15 of the intake port 4 to which the relief mechanism is connected is stopped. Next, in step S304, the fuel injection amount control of the intake port 4 is performed using the solenoid valve 21 of the relief mechanism. That is, when the fuel release control is performed, the control unit 124 stops the port injector 15 of the intake port 4 to which the exhaust pipe 120 is connected and is supplied from the exhaust pipe 120 to the intake port 4 by the electromagnetic valve 21. Control the amount of fuel. In other words, when performing the fuel release control, the control unit 124 performs air-fuel ratio control (lambda control) using the electromagnetic valve 21 instead of the port injector 15 in the intake port 4 to which the relief mechanism is connected. As a result, the fuel inside the high-pressure delivery pipe 18 can be discharged from the discharge pipe 120 to the intake port 4 and the amount of fuel flowing into the cylinder 5 to which the intake port 4 is connected can also be controlled. When the process of step S304 is completed, the process proceeds to step S307.
 一方、ステップS302の判定の結果、実燃温が所定の上限燃温未満である場合には、以下のステップS305~S306に示すように燃料リリース制御が停止される。まずステップS305では、電磁弁21が閉じられ電磁弁21による吸気ポート4への燃料噴射量制御が停止される。次にステップS306では、リリーフ機構が接続される吸気ポート4のポート用インジェクタ15による燃料噴射が実施される。言い換えると、制御部124は、燃料リリース制御を実施しないとき、リリーフ機構が接続される吸気ポート4において、通常どおりポート用インジェクタ15を用いて空燃比制御を行う。ステップS306の処理が完了すると本制御フローを終了する。 On the other hand, if the result of determination in step S302 is that the actual fuel temperature is less than the predetermined upper limit fuel temperature, the fuel release control is stopped as shown in steps S305 to S306 below. First, in step S305, the electromagnetic valve 21 is closed and the fuel injection amount control to the intake port 4 by the electromagnetic valve 21 is stopped. Next, in step S306, fuel injection is performed by the port injector 15 of the intake port 4 to which the relief mechanism is connected. In other words, when the fuel release control is not performed, the control unit 124 performs air-fuel ratio control using the port injector 15 as usual in the intake port 4 to which the relief mechanism is connected. When the process of step S306 is completed, the control flow ends.
 なお、燃料リリース制御では、ステップS303~S304の代わりに、ポート用インジェクタ15と電磁弁21とを併用して吸気ポート4の空燃比制御を行う構成としてもよい。具体的には、制御部124が、ポート用インジェクタ15による燃料噴射量を低減し、排出パイプ120に燃料が流れるように電磁弁21を制御する。さらに制御部124は、電磁弁21若しくはポート用インジェクタ15により吸気ポート4に供給される燃料量を制御する。 In the fuel release control, air-fuel ratio control of the intake port 4 may be performed by using the port injector 15 and the electromagnetic valve 21 in combination instead of steps S303 to S304. Specifically, the control unit 124 controls the solenoid valve 21 so that the fuel injection amount by the port injector 15 is reduced and the fuel flows through the discharge pipe 120. Further, the control unit 124 controls the amount of fuel supplied to the intake port 4 by the electromagnetic valve 21 or the port injector 15.
 図8を参照して、第2実施形態における燃圧低減制御の詳細について説明する。図8に示すフローチャートは、基本的には図3に示した第1実施形態における燃圧低減制御のフローチャートと同様の手順である。ステップS401,S402、S407~S409の各処理は、図3のフローチャートのステップS201,S202,S206~S208と同一なので説明を省略する。 Details of the fuel pressure reduction control in the second embodiment will be described with reference to FIG. The flowchart shown in FIG. 8 is basically the same procedure as the flowchart of the fuel pressure reduction control in the first embodiment shown in FIG. Each process of steps S401, S402, and S407 to S409 is the same as steps S201, S202, and S206 to S208 in the flowchart of FIG.
 ステップS402の判定の結果、実燃圧が目標燃圧より所定値以上高い場合には、ステップS403~S404に示す燃圧低減制御が実施される。ステップS403~S404の各処理は、図7のステップS303~S304と同一であり、制御部124は、燃圧低減制御を実施するとき、リリーフ機構が接続される吸気ポート4において、ポート用インジェクタ15の代わりに電磁弁21を用いて空燃比制御を行う。これにより、高圧デリバリパイプ18の内部の燃圧を排出パイプ20から吸気ポート4へ抜くことができると共に、この吸気ポート4が接続される気筒5への燃料流入量も制御できる。ステップS404の処理が完了するとステップS407に進む。 If the result of determination in step S402 is that the actual fuel pressure is higher than the target fuel pressure by a predetermined value or more, fuel pressure reduction control shown in steps S403 to S404 is performed. The processes in steps S403 to S404 are the same as those in steps S303 to S304 in FIG. Instead, air-fuel ratio control is performed using the electromagnetic valve 21. As a result, the fuel pressure inside the high-pressure delivery pipe 18 can be extracted from the discharge pipe 20 to the intake port 4, and the amount of fuel flowing into the cylinder 5 to which the intake port 4 is connected can also be controlled. When the process of step S404 is completed, the process proceeds to step S407.
 一方、ステップS402の判定の結果、実燃圧と目標燃圧との較差が所定値未満である場合には、ステップS405~S406に示すように燃圧低減制御が停止される。ステップS405~S406の各処理は、図7のステップS305~S306と同一であり、制御部124は、燃圧低減制御を実施しないとき、リリーフ機構が接続される吸気ポート4において、通常どおりポート用インジェクタ15を用いて空燃比制御を行う。ステップS406の処理が完了すると本制御フローを終了する。 On the other hand, if the result of determination in step S402 is that the difference between the actual fuel pressure and the target fuel pressure is less than a predetermined value, the fuel pressure reduction control is stopped as shown in steps S405 to S406. The processes in steps S405 to S406 are the same as those in steps S305 to S306 in FIG. 7. When the fuel pressure reduction control is not performed, the control unit 124 performs the port injector as usual in the intake port 4 to which the relief mechanism is connected. 15 is used to perform air-fuel ratio control. When the process of step S406 is completed, the control flow ends.
 第2実施形態の燃料噴射装置110は、リリーフ機構(排出パイプ120、電磁弁21)を設けることによって、燃料の高温化の抑制、及び、燃圧追従性の向上という、第1実施形態の燃料噴射装置10と同様の効果を奏することができる。 The fuel injection device 110 according to the second embodiment is provided with a relief mechanism (the discharge pipe 120 and the electromagnetic valve 21), thereby suppressing the increase in fuel temperature and improving the fuel pressure followability according to the first embodiment. The same effect as the device 10 can be obtained.
 以上、具体例を参照しつつ本開示の実施の形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。例えば、前述した各具体例が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本開示の特徴を含む限り本開示の範囲に包含される。 The embodiments of the present disclosure have been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. That is, those specific examples modified by appropriate design by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. For example, the elements included in each of the specific examples described above and their arrangement, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, and can be changed as appropriate. Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present disclosure as long as it includes the features of the present disclosure.
 上記実施形態では、高圧デリバリパイプ18から燃料を排出する排出パイプ20,120が、その出口として低圧デリバリパイプ14、燃料タンク11、または吸気ポート4に接続される構成を例示したが、排出パイプの出口は上記以外の要素に接続される構成でもよい。排出パイプ20,120は、燃料タンク11から低圧デリバリパイプ14を経て吸気ポート4までの低圧燃料系と、高圧デリバリパイプ18との間に接続されていればよい。また、排出パイプ20,120は、高圧デリバリパイプ18の内部の燃料をこの低圧燃料系に排出可能であり、かつ、高圧ポンプ16の吐出量を増加可能に構成されていればよい。 In the above embodiment, the exhaust pipes 20 and 120 for discharging the fuel from the high-pressure delivery pipe 18 are illustrated as being connected to the low-pressure delivery pipe 14, the fuel tank 11, or the intake port 4 as outlets. The outlet may be connected to an element other than the above. The discharge pipes 20 and 120 only need to be connected between the low pressure fuel system from the fuel tank 11 through the low pressure delivery pipe 14 to the intake port 4 and the high pressure delivery pipe 18. Further, the discharge pipes 20 and 120 may be configured so that the fuel inside the high-pressure delivery pipe 18 can be discharged to the low-pressure fuel system and the discharge amount of the high-pressure pump 16 can be increased.
 排出パイプ20,120の出口についてさらに言えば、排出パイプ20,120は、上記の低圧燃料系のうち供給パイプ13の分岐部13aより下流側、または、燃料タンク11に接続されるのが好ましい。「低圧燃料系の分岐部13aより下流側」とは、図1に示すように、供給パイプ13の低圧側パイプ13b、低圧デリバリパイプ14、吸気ポート4、またはこれらの要素をつなぐ配管系のいずれかの箇所である。これにより、排出パイプ20,120により高圧デリバリパイプ18から還流された高温の燃料が、そのまま高圧ポンプ16に導入されず、ポート用インジェクタ15から噴射されるか、または、燃料タンク11に貯留する他の燃料と混合されるので、高圧ポンプ16の燃温低減を効果的に促進させることができる。

 
If it says further about the exit of the discharge pipes 20 and 120, it is preferable that the discharge pipes 20 and 120 are connected to the fuel tank 11 downstream from the branch part 13a of the supply pipe 13 in the low-pressure fuel system. As shown in FIG. 1, “the downstream side of the branch portion 13a of the low-pressure fuel system” means any of the low-pressure side pipe 13b, the low-pressure delivery pipe 14, the intake port 4 of the supply pipe 13, or the piping system connecting these elements. This is the place. Thereby, the high-temperature fuel recirculated from the high-pressure delivery pipe 18 by the discharge pipes 20 and 120 is not introduced into the high-pressure pump 16 as it is, but is injected from the port injector 15 or stored in the fuel tank 11. Therefore, the fuel temperature reduction of the high-pressure pump 16 can be effectively promoted.

Claims (11)

  1.  燃料を貯留する燃料タンク(11)と、
     前記燃料タンク(11)内の燃料を吐出する低圧ポンプ(12)と、
     車両に搭載されたエンジン(1)の吸気ポート(4)の内部へ燃料を噴射するポート噴射部(15)を有し、前記低圧ポンプ(12)から吐出された燃料を前記ポート噴射部(15)へ供給する低圧デリバリパイプ(14)と、
     前記低圧ポンプ(12)から吐出された燃料を加圧して吐出する高圧ポンプ(16)と、
     前記エンジン(1)の気筒(5)の内部へ燃料を噴射する筒内噴射部(19)を有し、前記高圧ポンプ(16)から吐出された燃料を前記筒内噴射部(19)へ供給する高圧デリバリパイプ(18)と、
     前記燃料タンク(11)から前記低圧デリバリパイプ(14)を経て前記吸気ポート(4)までの低圧燃料系と、前記高圧デリバリパイプ(18)との間に接続され、前記高圧デリバリパイプ(18)の内部の燃料を前記低圧燃料系に排出可能であり、かつ、前記高圧ポンプ(16)の吐出量を増加可能に構成される排出パイプ(20,120)と、
    を備える車両の燃料噴射装置。
    A fuel tank (11) for storing fuel;
    A low pressure pump (12) for discharging the fuel in the fuel tank (11);
    It has a port injection part (15) for injecting fuel into the intake port (4) of the engine (1) mounted on the vehicle, and the fuel discharged from the low-pressure pump (12) is supplied to the port injection part (15 Low pressure delivery pipe (14) to be fed to
    A high pressure pump (16) for pressurizing and discharging the fuel discharged from the low pressure pump (12);
    An in-cylinder injection part (19) for injecting fuel into the cylinder (5) of the engine (1) is supplied, and the fuel discharged from the high-pressure pump (16) is supplied to the in-cylinder injection part (19). High pressure delivery pipe (18) to
    The high-pressure delivery pipe (18) is connected between the low-pressure fuel system from the fuel tank (11) through the low-pressure delivery pipe (14) to the intake port (4) and the high-pressure delivery pipe (18). A discharge pipe (20, 120) configured to be able to discharge the fuel inside the low-pressure fuel system and increase the discharge amount of the high-pressure pump (16);
    A vehicle fuel injection device comprising:
  2.  前記低圧ポンプ(12)から吐出された燃料を、前記低圧デリバリパイプ(14)及び前記高圧ポンプ(16)に分岐して供給する分岐部(13a)を有する供給パイプ(13)を備え、
     前記排出パイプ(20,120)は、前記低圧燃料系のうち前記分岐部(13a)より下流側に接続される、
    請求項1に記載の燃料噴射装置。
    A supply pipe (13) having a branch part (13a) for supplying the fuel discharged from the low pressure pump (12) to the low pressure delivery pipe (14) and the high pressure pump (16);
    The discharge pipe (20, 120) is connected to the downstream side of the branch portion (13a) in the low-pressure fuel system.
    The fuel injection device according to claim 1.
  3.  前記排出パイプ(20,120)に設けられ、前記排出パイプ(20,120)を流れる燃料の流量を調整する流量調整部(21)と、
     前記流量調整部(21)の動作を制御する制御部(24,124)と、を備え、
     前記制御部(24,124)は、前記高圧ポンプ(16)内の燃料温度に関する情報を取得し、前記燃料温度が所定値より高いときに前記流量調整部(21)の動作を制御して前記流量を増やす、
    請求項1または2に記載の燃料噴射装置。
    A flow rate adjusting unit (21) provided on the discharge pipe (20, 120) for adjusting the flow rate of fuel flowing through the discharge pipe (20, 120);
    A control unit (24, 124) for controlling the operation of the flow rate adjustment unit (21),
    The control unit (24, 124) acquires information on the fuel temperature in the high-pressure pump (16), and controls the operation of the flow rate adjustment unit (21) when the fuel temperature is higher than a predetermined value. Increase the flow rate,
    The fuel injection device according to claim 1 or 2.
  4.  前記排出パイプ(20)は、前記高圧デリバリパイプ(18)から前記低圧デリバリパイプ(14)に燃料を排出可能に接続され、
     前記制御部(24)は、前記燃料温度が所定値より高いとき、かつ、前記低圧デリバリパイプ(14)の前記ポート噴射部(15)が停止しているとき、前記排出パイプ(20)に燃料が流れるように前記流量調整部(21)を制御する、
    請求項3に記載の燃料噴射装置。
    The discharge pipe (20) is connected so as to be able to discharge fuel from the high pressure delivery pipe (18) to the low pressure delivery pipe (14),
    When the fuel temperature is higher than a predetermined value and the port injection section (15) of the low pressure delivery pipe (14) is stopped, the control section (24) supplies fuel to the discharge pipe (20). The flow rate adjusting unit (21) is controlled so as to flow.
    The fuel injection device according to claim 3.
  5.  前記排出パイプ(120)は、前記高圧デリバリパイプ(18)から前記吸気ポート(4)に燃料を排出可能に接続され、
     前記制御部(124)は、前記燃料温度が所定値より高いとき、前記排出パイプ(120)が接続される前記吸気ポート(4)の前記ポート噴射部(15)を停止すると共に、前記流量調整部(21)により前記排出パイプ(120)から前記吸気ポート(4)に供給される燃料量を制御する、または、前記燃料温度が所定値より高いとき、前記ポート噴射部(15)による燃料噴射量を低減し、前記排出パイプ(120)に燃料が流れるように前記流量調整部(21)を制御すると共に、前記流量調整部(21)、若しくは前記ポート噴射部(15)により前記吸気ポート(4)に供給される燃料量を制御する、
    請求項3に記載の燃料噴射装置。
    The discharge pipe (120) is connected to the intake port (4) so that fuel can be discharged from the high-pressure delivery pipe (18),
    When the fuel temperature is higher than a predetermined value, the control unit (124) stops the port injection unit (15) of the intake port (4) to which the exhaust pipe (120) is connected and controls the flow rate. The amount of fuel supplied from the exhaust pipe (120) to the intake port (4) is controlled by the section (21), or when the fuel temperature is higher than a predetermined value, the fuel injection by the port injection section (15) The flow rate adjusting unit (21) is controlled so that the fuel flows to the exhaust pipe (120) by reducing the amount, and the intake port (21) or the port injection unit (15) is used to control the intake port (21). 4) control the amount of fuel supplied to
    The fuel injection device according to claim 3.
  6.  前記制御部(24,124)は、前記高圧デリバリパイプ(18)の内部の燃料圧力に関する情報を取得し、前記燃料圧力が目標燃圧より所定量高いときに前記排出パイプ(20,120)が連通するように前記流量調整部(21)を制御する、
    請求項3~5のいずれか1項に記載の車両の燃料噴射装置。 
    The control unit (24, 124) acquires information on the fuel pressure inside the high pressure delivery pipe (18), and the exhaust pipe (20, 120) communicates when the fuel pressure is higher than a target fuel pressure by a predetermined amount. Controlling the flow rate adjuster (21) to
    The fuel injection device for a vehicle according to any one of claims 3 to 5.
  7.  前記排出パイプ(20)は、前記高圧デリバリパイプ(18)から前記低圧デリバリパイプ(14)に燃料を排出可能に接続され、
     前記排出パイプ(20)の内径を縮径するよう設けられるリーク機構(30)を備える、
    請求項1または2に記載の燃料噴射装置。
    The discharge pipe (20) is connected so as to be able to discharge fuel from the high pressure delivery pipe (18) to the low pressure delivery pipe (14),
    A leak mechanism (30) provided to reduce the inner diameter of the discharge pipe (20);
    The fuel injection device according to claim 1 or 2.
  8.  燃料を貯留する燃料タンク(11)と、
     前記燃料タンク(11)内の燃料を吐出する低圧ポンプ(12)と、
     車両に搭載されたエンジン(1)の吸気ポート(4)の内部へ燃料を噴射するポート噴射部(15)を有し、前記低圧ポンプ(12)から吐出された燃料を前記ポート噴射部(15)へ供給する低圧デリバリパイプ(14)と、
     前記低圧ポンプ(12)から吐出された燃料を加圧して吐出する高圧ポンプ(16)と、
     前記エンジン(1)の気筒(5)の内部へ燃料を噴射する筒内噴射部(19)を有し、前記高圧ポンプ(16)から吐出された燃料を前記筒内噴射部(19)へ供給する高圧デリバリパイプ(18)と、
     前記燃料タンク(11)から前記低圧デリバリパイプ(14)を経て前記吸気ポート(4)までの低圧燃料系と、前記高圧デリバリパイプ(18)との間に接続され、前記高圧デリバリパイプ(18)の内部の燃料を前記低圧燃料系に排出可能であり、かつ、前記高圧ポンプ(16)の吐出量を増加可能に構成される排出パイプ(20,120)と、
     前記排出パイプ(20,120)に設けられ、前記排出パイプ(20,120)を流れる燃料の流量を調整する流量調整部(21)と、
    を備える車両の燃料噴射装置(10,110)の動作を制御する制御装置であって、
     前記高圧ポンプ(16)内の燃料温度に関する情報を取得し、前記燃料温度が所定値より高いときに前記流量調整部(21)の動作を制御して前記流量を増やすコントローラ(24a、124a)を備える、制御装置。
    A fuel tank (11) for storing fuel;
    A low pressure pump (12) for discharging the fuel in the fuel tank (11);
    It has a port injection part (15) for injecting fuel into the intake port (4) of the engine (1) mounted on the vehicle, and the fuel discharged from the low-pressure pump (12) is supplied to the port injection part (15 Low pressure delivery pipe (14) to be fed to
    A high pressure pump (16) for pressurizing and discharging the fuel discharged from the low pressure pump (12);
    An in-cylinder injection part (19) for injecting fuel into the cylinder (5) of the engine (1) is supplied, and the fuel discharged from the high-pressure pump (16) is supplied to the in-cylinder injection part (19). High pressure delivery pipe (18) to
    The high-pressure delivery pipe (18) is connected between the low-pressure fuel system from the fuel tank (11) through the low-pressure delivery pipe (14) to the intake port (4) and the high-pressure delivery pipe (18). A discharge pipe (20, 120) configured to be able to discharge the fuel inside the low-pressure fuel system and increase the discharge amount of the high-pressure pump (16);
    A flow rate adjusting unit (21) provided on the discharge pipe (20, 120) for adjusting the flow rate of fuel flowing through the discharge pipe (20, 120);
    A control device for controlling the operation of a fuel injection device (10, 110) of a vehicle comprising:
    Controllers (24a, 124a) for acquiring information on the fuel temperature in the high-pressure pump (16) and controlling the operation of the flow rate adjusting unit (21) to increase the flow rate when the fuel temperature is higher than a predetermined value. A control device.
  9.  前記燃料噴射装置(10)の前記排出パイプ(20)は、前記高圧デリバリパイプ(18)から前記低圧デリバリパイプ(14)に燃料を排出可能に接続され、
     前記コントローラ(24a、124a)は、前記燃料温度が所定値より高いとき、かつ、前記低圧デリバリパイプ(14)の前記ポート噴射部(15)が停止しているとき、前記排出パイプ(20)に燃料が流れるように前記流量調整部(21)を制御する、
    請求項8に記載の制御装置。
    The discharge pipe (20) of the fuel injection device (10) is connected so as to be able to discharge fuel from the high-pressure delivery pipe (18) to the low-pressure delivery pipe (14),
    When the fuel temperature is higher than a predetermined value and the port injection part (15) of the low pressure delivery pipe (14) is stopped, the controller (24a, 124a) Controlling the flow rate adjuster (21) so that fuel flows;
    The control device according to claim 8.
  10.  前記燃料噴射装置(110)の前記排出パイプ(120)は、前記高圧デリバリパイプ(18)から前記吸気ポート(4)に燃料を排出可能に接続され、
     前記コントローラ(24a,124a)は、前記燃料温度が所定値より高いとき、前記排出パイプ(120)が接続される前記吸気ポート(4)の前記ポート噴射部(15)を停止すると共に、前記流量調整部(21)により前記排出パイプ(120)から前記吸気ポート(4)に供給される燃料量を制御する、または、前記燃料温度が所定値より高いとき、前記ポート噴射部(15)による燃料噴射量を低減し、前記排出パイプ(120)に燃料が流れるように前記流量調整部(21)を制御すると共に、前記流量調整部(21)、若しくは前記ポート噴射部(15)により前記吸気ポート(4)に供給される燃料量を制御する、
    請求項8に記載の制御装置。
    The discharge pipe (120) of the fuel injection device (110) is connected to the intake port (4) so as to be able to discharge fuel from the high-pressure delivery pipe (18),
    When the fuel temperature is higher than a predetermined value, the controller (24a, 124a) stops the port injection section (15) of the intake port (4) to which the exhaust pipe (120) is connected, and the flow rate The amount of fuel supplied from the exhaust pipe (120) to the intake port (4) is controlled by the adjustment unit (21), or when the fuel temperature is higher than a predetermined value, the fuel by the port injection unit (15) The flow rate adjuster (21) is controlled so that the injection amount is reduced and the fuel flows through the exhaust pipe (120), and the intake port is controlled by the flow rate adjuster (21) or the port injector (15). Controlling the amount of fuel supplied to (4),
    The control device according to claim 8.
  11.  前記コントローラ(24a,124a)は、前記高圧デリバリパイプ(18)の内部の燃料圧力に関する情報を取得し、前記燃料圧力が目標燃圧より所定量高いときに前記排出パイプ(20,120)が連通するように前記流量調整部(21)を制御する、請求項8~10のいずれか1項に記載の制御装置。

     
    The controller (24a, 124a) acquires information on the fuel pressure inside the high pressure delivery pipe (18), and the exhaust pipe (20, 120) communicates when the fuel pressure is higher than a target fuel pressure by a predetermined amount. The control device according to any one of claims 8 to 10, which controls the flow rate adjusting unit (21) as described above.

PCT/JP2016/076241 2015-10-16 2016-09-07 Vehicle fuel injection device and control device WO2017064945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-204265 2015-10-16
JP2015204265A JP2017075580A (en) 2015-10-16 2015-10-16 Fuel injection device and control device for vehicle

Publications (1)

Publication Number Publication Date
WO2017064945A1 true WO2017064945A1 (en) 2017-04-20

Family

ID=58517422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076241 WO2017064945A1 (en) 2015-10-16 2016-09-07 Vehicle fuel injection device and control device

Country Status (2)

Country Link
JP (1) JP2017075580A (en)
WO (1) WO2017064945A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016989A (en) * 2004-06-30 2006-01-19 Toyota Motor Corp Fuel supply device of internal combustion engine
JP2007224812A (en) * 2006-02-23 2007-09-06 Denso Corp Fuel injection device
JP2011094524A (en) * 2009-10-29 2011-05-12 Hitachi Automotive Systems Ltd Control device for engine
JP2013531164A (en) * 2010-07-06 2013-08-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel system for internal combustion engines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016989A (en) * 2004-06-30 2006-01-19 Toyota Motor Corp Fuel supply device of internal combustion engine
JP2007224812A (en) * 2006-02-23 2007-09-06 Denso Corp Fuel injection device
JP2011094524A (en) * 2009-10-29 2011-05-12 Hitachi Automotive Systems Ltd Control device for engine
JP2013531164A (en) * 2010-07-06 2013-08-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel system for internal combustion engines

Also Published As

Publication number Publication date
JP2017075580A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP4552694B2 (en) Vehicle fuel supply device
JP4428160B2 (en) Fuel injection control device for internal combustion engine
US8905006B2 (en) Diesel engine for a LPG-diesel mixture
JP2006144628A (en) Fuel supply device
JP2017198096A (en) Fuel supply system for engine
JP2008157029A (en) Internal combustion engine fuel supply device and internal combustion engine fuel supply control device
US8601863B2 (en) Abnormality determination apparatus and abnormality determination method for multi-cylinder internal combustion engine
JP4872832B2 (en) Control device for internal combustion engine
JP2014234730A (en) Fuel injection device
KR101829042B1 (en) Auxiliary-chamber-type gas engine
JP2008050988A (en) Fuel adding device
JP4379808B2 (en) Bi-fuel engine fuel supply system
WO2017064945A1 (en) Vehicle fuel injection device and control device
JP6056538B2 (en) Fuel injection control device for internal combustion engine
WO2015080064A1 (en) Fuel supply system for multi-fuel engine
JP2010024852A (en) Fuel supply device for internal combustion engine
JP2007332879A (en) Fuel supply device of internal combustion engine
JP2006329151A (en) Anomaly determination system in fuel system of internal combustion engine
JP2006258024A (en) Control device of internal combustion engine
US9745937B2 (en) Control device for internal combustion engine
JP6489298B2 (en) Fuel injection control device for internal combustion engine
JP2011132918A (en) Fuel injection control device of internal combustion engine
JP2006144666A (en) Fuel injection system for internal combustion engine
JP2017203417A (en) Fuel injection device for engine
JP2016037921A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855199

Country of ref document: EP

Kind code of ref document: A1