WO2017064917A1 - Container investigation method and device - Google Patents

Container investigation method and device Download PDF

Info

Publication number
WO2017064917A1
WO2017064917A1 PCT/JP2016/073922 JP2016073922W WO2017064917A1 WO 2017064917 A1 WO2017064917 A1 WO 2017064917A1 JP 2016073922 W JP2016073922 W JP 2016073922W WO 2017064917 A1 WO2017064917 A1 WO 2017064917A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
illuminator
light
inspection
irradiated
Prior art date
Application number
PCT/JP2016/073922
Other languages
French (fr)
Japanese (ja)
Inventor
英明 安藤
Original Assignee
キリンテクノシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンテクノシステム株式会社 filed Critical キリンテクノシステム株式会社
Priority to KR1020187006731A priority Critical patent/KR102133744B1/en
Priority to JP2017545108A priority patent/JP6661852B2/en
Publication of WO2017064917A1 publication Critical patent/WO2017064917A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule

Definitions

  • the present invention relates to a container inspection method and apparatus for inspecting the bottom of a container.
  • an image of the bottom of the container is irradiated by irradiating an arc-shaped illumination near the bottom from both sides or irradiating a ring-shaped illumination near the bottom.
  • a method is known in which a camera is imaged from the bottom side (see, for example, Patent Document 1 or 2).
  • an object of the present invention is to provide a container inspection method capable of detecting a foreign object such as a glass piece at the bottom and a container inspection apparatus that realizes the method.
  • the container inspection method is the container inspection method for inspecting the bottom of a container, wherein the side toward the irradiation unit positioned at the left and right ends of the bottom when the container is viewed from the side.
  • An imaging process including an illumination process of irradiating light from the side and an image of the bottom part that appears when the container is viewed from below, and imaging the bottom part of the illumination part irradiated with the light by the illumination process And an imaging step.
  • the light irradiated on the irradiation part by the illumination process enters the bottom part. If there is no foreign object such as a glass piece in the light irradiation range, the light incident on the bottom part is refracted and exits from the bottom part. Therefore, these lights are out of the imaging range where the bottom image seen from the bottom of the container is contained. On the other hand, if there is a foreign matter within the light irradiation range, the light incident on the bottom is reflected, refracted or scattered at the foreign matter, and at least part of the light whose traveling direction has been changed by the foreign matter is an imaging range below the container. Head in.
  • the irradiation part for irradiating light is located at the left and right ends when the container is viewed from the side, even when an uneven part such as a ring-shaped knurling is formed on the outer surface of the bottom part, It is possible to suppress the reflected light due to uneven parts such as knurling. As a result, it is possible to avoid deterioration in inspection accuracy due to the concavo-convex portion such as knurling being shined.
  • the light in the illumination step, may be irradiated from the side and obliquely upward toward the irradiation unit. According to this embodiment, it is possible to suppress the deterioration of inspection accuracy by irradiating light while avoiding additional elements such as engraving that are often provided at the bottom of the bottom.
  • the light in the illumination step, may be irradiated within an angle range of 5 degrees or more and 30 degrees or less with respect to a direction parallel to the bottom portion. According to this aspect, by irradiating light within this angular range, additional elements such as engravings that are often provided at the bottom of the bottom can be avoided more reliably. Can be suppressed.
  • the container is located on a predetermined transport path, and in the illumination step, the plurality of irradiation units set by changing positions in the circumferential direction of the bottom,
  • the first illuminator and the second illuminator arranged across the conveyance path may share and irradiate the light.
  • light with sufficient illuminance is applied to the plurality of irradiation units of the container by using the first illuminator and the second illuminator arranged with the conveyance path interposed therebetween so as not to disturb the conveyance of the container. Can be inspected with high accuracy.
  • the conveyance path is set so as to include an arc-shaped portion, and in the illumination step, the first illuminator is disposed on an inner peripheral side of the arc-shaped portion, and the second illuminator is disposed on the arc-shaped portion.
  • the number of the second illuminators may be set to be larger than the number of the first illuminators.
  • the inner circumferential side of the arcuate portion of the transport path is narrower in physical space than the outer peripheral side, and the number of first illuminators is limited, while the outer peripheral side of the arcuate portion of the transport path is the physical space. There are few restrictions.
  • the illuminance of the inspection light can be further increased by setting the number of second illuminators to be larger than the number of first illuminators.
  • the conveyance path may be set so as to include a linear portion, and in the illumination process, the first illuminator and the second illuminator may be disposed so as to sandwich the linear portion. .
  • one light in the illumination step, one light may be irradiated with the light from one side and the other side in the tangential direction of the container.
  • the container inspection apparatus is a container inspection apparatus that inspects the bottom of a container, toward the irradiation unit positioned at the left and right ends of the bottom when the container is viewed from the side.
  • the illumination unit may irradiate the light from the side and obliquely upward toward the irradiation unit.
  • the illumination unit may irradiate the light within an angle range of 5 degrees to 30 degrees with respect to a direction parallel to the bottom.
  • illuminating means a plurality of illuminating means respectively corresponding to a plurality of divided inspection areas obtained by dividing the bottom inspection area are provided, and each of the plurality of illuminating means is The light may be irradiated toward the irradiation unit set for each of the divided inspection regions.
  • a transport unit that transports the container along a predetermined transport path
  • a first illuminator disposed across the transport path and a first illuminator
  • the two illuminators are provided, and the first illuminator and the second illuminator share the light with respect to a plurality of irradiation units set by changing positions in the circumferential direction of the bottom.
  • the first illuminator and the second illuminator may be arranged so as to irradiate.
  • route is set so that an arc-shaped part may be included, the said 1st illuminator is the inner peripheral side of the said arc-shaped part, and the said 2nd illuminator is the outer peripheral side of the said arc-shaped part
  • the number of the second illuminators may be set larger than the number of the first illuminators.
  • route may be set so that a linear part may be included, and the said 1st illuminator and the said 2nd illuminator may be arrange
  • the said illumination means may be provided so that the said light may be irradiated with respect to one irradiation part from each of the tangential direction one side of the said container, and the other side Good.
  • the terms “upper”, “side”, and “lower” are relative meaning the upper, side, and lower sides of the container to be inspected, and are not necessarily horizontal or It does not mean an absolute direction based on the vertical direction.
  • summary of the container inspection method which concerns on one form of this invention The figure which showed the state seen from the direction (side) of the arrow II of FIG. The figure which showed the state seen from the direction of arrow III of FIG.
  • the figure which showed the modification of the container inspection apparatus of FIG. The figure which showed schematic structure of the container inspection apparatus which concerns on the further different form of this invention.
  • a beer lees 100 that is a container is an inspection object.
  • the beer bowl 100 is made of light-transmitting glass, and has a disc-shaped bottom portion 101 and a cylindrical body that is raised from the bottom portion 101 at a substantially right angle and squeezed toward the upper end portion. Part 102.
  • a mouth portion (not shown) is connected to the upper end portion of the trunk portion 102.
  • the inspection method of the present embodiment is carried out in order to detect foreign matters such as glass pieces on the bottom 101 of the beer bowl 100.
  • the inspection method of the present embodiment includes an illumination process for irradiating the bottom 101 with inspection light IL as light and an imaging process for imaging the bottom 101 irradiated with the inspection light IL in the illumination process.
  • the inspection light IL is irradiated toward the predetermined irradiation part IP by the LED illuminator 10 which is an illuminating means.
  • the irradiation unit IP is located at the left-right end Ed of the bottom 101 when the beer bowl 100 is viewed from the side (in the direction of arrow II in FIG. 1).
  • the inspection light IL is irradiated from the side (the side facing the paper surface of FIG.
  • the LED illuminator 10 is arranged so that the inspection light IL is irradiated obliquely from above the irradiation unit IP.
  • the irradiation direction D1 of the inspection light IL is preferably set within an angle range ⁇ of 5 degrees or more and 30 degrees or less with respect to the horizontal direction D0. By irradiating the inspection light IL within this angle range ⁇ , it is possible to avoid markings or the like that are often provided at the bottom of the bottom 101 of the beer bowl 100.
  • the irradiation direction D1 of the inspection light IL can be geometrically defined as a direction inclined upward with respect to the tangential direction of the bottom 101.
  • the bottom 101 where the inspection light IL is irradiated onto the irradiation unit IP is imaged by the camera 11 serving as an imaging unit installed so that the center line CL of the beer bowl 100 coincides with the optical axis.
  • a lens mounted on the camera 11 a short focus lens of about 12 mm is used instead of a fisheye lens.
  • the imaging range IR of the camera 11 is set as a range in which an image Im of the bottom portion 101 that appears when the beer bowl 100 is viewed from below. Note that the optical axis of the camera 11 does not necessarily need to coincide with the center line CL as long as the image Im is within the range. It is also possible to place the camera 11 at an arbitrary position by interposing means for changing the optical path, such as a reflecting mirror, between the beer bowl 100 and the camera 11.
  • the inspection light IL irradiated in the illumination process is incident on the bottom 101.
  • the incident inspection light IL is reflected, refracted or scattered at the location of the foreign matter X, and its traveling direction changes.
  • the light whose traveling direction has changed is directed downward, and in the illustrated example, traveled downward in a direction substantially parallel to the center line CL, and is imaged by the camera 11.
  • the light whose traveling direction changes at the position of the foreign object X corresponds to any of reflected light, scattered light, and refracted light of the inspection light IL depending on the characteristics of the foreign object X.
  • the inspection light IL incident on the bottom 101 exits from the bottom 101 as shown by a broken line while being refracted. Therefore, when there is no foreign substance in the bottom 101, the reflected or refracted light is not captured by the camera 11 because it is out of the imaging range IR.
  • the presence / absence of the foreign matter X on the bottom 101 can be detected by checking the presence / absence of a defect image caused by the foreign matter X from the image captured by the camera 11. Moreover, since the position of the irradiation part IP is set as described above, and the inspection light IL is irradiated from the side of the beer bowl 100 and obliquely from above, a ring-shaped knurling N is formed on the outer surface of the bottom 101. Even when it is formed in 100, the reflected light by the knurling N can be suppressed. Thereby, the deterioration of the inspection accuracy due to the knurling N being shining can be avoided.
  • the container inspection device 1 divides the inspection region of the bottom 101 of the beer bowl 100 that is the container to be inspected into a plurality of parts, here, eight. Then, each of the divided inspection areas is set as a divided inspection area, and eight LED illuminators 10 are arranged so that the inspection light IL can be irradiated to each divided inspection area. Specifically, the eight LED illuminators 10 are arranged in the circumferential direction so as to surround the beer bowl 100 and are respectively associated with the eight divided inspection regions.
  • Each of the eight LED illuminators 10 irradiates light from the side and obliquely upward toward the irradiation unit IP set for each divided inspection region.
  • the arrangement of each LED illuminator 10 is as shown in FIGS.
  • the irradiating unit IP that each LED illuminator 10 irradiates the inspection light IL is also set for each divided inspection region as shown in FIGS. The number of divisions of the inspection area is appropriately determined according to the inspection object.
  • the camera 11 is arranged so that the optical axis coincides with the center line CL of the beer bowl 100 as shown in FIG.
  • Each LED illuminator 10 and camera 11 are connected to a control device (not shown) which is a computer, and the operation is controlled by the control device.
  • the control device controls each LED illuminator 10 so that each LED illuminator 10 irradiates the inspection light IL, and the camera so that the bottom 101 in the illuminated state is imaged in one shot. 11 is controlled.
  • the control device stores image data captured by the camera 11.
  • Implementation of processing on the image is optional.
  • the control device may perform binarization processing, inversion processing, and the like on the image obtained by imaging to perform image processing so that an image accompanying a defect in the bottom portion 101 becomes clear.
  • FIG. 5 An example of a defect image appearing in an image obtained by the container inspection apparatus 1 is shown in FIG.
  • the ring depicted in the image of FIG. 5 is an inspection region R set with reference to the outermost periphery of the beer bowl 100.
  • the presence or absence of foreign matter is detected.
  • a defect image X corresponding to a glass piece that is a foreign substance on the bottom 101 is shown.
  • This glass piece has a size of about 1 ⁇ 1 ⁇ 1 mm.
  • FIG. 6 is an image obtained by using auxiliary illumination (not shown) that shines the knurling N in a situation where the same foreign matter as that in FIG. 5 exists.
  • auxiliary illumination not shown
  • the present invention is not limited to the above form, and can be implemented in various forms.
  • the bottom part 101 is illuminated using the some LED illuminator 10 without moving the beer bowl 100 which is a container to be examined, and the inspection range of the bottom part 101 is expanded. That is, although the said form reduces the frequency
  • the inspection light IL is rotated while rotating the beer bowl 100 around the center line CL.
  • the present invention can be implemented in the form of irradiation in the irradiation direction D1 and imaging with the camera 11 at every predetermined rotation angle. In this case, since the number of the LED illuminators 10 is sufficient, the number of the LED illuminators 10 can be reduced.
  • FIG. 8 shows one form of the container inspection device 20 provided with the star wheel transport device 21 as an example of the transport means of the beer bowl 100.
  • the star wheel transport device 21 rotates the disk-shaped star wheel 22 provided with recesses 22a at equal intervals on the outer periphery around its central axis by a drive mechanism (not shown), While the beer bowl 100 is taken into the recess 22a at P1, the beer bowl 100 is taken out from the recess 22a at the carry-out position P2, so that the beer bowl 100 is transferred in an arc shape between the carry-in position P1 and the carry-out position P2.
  • This is a well-known transport device that transports along a center line (shown by a one-dot chain line).
  • the star wheel transport device 21 is an example of a transport unit that is set so that the entire transport path CP is curved in an arc.
  • An inspection position Pi is set at an intermediate position between the carry-in position P1 and the carry-out position P2 as an example in the middle of the transport path CP.
  • the container inspection device 20 uses the camera 11 while irradiating the bottom 101 of the beer bowl 100 located at the inspection position Pi with the inspection light IL (shown by a thick arrow, and only a part thereof is provided with reference numerals). Imaging is performed by looking up the bottom 101 from directly below. Processing of the obtained image may be the same as that of the container inspection apparatus 1 in FIG.
  • the container inspection apparatus 20 as an example of illumination means for irradiating the inspection light IL, four inner illuminators 23A to 23D disposed on the inner peripheral side of the transport path CP and the outer peripheral side of the transport path CP are disposed.
  • Six outer illuminators 24A to 24F are provided.
  • the inner illuminators 23A to 23D and the outer illuminators 24A to 24F are arranged so as to sandwich the conveyance path CP so as not to disturb the conveyance of the beer bowl 100 along the conveyance path CP.
  • the inner illuminators 23A to 23D are examples of first illuminators
  • the outer illuminators 24A to 24F are examples of second illuminators.
  • each of the inner illuminator 23 and the outer illuminator 24 is an illuminator that emits spot light using an LED as a light source as an example.
  • a plurality (six in the illustrated example) of irradiation units IP1 to IP6 are set on the bottom 101 of the beer bowl 100 while changing positions in the circumferential direction.
  • irradiation units IP when it is not necessary to distinguish the irradiation units IP1 to IP6, they may be referred to as irradiation units IP.
  • the irradiation unit IP is set as shown in FIGS. That is, the irradiation part IP is set so as to be positioned at the end Ed in the left-right direction of the bottom 101 when the beer bowl 100 is viewed from the side (in the direction of arrow II in FIG. 1). In FIG. 8, the position of the irradiation unit IP is indicated by a dashed arc, but the actual irradiation unit IP is set as shown in FIG.
  • Each of the inner illuminator 23 and the outer illuminator 24 is provided so as to irradiate the inspection light IL in a shared manner with respect to the plurality of irradiation units IP. That is, the inner illuminator 23A and the outer illuminator 24A irradiate the irradiation part IP1 with the inspection light IL, and the inner illuminator 23B and the outer illuminator 24B irradiate the irradiation part IP2 with the inspection light IL, and the inner illuminator 23C and the outer illuminator 24C.
  • the illuminator 24C irradiates the irradiation part IP3 with the inspection light IL, and the inner illuminator 23D and the outer illuminator 24D are provided so as to irradiate the irradiation part IP4 with the inspection light IL.
  • the correspondence between the irradiation units IP1 to IP4, the inner illuminators 23A to 23D, and the outer illuminators 24A to 24D is a tangential direction of the beer bowl 100 with respect to one irradiation unit IP (may be regarded as a circumferential direction).
  • the inspection light IL is set to be irradiated from each of the one side and the other side.
  • the inner illuminator 23 and the outer illuminator 24 associated with one irradiation unit IP are arranged to face each other with the irradiation unit IP interposed therebetween.
  • the irradiation unit IP is irradiated with the inspection light IL from both sides thereof.
  • the two irradiation units IP5 and IP6 set at the outermost position of the transport path CP are irradiated with the inspection light IL from one outer illuminator 24E and 24F, respectively.
  • the physical space on the inner circumference side of the transport path CP is narrower than that on the outer circumference side, and the number of installed inner illuminators 23 is limited. However, the physical space on the outer circumference side of the transport path CP is less restricted. Therefore, if the number of the outer illuminators 24 is set to be larger than the number of the inner illuminators 23, the illuminance of the inspection light IL applied to the bottom 101 of the beer bowl 100 can be increased.
  • each of the inner illuminator 23 and the outer illuminator 24 is arranged to irradiate the inspection light IL obliquely from above with respect to the irradiation unit IP. This point is as shown in FIG. 1, and the angle range ⁇ may be the same as described above.
  • the inspection light IL is irradiated from the inner illuminator 23 and the outer illuminator 24 to the illumination unit IP set on the bottom 101 of the beer bowl 100, and the inspection light IL is irradiated.
  • the inspection light IL is irradiated.
  • the illuminance is increased by irradiating the single irradiation part IP with the inspection light IL from both sides in the tangential direction, and the knurling of the bottom part 101 and the rising part of the inner wall are illuminated.
  • the bottom 101 can be illuminated so that only the outermost periphery of the beer bowl 100 shines clearly while suppressing inconveniences. Thereby, the inspection area in the image acquired by the camera 11 can be stabilized, and the inspection area can be tracked more accurately.
  • the illuminance of the inspection light IL irradiated on the bottom 101 can be further increased by providing more outer illuminators 24 than the inner illuminators 23 by taking advantage of the physical space on the outer peripheral side of the transport path CP.
  • the metal or black foreign matter can be easily detected because it appears as a darker shadow than the knurling by the inspection light IL.
  • a glass piece or white foreign substance may shine as a bright part or a shadow as a dark part. In either case, the contrast with the part other than the foreign substance is relatively low. Because it becomes large, it can be easily detected.
  • FIG. 9 shows a container inspection apparatus 20 according to the modification.
  • the four inner illuminators 23A to 23D and the four outer illuminators 24A to 24D share the inspection with respect to the plurality of irradiation units IP1 to IP6 set on the bottom 101. It is comprised so that light IL may be irradiated.
  • the inner illuminator 23A and the outer illuminator 24A irradiate the irradiation part IP1 with the inspection light IL
  • the inner illuminator 23B and the outer illuminator 24B are provided so as to irradiate the irradiation part IP2 with the inspection light IL.
  • the correspondence relationship between the irradiation parts IP1, IP2 and the inner illuminators 23A, 23B and the outer illuminators 24A, 24B is as follows. Is set to be irradiated with the inspection light IL.
  • the inspection light IL is irradiated from one inner illuminators 23C and 23D to the two irradiation units IP3 and IP4 set at the innermost peripheral position of the transport path CP, respectively.
  • the two irradiation units IP5 and IP6 set at the outermost position of the transport path CP are irradiated with the inspection light IL from one outer illuminator 24C and 24D, respectively.
  • the irradiation unit IP may be appropriately set along the periphery of the bottom 101, and how the irradiation unit IP is shared by the inner illuminator 23 and the outer illuminator 24.
  • the illumination can be selected as appropriate.
  • the irradiation direction of the inspection light IL (the direction of the dashed line D1 in FIG. 1) is set so that the inspection light IL is irradiated obliquely from above the bottom 101.
  • the inspection light IL may be irradiated from the side of the container, that is, from the direction orthogonal to the center line CL.
  • the conveyance path CP is not limited to an example in which the whole is formed in an arc shape.
  • the first is formed on the inner peripheral side of the arc-shaped portion of the conveyance path.
  • the second illuminator may be disposed on the outer peripheral side of the illuminator, and the illumination units may be appropriately assigned to irradiate the plurality of irradiation units with light.
  • the conveyance path is set to include a linear portion and the container is inspected at the linear portion, the first illuminator and the second illumination are sandwiched between the linear portions.
  • FIG. 10 shows an example of a form in which the container is inspected at the straight portion of the transport path.
  • a conveyance apparatus 21A is provided so that at least a part of the conveyance path CP extends linearly, and an inspection position Pi is set in the middle of the straight line portion of the conveyance path CP.
  • the transport device 21A is configured to transport along the transport path CP while holding the barrel 102 (see FIG. 1) of the beer bowl 100 between a pair of belts.
  • the inner illuminators 23A to 23D in FIG. 9 are used as the first illuminator, and the outer illuminators 24A to 24D in FIG. 9 are used as the second illuminator. It arrange
  • the correspondence relationship between the irradiation units IP1 to IP6 of the beer bowl 100 and the illuminators 23 and 24 is set similarly to the example of FIG.
  • the transport path CP may be set to various shapes in which a linear portion and an arc-shaped portion are appropriately combined, and the inspection position can be set to an appropriate position.
  • the LED illuminator 10 is used as the light source of the inspection light IL, but the light source and the wavelength of the light are not particularly limited.
  • An appropriate light source may be selected according to the properties of the container to be inspected.
  • beer lees are to be inspected, but as a container that can be inspected by the inspection method and apparatus of the present invention, as long as it is a container that has a bottom and is made of a material having a light projecting property, There is no limit.
  • a container having a non-circular bottom such as a polygonal shape in plan view can be used as an inspection target of the inspection method and apparatus of the present invention.
  • the container inspection method and apparatus when there is a foreign matter within the light irradiation range, the light incident on the bottom is reflected, refracted or scattered at the location of the foreign matter. However, at least a part of the light whose traveling direction has been changed by the foreign object goes to the imaging range below the container. Thereby, since the light whose traveling direction has been changed by the foreign object can be imaged in the imaging process, the foreign object such as a glass piece at the bottom can be detected.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A method for investigating a base section 101 of a beer bottle 100 comprises: an illumination step in which an investigation light IL is shone from the side and an upward slant when the beer bottle 100 is viewed from the side (direction II), toward an illumination part IP located at an edge in the left-right direction of the base section 101; and an imaging step, in which an image is taken of the base section 101, the illumination part IP of which was illuminated by the investigation light IL in the illumination step, such that the imaging range includes an image of the base section 101 that appears when the beer bottle 100 is viewed from below.

Description

容器検査方法及び装置Container inspection method and apparatus
 本発明は、容器の底部を検査する容器検査方法及び装置に関する。 The present invention relates to a container inspection method and apparatus for inspecting the bottom of a container.
 容器の底部にあるガラス片等の異物の有無を検査する方法として、底部付近に円弧状の照明を両側から照射して、又はリング状の照明を底部付近に照射して、容器の底部の像を底部側からカメラで撮像する方法が知られている(例えば、特許文献1又は2参照)。 As a method of inspecting the presence or absence of a foreign object such as a glass piece on the bottom of the container, an image of the bottom of the container is irradiated by irradiating an arc-shaped illumination near the bottom from both sides or irradiating a ring-shaped illumination near the bottom. A method is known in which a camera is imaged from the bottom side (see, for example, Patent Document 1 or 2).
特開平9-274000号公報JP-A-9-274000 特開2004-212079号公報JP 2004-212079 A
 従来の検査方法は、底部の全周の一部が暗くなって検出精度が悪化したり、底部に形成されたナーリング等の凹凸部を光らせてしまったりして異物の検出が正確にできない場合があった。 In the conventional inspection method, a part of the entire circumference of the bottom part becomes dark and the detection accuracy is deteriorated, or the uneven part such as the knurling formed on the bottom part is shined, so that the foreign object cannot be detected accurately. there were.
 そこで、本発明は、底部にあるガラス片等の異物を検出することが可能な容器検査方法及びその方法を実現する容器検査装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a container inspection method capable of detecting a foreign object such as a glass piece at the bottom and a container inspection apparatus that realizes the method.
 本発明の一態様に係る容器検査方法は、容器の底部を検査する容器検査方法において、前記容器を側方から見た場合に前記底部の左右方向の端に位置する照射部に向かって前記側方から光を照射する照明工程と、前記容器を下方から見た場合に現れる前記底部の像が含まれる撮像範囲内で、前記照明工程によって前記照射部に前記光が照射された前記底部を撮像する撮像工程と、を含むものである。 The container inspection method according to an aspect of the present invention is the container inspection method for inspecting the bottom of a container, wherein the side toward the irradiation unit positioned at the left and right ends of the bottom when the container is viewed from the side. An imaging process including an illumination process of irradiating light from the side and an image of the bottom part that appears when the container is viewed from below, and imaging the bottom part of the illumination part irradiated with the light by the illumination process And an imaging step.
 上記態様の容器検査方法によれば、照明工程によって照射部に照射された光は底部内に入射する。光の照射範囲内にガラス片等の異物がなければ、底部内に入射した光は屈折しながら底部から出る。そのため、これらの光は容器の下方から見た底部の像が収まる撮像範囲内からは外れる。一方、光の照射範囲内に異物があると、底部内に入射した光は異物の個所で反射、屈折又は散乱し、異物によって進行方向が変化した光の少なくとも一部は容器の下方の撮像範囲内に向かう。これにより、異物によって進行方向が変化した光を撮像工程で撮像できるので、底部にあるガラス片等の異物を検出できる。また、光を照射する照射部が容器を側方から見た場合の左右方向の端に位置するので、底部の外表面にリング状のナーリング等の凹凸部が容器に形成されている場合でも、ナーリング等の凹凸部による反射光を抑制できる。これにより、ナーリング等の凹凸部が光ってしまうことによる検査精度の悪化を回避できる。 According to the container inspection method of the above aspect, the light irradiated on the irradiation part by the illumination process enters the bottom part. If there is no foreign object such as a glass piece in the light irradiation range, the light incident on the bottom part is refracted and exits from the bottom part. Therefore, these lights are out of the imaging range where the bottom image seen from the bottom of the container is contained. On the other hand, if there is a foreign matter within the light irradiation range, the light incident on the bottom is reflected, refracted or scattered at the foreign matter, and at least part of the light whose traveling direction has been changed by the foreign matter is an imaging range below the container. Head in. Thereby, since the light whose traveling direction has been changed by the foreign object can be imaged in the imaging process, the foreign object such as a glass piece at the bottom can be detected. In addition, since the irradiation part for irradiating light is located at the left and right ends when the container is viewed from the side, even when an uneven part such as a ring-shaped knurling is formed on the outer surface of the bottom part, It is possible to suppress the reflected light due to uneven parts such as knurling. As a result, it is possible to avoid deterioration in inspection accuracy due to the concavo-convex portion such as knurling being shined.
 本発明の容器検査方法の一態様において、前記照明工程では、前記照射部に向かって前記側方かつ斜め上方から前記光を照射してもよい。この形態によれば、底部の最下部に設けられることが多い刻印等の付加的要素を避けつつ光を照射して検査精度の悪化を抑制できる。 In one aspect of the container inspection method of the present invention, in the illumination step, the light may be irradiated from the side and obliquely upward toward the irradiation unit. According to this embodiment, it is possible to suppress the deterioration of inspection accuracy by irradiating light while avoiding additional elements such as engraving that are often provided at the bottom of the bottom.
 本発明の容器検査方法の一態様において、前記照明工程では、前記底部と平行な方向に対して5度以上30度以下の角度範囲内で前記光を照射してもよい。この態様によれば、この角度範囲内で光を照射することによって、底部の最下部に設けられることが多い刻印等の付加的要素をより確実に避けることができるので、検査精度の悪化をさらに抑制できる。 In one aspect of the container inspection method of the present invention, in the illumination step, the light may be irradiated within an angle range of 5 degrees or more and 30 degrees or less with respect to a direction parallel to the bottom portion. According to this aspect, by irradiating light within this angular range, additional elements such as engravings that are often provided at the bottom of the bottom can be avoided more reliably. Can be suppressed.
 本発明の容器検査方法の一態様において、前記照明工程では、前記底部の検査領域が分割された複数の分割検査領域のそれぞれに設定された前記照射部に向かって前記光を照射してもよい。この態様によれば、一回の照明工程で底部を照明できる範囲を広げることができるので撮像工程の回数を低減できる。 1 aspect of the container inspection method of this invention WHEREIN: You may irradiate the said light toward the said irradiation part set to each of the some division | segmentation test | inspection area | region where the said test | inspection area | region of the said bottom part was divided | segmented in the said illumination process. . According to this aspect, since the range in which the bottom portion can be illuminated in one illumination process can be expanded, the number of imaging processes can be reduced.
 本発明の容器検査方法の一態様において、前記容器が所定の搬送経路上に位置し、前記照明工程では、前記底部の周方向に位置を変えて設定された複数の照射部に対して、前記搬送経路を挟んで配置された第1の照明器と第2の照明器とが分担して前記光を照射するようにしてもよい。これによれば、容器の搬送の邪魔にならないように搬送経路を挟んで配置された第1の照明器及び第2の照明器を利用して、容器の複数の照射部に十分な照度の光を照射して精度よく検査を行うことができる。 In one aspect of the container inspection method of the present invention, the container is located on a predetermined transport path, and in the illumination step, the plurality of irradiation units set by changing positions in the circumferential direction of the bottom, The first illuminator and the second illuminator arranged across the conveyance path may share and irradiate the light. According to this, light with sufficient illuminance is applied to the plurality of irradiation units of the container by using the first illuminator and the second illuminator arranged with the conveyance path interposed therebetween so as not to disturb the conveyance of the container. Can be inspected with high accuracy.
 上記態様において、前記搬送経路が弧状の部分を含むように設定され、前記照明工程では、前記第1の照明器を前記弧状の部分の内周側に、前記第2の照明器を前記弧状の部分の外周側にそれぞれ配置し、かつ前記第1の照明器の個数よりも前記第2の照明器の個数を多く設定してもよい。搬送経路の弧状部分の内周側は外周側に比して物理的空間が狭く、第1の照明器の設置個数も制限される一方で、搬送経路の弧状部分の外周側は物理的空間の制約が少ない。そのため、第2の照明器の個数を第1の照明器の個数よりも多く設定することにより、検査光の照度をさらに増加させることができる。ただし、前記搬送経路が直線状の部分を含むように設定され、前記照明工程では、前記直線状の部分を挟むように前記第1の照明器及び前記第2の照明器を配置してもよい。 In the above aspect, the conveyance path is set so as to include an arc-shaped portion, and in the illumination step, the first illuminator is disposed on an inner peripheral side of the arc-shaped portion, and the second illuminator is disposed on the arc-shaped portion. The number of the second illuminators may be set to be larger than the number of the first illuminators. The inner circumferential side of the arcuate portion of the transport path is narrower in physical space than the outer peripheral side, and the number of first illuminators is limited, while the outer peripheral side of the arcuate portion of the transport path is the physical space. There are few restrictions. Therefore, the illuminance of the inspection light can be further increased by setting the number of second illuminators to be larger than the number of first illuminators. However, the conveyance path may be set so as to include a linear portion, and in the illumination process, the first illuminator and the second illuminator may be disposed so as to sandwich the linear portion. .
 本発明の容器検査方法の一態様において、前記照明工程では、一の照射部に対して、前記容器の接線方向一方の側及び他方の側のそれぞれから前記光を照射するようにしてもよい。一の照射部の両側から光を照射することにより、照射部の照度をさらに高めて検査精度のさらなる向上を図ることができる。 In one aspect of the container inspection method of the present invention, in the illumination step, one light may be irradiated with the light from one side and the other side in the tangential direction of the container. By irradiating light from both sides of one irradiation unit, it is possible to further increase the illuminance of the irradiation unit and further improve the inspection accuracy.
 以上説明した容器検査方法及びその各態様は、以下の容器検査装置及びその各態様にて実施できる。すなわち、本発明の一態様に係る容器検査装置は、容器の底部を検査する容器検査装置において、前記容器を側方から見た場合に前記底部の左右方向の端に位置する照射部に向かって前記側方から光を照射する照明手段と、前記容器を下方から見た場合に現れる前記底部の像が収まる撮像範囲内で、前記照明手段によって前記照射部に前記光が照射された前記底部を撮像する撮像手段と、を備えるものである。 The container inspection method and each aspect thereof described above can be implemented by the following container inspection apparatus and each aspect thereof. That is, the container inspection apparatus according to one aspect of the present invention is a container inspection apparatus that inspects the bottom of a container, toward the irradiation unit positioned at the left and right ends of the bottom when the container is viewed from the side. Illuminating means for irradiating light from the side and within the imaging range in which the image of the bottom that appears when the container is viewed from below is within the imaging range, Imaging means for imaging.
 本発明の容器検査装置の一態様において、前記照明手段は、前記照射部に向かって前記側方かつ斜め上方から前記光を照射してもよい。 In one aspect of the container inspection apparatus of the present invention, the illumination unit may irradiate the light from the side and obliquely upward toward the irradiation unit.
 本発明の容器検査装置の一態様において、前記照明手段は、前記底部と平行な方向に対して5度以上30度以下の角度範囲内で前記光を照射してもよい。 In one aspect of the container inspection apparatus of the present invention, the illumination unit may irradiate the light within an angle range of 5 degrees to 30 degrees with respect to a direction parallel to the bottom.
 本発明の容器検査装置の一態様において、前記照明手段として、前記底部の検査領域が分割された複数の分割検査領域にそれぞれ対応する複数の照明手段が設けられ、前記複数の照明手段のそれぞれは、前記分割検査領域毎に設定された前記照射部に向かって前記光を照射してもよい。 In one aspect of the container inspection apparatus of the present invention, as the illuminating means, a plurality of illuminating means respectively corresponding to a plurality of divided inspection areas obtained by dividing the bottom inspection area are provided, and each of the plurality of illuminating means is The light may be irradiated toward the irradiation unit set for each of the divided inspection regions.
 本発明の容器検査装置の一態様において、前記容器を所定の搬送経路に沿って搬送する搬送手段を具備し、前記照明手段として、前記搬送経路を挟んで配置された第1の照明器及び第2の照明器とが設けられ、前記底部の周方向に位置を変えて設定された複数の照射部に対して、前記第1の照明器と前記第2の照明器とが分担して前記光を照射するように前記第1の照明器及び前記第2の照明器が配置されてもよい。 In one aspect of the container inspection apparatus of the present invention, a transport unit that transports the container along a predetermined transport path is provided, and as the illumination unit, a first illuminator disposed across the transport path and a first illuminator The two illuminators are provided, and the first illuminator and the second illuminator share the light with respect to a plurality of irradiation units set by changing positions in the circumferential direction of the bottom. The first illuminator and the second illuminator may be arranged so as to irradiate.
 上記態様においては、前記搬送経路が弧状の部分を含むように設定され、前記第1の照明器が前記弧状の部分の内周側に、前記第2の照明器が前記弧状の部分の外周側にそれぞれ配置され、かつ前記第1の照明器の個数よりも前記第2の照明器の個数が多く設定されてもよい。あるいは、前記搬送経路が直線状の部分を含むように設定され、前記第1の照明器及び前記第2の照明器は前記直線状の部分を挟むように配置されてもよい。 In the said aspect, the said conveyance path | route is set so that an arc-shaped part may be included, the said 1st illuminator is the inner peripheral side of the said arc-shaped part, and the said 2nd illuminator is the outer peripheral side of the said arc-shaped part And the number of the second illuminators may be set larger than the number of the first illuminators. Or the said conveyance path | route may be set so that a linear part may be included, and the said 1st illuminator and the said 2nd illuminator may be arrange | positioned so that the said linear part may be pinched | interposed.
 本発明の容器検査装置の一態様において、前記照明手段は、一の照射部に対して、前記容器の接線方向一方の側及び他方の側のそれぞれから前記光を照射するように設けられてもよい。 1 aspect of the container inspection apparatus of this invention WHEREIN: The said illumination means may be provided so that the said light may be irradiated with respect to one irradiation part from each of the tangential direction one side of the said container, and the other side Good.
 なお、本発明において「上方」、「側方」及び「下方」との語は、検査対象となる容器の上方、側方、及び下方を意味する相対的なものであって、必ずしも水平方向や鉛直方向を基準とした絶対的な方向を意味するものではない。 In the present invention, the terms “upper”, “side”, and “lower” are relative meaning the upper, side, and lower sides of the container to be inspected, and are not necessarily horizontal or It does not mean an absolute direction based on the vertical direction.
本発明の一形態に係る容器検査方法の概要を説明する図。The figure explaining the outline | summary of the container inspection method which concerns on one form of this invention. 図1の矢印IIの方向(側方)から見た状態を示した図。The figure which showed the state seen from the direction (side) of the arrow II of FIG. 図2の矢印IIIの方向から見た状態を示した図。The figure which showed the state seen from the direction of arrow III of FIG. 本発明の一形態に係る容器検査装置の概略構成を示した図。The figure which showed schematic structure of the container inspection apparatus which concerns on one form of this invention. 検査画像の一例を示した図。The figure which showed an example of the test | inspection image. 検査画像とナーリングとの位置関係を示した図。The figure which showed the positional relationship of a test | inspection image and knurling. 本発明の他の形態に係る容器検査装置の概略構成を示した図。The figure which showed schematic structure of the container inspection apparatus which concerns on the other form of this invention. 本発明のさらに他の形態に係る容器検査装置の概略構成を示した図。The figure which showed schematic structure of the container inspection apparatus which concerns on the further another form of this invention. 図8の容器検査装置の変形例を示した図。The figure which showed the modification of the container inspection apparatus of FIG. 本発明のさらに異なる形態に係る容器検査装置の概略構成を示した図。The figure which showed schematic structure of the container inspection apparatus which concerns on the further different form of this invention.
 図1~図3に示すように、本形態の検査方法は、容器であるビール壜100を検査対象としている。周知のように、ビール壜100は透光性を有するガラスを材料として構成されていて、円板状の底部101と、底部101から略直角に立ち上がり上端部に向かって絞り込まれた円筒状の胴部102を有する。胴部102の上端部には不図示の口部が繋がっている。本形態の検査方法は、ビール壜100の底部101にあるガラス片等の異物を検出するために実施される。 As shown in FIGS. 1 to 3, in the inspection method of this embodiment, a beer lees 100 that is a container is an inspection object. As is well known, the beer bowl 100 is made of light-transmitting glass, and has a disc-shaped bottom portion 101 and a cylindrical body that is raised from the bottom portion 101 at a substantially right angle and squeezed toward the upper end portion. Part 102. A mouth portion (not shown) is connected to the upper end portion of the trunk portion 102. The inspection method of the present embodiment is carried out in order to detect foreign matters such as glass pieces on the bottom 101 of the beer bowl 100.
 本形態の検査方法は、光としての検査光ILを底部101に照射する照明工程と、その照明工程で検査光ILが照射された底部101を撮像する撮像工程とを含む。照明工程では、照明手段であるLED照明器10によって検査光ILを所定の照射部IPに向かって照射する。図1及び図2に示すように、照射部IPはビール壜100を側方(図1の矢印IIの方向)から見た場合に底部101の左右方向の端Edに位置する。そして、照明工程では、その側方(図2の紙面に対向する側)から検査光ILを照射部IPに向かって照射する(図1も参照)。しかも、LED照明器10は、照射部IPに対して斜め上方から検査光ILが照射されるように配置されている。底部101が水平である場合には、検査光ILの照射方向D1は水平方向D0に対して5度以上30度以下の角度範囲α内に設定されることが好ましい。この角度範囲α内で検査光ILを照射することによって、ビール壜100の底部101の最下部に設けられることが多い刻印等を避けることができる。なお、平面視で底部101が真円であると仮定した場合には、検査光ILの照射方向D1は底部101の接線方向に対して上向きに傾いた方向と幾何学的に定義できる。 The inspection method of the present embodiment includes an illumination process for irradiating the bottom 101 with inspection light IL as light and an imaging process for imaging the bottom 101 irradiated with the inspection light IL in the illumination process. In the illumination process, the inspection light IL is irradiated toward the predetermined irradiation part IP by the LED illuminator 10 which is an illuminating means. As shown in FIGS. 1 and 2, the irradiation unit IP is located at the left-right end Ed of the bottom 101 when the beer bowl 100 is viewed from the side (in the direction of arrow II in FIG. 1). In the illumination step, the inspection light IL is irradiated from the side (the side facing the paper surface of FIG. 2) toward the irradiation unit IP (see also FIG. 1). Moreover, the LED illuminator 10 is arranged so that the inspection light IL is irradiated obliquely from above the irradiation unit IP. When the bottom 101 is horizontal, the irradiation direction D1 of the inspection light IL is preferably set within an angle range α of 5 degrees or more and 30 degrees or less with respect to the horizontal direction D0. By irradiating the inspection light IL within this angle range α, it is possible to avoid markings or the like that are often provided at the bottom of the bottom 101 of the beer bowl 100. When the bottom 101 is assumed to be a perfect circle in plan view, the irradiation direction D1 of the inspection light IL can be geometrically defined as a direction inclined upward with respect to the tangential direction of the bottom 101.
 撮像工程では、ビール壜100の中心線CLと光軸が一致するように設置された撮像手段としてのカメラ11によって、照射部IPに検査光ILが照射された底部101を撮像する。カメラ11に搭載されるレンズとしては魚眼レンズではなく12mm程度の短焦点レンズが使用されている。図3に示すように、カメラ11の撮像範囲IRはビール壜100を下方から見た場合に現れる底部101の像Imが収まる範囲として設定されている。なお、像Imが収まる範囲であれば、必ずしもカメラ11の光軸が中心線CLに一致していなくてもよい。また、反射鏡等の光路を変更する手段をビール壜100とカメラ11との間に介在させて、カメラ11を任意の位置に設置することも可能である。 In the imaging process, the bottom 101 where the inspection light IL is irradiated onto the irradiation unit IP is imaged by the camera 11 serving as an imaging unit installed so that the center line CL of the beer bowl 100 coincides with the optical axis. As a lens mounted on the camera 11, a short focus lens of about 12 mm is used instead of a fisheye lens. As shown in FIG. 3, the imaging range IR of the camera 11 is set as a range in which an image Im of the bottom portion 101 that appears when the beer bowl 100 is viewed from below. Note that the optical axis of the camera 11 does not necessarily need to coincide with the center line CL as long as the image Im is within the range. It is also possible to place the camera 11 at an arbitrary position by interposing means for changing the optical path, such as a reflecting mirror, between the beer bowl 100 and the camera 11.
 図1に示すように、照明工程で照射された検査光ILは底部101に入射する。入射した検査光ILは、底部101内にガラス片等の異物Xが存在する場合、その異物Xの箇所で反射、屈折又は散乱して進行方向が変化する。進行方向が変化した光は下向きに、図示の例では中心線CLと略平行な方向で下向きに進み、カメラ11にて撮像される。異物Xの箇所で進行方向が変化する光は、異物Xの特性によって、検査光ILの反射光、散乱光、又は屈折光のいずれかに該当する。 As shown in FIG. 1, the inspection light IL irradiated in the illumination process is incident on the bottom 101. When the foreign matter X such as a glass piece is present in the bottom 101, the incident inspection light IL is reflected, refracted or scattered at the location of the foreign matter X, and its traveling direction changes. The light whose traveling direction has changed is directed downward, and in the illustrated example, traveled downward in a direction substantially parallel to the center line CL, and is imaged by the camera 11. The light whose traveling direction changes at the position of the foreign object X corresponds to any of reflected light, scattered light, and refracted light of the inspection light IL depending on the characteristics of the foreign object X.
 一方、底部101内に異物Xがない場合、底部101内に入射した検査光ILは屈折しながら破線で示すように底部101から出る。そのため、底部101内に異物がない場合には、反射や屈折した光は撮像範囲IR内からは外れるのでカメラ11で撮像されない。 On the other hand, when there is no foreign matter X in the bottom 101, the inspection light IL incident on the bottom 101 exits from the bottom 101 as shown by a broken line while being refracted. Therefore, when there is no foreign substance in the bottom 101, the reflected or refracted light is not captured by the camera 11 because it is out of the imaging range IR.
 したがって、本形態の検査方法によれば、カメラ11で撮像した画像の中から、異物Xを原因とした欠陥像の有無を確かめることにより、底部101にある異物Xの有無を検出できる。また、照射部IPの位置が上述のように設定されていて、ビール壜100の側方かつ斜め上方から検査光ILが照射されるので、底部101の外表面にリング状のナーリングNがビール壜100に形成されている場合でも、ナーリングNによる反射光を抑制できる。これにより、ナーリングNが光ってしまうことによる検査精度の悪化を回避できる。 Therefore, according to the inspection method of this embodiment, the presence / absence of the foreign matter X on the bottom 101 can be detected by checking the presence / absence of a defect image caused by the foreign matter X from the image captured by the camera 11. Moreover, since the position of the irradiation part IP is set as described above, and the inspection light IL is irradiated from the side of the beer bowl 100 and obliquely from above, a ring-shaped knurling N is formed on the outer surface of the bottom 101. Even when it is formed in 100, the reflected light by the knurling N can be suppressed. Thereby, the deterioration of the inspection accuracy due to the knurling N being shining can be avoided.
 次に、本形態の検査方法を実現する容器検査装置の一例を、図4を参照しながら説明する。図4に示すように、容器検査装置1は、検査対象の容器であるビール壜100の底部101の検査領域を複数に、ここでは8分割する。そして、分割された検査領域のそれぞれを分割検査領域とし、各分割検査領域に検査光ILを照射できるように、8台のLED照明器10が配置されている。具体的には、8台のLED照明器10は、ビール壜100の周囲を取り囲むように周方向に配置されて、8つの分割検査領域にそれぞれ対応付けられる。そして、8台のLED照明器10のそれぞれは、分割検査領域毎に設定された照射部IPに向かって側方かつ斜め上方から光を照射する。各LED照明器10の配置は図1及び図3に示した通りである。各LED照明器10が検査光ILを照射する照射部IPも分割検査領域毎に、図1~図3に示した通りに設定されている。検査領域の分割数は検査対象に応じて適宜定められる。 Next, an example of a container inspection apparatus that realizes the inspection method of this embodiment will be described with reference to FIG. As shown in FIG. 4, the container inspection device 1 divides the inspection region of the bottom 101 of the beer bowl 100 that is the container to be inspected into a plurality of parts, here, eight. Then, each of the divided inspection areas is set as a divided inspection area, and eight LED illuminators 10 are arranged so that the inspection light IL can be irradiated to each divided inspection area. Specifically, the eight LED illuminators 10 are arranged in the circumferential direction so as to surround the beer bowl 100 and are respectively associated with the eight divided inspection regions. Each of the eight LED illuminators 10 irradiates light from the side and obliquely upward toward the irradiation unit IP set for each divided inspection region. The arrangement of each LED illuminator 10 is as shown in FIGS. The irradiating unit IP that each LED illuminator 10 irradiates the inspection light IL is also set for each divided inspection region as shown in FIGS. The number of divisions of the inspection area is appropriately determined according to the inspection object.
 カメラ11は、図1に示した通り、ビール壜100の中心線CLに光軸が一致するように配置されている。各LED照明器10及びカメラ11は、コンピュータである不図示の制御装置に接続されていて、その制御装置によって動作制御される。具体的には、制御装置は、各LED照明器10が検査光ILを照射するように各LED照明器10を制御するとともに、照明された状態の底部101がワンショットで撮像されるようにカメラ11を制御する。そして、制御装置はカメラ11にて撮像された画像データを記憶する。画像に対する処理の実施は任意である。例えば、制御装置は撮像して得た画像に対して2値化処理や反転処理等を実施して底部101の欠陥に伴う像が鮮明になるように画像処理を実施してよい。 The camera 11 is arranged so that the optical axis coincides with the center line CL of the beer bowl 100 as shown in FIG. Each LED illuminator 10 and camera 11 are connected to a control device (not shown) which is a computer, and the operation is controlled by the control device. Specifically, the control device controls each LED illuminator 10 so that each LED illuminator 10 irradiates the inspection light IL, and the camera so that the bottom 101 in the illuminated state is imaged in one shot. 11 is controlled. The control device stores image data captured by the camera 11. Implementation of processing on the image is optional. For example, the control device may perform binarization processing, inversion processing, and the like on the image obtained by imaging to perform image processing so that an image accompanying a defect in the bottom portion 101 becomes clear.
 容器検査装置1で得られた画像に現れる欠陥像の例を図5に示す。図5の画像に描かれているリングはビール壜100の最外周を基準にして設定された検査領域Rである。検査領域Rの内側に存在する欠陥像を解析することにより、異物の有無を検出する。図5の画像には、底部101にある異物であるガラス片に対応する欠陥像Xが写っている。このガラス片は1×1×1mm程度の大きさを持っている。なお、図6は、図5と同じ異物が存在する状況で、ナーリングNを光らせる不図示の補助照明を使用して得た画像である。この図6の画像から明らかなように、ガラス片とナーリングNは重なった位置にあることがわかる。つまり、本形態によればナーリングNを光らせることなく異物を検出することができる。 An example of a defect image appearing in an image obtained by the container inspection apparatus 1 is shown in FIG. The ring depicted in the image of FIG. 5 is an inspection region R set with reference to the outermost periphery of the beer bowl 100. By analyzing the defect image existing inside the inspection region R, the presence or absence of foreign matter is detected. In the image of FIG. 5, a defect image X corresponding to a glass piece that is a foreign substance on the bottom 101 is shown. This glass piece has a size of about 1 × 1 × 1 mm. FIG. 6 is an image obtained by using auxiliary illumination (not shown) that shines the knurling N in a situation where the same foreign matter as that in FIG. 5 exists. As is apparent from the image of FIG. 6, it can be seen that the glass piece and the knurling N are in an overlapping position. That is, according to the present embodiment, the foreign matter can be detected without causing the knurling N to shine.
 本発明は、上記形態に限定されず、種々の形態にて実施できる。上記形態では、検査対象の容器であるビール壜100を動かさずに複数のLED照明器10を用いて底部101を照明して底部101の検査範囲を広げている。すなわち、上記形態は一回の照明工程で底部101を照明できる範囲を広げることによって撮像工程の回数を低減しているが本発明は上述した各形態の検査方法及び装置に限定されない。 The present invention is not limited to the above form, and can be implemented in various forms. In the said form, the bottom part 101 is illuminated using the some LED illuminator 10 without moving the beer bowl 100 which is a container to be examined, and the inspection range of the bottom part 101 is expanded. That is, although the said form reduces the frequency | count of an imaging process by expanding the range which can illuminate the bottom part 101 by one illumination process, this invention is not limited to the inspection method and apparatus of each form mentioned above.
 例えば、図7に示すように、検査対象の容器であるビール壜100の胴部102をベルト30で支持しつつ、ビール壜100を中心線CLの回りに回転させながら、検査光ILを図1の照射方向D1で照射して所定の回転角度毎にカメラ11で撮像する形態で本発明を実施できる。この場合には、LED照明器10の個数は一つで十分であるので、LED照明器10の個数を削減できる。 For example, as shown in FIG. 7, while supporting the body 102 of the beer bowl 100, which is the container to be inspected, with the belt 30, the inspection light IL is rotated while rotating the beer bowl 100 around the center line CL. The present invention can be implemented in the form of irradiation in the irradiation direction D1 and imaging with the camera 11 at every predetermined rotation angle. In this case, since the number of the LED illuminators 10 is sufficient, the number of the LED illuminators 10 can be reduced.
 図8は、ビール壜100の搬送手段の一例としてのスターホイール搬送装置21を備えた容器検査装置20の一形態を示している。スターホイール搬送装置21は、外周に等間隔で凹部22aが設けられた円盤状のスターホイール22を不図示の駆動機構にてその中心軸線の回りに旋回させつつ、スターホイール22の外周の搬入位置P1にてビール壜100を凹部22aに取り込む一方で、搬出位置P2にてビール壜100を凹部22aから取り出すことにより、搬入位置P1から搬出位置P2の間でビール壜100を円弧状の搬送経路CP(中心線を一点鎖線で示す。)に沿って搬送する周知の搬送装置である。つまり、スターホイール搬送装置21は、その搬送経路CPの全体が弧状に湾曲するように設定された搬送手段の一例である。搬送経路CPの途中、一例として搬入位置P1と搬出位置P2との中間位置には検査位置Piが設定されている。容器検査装置20は、検査位置Piに位置するビール壜100の底部101に対して検査光IL(太矢印で示し、一部のみ参照符号を付してある。)を照射しつつカメラ11にて底部101を真下から見上げるようにして撮像する。得られた画像の処理は図4の容器検査装置1と同様でよい。 FIG. 8 shows one form of the container inspection device 20 provided with the star wheel transport device 21 as an example of the transport means of the beer bowl 100. The star wheel transport device 21 rotates the disk-shaped star wheel 22 provided with recesses 22a at equal intervals on the outer periphery around its central axis by a drive mechanism (not shown), While the beer bowl 100 is taken into the recess 22a at P1, the beer bowl 100 is taken out from the recess 22a at the carry-out position P2, so that the beer bowl 100 is transferred in an arc shape between the carry-in position P1 and the carry-out position P2. This is a well-known transport device that transports along a center line (shown by a one-dot chain line). That is, the star wheel transport device 21 is an example of a transport unit that is set so that the entire transport path CP is curved in an arc. An inspection position Pi is set at an intermediate position between the carry-in position P1 and the carry-out position P2 as an example in the middle of the transport path CP. The container inspection device 20 uses the camera 11 while irradiating the bottom 101 of the beer bowl 100 located at the inspection position Pi with the inspection light IL (shown by a thick arrow, and only a part thereof is provided with reference numerals). Imaging is performed by looking up the bottom 101 from directly below. Processing of the obtained image may be the same as that of the container inspection apparatus 1 in FIG.
 容器検査装置20には、検査光ILを照射する照明手段の一例として、搬送経路CPの内周側に配置される4台の内側照明器23A~23Dと、搬送経路CPの外周側に配置される6台の外側照明器24A~24Fとが設けられている。内側照明器23A~23D及び外側照明器24A~24Fは搬送経路CPに沿ったビール壜100の搬送を邪魔しないように搬送経路CPを挟んで配置されている。内側照明器23A~23Dは第1の照明器の一例であり、外側照明器24A~24Fは第2の照明器の一例である。以下、内側照明器23A~23Dを区別する必要がないときはそれらを内側照明器23と表記し、外側照明器24A~24Fを区別する必要がないときはそれらを外側照明器24と表記する。内側照明器23及び外側照明器24のそれぞれは、一例としてLEDを光源に用いてスポット光を射出する照明器である。 In the container inspection apparatus 20, as an example of illumination means for irradiating the inspection light IL, four inner illuminators 23A to 23D disposed on the inner peripheral side of the transport path CP and the outer peripheral side of the transport path CP are disposed. Six outer illuminators 24A to 24F are provided. The inner illuminators 23A to 23D and the outer illuminators 24A to 24F are arranged so as to sandwich the conveyance path CP so as not to disturb the conveyance of the beer bowl 100 along the conveyance path CP. The inner illuminators 23A to 23D are examples of first illuminators, and the outer illuminators 24A to 24F are examples of second illuminators. Hereinafter, when it is not necessary to distinguish the inner illuminators 23A to 23D, they are referred to as the inner illuminator 23, and when it is not necessary to distinguish the outer illuminators 24A to 24F, they are referred to as the outer illuminator 24. Each of the inner illuminator 23 and the outer illuminator 24 is an illuminator that emits spot light using an LED as a light source as an example.
 ビール壜100の底部101には、周方向に位置を変えて複数(図示例では6つ)の照射部IP1~IP6が設定されている。以下、照射部IP1~IP6を区別する必要がない場合はそれらを照射部IPと表記することがある。照射部IPは、図1及び図2に示した通りに設定されている。つまり、照射部IPはビール壜100を側方(図1の矢印IIの方向)から見た場合に底部101の左右方向の端Edに位置するように設定されている。なお、図8では照射部IPの位置を破線の円弧で示しているが、実際の照射部IPは図1に示した通りに設定される。 A plurality (six in the illustrated example) of irradiation units IP1 to IP6 are set on the bottom 101 of the beer bowl 100 while changing positions in the circumferential direction. Hereinafter, when it is not necessary to distinguish the irradiation units IP1 to IP6, they may be referred to as irradiation units IP. The irradiation unit IP is set as shown in FIGS. That is, the irradiation part IP is set so as to be positioned at the end Ed in the left-right direction of the bottom 101 when the beer bowl 100 is viewed from the side (in the direction of arrow II in FIG. 1). In FIG. 8, the position of the irradiation unit IP is indicated by a dashed arc, but the actual irradiation unit IP is set as shown in FIG.
 内側照明器23及び外側照明器24のそれぞれは、複数の照射部IPに対して分担して検査光ILを照射するように設けられている。すなわち、内側照明器23A及び外側照明器24Aは照射部IP1に検査光ILを照射し、内側照明器23B及び外側照明器24Bは照射部IP2に検査光ILを照射し、内側照明器23C及び外側照明器24Cは照射部IP3に検査光ILを照射し、内側照明器23D及び外側照明器24Dは照射部IP4に検査光ILを照射するように設けられている。照射部IP1~IP4と内側照明器23A~23D及び外側照明器24A~24Dとの対応関係は、一つの照射部IPに対して、ビール壜100の接線方向(周方向と捉えてもよい。)に関する一方の側及び他方の側のそれぞれから検査光ILが照射されるように設定されている。つまり、ビール壜100を真上から見た場合、一つの照射部IPに対応付けられた内側照明器23と外側照明器24とは、照射部IPを挟んで互いに対向するように配置されており、照射部IPはその両側から検査光ILにて照射される。 Each of the inner illuminator 23 and the outer illuminator 24 is provided so as to irradiate the inspection light IL in a shared manner with respect to the plurality of irradiation units IP. That is, the inner illuminator 23A and the outer illuminator 24A irradiate the irradiation part IP1 with the inspection light IL, and the inner illuminator 23B and the outer illuminator 24B irradiate the irradiation part IP2 with the inspection light IL, and the inner illuminator 23C and the outer illuminator 24C. The illuminator 24C irradiates the irradiation part IP3 with the inspection light IL, and the inner illuminator 23D and the outer illuminator 24D are provided so as to irradiate the irradiation part IP4 with the inspection light IL. The correspondence between the irradiation units IP1 to IP4, the inner illuminators 23A to 23D, and the outer illuminators 24A to 24D is a tangential direction of the beer bowl 100 with respect to one irradiation unit IP (may be regarded as a circumferential direction). The inspection light IL is set to be irradiated from each of the one side and the other side. That is, when the beer bowl 100 is viewed from directly above, the inner illuminator 23 and the outer illuminator 24 associated with one irradiation unit IP are arranged to face each other with the irradiation unit IP interposed therebetween. The irradiation unit IP is irradiated with the inspection light IL from both sides thereof.
 また、搬送経路CPの最も外側の位置に設定された2つの照射部IP5、IP6に対しては、それぞれ一つの外側照明器24E、24Fから検査光ILが照射される。搬送経路CPの内周側は外周側に比して物理的空間が狭く、内側照明器23の設置個数も制限されるが、搬送経路CPの外周側は物理的空間の制約が少ない。そのため、外側照明器24の個数を内側照明器23の個数よりも多く設定すれば、ビール壜100の底部101に照射される検査光ILの照度を増加させることができる。なお、ビール壜100の中心線CLの方向に関して、内側照明器23及び外側照明器24のそれぞれは照射部IPに対して斜め上方から検査光ILを照射するように配置されている。この点は、図1に示した通りであり、角度範囲αも上記と同様でよい。 Also, the two irradiation units IP5 and IP6 set at the outermost position of the transport path CP are irradiated with the inspection light IL from one outer illuminator 24E and 24F, respectively. The physical space on the inner circumference side of the transport path CP is narrower than that on the outer circumference side, and the number of installed inner illuminators 23 is limited. However, the physical space on the outer circumference side of the transport path CP is less restricted. Therefore, if the number of the outer illuminators 24 is set to be larger than the number of the inner illuminators 23, the illuminance of the inspection light IL applied to the bottom 101 of the beer bowl 100 can be increased. In addition, with respect to the direction of the center line CL of the beer bowl 100, each of the inner illuminator 23 and the outer illuminator 24 is arranged to irradiate the inspection light IL obliquely from above with respect to the irradiation unit IP. This point is as shown in FIG. 1, and the angle range α may be the same as described above.
 以上の容器検査装置20によれば、ビール壜100の底部101に設定された照明部IPに対して内側照明器23及び外側照明器24から検査光ILを照射し、検査光ILが照射された底部101をカメラ11にて撮像することにより、上述した照明工程及び撮像工程を実施して底部101における異物Xを原因とした欠陥像の有無を判別することができる。この場合、照射部IP1~IP4のそれぞれに関しては、一つの照射部IPに対して接線方向の両側から検査光ILが照射されることによって照度が増加し、底部101のナーリングや内壁立ち上がり部分が光って映る不都合を抑えつつビール壜100の最外周のみが明確に光るように底部101を照明することができる。それにより、カメラ11が取得する画像中における検査領域を安定させ、検査領域の追従をより正確に行うことが可能となる。 According to the container inspection apparatus 20 described above, the inspection light IL is irradiated from the inner illuminator 23 and the outer illuminator 24 to the illumination unit IP set on the bottom 101 of the beer bowl 100, and the inspection light IL is irradiated. By imaging the bottom 101 with the camera 11, it is possible to determine the presence or absence of a defect image due to the foreign matter X in the bottom 101 by performing the above-described illumination process and imaging process. In this case, with respect to each of the irradiation parts IP1 to IP4, the illuminance is increased by irradiating the single irradiation part IP with the inspection light IL from both sides in the tangential direction, and the knurling of the bottom part 101 and the rising part of the inner wall are illuminated. The bottom 101 can be illuminated so that only the outermost periphery of the beer bowl 100 shines clearly while suppressing inconveniences. Thereby, the inspection area in the image acquired by the camera 11 can be stabilized, and the inspection area can be tracked more accurately.
 しかも、搬送経路CPの外周側の物理的空間の余裕を活かして外側照明器24を内側照明器23よりも多く設けて底部101に照射される検査光ILの照度をさらに高めることができる。それにより、カメラ11が取得する画像中における異物Xとそれ以外の部分とのコントラストをさらに増大させて検出精度の向上を図ることができる。なお、金属や黒色系の異物は検査光ILによってナーリングよりも濃い影として現れるので容易に検出することができる。また、ガラス片や白色系の異物はその形状や検査光の入射角度によって明部として光る場合と暗部として影になる場合とがあるが、いずれの場合でも異物以外の部分とのコントラストが比較的大きくなるために容易に検出できる。 In addition, the illuminance of the inspection light IL irradiated on the bottom 101 can be further increased by providing more outer illuminators 24 than the inner illuminators 23 by taking advantage of the physical space on the outer peripheral side of the transport path CP. Thereby, it is possible to further increase the contrast between the foreign object X and the other part in the image acquired by the camera 11 to improve the detection accuracy. It should be noted that the metal or black foreign matter can be easily detected because it appears as a darker shadow than the knurling by the inspection light IL. In addition, depending on the shape and the incident angle of the inspection light, a glass piece or white foreign substance may shine as a bright part or a shadow as a dark part. In either case, the contrast with the part other than the foreign substance is relatively low. Because it becomes large, it can be easily detected.
 図8で示した内側照明器23及び外側照明器24と照射部IPとの対応関係は一例であって、その対応関係は適宜に変更されてよい。図9はその変形例に係る容器検査装置20を示している。この例の容器検査装置20は、底部101に設定された複数の照射部IP1~IP6に対して、4台の内側照明器23A~23D及び4台の外側照明器24A~24Dが分担して検査光ILを照射するように構成されている。すなわち、内側照明器23A及び外側照明器24Aは照射部IP1に検査光ILを照射し、内側照明器23B及び外側照明器24Bは照射部IP2に検査光ILを照射するように設けられている。照射部IP1、IP2と内側照明器23A、23B及び外側照明器24A、24Bとの対応関係は、一つの照射部IPに対して、ビール壜100の接線方向に関する一方の側及び他方の側のそれぞれから検査光ILが照射されるように設定されている。また、搬送経路CPの最も内周側の位置に設定された2つの照射部IP3、IP4に対しては、それぞれ一つの内側照明器23C、23Dから検査光ILが照射される。搬送経路CPの最も外側の位置に設定された2つの照射部IP5、IP6に対しては、それぞれ一つの外側照明器24C、24Dから検査光ILが照射される。なお、図9の変形例に限らず、照射部IPは底部101の周囲に沿って適宜に設定してよく、それらの照射部IPを内側照明器23及び外側照明器24にてどのように分担して照明するかも適宜に選択可能である。 The correspondence relationship between the inner illuminator 23 and the outer illuminator 24 and the irradiation unit IP illustrated in FIG. 8 is an example, and the correspondence relationship may be changed as appropriate. FIG. 9 shows a container inspection apparatus 20 according to the modification. In the container inspection apparatus 20 of this example, the four inner illuminators 23A to 23D and the four outer illuminators 24A to 24D share the inspection with respect to the plurality of irradiation units IP1 to IP6 set on the bottom 101. It is comprised so that light IL may be irradiated. That is, the inner illuminator 23A and the outer illuminator 24A irradiate the irradiation part IP1 with the inspection light IL, and the inner illuminator 23B and the outer illuminator 24B are provided so as to irradiate the irradiation part IP2 with the inspection light IL. The correspondence relationship between the irradiation parts IP1, IP2 and the inner illuminators 23A, 23B and the outer illuminators 24A, 24B is as follows. Is set to be irradiated with the inspection light IL. Further, the inspection light IL is irradiated from one inner illuminators 23C and 23D to the two irradiation units IP3 and IP4 set at the innermost peripheral position of the transport path CP, respectively. The two irradiation units IP5 and IP6 set at the outermost position of the transport path CP are irradiated with the inspection light IL from one outer illuminator 24C and 24D, respectively. 9, the irradiation unit IP may be appropriately set along the periphery of the bottom 101, and how the irradiation unit IP is shared by the inner illuminator 23 and the outer illuminator 24. The illumination can be selected as appropriate.
 上記各形態では、検査光ILが底部101に対して斜め上方から照射されるように検査光ILの照射方向(図1の一点鎖線D1の方向)が設定されているが、検査対象の容器の状態によっては、必ずしも斜め上方から検査光ILを照射する必要はない。例えば底部101に検査光ILの光路を乱す刻印等の付加的要素が存在しない場合には、検査光ILを容器の真横、すなわち中心線CLと直交する方向から照射するようにしてもよい。 In each of the above embodiments, the irradiation direction of the inspection light IL (the direction of the dashed line D1 in FIG. 1) is set so that the inspection light IL is irradiated obliquely from above the bottom 101. Depending on the state, it is not always necessary to irradiate the inspection light IL obliquely from above. For example, when there is no additional element such as a marking that disturbs the optical path of the inspection light IL at the bottom 101, the inspection light IL may be irradiated from the side of the container, that is, from the direction orthogonal to the center line CL.
 搬送経路CPはその全体が円弧状に形成される例に限らない。搬送経路が弧状の部分を含むように設定され、その弧状の部分にて容器を検査する場合には、図8及び図9に例示したように搬送経路の弧状部分の内周側に第1の照明器を、外周側に第2の照明器をそれぞれ配置し、それらの照明手段にて適宜に分担して複数の照射部に光を照射すればよい。また、搬送経路が直線状の部分を含むように設定され、その直線状の部分にて容器を検査する場合には、その直線状の部分を挟むように第1の照明器及び第2の照明器を配置し、容器の複数の照射部に対してそれらの照明器で分担して光を照射すればよい。図10は、搬送経路の直線部分にて容器を検査する形態の一例を示している。図10に示す検査装置20Aでは、搬送経路CPの少なくとも一部の区間が直線状に延びるように設定された搬送装置21Aが設けられ、その搬送経路CPの直線部分の途中に検査位置Piが設定されている。搬送装置21Aは、一例としてビール壜100の胴部102(図1参照)を一対のベルトで挟んで保持しつつ搬送経路CPに沿って搬送するように構成される。検査位置Piの両側には、図9の内側照明器23A~23Dを第1の照明器、図9の外側照明器24A~24Dを第2の照明器として、それらの照明器23、24が搬送経路CPを挟むように配置されている。ビール壜100の照射部IP1~IP6と照明器23、24との対応関係は図9の例と同様に設定されている。上記の他にも搬送経路CPは直線状の部分と弧状の部分とを適宜に組み合わせた各種の形状に設定されてよく、検査位置も適宜の位置に設定可能である。 The conveyance path CP is not limited to an example in which the whole is formed in an arc shape. When the conveyance path is set to include an arc-shaped portion and the container is inspected at the arc-shaped portion, as illustrated in FIGS. 8 and 9, the first is formed on the inner peripheral side of the arc-shaped portion of the conveyance path. The second illuminator may be disposed on the outer peripheral side of the illuminator, and the illumination units may be appropriately assigned to irradiate the plurality of irradiation units with light. In addition, when the conveyance path is set to include a linear portion and the container is inspected at the linear portion, the first illuminator and the second illumination are sandwiched between the linear portions. It is only necessary to irradiate light by arranging a vessel and sharing the light with the illuminators for a plurality of irradiation portions of the container. FIG. 10 shows an example of a form in which the container is inspected at the straight portion of the transport path. In the inspection apparatus 20A shown in FIG. 10, a conveyance apparatus 21A is provided so that at least a part of the conveyance path CP extends linearly, and an inspection position Pi is set in the middle of the straight line portion of the conveyance path CP. Has been. As an example, the transport device 21A is configured to transport along the transport path CP while holding the barrel 102 (see FIG. 1) of the beer bowl 100 between a pair of belts. On both sides of the inspection position Pi, the inner illuminators 23A to 23D in FIG. 9 are used as the first illuminator, and the outer illuminators 24A to 24D in FIG. 9 are used as the second illuminator. It arrange | positions so that the path | route CP may be pinched | interposed. The correspondence relationship between the irradiation units IP1 to IP6 of the beer bowl 100 and the illuminators 23 and 24 is set similarly to the example of FIG. In addition to the above, the transport path CP may be set to various shapes in which a linear portion and an arc-shaped portion are appropriately combined, and the inspection position can be set to an appropriate position.
 上記各形態では、検査光ILの光源としてLED照明器10を用いているが、光源及びその光の波長に特に制限はない。検査対象となる容器の性質に合わせて適当な光源を選択して構わない。上記各形態ではビール壜を検査対象としているが、本発明の検査方法及び装置の検査対象となり得る容器としては、底部を有しかつ投光性を有する材料で構成される容器である限り特段の制限はない。また、底部の形状にも制限はない。例えば、平面視で多角形状等の非円形状の底部を有する容器を、本発明の検査方法及び装置の検査対象とすることも可能である。 In each of the above embodiments, the LED illuminator 10 is used as the light source of the inspection light IL, but the light source and the wavelength of the light are not particularly limited. An appropriate light source may be selected according to the properties of the container to be inspected. In each of the above embodiments, beer lees are to be inspected, but as a container that can be inspected by the inspection method and apparatus of the present invention, as long as it is a container that has a bottom and is made of a material having a light projecting property, There is no limit. Moreover, there is no restriction | limiting also in the shape of a bottom part. For example, a container having a non-circular bottom such as a polygonal shape in plan view can be used as an inspection target of the inspection method and apparatus of the present invention.
 以上に説明したように、本発明の一態様に係る容器検査方法及び装置によれば、光の照射範囲内に異物があると、底部内に入射した光は異物の個所で反射、屈折又は散乱し、異物によって進行方向が変化した光の少なくとも一部は容器の下方の撮像範囲内に向かう。これにより、異物によって進行方向が変化した光を撮像工程で撮像できるので、底部にあるガラス片等の異物を検出できる。 As described above, according to the container inspection method and apparatus according to one aspect of the present invention, when there is a foreign matter within the light irradiation range, the light incident on the bottom is reflected, refracted or scattered at the location of the foreign matter. However, at least a part of the light whose traveling direction has been changed by the foreign object goes to the imaging range below the container. Thereby, since the light whose traveling direction has been changed by the foreign object can be imaged in the imaging process, the foreign object such as a glass piece at the bottom can be detected.

Claims (16)

  1.  容器の底部を検査する容器検査方法において、
     前記容器を側方から見た場合に前記底部の左右方向の端に位置する照射部に向かって前記側方から光を照射する照明工程と、
     前記容器を下方から見た場合に現れる前記底部の像が収まる撮像範囲内で、前記照明工程によって前記照射部に前記光が照射された前記底部を撮像する撮像工程と、
    を含むことを特徴とする容器検査方法。
    In a container inspection method for inspecting the bottom of a container,
    An illumination step of irradiating light from the side toward an irradiation unit located at an end in the left-right direction of the bottom when the container is viewed from the side;
    In an imaging range where an image of the bottom that appears when the container is viewed from below is within an imaging range, an imaging step of imaging the bottom of the illumination unit irradiated with the light;
    A container inspection method comprising:
  2.  前記照明工程では、前記照射部に向かって前記側方かつ斜め上方から前記光を照射する請求項1に記載の容器検査方法。 The container inspection method according to claim 1, wherein, in the illumination step, the light is irradiated from the side and obliquely upward toward the irradiation unit.
  3.  前記照明工程では、前記底部と平行な方向に対して5度以上30度以下の角度範囲内で前記光を照射する請求項2に記載の容器検査方法。 The container inspection method according to claim 2, wherein, in the illumination step, the light is irradiated within an angle range of 5 degrees or more and 30 degrees or less with respect to a direction parallel to the bottom portion.
  4.  前記照明工程では、前記底部の検査領域が分割された複数の分割検査領域のそれぞれに設定された前記照射部に向かって前記光を照射する請求項1~3のいずれか一項に記載の容器検査方法。 The container according to any one of claims 1 to 3, wherein, in the illumination step, the light is irradiated toward the irradiation unit set in each of a plurality of divided inspection areas obtained by dividing the inspection area of the bottom. Inspection method.
  5.  前記容器が所定の搬送経路上に位置し、
     前記照明工程では、前記底部の周方向に位置を変えて設定された複数の照射部に対して、前記搬送経路を挟んで配置された第1の照明器及び第2の照明器とが分担して前記光を照射する請求項1~3のいずれか一項に記載の容器検査方法。
    The container is located on a predetermined transport path;
    In the illumination step, the first illuminator and the second illuminator arranged across the transport path share a plurality of irradiation units set by changing positions in the circumferential direction of the bottom. The container inspection method according to any one of claims 1 to 3, wherein the light is irradiated.
  6.  前記搬送経路が弧状の部分を含むように設定され、
     前記照明工程では、前記第1の照明器を前記弧状の部分の内周側に、前記第2の照明器を前記弧状の部分の外周側にそれぞれ配置し、かつ前記第1の照明器の個数よりも前記第2の照明器の個数を多く設定する請求項5に記載の容器検査方法。
    The transport path is set to include an arcuate portion;
    In the illuminating step, the first illuminator is disposed on the inner peripheral side of the arc-shaped portion, the second illuminator is disposed on the outer peripheral side of the arc-shaped portion, and the number of the first illuminators. The container inspection method according to claim 5, wherein the number of the second illuminators is set to be larger than that of the second illuminator.
  7.  前記搬送経路が直線状の部分を含むように設定され、
     前記照明工程では、前記直線状の部分を挟むように前記第1の照明器及び前記第2の照明器を配置する請求項5に記載の容器検査方法。
    The transport path is set to include a straight portion,
    The container inspection method according to claim 5, wherein in the illuminating step, the first illuminator and the second illuminator are arranged so as to sandwich the linear portion.
  8.  前記照明工程では、一の照射部に対して、前記容器の接線方向一方の側及び他方の側のそれぞれから前記光を照射する請求項1~7のいずれか一項に記載の容器検査方法。 The container inspection method according to any one of claims 1 to 7, wherein, in the illumination step, the light is irradiated from one side and the other side in the tangential direction of the container with respect to one irradiation unit.
  9.  容器の底部を検査する容器検査装置において、
     前記容器を側方から見た場合に前記底部の左右方向の端に位置する照射部に向かって前記側方から光を照射する照明手段と、
     前記容器を下方から見た場合に現れる前記底部の像が収まる撮像範囲内で、前記照明手段によって前記照射部に前記光が照射された前記底部を撮像する撮像手段と、
    を備えることを特徴とする容器検査装置。
    In a container inspection device for inspecting the bottom of a container,
    Illuminating means for irradiating light from the side toward the irradiating unit located at the end in the left-right direction of the bottom when the container is viewed from the side;
    An imaging means for imaging the bottom portion in which the light is irradiated on the irradiation section by the illumination means within an imaging range in which an image of the bottom portion that appears when the container is viewed from below is included;
    A container inspection apparatus comprising:
  10.  前記照明手段は、前記照射部に向かって前記側方かつ斜め上方から前記光を照射する請求項9に記載の容器検査装置。 The container inspection apparatus according to claim 9, wherein the illumination unit irradiates the light from the side and obliquely upward toward the irradiation unit.
  11.  前記照明手段は、前記底部と平行な方向に対して5度以上30度以下の角度範囲内で前記光を照射する請求項10に記載の容器検査装置。 11. The container inspection apparatus according to claim 10, wherein the illumination unit irradiates the light within an angle range of 5 degrees or more and 30 degrees or less with respect to a direction parallel to the bottom portion.
  12.  前記照明手段として、前記底部の検査領域が分割された複数の分割検査領域にそれぞれ対応する複数の照明手段が設けられ、前記複数の照明手段のそれぞれは、前記分割検査領域毎に設定された前記照射部に向かって前記光を照射する請求項9~11のいずれか一項に記載の容器検査装置。 As the illuminating means, a plurality of illuminating means respectively corresponding to a plurality of divided inspection areas obtained by dividing the bottom inspection area are provided, and each of the plurality of illuminating means is set for each of the divided inspection areas. The container inspection apparatus according to any one of claims 9 to 11, wherein the light is irradiated toward an irradiation unit.
  13.  前記容器を所定の搬送経路に沿って搬送する搬送手段を具備し、
     前記照明手段として、前記搬送経路を挟んで配置された第1の照明器及び第2の照明器とが設けられ、
     前記底部の周方向に位置を変えて設定された複数の照射部に対して、前記第1の照明器と前記第2の照明器とが分担して前記光を照射するように前記第1の照明器及び前記第2の照明器が配置されている請求項9~11のいずれか一項に記載の容器検査装置。
    Comprising transport means for transporting the container along a predetermined transport path;
    As the illuminating means, a first illuminator and a second illuminator arranged across the conveyance path are provided,
    The first illuminator and the second illuminator share the first illuminator and irradiate the light to a plurality of illuminating units set in different positions in the circumferential direction of the bottom. The container inspection apparatus according to any one of claims 9 to 11, wherein an illuminator and the second illuminator are arranged.
  14.  前記搬送経路が弧状の部分を含むように設定され、
     前記第1の照明器が前記弧状の部分の内周側に、前記第2の照明器が前記弧状の部分の外周側にそれぞれ配置され、かつ前記第1の照明器の個数よりも前記第2の照明器の個数が多く設定されている請求項13に記載の容器検査装置。
    The transport path is set to include an arcuate portion;
    The first illuminator is disposed on the inner peripheral side of the arc-shaped portion, the second illuminator is disposed on the outer peripheral side of the arc-shaped portion, and the second illuminator is greater than the number of the first illuminators. The container inspection apparatus according to claim 13, wherein the number of the illuminators is set to be large.
  15.  前記搬送経路が直線状の部分を含むように設定され、
     前記第1の照明器及び前記第2の照明器は前記直線状の部分を挟むように配置されている請求項13に記載の容器検査装置。
    The transport path is set to include a straight portion,
    The container inspection apparatus according to claim 13, wherein the first illuminator and the second illuminator are arranged so as to sandwich the linear portion.
  16.  前記照明手段は、一の照射部に対して、前記容器の接線方向一方の側及び他方の側のそれぞれから前記光を照射するように設けられている請求項9~15のいずれか一項に記載の容器検査装置。 The illuminating means is provided so as to irradiate the light from one side and the other side in the tangential direction of the container with respect to one irradiation unit. The container inspection apparatus as described.
PCT/JP2016/073922 2015-10-16 2016-08-16 Container investigation method and device WO2017064917A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187006731A KR102133744B1 (en) 2015-10-16 2016-08-16 Container inspection method and device
JP2017545108A JP6661852B2 (en) 2015-10-16 2016-08-16 Container inspection method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015204745 2015-10-16
JP2015-204745 2015-10-16

Publications (1)

Publication Number Publication Date
WO2017064917A1 true WO2017064917A1 (en) 2017-04-20

Family

ID=58517698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073922 WO2017064917A1 (en) 2015-10-16 2016-08-16 Container investigation method and device

Country Status (3)

Country Link
JP (1) JP6661852B2 (en)
KR (1) KR102133744B1 (en)
WO (1) WO2017064917A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7486807B2 (en) 2020-11-25 2024-05-20 オムロン キリンテクノシステム株式会社 Foreign body inspection device and foreign body inspection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960587A (en) * 1972-10-11 1974-06-12
JPH02103453A (en) * 1988-10-12 1990-04-16 Japan Control:Kk Transparent-container checking apparatus
JPH09318559A (en) * 1996-05-31 1997-12-12 Ishizuka Glass Co Ltd Visual inspection method for transparent glass container and apparatus therefor
US5699162A (en) * 1994-11-28 1997-12-16 Elpatronic Ag Process and apparatus for testing a multi-trip bottle for contamination utilizing residual liquid in bottle bottom and sprectral measurement
JP2002526771A (en) * 1998-10-02 2002-08-20 エイジーアール インターナショナル,インコーポレイテッド Glass container defect inspection method and apparatus
JP2004212079A (en) * 2002-12-27 2004-07-29 Kirin Techno-System Corp Lighting system for inspecting container

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142496B1 (en) * 1970-12-28 1976-11-16
JPH01187439A (en) * 1988-01-21 1989-07-26 Toshiba Eng Co Ltd Defect detecting method for transparent body with projection and recess
JPH0634573A (en) * 1992-07-20 1994-02-08 Asahi Chem Ind Co Ltd Bottle inspector
JP3562901B2 (en) 1996-04-04 2004-09-08 株式会社キリンテクノシステム Bottle bottom foreign matter detection device
JP4274006B2 (en) * 2004-03-12 2009-06-03 株式会社日立プラントテクノロジー Container foreign matter detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960587A (en) * 1972-10-11 1974-06-12
JPH02103453A (en) * 1988-10-12 1990-04-16 Japan Control:Kk Transparent-container checking apparatus
US5699162A (en) * 1994-11-28 1997-12-16 Elpatronic Ag Process and apparatus for testing a multi-trip bottle for contamination utilizing residual liquid in bottle bottom and sprectral measurement
JPH09318559A (en) * 1996-05-31 1997-12-12 Ishizuka Glass Co Ltd Visual inspection method for transparent glass container and apparatus therefor
JP2002526771A (en) * 1998-10-02 2002-08-20 エイジーアール インターナショナル,インコーポレイテッド Glass container defect inspection method and apparatus
JP2004212079A (en) * 2002-12-27 2004-07-29 Kirin Techno-System Corp Lighting system for inspecting container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7486807B2 (en) 2020-11-25 2024-05-20 オムロン キリンテクノシステム株式会社 Foreign body inspection device and foreign body inspection method

Also Published As

Publication number Publication date
KR20180039127A (en) 2018-04-17
JP6661852B2 (en) 2020-03-11
KR102133744B1 (en) 2020-07-14
JPWO2017064917A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US9329135B2 (en) Means for inspecting glass containers for defects
US6621569B2 (en) Illuminator for machine vision
JP4374051B2 (en) Article visual inspection apparatus and surface inspection apparatus
WO2018061196A1 (en) Glass container burn mark inspecting device
JP6279353B2 (en) Glass bottle barrel diameter measuring instrument
CN110809731A (en) Glass processing apparatus and method
JP2021051032A (en) Appearance inspecting apparatus of annular product
WO2016103622A1 (en) External appearance inspection device and inspection system
WO2017064917A1 (en) Container investigation method and device
JP2007178242A (en) Flaw inspection device of bottle body part
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
JP6675499B2 (en) Liquid container labeling machine with optical inspection equipment
JP2016217764A (en) Container inspection method and apparatus
JP2006084481A5 (en)
JP2013104659A (en) Method and apparatus for inspecting foreign substances floating on liquid surface
JP2004317426A (en) Apparatus for inspecting bottom of container for foreign substances
JP6996736B2 (en) Foreign matter inspection device
JP2007194888A (en) Method of inspecting solid-state imaging device
RU2649612C2 (en) Control device with inverse film lens
JP6267480B2 (en) Imaging apparatus and inspection apparatus
JP2018189517A (en) Measurement device and method for manufacturing articles
JPH10185828A (en) Method and device for inspecting defect of transparent flat body surface
JP7571532B2 (en) Inspection Equipment
JP7516201B2 (en) Inspection Equipment
JP4508838B2 (en) Container mouth inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545108

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006731

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855171

Country of ref document: EP

Kind code of ref document: A1