WO2017064787A1 - Optical ranging device, optical ranging method, and image projection apparatus provided therewith - Google Patents

Optical ranging device, optical ranging method, and image projection apparatus provided therewith Download PDF

Info

Publication number
WO2017064787A1
WO2017064787A1 PCT/JP2015/079140 JP2015079140W WO2017064787A1 WO 2017064787 A1 WO2017064787 A1 WO 2017064787A1 JP 2015079140 W JP2015079140 W JP 2015079140W WO 2017064787 A1 WO2017064787 A1 WO 2017064787A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light
time
distance measuring
measuring device
Prior art date
Application number
PCT/JP2015/079140
Other languages
French (fr)
Japanese (ja)
Inventor
政信 紫垣
将史 山本
浦田 浩之
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2015/079140 priority Critical patent/WO2017064787A1/en
Publication of WO2017064787A1 publication Critical patent/WO2017064787A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to an optical distance measuring device, an optical distance measuring method, and an image projection device including the same, which measure the distance from a measurement object by measuring the round-trip time of light.
  • Patent Document 1 As background art in this technical field, there is JP-A-6-289135 (Patent Document 1).
  • Patent Document 1 when measuring the distance to the measurement object by measuring the round-trip time of the light emitted from the measurement object and receiving the reflected light, a calibration pulse different from the reflected pulse light is used. Methods have been proposed that use it to improve time measurement accuracy.
  • the present invention is an optical distance measuring method of an optical distance measuring device that calculates a distance based on a time difference between an emitted light signal and a received light signal
  • an optical distance measuring device includes: At least two reference objects with different distances and angles from the light receiving unit that receives the light reception signal are provided, and the time measurement unit for measuring the time difference measures the time difference with respect to the plurality of reference objects, and the predetermined time difference is determined.
  • the circuit delay time of the light receiving unit and the measurement resolution of the time measuring unit are calculated, and the distance to the measurement object is calculated based on the calculation result of the circuit delay time and the measurement resolution.
  • the optical distance measuring device even when the circuit delay time of the light receiving circuit and the time resolution of the time measuring circuit change in a short time, the optical distance measuring device, the optical measuring device capable of measuring the distance to the measurement object with high accuracy.
  • a distance method and an image projection apparatus including the distance method can be provided.
  • FIG. 1 is a block diagram illustrating a configuration example of an optical distance measuring device that is a premise of Embodiment 1.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external view of a video projection device including an optical distance measuring device that is a premise of a first embodiment.
  • 1 is a block diagram illustrating a configuration example of an image projection device including an optical distance measuring device that is a premise of Embodiment 1.
  • FIG. 3 is a block diagram illustrating functional blocks of a time measuring unit in the optical distance measuring device that is a premise of the first embodiment.
  • FIG. 3 is a flowchart illustrating an operation example of the optical distance measuring device according to the first embodiment. It is the installation example which installed the optical ranging device in the entrance / exit upper part as an application example of the optical ranging device in Example 2. FIG. It is the installation example which installed the optical ranging device in the vehicle gate upper part as an application example of the optical ranging device in Example 2. FIG. It is the installation example which installed the optical ranging apparatus in the belt conveyor vicinity as an application example of the optical ranging apparatus in Example 2. FIG. As an application example of the optical distance measuring apparatus according to the second embodiment, the optical distance measuring apparatus is installed in multiple stages to perform three-dimensional measurement.
  • the distance measuring principle of the present optical distance measuring device is a so-called Time-Of-Flight (hereinafter referred to as TOF) method in which the distance is calculated based on the time difference between the outgoing light signal and the received light signal.
  • TOF Time-Of-Flight
  • the light source unit 1 emits light for distance measurement to the measurement object 3.
  • the light receiving unit 2 receives reflected light of the light emitted to the measurement object 3.
  • the measurement object 3 exists at a position away from the light source unit 1 and the light receiving unit 2 by L [m].
  • the optical distance measuring device described in the present embodiment uses the time difference t [s] corresponding to the round-trip time of light as the timing of the light emitted from the light source unit 1 and the reflected light at the light receiving unit 2 as shown in FIG. 1B. It measures from the time difference with the timing which received light, and calculates the distance with a target object from Formula (1).
  • FIG. 2 is a block diagram showing the configuration of the optical distance measuring device which is the premise of the present embodiment.
  • the optical distance measuring device 10 is connected to an external device 12 via a communication unit 11.
  • the optical distance measuring device 10 converts distance information and angle information of the measurement object into position information, and transmits the position information to the external device 12 via the communication unit.
  • the optical distance measuring device 10 includes a light source unit 1, a light receiving unit 2, a time measuring unit 4, an emission angle control unit 5, a control unit 6, an emitted light modulation unit 7, a received light pulse generation unit 8, a time averaging processing unit 9, and communication.
  • Unit 11 and threshold value determination unit 21, and the emission angle of the emitted light 31 can be controlled by the emission angle control unit 5.
  • the control unit 6 outputs a start pulse 41 that is a pulsed electric signal to the time measuring unit 4 and the outgoing light modulation unit 7.
  • the emitted light modulation unit 7 modulates the emitted light 31 of the light source unit 1 in synchronization with the start pulse 41.
  • the light source unit 1 is electrically connected to the outgoing light modulation unit 7 and emits light that is pulse-modulated according to the output signal of the outgoing light modulation unit 7 synchronized with the start pulse 41.
  • the emission angle control unit 5 is composed of a rotating mirror or the like, and emits emission light 31 to the measurement object 3 at a predetermined angle based on a control signal from the control unit 6.
  • the light receiving unit 2 receives the reflected light 32 from the measurement object 3 and outputs the received light waveform.
  • the light reception pulse generation unit 8 compares the light reception signal output from the light reception unit 2 with a reference voltage, and outputs the pulse as a stop pulse 42.
  • the time measuring unit 4 receives a start pulse 41 and a stop pulse 42.
  • the time measuring unit 4 measures the rise time difference between the start pulse 41 and the stop pulse 42 and transmits the time difference measurement result to the time averaging processing unit 9.
  • the time averaging processing unit 9 buffers a time difference measurement result for a predetermined number of times and transmits the averaged result to the control unit 6.
  • the control unit 6 calculates the position information of the measurement object from the angle control signal 51 output to the emission angle control unit 5 and the time difference measurement result received from the time averaging processing unit 9.
  • the control unit 6 transmits the position information of the measurement object 3 to the external device 12 via the communication unit 11.
  • the communication unit 11 may be wirelessly connected to a smartphone, a tablet, or the like in addition to a wired connection with the external device 12 via USB or the like.
  • WiFi registered trademark
  • Bluetooth registered trademark
  • the communication unit 11 includes an IC having the function. The operation may be performed by connecting to an external recording medium such as a USB memory or an SD card with a built-in wireless function.
  • FIG. 3 is an external view of the image projection apparatus 12A which is a premise of the present embodiment.
  • the image projection device 12 ⁇ / b> A will be described as including the optical distance measuring device 10.
  • the horizontal direction of the video screen is the x direction
  • the vertical direction of the video screen is the y direction
  • the vertical direction of the video screen is the z direction.
  • the image projection device 12A is installed on an installation surface (desk) 33.
  • the image light generated inside the image projection device 12A is magnified by the projection lens 34, then reflected by the reflection mirror 35, and reflected on the installation surface 33 by the image screen 36. Is projected.
  • the focus of the projected image is adjusted by the focus ring 37.
  • the reflection mirror 35 is configured to be foldable, and is stored so that the reflection surface faces the image projection device 12A when the image projection device 12A is not used.
  • FIG. 4 is a block diagram showing the configuration of the image projection unit 43 of the image projection device 12A and the built-in optical distance measuring device 10 which are the premise of this embodiment.
  • the video projection unit 43 includes a video control unit 44, a video projection light source 45, a light control unit 46, a projection lens 47, and a reflection mirror 48.
  • the video control unit 44 outputs a control signal to the video projection light source 45 and the light control unit 46 in accordance with the video signal supplied from the external device 49.
  • the image projection light source 45 is a halogen lamp, LED (Light Emitting Diode), laser, or the like, and adjusts the amount of light according to a control signal input from the image control unit 44.
  • the image projection light source 45 includes three colors of R (Red), G (Green), and B (Blue), the light amount may be controlled independently according to the image signal.
  • the light control unit 46 has optical system components such as a mirror, a lens, a prism, and an imager (for example, a display device such as a liquid crystal panel), and is supplied from an external device 49 using the light emitted from the image projection light source 45. An optical image based on the processed image signal is generated.
  • the projection lens 47 enlarges the output image of the light control unit 46.
  • the reflection mirror 48 reflects the light emitted from the projection lens 47 and projects the video screen 36 on the installation surface 33.
  • the reflection mirror 48 uses an aspherical mirror, and when projecting an image screen of the same size, the projection distance can be shortened compared to a general image projection apparatus.
  • the video projection unit 43 using the reflection mirror 48 has been described as an example, but other configurations may be used as long as video projection can be realized.
  • the external device 49 is a general information processing device such as a PC (Personal Computer) connected to the video projection device 12A and a mobile terminal device such as a smartphone, and supplies a video signal to the video projection device 12A.
  • the external device 49 is not limited to a PC and a portable terminal device, and may be a device that supplies a video signal to the video projection device 12A, such as a card-like storage medium inserted into a card interface provided in the video projection device 12A. That's fine.
  • the optical distance measuring device 10 transmits the detected position information of the measurement object 3 from the communication unit 11 to the video control unit 44.
  • the video control unit 44 operates the external device and the video projection unit 43 in response to the input position information. For example, page switching, enlargement / reduction, movement, character input, etc. are performed in the operation of the external device, and power ON / OFF switching, light amount adjustment, color adjustment, enlargement / reduction, movement, etc. are performed in the operation of the image projection unit 43. .
  • the output of the position information may be performed by communication such as UART (Universal Asynchronous Receiver Receiver Transmitter), SPI (Serial Peripheral Interface), I2C (Inter-Integrated Circuit).
  • the image projection device 12A incorporates the optical distance measuring device 10
  • communication may be performed using a wired USB or the like, or may be performed wirelessly.
  • WiFi may be used as described above, or Bluetooth may be used.
  • HID Human Interface Device
  • the image projection device 12A virtually recognizes the optical distance measuring device 10 as a keyboard or a mouse. There is an advantage that it is not necessary to provide processing software.
  • FIG. 5 is a diagram illustrating an example in which a person performs an operation with a finger on the video screen 36.
  • FIG. 5 shows an example in which the outgoing light of the light source unit 1 is scanned on the screen using the outgoing angle control unit 5 shown in FIG.
  • the optical distance measuring device 10 detects the reflected light 32 from the finger 50 by the light receiving unit 2.
  • the position information of the finger 50 is detected from the scan angle in the emission angle control unit 5 when the reflected light 32 is detected and the distance calculated by the control unit 6.
  • the optical distance measuring device 10 can detect not only the position information of the finger 50 but also a predetermined operation by detecting a time transition of the position of the finger 50.
  • the finger 50 touches the video screen 36 it is preferable to perform scanning with a height as low as possible so that the emitted light 31 is positioned close to the installation surface 33.
  • the vertical distance y between the emitted light 31 and the installation surface 33 is 20 mm or less.
  • FIG. 6 is a diagram showing the relative relationship of the angle control signal 51, the start pulse 41, the light reception signal 211, and the gate pulse 212 shown in FIG. is there.
  • the light intensity of the emitted light 31 is modulated ON / OFF in synchronization with the start pulse 41 by the emitted light modulator 7.
  • the light reception signal 211 obtained by the light receiving unit 2 when the finger 50 is irradiated with the emitted light 31 has a predetermined finite magnitude with respect to the emission angle of the emitted light 31.
  • the envelope becomes a time response that decreases after the amplitude increases to maintain a constant value.
  • the threshold determination unit 21 monitors the amplitude of the light reception signal 211 in FIG. 6, and when the voltage amplitude continues to exceed the predetermined threshold V TH for a time longer than two periods of the start pulse 41, the gate in FIG. Output a pulse. And the control part 6 recognizes that there exists the measuring object 3 in the period when the gate pulse which the threshold value determination part 21 outputs is High. The control unit 6 accumulates the emission angle command value in the temporary storage area such as a memory while the gate pulse output from the threshold determination unit 21 becomes High, calculates the average value thereof, and obtains the angle information of the finger 50. .
  • FIG. 7 is a block diagram showing an internal configuration of the threshold determination unit 21 in FIG.
  • the threshold determination unit 21 includes a voltage comparison unit 71, a continuous number counting unit 72, and a gate pulse generation unit 73.
  • Voltage comparator 71 sends a pulse which becomes Low when it becomes High, less than the threshold value V TH when the voltage amplitude of the received light signal 211 that is input is equal to or greater than the threshold value V TH to the continuous counting section 72.
  • the continuous number counting unit 72 counts the number of pulses that have continuously arrived from the voltage comparison unit 71, and generates a control signal that sets the output of the gate pulse generation unit to High when the count value becomes 2 or more. To the unit 73.
  • the continuous number counting unit 72 is a control signal for setting the output of the gate pulse generating unit to Low when the number of pulses does not change even after a time of 2T or more has elapsed with reference to the repetition period T of the start pulse 41. Is transmitted to the gate pulse generator 73, and the count value is reset.
  • the gate pulse generator 73 outputs a High or Low gate pulse 212 based on the control signal received from the continuous number counter.
  • FIG. 8 shows the relative relationship of the start pulse 41, the light reception signal 211, and the stop pulse 42 in FIG. 2.
  • the stop pulse 42 is obtained by pulsing the light reception signal 211 using 0V as a reference voltage.
  • the time measuring unit 4 measures the time difference TL between the start pulse 41 and the stop pulse 42, and the control unit 6 converts the time difference TL into distance information by the equation (1).
  • the relationship of the expression (3) is established between the time difference T L between the start pulse 41 and the stop pulse 42, the expected time difference T D, and the circuit delay time T C.
  • T L T D + T C (3)
  • the repetition period T of the start pulse 41 needs to be a time that is at least twice the time difference TL .
  • the repetition period T may be set to 500 nsec.
  • circuit delay time T C the variation individual differences with the electronic circuit, and further since the changes its value depending on the ambient temperature of the operating environment and causes a decrease of the distance measurement accuracy of the optical distance measuring device 10. Therefore, it is necessary to correct the circuit delay time T C in a manner described below.
  • FIG. 9 is a diagram showing functional blocks when a TDC (Time Digital Conversion) method, which is a time measurement method using a delay element, is used as a premise of the present embodiment.
  • the time difference TL between the start pulse 41 and the stop pulse 42 is measured as a count value by the time measuring unit 4 configured by the circuit of FIG. First, the circuit operation of FIG. 9 will be described.
  • TDC Time Digital Conversion
  • the pulse propagates through the loop of the NOT gates 91 connected in an odd number of N stages to enter an oscillation state.
  • a circulation counter unit 92 is connected to the subsequent stage of the Nth NOT gate, and an inner counter unit 93 is connected to each NOT gate 91, and at the timing when the stop pulse 42 arrives at the D-type flip-flop 95, A value obtained by multiplying the circulation counter unit 92 by N by the multiplication unit 94 and the count value of the in-circumference counter unit 93 is output as a count value C.
  • a predetermined delay time ⁇ T is accumulated when the signal passes through each NOT gate 91, the input time difference between the two systems of signals can be measured by using the circuit of FIG.
  • T L C ⁇ ⁇ T (4)
  • FIG. 10 is a block diagram showing a configuration example of the optical distance measuring device in the present embodiment.
  • 10 constituent elements having the same functions as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
  • 10 differs from FIG. 2 in that a first reference object 101 and a second reference object 102 are installed as the optical distance measuring device 20. That is, the first reference object 101 and the second reference object 102 are installed at predetermined positions in the optical distance measuring device 20, and the emitted light 31 emitted from the emission angle control unit 5 is emitted. is, by receiving the reflected light 32 by the light receiving unit 2 corrects the circuit delay time T C, and time resolution ⁇ T.
  • FIG. 11 shows an example in which the optical distance measuring device 20 is used on the image projection apparatus in the present embodiment.
  • the image projection device 12 ⁇ / b> A has a built-in optical distance measuring device 20, and the optical distance measuring device 20 has the first reference object 101 and the second object at an angle outside the use range of the optical distance measuring device 20.
  • the reference object 102 is installed. That is, the distance of the exit angle controller 5 and the light receiving portion 2 ⁇ a first reference object 101 L 1, the angle theta 1, the distance between the second reference object 102 L 2, the angle and theta 2
  • the control unit 6 holds the values of L 1 , ⁇ 1 , L 2 , and ⁇ 2 as known values.
  • the materials of the first reference object 101 and the second reference object 102 are different from those of the housing of the image projection device 12A, and the reflectance is determined from the surrounding materials. May be high. Due to this reflectance difference, when the reflected light of the first reference object 101 and the second reference object 102 is received, a larger voltage amplitude is obtained in the light reception signal.
  • the optical distance measuring device 20 performs a measurement operation, and the count value C 1 is measured with respect to the first reference object 101 at an angle ⁇ 1 and the count value C 2 is measured with respect to the second reference object 102 at an angle ⁇ 2.
  • C 1, C 2 each following formula (8) can be expressed by equation (9).
  • T D1 and T D2 are optical round trip times corresponding to the distance between the first and second reference objects, respectively, and T C1 and T C2 are generated when measuring the optical round trip times of the first and second reference objects, respectively.
  • the circuit delay times ⁇ T 1 and ⁇ T 2 are the time resolutions when measuring the optical round trip time of the first and second reference objects, respectively.
  • the circuit delay time and the time resolution are different for each measurement, but the main factor that the circuit delay time and the time resolution fluctuate is the temperature change of the circuit element. That is, by measuring the count value C 2 from the measured count value C 1 in a very short time, the influence of the temperature change is very small, the value of the circuit delay time and time resolution can be regarded as equivalent.
  • the rotary mirror included in the emission angle control unit 5 is rotationally driven at 10 Hz, one scan cycle is 100 ms, and the optical reciprocation time corresponding to the first and second reference objects and the measurement object during one scan. Can be measured.
  • equation (8) and (9) can be simplified as follows.
  • ⁇ T (T D2 ⁇ T D1 ) / (C 2 ⁇ C 1 )
  • Equation (12) (C 1 T D2 -C 2 T D1 ) / (C 2 -C 1 ) (13)
  • the current values of circuit delay time and time resolution can be calculated.
  • T L C ⁇ T. Therefore, by using the equation (14), the distance to the measurement object can be obtained with high accuracy even if the circuit delay time or the time resolution changes.
  • each of the first reference object 101 and the second reference object 102 is described as having the same distance from the emission angle control unit 5, the distance between the angle and the light receiving unit 2, and the angle. However, if the distance and angle between the emission angle control unit 5 and the light receiving unit 2 are not the same, the distance and angle between the emission angle control unit 5 and each reference object, and the light receiving unit 2 and each reference object. Similarly, the circuit delay time and time resolution can be obtained from the distance and angle.
  • FIG. 12 shows a flowchart from the power-on to the power-off in the optical distance measuring device 20 which is a premise of the present embodiment until the power is turned off.
  • distance measurement is performed as the position information.
  • the optical distance measuring device 10 performs initial setting of each operation block (112). Thereafter, it is determined whether or not the user performs an input operation by repeatedly changing the position of the finger (113). When the interruption of the input operation of the user is detected, it is determined whether or not a predetermined time has elapsed (115), and if the predetermined time has elapsed, the process of determining whether or not the user is operating is repeated (113).
  • the circuit delay time and the time resolution are corrected using the method described above (116). Then, the optical distance measuring device 20 measures the finger position information (117). Then, it is determined whether a predetermined time has elapsed since the previous circuit delay time / time resolution correction (118). When a predetermined time has elapsed since the previous correction, the process again determines whether the user is operating (113). If the user is operating, the circuit delay time and time resolution correction are repeated (116). If the predetermined time has not elapsed in step 118, the user has not performed an input operation (119). If the power switch is turned off (120), the optical distance measuring device 20 performs a power-off process. To end the operation (121).
  • step 119 If the user performs an input operation in step 119, the process returns to step 117, and the optical distance measuring device 20 measures the finger position information.
  • the period in which the optical distance measuring device 20 corrects the circuit delay time and the time resolution is arbitrary, and the correction may be performed for each measurement, or may be performed for each measurement. .
  • this embodiment is an optical distance measuring method for an optical distance measuring device that calculates a distance based on a time difference between an emitted light signal and a received light signal, and the optical distance measuring device receives light received from a light receiving unit that receives the received light signal.
  • a circuit having at least two reference objects having different distances and angles, measuring a time difference with respect to a plurality of reference objects by a time measuring unit for measuring a time difference, and performing a predetermined calculation on the plurality of time differences and having a light receiving unit
  • the delay time and the measurement resolution of the time measurement unit are calculated, and the distance from the measurement object is calculated based on the calculation results of the circuit delay time and the measurement resolution.
  • An optical distance measuring device that measures a distance from the measurement object based on a time difference between an outgoing light signal to the measurement object and a light reception signal that receives reflected light from the measurement object.
  • a light source unit that emits light emitted from the light source, a light receiving unit that receives reflected light from the measurement object, an emission angle control unit that controls the emission angle of the emitted light, a time measurement unit that measures a time difference, and a light receiving unit
  • a first reference object having a first predetermined distance and a first predetermined angle; a second reference object having a second predetermined distance and a second predetermined angle; a light source;
  • An angle changing unit and a control unit that controls the time measuring unit, and the first reference object and the second reference object are different from each other in the first predetermined distance and the second predetermined distance.
  • An image projection apparatus comprising an image projection unit and an optical distance measuring device, wherein the image projection unit outputs an image projection light source and an image signal supplied from an external device using light emitted from the image projection light source.
  • a light control unit that generates an optical image based on the image, a video control unit that outputs a control signal to the light source for image projection and the light control unit according to a video signal supplied from an external device, and an output video of the light control unit
  • the optical distance measuring device controls the emission angle of the emitted light, the light source unit that emits the emitted light to the measurement object, the light receiving unit that receives the reflected light from the measurement object,
  • An emission angle control unit that performs measurement, a time measurement unit that measures a time difference between an outgoing light signal to the measurement object and a received light signal that has received reflected light from the measurement object, a first predetermined distance from the light reception unit, and a first A first reference object having a predetermined angle and a second predetermined object And a second reference object
  • the optical distance measuring device the optical distance measuring method, which can measure the distance to the measurement object with high accuracy, And an image projection apparatus provided with the same can be provided.
  • FIG. 13 shows an example in which the optical distance measuring device 20 is installed above the entrance / exit 121. It is possible to count the height of the passer-by 122 and the number of passers-by who have passed through the doorway by scanning the outgoing angle of the outgoing light by the optical distance measuring device 20 and the temporal change in the detected position information.
  • FIG. 14 shows an example in which the optical distance measuring device 20 is installed above the vehicle gate 131 of the automobile.
  • the height measurement of the passing vehicle 132 and the number of passing vehicles can be counted by scanning the outgoing angle of the outgoing light by the optical distance measuring device 20 and the temporal change in the detected position information.
  • FIG. 15 shows an example in which the optical distance measuring device 20 is installed on the upper and side surfaces of the gate 141 of the belt conveyor 142 that moves the load. In this case as well, it is possible to measure dimensions such as the height, width, and depth of the cargo 143 conveyed by the belt conveyor, and to count the number of passing cargos 143.
  • FIG. 16 shows an example in which the optical ranging devices 20 are installed in multiple stages and the unevenness on the surface of the three-dimensional object 151 such as a work of art is measured.
  • a high-resolution optical distance measuring device is required to store 3D data such as artworks, and the method for improving the distance measuring accuracy described in this embodiment is very effective.
  • the optical distance measuring device can be connected not only to the image projection device but also to various external devices and applied to various applications.
  • a method of separating signals spatially and temporally can be considered. That is, the scanning angle of the emission angle control unit may be shifted from each other so that the emitted light of each optical distance measuring device does not overlap, and the received light signal may be processed at each timing by the light receiving unit. Moreover, the method of separating by wavelength may be used.
  • the wavelength of the emitted light of the first optical distance measuring device is ⁇ 1
  • the wavelength of the emitted light of the second optical distance measuring device is ⁇ 2
  • a method of separating by frequency may be used. That is, the laser drive frequency of the light source unit of the first optical distance measuring device is f1, the laser drive frequency of the light source unit of the second optical distance measuring device is f2, and a bandpass filter is added to the light receiving unit. May be.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of each embodiment.
  • each of the above-described configurations may be configured such that a part or all of the configuration is configured by hardware, or is realized by executing a program by a processor.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it can be considered that almost all the components are connected to each other.
  • Reflection mirror 49 ... External device, 50 ... Finger, 51 ... Angle control signal, 71 ... Voltage comparison unit, 72 ... Continuous number counting unit, 73 ... Gate pulse generation 91, NOT gate, 92 ... lap count , 93 ... Intra-circumference counter part, 94 ... Multiplication part, 95 ... D-type flip-flop, 101 ... First reference object, 102 ... Second reference object part, 121 ... Entrance / exit, 122 ... Passerby, 131 ... Vehicle gate, 132 ... passing vehicle, 141 ... gate, 142 ... belt conveyor, 143 ... cargo, 151 ... three-dimensional model, 211 ... light reception signal, 212 ... gate pulse

Abstract

The purpose of the present invention is to correct a circuit delay time and time resolution variation, which cause a decrease in the measurement accuracy of an optical ranging device, at high speed in a short time. For this purpose, an optical ranging method of an optical ranging device for calculating a distance by a time difference between an emitted light signal and a received light signal is configured to: provide, in the optical ranging device, at least two reference objects the distances and angles of which from a light reception unit for receiving the received light signal are different; measure time differences of the plurality of reference objects by a time measurement unit for measuring a time difference; calculate the circuit delay time of the light reception unit and the measurement resolution of the time measurement unit by performing a predetermined calculation on the plurality of time differences; and calculate a distance to an object to be measured on the basis of the calculation results of the circuit delay time and the measurement resolution.

Description

光測距装置、光測距方法、及び、それを備えた映像投写装置Optical distance measuring device, optical distance measuring method, and image projection device including the same
 本発明は、光の往復時間を測定して測定対象物との距離を測定する光測距装置、光測距方法、及び、それを備えた映像投写装置に関する。 The present invention relates to an optical distance measuring device, an optical distance measuring method, and an image projection device including the same, which measure the distance from a measurement object by measuring the round-trip time of light.
 本技術分野の背景技術として、特開平6-289135号公報(特許文献1)がある。特許文献1には、測定対象物へ光を出射し、反射光を受光するまでの光の往復時間を測定して測定対象物との距離を測定する場合、反射パルス光とは異なる校正パルスを用いて時間測定精度を向上する方法が提案されている。 As background art in this technical field, there is JP-A-6-289135 (Patent Document 1). In Patent Document 1, when measuring the distance to the measurement object by measuring the round-trip time of the light emitted from the measurement object and receiving the reflected light, a calibration pulse different from the reflected pulse light is used. Methods have been proposed that use it to improve time measurement accuracy.
特開平6-289135号公報JP-A-6-289135
 測定対象物との距離を正確に測定するには、対象物へ出射した光の往復時間を高精度に計測する必要がある。光往復時間の測定精度を低下させる要因として、受光回路のもつ回路遅延時間、および時間計測回路における時間分解能の変化(時間分解能ばらつき)の2点が挙げられる。上述の特許文献1では、反射パルス光とは異なる校正パルスを用いて、回路遅延時間および時間分解能ばらつきの補正を行っている。しかしこの方法では、反射パルス光を低周波数に変換してから計測を行うため応答速度が遅く、さらには回路遅延時間や時間分解能ばらつきが1回の測定周期よりも短い時間で変化する場合、その変化に追従できないといった問題がある。そのため回路遅延時間や時間分解能が短時間で変化した際に、変化に追従し校正を行う必要がある。 In order to accurately measure the distance to the measurement object, it is necessary to measure the round trip time of the light emitted to the object with high accuracy. There are two factors that reduce the measurement accuracy of the optical round-trip time: the circuit delay time of the light receiving circuit, and the change in time resolution (time resolution variation) in the time measurement circuit. In the above-mentioned Patent Document 1, correction of circuit delay time and time resolution variation is performed using a calibration pulse different from the reflected pulse light. However, with this method, the response speed is slow because the reflected pulse light is converted to a low frequency and then the response speed is slow. Furthermore, if the circuit delay time and time resolution variation change in a time shorter than one measurement cycle, There is a problem that changes cannot be followed. Therefore, when the circuit delay time and time resolution change in a short time, it is necessary to perform calibration following the change.
 上記課題を解決するために、本発明は、その一例を挙げるならば、出射光信号と受光信号の時間差により距離を算出する光測距装置の光測距方法であって、光測距装置は受光信号を受光する受光部からの距離及び角度がともに異なる基準対象物を少なくとも2つ設けており、時間差を測定する時間測定部により複数の基準対象物に対する時間差を測定し、複数の時間差に所定の演算を行い受光部の有する回路遅延時間および時間測定部の有する測定分解能を算出し、回路遅延時間および測定分解能の算出結果に基づいて測定対象物との距離を算出するように構成する。 In order to solve the above-described problems, the present invention is an optical distance measuring method of an optical distance measuring device that calculates a distance based on a time difference between an emitted light signal and a received light signal, and an optical distance measuring device includes: At least two reference objects with different distances and angles from the light receiving unit that receives the light reception signal are provided, and the time measurement unit for measuring the time difference measures the time difference with respect to the plurality of reference objects, and the predetermined time difference is determined. The circuit delay time of the light receiving unit and the measurement resolution of the time measuring unit are calculated, and the distance to the measurement object is calculated based on the calculation result of the circuit delay time and the measurement resolution.
 本発明によれば、受光回路の回路遅延時間や時間計測回路の時間分解能が短時間で変化した場合であっても、測定対象物との距離を高精度に測定できる光測距装置、光測距方法、及び、それを備えた映像投写装置を提供できる。 According to the present invention, even when the circuit delay time of the light receiving circuit and the time resolution of the time measuring circuit change in a short time, the optical distance measuring device, the optical measuring device capable of measuring the distance to the measurement object with high accuracy. A distance method and an image projection apparatus including the distance method can be provided.
実施例1の前提となる光測距装置の距離測定原理を示す概念図である。It is a conceptual diagram which shows the distance measurement principle of the optical ranging apparatus used as the premise of Example 1. FIG. 実施例1の前提となる光測距装置の距離測定原理を説明するタイミング図である。FIG. 3 is a timing chart for explaining the distance measurement principle of the optical distance measuring device which is a premise of the first embodiment. 実施例1の前提となる光測距装置の構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of an optical distance measuring device that is a premise of Embodiment 1. FIG. 実施例1の前提となる光測距装置を含む映像投写装置の外観図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external view of a video projection device including an optical distance measuring device that is a premise of a first embodiment. 実施例1の前提となる光測距装置を含む映像投写装置の構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of an image projection device including an optical distance measuring device that is a premise of Embodiment 1. FIG. 実施例1の前提となる映像投写装置上での光測距装置を使用した応用例を説明する図である。It is a figure explaining the application example using the optical ranging device on the image | video projection apparatus used as the premise of Example 1. FIG. 実施例1の前提となる光測距装置における角度制御信号、スタートパルス、受光信号、ゲートパルスの相対関係を示す図である。It is a figure which shows the relative relationship of the angle control signal in the optical ranging device used as the premise of Example 1, a start pulse, a light reception signal, and a gate pulse. 実施例1の前提となる光測距装置における閾値判定部の内部構成例を示すブロック図である。It is a block diagram which shows the example of an internal structure of the threshold value determination part in the optical ranging apparatus used as the premise of Example 1. FIG. 実施例1の前提となる光測距装置におけるスタートパルス、受光信号、ストップパルスの相対関係を示す図である。It is a figure which shows the relative relationship of the start pulse in the optical ranging device used as the premise of Example 1, a light reception signal, and a stop pulse. 実施例1の前提となる光測距装置における時間測定部の機能ブロックを示したブロック図である。FIG. 3 is a block diagram illustrating functional blocks of a time measuring unit in the optical distance measuring device that is a premise of the first embodiment. 実施例1における光測距装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the optical ranging apparatus in Example 1. FIG. 実施例1における映像投写装置上での光測距装置を使用した応用例を説明する図である。It is a figure explaining the application example which uses the optical ranging device on the image | video projection apparatus in Example 1. FIG. 実施例1における光測距装置の動作例を示すフローチャートである。3 is a flowchart illustrating an operation example of the optical distance measuring device according to the first embodiment. 実施例2における光測距装置の応用例として光測距装置を出入口上部に設置した設置例である。It is the installation example which installed the optical ranging device in the entrance / exit upper part as an application example of the optical ranging device in Example 2. FIG. 実施例2における光測距装置の応用例として光測距装置を車両ゲート上部に設置した設置例である。It is the installation example which installed the optical ranging device in the vehicle gate upper part as an application example of the optical ranging device in Example 2. FIG. 実施例2における光測距装置の応用例として光測距装置をベルトコンベア近傍に設置した設置例である。It is the installation example which installed the optical ranging apparatus in the belt conveyor vicinity as an application example of the optical ranging apparatus in Example 2. FIG. 実施例2における光測距装置の応用例として光測距装置を多段に設置し、立体計測を行う場合の例である。As an application example of the optical distance measuring apparatus according to the second embodiment, the optical distance measuring apparatus is installed in multiple stages to perform three-dimensional measurement.
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、図1A、図1Bを用いて、本実施例の前提となる光測距装置の距離測定原理について説明する。本光測距装置の距離測定原理は、出射光信号と受光信号の時間差により距離を算出する、いわゆる、Time-Of-Flight(以下、TOFと記載)法である。図1Aにおいて、光源部1は、測定対象物3へ距離測定用の光を出射する。受光部2は、測定対象物3に出射された光の反射光を受光する。測定対象物3は、光源部1および受光部2からL[m]離れた位置に存在する。ここで、光速をc=3.0×10[m/s]として、光源部1が光出射を開始してから受光部2が反射光を受光するまでの時間差をt[s]とすると、距離L[m]と時間差t[s]の間には式(1)の関係が成り立つ。
L[m]=c[m/s]×t[s]/2 …(1)
 よって、以下、本実施例で述べる光測距装置は、図1Bに示すように、光の往復時間にあたる時間差t[s]を光源部1から出射した光のタイミングと受光部2で反射光を受光したタイミングとの時間差から測定し、式(1)から対象物との距離を算出する。
First, the principle of distance measurement of the optical distance measuring device, which is a premise of the present embodiment, will be described with reference to FIGS. 1A and 1B. The distance measuring principle of the present optical distance measuring device is a so-called Time-Of-Flight (hereinafter referred to as TOF) method in which the distance is calculated based on the time difference between the outgoing light signal and the received light signal. In FIG. 1A, the light source unit 1 emits light for distance measurement to the measurement object 3. The light receiving unit 2 receives reflected light of the light emitted to the measurement object 3. The measurement object 3 exists at a position away from the light source unit 1 and the light receiving unit 2 by L [m]. Here, assuming that the speed of light is c = 3.0 × 10 8 [m / s], and the time difference from when the light source unit 1 starts emitting light to when the light receiving unit 2 receives reflected light is t [s]. The relationship of the formula (1) is established between the distance L [m] and the time difference t [s].
L [m] = c [m / s] × t [s] / 2 (1)
Therefore, hereinafter, the optical distance measuring device described in the present embodiment uses the time difference t [s] corresponding to the round-trip time of light as the timing of the light emitted from the light source unit 1 and the reflected light at the light receiving unit 2 as shown in FIG. 1B. It measures from the time difference with the timing which received light, and calculates the distance with a target object from Formula (1).
 図2は、本実施例の前提となる光測距装置の構成を示したブロック図である。光測距装置10は、通信部11を介して外部装置12と接続されている。光測距装置10は、測定対象物の距離情報および角度情報を位置情報へ変換し、通信部を介して外部装置12へ送信する。 FIG. 2 is a block diagram showing the configuration of the optical distance measuring device which is the premise of the present embodiment. The optical distance measuring device 10 is connected to an external device 12 via a communication unit 11. The optical distance measuring device 10 converts distance information and angle information of the measurement object into position information, and transmits the position information to the external device 12 via the communication unit.
 光測距装置10は、光源部1、受光部2、時間計測部4、出射角度制御部5、制御部6、出射光変調部7、受光パルス生成部8、時間平均化処理部9、通信部11、閾値判定部21を備えており、出射光31の出射角度は出射角度制御部5によって制御可能な構成となっている。 The optical distance measuring device 10 includes a light source unit 1, a light receiving unit 2, a time measuring unit 4, an emission angle control unit 5, a control unit 6, an emitted light modulation unit 7, a received light pulse generation unit 8, a time averaging processing unit 9, and communication. Unit 11 and threshold value determination unit 21, and the emission angle of the emitted light 31 can be controlled by the emission angle control unit 5.
 制御部6は、時間計測部4および出射光変調部7に対し、パルス化された電気信号であるスタートパルス41を出力する。出射光変調部7は、スタートパルス41に同期して光源部1の出射光31を変調する。光源部1は出射光変調部7と電気的に接続され、スタートパルス41に同期した出射光変調部7の出力信号に応じてパルス変調された光を出射する。出射角度制御部5は回転ミラーなどで構成されており、制御部6の制御信号に基づいて所定の角度で出射光31を測定対象物3へ出射する。 The control unit 6 outputs a start pulse 41 that is a pulsed electric signal to the time measuring unit 4 and the outgoing light modulation unit 7. The emitted light modulation unit 7 modulates the emitted light 31 of the light source unit 1 in synchronization with the start pulse 41. The light source unit 1 is electrically connected to the outgoing light modulation unit 7 and emits light that is pulse-modulated according to the output signal of the outgoing light modulation unit 7 synchronized with the start pulse 41. The emission angle control unit 5 is composed of a rotating mirror or the like, and emits emission light 31 to the measurement object 3 at a predetermined angle based on a control signal from the control unit 6.
 受光部2は測定対象物3からの反射光32を受光し、その受光波形を出力する。受光パルス生成部8は、受光部2が出力する受光信号を基準電圧と比較しパルス化しストップパルス42を出力する。 The light receiving unit 2 receives the reflected light 32 from the measurement object 3 and outputs the received light waveform. The light reception pulse generation unit 8 compares the light reception signal output from the light reception unit 2 with a reference voltage, and outputs the pulse as a stop pulse 42.
 時間計測部4には、スタートパルス41とストップパルス42が入力される。時間計測部4は、スタートパルス41とストップパルス42の立ち上がり時間差を測定し、時間差測定結果を時間平均化処理部9へ送信する。時間平均化処理部9は、所定の回数分の時間差測定結果をバッファし、その平均化結果を制御部6へ送信する。 The time measuring unit 4 receives a start pulse 41 and a stop pulse 42. The time measuring unit 4 measures the rise time difference between the start pulse 41 and the stop pulse 42 and transmits the time difference measurement result to the time averaging processing unit 9. The time averaging processing unit 9 buffers a time difference measurement result for a predetermined number of times and transmits the averaged result to the control unit 6.
 制御部6は、出射角度制御部5に出力した角度制御信号51と時間平均化処理部9から受信した時間差測定結果から測定対象物の位置情報を算出する。制御部6は通信部11を介して、測定対象物3の位置情報を外部装置12へ送信する。通信部11は外部装置12とUSB等で有線接続する以外にも、スマートフォンやタブレットなどと無線で接続してもよい。無線はWiFi(登録商標)だけでなく、Bluetooth(登録商標)などの無線方式を用いても構わない。その際、通信部11には当該機能を有するICが含まれる。また無線機能を内蔵したUSBメモリやSDカード等の外部記録媒体と接続し操作を行っても構わない。 The control unit 6 calculates the position information of the measurement object from the angle control signal 51 output to the emission angle control unit 5 and the time difference measurement result received from the time averaging processing unit 9. The control unit 6 transmits the position information of the measurement object 3 to the external device 12 via the communication unit 11. The communication unit 11 may be wirelessly connected to a smartphone, a tablet, or the like in addition to a wired connection with the external device 12 via USB or the like. For wireless communication, not only WiFi (registered trademark) but also a wireless system such as Bluetooth (registered trademark) may be used. At that time, the communication unit 11 includes an IC having the function. The operation may be performed by connecting to an external recording medium such as a USB memory or an SD card with a built-in wireless function.
 次に図3を用いて、外部装置12が、例えば映像投写装置である場合について説明する。 図3は、本実施例の前提となる映像投写装置12Aの外観図である。図3において、映像投写装置12Aは、光測距装置10を内蔵しているものとして説明する。また、映像画面水平方向をx方向、映像画面鉛直方向をy方向、映像画面垂直方向をz方向としている。映像投写装置12Aは、設置面(机)33上に設置され、映像投写装置12A内部で生成した映像光を投写レンズ34で拡大した後、反射ミラー35で反射して設置面33に映像画面36を投写する。投写映像のフォーカスは、フォーカスリング37で調整する。反射ミラー35は折り畳み可能に構成されており、映像投写装置12Aを使用しない場合には、反射面が映像投写装置12Aに対向するよう収納される。 Next, a case where the external device 12 is, for example, a video projection device will be described with reference to FIG. FIG. 3 is an external view of the image projection apparatus 12A which is a premise of the present embodiment. In FIG. 3, the image projection device 12 </ b> A will be described as including the optical distance measuring device 10. The horizontal direction of the video screen is the x direction, the vertical direction of the video screen is the y direction, and the vertical direction of the video screen is the z direction. The image projection device 12A is installed on an installation surface (desk) 33. The image light generated inside the image projection device 12A is magnified by the projection lens 34, then reflected by the reflection mirror 35, and reflected on the installation surface 33 by the image screen 36. Is projected. The focus of the projected image is adjusted by the focus ring 37. The reflection mirror 35 is configured to be foldable, and is stored so that the reflection surface faces the image projection device 12A when the image projection device 12A is not used.
 図4は、本実施例の前提となる映像投写装置12Aの映像投写部43と内蔵した光測距装置10の構成を示すブロック図である。ここでは光測距装置10と映像投写装置12A内の映像投写部43との通信を説明するため、光測距装置10には通信部11以外の構成は記載していない。
映像投写部43は、映像制御部44、映像投写用光源45、光制御部46、投写レンズ47及び反射ミラー48を含む。
FIG. 4 is a block diagram showing the configuration of the image projection unit 43 of the image projection device 12A and the built-in optical distance measuring device 10 which are the premise of this embodiment. Here, in order to describe communication between the optical distance measuring device 10 and the image projection unit 43 in the image projection device 12A, the optical distance measuring device 10 is not described except for the communication unit 11.
The video projection unit 43 includes a video control unit 44, a video projection light source 45, a light control unit 46, a projection lens 47, and a reflection mirror 48.
 映像制御部44は、外部機器49から供給された映像信号に応じ、映像投写用光源45、光制御部46に対して制御信号を出力する。映像投写用光源45は、ハロゲンランプ、LED(Light Emitting Diode)、レーザ等であり、映像制御部44から入力された制御信号に応じ光量を調整する。なお、映像投写用光源45は、R(Red)、G(Green)、B(Blue)の3色を含む場合、映像信号に応じて各々独立して光量を制御してもよい。光制御部46は、ミラー、レンズ、プリズム、イメージャ(例えば液晶パネルのような表示デバイス)等の光学系構成要素を有し、映像投写用光源45の出射光を用いて、外部機器49から供給された映像信号に基づく光学的な映像を生成する。 The video control unit 44 outputs a control signal to the video projection light source 45 and the light control unit 46 in accordance with the video signal supplied from the external device 49. The image projection light source 45 is a halogen lamp, LED (Light Emitting Diode), laser, or the like, and adjusts the amount of light according to a control signal input from the image control unit 44. When the image projection light source 45 includes three colors of R (Red), G (Green), and B (Blue), the light amount may be controlled independently according to the image signal. The light control unit 46 has optical system components such as a mirror, a lens, a prism, and an imager (for example, a display device such as a liquid crystal panel), and is supplied from an external device 49 using the light emitted from the image projection light source 45. An optical image based on the processed image signal is generated.
 投写レンズ47は、光制御部46の出力映像を拡大する。反射ミラー48は、投写レンズ47から放射された光を反射し、設置面33に映像画面36を投写する。反射ミラー48は、非球面ミラーを用いており、同サイズの映像画面を投写する場合、一般的な映像投写装置と比較して投写距離を短くすることができる。本実施形態においては、反射ミラー48を用いた映像投写部43を例として説明したが、映像投写を実現できる構成であれば他の構成でもよい。 The projection lens 47 enlarges the output image of the light control unit 46. The reflection mirror 48 reflects the light emitted from the projection lens 47 and projects the video screen 36 on the installation surface 33. The reflection mirror 48 uses an aspherical mirror, and when projecting an image screen of the same size, the projection distance can be shortened compared to a general image projection apparatus. In the present embodiment, the video projection unit 43 using the reflection mirror 48 has been described as an example, but other configurations may be used as long as video projection can be realized.
 また、外部機器49は、映像投写装置12Aと接続されたPC(Personal Computer)等の一般的な情報処理装置及びスマートフォン等の携帯端末装置であり、映像投写装置12Aに対して映像信号を供給する。なお、外部機器49は、PC及び携帯端末装置に限らず、映像投写装置12Aに備えられたカードインタフェースに挿入されるカード状の記憶媒体等、映像投写装置12Aに映像信号を供給する装置であればよい。 The external device 49 is a general information processing device such as a PC (Personal Computer) connected to the video projection device 12A and a mobile terminal device such as a smartphone, and supplies a video signal to the video projection device 12A. . The external device 49 is not limited to a PC and a portable terminal device, and may be a device that supplies a video signal to the video projection device 12A, such as a card-like storage medium inserted into a card interface provided in the video projection device 12A. That's fine.
 次に、光測距装置10と映像投写部43の通信に関し説明する。光測距装置10は検出した測定対象物3の位置情報を通信部11から映像制御部44に送信する。映像制御部44は入力された位置情報に対応し外部機器の操作や映像投写部43の操作を行う。例えば外部機器の操作では、ページ切替、拡大/縮小、移動、文字入力等を行い、映像投写部43の操作では、電源ON/OFF切替、光量調整、色調整、拡大/縮小、移動等を行う。また、位置情報の出力はUART(Universal Asynchronous Receiver Transmitter)、SPI(Serial Peripheral Interface)、I2C(Inter-Integrated Circuit)等の通信で行ってもよい。ここでは映像投写装置12Aが光測距装置10を内蔵する例を示したが、別体の場合は有線でUSB等を用い通信を行ってもよいし、無線で通信を行ってもよい。無線の場合、前述したとおりWifiを用いてもよいし、Bluetoothを用いてもよい。また通信部11で出力するデータをHID(Human Interface Device)で出力すれば、映像投写装置12Aは光測距装置10を仮想的にキーボードもしくはマウスと認識するため、映像投写装置12A内に専用の処理ソフト等を設ける必要がなくなる利点がある。 Next, communication between the optical distance measuring device 10 and the image projection unit 43 will be described. The optical distance measuring device 10 transmits the detected position information of the measurement object 3 from the communication unit 11 to the video control unit 44. The video control unit 44 operates the external device and the video projection unit 43 in response to the input position information. For example, page switching, enlargement / reduction, movement, character input, etc. are performed in the operation of the external device, and power ON / OFF switching, light amount adjustment, color adjustment, enlargement / reduction, movement, etc. are performed in the operation of the image projection unit 43. . The output of the position information may be performed by communication such as UART (Universal Asynchronous Receiver Receiver Transmitter), SPI (Serial Peripheral Interface), I2C (Inter-Integrated Circuit). Here, an example in which the image projection device 12A incorporates the optical distance measuring device 10 has been shown, but in the case of a separate body, communication may be performed using a wired USB or the like, or may be performed wirelessly. In the case of wireless, WiFi may be used as described above, or Bluetooth may be used. If the data output by the communication unit 11 is output by HID (Human Interface Device), the image projection device 12A virtually recognizes the optical distance measuring device 10 as a keyboard or a mouse. There is an advantage that it is not necessary to provide processing software.
 次に映像投写装置上での光測距装置を使用した応用例を説明する。図5は、映像画面36上で人が指により操作を行う例を示した図である。図5では、図2に示した出射角度制御部5を用いて、光源部1の出射光を画面上にスキャンした例を示している。光測距装置10は、指50からの反射光32を受光部2で検出する。反射光32検出時の出射角度制御部5におけるスキャン角度と、制御部6が算出した距離から指50の位置情報を検出する。光測距装置10は、指50の位置情報だけでなく、指50の位置の時間遷移を検出することで所定動作の検出も可能である。例えば、タップ、フリック、スワイプ、ピンチイン、ピンチアウトなどスマートフォン、タブレットと同様の操作を検出することが可能である。指50を映像画面36にタッチした際に所定の動作を行うには、出射光31が設置面33に近い位置となるよう、できるだけ高さが低い状態で走査することが好ましい。例えば、図3において、出射光31と設置面33の鉛直方向距離yを20mm以下とすることが望ましい。 Next, an application example using an optical distance measuring device on an image projection device will be described. FIG. 5 is a diagram illustrating an example in which a person performs an operation with a finger on the video screen 36. FIG. 5 shows an example in which the outgoing light of the light source unit 1 is scanned on the screen using the outgoing angle control unit 5 shown in FIG. The optical distance measuring device 10 detects the reflected light 32 from the finger 50 by the light receiving unit 2. The position information of the finger 50 is detected from the scan angle in the emission angle control unit 5 when the reflected light 32 is detected and the distance calculated by the control unit 6. The optical distance measuring device 10 can detect not only the position information of the finger 50 but also a predetermined operation by detecting a time transition of the position of the finger 50. For example, it is possible to detect operations similar to those of a smartphone and a tablet, such as tap, flick, swipe, pinch-in, and pinch-out. In order to perform a predetermined operation when the finger 50 touches the video screen 36, it is preferable to perform scanning with a height as low as possible so that the emitted light 31 is positioned close to the installation surface 33. For example, in FIG. 3, it is desirable that the vertical distance y between the emitted light 31 and the installation surface 33 is 20 mm or less.
 ここで、光測距装置10における測定対象物3の角度測定方法、時間測定方法と従来の課題、及びその解決手段について説明する。 Here, an angle measurement method, a time measurement method, a conventional problem, and a solution to the measurement object 3 in the optical distance measuring device 10 will be described.
 まず、測定対象物3の角度測定方法について説明する。図6は本実施例の前提となる測定対象物3の角度測定に用いる、図2に示した、角度制御信号51、スタートパルス41、受光信号211、ゲートパルス212の相対関係を示した図である。出射光31の光強度は、出射光変調部7によりスタートパルス41に同期してそのON/OFFが変調される。このとき、出射光31を指50へ照射した際に受光部2で得られる受光信号211は、指50が出射光31の出射角度に対し所定の有限な大きさを持っているので、図6に示すように、その包絡線が、振幅が増加後一定値を保ったのち減少する時間応答となる。このとき閾値判定部21は、図6の受光信号211の振幅を監視し、スタートパルス41の2周期分よりも長い時間、電圧振幅が所定の閾値VTHを上回り続けた際に図6のゲートパルスを出力する。そして制御部6は、閾値判定部21の出力するゲートパルスがHighである期間において測定対象物3があると認識する。制御部6は、閾値判定部21の出力するゲートパルスがHighとなった間の出射角度指令値をメモリ等の一時保存領域へ蓄積し、その平均値を算出して指50の角度情報を得る。 First, a method for measuring the angle of the measuring object 3 will be described. FIG. 6 is a diagram showing the relative relationship of the angle control signal 51, the start pulse 41, the light reception signal 211, and the gate pulse 212 shown in FIG. is there. The light intensity of the emitted light 31 is modulated ON / OFF in synchronization with the start pulse 41 by the emitted light modulator 7. At this time, the light reception signal 211 obtained by the light receiving unit 2 when the finger 50 is irradiated with the emitted light 31 has a predetermined finite magnitude with respect to the emission angle of the emitted light 31. As shown in the figure, the envelope becomes a time response that decreases after the amplitude increases to maintain a constant value. At this time, the threshold determination unit 21 monitors the amplitude of the light reception signal 211 in FIG. 6, and when the voltage amplitude continues to exceed the predetermined threshold V TH for a time longer than two periods of the start pulse 41, the gate in FIG. Output a pulse. And the control part 6 recognizes that there exists the measuring object 3 in the period when the gate pulse which the threshold value determination part 21 outputs is High. The control unit 6 accumulates the emission angle command value in the temporary storage area such as a memory while the gate pulse output from the threshold determination unit 21 becomes High, calculates the average value thereof, and obtains the angle information of the finger 50. .
 次に、閾値判定部21の内部構成および動作について説明する。図7は、図2における閾値判定部21の内部構成を示すブロック図である。閾値判定部21は電圧比較部71、連続数カウント部72、ゲートパルス生成部73で構成されている。電圧比較部71は、入力された受光信号211の電圧振幅が閾値VTH以上となった時にHigh、閾値VTH未満となった時にLowとなるパルスを連続数カウント部72へ送信する。連続数カウント部72は、電圧比較部71から連続して到着したパルス数をカウントし、そのカウント値が2以上となった場合にゲートパルス生成部の出力をHighとする制御信号をゲートパルス生成部73へ送信する。また、連続数カウント部72は、スタートパルス41の繰り返し周期Tを基準として、2T以上の時間が経過してもパルス数が変化しない場合には、ゲートパルス生成部の出力をLowとする制御信号をゲートパルス生成部73へ送信し、カウント値をリセットする。ゲートパルス生成部73は、連続数カウント部から受信した制御信号に基づいて、HighもしくはLowのゲートパルス212を出力する。 Next, the internal configuration and operation of the threshold determination unit 21 will be described. FIG. 7 is a block diagram showing an internal configuration of the threshold determination unit 21 in FIG. The threshold determination unit 21 includes a voltage comparison unit 71, a continuous number counting unit 72, and a gate pulse generation unit 73. Voltage comparator 71 sends a pulse which becomes Low when it becomes High, less than the threshold value V TH when the voltage amplitude of the received light signal 211 that is input is equal to or greater than the threshold value V TH to the continuous counting section 72. The continuous number counting unit 72 counts the number of pulses that have continuously arrived from the voltage comparison unit 71, and generates a control signal that sets the output of the gate pulse generation unit to High when the count value becomes 2 or more. To the unit 73. The continuous number counting unit 72 is a control signal for setting the output of the gate pulse generating unit to Low when the number of pulses does not change even after a time of 2T or more has elapsed with reference to the repetition period T of the start pulse 41. Is transmitted to the gate pulse generator 73, and the count value is reset. The gate pulse generator 73 outputs a High or Low gate pulse 212 based on the control signal received from the continuous number counter.
 次に、光測距装置10における測定対象物3の時間測定方法を説明する。図8は、図2におけるスタートパルス41、受光信号211、ストップパルス42の相対関係を示しており、ここでは時間計測動作の説明のため、図6で示したゲートパルスがHigh状態となった部分のみを拡大して示した図である。ストップパルス42は、0Vを基準電圧として受光信号211をパルス化したものである。時間測定部4は、スタートパルス41とストップパルス42の時間差Tを測定し、制御部6は時間差Tを式(1)により距離情報へ換算する。 Next, a method for measuring the time of the measuring object 3 in the optical distance measuring device 10 will be described. FIG. 8 shows the relative relationship of the start pulse 41, the light reception signal 211, and the stop pulse 42 in FIG. 2. Here, the portion where the gate pulse shown in FIG. 6 is in a high state for explanation of the time measurement operation. It is the figure which expanded and showed only. The stop pulse 42 is obtained by pulsing the light reception signal 211 using 0V as a reference voltage. The time measuring unit 4 measures the time difference TL between the start pulse 41 and the stop pulse 42, and the control unit 6 converts the time difference TL into distance information by the equation (1).
 次に、従来の課題を説明する。従来の課題として、光往復時間の測定精度を低下させる要因である、回路遅延時間、時間分解能ばらつきを説明する。 Next, conventional problems will be described. As conventional problems, circuit delay time and variation in time resolution, which are factors that reduce the measurement accuracy of the optical round-trip time, will be described.
 測定対象物3が50cmの位置に置かれていたとすると、スタートパルス41とストップパルス42において期待される時間差Tは、
=0.5m×2/(3.0×10m/s)=3.3nsec …(2)
となる。しかし実際には、受光部2が反射光32を受光してから受光波形を出力するまでの遅延時間や、受光パルス生成部8がストップパルス42を出力するまでの遅延時間があるため、図8に示すTを実測すると53nsec程度の値となる。そこで、光測距装置10内で発生する回路遅延時間をTとすると、T=53nsecから期待される時間差T=3.3nsecを除いた残りの約50nsecが回路遅延時間Tに相当する。また、スタートパルス41とストップパルス42の時間差T、期待される時間差Tと回路遅延時間Tの間には式(3)の関係が成り立つ。
=T+T …(3)
なお、スタートパルス41の繰り返し周期Tは、時間差Tの2倍以上の時間とする必要があり、例えば繰り返し周期Tを500nsecに設定すればよい。ここで回路遅延時間Tは、電子回路の持つばらつき個体差、さらには使用環境の周囲温度によってもその値が変化するため、光測距装置10の距離測定精度を低下させる要因となる。したがって、後述の方法で回路遅延時間Tを補正することが必要となる。
When the measurement object 3 and was placed in the position of 50 cm, the time difference T D is expected in the start pulse 41 and the stop pulse 42,
T D = 0.5 m × 2 / (3.0 × 10 8 m / s) = 3.3 nsec (2)
It becomes. However, in actuality, there is a delay time from when the light receiving unit 2 receives the reflected light 32 until the light reception waveform is output, and a delay time until the light reception pulse generating unit 8 outputs the stop pulse 42. When TL shown in FIG. 3 is actually measured, a value of about 53 nsec is obtained. Therefore, if the circuit delay time generated in the optical distance measuring device 10 is T C , the remaining about 50 nsec excluding the expected time difference T D = 3.3 nsec from T L = 53 nsec corresponds to the circuit delay time T C. To do. Further, the relationship of the expression (3) is established between the time difference T L between the start pulse 41 and the stop pulse 42, the expected time difference T D, and the circuit delay time T C.
T L = T D + T C (3)
Note that the repetition period T of the start pulse 41 needs to be a time that is at least twice the time difference TL . For example, the repetition period T may be set to 500 nsec. Here the circuit delay time T C, the variation individual differences with the electronic circuit, and further since the changes its value depending on the ambient temperature of the operating environment and causes a decrease of the distance measurement accuracy of the optical distance measuring device 10. Therefore, it is necessary to correct the circuit delay time T C in a manner described below.
 次に、光測距装置10において光往復時間の測定精度を低下させる二つ目の要因である、時間分解能ばらつきについて説明する。 Next, the temporal resolution variation, which is the second factor that reduces the measurement accuracy of the optical round trip time in the optical distance measuring device 10, will be described.
 図9は本実施例の前提となる時間計測部に遅延素子を用いた時間計測方式であるTDC( Time Digital Conversion )方式を用いた場合の機能ブロックを示した図である。スタートパルス41とストップパルス42の時間差Tは、図9の回路で構成された時間測定部4によりカウント値として計測される。ここではまず、図9の回路動作について説明する。 FIG. 9 is a diagram showing functional blocks when a TDC (Time Digital Conversion) method, which is a time measurement method using a delay element, is used as a premise of the present embodiment. The time difference TL between the start pulse 41 and the stop pulse 42 is measured as a count value by the time measuring unit 4 configured by the circuit of FIG. First, the circuit operation of FIG. 9 will be described.
 図9の回路へスタートパルス41が入力されると、奇数個のN段接続されたNOTゲート91のループ内をパルスが伝搬し発振状態となる。また、N段目のNOTゲートの後段には周回カウンタ部92が、各NOTゲート91には周内カウンタ部93が接続されており、ストップパルス42がD型フリップフロップ95へ到着したタイミングで、周回カウンタ部92を乗算部94でN倍した値と、周内カウンタ部93のカウント値を合計したものをカウント値Cとして出力する。ここで、信号が各NOTゲート91を通過する際に所定の遅延時間△Tが積算されるため、図9の回路を用いれば2系統の信号の入力時間差を計測することができる。ここでスタートパルス41とストップパルス42の時間差T、各NOTゲートの遅延時間に相当する時間分解能を△T、時間測定部4が出力するカウント値をCとすると、これらの間には式(4)の関係が成り立つ。
=C×△T …(4)
たとえば、時間差Tが53.3nsecの場合、時間計測部4の時間分解能が△T=50psecであれば、カウンタ値C=1066が計測される。
When the start pulse 41 is input to the circuit of FIG. 9, the pulse propagates through the loop of the NOT gates 91 connected in an odd number of N stages to enter an oscillation state. Further, a circulation counter unit 92 is connected to the subsequent stage of the Nth NOT gate, and an inner counter unit 93 is connected to each NOT gate 91, and at the timing when the stop pulse 42 arrives at the D-type flip-flop 95, A value obtained by multiplying the circulation counter unit 92 by N by the multiplication unit 94 and the count value of the in-circumference counter unit 93 is output as a count value C. Here, since a predetermined delay time ΔT is accumulated when the signal passes through each NOT gate 91, the input time difference between the two systems of signals can be measured by using the circuit of FIG. Here, when the time difference T L between the start pulse 41 and the stop pulse 42, ΔT is the time resolution corresponding to the delay time of each NOT gate, and C is the count value output by the time measuring unit 4, an equation ( The relationship 4) holds.
T L = C × ΔT (4)
For example, when the time difference TL is 53.3 nsec, the counter value C = 1066 is measured if the time resolution of the time measuring unit 4 is ΔT = 50 psec.
 ここで、時間計測部4の個体差や温度変化により、時間分解能△Tが50psecから49psecへ変化した場合を考える。先ほどと同様に、時間差Tが53.3nsecであるとすると、カウント値Cは、
C=53.3nsec/49psec=1087 …(5)
として計測される。制御部6が時間分解能△Tが変化したことを検出する仕組みを持たない場合、制御部6はこのカウント値に基づいて測定対象物3との光往復時間を算出する。
=1087×50psec=54.4nsec …(6)
Here, a case is considered where the time resolution ΔT is changed from 50 psec to 49 psec due to individual differences of the time measuring unit 4 and temperature changes. As before, if the time difference TL is 53.3 nsec, the count value C is
C = 53.3 nsec / 49 psec = 1087 (5)
As measured. When the control unit 6 does not have a mechanism for detecting that the time resolution ΔT has changed, the control unit 6 calculates the optical round-trip time with the measurement object 3 based on this count value.
T L = 1087 × 50 psec = 54.4 nsec (6)
 ここで回路遅延時間Tが50nsecであると前もって分かっている場合を考えると、制御部6は時間差Tから回路遅延時間Tの50nsecを除いた4.4nsecが光往復時間Tであると判断する。この光往復時間Tを用いて制御部6が距離を算出すると、
L=4.4nsec×(3.0×10m/s)/2=66cm …(7)
となり、実際の値に比べ16cm長い距離が算出される。このように、時間分解能△Tのばらつきは光測距装置10の距離測定精度を低下させる要因となる。さらに時間分解能△Tは、時間計測部4のばらつきや個体差、さらには使用環境の周囲温度によってもその値が変化するため、後述の方法により回路遅延時間Tと合わせて補正が必要となる。
Considering the case where where the circuit delay time T C is known in advance when is 50nsec, 4.4Nsec control unit 6 except the 50nsec of circuit delay time T C from the time difference T L is the optical round trip time T D Judge. When the control unit 6 calculates the distance using the optical round trip time T D,
L = 4.4nsec × (3.0 × 10 8 m / s) / 2 = 66cm ... (7)
Thus, a distance 16 cm longer than the actual value is calculated. As described above, the variation in the time resolution ΔT becomes a factor of reducing the distance measurement accuracy of the optical distance measuring device 10. Further time resolution △ T is variation and individual difference of the time measuring unit 4, and further since the changes its value depending on the ambient temperature of the operating environment, it is necessary to correct in conjunction with the circuit delay time T C by the method described below .
 そこで本実施例では、前述の回路遅延時間T、および時間分解能△Tのばらつきに起因した距離測定精度の低下を防止するため、回路遅延時間T、および時間分解能△Tのばらつきを補正するようにした。以下、本実施例の具体例について説明する。 Therefore, in this embodiment, in order to prevent a decrease in distance measurement accuracy due to the above-described variation in circuit delay time T C and time resolution ΔT, variations in circuit delay time T C and time resolution ΔT are corrected. I did it. Hereinafter, a specific example of this embodiment will be described.
 図10は本実施例における光測距装置の構成例を示すブロック図である。図10において、図2と同じ機能の構成要件は同じ符号を付し、その説明は省略する。図10において、図2と異なる点は、光測距装置20として、第一の基準対象物101と、第二の基準対象物102を設置している点である。すなわち、第一の基準対象物101と、第二の基準対象物102は、光測距装置20内の予め定められた位置に設置され、出射角度制御部5から出射された出射光31が出射され、その反射光32を受光部2で受信することで、回路遅延時間Tおよび時間分解能△Tの補正を行う。 FIG. 10 is a block diagram showing a configuration example of the optical distance measuring device in the present embodiment. 10, constituent elements having the same functions as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted. 10 differs from FIG. 2 in that a first reference object 101 and a second reference object 102 are installed as the optical distance measuring device 20. That is, the first reference object 101 and the second reference object 102 are installed at predetermined positions in the optical distance measuring device 20, and the emitted light 31 emitted from the emission angle control unit 5 is emitted. is, by receiving the reflected light 32 by the light receiving unit 2 corrects the circuit delay time T C, and time resolution △ T.
 図11に本実施例における映像投写装置上で光測距装置20を使用した例を示す。図11において、映像投写装置12Aは光測距装置20を内蔵しており、光測距装置20は、光測距装置20の使用範囲外の角度に第一の基準対象物101と、第二の基準対象物102を設置している。すなわち、出射角度制御部5および受光部2△と第一の基準対象物101の距離をL、角度をθ、第二の基準対象物102との距離をL、角度をθとし、制御部6は既知の値として、L、θ、L、θの値を保持している。また、検出を容易とするためには、第一の基準対象物101および第二の基準対象物102の材質を、映像投写装置12Aの筐体とは異なる材質とし、反射率を周囲の材質より高くしてもよい。この反射率差により、第一の基準対象物101および第二の基準対象物102の反射光を受光した場合には、受光信号においてより大きな電圧振幅が得られる。 FIG. 11 shows an example in which the optical distance measuring device 20 is used on the image projection apparatus in the present embodiment. In FIG. 11, the image projection device 12 </ b> A has a built-in optical distance measuring device 20, and the optical distance measuring device 20 has the first reference object 101 and the second object at an angle outside the use range of the optical distance measuring device 20. The reference object 102 is installed. That is, the distance of the exit angle controller 5 and the light receiving portion 2 △ a first reference object 101 L 1, the angle theta 1, the distance between the second reference object 102 L 2, the angle and theta 2 The control unit 6 holds the values of L 1 , θ 1 , L 2 , and θ 2 as known values. In order to facilitate detection, the materials of the first reference object 101 and the second reference object 102 are different from those of the housing of the image projection device 12A, and the reflectance is determined from the surrounding materials. May be high. Due to this reflectance difference, when the reflected light of the first reference object 101 and the second reference object 102 is received, a larger voltage amplitude is obtained in the light reception signal.
 光測距装置20が測定動作を実施し、第一の基準対象物101に対し角度θでカウント値C、第二の基準対象物102に対し角度θでカウント値Cが測定されたとすると、C、Cはそれぞれ下記の式(8)、式(9)で表せる。
=TL1/△T=(TD1+TC1)/△T …(8)
=TL2/△T=(TD2+TC2)/△T …(9)
ここでTD1、TD2はそれぞれ第一、第二の基準対象物の距離に対応した光往復時間、TC1、TC2はそれぞれ第一、第二の基準対象物の光往復時間測定時に発生した回路遅延時間、△T、△Tはそれぞれ第一、第二の基準対象物の光往復時間測定時の時間分解能である。
The optical distance measuring device 20 performs a measurement operation, and the count value C 1 is measured with respect to the first reference object 101 at an angle θ 1 and the count value C 2 is measured with respect to the second reference object 102 at an angle θ 2. assuming that, C 1, C 2 each following formula (8) can be expressed by equation (9).
C 1 = T L1 / ΔT 1 = (T D1 + T C1 ) / ΔT 1 (8)
C 2 = T L2 / ΔT 2 = (T D2 + T C2 ) / ΔT 2 (9)
Here, T D1 and T D2 are optical round trip times corresponding to the distance between the first and second reference objects, respectively, and T C1 and T C2 are generated when measuring the optical round trip times of the first and second reference objects, respectively. The circuit delay times ΔT 1 and ΔT 2 are the time resolutions when measuring the optical round trip time of the first and second reference objects, respectively.
 上記の式(8)、(9)では、回路遅延時間、時間分解能が測定毎にそれぞれ異なるとしたが、回路遅延時間、時間分解能が変動する主要因は回路素子の温度変化である。つまり、カウント値Cを測定してから非常に短い時間でカウント値Cを測定すれば、温度変化の影響が極めて小さくなり、回路遅延時間および時間分解能の値を同等とみなすことができる。例えば、出射角度制御部5に含まれる回転ミラーを10Hzで回転駆動すると、1スキャン周期が100msとなり、1スキャンの間に第一、第二の基準対象物および測定対象物に対応した光往復時間を計測することが可能である。 In the above formulas (8) and (9), the circuit delay time and the time resolution are different for each measurement, but the main factor that the circuit delay time and the time resolution fluctuate is the temperature change of the circuit element. That is, by measuring the count value C 2 from the measured count value C 1 in a very short time, the influence of the temperature change is very small, the value of the circuit delay time and time resolution can be regarded as equivalent. For example, when the rotary mirror included in the emission angle control unit 5 is rotationally driven at 10 Hz, one scan cycle is 100 ms, and the optical reciprocation time corresponding to the first and second reference objects and the measurement object during one scan. Can be measured.
 回路遅延時間Tおよび時間分解能△Tの値が等しいとみなせる場合、式(8)および式(9)は以下のように簡略化できる。
=TL1/△T=(TD1+T)/△T …(10)
=TL2/△T=(TD2+T)/△T …(11)
 ここで、式(11)から式(10)を減算すると、回路遅延時間Tの項が消去され、時間分解能△Tの現在値を算出することができる。
△T=(TD2-TD1)/(C-C) …(12)
If regarded as equal values of circuit delay time T C, and time resolution △ T, equation (8) and (9) can be simplified as follows.
C 1 = T L1 / ΔT = (T D1 + T C ) / ΔT (10)
C 2 = T L2 / ΔT = (T D2 + T C ) / ΔT (11)
Here, subtracting the equation (10) from equation (11), erases the term of circuit delay time T C, it is possible to calculate the current value of the time resolution △ T.
ΔT = (T D2 −T D1 ) / (C 2 −C 1 ) (12)
 さらには、式(12)を式(10)へ代入すると、回路遅延時間Tの現在値を算出することができる。
=(CD2-CD1)/(C-C) …(13)
Further, by substituting equation (12) into equation (10) can calculate the current value of the circuit delay time T C.
T C = (C 1 T D2 -C 2 T D1 ) / (C 2 -C 1 ) (13)
 以上のように、出射角度制御部5および受光部2からの距離、角度が異なる2つの基準対象物を用いれば、回路遅延時間および時間分解能の現在値を算出することが可能である。 As described above, if two reference objects having different distances and angles from the emission angle control unit 5 and the light receiving unit 2 are used, the current values of circuit delay time and time resolution can be calculated.
 さらに、測定対象物の時間カウント値Cと式(12)、式(13)で算出された△T、Tを用いて測定対象物との距離を算出する。すなわち、式(12)、式(13)に示された△T、Tの現在値を用いて、光測距装置10と測定対象物の間の距離Lは、
L=c×(T-T)/2
=c×{C△T-(CD2-CD1)/(C-C)}/2 …(14)
と表せる。ここでT=C△Tとした。したがって式(14)を用いれば、回路遅延時間や時間分解能が変化しても測定対象物との距離を高精度に求めることができる。さらに式(14)において、時間平均化処理部9において平均化を行ったカウント値を用いてC、Cおよび測定対象物のカウント値Cを導出すれば、より高精度な計測が可能となる。特に、本実施例の光測距装置20を映像投写装置12Aに内蔵した場合、映像投写装置の筐体内は温度変化量が非常に大きいため、温度変化に起因した測定精度の低下を抑制できる効果を奏する。
Furthermore, the time count value C and the expression of the measuring object (12), which is calculated by equation (13) △ T, and calculates the distance to the measurement object using the T C. That is, Equation (12), using the current value of the indicated △ T, T C in the equation (13), the distance L between the optical distance measuring device 10 measuring object,
L = c × (T L −T C ) / 2
= C × {CΔT- (C 1 T D2 -C 2 T D1 ) / (C 2 -C 1 )} / 2 (14)
It can be expressed. Here, T L = CΔT. Therefore, by using the equation (14), the distance to the measurement object can be obtained with high accuracy even if the circuit delay time or the time resolution changes. Further, in Formula (14), if C 1 and C 2 and the count value C of the measurement object are derived using the count values averaged by the time averaging processing unit 9, more accurate measurement is possible. Become. In particular, when the optical distance measuring device 20 of the present embodiment is built in the image projection device 12A, the amount of temperature change in the housing of the image projection device is very large, so that the reduction in measurement accuracy due to temperature change can be suppressed. Play.
 なお、以上の説明で第一の基準対象物101と第二の基準対象物102のそれぞれは、出射角度制御部5との距離、角度と受光部2との距離、角度とが同じとして説明したが、出射角度制御部5と受光部2との距離、角度が同一でない場合には、出射角度制御部5とそれぞれの基準対象物の距離、角度、及び、受光部2とそれぞれの基準対象物の距離、角度から、同様に回路遅延時間や時間分解能を求めることができる。 In the above description, each of the first reference object 101 and the second reference object 102 is described as having the same distance from the emission angle control unit 5, the distance between the angle and the light receiving unit 2, and the angle. However, if the distance and angle between the emission angle control unit 5 and the light receiving unit 2 are not the same, the distance and angle between the emission angle control unit 5 and each reference object, and the light receiving unit 2 and each reference object. Similarly, the circuit delay time and time resolution can be obtained from the distance and angle.
 次に、光測距装置20の動作フローを説明する。図12は、本実施例の前提となる光測距装置20における電源ONから位置測定動作を経て、電源がOFFまでのフローチャートを示し、映像画面36上で人が指により操作を行う場合の指の位置情報として測距を行う例を示している。 Next, the operation flow of the optical distance measuring device 20 will be described. FIG. 12 shows a flowchart from the power-on to the power-off in the optical distance measuring device 20 which is a premise of the present embodiment until the power is turned off. In this example, distance measurement is performed as the position information.
 図12において、まず、光測距装置20の電源がONされると(111)、光測距装置10は各動作ブロックの初期設定を行う(112)。その後、ユーザが指の位置変更を繰り返して入力操作をしているかを判断する(113)。ユーザの入力操作中断を検出すると、スリープ(114)、所定時間経過かを判断し(115)、所定時間経過したら、またユーザが操作中かを判断する処理を繰り返す(113)。 In FIG. 12, first, when the optical distance measuring device 20 is turned on (111), the optical distance measuring device 10 performs initial setting of each operation block (112). Thereafter, it is determined whether or not the user performs an input operation by repeatedly changing the position of the finger (113). When the interruption of the input operation of the user is detected, it is determined whether or not a predetermined time has elapsed (115), and if the predetermined time has elapsed, the process of determining whether or not the user is operating is repeated (113).
 ユーザが指の位置変更を繰り返して入力操作を続けていると判断した場合、前述の方法を用いて回路遅延時間および時間分解能の補正を行う(116)。そして、光測距装置20は指の位置情報の測定を行う(117)。そして、前回の回路遅延時間・時間分解能補正から所定の時間が経過したかを判断する(118)。前回の補正から所定時間が経過した場合には再度ユーザが操作中かを判断する処理へ移行し(113)、ユーザが操作中であれば回路遅延時間および時間分解能の補正を繰り返す(116)。ステップ118で所定時間が経過していない場合には、ユーザが入力操作を行っていない状態で(119)、電源スイッチがOFFされた場合には(120)、光測距装置20は電源OFF処理を行い、その動作を終了する(121)。 If it is determined that the user continues the input operation by repeatedly changing the position of the finger, the circuit delay time and the time resolution are corrected using the method described above (116). Then, the optical distance measuring device 20 measures the finger position information (117). Then, it is determined whether a predetermined time has elapsed since the previous circuit delay time / time resolution correction (118). When a predetermined time has elapsed since the previous correction, the process again determines whether the user is operating (113). If the user is operating, the circuit delay time and time resolution correction are repeated (116). If the predetermined time has not elapsed in step 118, the user has not performed an input operation (119). If the power switch is turned off (120), the optical distance measuring device 20 performs a power-off process. To end the operation (121).
 ステップ119でユーザが入力操作を行っている場合は、ステップ117に戻って、光測距装置20は指の位置情報の測定を行う。なお、光測距装置20が回路遅延時間および時間分解能を補正する周期は任意であり、1回の測定毎に補正を行っても構わないし、複数回の測定毎に補正を行っても構わない。 If the user performs an input operation in step 119, the process returns to step 117, and the optical distance measuring device 20 measures the finger position information. Note that the period in which the optical distance measuring device 20 corrects the circuit delay time and the time resolution is arbitrary, and the correction may be performed for each measurement, or may be performed for each measurement. .
 以上のように、本実施例は、出射光信号と受光信号の時間差により距離を算出する光測距装置の光測距方法であって、光測距装置は受光信号を受光する受光部からの距離及び角度がともに異なる基準対象物を少なくとも2つ設けており、時間差を測定する時間測定部により複数の基準対象物に対する時間差を測定し、複数の時間差に所定の演算を行い受光部の有する回路遅延時間および時間測定部の有する測定分解能を算出し、回路遅延時間および測定分解能の算出結果に基づいて測定対象物との距離を算出するように構成する。 As described above, this embodiment is an optical distance measuring method for an optical distance measuring device that calculates a distance based on a time difference between an emitted light signal and a received light signal, and the optical distance measuring device receives light received from a light receiving unit that receives the received light signal. A circuit having at least two reference objects having different distances and angles, measuring a time difference with respect to a plurality of reference objects by a time measuring unit for measuring a time difference, and performing a predetermined calculation on the plurality of time differences and having a light receiving unit The delay time and the measurement resolution of the time measurement unit are calculated, and the distance from the measurement object is calculated based on the calculation results of the circuit delay time and the measurement resolution.
 また、測定対象物への出射光信号と該測定対象物からの反射光を受光した受光信号の時間差に基づいて前記測定対象物との距離を測定する光測距装置であって、測定対象物への出射光を発する光源部と、測定対象物からの反射光を受光する受光部と、出射光の出射角度を制御する出射角度制御部と、時間差を測定する時間測定部と、受光部から第一の所定の距離および第一の所定の角度をなす第一の基準対象物、および第二の所定の距離および第二の所定の角度をなす第二の基準対象物と、光源部、出射角度変更部、および時間測定部を制御する制御部とを有し、第一の基準対象物および第二の基準対象物は、第一の所定の距離と第二の所定の距離が異なるように構成する。 An optical distance measuring device that measures a distance from the measurement object based on a time difference between an outgoing light signal to the measurement object and a light reception signal that receives reflected light from the measurement object. A light source unit that emits light emitted from the light source, a light receiving unit that receives reflected light from the measurement object, an emission angle control unit that controls the emission angle of the emitted light, a time measurement unit that measures a time difference, and a light receiving unit A first reference object having a first predetermined distance and a first predetermined angle; a second reference object having a second predetermined distance and a second predetermined angle; a light source; An angle changing unit and a control unit that controls the time measuring unit, and the first reference object and the second reference object are different from each other in the first predetermined distance and the second predetermined distance. Constitute.
 また、映像投写部と光測距装置を備えた映像投写装置であって、映像投写部は、映像投写用光源と、映像投写用光源の出射光を用いて外部機器から供給された映像信号に基づく光学的な映像を生成する光制御部と、外部機器から供給された映像信号に応じ映像投写用光源と光制御部に対して制御信号を出力する映像制御部と、光制御部の出力映像を拡大する投写レンズとを有し、光測距装置は、測定対象物への出射光を発する光源部と、測定対象物からの反射光を受光する受光部と、出射光の出射角度を制御する出射角度制御部と、測定対象物への出射光信号と測定対象物からの反射光を受光した受光信号の時間差を測定する時間測定部と、受光部から第一の所定の距離および第一の所定の角度をなす第一の基準対象物および第二の所定の距離および第二の所定の角度をなす第二の基準対象物と、光源部、出射角度変更部、および時間測定部を制御する制御部とを有し、第一の基準対象物および第二の基準対象物は、第一の所定の距離と第二の所定の距離が異なり、制御部で検出した測定対象物の位置情報を映像制御部に送信する通信部を有するように構成する。 An image projection apparatus comprising an image projection unit and an optical distance measuring device, wherein the image projection unit outputs an image projection light source and an image signal supplied from an external device using light emitted from the image projection light source. A light control unit that generates an optical image based on the image, a video control unit that outputs a control signal to the light source for image projection and the light control unit according to a video signal supplied from an external device, and an output video of the light control unit The optical distance measuring device controls the emission angle of the emitted light, the light source unit that emits the emitted light to the measurement object, the light receiving unit that receives the reflected light from the measurement object, An emission angle control unit that performs measurement, a time measurement unit that measures a time difference between an outgoing light signal to the measurement object and a received light signal that has received reflected light from the measurement object, a first predetermined distance from the light reception unit, and a first A first reference object having a predetermined angle and a second predetermined object And a second reference object having a second predetermined angle and a control unit for controlling the light source unit, the emission angle changing unit, and the time measuring unit, and the first reference object and the second reference object The reference object is configured such that the first predetermined distance is different from the second predetermined distance, and the reference object includes a communication unit that transmits position information of the measurement object detected by the control unit to the video control unit.
 これにより、受光回路の回路遅延時間や時間計測回路の時間分解能が短時間で変化した場合であっても、測定対象物との距離を高精度に測定できる光測距装置、光測距方法、及び、それを備えた映像投写装置を提供できる。 Thereby, even when the circuit delay time of the light receiving circuit and the time resolution of the time measuring circuit change in a short time, the optical distance measuring device, the optical distance measuring method, which can measure the distance to the measurement object with high accuracy, And an image projection apparatus provided with the same can be provided.
 本実施例では、実施例1で説明した光測距装置の応用例を図13~図16を用いて説明する。 In this embodiment, an application example of the optical distance measuring apparatus described in the first embodiment will be described with reference to FIGS.
 図13は、光測距装置20を出入口121の上部へ設置した例である。光測距装置20による出射光の出射角度スキャンと検出位置情報の時間的な変化により、通行人122の身長や、出入口を通過した通行人の人数をカウントすることが可能である。 FIG. 13 shows an example in which the optical distance measuring device 20 is installed above the entrance / exit 121. It is possible to count the height of the passer-by 122 and the number of passers-by who have passed through the doorway by scanning the outgoing angle of the outgoing light by the optical distance measuring device 20 and the temporal change in the detected position information.
 また図14は、自動車の車両ゲート131の上部に光測距装置20を設置した例である。この場合も同様に、光測距装置20による出射光の出射角度スキャンと検出位置情報の時間的な変化により、通行車両132の車高計測や、通過台数をカウントすることが可能となる。 FIG. 14 shows an example in which the optical distance measuring device 20 is installed above the vehicle gate 131 of the automobile. In this case as well, the height measurement of the passing vehicle 132 and the number of passing vehicles can be counted by scanning the outgoing angle of the outgoing light by the optical distance measuring device 20 and the temporal change in the detected position information.
 図15では、荷物を移動させるベルトコンベア142のゲート141の上部および側面に光測距装置20を設置した例である。この場合も同様に、ベルトコンベアによって搬送される貨物143の高さ、幅、奥行きなどの寸法計測や、貨物143の通過個数をカウントすることが可能である。 FIG. 15 shows an example in which the optical distance measuring device 20 is installed on the upper and side surfaces of the gate 141 of the belt conveyor 142 that moves the load. In this case as well, it is possible to measure dimensions such as the height, width, and depth of the cargo 143 conveyed by the belt conveyor, and to count the number of passing cargos 143.
 図16には、光測距装置20を多段に設置し、美術品などの立体造形物151表面の凹凸を計測する例を示す。特に、美術品などの3Dデータの保存には高分解能な光測距装置が必要とされており、本実施例で述べた測距精度の向上方法は非常に有効である。 FIG. 16 shows an example in which the optical ranging devices 20 are installed in multiple stages and the unevenness on the surface of the three-dimensional object 151 such as a work of art is measured. In particular, a high-resolution optical distance measuring device is required to store 3D data such as artworks, and the method for improving the distance measuring accuracy described in this embodiment is very effective.
 以上のように、光測距装置は映像投写装置だけでなく、様々な外部装置と接続し、様々なアプリケーションに応用することが可能である。 As described above, the optical distance measuring device can be connected not only to the image projection device but also to various external devices and applied to various applications.
 なお、複数の光測距装置を近傍に配置し同時に使用すると、受光信号に混信が発生する可能性がある。すなわち、1台目の光測距装置の出射光が隣接する光測距装置の受光信号に混信してしまう場合が考えられる。これの解決方法として、例えば、空間的、時間的に信号を分離方法が考えられる。すなわち、各光測距装置の出射光が重ならないように、出射角度制御部のスキャン角度をお互いにずらすようにし、受光部でそれぞれのタイミングで受光信号を処理するようにすればよい。また、波長で分離する方法でも良い。すなわち、1台目の光測距装置の出射光の波長をλ1、2台目の光測距装置の出射光の波長をλ2として、受光部に波長分離フィルタを追加することで対応が可能となる。さらに、周波数で分離する方法でも良い。すなわち、1台目の光測距装置の光源部のレーザ駆動周波数をf1、2台目の光測距装置の光源部のレーザ駆動周波数をf2として、受光部にバンドパスフィルタを追加するようにしても良い。 Note that if a plurality of optical distance measuring devices are arranged in the vicinity and are used simultaneously, interference may occur in the received light signal. That is, the case where the emitted light of the first optical distance measuring device interferes with the light reception signal of the adjacent optical distance measuring device can be considered. As a solution for this, for example, a method of separating signals spatially and temporally can be considered. That is, the scanning angle of the emission angle control unit may be shifted from each other so that the emitted light of each optical distance measuring device does not overlap, and the received light signal may be processed at each timing by the light receiving unit. Moreover, the method of separating by wavelength may be used. In other words, the wavelength of the emitted light of the first optical distance measuring device is λ1, the wavelength of the emitted light of the second optical distance measuring device is λ2, and it is possible to cope by adding a wavelength separation filter to the light receiving unit. Become. Further, a method of separating by frequency may be used. That is, the laser drive frequency of the light source unit of the first optical distance measuring device is f1, the laser drive frequency of the light source unit of the second optical distance measuring device is f2, and a bandpass filter is added to the light receiving unit. May be.
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであって、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of each embodiment.
 また、上記の各構成は、それらの一部又は全部が、ハードウェアで構成されても、プロセッサでプログラムが実行されることにより実現されるように構成されてもよい。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてよい。 In addition, each of the above-described configurations may be configured such that a part or all of the configuration is configured by hardware, or is realized by executing a program by a processor. Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it can be considered that almost all the components are connected to each other.
1…光源部、2…受光部、3…測定対象物、4…時間計測部、5…出射角度制御部、6…制御部、7…出射光変調部、8…受光パルス生成部、9…時間平均化処理部、10,20…光測距装置、21…閾値判定部、11…通信部、12…外部装置、12A…映像投写装置、31…出射光、32…反射光、33…設置面、34…投写レンズ、35…反射ミラー、36…映像画面、37…フォーカスリング、41…スタートパルス、42…ストップパルス、43…映像投写部、44…映像制御部、45…映像投写用光源、46…光制御部、47…投写レンズ、48…反射ミラー、49…外部機器、50…指、51…角度制御信号、71…電圧比較部、72…連続数カウント部、73…ゲートパルス生成部、91…NOTゲート、92…周回カウンタ部、93…周内カウンタ部、94…乗算部、95…D型フリップフロップ、101…第一の基準対象物、102…第二の基準対象部、121…出入口、122…通行人、131…車両ゲート、132…通行車両、141…ゲート、142…ベルトコンベア、143…貨物、151…立体造形物、211…受光信号、212…ゲートパルス DESCRIPTION OF SYMBOLS 1 ... Light source part, 2 ... Light receiving part, 3 ... Measurement object, 4 ... Time measurement part, 5 ... Output angle control part, 6 ... Control part, 7 ... Output light modulation part, 8 ... Light reception pulse generation part, 9 ... Time averaging processing unit, 10, 20 ... optical distance measuring device, 21 ... threshold determination unit, 11 ... communication unit, 12 ... external device, 12A ... video projection device, 31 ... outgoing light, 32 ... reflected light, 33 ... installation Surface 34, projection lens 35, reflecting mirror 36 image screen 37 37 focus ring 41 start pulse 42 stop pulse 43 image projection unit 44 image control unit 45 light source for image projection , 46: Light control unit, 47: Projection lens, 48 ... Reflection mirror, 49 ... External device, 50 ... Finger, 51 ... Angle control signal, 71 ... Voltage comparison unit, 72 ... Continuous number counting unit, 73 ... Gate pulse generation 91, NOT gate, 92 ... lap count , 93 ... Intra-circumference counter part, 94 ... Multiplication part, 95 ... D-type flip-flop, 101 ... First reference object, 102 ... Second reference object part, 121 ... Entrance / exit, 122 ... Passerby, 131 ... Vehicle gate, 132 ... passing vehicle, 141 ... gate, 142 ... belt conveyor, 143 ... cargo, 151 ... three-dimensional model, 211 ... light reception signal, 212 ... gate pulse

Claims (8)

  1.  測定対象物への出射光信号と該測定対象物からの反射光を受光した受光信号の時間差に基づいて前記測定対象物との距離を測定する光測距装置であって、
     前記測定対象物への出射光を発する光源部と、
     前記測定対象物からの反射光を受光する受光部と、
     前記出射光の出射角度を制御する出射角度制御部と、
     前記時間差を測定する時間測定部と、
     前記受光部から第一の所定の距離および第一の所定の角度をなす第一の基準対象物、および第二の所定の距離および第二の所定の角度をなす第二の基準対象物と、
     前記光源部、前記出射角度変更部、および前記時間測定部を制御する制御部と、を有し、
    前記第一の基準対象物および前記第二の基準対象物は、前記第一の所定の距離と前記第二の所定の距離が異なることを特徴とする光測距装置。
    An optical distance measuring device that measures a distance from the measurement object based on a time difference between an output light signal to the measurement object and a light reception signal that receives reflected light from the measurement object,
    A light source unit for emitting light to the measurement object;
    A light receiving unit for receiving reflected light from the measurement object;
    An emission angle control unit for controlling the emission angle of the emitted light;
    A time measuring unit for measuring the time difference;
    A first reference object having a first predetermined distance and a first predetermined angle from the light receiving unit; and a second reference object having a second predetermined distance and a second predetermined angle;
    A control unit for controlling the light source unit, the emission angle changing unit, and the time measuring unit,
    The optical distance measuring device, wherein the first reference object and the second reference object are different from each other in the first predetermined distance and the second predetermined distance.
  2.  請求項1に記載の光測距装置であって、
     前記制御部は、前記光源部および前記出射角度変更部を制御して、前記第一の基準対象物および前記第二の基準対象物へ光を出射し、
     前記時間測定部は、前記第一の基準対象物に対する第一の時間差、および前記第二の基準対象物に対する第二の時間差を測定し、
     前記制御部は、前記第一の時間差および前記第二の時間差に所定の演算を行い、前記受光部の有する回路遅延時間、および前記時間測定部の有する測定分解能を算出すること、を特徴とする光測距装置。
    The optical distance measuring device according to claim 1,
    The control unit controls the light source unit and the emission angle changing unit to emit light to the first reference object and the second reference object,
    The time measurement unit measures a first time difference with respect to the first reference object and a second time difference with respect to the second reference object;
    The control unit performs a predetermined calculation on the first time difference and the second time difference to calculate a circuit delay time of the light receiving unit and a measurement resolution of the time measurement unit. Optical distance measuring device.
  3.  請求項2に記載の光測距装置であって、
     前記制御部は、前記回路遅延時間および前記測定分解能の算出結果に基づいて、前記測定対象物との距離を算出することを特徴とする光測距装置。
    The optical distance measuring device according to claim 2,
    The said control part calculates the distance with the said measurement object based on the calculation result of the said circuit delay time and the said measurement resolution, The optical ranging device characterized by the above-mentioned.
  4.  請求項3に記載の光測距装置であって、
     前記光測距装置は、
     前記出射光をパルス変調する出射光変調部と、
    前記反射光の受光信号をパルス化する受光パルス生成部と、を有し、
     前記時間測定部は、前記出射光変調部の出力する出射パルス信号と、前記受光パルス生成部が出力する受光パルス信号に基づいて前記時間差を測定することを特徴とする光測距装置。
    The optical distance measuring device according to claim 3,
    The optical distance measuring device is
    An outgoing light modulator for pulse-modulating the outgoing light;
    A light reception pulse generator for pulsing the light reception signal of the reflected light,
    The optical distance measuring device, wherein the time measurement unit measures the time difference based on an outgoing pulse signal output from the outgoing light modulation unit and a received light pulse signal output from the received light pulse generation unit.
  5.  請求項4に記載の光測距装置であって、
     前記光測距装置は、
     前記時間測定部が出力した複数の前記時間差の時間平均値を出力する時間平均化処理部を有し、
     前記制御部は、前記時間平均化処理部が出力する前記時間平均値に基づいて、前記測定対象物との距離を算出することを特徴とする光測距装置。
    The optical distance measuring device according to claim 4,
    The optical distance measuring device is
    A time averaging processing unit that outputs a plurality of time average values of the time differences output by the time measuring unit;
    The said control part calculates the distance with the said measurement object based on the said time average value which the said time averaging process part outputs, The optical ranging apparatus characterized by the above-mentioned.
  6.  請求項5に記載の光測距装置であって、
     前記制御部は、前記時間平均化処理部が出力する前記時間平均値に基づいて、前記回路遅延時間および前記測定分解能を算出することを特徴とする光測距装置。
    The optical distance measuring device according to claim 5,
    The optical distance measuring device, wherein the control unit calculates the circuit delay time and the measurement resolution based on the time average value output from the time averaging processing unit.
  7.  出射光信号と受光信号の時間差により距離を算出する光測距装置の光測距方法であって、
     前記光測距装置は前記受光信号を受光する受光部からの距離及び角度がともに異なる基準対象物を少なくとも2つ設けており、
     時間差を測定する時間測定部により複数の前記基準対象物に対する時間差を測定し、
     複数の前記時間差に所定の演算を行い前記受光部の有する回路遅延時間および前記時間測定部の有する測定分解能を算出し、
     前記回路遅延時間および前記測定分解能の算出結果に基づいて測定対象物との距離を算出することを特徴とする光測距方法。
    An optical distance measuring method of an optical distance measuring device for calculating a distance by a time difference between an emitted light signal and a received light signal,
    The optical distance measuring device includes at least two reference objects having different distances and angles from a light receiving unit that receives the light reception signal,
    Measure the time difference with respect to the plurality of reference objects by the time measurement unit that measures the time difference,
    A predetermined calculation is performed on the plurality of time differences to calculate a circuit delay time of the light receiving unit and a measurement resolution of the time measuring unit,
    An optical distance measuring method comprising: calculating a distance from a measurement object based on the calculation result of the circuit delay time and the measurement resolution.
  8.  映像投写部と光測距装置を備えた映像投写装置であって、
    前記映像投写部は、
    映像投写用光源と、該映像投写用光源の出射光を用いて外部機器から供給された映像信号に基づく光学的な映像を生成する光制御部と、外部機器から供給された映像信号に応じ前記映像投写用光源と前記光制御部に対して制御信号を出力する映像制御部と、前記光制御部の出力映像を拡大する投写レンズとを有し、
     前記光測距装置は、測定対象物への出射光を発する光源部と、該測定対象物からの反射光を受光する受光部と、前記出射光の出射角度を制御する出射角度制御部と、前記測定対象物への出射光信号と前記測定対象物からの反射光を受光した受光信号の時間差を測定する時間測定部と、前記受光部から第一の所定の距離および第一の所定の角度をなす第一の基準対象物および第二の所定の距離および第二の所定の角度をなす第二の基準対象物と、 前記光源部、前記出射角度変更部、および前記時間測定部を制御する制御部とを有し、前記第一の基準対象物および前記第二の基準対象物は、前記第一の所定の距離と前記第二の所定の距離が異なり、前記制御部で検出した前記測定対象物の位置情報を前記映像制御部に送信する通信部を有することを特徴とする映像投写装置。
    An image projection device comprising an image projection unit and an optical distance measuring device,
    The image projection unit is
    A light source for image projection, a light control unit for generating an optical image based on a video signal supplied from an external device using light emitted from the light source for video projection, and the video signal supplied from the external device according to the video signal An image projection light source, an image control unit that outputs a control signal to the light control unit, and a projection lens that expands an output image of the light control unit,
    The optical distance measuring device includes a light source unit that emits light emitted to a measurement object, a light receiving unit that receives reflected light from the measurement object, an emission angle control unit that controls an emission angle of the emission light, A time measuring unit for measuring a time difference between an outgoing light signal to the measuring object and a received light signal that receives reflected light from the measuring object; a first predetermined distance and a first predetermined angle from the light receiving unit; Controlling the first reference object forming the second reference object forming the second predetermined distance and the second predetermined angle, the light source unit, the emission angle changing unit, and the time measuring unit. The first reference object and the second reference object are different in the first predetermined distance and the second predetermined distance, and the measurement detected by the control unit. A communication unit that transmits position information of the object to the video control unit; An image projection device characterized by the above.
PCT/JP2015/079140 2015-10-15 2015-10-15 Optical ranging device, optical ranging method, and image projection apparatus provided therewith WO2017064787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079140 WO2017064787A1 (en) 2015-10-15 2015-10-15 Optical ranging device, optical ranging method, and image projection apparatus provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079140 WO2017064787A1 (en) 2015-10-15 2015-10-15 Optical ranging device, optical ranging method, and image projection apparatus provided therewith

Publications (1)

Publication Number Publication Date
WO2017064787A1 true WO2017064787A1 (en) 2017-04-20

Family

ID=58517551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079140 WO2017064787A1 (en) 2015-10-15 2015-10-15 Optical ranging device, optical ranging method, and image projection apparatus provided therewith

Country Status (1)

Country Link
WO (1) WO2017064787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112925424A (en) * 2019-12-05 2021-06-08 原相科技股份有限公司 Optical navigation device and optical navigation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289135A (en) * 1993-03-30 1994-10-18 Mitsubishi Electric Corp Distance measuring device
JP2009258569A (en) * 2008-04-21 2009-11-05 Ricoh Co Ltd Electronic device
JP2011095208A (en) * 2009-11-02 2011-05-12 Sony Corp Distance measuring device
JP2012008114A (en) * 2009-12-25 2012-01-12 Honda Motor Co Ltd Measurement apparatus, position determination system, measurement method, calibration method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289135A (en) * 1993-03-30 1994-10-18 Mitsubishi Electric Corp Distance measuring device
JP2009258569A (en) * 2008-04-21 2009-11-05 Ricoh Co Ltd Electronic device
JP2011095208A (en) * 2009-11-02 2011-05-12 Sony Corp Distance measuring device
JP2012008114A (en) * 2009-12-25 2012-01-12 Honda Motor Co Ltd Measurement apparatus, position determination system, measurement method, calibration method and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112925424A (en) * 2019-12-05 2021-06-08 原相科技股份有限公司 Optical navigation device and optical navigation method

Similar Documents

Publication Publication Date Title
US8408720B2 (en) Image display apparatus, image display method, and recording medium having image display program stored therein
KR102295887B1 (en) Projector using contactless control
JP5276943B2 (en) Display device
US8690337B2 (en) Device and method for displaying an image on a VUI screen and also a main projection screen
US10571568B2 (en) Distance measuring device, distance measuring method, and non-transitory computer-readable storage medium
US8872805B2 (en) Handwriting data generating system, handwriting data generating method, and computer program product
US10545237B2 (en) Method and device for acquiring distance information
CN111198382B (en) Time-of-flight distance measuring sensor and time-of-flight distance measuring method
TW202004217A (en) Time of flight range finder for a structured light system
US20150022733A1 (en) Touch module, projection system, and touch method of touch module
CN102650919A (en) Optical scanning type touch device and operation method thereof
WO2017060943A1 (en) Optical ranging device and image projection apparatus
WO2017064787A1 (en) Optical ranging device, optical ranging method, and image projection apparatus provided therewith
US11172180B2 (en) Control apparatus, control method and non-transitory computer-readable medium
WO2017212601A1 (en) Optical distance-measurement device and image projection device provided with same
US11314334B2 (en) Gesture recognition apparatus, control method thereof, and display apparatus
WO2022089075A1 (en) Image acquisition method, handle device, head-mounted device, and head-mounted system
JP6403002B2 (en) Projector system and projector system control method
JP2017183776A (en) Display device, and control method of display device
US20200183533A1 (en) Display apparatus, display system, and display method
JP2014202885A (en) Projector and electronic device with projector function
CN110471571B (en) Operation device, position detection system, and control method for operation device
WO2016199267A1 (en) Optical distance measurement device, control method therefor, and gesture detection device using same
JP2020053009A (en) Control device, control method, program, and storage medium
JP2021182112A (en) Display unit, control unit, and method for controlling display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP