WO2017212601A1 - Optical distance-measurement device and image projection device provided with same - Google Patents

Optical distance-measurement device and image projection device provided with same Download PDF

Info

Publication number
WO2017212601A1
WO2017212601A1 PCT/JP2016/067156 JP2016067156W WO2017212601A1 WO 2017212601 A1 WO2017212601 A1 WO 2017212601A1 JP 2016067156 W JP2016067156 W JP 2016067156W WO 2017212601 A1 WO2017212601 A1 WO 2017212601A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
distance measuring
measuring device
emitted
Prior art date
Application number
PCT/JP2016/067156
Other languages
French (fr)
Japanese (ja)
Inventor
政信 紫垣
将史 山本
瀬尾 欣穂
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2016/067156 priority Critical patent/WO2017212601A1/en
Publication of WO2017212601A1 publication Critical patent/WO2017212601A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to an optical distance measuring device that measures a distance from an object by measuring a round-trip time of light, and an image projection device including the same.
  • Patent Document 1 discloses that “in a surveying instrument having an optical system having a distance measuring means, among the optical members constituting the optical system, a gap between the optical members 10 and 20 disposed separately. Further, an elastic flexible light shielding member 22 for closing the gap is provided, and since the light shielding member blocks the light leakage 19 transmitted through the gap between the optical members, noise light inside the optical member is reduced. , The measurement accuracy is improved.
  • the target object when obtaining the position information of the target object, the target object may exist close to the installation surface of the optical distance measuring device.
  • the image projection apparatus when the image projection apparatus is controlled by measuring the position where a user's finger contacts the installation surface, the outgoing light scanning plane is as close as possible to the installation surface. And it must be parallel to the installation surface.
  • This type of usage is not considered in the apparatus of Patent Document 1, and the scanning surface of the emitted light is at a high position from the installation surface, and the position of the user's finger in contact with the installation surface is accurately measured. It becomes difficult.
  • An object of the present invention is to realize, in a simple configuration, an outgoing light scanning mechanism for obtaining position information of an object in an optical distance measuring device and a video projection device including the same. Furthermore, while suppressing the influence of noise light, it is measuring a target object with the height close
  • the present invention relates to an optical distance measuring device that measures a round-trip time of light to measure a distance from an object, and receives a reflected light from the object and a light emitting unit that emits emitted light to the object.
  • a light receiving unit that scans the light emitted from the light emitting unit in a different direction, a light shielding unit that optically separates the light path of the light emitting unit and the light path of the light receiving unit, and a light output from the light emitting unit.
  • a distance measuring unit that measures a distance from the object based on a time difference between a first time when the emitted light is emitted and a second time when the reflected light from the object is received; the light emitting unit; and the scanning And a control unit that controls the distance measuring unit and calculates the position information of the object from the emission direction of the emitted light by the scanning unit and the distance measured by the distance measuring unit.
  • the light emitting unit is disposed close to a device installation surface of the optical distance measuring device, and the scanning unit scans the emitted light substantially parallel to the device installation surface.
  • the present invention is an image projection device provided with an optical distance measuring device for measuring the distance to the object, the optical distance measuring device is disposed in the vicinity of the device installation surface of the optical distance measuring device, A light emitting unit that emits outgoing light to the object, a scanning unit that changes the emission direction of the outgoing light from the light emitting unit and scans substantially parallel to the device installation surface, and reflected light from the object.
  • a light receiving unit that receives light
  • a light shielding unit that optically separates an optical path of the light emitting unit and an optical path of the light receiving unit, a first time that outgoing light is emitted from the light emitting unit, and reflected light from the object.
  • the distance measuring unit that measures the distance to the object based on the time difference from the received second time, the light emitting unit, the scanning unit, and the distance measuring unit are controlled, and the output by the scanning unit is controlled.
  • the position information of the object is determined from the emission direction of the incident light and the distance measured by the distance measuring unit.
  • a control unit for calculating a The video projection device includes a video projection unit that projects and displays a video screen, and a video control unit that outputs a video signal and a control signal to the video projection unit.
  • the optical distance measuring device transmits the position information of the object calculated by the control unit to the image control unit via a communication unit, and the image control unit is configured to transmit the position information of the object based on the received position information of the object. Controls the projection operation of the image projection unit.
  • the position information of the object can be measured over a wide range with a simple scanning mechanism. Further, noise light is suppressed by the light shielding portion, and the measurement accuracy of the position information is improved. Furthermore, in the video projection device, the difference between the timing when the user's finger touches the installation surface and the finger position detection timing by the optical distance measuring device is reduced, and the operability for the user is improved.
  • the figure explaining the distance measurement principle of the optical ranging apparatus which concerns on this invention The figure explaining the distance measurement principle of the optical ranging apparatus which concerns on this invention.
  • the block diagram which shows an example of a structure of an optical ranging device.
  • the block diagram which shows the internal structure of a video projector.
  • 1 is a diagram illustrating an optical system configuration of an optical distance measuring device 10a according to a first embodiment.
  • FIG. FIG. 6 is a diagram illustrating an optical system configuration of an optical distance measuring device 10b according to a second embodiment.
  • FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10c according to a third embodiment.
  • FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10d according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10e according to a fifth embodiment.
  • FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10f according to a sixth embodiment.
  • FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10g according to a seventh embodiment.
  • FIGS. 1A and 1B are diagrams for explaining the principle of distance measurement of the optical distance measuring device according to the present invention.
  • the distance measuring principle of the optical distance measuring device is a so-called TOF (Time-Of-Flight) method in which the distance is calculated based on the time difference between the outgoing light signal and the received light signal.
  • TOF Time-Of-Flight
  • FIG. 1A is a diagram showing the relationship between the optical distance measuring device 10 and the object 3.
  • the optical distance measuring device 10 includes a light emitting unit 1 and a light receiving unit 2, and emits light 31 for distance measurement from the light emitting unit 1 to the object 3.
  • the light receiving unit 2 receives reflected light 32 of the light emitted to the object 3.
  • the object 3 exists at a position away from the light emitting unit 1 and the light receiving unit 2 by L [m].
  • FIG. 1B is a diagram showing the measurement of the time difference t.
  • the time difference t is measured from the timing of the light 31 emitted from the light emitting unit 1 and the timing at which the reflected light 32 is received by the light receiving unit 2, and the distance L from the object 3 is calculated from the equation (1).
  • FIG. 2 is a block diagram showing an example of the configuration of the optical distance measuring device. Both the optical distance measuring device 10 and the object 3 exist on the installation surface 9, and the optical distance measuring device 10 detects the distance information and angle information (azimuth information) of the object 3 on the installation surface 9 of the object 3. To two-dimensional position information. Then, the position information of the object 3 is transmitted to the external device 100 via the communication unit 8.
  • a light emitting unit 1 Inside the optical distance measuring device 10, a light emitting unit 1, a light receiving unit 2, a distance measuring unit 4, a scanning unit 5, a control unit 6, a light shielding unit 7, and a communication unit 8 are provided.
  • the outgoing light 31 emitted from the light emitting unit 1 is scanned by the scanning unit 5 while changing the outgoing direction.
  • the control unit 6 outputs a start pulse as a measurement start signal to the light emitting unit 1 and the distance measuring unit 4.
  • the light emitting unit 1 emits outgoing light 31 modulated in a pulse shape in synchronization with the start pulse.
  • the scanning unit 5 includes a mirror and a motor, and emits the emitted light 31 to the object 3 while changing the emission direction (scanning angle) based on the angle control signal from the control unit 6.
  • the light receiving unit 2 receives the reflected light 32 from the object 3, compares the received light signal with a reference voltage, pulsates, and outputs a stop pulse to the distance measuring unit 4.
  • the light-shielding unit 7 is installed between the light-emitting unit 1 and the light-receiving unit 2 and separates the outgoing light 31 and the reflected light 32 to suppress noise light.
  • the start pulse and stop pulse are input to the distance measuring unit 4.
  • the distance measuring unit 4 measures the rise time difference t between the start pulse and the stop pulse, and buffers and averages the measurement results of the time difference t for a predetermined number of times. Thereafter, the distance (ranging value) from the average value of the rise time difference t to the object 3 is measured, and the ranging value is output to the control unit 6.
  • the control unit 6 calculates two-dimensional position information on the installation surface 9 of the object 3 based on the angle control signal output to the scanning unit 5 and the distance measurement value input from the distance measurement unit 4.
  • the control unit 6 transmits the position information of the target object 3 to the external device 100 via the communication unit 8.
  • the communication unit 8 may be connected to the external device 100 via a USB or the like, or may be connected to a smartphone or a tablet wirelessly.
  • WiFi registered trademark
  • Bluetooth registered trademark
  • the communication unit 8 includes an IC having the function. The operation may be performed by connecting to an external recording medium such as a USB memory or an SD card with a built-in wireless function.
  • FIG. 3 is a side view of an image projection apparatus equipped with an optical distance measuring device.
  • the image projection apparatus 101 is installed on the installation surface 9 (for example, a desk), and is a system that projects the image screen 40 onto the installation surface 9.
  • the installation surface 9 is an XZ plane
  • the horizontal direction of the video screen 40 displayed from the video projector 101 is the X direction (the vertical direction to the paper surface)
  • the vertical direction of the video screen 40 is the Z direction.
  • a direction (lateral direction on the paper surface) and a direction perpendicular to the installation surface 9 are defined as a Y direction (vertical direction on the paper surface).
  • the image light generated inside the image projection apparatus 101 is magnified by the projection lens 45, then reflected by the reflection mirror 46 and projected onto the installation surface 9 to display the image screen 40.
  • the focus ring 47 adjusts the focus of the projected image.
  • the reflection mirror 46 is configured to be foldable, and is stored so that the reflection surface faces the image projection device 101 when the image projection device 101 is not used.
  • the optical distance measuring device 10 is built in the lower part of the image projecting device 101, emits outgoing light 31 substantially parallel to the installation surface 9 (height y0), and is used for the object existing on the installation surface 9 (image screen 40).
  • the position (XZ coordinate) is measured. For example, by measuring the position of the user's finger 30 who operates the image projection apparatus 101 as an object, the user's operation input to the image projection apparatus 101 can be detected.
  • FIG. 4 is a plan view for explaining detection of a user's finger operation by the optical distance measuring device 10 built in the image projection device 101.
  • FIG. A video screen 40 is projected from the video projection device 101 onto the installation surface 9, and the user performs an operation with the finger 30 on the video screen 40.
  • the optical distance measuring device 10 scans the emitted light 31 from the light emitting unit 1 by the scanning unit 5 substantially parallel to the screen 40.
  • the emitted light 31 is reflected by the user's finger 30, and the reflected light 32 is detected by the light receiving unit 2.
  • the control unit 6 calculates position information (XZ coordinates) of the finger 30 from the scanning angle ⁇ by the scanning unit 5 when the reflected light 32 is detected and the distance measurement value L measured by the distance measuring unit 4.
  • the optical distance measuring device 10 can detect not only the position information of the finger 30 but also the movement of the finger 30, that is, the time change of the finger position.
  • the video projector 101 can also determine various operations on the video screen 40 from finger movement information. For example, it is possible to detect operations similar to those of a smartphone and a tablet, such as tap, flick, swipe, pinch-in, and pinch-out. Since these operations are determined to be effective when the finger 30 touches the video screen 40, the height y0 of the emitted light 31 from the installation surface 9 is desirably as small as possible according to the size of the fingertip. .
  • FIG. 5 is a block diagram showing an internal configuration of the image projection apparatus 101, and an operation for controlling an image to be projected through communication with the optical distance measuring apparatus 10 will be described. Note that the configuration of the optical distance measuring device 10 other than the communication unit 8 is omitted.
  • the video projection device 101 includes a video projection unit 41 and a video control unit 42 that controls the video projection unit 41, and the video control unit 42 communicates with the communication unit 8 of the optical distance measuring device 10.
  • the image projection unit 41 includes a projection light source 43, an image generation unit 44, a projection lens 45, and a reflection mirror 46.
  • the video control unit 42 outputs a video signal and a control signal to the projection light source 43 and the video generation unit 44 based on a video signal supplied from an external device 49 such as a PC (personal computer) serving as a video source.
  • the projection light source 43 is a halogen lamp, an LED (Light-Emitting-Diode), a laser, or the like, and adjusts the amount of light according to a control signal input from the video control unit 42.
  • the projection light source 43 includes three colors of R (red), G (green), and B (blue), the light amount may be controlled independently according to the video signal.
  • the video generation unit 44 includes an imager (for example, a display device such as a liquid crystal panel) and optical components such as a mirror, a lens, and a prism, and video supplied from an external device 49 using light emitted from the projection light source 43. An optical image based on the signal is generated.
  • an imager for example, a display device such as a liquid crystal panel
  • optical components such as a mirror, a lens, and a prism
  • the projection lens 45 enlarges the image output from the image generation unit 44, and the reflection mirror 46 reflects the light emitted from the projection lens 45, and the image screen 40 is displayed on the installation surface 9 as shown in FIGS. Project.
  • the reflection mirror 46 uses, for example, an aspherical mirror, and when projecting an image screen of the same size, the projection distance can be shortened compared to a general image projection apparatus. Although the configuration using the reflection mirror 46 has been described here, other optical systems may be used as long as image projection can be realized.
  • the external device 49 is a device that supplies a video signal to the video projection device 101, but a general information processing device such as a PC or a mobile terminal device such as a smartphone can be used.
  • the external device 49 is not limited to a PC and a portable terminal device, and may be a device that supplies a video signal to the video projection device 101 such as a card-like storage medium inserted into a card interface provided in the video projection device 101. That's fine.
  • the optical distance measuring device 10 transmits the position information and movement information of the measurement object 3 (for example, the user's finger 30) from the communication unit 8 to the video control unit 42.
  • the video control unit 42 analyzes the input position information and motion information, and controls the external device 49 and the video projection unit 41.
  • the control of the external device 49 performs page switching, enlargement / reduction, movement, character input, and the like
  • the control of the image projection unit 41 includes power ON / OFF switching, light amount adjustment, color adjustment, enlargement / reduction, movement, and the like.
  • the output of position information and motion information may be performed by communication such as UART (Universal Asynchronous Receiver Receiver Transmitter), SPI (Serial Peripheral Interface), and I2C (Inter-Integrated Circuit).
  • the image projection device 101 includes the optical distance measuring device 10
  • the present invention can be similarly applied to a case where the image projection device 101 is configured as a separate body.
  • the optical distance measuring device 10 may be installed on a wall that is a projection surface.
  • the communication between the image projection apparatus 101 and the optical distance measuring apparatus 10 may be a wired system using USB or the like, or a wireless system using WiFi or Bluetooth.
  • the data output by the communication unit 8 is output by HID (Human Interface Device)
  • the image projection device 101 virtually recognizes the optical distance measuring device 10 as a keyboard or a mouse. There is an advantage that it is not necessary to provide processing software.
  • FIG. 6A is a diagram illustrating an optical system configuration of the optical distance measuring device 10a according to the first embodiment.
  • the optical distance measuring device 10a is installed on the installation surface 9 (XZ plane), the light emitting unit 1 and the light receiving unit 2 are arranged on the upper surface side (above the Y axis), and the scanning unit 5 is arranged on the installation surface side (below the Y axis). Is arranged.
  • a housing portion on the installation surface side of the optical distance measuring device 10a is referred to as an apparatus installation surface 9a.
  • the light emitting unit 1 includes a laser 11, a collimating lens 12, and a laser driver for driving the laser 11, and generates emitted light 31 (solid line) in the Y-axis direction.
  • the light receiving unit 2 includes a parabolic mirror 21 and a photodetector 22.
  • the parabolic mirror 21 has a hole 211 that allows the outgoing light 31 to pass therethrough and a reflective curved surface 212 for condensing the reflected light 32 (broken line).
  • the photodetector 22 is disposed at the focal position of the reflective curved surface 212.
  • FIG. 6B is a three-dimensional view showing the shape of the parabolic mirror 21.
  • the reflective curved surface 212 has a parabolic shape for reflecting the reflected light 32 efficiently.
  • the scanning unit 5 is composed of a rotating mirror 51 having a reflecting surface with an inclination angle of 45 ° and a motor 52 that rotates the rotating mirror 51, and rotates on a rotating shaft parallel to the Y axis.
  • the outgoing light 31 is reflected in the horizontal direction by the rotating mirror 51, and the motor 52 changes the angle of the rotating mirror 51 in accordance with the angle control signal of the control unit 6, thereby changing the outgoing light 31 to the installation surface 9 (device installation surface 9 a).
  • the position of the laser 11 is set so that the optical axis of the outgoing light 31 incident on the rotary mirror 51 and the rotational axis of the motor 52 coincide.
  • the emitted light 31 emitted from the laser 11 passes through the collimating lens 12 and the hole 211, is reflected by the rotating mirror 51, and reaches the target 3.
  • the object 3 diffuses the outgoing light 31 to generate reflected light 32, and a part of the target 3 reaches the rotating mirror 51 through the same path as the outgoing light 31.
  • the reflected light 32 is reflected in the direction of the parabolic mirror 21 by the rotating mirror 51 and is condensed on the photodetector 22 by the reflection curved surface 212.
  • the reflecting surface of the rotating mirror 51 and the reflecting curved surface 212 of the parabolic mirror 21 have substantially the same facing area.
  • a distance measuring unit 4, a control unit 6, and a communication unit 8 are mounted on the substrate 61, and these are configured by an electronic circuit including a processor and an amplifier.
  • the scanning mechanism is compared with the method of rotating the entire apparatus or the entire optical system as described in Patent Document 1.
  • the distance to the object can be measured over a wide range.
  • the light receiving unit 2 employs the parabolic mirror 21 having the parabolic reflection curved surface 212, the reflected light 32 is efficiently collected on the photodetector 22. Therefore, there is an effect of improving the light receiving efficiency in the light receiving unit 2.
  • the optical system configuration shown in FIG. 6A is a coaxial optical system configuration in which the emitted light 31 and the reflected light 32 pass through the same path.
  • noise light of the problem (1) will be described.
  • minute dust such as dust adhering to the end of the hole 211 and the rotating mirror 51 becomes a scattering source, and a part of the emitted light 31 does not pass through the object 3 and the photodetector 22.
  • Incident light becomes noise light.
  • these noise lights are detected by the photodetector 22 before the reflected light 32 to be originally detected because the optical path length is shorter than the reflected light 32 that has passed through the object 3.
  • the distance measurement accuracy and the maximum distance that can be measured by the optical distance measuring device 10a are limited.
  • the height y0 from the installation surface 9 (device installation surface 9a) of the scanning surface of the emitted light 31 in the problem (2) increases and the detection position of the object 3 increases.
  • the emitted light 31 emitted from the upper part of the apparatus is reflected in the middle of the rotating mirror 51 and travels toward the object 3. Therefore, the height of the scanning surface of the emitted light 31 depends on the height of the inclined surface of the rotating mirror 51.
  • the rotating mirror 51 also has a function of condensing the reflected light 32 diffused by the object 3 and thus cannot be reduced, and the height y0 of the outgoing light 31 from the installation surface 9 is increased.
  • the timing at which the optical distance measuring device 10a detects the user's finger position is determined by the user on the video screen 40 (that is, the installation surface 9). It is desirable to be as close as possible to the timing when touched. This is because if the scanning surface is at a higher position than the video screen 40, the user's finger is detected before the user's finger touches the video screen 40, resulting in malfunctions and the user's operability is reduced. Because it does. Therefore, it is desirable that the height of the scanning surface of the emitted light 31 is as close as possible to the height of the video screen 40 (installation surface 9).
  • Example 2 describes a configuration that simultaneously solves the problems of noise light generation and scanning surface height in the configuration of FIG. 6A.
  • FIG. 7A is a diagram illustrating an optical system configuration of the optical distance measuring device 10b according to the second embodiment.
  • constituent elements having the same functions as those in FIG. 6A are denoted by the same reference numerals, and description thereof is omitted.
  • the light emitting unit 1 (laser 11) is arranged close to the device installation surface 9a at the lower part of the device, and the emitted light 31 is emitted at a height close to the installation surface 9. .
  • a lower rotating mirror 512 that reflects the emitted light 31 is added as the rotating mirror 51 so that the emitted light 31 and the reflected light 32 pass through different optical paths. I made it.
  • a light blocking unit 7 that optically separates the light path of the light emitting unit 1 and the light path of the light receiving unit 2 is provided.
  • a black plastic material is used for the light shielding portion 7, but a black-painted metal material may be used.
  • FIG. 7B is a three-dimensional view showing the shape of the rotating mirror 51.
  • an upper rotating mirror 511 that reflects the reflected light 32 and a lower rotating mirror 512 that reflects the emitted light 31 are integrally formed in the vertical direction, and are rotated together by a motor 52 provided in the upper part of the apparatus. Since the lower rotating mirror 512 only reflects the emitted light 31 from the light emitting unit 1, the reflecting surface can be made smaller than the upper rotating mirror 511, and the scanning surface of the emitted light 31 can be easily brought closer to the installation surface 9. It becomes.
  • the direction of the reflecting surface of the upper rotating mirror 511 and the direction of the reflecting surface of the lower rotating mirror 512 are integrated so as to have the same scanning angle.
  • the reflecting surfaces of the upper rotating mirror 511 and the lower rotating mirror 512 are provided on both sides, but only one side may be provided.
  • the laser 11 which is the light emitting unit 1 is attached to the apparatus installation surface 9 a via the substrate 62.
  • the emitted light 31 emitted from the laser 11 passes through the collimating lens 12 and the fixed mirror 13, is reflected by the lower rotating mirror 512, and reaches the object 3.
  • the object 3 diffuses the outgoing light 31 to generate reflected light 32, and most of it reaches the upper rotating mirror 511 through a different path from the outgoing light 31.
  • the reflected light 32 is reflected in the direction of the parabolic mirror 21 by the reflecting surface of the upper rotating mirror 511, and is condensed on the photodetector 22 by the reflecting curved surface 212.
  • the parabolic mirror 21 has a parabolic reflection curved surface 212 as in FIG. 6B, and improves the light receiving efficiency.
  • the outgoing light 31 and the reflected light 32 pass through different optical paths, and the light blocking unit 7 is provided, so that a part of the outgoing light 31 does not pass through the object 3 and is a photodetector.
  • the noise light incident on 22 can be blocked.
  • the rotating mirror 51 the upper rotating mirror 511 and the lower rotating mirror 512
  • the ranging accuracy and the maximum distance measurement possible distance of the optical ranging device 10b are improved.
  • the light emitting unit 1 is arranged close to the device installation surface 9a, there is an advantage that the height y0 of the emitted light 31 from the installation surface 9 can be reduced.
  • the detection height of the object 3 can be brought close to the installation surface 9 (video screen 40). Therefore, the timing at which the optical distance measuring device 10b detects the user's finger approaches the timing at which the user touches the installation surface 9 (video screen 40), and the operability for the user is improved.
  • FIG. 8 is a diagram illustrating an optical system configuration of the optical distance measuring device 10c according to the third embodiment.
  • the optical distance measuring device 10c is different from the second embodiment (FIG. 7A) in that the light shielding unit 7 is integrated with the upper rotating mirror 511 and the lower rotating mirror 512.
  • Other configurations are the same as those in FIG.
  • the mass of the rotating mirrors 511 and 512 is increased, and the rotation speed of the mirrors, that is, the scanning speed of the emitted light 31 is stabilized. is there. Further, since the assembly is easier than the optical distance measuring device 10b of FIG. 7A, there is an advantage that the number of assembling steps can be reduced.
  • FIG. 9 is a diagram illustrating an optical system configuration of the optical distance measuring device 10d according to the fourth embodiment.
  • the optical distance measuring device 10d is different from the second embodiment (FIG. 7A) in that the back surface of the photodetector 22 of the light receiving unit 2 is integrated so as to be shielded by the light blocking unit 7.
  • Other configurations are the same as those in FIG.
  • the optical path of the noise light can be easily blocked and only the reflected light reflected by the upper rotating mirror 511 can be received. It becomes possible.
  • FIG. 10 is a diagram illustrating an optical system configuration of the optical distance measuring device 10e according to the fifth embodiment.
  • the difference from the third embodiment is that the inside of the upper rotary mirror 511 excluding the reflection surface also serves as the light shielding unit 7.
  • the Z direction position of all the parts (laser 11, the collimating lens 12, and the fixed mirror 13) which comprise the light emission part 1 is made to approach, and those occupation areas are made smaller than the occupation area of the upper rotation mirror 511.
  • Other configurations are the same as those in FIG.
  • the light emitting unit 1 is covered by the light shielding unit 7 in the upper rotating mirror 511, it is possible to prevent the emitted light 31 from wrapping around the light receiving side.
  • FIG. 11 is a diagram illustrating an optical system configuration of the optical distance measuring device 10f according to the sixth embodiment.
  • the optical distance measuring device 10f differs from the fifth embodiment (FIG. 10) in that a rotating prism 513 is disposed below the upper rotating mirror 511 in place of the lower rotating mirror. Further, the fixed mirror 13 in FIG. 10 is unnecessary.
  • Other configurations are the same as those in FIG.
  • the rotating prism 513 transmits the direction of the emitted light 31 in a predetermined direction, and rotates with the upper rotating mirror 511 to scan the emitted light 31.
  • the fixed mirror 13 in FIG. 10 is not required, so that the height y0 of the outgoing light 31 from the installation surface 9 can be further reduced.
  • the timing at which the optical distance measuring device 10f detects the user's finger comes closer to the timing at which the user touches the installation surface 9 (video screen 40), so that the user's operability is further improved.
  • FIG. 12 is a diagram illustrating an optical system configuration of the optical distance measuring device 10g according to the seventh embodiment.
  • the optical distance measuring device 10g is different from the above-described FIG. 7A to FIG. 11 in that a rotating mirror 51a for scanning outgoing light and a rotating mirror 51b for receiving reflected light are separately arranged and each has a different motor.
  • the configuration is such that it is driven by 52a and motor 52b.
  • the outgoing light 31 emitted from the laser 11 passes through the collimating lens 12 and then enters the rotating mirror 51a.
  • the scanning angle of the rotating mirror 51a is changed by the motor 52a, and the emitted light 31 is irradiated onto the object 3.
  • the reflected light 32 from the object 3 enters the rotating mirror 51 b, passes through the condenser lens 23, and then enters the photodetector 22.
  • the angle of the rotating mirror 51b is changed by the motor 52b.
  • the motor 52a and the motor 52b rotate in synchronization so that the mirror angles of the rotary mirrors 51a and 51b are equal.
  • the emission optical system and the light receiving optical system are arranged with a light shielding part 7 therebetween, and the light shielding part 7 prevents noise light from entering the light receiving optical system. If this configuration is used, it is possible to reduce the influence of noise light incident on the light receiving optical system without passing through the object 3.
  • a configuration in which two rotating mirrors are scanned by two motors is shown, but two rotating mirrors may be driven using one motor and gears.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of each embodiment.
  • each of the above-described configurations may be configured such that a part or all of the configuration is configured by hardware, or is realized by executing a program by a processor.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it can be considered that almost all the components are connected to each other.

Abstract

This optical-distance measurement device (10b) is provided with a light emission unit (11) for emitting emission light (31) onto an object (3), a light reception unit (22) for receiving reflected light (32) from the object (3), a scanning unit (512) for scanning by changing the emission direction of the emission light (31), a light blocking part (7) for optically separating the optical paths of the light emission unit (11) and light reception unit (22), and a distance measurement unit for measuring the distance from the object (3) on the basis of the time difference between the emission light (31) and reflection light (32). The light emission unit (11) is disposed so as to be adjacent to the device placement surface (9a) of the optical-distance measurement device (10b), and the scanning unit (512) causes the emission light (31) to scan roughly parallel to the device placement surface (9a). As a result of this configuration, a scanning mechanism for the emission light (31) can be achieved through a simple configuration. Further, the light blocking part (7) suppresses the influence of noise light, and it is possible to carry out measurement on the object (3) at a height close to the placement surface of the optical-distance measurement device (10b).

Description

光測距装置、及びこれを備えた映像投写装置Optical distance measuring device and video projection device provided with the same
 本発明は、光の往復時間を測定して対象物との距離を測定する光測距装置、及びこれを備えた映像投写装置に関する。 The present invention relates to an optical distance measuring device that measures a distance from an object by measuring a round-trip time of light, and an image projection device including the same.
 対象物へ光を出射し、反射光を受光する間の往復時間を測定して対象物との距離を測定する光測距装置が知られる。この測定方式では、受光部に入射する光に対象物からの反射光以外のノイズ光が含まれると、測定精度を悪化させる要因となる。その対策として、光源と受光部の間に遮光部材を設けてノイズ光を遮光する方法が提案されている。例えば特許文献1には、「測距手段を有する光学系を具備する測量装置に於いて、前記光学系を構成する光学部材の内、分離して配設される光学部材10,20間の間隙に、該間隙を閉塞する弾性可撓性の遮光部材22を設けたものであり、該遮光部材が光学部材間の間隙を透過する漏光19を遮断するので光学部材内部でのノイズ光が低減し、測定精度が向上する。」と記載されている。 There is known an optical distance measuring device that measures the distance between an object by emitting light to the object and measuring the round-trip time between receiving the reflected light. In this measurement method, if noise light other than the reflected light from the object is included in the light incident on the light receiving unit, it becomes a factor that deteriorates the measurement accuracy. As a countermeasure, a method for shielding noise light by providing a light shielding member between the light source and the light receiving unit has been proposed. For example, Patent Document 1 discloses that “in a surveying instrument having an optical system having a distance measuring means, among the optical members constituting the optical system, a gap between the optical members 10 and 20 disposed separately. Further, an elastic flexible light shielding member 22 for closing the gap is provided, and since the light shielding member blocks the light leakage 19 transmitted through the gap between the optical members, noise light inside the optical member is reduced. , The measurement accuracy is improved. "
特開2000-97700号公報JP 2000-97700 A
 光測距装置を用いて対象物の位置情報を求めるには、出射光の方向を変えながら反射光を受光することで、対象物までの距離と方向を同時に測定することができる。そのため、出射光を走査する手段が必要になるが、特許文献1に記載の構成では、装置全体または光学系全体を回転させる必要がある。装置全体を回転させる構成では回転機構が大型化しかつ複雑になる課題がある。 In order to obtain the position information of the object using the optical distance measuring device, the distance and direction to the object can be measured simultaneously by receiving the reflected light while changing the direction of the emitted light. Therefore, a means for scanning the emitted light is required. However, in the configuration described in Patent Document 1, it is necessary to rotate the entire apparatus or the entire optical system. In the configuration in which the entire apparatus is rotated, there is a problem that the rotation mechanism becomes large and complicated.
 また、対象物の位置情報を求める際、対象物が光測距装置の設置面に近接して存在する場合がある。例えば、光測距装置を備えた映像投写装置において、ユーザの指が設置面に接触した位置を測定して映像投写装置を制御する場合には、出射光の走査面は設置面にできるだけ近接しかつ設置面に平行にする必要がある。このような使用形態に関しては特許文献1の装置では考慮されておらず、出射光の走査面は設置面から高い位置になり、設置面に接触したユーザの指の位置を精度良く測定するのは困難となる。 Also, when obtaining the position information of the target object, the target object may exist close to the installation surface of the optical distance measuring device. For example, in an image projection apparatus equipped with an optical distance measuring device, when the image projection apparatus is controlled by measuring the position where a user's finger contacts the installation surface, the outgoing light scanning plane is as close as possible to the installation surface. And it must be parallel to the installation surface. This type of usage is not considered in the apparatus of Patent Document 1, and the scanning surface of the emitted light is at a high position from the installation surface, and the position of the user's finger in contact with the installation surface is accurately measured. It becomes difficult.
 本発明の目的は、光測距装置およびこれを備えた映像投射装置において、対象物の位置情報を求めるための出射光の走査機構を簡単な構成で実現することである。さらには、ノイズ光の影響を抑えるとともに、光測距装置の設置面に近い高さで対象物を測定することである。 An object of the present invention is to realize, in a simple configuration, an outgoing light scanning mechanism for obtaining position information of an object in an optical distance measuring device and a video projection device including the same. Furthermore, while suppressing the influence of noise light, it is measuring a target object with the height close | similar to the installation surface of an optical ranging device.
 本発明は、光の往復時間を測定して対象物との距離を測定する光測距装置であって、前記対象物に対し出射光を発する発光部と、前記対象物からの反射光を受光する受光部と、前記発光部からの出射光を出射方向を変えて走査する走査部と、前記発光部の光路と前記受光部の光路を光学的に分離する遮光部と、前記発光部から出射光を出射した第1の時間と、前記対象物からの反射光を受光した第2の時間との時間差に基づいて前記対象物との距離を測定する測距部と、前記発光部、前記走査部、および前記測距部を制御するとともに、前記走査部による前記出射光の出射方向と、前記測距部が測定した距離から前記対象物の位置情報を算出する制御部と、を備える。前記発光部は、前記光測距装置の装置設置面に近接して配置され、前記走査部は、前記装置設置面に対し略平行に前記出射光を走査する。 The present invention relates to an optical distance measuring device that measures a round-trip time of light to measure a distance from an object, and receives a reflected light from the object and a light emitting unit that emits emitted light to the object. A light receiving unit that scans the light emitted from the light emitting unit in a different direction, a light shielding unit that optically separates the light path of the light emitting unit and the light path of the light receiving unit, and a light output from the light emitting unit. A distance measuring unit that measures a distance from the object based on a time difference between a first time when the emitted light is emitted and a second time when the reflected light from the object is received; the light emitting unit; and the scanning And a control unit that controls the distance measuring unit and calculates the position information of the object from the emission direction of the emitted light by the scanning unit and the distance measured by the distance measuring unit. The light emitting unit is disposed close to a device installation surface of the optical distance measuring device, and the scanning unit scans the emitted light substantially parallel to the device installation surface.
 また本発明は、対象物との距離を測定する光測距装置を備えた映像投写装置であって、前記光測距装置は、前記光測距装置の装置設置面に近接して配置され、前記対象物に対し出射光を発する発光部と、前記発光部からの出射光の出射方向を変えて、前記装置設置面に対し略平行に走査する走査部と、前記対象物からの反射光を受光する受光部と、前記発光部の光路と前記受光部の光路を光学的に分離する遮光部と、前記発光部から出射光を出射した第1の時間と、前記対象物からの反射光を受光した第2の時間との時間差に基づいて前記対象物との距離を測定する測距部と、前記発光部、前記走査部、および前記測距部を制御するとともに、前記走査部による前記出射光の出射方向と、前記測距部が測定した距離から前記対象物の位置情報を算出する制御部と、を備える。前記映像投写装置は、映像画面を投写して表示する映像投写部と、前記映像投写部に対して映像信号と制御信号を出力する映像制御部と、を備える。前記光測距装置は、前記制御部により算出した前記対象物の位置情報を通信部を介して前記映像制御部に送信し、前記映像制御部は、受信した前記対象物の位置情報に基づき前記映像投写部の投写動作を制御する。 Further, the present invention is an image projection device provided with an optical distance measuring device for measuring the distance to the object, the optical distance measuring device is disposed in the vicinity of the device installation surface of the optical distance measuring device, A light emitting unit that emits outgoing light to the object, a scanning unit that changes the emission direction of the outgoing light from the light emitting unit and scans substantially parallel to the device installation surface, and reflected light from the object. A light receiving unit that receives light, a light shielding unit that optically separates an optical path of the light emitting unit and an optical path of the light receiving unit, a first time that outgoing light is emitted from the light emitting unit, and reflected light from the object. The distance measuring unit that measures the distance to the object based on the time difference from the received second time, the light emitting unit, the scanning unit, and the distance measuring unit are controlled, and the output by the scanning unit is controlled. The position information of the object is determined from the emission direction of the incident light and the distance measured by the distance measuring unit. And a control unit for calculating a. The video projection device includes a video projection unit that projects and displays a video screen, and a video control unit that outputs a video signal and a control signal to the video projection unit. The optical distance measuring device transmits the position information of the object calculated by the control unit to the image control unit via a communication unit, and the image control unit is configured to transmit the position information of the object based on the received position information of the object. Controls the projection operation of the image projection unit.
 本発明によれば、光測距装置において、簡単な走査機構で対象物の位置情報を広範囲に測定することができる。また、遮光部によりノイズ光が抑制され、位置情報の測定精度が向上する。さらには、映像投写装置において、ユーザの指が設置面に触れたタイミングと光測距装置による指位置検出タイミングのずれが小さくなり、ユーザの操作性が向上する。 According to the present invention, in the optical distance measuring device, the position information of the object can be measured over a wide range with a simple scanning mechanism. Further, noise light is suppressed by the light shielding portion, and the measurement accuracy of the position information is improved. Furthermore, in the video projection device, the difference between the timing when the user's finger touches the installation surface and the finger position detection timing by the optical distance measuring device is reduced, and the operability for the user is improved.
本発明に係る光測距装置の距離測定原理を説明する図。The figure explaining the distance measurement principle of the optical ranging apparatus which concerns on this invention. 本発明に係る光測距装置の距離測定原理を説明する図。The figure explaining the distance measurement principle of the optical ranging apparatus which concerns on this invention. 光測距装置の構成の一例を示すブロック図。The block diagram which shows an example of a structure of an optical ranging device. 光測距装置を備えた映像投写装置の側面図。The side view of the image projection apparatus provided with the optical ranging device. 光測距装置によるユーザの指操作の検出を説明する平面図。The top view explaining the detection of a user's finger operation by an optical ranging device. 映像投写装置の内部構成を示すブロック図。The block diagram which shows the internal structure of a video projector. 実施例1に係る光測距装置10aの光学系構成を示す図。1 is a diagram illustrating an optical system configuration of an optical distance measuring device 10a according to a first embodiment. パラボラミラー21の形状を示す立体図。A three-dimensional view showing the shape of the parabolic mirror 21. FIG. 実施例2に係る光測距装置10bの光学系構成を示す図。FIG. 6 is a diagram illustrating an optical system configuration of an optical distance measuring device 10b according to a second embodiment. 回転ミラー51の形状を示す立体図。3 is a three-dimensional view showing the shape of a rotating mirror 51. 実施例3に係る光測距装置10cの光学系構成を示す図。FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10c according to a third embodiment. 実施例4に係る光測距装置10dの光学系構成を示す図。FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10d according to a fourth embodiment. 実施例5に係る光測距装置10eの光学系構成を示す図。FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10e according to a fifth embodiment. 実施例6に係る光測距装置10fの光学系構成を示す図。FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10f according to a sixth embodiment. 実施例7に係る光測距装置10gの光学系構成を示す図。FIG. 10 is a diagram illustrating an optical system configuration of an optical distance measuring device 10g according to a seventh embodiment.
 以下、本発明の実施例について図面を用いて説明する。まず、光測距装置の基本構成について説明する。
  図1Aと図1Bは、本発明に係る光測距装置の距離測定原理を説明する図である。光測距装置の距離測定原理は、出射光信号と受光信号の時間差により距離を算出する、いわゆるTOF(Time-Of-Flight)法である。
Embodiments of the present invention will be described below with reference to the drawings. First, the basic configuration of the optical distance measuring device will be described.
1A and 1B are diagrams for explaining the principle of distance measurement of the optical distance measuring device according to the present invention. The distance measuring principle of the optical distance measuring device is a so-called TOF (Time-Of-Flight) method in which the distance is calculated based on the time difference between the outgoing light signal and the received light signal.
 図1Aは光測距装置10と対象物3の関係を示す図である。光測距装置10は発光部1と受光部2を有し、発光部1から対象物3へ距離測定用の光31を出射する。受光部2は、対象物3に出射された光の反射光32を受光する。対象物3は、発光部1および受光部2からL[m]離れた位置に存在する。ここで、光速をc[m/s]として、発光部1が光出射を開始してから受光部2が反射光を受光するまでの時間差をt[s]とすると、対象物3までの距離L[m]は、
      L[m]=c[m/s]×t[s]/2・・・(1)
で求められる。
FIG. 1A is a diagram showing the relationship between the optical distance measuring device 10 and the object 3. The optical distance measuring device 10 includes a light emitting unit 1 and a light receiving unit 2, and emits light 31 for distance measurement from the light emitting unit 1 to the object 3. The light receiving unit 2 receives reflected light 32 of the light emitted to the object 3. The object 3 exists at a position away from the light emitting unit 1 and the light receiving unit 2 by L [m]. Here, if the speed of light is c [m / s], and the time difference from when the light emitting unit 1 starts emitting light to when the light receiving unit 2 receives reflected light is t [s], the distance to the object 3 L [m] is
L [m] = c [m / s] × t [s] / 2 (1)
Is required.
 図1Bは時間差tの測定を示す図である。発光部1から出射した光31のタイミングと、受光部2で反射光32を受光したタイミングから、その時間差tを測定し、式(1)から対象物3との距離Lを算出する。 FIG. 1B is a diagram showing the measurement of the time difference t. The time difference t is measured from the timing of the light 31 emitted from the light emitting unit 1 and the timing at which the reflected light 32 is received by the light receiving unit 2, and the distance L from the object 3 is calculated from the equation (1).
 図2は、光測距装置の構成の一例を示すブロック図である。光測距装置10と対象物3はともに設置面9上に存在し、光測距装置10は、測定した対象物3の距離情報および角度情報(方位情報)から対象物3の設置面9上の2次元位置情報へ変換する。そして、対象物3の位置情報は、通信部8を介して外部装置100へ送信する。 FIG. 2 is a block diagram showing an example of the configuration of the optical distance measuring device. Both the optical distance measuring device 10 and the object 3 exist on the installation surface 9, and the optical distance measuring device 10 detects the distance information and angle information (azimuth information) of the object 3 on the installation surface 9 of the object 3. To two-dimensional position information. Then, the position information of the object 3 is transmitted to the external device 100 via the communication unit 8.
 光測距装置10の内部には、発光部1、受光部2、測距部4、走査部5、制御部6、遮光部7、通信部8を備えている。発光部1から出射する出射光31は、走査部5により出射方向を変えて走査される。 Inside the optical distance measuring device 10, a light emitting unit 1, a light receiving unit 2, a distance measuring unit 4, a scanning unit 5, a control unit 6, a light shielding unit 7, and a communication unit 8 are provided. The outgoing light 31 emitted from the light emitting unit 1 is scanned by the scanning unit 5 while changing the outgoing direction.
 制御部6は、発光部1および測距部4に対し、測定開始信号であるスタートパルスを出力する。発光部1は、スタートパルスに同期してパルス状に変調された出射光31を出射する。走査部5はミラーとモータなどで構成されており、制御部6からの角度制御信号に基づいて出射方向(走査角度)を変えながら、出射光31を対象物3へ出射する。 The control unit 6 outputs a start pulse as a measurement start signal to the light emitting unit 1 and the distance measuring unit 4. The light emitting unit 1 emits outgoing light 31 modulated in a pulse shape in synchronization with the start pulse. The scanning unit 5 includes a mirror and a motor, and emits the emitted light 31 to the object 3 while changing the emission direction (scanning angle) based on the angle control signal from the control unit 6.
 受光部2は対象物3からの反射光32を受光し、受光信号を基準電圧と比較しパルス化を行い、測距部4へストップパルスを出力する。遮光部7は発光部1と受光部2の間に設置し、出射光31と反射光32を分離してノイズ光を抑えるためのものである。 The light receiving unit 2 receives the reflected light 32 from the object 3, compares the received light signal with a reference voltage, pulsates, and outputs a stop pulse to the distance measuring unit 4. The light-shielding unit 7 is installed between the light-emitting unit 1 and the light-receiving unit 2 and separates the outgoing light 31 and the reflected light 32 to suppress noise light.
 測距部4には、スタートパルスおよびストップパルスが入力される。測距部4は、スタートパルスとストップパルスの立ち上がり時間差tを測定し、所定回数分の時間差tの測定結果をバッファして平均化する。その後、立ち上がり時間差tの平均値から対象物3までの距離(測距値)を測定し、その測距値を制御部6へ出力する。 The start pulse and stop pulse are input to the distance measuring unit 4. The distance measuring unit 4 measures the rise time difference t between the start pulse and the stop pulse, and buffers and averages the measurement results of the time difference t for a predetermined number of times. Thereafter, the distance (ranging value) from the average value of the rise time difference t to the object 3 is measured, and the ranging value is output to the control unit 6.
 制御部6は、走査部5に出力した角度制御信号と、測距部4から入力した測距値に基づいて、対象物3の設置面9上の2次元位置情報を算出する。制御部6は通信部8を介して、対象物3の位置情報を外部装置100へ送信する。通信部8は外部装置100とUSB等で有線接続する、あるいはスマートフォンやタブレットなどと無線で接続してもよい。無線はWiFi(登録商標)だけでなく、Bluetooth(登録商標)などの無線方式を用いても構わない。その際、通信部8には当該機能を有するICが含まれる。また無線機能を内蔵したUSBメモリやSDカード等の外部記録媒体と接続し操作を行っても構わない。 The control unit 6 calculates two-dimensional position information on the installation surface 9 of the object 3 based on the angle control signal output to the scanning unit 5 and the distance measurement value input from the distance measurement unit 4. The control unit 6 transmits the position information of the target object 3 to the external device 100 via the communication unit 8. The communication unit 8 may be connected to the external device 100 via a USB or the like, or may be connected to a smartphone or a tablet wirelessly. For wireless communication, not only WiFi (registered trademark) but also a wireless system such as Bluetooth (registered trademark) may be used. At that time, the communication unit 8 includes an IC having the function. The operation may be performed by connecting to an external recording medium such as a USB memory or an SD card with a built-in wireless function.
 次に、上記した光測距装置10に接続する外部装置100として、光測距装置10を備えた映像投写装置の場合を取り上げて説明する。 Next, a case of an image projection apparatus provided with the optical distance measuring device 10 will be described as the external device 100 connected to the optical distance measuring device 10 described above.
 図3は、光測距装置を備えた映像投写装置の側面図である。映像投写装置101は設置面9(例えば机)上に設置され、映像画面40を設置面9に投写する方式の場合である。ここで方向の説明のため、設置面9をXZ面とし、映像投写装置101から見た表示される映像画面40の水平方向をX方向(紙面に垂直方向)、映像画面40の垂直方向をZ方向(紙面横方向)、設置面9に垂直な方向をY方向(紙面縦方向)と定義する。 FIG. 3 is a side view of an image projection apparatus equipped with an optical distance measuring device. The image projection apparatus 101 is installed on the installation surface 9 (for example, a desk), and is a system that projects the image screen 40 onto the installation surface 9. Here, for explanation of the direction, the installation surface 9 is an XZ plane, the horizontal direction of the video screen 40 displayed from the video projector 101 is the X direction (the vertical direction to the paper surface), and the vertical direction of the video screen 40 is the Z direction. A direction (lateral direction on the paper surface) and a direction perpendicular to the installation surface 9 are defined as a Y direction (vertical direction on the paper surface).
 映像投写装置101内部で生成した映像光は投写レンズ45で拡大した後、反射ミラー46で反射して設置面9に投写し映像画面40を表示する。フォーカスリング47は、投写映像のフォーカスを調整する。反射ミラー46は折り畳み可能に構成されており、映像投写装置101を使用しない場合には、反射面が映像投写装置101に対向するよう収納される。 The image light generated inside the image projection apparatus 101 is magnified by the projection lens 45, then reflected by the reflection mirror 46 and projected onto the installation surface 9 to display the image screen 40. The focus ring 47 adjusts the focus of the projected image. The reflection mirror 46 is configured to be foldable, and is stored so that the reflection surface faces the image projection device 101 when the image projection device 101 is not used.
 光測距装置10は映像投写装置101の下部に内蔵され、設置面9と略平行(高さy0)に出射光31を発して、設置面9(映像画面40)上に存在する対象物の位置(XZ座標)を測定する。例えば対象物として映像投写装置101を操作するユーザの指30の位置を測定することで、映像投写装置101に対するユーザの操作入力を検出することができる。 The optical distance measuring device 10 is built in the lower part of the image projecting device 101, emits outgoing light 31 substantially parallel to the installation surface 9 (height y0), and is used for the object existing on the installation surface 9 (image screen 40). The position (XZ coordinate) is measured. For example, by measuring the position of the user's finger 30 who operates the image projection apparatus 101 as an object, the user's operation input to the image projection apparatus 101 can be detected.
 図4は、映像投写装置101に内蔵した光測距装置10によるユーザの指操作の検出を説明する平面図である。映像投写装置101から設置面9に映像画面40が投写されており、ユーザは映像画面40上で指30で操作を行っている。光測距装置10は、発光部1からの出射光31を走査部5により画面40に略平行に走査している。出射光31はユーザの指30で反射され、反射光32は受光部2で検出される。制御部6は、反射光32を検出した時の走査部5による走査角度θと、測距部4が測定した測距値Lから、指30の位置情報(XZ座標)を算出する。 FIG. 4 is a plan view for explaining detection of a user's finger operation by the optical distance measuring device 10 built in the image projection device 101. FIG. A video screen 40 is projected from the video projection device 101 onto the installation surface 9, and the user performs an operation with the finger 30 on the video screen 40. The optical distance measuring device 10 scans the emitted light 31 from the light emitting unit 1 by the scanning unit 5 substantially parallel to the screen 40. The emitted light 31 is reflected by the user's finger 30, and the reflected light 32 is detected by the light receiving unit 2. The control unit 6 calculates position information (XZ coordinates) of the finger 30 from the scanning angle θ by the scanning unit 5 when the reflected light 32 is detected and the distance measurement value L measured by the distance measuring unit 4.
 光測距装置10は、指30の位置情報だけでなく、指30の動き、すなわち指位置の時間変化を検出することも可能である。映像投写装置101は、指の動き情報から映像画面40に対する各種の操作を判別することも可能である。例えば、タップ、フリック、スワイプ、ピンチイン、ピンチアウトなどスマートフォン、タブレットと同様の操作を検出することが可能である。これらの動作は指30を映像画面40にタッチした際に有効な動作と判定されることから、出射光31の設置面9からの高さy0は、指先のサイズに合わせてできるだけ小さいことが望ましい。 The optical distance measuring device 10 can detect not only the position information of the finger 30 but also the movement of the finger 30, that is, the time change of the finger position. The video projector 101 can also determine various operations on the video screen 40 from finger movement information. For example, it is possible to detect operations similar to those of a smartphone and a tablet, such as tap, flick, swipe, pinch-in, and pinch-out. Since these operations are determined to be effective when the finger 30 touches the video screen 40, the height y0 of the emitted light 31 from the installation surface 9 is desirably as small as possible according to the size of the fingertip. .
 図5は、映像投写装置101の内部構成を示すブロック図であり、光測距装置10との通信により投写する映像を制御する動作を説明する。なお、光測距装置10については通信部8以外の構成は省略している。映像投写装置101は、映像投写部41とこれを制御する映像制御部42を有し、映像制御部42は光測距装置10の通信部8と通信を行う。映像投写部41は、投写用光源43、映像生成部44、投写レンズ45及び反射ミラー46を有する。 FIG. 5 is a block diagram showing an internal configuration of the image projection apparatus 101, and an operation for controlling an image to be projected through communication with the optical distance measuring apparatus 10 will be described. Note that the configuration of the optical distance measuring device 10 other than the communication unit 8 is omitted. The video projection device 101 includes a video projection unit 41 and a video control unit 42 that controls the video projection unit 41, and the video control unit 42 communicates with the communication unit 8 of the optical distance measuring device 10. The image projection unit 41 includes a projection light source 43, an image generation unit 44, a projection lens 45, and a reflection mirror 46.
 映像制御部42は、映像源となる例えばPC(パソコン)等の外部機器49から供給される映像信号をもとに、投写用光源43、映像生成部44に対して映像信号や制御信号を出力する。投写用光源43は、ハロゲンランプ、LED(Light Emitting Diode)、レーザ等であり、映像制御部42から入力された制御信号に応じ光量を調整する。なお、投写用光源43は、R(赤)、G(緑)、B(青)の3色を含む場合、映像信号に応じて各々独立して光量を制御してもよい。映像生成部44は、イメージャ(例えば液晶パネルのような表示デバイス)とミラー、レンズ、プリズム等の光学部品を有し、投写用光源43の出射光を用いて、外部機器49から供給された映像信号に基づく光学的な映像を生成する。 The video control unit 42 outputs a video signal and a control signal to the projection light source 43 and the video generation unit 44 based on a video signal supplied from an external device 49 such as a PC (personal computer) serving as a video source. To do. The projection light source 43 is a halogen lamp, an LED (Light-Emitting-Diode), a laser, or the like, and adjusts the amount of light according to a control signal input from the video control unit 42. When the projection light source 43 includes three colors of R (red), G (green), and B (blue), the light amount may be controlled independently according to the video signal. The video generation unit 44 includes an imager (for example, a display device such as a liquid crystal panel) and optical components such as a mirror, a lens, and a prism, and video supplied from an external device 49 using light emitted from the projection light source 43. An optical image based on the signal is generated.
 投写レンズ45は映像生成部44から出力された映像を拡大し、反射ミラー46は投写レンズ45から出射された光を反射し、図3や図4のように、設置面9に映像画面40を投写する。反射ミラー46は例えば非球面ミラーを用いており、同サイズの映像画面を投写する場合、一般的な映像投写装置と比較して投写距離を短くすることができる。ここでは反射ミラー46を用いる構成を説明したが、映像投写を実現できれば他の光学系の構成でもよい。 The projection lens 45 enlarges the image output from the image generation unit 44, and the reflection mirror 46 reflects the light emitted from the projection lens 45, and the image screen 40 is displayed on the installation surface 9 as shown in FIGS. Project. The reflection mirror 46 uses, for example, an aspherical mirror, and when projecting an image screen of the same size, the projection distance can be shortened compared to a general image projection apparatus. Although the configuration using the reflection mirror 46 has been described here, other optical systems may be used as long as image projection can be realized.
 また、外部機器49は映像投写装置101に対して映像信号を供給する機器であるが、PC等の一般的な情報処理装置やスマートフォン等の携帯端末装置を使用できる。なお、外部機器49は、PC及び携帯端末装置に限らず、映像投写装置101に備えられたカードインタフェースに挿入されるカード状の記憶媒体等、映像投写装置101に映像信号を供給する装置であればよい。 In addition, the external device 49 is a device that supplies a video signal to the video projection device 101, but a general information processing device such as a PC or a mobile terminal device such as a smartphone can be used. The external device 49 is not limited to a PC and a portable terminal device, and may be a device that supplies a video signal to the video projection device 101 such as a card-like storage medium inserted into a card interface provided in the video projection device 101. That's fine.
 次に、光測距装置10と映像制御部42の通信に関し説明する。光測距装置10は測定対象物3(例えばユーザの指30)の位置情報や動き情報を、通信部8から映像制御部42に送信する。映像制御部42は入力された位置情報や動き情報を解析して、外部機器49や映像投写部41の制御を行う。例えば外部機器49の制御では、ページ切り替え、拡大/縮小、移動、文字入力等を行い、映像投写部41の制御では、電源ON/OFF切り替え、光量調整、色調整、拡大/縮小、移動等を行う。また、位置情報や動き情報の出力は、UART(Universal Asynchronous Receiver Transmitter)、SPI(Serial Peripheral Interface)、I2C(Inter-Integrated Circuit)等の通信で行ってもよい。 Next, communication between the optical distance measuring device 10 and the video control unit 42 will be described. The optical distance measuring device 10 transmits the position information and movement information of the measurement object 3 (for example, the user's finger 30) from the communication unit 8 to the video control unit 42. The video control unit 42 analyzes the input position information and motion information, and controls the external device 49 and the video projection unit 41. For example, the control of the external device 49 performs page switching, enlargement / reduction, movement, character input, and the like, and the control of the image projection unit 41 includes power ON / OFF switching, light amount adjustment, color adjustment, enlargement / reduction, movement, and the like. Do. The output of position information and motion information may be performed by communication such as UART (Universal Asynchronous Receiver Receiver Transmitter), SPI (Serial Peripheral Interface), and I2C (Inter-Integrated Circuit).
 ここでは映像投写装置101が光測距装置10を内蔵する場合を示したが、分離して別体として構成する場合にも同様に適用できる。例えば映像投写装置101を机上に設置して壁(スクリーン)に映像を投写する場合は、光測距装置10を投写面である壁に設置して用いればよい。この場合は、映像投写装置101と光測距装置10の間の通信は、USB等を用いた有線方式でもよいし、WiFiやBluetoothを用いた無線方式でもよい。また通信部8で出力するデータをHID(Human Interface Device)で出力すれば、映像投写装置101は光測距装置10を仮想的にキーボードもしくはマウスと認識するため、映像投写装置101内に専用の処理ソフト等を設ける必要がなくなる利点がある。 Here, the case where the image projection device 101 includes the optical distance measuring device 10 is shown, but the present invention can be similarly applied to a case where the image projection device 101 is configured as a separate body. For example, when the image projection device 101 is installed on a desk and an image is projected on a wall (screen), the optical distance measuring device 10 may be installed on a wall that is a projection surface. In this case, the communication between the image projection apparatus 101 and the optical distance measuring apparatus 10 may be a wired system using USB or the like, or a wireless system using WiFi or Bluetooth. Further, if the data output by the communication unit 8 is output by HID (Human Interface Device), the image projection device 101 virtually recognizes the optical distance measuring device 10 as a keyboard or a mouse. There is an advantage that it is not necessary to provide processing software.
 以下、映像投写装置101と接続するのに好適な光測距装置10の光学系構成と光の伝搬経路について、いくつかの実施例を説明する。 Hereinafter, some examples of the optical system configuration and the light propagation path of the optical distance measuring device 10 suitable for connection to the image projection device 101 will be described.
 図6Aは、実施例1に係る光測距装置10aの光学系構成を示す図である。光測距装置10aは設置面9(XZ面)に設置され、上面側(Y軸上方)には発光部1と受光部2を配置し、設置面側(Y軸下方)には走査部5を配置している。光測距装置10aの設置面側の筐体部分を装置設置面9aと呼ぶことにする。 FIG. 6A is a diagram illustrating an optical system configuration of the optical distance measuring device 10a according to the first embodiment. The optical distance measuring device 10a is installed on the installation surface 9 (XZ plane), the light emitting unit 1 and the light receiving unit 2 are arranged on the upper surface side (above the Y axis), and the scanning unit 5 is arranged on the installation surface side (below the Y axis). Is arranged. A housing portion on the installation surface side of the optical distance measuring device 10a is referred to as an apparatus installation surface 9a.
 発光部1は、レーザ11とコリメートレンズ12、およびレーザ11を駆動するためのレーザドライバで構成され、Y軸方向に出射光31(実線)を発生する。また受光部2は、パラボラミラー21およびフォトディテクタ22で構成される。パラボラミラー21は、出射光31を通過させるホール211と、反射光32(破線)を集光するための反射曲面212を有し、フォトディテクタ22は反射曲面212の焦点位置に配置されている。 The light emitting unit 1 includes a laser 11, a collimating lens 12, and a laser driver for driving the laser 11, and generates emitted light 31 (solid line) in the Y-axis direction. The light receiving unit 2 includes a parabolic mirror 21 and a photodetector 22. The parabolic mirror 21 has a hole 211 that allows the outgoing light 31 to pass therethrough and a reflective curved surface 212 for condensing the reflected light 32 (broken line). The photodetector 22 is disposed at the focal position of the reflective curved surface 212.
 図6Bは、パラボラミラー21の形状を示す立体図である。反射曲面212は反射光32を効率よく集光するために反射面が放物面形状となっている。 FIG. 6B is a three-dimensional view showing the shape of the parabolic mirror 21. The reflective curved surface 212 has a parabolic shape for reflecting the reflected light 32 efficiently.
 走査部5は、傾斜角度45°の反射面を有する回転ミラー51とこれを回転駆動するモータ52で構成され、Y軸に平行な回転軸で回転する。出射光31は回転ミラー51で水平方向に反射され、モータ52は制御部6の角度制御信号に応じて回転ミラー51の角度を変えることにより、出射光31を設置面9(装置設置面9a)と略平行な面内で走査する。レーザ11の位置は、回転ミラー51に入射する出射光31の光軸と、モータ52の回転軸とが一致するように設置される。 The scanning unit 5 is composed of a rotating mirror 51 having a reflecting surface with an inclination angle of 45 ° and a motor 52 that rotates the rotating mirror 51, and rotates on a rotating shaft parallel to the Y axis. The outgoing light 31 is reflected in the horizontal direction by the rotating mirror 51, and the motor 52 changes the angle of the rotating mirror 51 in accordance with the angle control signal of the control unit 6, thereby changing the outgoing light 31 to the installation surface 9 (device installation surface 9 a). And scan in a plane substantially parallel to. The position of the laser 11 is set so that the optical axis of the outgoing light 31 incident on the rotary mirror 51 and the rotational axis of the motor 52 coincide.
 レーザ11が発した出射光31は、コリメートレンズ12、ホール211を通過後、回転ミラー51によって反射され、対象物3へ到達する。対象物3は、出射光31を拡散して反射光32を発生させ、その一部は出射光31と同じ経路を通って回転ミラー51に到達する。反射光32は、回転ミラー51によりパラボラミラー21の方向へ反射され、反射曲面212によってフォトディテクタ22へ集光される。回転ミラー51の反射面とパラボラミラー21の反射曲面212は、ほぼ同じ対向面積とする。 The emitted light 31 emitted from the laser 11 passes through the collimating lens 12 and the hole 211, is reflected by the rotating mirror 51, and reaches the target 3. The object 3 diffuses the outgoing light 31 to generate reflected light 32, and a part of the target 3 reaches the rotating mirror 51 through the same path as the outgoing light 31. The reflected light 32 is reflected in the direction of the parabolic mirror 21 by the rotating mirror 51 and is condensed on the photodetector 22 by the reflection curved surface 212. The reflecting surface of the rotating mirror 51 and the reflecting curved surface 212 of the parabolic mirror 21 have substantially the same facing area.
 基板61には、測距部4、制御部6、通信部8が実装され、これらはプロセッサやアンプを含む電子回路で構成されている。 A distance measuring unit 4, a control unit 6, and a communication unit 8 are mounted on the substrate 61, and these are configured by an electronic circuit including a processor and an amplifier.
 本実施例の構成によれば、モータ52により回転ミラー51のみを回転する機構で実現できるので、特許文献1に記載されるような装置全体または光学系全体を回転させる方式に比較し、走査機構は簡単な構成となる。また、回転ミラー51によって広い視野角が確保されるため、対象物との距離を広範囲に測定できる。さらに受光部2においては、放物面形状の反射曲面212を有するパラボラミラー21を採用しているので、反射光32は効率よくフォトディテクタ22に集光される。よって、受光部2での受光効率を向上させる効果がある。 According to the configuration of the present embodiment, since it can be realized by a mechanism that rotates only the rotating mirror 51 by the motor 52, the scanning mechanism is compared with the method of rotating the entire apparatus or the entire optical system as described in Patent Document 1. Has a simple configuration. Moreover, since a wide viewing angle is secured by the rotating mirror 51, the distance to the object can be measured over a wide range. Further, since the light receiving unit 2 employs the parabolic mirror 21 having the parabolic reflection curved surface 212, the reflected light 32 is efficiently collected on the photodetector 22. Therefore, there is an effect of improving the light receiving efficiency in the light receiving unit 2.
 ここで、図6Aに示す光学系構成は、出射光31と反射光32が同じ経路を通過する同軸光学系の構成であるため、
(1)対象物3を経由せずに受光部2へ入射するノイズ光の発生、
(2)出射光31の走査面の設置面9からの高さy0が大きくなる、
という課題がある。
Here, the optical system configuration shown in FIG. 6A is a coaxial optical system configuration in which the emitted light 31 and the reflected light 32 pass through the same path.
(1) Generation of noise light incident on the light receiving unit 2 without passing through the object 3;
(2) The height y0 from the installation surface 9 of the scanning surface of the emitted light 31 is increased.
There is a problem.
 まず、課題(1)のノイズ光の発生について説明する。例えば図6Aの光学系構成では、ホール211の端部や回転ミラー51上に付着した埃などの微小なゴミが散乱源となり、出射光31の一部が対象物3を経由せずにフォトディテクタ22へ入射してノイズ光となる。また、これらのノイズ光は、対象物3を経由した反射光32よりも光路長が短いため、本来検出すべき反射光32よりも先にフォトディテクタ22で検出してしまう。その結果、光測距装置10aの測距精度や最大測距可能距離が制限されることになる。 First, the generation of noise light of the problem (1) will be described. For example, in the optical system configuration of FIG. 6A, minute dust such as dust adhering to the end of the hole 211 and the rotating mirror 51 becomes a scattering source, and a part of the emitted light 31 does not pass through the object 3 and the photodetector 22. Incident light becomes noise light. Further, these noise lights are detected by the photodetector 22 before the reflected light 32 to be originally detected because the optical path length is shorter than the reflected light 32 that has passed through the object 3. As a result, the distance measurement accuracy and the maximum distance that can be measured by the optical distance measuring device 10a are limited.
 この対策として、出射光31のパルス変調周波数を高くして、フォトディテクタ22で受光される光波形を時間的に分離する方法がある。例えば、ノイズ光の光路長Lを5cm、対象物3を経由した反射光32の光路長Lを10cmとすると、ノイズ光と反射光32がフォトディテクタ22へ到着するまでの時間差Δtは、
     Δt=2(L-L)/c=334psec・・・(2)
となる。この時間差を区別するには、出射光31を10GHz程度でパルス変調する必要がある。しかし、レーザ11を駆動するレーザドライバや、フォトディテクタ22等の受光部2の回路部品を10GHzに対応させることは、コストアップを招き実用的には困難となる。
As a countermeasure, there is a method of temporally separating the optical waveform received by the photodetector 22 by increasing the pulse modulation frequency of the emitted light 31. For example, if the optical path length L 1 of the noise light 5 cm, and 10cm optical path length L 2 of the reflected light 32 that has passed through the object 3, the time difference Δt to the reflection light 32 and the noise light arrives to photodetector 22,
Δt = 2 (L 2 −L 1 ) / c = 334 psec (2)
It becomes. In order to distinguish this time difference, it is necessary to pulse-modulate the emitted light 31 at about 10 GHz. However, making the laser driver for driving the laser 11 and the circuit components of the light receiving unit 2 such as the photodetector 22 correspond to 10 GHz increases the cost and is practically difficult.
 次に、課題(2)でいう出射光31の走査面の設置面9(装置設置面9a)からの高さy0が大きくなり、対象物3の検出位置が高くなることについて説明する。図6Aの光学系構成では、装置上部から出射した出射光31は、回転ミラー51の中程で反射して対象物3へ向かう構成となっている。よって出射光31の走査面の高さは、回転ミラー51の斜面の高さに依存する。しかしながら回転ミラー51は、対象物3で拡散された反射光32を集光する役目もあるので小さくすることができず、出射光31の設置面9からの高さy0が大きくなってしまう。 Next, it will be described that the height y0 from the installation surface 9 (device installation surface 9a) of the scanning surface of the emitted light 31 in the problem (2) increases and the detection position of the object 3 increases. In the optical system configuration of FIG. 6A, the emitted light 31 emitted from the upper part of the apparatus is reflected in the middle of the rotating mirror 51 and travels toward the object 3. Therefore, the height of the scanning surface of the emitted light 31 depends on the height of the inclined surface of the rotating mirror 51. However, the rotating mirror 51 also has a function of condensing the reflected light 32 diffused by the object 3 and thus cannot be reduced, and the height y0 of the outgoing light 31 from the installation surface 9 is increased.
 光測距装置10aを図3、4で述べた映像投写装置101の操作検出に用いる場合、光測距装置10aがユーザの指位置を検出するタイミングはユーザが映像画面40(すなわち設置面9)に触れたタイミングにできるだけ近いことが望ましい。なぜなら、走査面が映像画面40よりも離れた高い位置にあると、ユーザの指が映像画面40に触れる前にユーザの指を検出してしまい、結果として誤動作等を生じユーザの操作性が低下するからである。従って、出射光31の走査面の高さは、映像画面40(設置面9)の高さにできるだけ近いことが望ましい。 When the optical distance measuring device 10a is used to detect the operation of the video projection device 101 described with reference to FIGS. 3 and 4, the timing at which the optical distance measuring device 10a detects the user's finger position is determined by the user on the video screen 40 (that is, the installation surface 9). It is desirable to be as close as possible to the timing when touched. This is because if the scanning surface is at a higher position than the video screen 40, the user's finger is detected before the user's finger touches the video screen 40, resulting in malfunctions and the user's operability is reduced. Because it does. Therefore, it is desirable that the height of the scanning surface of the emitted light 31 is as close as possible to the height of the video screen 40 (installation surface 9).
 実施例2では、図6Aの構成におけるノイズ光発生、および走査面の高さの課題を同時に解決する構成について述べる。 Example 2 describes a configuration that simultaneously solves the problems of noise light generation and scanning surface height in the configuration of FIG. 6A.
 図7Aは、実施例2に係る光測距装置10bの光学系構成を示す図である。図7Aにおいて、図6Aと同じ機能の構成要件は同じ符号を付し、その説明を省略する。本実施例の光測距装置10bでは、発光部1(レーザ11)を装置下部の装置設置面9aに近接して配置し、設置面9に近い高さで出射光31を出射させるようにした。これに伴い、回転ミラー51として、反射光32を反射する上部回転ミラー511の他に、出射光31を反射する下部回転ミラー512を追加し、出射光31と反射光32が異なる光路を通るようにした。また、発光部1の光路と受光部2の光路を光学的に分離する遮光部7を設けた。遮光部7には例えば黒色のプラスチック材を用いるが、黒色塗装した金属材料でも構わない。 FIG. 7A is a diagram illustrating an optical system configuration of the optical distance measuring device 10b according to the second embodiment. In FIG. 7A, constituent elements having the same functions as those in FIG. 6A are denoted by the same reference numerals, and description thereof is omitted. In the optical distance measuring device 10b of the present embodiment, the light emitting unit 1 (laser 11) is arranged close to the device installation surface 9a at the lower part of the device, and the emitted light 31 is emitted at a height close to the installation surface 9. . Along with this, in addition to the upper rotating mirror 511 that reflects the reflected light 32, a lower rotating mirror 512 that reflects the emitted light 31 is added as the rotating mirror 51 so that the emitted light 31 and the reflected light 32 pass through different optical paths. I made it. In addition, a light blocking unit 7 that optically separates the light path of the light emitting unit 1 and the light path of the light receiving unit 2 is provided. For example, a black plastic material is used for the light shielding portion 7, but a black-painted metal material may be used.
 図7Bは、回転ミラー51の形状を示す立体図である。回転ミラー51は、反射光32を反射する上部回転ミラー511と出射光31を反射する下部回転ミラー512を上下方向に一体で構成し、装置上部に設けたモータ52により一体で回転させる。下部回転ミラー512は発光部1からの出射光31を反射するだけであるから、上部回転ミラー511と比較して反射面を小さくでき、出射光31の走査面を設置面9へ近づけることが容易となる。もちろん、上部回転ミラー511の反射面の方向と下部回転ミラー512の反射面の方向は、同一の走査角度となるよう一体化させている。ここでは上部回転ミラー511と下部回転ミラー512の反射面は両側に設けたが、片側だけとしてもよい。 FIG. 7B is a three-dimensional view showing the shape of the rotating mirror 51. In the rotating mirror 51, an upper rotating mirror 511 that reflects the reflected light 32 and a lower rotating mirror 512 that reflects the emitted light 31 are integrally formed in the vertical direction, and are rotated together by a motor 52 provided in the upper part of the apparatus. Since the lower rotating mirror 512 only reflects the emitted light 31 from the light emitting unit 1, the reflecting surface can be made smaller than the upper rotating mirror 511, and the scanning surface of the emitted light 31 can be easily brought closer to the installation surface 9. It becomes. Of course, the direction of the reflecting surface of the upper rotating mirror 511 and the direction of the reflecting surface of the lower rotating mirror 512 are integrated so as to have the same scanning angle. Here, the reflecting surfaces of the upper rotating mirror 511 and the lower rotating mirror 512 are provided on both sides, but only one side may be provided.
 発光部1であるレーザ11は基板62を介して装置設置面9aに取り付けている。レーザ11が発した出射光31は、コリメートレンズ12、固定ミラー13を通過後、下部回転ミラー512で反射され、対象物3へ到達する。対象物3は、出射光31を拡散して反射光32を発生させ、その大部分は出射光31と異なる経路で上部回転ミラー511に到達する。反射光32は、上部回転ミラー511の反射面によりパラボラミラー21の方向へ反射され、反射曲面212によってフォトディテクタ22へ集光される。パラボラミラー21は、図6Bと同様に放物面形状の反射曲面212を有しており、受光効率を向上させている。 The laser 11 which is the light emitting unit 1 is attached to the apparatus installation surface 9 a via the substrate 62. The emitted light 31 emitted from the laser 11 passes through the collimating lens 12 and the fixed mirror 13, is reflected by the lower rotating mirror 512, and reaches the object 3. The object 3 diffuses the outgoing light 31 to generate reflected light 32, and most of it reaches the upper rotating mirror 511 through a different path from the outgoing light 31. The reflected light 32 is reflected in the direction of the parabolic mirror 21 by the reflecting surface of the upper rotating mirror 511, and is condensed on the photodetector 22 by the reflecting curved surface 212. The parabolic mirror 21 has a parabolic reflection curved surface 212 as in FIG. 6B, and improves the light receiving efficiency.
 本実施例の光学系構成によれば、出射光31と反射光32が異なる光路を通るとともに、遮光部7を設けたことで、出射光31の一部が対象物3を経由せずにフォトディテクタ22に入射するノイズ光を遮断することができる。また、回転ミラー51(上部回転ミラー511と下部回転ミラー512)によって広い視野角が確保されるため、光測距装置10bの測距精度や最大測距可能距離が向上する。 According to the configuration of the optical system of the present embodiment, the outgoing light 31 and the reflected light 32 pass through different optical paths, and the light blocking unit 7 is provided, so that a part of the outgoing light 31 does not pass through the object 3 and is a photodetector. The noise light incident on 22 can be blocked. In addition, since a wide viewing angle is secured by the rotating mirror 51 (the upper rotating mirror 511 and the lower rotating mirror 512), the ranging accuracy and the maximum distance measurement possible distance of the optical ranging device 10b are improved.
 さらに、発光部1を装置設置面9aに近接して配置しているため、出射光31の設置面9からの高さy0を小さくできる利点がある。これにより、映像投写装置101に適用する場合、対象物3の検出高さを設置面9(映像画面40)に近づけることができる。従って、光測距装置10bがユーザの指を検出するタイミングは、ユーザが設置面9(映像画面40)に触れるタイミングに近付き、ユーザの操作性が向上する。 Furthermore, since the light emitting unit 1 is arranged close to the device installation surface 9a, there is an advantage that the height y0 of the emitted light 31 from the installation surface 9 can be reduced. Thereby, when applied to the video projection apparatus 101, the detection height of the object 3 can be brought close to the installation surface 9 (video screen 40). Therefore, the timing at which the optical distance measuring device 10b detects the user's finger approaches the timing at which the user touches the installation surface 9 (video screen 40), and the operability for the user is improved.
 実施例3では、遮光部を回転ミラーと一体化させた構成について述べる。
  図8は、実施例3に係る光測距装置10cの光学系構成を示す図である。光測距装置10cにおいて、実施例2(図7A)と異なる点は、遮光部7を上部回転ミラー511および下部回転ミラー512と一体化した点である。なお、その他の構成は図7Aと同様であるため、説明を省略する。
In the third embodiment, a configuration in which the light shielding unit is integrated with the rotating mirror will be described.
FIG. 8 is a diagram illustrating an optical system configuration of the optical distance measuring device 10c according to the third embodiment. The optical distance measuring device 10c is different from the second embodiment (FIG. 7A) in that the light shielding unit 7 is integrated with the upper rotating mirror 511 and the lower rotating mirror 512. Other configurations are the same as those in FIG.
 本実施例では、回転ミラー511、512に遮光部7を一体化することで、回転ミラー511、512の質量が増加し、ミラーの回転速度、すなわち出射光31の走査速度が安定するというメリットがある。また、図7Aの光測距装置10bよりも組立が容易なため、組立工数を縮減できるメリットがある。 In this embodiment, by integrating the light shielding unit 7 with the rotating mirrors 511 and 512, the mass of the rotating mirrors 511 and 512 is increased, and the rotation speed of the mirrors, that is, the scanning speed of the emitted light 31 is stabilized. is there. Further, since the assembly is easier than the optical distance measuring device 10b of FIG. 7A, there is an advantage that the number of assembling steps can be reduced.
 実施例4では、遮光部7をフォトディテクタ22と一体化させた構成について述べる。
  図9は、実施例4に係る光測距装置10dの光学系構成を示す図である。光測距装置10dにおいて、実施例2(図7A)と異なる点は、受光部2のフォトディテクタ22の背面を遮光部7にて遮蔽するよう一体化した点である。なお、その他の構成は図7Aと同様であるため、説明を省略する。
In the fourth embodiment, a configuration in which the light shielding unit 7 is integrated with the photodetector 22 will be described.
FIG. 9 is a diagram illustrating an optical system configuration of the optical distance measuring device 10d according to the fourth embodiment. The optical distance measuring device 10d is different from the second embodiment (FIG. 7A) in that the back surface of the photodetector 22 of the light receiving unit 2 is integrated so as to be shielded by the light blocking unit 7. Other configurations are the same as those in FIG.
 本実施例では、遮光部7の遮蔽効果によりフォトディテクタ22の指向特性を狭小化することで、ノイズ光の光路を簡易に遮断し、上部回転ミラー511にて反射された反射光のみ受光することが可能となる。 In the present embodiment, by narrowing the directivity of the photodetector 22 by the shielding effect of the light shielding unit 7, the optical path of the noise light can be easily blocked and only the reflected light reflected by the upper rotating mirror 511 can be received. It becomes possible.
 実施例5では、回転ミラーに遮光部の役割を持たせた構成について述べる。
  図10は、実施例5に係る光測距装置10eの光学系構成を示す図である。光測距装置10eにおいて、実施例3(図8)と異なる点は、上部回転ミラー511の反射面を除く内部が遮光部7の役割を兼ねていることである。そして、発光部1を構成する全部品(レーザ11、コリメートレンズ12、固定ミラー13)のZ方向位置を接近させ、それらの占有面積が上部回転ミラー511の占有面積よりも小さくなるようにしている。なお、その他の構成は図8と同様であるため、説明を省略する。
In the fifth embodiment, a configuration in which a rotating mirror has a role of a light shielding portion will be described.
FIG. 10 is a diagram illustrating an optical system configuration of the optical distance measuring device 10e according to the fifth embodiment. In the optical distance measuring device 10e, the difference from the third embodiment (FIG. 8) is that the inside of the upper rotary mirror 511 excluding the reflection surface also serves as the light shielding unit 7. And the Z direction position of all the parts (laser 11, the collimating lens 12, and the fixed mirror 13) which comprise the light emission part 1 is made to approach, and those occupation areas are made smaller than the occupation area of the upper rotation mirror 511. . Other configurations are the same as those in FIG.
 本実施例では、発光部1は上部回転ミラー511内の遮光部7により覆われるため、出射光31が受光側に回り込むことを防止することが可能となる。 In this embodiment, since the light emitting unit 1 is covered by the light shielding unit 7 in the upper rotating mirror 511, it is possible to prevent the emitted light 31 from wrapping around the light receiving side.
 実施例6では、回転ミラー下部にプリズムを配置し、プリズムを回転させることで出射光の走査を行う構成について述べる。
  図11は、実施例6に係る光測距装置10fの光学系構成を示す図である。光測距装置10fにおいて、実施例5(図10)と異なる点は、上部回転ミラー511の下側に、下部回転ミラーに代えて回転プリズム513を配置したことである。また、図10における固定ミラー13を不要にしたことである。なお、その他の構成は図10と同様であるため、説明を省略する。
In the sixth embodiment, a configuration will be described in which a prism is disposed below the rotating mirror and the emitted light is scanned by rotating the prism.
FIG. 11 is a diagram illustrating an optical system configuration of the optical distance measuring device 10f according to the sixth embodiment. The optical distance measuring device 10f differs from the fifth embodiment (FIG. 10) in that a rotating prism 513 is disposed below the upper rotating mirror 511 in place of the lower rotating mirror. Further, the fixed mirror 13 in FIG. 10 is unnecessary. Other configurations are the same as those in FIG.
 回転プリズム513は出射光31の方向を所定の方向に透過し、上部回転ミラー511と一体で回転することで、出射光31の走査が行われる。回転プリズム513を用いて出射光31を走査する場合、図10における固定ミラー13が不要になることから、出射光31の設置面9からの高さy0をさらに小さくすることが可能となる。 The rotating prism 513 transmits the direction of the emitted light 31 in a predetermined direction, and rotates with the upper rotating mirror 511 to scan the emitted light 31. When the outgoing light 31 is scanned using the rotating prism 513, the fixed mirror 13 in FIG. 10 is not required, so that the height y0 of the outgoing light 31 from the installation surface 9 can be further reduced.
 本実施例によれば、光測距装置10fがユーザの指を検出するタイミングは、ユーザが設置面9(映像画面40)に触れるタイミングにより近付くので、ユーザの操作性はさらに向上する。 According to the present embodiment, the timing at which the optical distance measuring device 10f detects the user's finger comes closer to the timing at which the user touches the installation surface 9 (video screen 40), so that the user's operability is further improved.
 実施例7では、出射光学系と受光光学系をXZ平面上に隣接して配置し、ノイズ光を抑制する構成について述べる。
  図12は、実施例7に係る光測距装置10gの光学系構成を示す図である。光測距装置10gにおいて、前記図7A~図11と異なる点は、出射光を走査するための回転ミラー51aと反射光を受光するための回転ミラー51bを分離して配置し、それぞれ別のモータ52aおよびモータ52bで駆動する構成としたことである。
In the seventh embodiment, a configuration in which the emission optical system and the light reception optical system are arranged adjacent to each other on the XZ plane to suppress noise light will be described.
FIG. 12 is a diagram illustrating an optical system configuration of the optical distance measuring device 10g according to the seventh embodiment. The optical distance measuring device 10g is different from the above-described FIG. 7A to FIG. 11 in that a rotating mirror 51a for scanning outgoing light and a rotating mirror 51b for receiving reflected light are separately arranged and each has a different motor. The configuration is such that it is driven by 52a and motor 52b.
 レーザ11から出射された出射光31はコリメートレンズ12を通過後、回転ミラー51aへ入射する。回転ミラー51aはモータ52aにより走査角度が変化され、出射光31は対象物3へ照射される。その後、対象物3からの反射光32は回転ミラー51bへ入射し、集光レンズ23を通過後、フォトディテクタ22へと入射する。ここで、回転ミラー51bはモータ52bによって、その角度を変更される。また、モータ52aとモータ52bは、回転ミラー51aおよび51bのミラー角度が等しくなるように同期して回転する。 The outgoing light 31 emitted from the laser 11 passes through the collimating lens 12 and then enters the rotating mirror 51a. The scanning angle of the rotating mirror 51a is changed by the motor 52a, and the emitted light 31 is irradiated onto the object 3. Thereafter, the reflected light 32 from the object 3 enters the rotating mirror 51 b, passes through the condenser lens 23, and then enters the photodetector 22. Here, the angle of the rotating mirror 51b is changed by the motor 52b. Further, the motor 52a and the motor 52b rotate in synchronization so that the mirror angles of the rotary mirrors 51a and 51b are equal.
 出射光学系と受光光学系は遮光部7を隔てて配置され、遮光部7によってノイズ光が受光光学系へ入射しない構成となっている。本構成を用いれば、対象物3を経由せずに受光光学系へ入射するノイズ光の影響を低減することが可能となる。なお、本実施例では2つのモータにより2つの回転ミラーを走査する構成を示したが、1つのモータとギヤ等を用いて2つの回転ミラーを駆動しても構わない。本実施例の構成を用いれば、ノイズ光の影響を低減した状態で、対象物との距離を広範囲・高精度に測定できる光測距装置、及びそれを備えた映像投写装置を提供できる。 The emission optical system and the light receiving optical system are arranged with a light shielding part 7 therebetween, and the light shielding part 7 prevents noise light from entering the light receiving optical system. If this configuration is used, it is possible to reduce the influence of noise light incident on the light receiving optical system without passing through the object 3. In the present embodiment, a configuration in which two rotating mirrors are scanned by two motors is shown, but two rotating mirrors may be driven using one motor and gears. By using the configuration of the present embodiment, it is possible to provide an optical distance measuring device that can measure the distance to an object over a wide range and with high accuracy in a state where the influence of noise light is reduced, and an image projection device including the same.
 本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであって、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of each embodiment.
 また、上記の各構成は、それらの一部又は全部が、ハードウェアで構成されても、プロセッサでプログラムが実行されることにより実現されるように構成されてもよい。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてよい。 In addition, each of the above-described configurations may be configured such that a part or all of the configuration is configured by hardware, or is realized by executing a program by a processor. Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it can be considered that almost all the components are connected to each other.
 1…発光部、2…受光部、3…対象物、4…測距部、5…走査部、6…制御部、7…遮光部、8…通信部、9…設置面、9a…装置設置面、10,10a~10g…光測距装置、11…レーザ、12…コリメートレンズ、13…固定ミラー、21…パラボラミラー、211…ホール、212…反射曲面、22…フォトディテクタ、30…指、31…出射光、32…反射光、40…映像画面、41…映像投写部、42…映像制御部、43…投写用光源、44…映像生成部、45…投写レンズ、46…反射ミラー、49…外部機器、51,511,512,51a,51b…回転ミラー、513…回転プリズム、52,52a,52b…モータ、100…外部装置、101…映像投写装置。 DESCRIPTION OF SYMBOLS 1 ... Light emission part, 2 ... Light reception part, 3 ... Object, 4 ... Distance measurement part, 5 ... Scanning part, 6 ... Control part, 7 ... Light-shielding part, 8 ... Communication part, 9 ... Installation surface, 9a ... Apparatus installation Surface, 10, 10a to 10g: optical distance measuring device, 11 ... laser, 12 ... collimating lens, 13 ... fixed mirror, 21 ... parabolic mirror, 211 ... hole, 212 ... reflection curved surface, 22 ... photo detector, 30 ... finger, 31 ... outgoing light, 32 ... reflected light, 40 ... video screen, 41 ... video projection unit, 42 ... video control unit, 43 ... light source for projection, 44 ... video generation unit, 45 ... projection lens, 46 ... reflection mirror, 49 ... External devices 51, 511, 512, 51a, 51b ... rotating mirror, 513 ... rotating prism, 52, 52a, 52b ... motor, 100 ... external device, 101 ... video projection device.

Claims (9)

  1.  光の往復時間を測定して対象物との距離を測定する光測距装置であって、
     前記対象物に対し出射光を発する発光部と、
     前記対象物からの反射光を受光する受光部と、
     前記発光部からの出射光を出射方向を変えて走査する走査部と、
     前記発光部の光路と前記受光部の光路を光学的に分離する遮光部と、
     前記発光部から出射光を出射した第1の時間と、前記対象物からの反射光を受光した第2の時間との時間差に基づいて前記対象物との距離を測定する測距部と、
     前記発光部、前記走査部、および前記測距部を制御するとともに、前記走査部による前記出射光の出射方向と、前記測距部が測定した距離から前記対象物の位置情報を算出する制御部と、を備え、
     前記発光部は、前記光測距装置の装置設置面に近接して配置され、
     前記走査部は、前記装置設置面に対し略平行に前記出射光を走査することを特徴とする光測距装置。
    An optical distance measuring device that measures the distance to an object by measuring the round-trip time of light,
    A light emitting unit for emitting outgoing light to the object;
    A light receiving unit for receiving reflected light from the object;
    A scanning unit that scans the emitted light from the light emitting unit while changing the emitting direction; and
    A light shielding unit for optically separating the light path of the light emitting unit and the light path of the light receiving unit;
    A distance measuring unit for measuring a distance from the object based on a time difference between a first time when the emitted light is emitted from the light emitting unit and a second time when the reflected light from the object is received;
    A control unit that controls the light emitting unit, the scanning unit, and the distance measuring unit, and calculates position information of the target object from an emission direction of the emitted light by the scanning unit and a distance measured by the distance measuring unit. And comprising
    The light emitting unit is disposed close to a device installation surface of the optical distance measuring device,
    The optical distance measuring device, wherein the scanning unit scans the emitted light substantially parallel to the device installation surface.
  2.  請求項1記載の光測距装置であって、
     前記受光部は、前記対象物からの反射光を集光するパラボラミラーまたは集光レンズを有し、
     前記走査部は、前記発光部からの出射光を走査する回転ミラーまたは回転プリズムと、前記回転ミラーまたは前記回転プリズムを回転駆動するモータを有することを特徴とする光測距装置。
    The optical distance measuring device according to claim 1,
    The light receiving unit includes a parabolic mirror or a condensing lens that condenses the reflected light from the object,
    The optical distance measuring device, wherein the scanning unit includes a rotating mirror or a rotating prism that scans light emitted from the light emitting unit, and a motor that rotates the rotating mirror or the rotating prism.
  3.  請求項1記載の光測距装置であって、
     前記受光部は、前記対象物からの反射光を集光するパラボラミラーを有し、
     前記走査部は、前記発光部からの出射光を反射する第1の回転ミラーと、前記対象物からの反射光を反射して前記パラボラミラーに出射する第2の回転ミラーと、前記第1および第2の回転ミラーを一体に回転駆動するモータを有することを特徴とする光測距装置。
    The optical distance measuring device according to claim 1,
    The light receiving unit has a parabolic mirror that collects reflected light from the object,
    The scanning unit includes: a first rotating mirror that reflects light emitted from the light emitting unit; a second rotating mirror that reflects reflected light from the object and emits the reflected light to the parabolic mirror; and An optical distance measuring device having a motor for integrally rotating the second rotating mirror.
  4.  請求項2記載の光測距装置であって、
     前記遮光部は、前記走査部と一体に構成され、前記回転ミラーまたは回転プリズムと一体で回転することを特徴とする光測距装置。
    The optical distance measuring device according to claim 2,
    The optical distance measuring device, wherein the light shielding unit is configured integrally with the scanning unit and rotates integrally with the rotating mirror or the rotating prism.
  5.  請求項2記載の光測距装置であって、
     前記遮光部は、前記受光部と一体に構成され、前記受光部の指向特性を狭小化させたことを特徴とする光測距装置。
    The optical distance measuring device according to claim 2,
    The optical distance measuring device, wherein the light shielding unit is configured integrally with the light receiving unit, and narrows the directivity of the light receiving unit.
  6.  光の往復時間を測定して対象物との距離を測定する光測距装置であって、
     前記対象物に対し出射光を発する発光部と、
     前記対象物からの反射光を受光する受光部と、
     前記発光部からの出射光を出射方向を変えて走査する走査部と、
     前記発光部から出射光を出射した第1の時間と、前記対象物からの反射光を受光した第2の時間との時間差に基づいて前記対象物との距離を測定する測距部と、
     前記発光部、前記走査部、および前記測距部を制御するとともに、前記走査部による前記出射光の出射方向と、前記測距部が測定した距離から前記対象物の位置情報を算出する制御部と、を備え、
     前記受光部は、前記対象物からの反射光を集光するパラボラミラーを有し、
     前記走査部は、前記発光部からの出射光を走査する回転ミラーと、前記回転ミラーを回転駆動するモータを有することを特徴とする光測距装置。
    An optical distance measuring device that measures the distance to an object by measuring the round-trip time of light,
    A light emitting unit for emitting outgoing light to the object;
    A light receiving unit for receiving reflected light from the object;
    A scanning unit that scans the emitted light from the light emitting unit while changing the emitting direction; and
    A distance measuring unit for measuring a distance from the object based on a time difference between a first time when the emitted light is emitted from the light emitting unit and a second time when the reflected light from the object is received;
    A control unit that controls the light emitting unit, the scanning unit, and the distance measuring unit, and calculates position information of the target object from an emission direction of the emitted light by the scanning unit and a distance measured by the distance measuring unit. And comprising
    The light receiving unit has a parabolic mirror that collects reflected light from the object,
    The optical distance measuring device, wherein the scanning unit includes a rotating mirror that scans light emitted from the light emitting unit, and a motor that rotationally drives the rotating mirror.
  7.  光の往復時間を測定して対象物との距離を測定する光測距装置であって、
     前記対象物に対し出射光を発する発光部と、
     前記対象物からの反射光を受光する受光部と、
     前記発光部からの出射光を出射方向を変えて走査する走査部と、
     前記発光部の光路と前記受光部の光路を光学的に分離する遮光部と、
     前記発光部から出射光を出射した第1の時間と、前記対象物からの反射光を受光した第2の時間との時間差に基づいて前記対象物との距離を測定する測距部と、
     前記発光部、前記走査部、および前記測距部を制御するとともに、前記走査部による前記出射光の出射方向と、前記測距部が測定した距離から前記対象物の位置情報を算出する制御部と、を備え、
     前記走査部は、前記発光部からの出射光を反射する第1の回転ミラーと、前記対象物からの反射光を反射して前記受光部に出射する第2の回転ミラーと、前記第1および第2の回転ミラーを同期して回転駆動するモータを有することを特徴とする光測距装置。
    An optical distance measuring device that measures the distance to an object by measuring the round-trip time of light,
    A light emitting unit for emitting outgoing light to the object;
    A light receiving unit for receiving reflected light from the object;
    A scanning unit that scans the emitted light from the light emitting unit while changing the emitting direction; and
    A light shielding unit for optically separating the light path of the light emitting unit and the light path of the light receiving unit;
    A distance measuring unit for measuring a distance from the object based on a time difference between a first time when the emitted light is emitted from the light emitting unit and a second time when the reflected light from the object is received;
    A control unit that controls the light emitting unit, the scanning unit, and the distance measuring unit, and calculates position information of the target object from an emission direction of the emitted light by the scanning unit and a distance measured by the distance measuring unit. And comprising
    The scanning unit includes: a first rotating mirror that reflects light emitted from the light emitting unit; a second rotating mirror that reflects reflected light from the object and emits the light to the light receiving unit; An optical distance measuring device comprising: a motor that rotationally drives the second rotating mirror synchronously.
  8.  対象物との距離を測定する光測距装置を備えた映像投写装置であって、
     前記光測距装置は、
     前記光測距装置の装置設置面に近接して配置され、前記対象物に対し出射光を発する発光部と、
     前記発光部からの出射光の出射方向を変えて、前記装置設置面に対し略平行に走査する走査部と、
     前記対象物からの反射光を受光する受光部と、
     前記発光部の光路と前記受光部の光路を光学的に分離する遮光部と、
     前記発光部から出射光を出射した第1の時間と、前記対象物からの反射光を受光した第2の時間との時間差に基づいて前記対象物との距離を測定する測距部と、
     前記発光部、前記走査部、および前記測距部を制御するとともに、前記走査部による前記出射光の出射方向と、前記測距部が測定した距離から前記対象物の位置情報を算出する制御部と、を備え、
     前記映像投写装置は、
     映像画面を投写して表示する映像投写部と、
     前記映像投写部に対して映像信号と制御信号を出力する映像制御部と、を備え、
     前記光測距装置は、前記制御部により算出した前記対象物の位置情報を通信部を介して前記映像制御部に送信し、
     前記映像制御部は、受信した前記対象物の位置情報に基づき前記映像投写部の投写動作を制御することを特徴とする映像投写装置。
    An image projection device including an optical distance measuring device for measuring a distance from an object,
    The optical distance measuring device is
    A light emitting unit that is disposed in proximity to the device installation surface of the optical distance measuring device and emits outgoing light to the object;
    A scanning unit that changes the emission direction of the emitted light from the light emitting unit and scans substantially parallel to the device installation surface;
    A light receiving unit for receiving reflected light from the object;
    A light shielding unit for optically separating the light path of the light emitting unit and the light path of the light receiving unit;
    A distance measuring unit for measuring a distance from the object based on a time difference between a first time when the emitted light is emitted from the light emitting unit and a second time when the reflected light from the object is received;
    A control unit that controls the light emitting unit, the scanning unit, and the distance measuring unit, and calculates position information of the target object from an emission direction of the emitted light by the scanning unit and a distance measured by the distance measuring unit. And comprising
    The video projector is
    A video projection unit that projects and displays a video screen;
    A video control unit that outputs a video signal and a control signal to the video projection unit,
    The optical distance measuring device transmits the position information of the object calculated by the control unit to the video control unit via a communication unit,
    The image projection apparatus, wherein the image control unit controls a projection operation of the image projection unit based on the received position information of the object.
  9.  請求項8記載の映像投写装置であって、
     前記映像投写部は前記映像画面を前記映像投写装置の設置面に投写し、
     前記光測距装置は前記映像投写装置に内蔵され、前記設置面上における前記対象物の位置を算出することを特徴とする映像投写装置。
    The image projection device according to claim 8, wherein
    The image projection unit projects the image screen onto an installation surface of the image projection device,
    The optical distance measuring device is incorporated in the image projection device, and calculates the position of the object on the installation surface.
PCT/JP2016/067156 2016-06-09 2016-06-09 Optical distance-measurement device and image projection device provided with same WO2017212601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067156 WO2017212601A1 (en) 2016-06-09 2016-06-09 Optical distance-measurement device and image projection device provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067156 WO2017212601A1 (en) 2016-06-09 2016-06-09 Optical distance-measurement device and image projection device provided with same

Publications (1)

Publication Number Publication Date
WO2017212601A1 true WO2017212601A1 (en) 2017-12-14

Family

ID=60578601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067156 WO2017212601A1 (en) 2016-06-09 2016-06-09 Optical distance-measurement device and image projection device provided with same

Country Status (1)

Country Link
WO (1) WO2017212601A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673508B (en) * 2018-06-11 2019-10-01 視銳光科技股份有限公司 Time-of-flight device and method for identifying image using time-of-flight device
US11403872B2 (en) 2018-06-11 2022-08-02 Sray-Tech Image Co., Ltd. Time-of-flight device and method for identifying image using time-of-flight device
CN115800986A (en) * 2023-02-01 2023-03-14 昆明理工大学 High-efficient correlation type photoelectric switch based on non-imaging spotlight effect
JP7475145B2 (en) 2020-01-09 2024-04-26 日本信号株式会社 Electromagnetic wave detector and scanner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010233A (en) * 1996-06-24 1998-01-16 Mitsui Eng & Shipbuild Co Ltd Method for laser obstruction detection and sensor therefor
JPH10325872A (en) * 1997-05-23 1998-12-08 Mitsubishi Electric Corp Light radar device
JP2005533463A (en) * 2002-06-26 2005-11-04 ヴイケイビー・インコーポレーテッド Multi-function integrated image sensor and application to virtual interface technology
JP2009258569A (en) * 2008-04-21 2009-11-05 Ricoh Co Ltd Electronic device
JP2011141261A (en) * 2009-12-08 2011-07-21 Denso Wave Inc Laser radar device
JP2011197575A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Optical scanner and distance measuring device
JP2011215005A (en) * 2010-03-31 2011-10-27 Hokuyo Automatic Co Signal processor and scan type range finder
JP2012083871A (en) * 2010-10-08 2012-04-26 Funai Electric Co Ltd Projector
WO2015045125A1 (en) * 2013-09-27 2015-04-02 日立マクセル株式会社 Video projection device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010233A (en) * 1996-06-24 1998-01-16 Mitsui Eng & Shipbuild Co Ltd Method for laser obstruction detection and sensor therefor
JPH10325872A (en) * 1997-05-23 1998-12-08 Mitsubishi Electric Corp Light radar device
JP2005533463A (en) * 2002-06-26 2005-11-04 ヴイケイビー・インコーポレーテッド Multi-function integrated image sensor and application to virtual interface technology
JP2009258569A (en) * 2008-04-21 2009-11-05 Ricoh Co Ltd Electronic device
JP2011141261A (en) * 2009-12-08 2011-07-21 Denso Wave Inc Laser radar device
JP2011197575A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Optical scanner and distance measuring device
JP2011215005A (en) * 2010-03-31 2011-10-27 Hokuyo Automatic Co Signal processor and scan type range finder
JP2012083871A (en) * 2010-10-08 2012-04-26 Funai Electric Co Ltd Projector
WO2015045125A1 (en) * 2013-09-27 2015-04-02 日立マクセル株式会社 Video projection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673508B (en) * 2018-06-11 2019-10-01 視銳光科技股份有限公司 Time-of-flight device and method for identifying image using time-of-flight device
US11403872B2 (en) 2018-06-11 2022-08-02 Sray-Tech Image Co., Ltd. Time-of-flight device and method for identifying image using time-of-flight device
JP7475145B2 (en) 2020-01-09 2024-04-26 日本信号株式会社 Electromagnetic wave detector and scanner
CN115800986A (en) * 2023-02-01 2023-03-14 昆明理工大学 High-efficient correlation type photoelectric switch based on non-imaging spotlight effect

Similar Documents

Publication Publication Date Title
US8690337B2 (en) Device and method for displaying an image on a VUI screen and also a main projection screen
JP5277703B2 (en) Electronics
US8491135B2 (en) Interactive projection with gesture recognition
US8408720B2 (en) Image display apparatus, image display method, and recording medium having image display program stored therein
JP5509689B2 (en) projector
US20140118704A1 (en) Mobile Device, Case and Attachment with Retractable Optic
EP3051345B1 (en) Video projection device
US20120218225A1 (en) Optical scanning type touch apparatus and operation method thereof
US20110164191A1 (en) Interactive Projection Method, Apparatus and System
US8791925B2 (en) Coordinate input apparatus, control method therefor and program
US20140078516A1 (en) Position Detection Apparatus and Image Display Apparatus
WO2017212601A1 (en) Optical distance-measurement device and image projection device provided with same
WO2017060943A1 (en) Optical ranging device and image projection apparatus
WO2013111376A1 (en) Interface device and method for driving interface device
US8890851B2 (en) Optical position detection device and display system with input function
JP2003276399A (en) Position detecting method and device and electronic blackboard device
TW201327324A (en) Optical touch control module
CN101504580A (en) Optical touch screen and its touch pen
JP5804119B2 (en) projector
CN102298471A (en) Optical touch screen
TW201327325A (en) Optical touch control module
US9189106B2 (en) Optical touch panel system and positioning method thereof
JP2012032984A (en) Position detector
CN102253768A (en) Touch screen with light source
JP6225964B2 (en) Projector and display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP