WO2017063508A1 - 抽气装置及溴化锂机组 - Google Patents

抽气装置及溴化锂机组 Download PDF

Info

Publication number
WO2017063508A1
WO2017063508A1 PCT/CN2016/101025 CN2016101025W WO2017063508A1 WO 2017063508 A1 WO2017063508 A1 WO 2017063508A1 CN 2016101025 W CN2016101025 W CN 2016101025W WO 2017063508 A1 WO2017063508 A1 WO 2017063508A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
pipe
lithium bromide
liquid separator
Prior art date
Application number
PCT/CN2016/101025
Other languages
English (en)
French (fr)
Inventor
王娟
王升
刘华
张治平
董小林
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2017063508A1 publication Critical patent/WO2017063508A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to the field of refrigeration, and more particularly to an air extraction device and a lithium bromide unit.
  • the vacuum degree of the unit itself is very high, because once the unit's own vacuum is destroyed, the output of the unit will be greatly attenuated.
  • one or more sets of suction devices are usually arranged in the lithium bromide unit for extracting non-condensable gas inside the unit.
  • the existing air suction device for the lithium bromide unit mainly comprises an ejector, a gas-liquid separator, a gas collecting box and a vacuum pump.
  • the discharge pipe of the ejector is connected to the inlet of the gas-liquid separator, and the lithium bromate solution is used for the ejector.
  • the ejector gas is connected to the inlet of the gas-liquid separator with a pipeline extending toward the bottom of the gas-liquid separator.
  • the gas outlet of the gas-liquid separator is connected to the gas collecting tank, and the gas collecting tank is connected to the vacuum pump.
  • the working principle of the air extracting device is that the ejector is used to introduce the gas (including non-condensable gas and water vapor) in the unit into the gas-liquid separator, and filter the water vapor through the lithium bromide solution in the gas-liquid separator.
  • the non-condensable gas enters the gas collecting box and is stored, and the excess solution can flow out from the liquid outlet of the gas-liquid separator.
  • the vacuum pump is turned on to collect gas. The box is pumped.
  • An object of the present invention is to provide an air suction device for solving the problem that the suction device of the prior art has a malfunction of the air suction device due to the water vapor in the air collection box entering the vacuum pump and the service life of the vacuum pump is low.
  • Another object of the present invention is to provide a lithium bromide unit.
  • the invention provides an air suction device for a lithium bromide unit, comprising: connecting with a vacuum extraction device
  • the gas collecting box is provided with a condenser pipe for circulating a cooling medium.
  • portion of the condensation tube located in the gas collection box is bent or straight, and/or the portion of the condensation tube located in the gas collection box is provided with fins.
  • the vacuum extraction device includes a vacuum pump connected to the gas collection tank through an air suction pipe, and an interface between the air suction pipe and the gas collection box is located above the condensation pipe.
  • the condensing pipe is connected to the cooling water circuit of the lithium bromide unit, or the condensing pipe is connected to the refrigerant water circuit of the lithium bromide unit.
  • the air suction device further includes: a gas-liquid separator disposed under the gas collection box, wherein the gas outlet of the gas-liquid separator and the bottom of the gas collection tank are connected by the first communication pipe.
  • the air suction device further includes an ejector, the suction pipe of the ejector is in communication with the gas in the lithium bromide unit, and the discharge pipe of the ejector is connected to the inlet of the gas-liquid separator.
  • a pipe extending toward the bottom of the gas-liquid separator is connected to the inlet of the gas-liquid separator, and the liquid outlet of the gas-liquid separator is connected to the solution of the lithium bromide unit through the first liquid return pipe.
  • the air suction device further includes: a separation tank, a liquid sealing tube and a second communication tube; the top of the separation tank has a gas outlet, the bottom has a liquid inlet and a liquid outlet; and one end of the liquid sealing tube and the gas-liquid separator
  • the liquid port is connected, and the other end extends from the liquid inlet of the separation tank to a predetermined height inside the separation tank; the gas outlet of the separation tank is connected to the suction pipe of the ejector through the second communication pipe, and the liquid outlet of the separation tank passes the second time
  • the liquid pipe is connected to the solution of the lithium bromide unit; the inlet of the gas-liquid separator is connected with a pipe extending toward the bottom of the gas-liquid separator.
  • the liquid sealing tube includes: a first section located inside the separation tank, and a second section connected between the gas-liquid separator and the separation tank; the first section and the second section are separated structures.
  • the invention also provides a lithium bromide unit, which is provided with the above-mentioned air suction device.
  • the air suction device provided by the invention adopts a technical scheme in which a condensing pipe is disposed in a gas collecting box, and a condensing pipe is used for introducing a flowing cooling medium, so that even when a small amount of water vapor is non-condensing when the air extracting device operates
  • the gas enters the gas collecting box, and under the condensation of the cooling medium in the condensing pipe, the water vapor is easily cooled down to become condensed water, which is collected at the bottom of the gas collecting box and is not easily pumped into the vacuum pump, thereby reducing the water vapor.
  • the vacuum pump causes the occurrence of emulsification of the vacuum pump oil, and reduces the frequency of malfunction of the suction device caused by water vapor, thereby improving the service life of the vacuum pump and prolonging the replacement of the vacuum pump oil. Cycles, as well as the technical effects of improving the stability of the pumping unit.
  • FIG. 1 is a schematic view showing a schematic diagram of an air suction device according to a first embodiment of the present invention
  • Fig. 2 is a schematic view showing the principle of the air suction device provided by the second embodiment of the present invention.
  • the air suction device includes a gas collection box 1 connected to a vacuum extraction device, and a condensation tube 2 for circulating a cooling medium is disposed in the gas collection box 1.
  • the vacuum extraction device usually includes a vacuum pump (not shown), and the vacuum pump can be connected to the gas collection box 1 through the suction line 12, and the suction device can usually further include an ejector 3 and a gas-liquid separator. 4, etc., when the lithium bromide unit is working, the vacuum in the unit is maintained by the air suction device.
  • the air suction device provided by the embodiment of the present invention has a technical solution for introducing a condensing pipe 2 in the gas collecting box 1 and a cooling medium for flowing into the condensing pipe 2, so that even if the air suction device is in operation, A small amount of water vapor enters the gas collection tank 1 along with the non-condensable gas.
  • the water vapor in the gas collection tank 1 is easily cooled to become condensed water, and is collected in the gas collection box 1
  • the bottom is not easily pumped into the vacuum pump, which reduces the possibility of emulsification of the vacuum pump oil due to the entry of water vapor into the vacuum pump, and reduces the probability of malfunction of the suction device due to water vapor, thereby achieving an increase in the vacuum pump.
  • the portion of the condensing pipe 1 located in the gas collecting box 1 in the present embodiment is a straight pipe for manufacturing and installation.
  • the condenser tube 1 can be one or a plurality of tubes.
  • the portion of the condensation tube 2 located in the gas collection box 1 may be bent, and/or the portion of the condensation tube 2 in the gas collection box 1 A fin is provided thereon, and the condensation effect of the water vapor in the gas collection tank 1 is enhanced by increasing the area of the condensation pipe 2 located in the gas collection box 1.
  • the interface of the suction line 12 connected to the gas collection box 1 is preferably located above the entire condensation tube 2, so that it is advantageous to prevent the non-condensable gas inside the gas collection box 1 from being sucked in the upper part of the gas collection box 1.
  • the condensed water is emulsified by the pump oil pumped into the vacuum pump, further improving the stability of the vacuum pump.
  • the cooling medium flowing through the condenser 2 may be tap water or other liquid as long as it can flow through the condenser 2 and facilitate condensation of water vapor in the header tank 1.
  • the condensing tube 2 can be connected to the coolant water circuit (also referred to as a refrigerant water circuit) of the lithium bromide unit, or the condensing tube 2 can be connected to the cooling water circuit of the lithium bromide unit.
  • the gas-liquid separator 4 includes an inlet 41, an air outlet 42 and a liquid outlet 43.
  • a preferred arrangement of the gas-liquid separator 4 is shown.
  • the gas-liquid separator 4 is disposed below the gas collection tank 1, and the gas in the unit enters the gas-liquid separator 4 through the inlet 41.
  • the gas outlet 42 of the gas-liquid separator 4 is connected to the bottom of the gas collection tank 1 through a first communication pipe 11, and the first communication pipe 11 is preferably vertically arranged.
  • the gas filtered by the gas-liquid separator 4 can be stored in the gas collecting tank 1 through the first communication pipe 11, and the condensed water collected at the bottom of the gas collecting tank 1 can flow to the gas-liquid through the first communicating pipe 11.
  • the inside of the separator 4 can flow out through the liquid outlet 43 of the gas-liquid separator 4, and the possibility that the condensed water in the gas collection tank 1 is extracted by the vacuum pump can be further reduced.
  • a lithium bromide solution may be injected into the bottom of the gas-liquid separator 4, and a pipe (not labeled) extending toward the bottom of the gas-liquid separator 4 is connected to the inlet 41 of the gas-liquid separator 4.
  • the pipeline extends below the liquid level of the lithium bromide solution, and the lithium bromide solution can absorb the water vapor in the gas, and can also absorb the condensed water flowing down from the first communication pipe 11, and the liquid outlet 43 of the gas-liquid separator 4 passes through the first
  • the liquid return pipe 61 communicates with the lithium bromide solution of the lithium bromide unit, so that the condensed water in the gas collecting tank 1 can be returned to the unit for repeated circulation, thereby reducing the loss of the refrigerant water inside the unit and reducing the waste of the coolant water in the unit.
  • the ejector 3 includes a suction pipe 31 and a discharge pipe 32. Also shown in this embodiment is a preferred arrangement of the ejector 3, the suction tube 31 of the ejector 3 being in communication with the gas within the lithium bromide unit, the ejector 3
  • the discharge pipe 32 is connected to the inlet 41 of the gas-liquid separator 4, and the nozzle of the ejector 3 (not shown) can eject the lithium bromide solution into the gas-liquid separator 4 through the discharge pipe 32 while using the lithium bromide solution.
  • the gas in the suction pipe 31 is introduced into the discharge pipe 32 to enter the gas-liquid separator 4.
  • the lithium bromide solution can be automatically injected into the gas-liquid separator 4, so that the gas in the unit is first filtered through the gas-liquid separator 4 and then enters the gas collecting box 1 to reduce the amount of water vapor entering the gas collecting box 1. .
  • FIG. 2 is a schematic diagram showing the air extracting device according to the second embodiment of the present invention.
  • the difference from the first embodiment is mainly that the separating tank 5 and the liquid sealing tube 71 are added.
  • the structure of the two communication tubes 72 and the second liquid return tube 73 is removed, and the first liquid return tube 61 is removed.
  • the separation tank 5 can withstand a large pressure with a gas outlet 52 at the top and a liquid inlet 51 and a liquid outlet 53 at the bottom, it being understood that the bottom of the separation tank 5 refers to the lower region of the separation tank 5,
  • the liquid outlet 53 is higher than the liquid inlet 51.
  • liquid sealing tube 71 is connected to the liquid outlet 43 of the gas-liquid separator 4, the other end extends from the liquid inlet 51 of the separation tank 5 to a predetermined height inside the separation tank 5; the gas outlet 52 of the separation tank 5 passes through the second communication.
  • the tube 72 is connected to the suction pipe 31 of the ejector 3, and the liquid outlet 53 of the separation tank 5 is communicated with the lithium bromide solution of the lithium bromide unit through the second liquid return pipe 73.
  • the lithium bromide solution flowing out from the liquid outlet 43 of the gas-liquid separator 4 enters the separation tank 5 through the liquid sealing tube 71, and can be returned to the lithium bromide solution of the unit through the liquid outlet 53 and the second liquid return pipe 73, if The non-condensable gas is raised to the upper region of the separation tank 5, and is separated into the gas-liquid separator 4 via the second communication tube 72 and the ejector 3, thereby facilitating the reduction of the non-condensation in the solution in the return unit.
  • the content of gas is provided.
  • the liquid sealing tube 71 includes a first section located inside the separation tank 5, and a second section connected between the gas-liquid separator 4 and the separation tank 5, the first section and the second section being of a split structure.
  • the first section can be mounted with the separation tank 5, and the second section can be detachably connected to the gas-liquid separator 4 and the separation tank 5, respectively, thereby reducing the assembly difficulty of the extraction device.
  • the embodiment of the invention further provides a lithium bromide unit, which is provided with the above-mentioned air suction device.
  • the bucking device provided by the embodiment of the present invention can achieve the above technical effects, and the lithium bromide unit to which the pumping device is applied should also have corresponding technical effects, and details are not described herein again.

Abstract

一种抽气装置及溴化锂机组。该抽气装置用于溴化锂机组,包括与真空抽取装置连接的集气箱(1),集气箱(1)中设置有用于流通冷却介质的冷凝管(2)。该抽气装置提高了真空泵的使用寿命,延长了真空泵油的更换周期,提高了抽气装置工作稳定性。

Description

抽气装置及溴化锂机组 技术领域
本发明涉及制冷领域,更具体地,涉及一种抽气装置及溴化锂机组。
背景技术
溴化锂机组中,为了维持机组的制冷和采暖能力,对机组自身的真空度的要求很高,因为一旦机组自身真空度遭到破坏,机组的出力将大幅度衰减。当前,为了保证机组的真空度,通常在溴化锂机组中布置有一套或多套抽气装置,用于抽取机组内部的不凝性气体。
现有的用于溴化锂机组的抽气装置主要包括引射器、气液分离器、集气箱和真空泵,通常,引射器的排出管与气液分离器的进口相连,引射器用溴化锂溶液引射气体,气液分离器的进口内连接有朝向气液分离器底部延伸的管路,气液分离器的出气口与集气箱相连,集气箱与真空泵相连。该抽气装置的工作原理是:引射器用于将机组内的气体(包括不凝性气体和水蒸气)引射入气液分离器中,通过气液分离器内溴化锂溶液对水蒸气的过滤,不凝性气体进入集气箱中并被存储起来,多出的溶液可以从气液分离器的出液口流出,当集气箱内压力升高到一定压力时,则开启真空泵对集气箱进行抽气。但该抽气装置在实际应用过程中,仍会有部分水蒸气与不凝性气体一起进入到集气箱中,进入集气箱内的水蒸气随着真空泵的抽气动作进入到真空泵中后发生液化,容易致使真空泵泵油乳化,不但严重影响真空泵的使用寿命,还容易发生由于水蒸气引起的抽气装置动作不良的异常情况。
发明内容
本发明的一个目的在于提供一种抽气装置,以解决现有技术的抽气装置由于集气箱内的水蒸气进入真空泵,导致的抽气装置动作不良、真空泵使用寿命低的问题。本发明的另一个目的在于提供一种溴化锂机组。
本发明提供的一种抽气装置,用于溴化锂机组,包括:与真空抽取装置连接 的集气箱,集气箱中设置有用于流通冷却介质的冷凝管。
进一步地,冷凝管位于集气箱内的部分呈弯折形或为直管,和/或,冷凝管位于集气箱内的部分上设置有翅片。
进一步地,真空抽取装置包括通过抽气管路与集气箱连接的真空泵,抽气管路与集气箱的接口位于冷凝管的上方。
进一步地,冷凝管与溴化锂机组的冷却水回路接通,或者,冷凝管与溴化锂机组的冷剂水回路接通。
进一步地,该抽气装置还包括:设置在集气箱下方的气液分离器,气液分离器的出气口与集气箱的底部通过第一连通管连接。
进一步地,该抽气装置还包括引射器,引射器的吸入管与溴化锂机组内的气体连通,引射器的排出管与气液分离器的进口连接。
进一步地,气液分离器的进口内连接有朝向气液分离器底部延伸的管路,气液分离器的出液口通过第一回液管与溴化锂机组的溶液连通。
进一步地,该抽气装置还包括:分离罐、液封管和第二连通管;分离罐的顶部具有气体出口,底部具有液体入口和液体出口;液封管的一端与气液分离器的出液口连接,另一端从分离罐的液体入口伸入到分离罐内部的预定高度;分离罐的气体出口通过第二连通管与引射器的吸入管连接,分离罐的液体出口通过第二回液管与溴化锂机组的溶液连通;气液分离器的进口内连接有朝向气液分离器底部延伸的管路。
进一步地,液封管包括:位于分离罐内部的第一段,以及,连接在气液分离器和分离罐之间的第二段;第一段和第二段为分体式结构。
本发明还提供了一种溴化锂机组,该溴化锂机组设置有上述的抽气装置。
本发明提供的抽气装置采用在集气箱中穿设有冷凝管,冷凝管用于通入流动的冷却介质的技术方案,这样,当抽气装置工作时,即使有少量水蒸气随不凝性气体进入到集气箱中,在冷凝管内冷却介质的冷凝作用下,水蒸气极易冷却下来成为冷凝水,聚集在集气箱底部而不容易被抽到真空泵内,也就降低了因水蒸气进入真空泵导致真空泵泵油乳化的发生几率,以及降低了由于水蒸气导致的抽气装置动作不良的频率,从而达到了提高真空泵的使用寿命,延长真空泵油的更换 周期,以及提高抽气装置工作稳定性的技术效果。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示意性示出了本发明第一实施例提供的抽气装置的原理图;
图2示意性示出了本发明第二实施例提供的抽气装置的原理图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
参见图1,示出了本发明第一实施例提供的抽气装置的原理图,该抽气装置用于溴化锂机组,以抽取机组内的气体(主要是不凝性气体)。如图1所示,该抽气装置包括与真空抽取装置连接的集气箱1,集气箱1中穿设设置有用于流通冷却介质的冷凝管2。结合现有技术可知,真空抽取装置通常包括真空泵(图中未示出),真空泵可以通过抽气管路12与集气箱1连接,抽气装置通常还可以包括引射器3、气液分离器4等结构,溴化锂机组工作时,通过抽气装置来维持机组内的真空度。
本发明实施例提供的抽气装置,通过在集气箱1中穿设有冷凝管2,冷凝管2中用于通入流动的冷却介质的技术方案,使得抽气装置在工作时,即使有少量水蒸气随不凝性气体进入到集气箱1中,在冷凝管2内冷却介质的冷凝作用下,集气箱1内的水蒸气极易冷却下来成为冷凝水,聚集在集气箱1底部而不容易被抽到真空泵内,也就降低了因水蒸气进入真空泵导致真空泵泵油乳化的可能性,以及降低了由于水蒸气导致的抽气装置动作不良的发生几率,从而达到了提高真空泵的使用寿命,延长真空泵油的更换周期,以及提高抽气装置工作稳定性的技术效果。
由图1中可以看出,本实施例中冷凝管1位于集气箱1内的部分为直管,以便于制造和安装。可以理解,冷凝管1可以为一根,也可以为多根。优选地,在 其他实施例中,为加强集气箱1内水蒸气的冷凝效果,可以使冷凝管2位于集气箱1内的部分呈弯折形,和/或,集气箱1内的冷凝管2部分上设置有翅片,通过增大冷凝管2位于集气箱1内的面积,以增强集气箱1内水蒸气的冷凝效果。另外,抽气管路12与集气箱1相连接的接口优选地位于整个冷凝管2的上方,这样,通过在集气箱1上部抽吸集气箱1内部的不凝性气体,有利于防止冷凝水被抽进真空泵造成的泵油乳化,进一步提高了真空泵的稳定性。
冷凝管2内流通的冷却介质可以为自来水或者其他液体,只要能够在冷凝管2中流通且利于使集气箱1内的水蒸气冷凝即可。在其他优选实施方式中,可以将冷凝管2与溴化锂机组的冷剂水回路(也可以称为冷媒水回路)接通,或者,将冷凝管2与溴化锂机组的冷却水回路接通,这样,利用溴化锂机组自身应用到的冷剂水或者冷却水作为冷却介质,可以简化结构,降低成本。
所述气液分离器4包括进口41、出气口42和出液口43。本实施例中示出了气液分离器4的优选布置方式,如图1所示,气液分离器4设置于集气箱1的下方,机组内气体通过进口41进入气液分离器4内,气液分离器4的出气口42与集气箱1的底部通过第一连通管11连接,第一连通管11优选为竖直布置。这样,经气液分离器4过滤的气体可以通过第一连通管11进入集气箱1内储存起来,而聚集在集气箱1底部的冷凝水则可以通过第一连通管11流至气液分离器4内,并可以通过气液分离器4的出液口43流出,进一步降低集气箱1内的冷凝水被真空泵抽出的可能性。当然,在其他实施例中,还可以通过在集气箱1的底部连通其他的管路以便于将气液分离器4内的液体引出。优选地,本实施例中,可以在气液分离器4的底部注入溴化锂溶液,气液分离器4的进口41内连接有朝向气液分离器4底部延伸的管路(图中未标号),该管路伸入到溴化锂溶液的液面以下,溴化锂溶液可以吸收气体中的水蒸气,也可以吸收由第一连通管11流下的冷凝水,气液分离器4的出液口43通过第一回液管61与溴化锂机组的溴化锂溶液连通,使得集气箱1内的冷凝水可以回流到机组内重复循环,从而减少机组内部冷剂水的损失,降低机组内冷剂水的浪费。
所述引射器3包括吸入管31和排出管32。本实施例中还示出了引射器3的优选布置方式,引射器3的吸入管31与溴化锂机组内的气体连通,引射器3的 排出管32与气液分离器4的进口41连接,引射器3的喷咀(图中未示出)可以将溴化锂溶液通过排出管32喷射入气液分离器4中,同时用溴化锂溶液将吸入管31内的气体引射到排出管32中以进入气液分离器4内。这样,可以自动持续向气液分离器4内注入溴化锂溶液,使得机组内的气体首先经过气液分离器4过滤后进入集气箱1内,有利于降低进入集气箱1内的水蒸气量。
下面参见图2,图2示出了本发明第二实施例提供的抽气装置的原理图,与上述第一实施例的不同之处主要有:增加了分离罐5、液封管71、第二连通管72和第二回液管73的结构,并去掉了第一回液管61。具体地,分离罐5可以承受较大的压强,其顶部具有气体出口52,底部具有液体入口51和液体出口53,可以理解,该处分离罐5的底部指的是分离罐5的下部区域,优选地,液体出口53高于液体入口51。液封管71的一端与气液分离器4的出液口43连接,另一端从分离罐5的液体入口51伸入到分离罐5内部预定高度;分离罐5的气体出口52通过第二连通管72与引射器3的吸入管31连接,分离罐5的液体出口53通过第二回液管73与溴化锂机组的溴化锂溶液连通。这样,从气液分离器4出液口43流出的溴化锂溶液经过液封管71进入到分离罐5内,并可以通过液体出口53和第二回液管73回流到机组的溴化锂溶液中,如果含有不凝性气体则上升到分离罐5的上部区域,并经由第二连通管72、引射器3进入气液分离器4中再次分离,从而有利于降低返回机组内溶液中的不凝性气体的含量。
优选地,液封管71包括位于分离罐5内部的第一段,以及,连接在气液分离器4和分离罐5之间的第二段,第一段和第二段为分体式结构。优选地,第一段可以和分离罐5安装在一起,第二段可以与气液分离器4和分离罐5分别为可拆卸连接,从而降低抽取装置的装配难度。
本发明实施例还提供了一种溴化锂机组,该溴化锂机组设置有上述的抽气装置。因本发明实施例提供的抽气装置可以达到上述技术效果,应用有该抽气装置的溴化锂机组也应具备相应的技术效果,在此不再赘述。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种抽气装置,用于溴化锂机组,其特征在于,包括:与真空抽取装置连接的集气箱,所述集气箱中设置有用于流通冷却介质的冷凝管。
  2. 根据权利要求1所述的抽气装置,其特征在于,所述冷凝管位于所述集气箱内的部分呈弯折形或为直管,和/或,所述冷凝管位于所述集气箱内的部分上设置有翅片。
  3. 根据权利要求1所述的抽气装置,其特征在于,所述真空抽取装置包括通过抽气管路与所述集气箱连接的真空泵,所述抽气管路与所述集气箱的接口位于所述冷凝管的上方。
  4. 根据权利要求1所述的抽气装置,其特征在于,所述冷凝管与所述溴化锂机组的冷却水回路接通,或者,所述冷凝管与所述溴化锂机组的冷剂水回路接通。
  5. 根据权利要求1至4中任一项所述的抽气装置,其特征在于,还包括:设置在所述集气箱下方的气液分离器,所述气液分离器的出气口与所述集气箱的底部通过第一连通管连接。
  6. 根据权利要求5所述的抽气装置,其特征在于,还包括引射器,所述引射器的吸入管与所述溴化锂机组内的气体连通,所述引射器的排出管与所述气液分离器的进口连接。
  7. 根据权利要求6所述的抽气装置,其特征在于,所述气液分离器的进口内连接有朝向所述气液分离器底部延伸的管路,所述气液分离器的出液口通过第一回液管与所述溴化锂机组的溶液连通。
  8. 根据权利要求6所述的抽气装置,其特征在于,还包括:分离罐、液封管和第二连通管;
    所述分离罐的顶部具有气体出口,底部具有液体入口和液体出口;
    所述液封管的一端与所述气液分离器的出液口连接,另一端从所述分离罐的液体入口伸入到所述分离罐内部的预定高度;
    所述分离罐的气体出口通过第二连通管与所述引射器的吸入管连接,所述分 离罐的液体出口通过第二回液管与所述溴化锂机组的溶液连通;
    所述气液分离器的进口内连接有朝向所述气液分离器底部延伸的管路。
  9. 根据权利要求8所述的抽气装置,其特征在于,所述液封管包括:位于所述分离罐内部的第一段,以及,连接在所述气液分离器和所述分离罐之间的第二段;所述第一段和所述第二段为分体式结构。
  10. 一种溴化锂机组,其特征在于,设置有权利要求1至9中任一项所述的抽气装置。
PCT/CN2016/101025 2015-10-15 2016-09-30 抽气装置及溴化锂机组 WO2017063508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510673175.3A CN105241139B (zh) 2015-10-15 2015-10-15 抽气装置及溴化锂机组
CN201510673175.3 2015-10-15

Publications (1)

Publication Number Publication Date
WO2017063508A1 true WO2017063508A1 (zh) 2017-04-20

Family

ID=55038881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101025 WO2017063508A1 (zh) 2015-10-15 2016-09-30 抽气装置及溴化锂机组

Country Status (2)

Country Link
CN (1) CN105241139B (zh)
WO (1) WO2017063508A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241139B (zh) * 2015-10-15 2018-03-13 珠海格力电器股份有限公司 抽气装置及溴化锂机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2235592Y (zh) * 1995-10-16 1996-09-18 沈晓东 二级分离式自动抽气装置
CN2280251Y (zh) * 1996-11-28 1998-04-29 衡阳市经发制冷空调实业有限公司 吸收式自动抽气装置
JP2006057874A (ja) * 2004-08-17 2006-03-02 Osaka Gas Co Ltd 吸収式冷凍機
CN105241139A (zh) * 2015-10-15 2016-01-13 珠海格力电器股份有限公司 抽气装置及溴化锂机组
CN205090688U (zh) * 2015-10-15 2016-03-16 珠海格力电器股份有限公司 抽气装置及溴化锂机组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2434624Y (zh) * 2000-07-27 2001-06-13 天津宝成集团有限公司 溴化锂吸收式制冷机自动抽气装置与高位水箱联动装置
JP4159310B2 (ja) * 2002-05-21 2008-10-01 三洋電機株式会社 抽気装置
KR100955610B1 (ko) * 2008-01-11 2010-05-03 주식회사 신성엔지니어링 소형 흡수식 냉난방기의 불응축가스 추기장치
CN202119171U (zh) * 2010-08-31 2012-01-18 希望深蓝空调制造有限公司 一种设置集气槽的不凝性气汇集装置
CN102563949B (zh) * 2012-03-19 2013-09-18 北京华源泰盟节能设备有限公司 一种抽真空方法及其设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2235592Y (zh) * 1995-10-16 1996-09-18 沈晓东 二级分离式自动抽气装置
CN2280251Y (zh) * 1996-11-28 1998-04-29 衡阳市经发制冷空调实业有限公司 吸收式自动抽气装置
JP2006057874A (ja) * 2004-08-17 2006-03-02 Osaka Gas Co Ltd 吸収式冷凍機
CN105241139A (zh) * 2015-10-15 2016-01-13 珠海格力电器股份有限公司 抽气装置及溴化锂机组
CN205090688U (zh) * 2015-10-15 2016-03-16 珠海格力电器股份有限公司 抽气装置及溴化锂机组

Also Published As

Publication number Publication date
CN105241139A (zh) 2016-01-13
CN105241139B (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
CN104359248B (zh) 一种制冷系统冷冻油调节系统
WO2017063508A1 (zh) 抽气装置及溴化锂机组
CN2879085Y (zh) 真空提取浓缩包装机的冷凝装置
CN110715561A (zh) 一种基于前置冷凝式汽气分离装置的水环真空泵系统
CN107062933A (zh) 一种高效的节能型凝汽器蒸汽喷射真空系统及其换热器的换热方法
CN202659524U (zh) 真空机组
CN207113648U (zh) 一种高效的节能型凝汽器蒸汽喷射真空系统
CN202048805U (zh) 一种滤油机用冷凝器
CN108894989A (zh) 一种中高压螺杆压缩机
CN108786159A (zh) 一种外循环蒸发器
CN204240644U (zh) 一种制冷系统冷冻油调节系统
CN213110764U (zh) 一种低沸点物料储存系统
CN206508600U (zh) 一种高效直抽真空装置
CN205090688U (zh) 抽气装置及溴化锂机组
CN209442690U (zh) 一种新型太阳能海水淡化装置
CN208785784U (zh) 一种外循环蒸发器
CN208669592U (zh) 一种中高压螺杆压缩机
CN106705470B (zh) 一种满液式制冷机组
CN206860556U (zh) 一种射水式抽气器的供水系统
CN206626979U (zh) 一种海水淡化用多级凝汽器逆向冷却不凝气系统
CN206564174U (zh) 移动汽相干燥和变压器油净化一体机
CN220304311U (zh) 一种二次冷凝缓冲装器
CN105944400B (zh) 冷冻站不凝气排放过程中有效回收丙烯的分离系统及工艺
CN105674609A (zh) 一种热回收器结构及风冷热泵机组
CN213335063U (zh) 一种制冷系统及其不凝性气体分离装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854887

Country of ref document: EP

Kind code of ref document: A1