WO2017061638A1 - Mems device, mems package comprising same and user terminal - Google Patents

Mems device, mems package comprising same and user terminal Download PDF

Info

Publication number
WO2017061638A1
WO2017061638A1 PCT/KR2015/010530 KR2015010530W WO2017061638A1 WO 2017061638 A1 WO2017061638 A1 WO 2017061638A1 KR 2015010530 W KR2015010530 W KR 2015010530W WO 2017061638 A1 WO2017061638 A1 WO 2017061638A1
Authority
WO
WIPO (PCT)
Prior art keywords
mems device
masses
mems
capacitance
moving electrodes
Prior art date
Application number
PCT/KR2015/010530
Other languages
French (fr)
Korean (ko)
Inventor
문상희
임근배
석세영
서평보
이종성
Original Assignee
주식회사 스탠딩에그
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스탠딩에그 filed Critical 주식회사 스탠딩에그
Priority to PCT/KR2015/010530 priority Critical patent/WO2017061638A1/en
Publication of WO2017061638A1 publication Critical patent/WO2017061638A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B5/00Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/14Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of gyroscopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the present invention relates to a MEMS device, and more particularly, to a comb-type sensing type MEMS device, a MEMS package including the same, and a user terminal.
  • MEMS Micro Electro Mechanical Systems
  • military applications such as satellites, missiles, and unmanned aerial vehicles, and for camera shake, mobile phones, cameras, camcorders, and mobile phones, such as air bags, electronic stability controls, and black boxes for vehicles. It is used for various purposes such as motion sensing and navigation for game consoles.
  • the parallel-type sensing MEMS device does not generate resonance at a desired frequency due to the squeeze film damping effect, and reduces the resonance frequency. In order to attenuate the influence of external noise, a high resonance frequency is required. In addition, the parallel sensing MEMS device has poor linearity due to the pull-in effect.
  • An object of the present invention is to provide a comb sensing MEMS device capable of obtaining a high resonance frequency.
  • Another technical problem of the present invention is to provide a comb sensing MEMS device capable of improving linearity and stability.
  • Another technical problem of the present invention is to provide a MEMS package and a user terminal including the above-described MEMS device.
  • each of the plurality of first mass connected to the fixing portion by a spring, the first direction facing each other in the first direction, and the spring A plurality of moving electrodes connected to a first mass of and having a comb structure and provided with a Coriolis force, the plurality of moving electrodes move separately from the plurality of first masses It is possible.
  • the plurality of moving electrodes may be used for Yaw axis sensing.
  • the device further comprises a plurality of second masses connected to the fixing part by springs and opposed to each other in a second direction, wherein the plurality of first masses and the The plurality of second masses may be coupled to each other.
  • the apparatus further includes a plurality of fixed electrode groups corresponding to the respective moving electrodes and having a comb structure, wherein each fixed electrode group comprises a first capacitor constituting a first capacitor. It may include a second fixed electrode constituting the fixed electrode and the second capacitor.
  • the capacitance of the first capacitor and the capacitance of the second capacitor may increase or decrease oppositely.
  • the change amounts of capacitances of the plurality of first capacitors may be added together and processed, or the change amounts of capacitances of the plurality of second capacitors may be added together and processed.
  • the plurality of moving electrodes when a rotation in a predetermined direction is provided, the plurality of moving electrodes may move in different directions.
  • the plurality of moving electrodes when acceleration in a predetermined direction is provided, the plurality of moving electrodes may move in the same direction.
  • MEMS package according to another aspect of the present invention for solving the above technical problem includes any one of the above-described MEMS device.
  • a user terminal according to another aspect of the present invention for solving the above technical problem includes any one of the above-described MEMS device.
  • the MEMS device of the present invention when a Coriolis force is provided, the force is sensed by using a movable electrode which is separated from the mass, not the entire mass, and is movable, so that the mass of the moving structure is reduced, resulting in a high resonance frequency. can do.
  • the linearity is improved, and the pull-in voltage is reduced, thereby making the MEMS device more stable.
  • FIG. 1 is a plan view schematically showing a MEMS device according to an embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing the operation of the MEMS device of FIG. 1 when rotation in a predetermined direction is provided.
  • FIG. 3 is a diagram schematically showing a change in capacitance of the MEMS device of FIG. 1 when rotation in a predetermined direction is provided.
  • FIG. 4 is a plan view schematically illustrating the operation of the MEMS device of FIG. 1 when acceleration in a predetermined direction is provided.
  • FIG. 5 is a diagram schematically showing a change in capacitance of the MEMS device of FIG. 1 when acceleration in a predetermined direction is provided.
  • FIG. 6 is a diagram schematically illustrating a MEMS package including a MEMS device according to an embodiment of the present invention.
  • FIGS. 7-8 are schematic diagrams of sensor hubs including MEMS devices in accordance with embodiments of the present invention.
  • FIG. 9 is a diagram schematically illustrating a user terminal including a MEMS device according to an embodiment of the present invention.
  • first, second, etc. are used to describe various elements, components and / or sections, these elements, components and / or sections are of course not limited by these terms. These terms are only used to distinguish one element, component or section from another element, component or section. Therefore, the first device, the first component, or the first section mentioned below may be a second device, a second component, or a second section within the technical spirit of the present invention.
  • a device described as "below or beneath” of another device may be placed “above” of another device.
  • the exemplary term “below” can encompass both an orientation of above and below.
  • the device may be oriented in other directions as well, in which case spatially relative terms may be interpreted according to orientation.
  • a gyro sensor will be described as an example among various MEMS devices.
  • the present invention is not limited thereto, and a person having ordinary knowledge in the technical field to which the present invention belongs is not only a gyro sensor but also a comb-type sensing base such as an acceleration sensor, a pressure sensor, a microphone, and the like. It will be appreciated that any MEMS device may be applied substantially the same without changing its technical spirit or essential features.
  • FIG. 1 is a plan view schematically showing a MEMS device according to an embodiment of the present invention.
  • the MEMS device 100 includes a plurality of mass bodies 110 to 140, fixed parts 150, moving electrodes 115 and 125, fixed electrode groups 170 and 180, and springs 161 to 163. It includes.
  • the plurality of masses 110 to 140 include a plurality of first masses 110 and 120 and a plurality of second masses 130 and 140.
  • the plurality of first masses 110 and 120 oppose each other in a first direction (eg, the horizontal direction in FIG. 1), and the plurality of second masses 130 and 140 may correspond to a second direction (eg, FIG. In the vertical direction of one phase).
  • the plurality of mass bodies 110 to 140 may be connected to the central fixing part 150 by a spring 162.
  • the plurality of masses 110 to 140 may be directly coupled to each other by the spring 161.
  • the plurality of first masses 110 and 120 may be used for pitch axis sensing, and the plurality of second masses 130 and 140 may be used for roll axis sensing, but is not limited thereto.
  • the plurality of moving electrodes 115 and 125 may be disposed inside the plurality of first mass bodies 110 and 120. By removing a predetermined region inside each of the first masses 110 and 120, an internal space of a groove or an opening may be formed in each of the first masses 110 and 120. In addition, the moving electrodes 115 and 125 may be formed in the space. The moving electrodes 115 and 125 may be connected to the first mass bodies 110 and 120 by springs 163. Substantially the same as the plurality of first mass bodies 110 and 120, the plurality of moving electrodes 115 and 125 may also face each other. The plurality of moving electrodes 115 and 125 may be used for Yaw axis sensing, but are not limited thereto.
  • the plurality of fixed electrode groups 170 and 180 may include a first fixed electrode group 170 and a second fixed electrode group 180.
  • the first fixed electrode group 170 may be disposed corresponding to the first moving electrode 115
  • the second fixed electrode group 180 may be disposed corresponding to the second moving electrode 125.
  • Each of the fixed electrode groups 170 and 180 may include first fixed electrodes 171 and 181 disposed above and second fixed electrodes 173 and 183 disposed below.
  • the plurality of fixed electrodes 171, 173, 181, and 183 and the plurality of moving electrodes 115 and 125 may be disposed on the same plane.
  • the plurality of fixed electrodes 171, 173, 175, and 177 and the plurality of moving electrodes 115 and 125 have a comb structure and may be coupled to each other.
  • the first fixed electrodes 171, 181 together with the respective moving electrodes 115, 125 constitute a first capacitor
  • the second fixed electrodes 173, 183 correspond with the respective moving electrodes 115, 125.
  • the plurality of masses 110 to 140, the plurality of moving electrodes 115 and 125, and the plurality of fixed electrodes 171, 173, 175, and 177 may include silicon or metal, but are not limited thereto.
  • the springs 161 to 163 may support the plurality of masses 110 to 140 and the plurality of moving electrodes 125 and 145, respectively.
  • the driving electrode may be disposed adjacent to the plurality of second mass bodies 130 and 140.
  • the masses 110 to 140 may vibrate by the electrostatic force generated from the driving electrode.
  • the plurality of masses 110 to 140 may be driven in different directions, respectively, in parallel with the vertical direction or the horizontal direction of FIG. 1, for example. Since the moving electrodes 115 and 125 are connected to the first masses 110 and 120 by the springs 163, the moving electrodes 115 and 125 may also vibrate together with the first masses 110 and 120.
  • the driving electrode may be disposed adjacent to the plurality of first mass bodies 110 and 120.
  • the plurality of moving electrodes 115 and 125 may move apart from the plurality of first masses 110 and 120.
  • the capacitance of the first capacitor and the capacitance of the second capacitor may increase or decrease in opposite directions. That is, when the capacitance of the first capacitor is increased, the capacitance of the second capacitor is decreased, and when the capacitance of the first capacitor is decreased, the capacitance of the second capacitor may be increased.
  • the direction and magnitude of the angular velocity may be sensed using the increase or decrease of the capacitance.
  • the shape and arrangement of the fixed electrodes 171, 173, 175, and 177 may be variously modified according to embodiments, within the scope of not changing the technical spirit or essential features of the present invention.
  • FIG. 2 is a plan view schematically showing the operation of the MEMS device of FIG. 1 when rotation in a predetermined direction is provided.
  • the plurality of moving electrodes 115 and 125 move in different directions by the Coriolis force. As illustrated, the plurality of moving electrodes 115 and 125 may move toward the outside of the MEMS device 100, respectively, but are not limited thereto, and may move the inside of the MEMS device 100 according to the direction of rotation provided. You can also move toward each other.
  • FIG. 3 is a diagram schematically showing a change in capacitance of the MEMS device of FIG. 1 when rotation in a predetermined direction is provided.
  • first fixed electrodes 171 and 181 may be disposed on the plurality of moving electrodes 115 and 125, and second fixed electrodes 173 and 183 may be disposed below the moving electrodes 115 and 125.
  • the plurality of moving electrodes 115, 125 includes a plurality of fingers 116, 126, and each of the fixed electrodes 171, 173, 175, 177 also includes a plurality of fingers 172, 174, 182, 184. can do.
  • the fingers 116, 126 of the plurality of moving electrodes 115, 125 and the fingers 172, 174, 182, 184 of the plurality of fixed electrodes 171, 173, 175, 177 are alternately disposed at predetermined intervals. Can be arranged.
  • the fingers 172 and 174 of the first fixed electrodes 171 and 181 and the fingers 174 and 184 of the second fixed electrodes 173 and 183 may be asymmetrically formed, for example, in the horizontal direction on FIG. 3. have.
  • the fingers 116 and 126 of the moving electrodes 115 and 125 are first fixed. Since the spacing between the fingers 172, 182 of the electrodes 171, 181 decreases, the capacitance of the first capacitor increases, and the fingers 116, 126 of the moving electrodes 115, 125 and the second fixed electrode 173, As the spacing between fingers 174 and 184 of 183 increases, the capacitance of the second capacitor is reduced.
  • FIG. 4 is a plan view schematically illustrating the operation of the MEMS device of FIG. 1 when acceleration in a predetermined direction is provided.
  • the plurality of moving electrodes 115 and 125 move in the same direction by the inertial force. As shown, the plurality of moving electrodes 115, 125 may move together toward one side of the MEMS device 100, but is not limited thereto, and the other movement of the MEMS device 100 may vary depending on the direction of acceleration provided. It can also move together towards the side.
  • FIG. 5 is a diagram schematically showing a change in capacitance of the MEMS device of FIG. 1 when acceleration in a predetermined direction is provided.
  • the fingers 116 and the first fixed electrode group 170 of the moving electrode 115 are moved. Since the spacing between the fingers 172 of the first fixed electrode 171 decreases, the capacitance of the first capacitor on the side of the first fixed electrode group 170 increases, but the fingers 126 and the second of the moving electrode 125 are increased. Since the distance between the fingers 182 of the first fixed electrode 181 of the fixed electrode group 180 is increased, the capacitance of the first capacitor on the side of the second fixed electrode group 180 is reduced. In contrast to the first capacitor, the capacitance of the second capacitor on the side of the first fixed electrode group 170 decreases, but the capacitance of the second capacitor on the side of the second fixed electrode group 180 increases.
  • the finger 116 and the first fixed electrode group 170 of the moving electrode 115 are moved. Since the spacing between the fingers 172 of the first fixed electrode 171 of the first electrode 171 increases, the capacitance of the first capacitor on the side of the first fixed electrode group 170 decreases, but the finger 126 and the first of the movable electrode 125 Since the spacing between the fingers 182 of the first fixed electrode 181 of the second fixed electrode group 180 decreases, the capacitance of the first capacitor on the side of the second fixed electrode group 180 increases. In contrast to the first capacitor, the capacitance of the second capacitor on the side of the first fixed electrode group 170 increases, but the capacitance of the second capacitor on the side of the second fixed electrode group 180 will decrease.
  • the amount of change in capacitance of the plurality of first capacitors and / or the amount of change in capacitance of the plurality of second capacitors may be summed and processed. As a result, the accuracy of the angular velocity measurement can be increased, and the influence by external acceleration can be reduced.
  • the fingers 116 and 126 of the plurality of moving electrodes 115 and 125 and the fingers 172, 174 and the fingers of the plurality of fixed electrodes 171, 173, 175 and 177 are illustrated.
  • the shape and arrangement of the 182 and 184 may be variously modified according to the embodiment within the scope that does not change the technical spirit or essential features of the present invention.
  • FIG. 6 is a diagram schematically illustrating a MEMS package including a MEMS device according to an embodiment of the present invention.
  • the MEMS package 1000 includes a PCB substrate 1100, a MEMS device 1200 stacked on the PCB substrate 1100, and an ASIC device 1300.
  • the MEMS device 1200 may be formed substantially the same as the MEMS device 100 described with reference to FIG. 1. 6 illustrates a wire bonding method, but the present invention is not limited thereto, and a flip chip method may be used.
  • FIGS. 7-8 are schematic diagrams of sensor hubs including MEMS devices in accordance with embodiments of the present invention.
  • the sensor hub 2000 may include a processing device 2100, a MEMS device 2200, and an application specific integrated circuit (ASIC) device 2300.
  • the MEMS device 2200 may be formed substantially the same as the MEMS device 100 described with reference to FIG. 1.
  • the ASIC device 2300 may process the sensing signal of the MEMS device 2200.
  • the processing device 2100 may function as a coprocessor for professionally performing sensor data processing on behalf of the application processor.
  • the sensor hub 3000 may include a plurality of MEMS devices 3200 and 3400 and a plurality of ASIC devices 3300 and 3500. At least one of the plurality of MEMS devices 3200 and 3400 may be formed substantially the same as the MEMS device 100 described with reference to FIG. 1.
  • the first MEMS device 3200 may be an acceleration sensor
  • the second MEMS device 3400 may be a gyro sensor, but is not limited thereto.
  • the plurality of ASIC devices 3300 and 3500 may process sensing signals of the corresponding MEMS devices 3200 and 3400, respectively.
  • the processing device 3100 may function as a coprocessor for professionally performing sensor data processing on behalf of the application processor. Unlike shown, three or more MEMS devices and ASIC devices may be provided within the sensor hub 3000.
  • FIG. 9 is a diagram schematically illustrating a user terminal including a MEMS device according to an embodiment of the present invention.
  • the user terminal 200 may include a wireless communication unit 4100, an A / V input unit 4200, a user input unit 4300, a sensing unit 4400, an output unit 4500, a storage unit 4600, and the like.
  • the interface unit 4700 includes a control unit 4800 and a power supply unit 4900.
  • the wireless communication unit 4100 may wirelessly communicate with an external device.
  • the wireless communication unit 4100 may wirelessly communicate with an external device using various wireless communication methods such as mobile communication, WiBro, Wi-Fi, Bluetooth, Zigbee, ultrasonic wave, infrared ray, and RF (Radio Frequency). Can be.
  • the wireless communication unit 4100 may transmit data and / or information received from the external device to the controller 4800, and may transmit data and / or information transmitted from the controller 4800 to the external device.
  • the wireless communication unit 4100 may include a mobile communication module 4110 and a short range communication module 4120.
  • the wireless communication unit 4100 may include the location information module 4130 to obtain location information of the user terminal 4000.
  • Location information of the user terminal 4000 may be provided from, for example, a GPS positioning system, a WiFi positioning system, a cellular positioning system, or a beacon positioning system, but is not limited thereto. Location information may be provided.
  • the wireless communication unit 4100 may transfer the location information received from the positioning system to the controller 4800.
  • the A / V input unit 4200 is for inputting a video or audio signal and may include a camera module 4210 and a microphone module 4220.
  • the camera module 4210 may include, for example, an image sensor such as a complementary metal oxide semiconductor (CMOS) sensor, a charge coupled device (CCD) sensor, or the like.
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the user input unit 4300 receives various information from the user.
  • the user input unit 4300 may include input means such as a key, a button, a switch, a touch pad, and a wheel.
  • input means such as a key, a button, a switch, a touch pad, and a wheel.
  • a touch screen may be configured.
  • the sensor unit 4400 detects a state of the user terminal 4000 or a state of the user.
  • the sensing unit 4400 may include sensing means such as a touch sensor, a proximity sensor, a pressure sensor, a vibration sensor, a geomagnetic sensor, a gyro sensor, an acceleration sensor, and a biometric sensor.
  • the sensing unit 240 may be used for user input.
  • the output unit 4500 notifies the user of various information.
  • the output unit 4500 may output information in the form of text, video or audio.
  • the output unit 4500 may include a display module 4510 and a speaker module 4520.
  • the display module 4510 may be provided in a PDP, LCD, TFT LCD, OLED, flexible display, three-dimensional display, electronic ink display, or any form well known in the art.
  • the output unit 4500 may further comprise any form of output means well known in the art.
  • the storage unit 4600 stores various data and commands.
  • the storage unit 4600 may store system software and various applications for the operation of the user terminal 4000.
  • the storage unit 4600 may include a RAM, a ROM, an EPROM, an EEPROM, a flash memory, a hard disk, a removable disk, or any type of computer readable recording medium well known in the art.
  • the interface unit 4700 serves as a path to an external device connected to the user terminal 4000.
  • the interface unit 4700 receives data and / or information from an external device or receives power and transmits the data and / or information to components inside the user terminal 4000, or transmits data and / or information inside the user terminal 4000 to an external device. It can transmit power or supply internal power.
  • the interface unit 4700 includes, for example, a wired / wireless headset port, a charging port, a wired / wireless data port, a memory card port, a universal serial bus (USB) port, and an identification module. Port may be connected to a connected device, an audio input / output (I / O) port, a video input / output (I / O) port, or the like.
  • the controller 4800 controls other components to control the overall operation of the user terminal 4000.
  • the controller 4800 may execute system software and various applications stored in the storage 4600.
  • the controller 2800 may include an integrated circuit such as a microprocessor, a microcontroller, a digital signal processing core, a graphics processing core, an application processor, or the like.
  • the power supply unit 4900 may include a wireless communication unit 4100, an A / V input unit 4200, a user input unit 4300, a sensor unit 4400, an output unit 4500, a storage unit 4600, an interface unit 4700, Supply power for the operation of the controller 4800.
  • the power supply 4900 may include an internal battery.
  • the MEMS device 100 described with reference to FIG. 1 or the sensor hubs 2000 and 3000 described with reference to FIGS. 7 to 8 may be provided in the sensor unit 4400.
  • the method described in connection with an embodiment of the present invention may be implemented as a software module performed by a processor.
  • the software module may reside in RAM, ROM, EPROM, EEPROM, flash memory, hard disk, removable disk, CD-ROM, or any form of computer readable recording medium well known in the art. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)

Abstract

Provided are a MEMS device, a MEMS package comprising same and a user terminal. The MEMS device comprises: a fixing part; a plurality of first masses which are connected to the fixing part by means of springs and face each other in first direction; and a plurality of movable electrodes which are connected to each first mass by means of springs and have a comb structure, wherein the movable electrodes can be separated from the first masses and move when the Coriolis force is provided.

Description

MEMS 장치, 이를 포함하는 MEMS 패키지 및 사용자 단말기MEMS device, MEMS package and user terminal comprising the same
본 발명은 MEMS 장치에 관한 것으로, 보다 상세하게는 콤형(Comb-Type) 센싱 방식의 MEMS 장치, 이를 포함하는 MEMS 패키지 및 사용자 단말기에 관한 것이다.The present invention relates to a MEMS device, and more particularly, to a comb-type sensing type MEMS device, a MEMS package including the same, and a user terminal.
MEMS(Micro Electro Mechanical Systems)는 인공위성, 미사일, 무인 항공기 등의 군수용, 에어백(Air Bag), ESC(Electronic Stability Control), 차량용 블랙박스(Black Box) 등 차량용, 카메라, 캠코더 등의 손떨림 방지용, 핸드폰이나 게임기 등의 모션 센싱용, 네비게이션용 등 다양한 용도로 사용되고 있다.MEMS (Micro Electro Mechanical Systems) is used for military applications such as satellites, missiles, and unmanned aerial vehicles, and for camera shake, mobile phones, cameras, camcorders, and mobile phones, such as air bags, electronic stability controls, and black boxes for vehicles. It is used for various purposes such as motion sensing and navigation for game consoles.
평행형(Parallel-Type) 센싱 방식의 MEMS 장치는 스퀴즈 필름 감쇠 효과(Squeeze film damping effect)로 인해서 원하는 주파수에서 공진이 발생하지 않으며, 그 공진 주파수를 감소시키게 된다. 외부의 노이즈의 영향을 감쇄시키기 위해서는 높은 공진 주파수가 요구된다. 또한, 평행형 센싱 방식의 MEMS 장치는 풀인 효과(Pull-in effect)로 인해서 선형성이 좋지 않다.The parallel-type sensing MEMS device does not generate resonance at a desired frequency due to the squeeze film damping effect, and reduces the resonance frequency. In order to attenuate the influence of external noise, a high resonance frequency is required. In addition, the parallel sensing MEMS device has poor linearity due to the pull-in effect.
본 발명의 기술적 과제는, 높은 공진 주파수를 획득할 수 있는 콤형 센싱 방식의 MEMS 장치를 제공하는 것이다. An object of the present invention is to provide a comb sensing MEMS device capable of obtaining a high resonance frequency.
본 발명의 다른 기술적 과제는, 선형성 및 안정성을 개선시킬 수 있는 콤형 센싱 방식의 MEMS 장치를 제공하는 것이다.Another technical problem of the present invention is to provide a comb sensing MEMS device capable of improving linearity and stability.
본 발명의 또 다른 기술적 과제는, 상술한 MEMS 장치를 포함하는 MEMS 패키지 및 사용자 단말기를 제공하는 것이다.Another technical problem of the present invention is to provide a MEMS package and a user terminal including the above-described MEMS device.
본 발명의 기술적 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 기술적 과제를 해결하기 위한 본 발명의 일 면에 따른 MEMS 장치는, 고정부, 스프링에 의해서 상기 고정부에 연결되고, 제1 방향으로 서로 대향하는 복수의 제1 질량체, 및 스프링에 의해서 상기 각각의 제1 질량체에 연결되고, 콤(Comb) 구조를 갖는 복수의 이동 전극을 포함하고, 코리올리 힘(Coriolis Force)이 제공되는 때에, 상기 복수의 이동 전극은 상기 복수의 제1 질량체로부터 분리되어 이동 가능하다.MEMS device according to an aspect of the present invention for solving the above technical problem, each of the plurality of first mass connected to the fixing portion by a spring, the first direction facing each other in the first direction, and the spring A plurality of moving electrodes connected to a first mass of and having a comb structure and provided with a Coriolis force, the plurality of moving electrodes move separately from the plurality of first masses It is possible.
본 발명의 일부 실시예에서, 상기 복수의 이동 전극은 Yaw축 센싱을 위하여 이용될 수 있다.In some embodiments of the present invention, the plurality of moving electrodes may be used for Yaw axis sensing.
본 발명의 일부 실시예에서, 상기 장치는, 스프링에 의해서 상기 고정부에 연결되고, 제2 방향으로 서로 대향하는 복수의 제2 질량체를 더 포함하고, 스프링에 의해서 상기 복수의 제1 질량체와 상기 복수의 제2 질량체는 서로 커플링될 수 있다.In some embodiments of the invention, the device further comprises a plurality of second masses connected to the fixing part by springs and opposed to each other in a second direction, wherein the plurality of first masses and the The plurality of second masses may be coupled to each other.
본 발명의 일부 실시예에서, 상기 장치는, 상기 각각의 이동 전극과 상응하고, 콤 구조를 갖는 복수의 고정 전극 그룹을 더 포함하고, 상기 각각의 고정 전극 그룹은 제1 커패시터를 구성하는 제1 고정 전극과 제2 커패시터를 구성하는 제2 고정 전극을 포함할 수 있다.In some embodiments of the present invention, the apparatus further includes a plurality of fixed electrode groups corresponding to the respective moving electrodes and having a comb structure, wherein each fixed electrode group comprises a first capacitor constituting a first capacitor. It may include a second fixed electrode constituting the fixed electrode and the second capacitor.
또한, 상기 제1 커패시터의 커패시턴스와 상기 제2 커패시터의 커패시턴스는 서로 반대로(oppositely) 증감할 수 있다.In addition, the capacitance of the first capacitor and the capacitance of the second capacitor may increase or decrease oppositely.
또한, 상기 복수의 제1 커패시터의 커패시턴스의 변화량이 합산되어 처리되거나, 상기 복수의 제2 커패시터의 커패시턴스의 변화량이 합산되어 처리될 수 있다.The change amounts of capacitances of the plurality of first capacitors may be added together and processed, or the change amounts of capacitances of the plurality of second capacitors may be added together and processed.
본 발명의 일부 실시예에서, 소정의 방향의 회전이 제공되는 때에, 상기 복수의 이동 전극은 서로 다른 방향으로 이동할 수 있다.In some embodiments of the present invention, when a rotation in a predetermined direction is provided, the plurality of moving electrodes may move in different directions.
본 발명의 일부 실시예에서, 소정의 방향의 가속이 제공되는 때에, 상기 복수의 이동 전극은 동일한 방향으로 이동할 수 있다.In some embodiments of the present invention, when acceleration in a predetermined direction is provided, the plurality of moving electrodes may move in the same direction.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 면에 따른 MEMS 패키지는 상술한 장치들 중 어느 하나의 MEMS 장치를 포함한다.MEMS package according to another aspect of the present invention for solving the above technical problem includes any one of the above-described MEMS device.
상기 기술적 과제를 해결하기 위한 본 발명의 또 다른 면에 따른 사용자 단말기는 상술한 장치들 중 어느 하나의 MEMS 장치를 포함한다.A user terminal according to another aspect of the present invention for solving the above technical problem includes any one of the above-described MEMS device.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other specific details of the invention are included in the detailed description and drawings.
본 발명의 MEMS 장치에 의하면, 코리올리 힘이 제공되는 때에 질량체 전체가 아닌 질량체로부터 분리되어 이동 가능한 이동 전극을 이용하여 그 힘을 센싱하므로, 이동하는 구조물의 질량이 감소되어 결과적으로 높은 공진 주파수를 획득할 수 있다.According to the MEMS device of the present invention, when a Coriolis force is provided, the force is sensed by using a movable electrode which is separated from the mass, not the entire mass, and is movable, so that the mass of the moving structure is reduced, resulting in a high resonance frequency. can do.
또한, 콤형 센싱 방식이 채용되므로 그 선형성이 개선되고, 풀인 전압이 감소되므로 MEMS 장치가 보다 안정화될 수 있다.In addition, since the comb sensing scheme is adopted, the linearity is improved, and the pull-in voltage is reduced, thereby making the MEMS device more stable.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 일 실시예에 따른 MEMS 장치를 개략적으로 도시하는 평면도이다.1 is a plan view schematically showing a MEMS device according to an embodiment of the present invention.
도 2는 소정의 방향의 회전이 제공되는 때에 도 1의 MEMS 장치의 동작을 개략적으로 도시하는 평면도이다.FIG. 2 is a plan view schematically showing the operation of the MEMS device of FIG. 1 when rotation in a predetermined direction is provided.
도 3은 소정의 방향의 회전이 제공되는 때에 도 1의 MEMS 장치의 커패시턴스의 변화를 개략적으로 도시하는 도면이다.FIG. 3 is a diagram schematically showing a change in capacitance of the MEMS device of FIG. 1 when rotation in a predetermined direction is provided. FIG.
도 4는 소정의 방향의 가속이 제공되는 때에 도 1의 MEMS 장치의 동작을 개략적으로 도시하는 평면도이다.4 is a plan view schematically illustrating the operation of the MEMS device of FIG. 1 when acceleration in a predetermined direction is provided.
도 5는 소정의 방향의 가속이 제공되는 때에 도 1의 MEMS 장치의 커패시턴스의 변화를 개략적으로 도시하는 도면이다.5 is a diagram schematically showing a change in capacitance of the MEMS device of FIG. 1 when acceleration in a predetermined direction is provided.
도 6은 본 발명의 실시예에 따른 MEMS 장치를 포함하는 MEMS패키지를 개략적으로 도시하는 도면이다.6 is a diagram schematically illustrating a MEMS package including a MEMS device according to an embodiment of the present invention.
도 7 내지 도8은 본 발명의 실시예에 따른 MEMS 장치를 포함하는 센서 허브를 개략적으로 도시하는 도면이다.7-8 are schematic diagrams of sensor hubs including MEMS devices in accordance with embodiments of the present invention.
도 9는 본 발명의 실시예에 따른 MEMS 장치를 포함하는 사용자 단말기를 개략적으로 도시하는 도면이다.9 is a diagram schematically illustrating a user terminal including a MEMS device according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be embodied in various different forms, and the present embodiments merely make the disclosure of the present invention complete, and are common in the art to which the present invention pertains. It is provided to fully inform those skilled in the art of the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
비록 제1, 제2 등이 다양한 소자, 구성요소 및/또는 섹션들을 서술하기 위해서 사용되나, 이들 소자, 구성요소 및/또는 섹션들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 소자, 구성요소 또는 섹션들을 다른 소자, 구성요소 또는 섹션들과 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 소자, 제1 구성요소 또는 제1 섹션은 본 발명의 기술적 사상 내에서 제2 소자, 제2 구성요소 또는 제2 섹션일 수도 있음은 물론이다.Although the first, second, etc. are used to describe various elements, components and / or sections, these elements, components and / or sections are of course not limited by these terms. These terms are only used to distinguish one element, component or section from another element, component or section. Therefore, the first device, the first component, or the first section mentioned below may be a second device, a second component, or a second section within the technical spirit of the present invention.
소자(elements) 또는 층이 다른 소자 또는 층의 "위(on)" 또는 "상(on)"으로 지칭되는 것은 다른 소자 또는 층의 바로 위뿐만 아니라 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 반면, 소자가 "직접 위(directly on)" 또는 "바로 위"로 지칭되는 것은 중간에 다른 소자 또는 층을 개재하지 않은 것을 나타낸다. 공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below 또는 beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 소자는 다른 방향으로도 배향될 수 있으며, 이 경우 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.When elements or layers are referred to as "on" or "on" of another element or layer, intervening other elements or layers as well as intervening another layer or element in between. It includes everything. On the other hand, when a device is referred to as "directly on" or "directly on" indicates that no device or layer is intervened in the middle. The spatially relative terms " below ", " beneath ", " lower ", " above ", " upper " It may be used to easily describe the correlation of a device or components with other devices or components. Spatially relative terms are to be understood as including terms in different directions of the device in use or operation in addition to the directions shown in the figures. For example, when flipping a device shown in the figure, a device described as "below or beneath" of another device may be placed "above" of another device. Thus, the exemplary term "below" can encompass both an orientation of above and below. The device may be oriented in other directions as well, in which case spatially relative terms may be interpreted according to orientation.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. In addition, terms that are defined in a commonly used dictionary are not ideally or excessively interpreted unless they are specifically defined clearly.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, "comprises" and / or "comprising" does not exclude the presence or addition of one or more other components in addition to the mentioned components.
이하에서는 본 발명의 실시예를 설명하기 위하여 다양한 MEMS 장치 중 자이로 센서를 예로 들어 설명하기로 한다. 그러나, 본 발명이 이에 제한되는 것은 아니고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 자이로 센서뿐만 아니라, 가속도 센서, 압력 센서, 마이크로폰 등 콤 방식(Comb-Type) 센싱 기반의 임의의 MEMS 장치에도 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 실질적으로 동일하게 적용될 수 있음을 이해할 수 있을 것이다.Hereinafter, to describe an embodiment of the present invention, a gyro sensor will be described as an example among various MEMS devices. However, the present invention is not limited thereto, and a person having ordinary knowledge in the technical field to which the present invention belongs is not only a gyro sensor but also a comb-type sensing base such as an acceleration sensor, a pressure sensor, a microphone, and the like. It will be appreciated that any MEMS device may be applied substantially the same without changing its technical spirit or essential features.
도 1은 본 발명의 일 실시예에 따른 MEMS 장치를 개략적으로 도시하는 평면도이다.1 is a plan view schematically showing a MEMS device according to an embodiment of the present invention.
도 1을 참조하면, MEMS 장치(100)는 복수의 질량체(110~140), 고정부(150), 이동 전극(115, 125), 고정 전극 그룹(170, 180), 스프링(161~163)을 포함한다.Referring to FIG. 1, the MEMS device 100 includes a plurality of mass bodies 110 to 140, fixed parts 150, moving electrodes 115 and 125, fixed electrode groups 170 and 180, and springs 161 to 163. It includes.
복수의 질량체(110~140)는 복수의 제1 질량체(110, 120)와 복수의 제2 질량체(130, 140)를 포함한다. 복수의 제1 질량체(110, 120)는 제1 방향(예를 들어, 도 1 상의 수평 방향)으로 서로 대향하고, 복수의 제2 질량체(130, 140)는 제2 방향(예를 들어, 도 1 상의 수직 방향)으로 서로 대향할 수 있다. 복수의 질량체(110~140)는 스프링(162)에 의해서 중앙의 고정부(150)에 연결될 수 있다. 또한, 복수의 질량체(110~140)는 스프링(161)에 의해서 서로 직접 커플링될 수도 있다. 복수의 제1 질량체(110, 120)는 Pitch축 센싱을 위하여 이용될 수 있고, 복수의 제2 질량체(130, 140)는 Roll축 센싱을 위하여 이용될 수 있으나, 이에 제한되는 것은 아니다.The plurality of masses 110 to 140 include a plurality of first masses 110 and 120 and a plurality of second masses 130 and 140. The plurality of first masses 110 and 120 oppose each other in a first direction (eg, the horizontal direction in FIG. 1), and the plurality of second masses 130 and 140 may correspond to a second direction (eg, FIG. In the vertical direction of one phase). The plurality of mass bodies 110 to 140 may be connected to the central fixing part 150 by a spring 162. In addition, the plurality of masses 110 to 140 may be directly coupled to each other by the spring 161. The plurality of first masses 110 and 120 may be used for pitch axis sensing, and the plurality of second masses 130 and 140 may be used for roll axis sensing, but is not limited thereto.
복수의 이동 전극(115, 125)이 복수의 제1 질량체(110, 120)의 내측으로 배치될 수 있다. 각각의 제1 질량체(110, 120)의 내부의 소정 영역이 제거됨으로써, 각각의 제1 질량체(110, 120)에 홈 또는 오프닝의 내부 공간이 형성될 수 있다. 그리고, 이동 전극(115, 125)이 상기 공간 내에 형성될 수 있다. 이동 전극(115, 125)은 스프링(163)에 의해서 제1 질량체(110, 120)에 연결될 수 있다. 복수의 제1 질량체(110, 120)와 실질적으로 동일하게, 복수의 이동 전극(115, 125)도 서로 대향할 수 있다. 복수의 이동 전극(115, 125)은 Yaw축 센싱을 위하여 이용될 수 있으나, 이에 제한되는 것은 아니다.The plurality of moving electrodes 115 and 125 may be disposed inside the plurality of first mass bodies 110 and 120. By removing a predetermined region inside each of the first masses 110 and 120, an internal space of a groove or an opening may be formed in each of the first masses 110 and 120. In addition, the moving electrodes 115 and 125 may be formed in the space. The moving electrodes 115 and 125 may be connected to the first mass bodies 110 and 120 by springs 163. Substantially the same as the plurality of first mass bodies 110 and 120, the plurality of moving electrodes 115 and 125 may also face each other. The plurality of moving electrodes 115 and 125 may be used for Yaw axis sensing, but are not limited thereto.
복수의 고정 전극 그룹(170, 180)은 제1 고정 전극 그룹(170)과 제2 고정 전극 그룹(180)을 포함한다. 제1 고정 전극 그룹(170)은 제1 이동 전극(115)에 상응하여 배치되고, 제2 고정 전극 그룹(180)은 제2 이동 전극(125)에 상응하여 배치될 수 있다. 각각의 고정 전극 그룹(170, 180)은 상부에 배치되는 제1 고정 전극(171, 181)과 하부에 배치되는 제2 고정 전극(173, 183)을 포함할 수 있다. 복수의 고정 전극(171, 173, 181, 183)과 복수의 이동 전극(115, 125)은 동일 평면 상에 배치될 수 있다. 복수의 고정 전극(171, 173, 175, 177)과 복수의 이동 전극(115, 125)은 콤(Comb) 구조를 가지고, 서로 결합될 수 있다. 제1 고정 전극(171, 181)은 상응하는 각각의 이동 전극(115, 125)과 함께 제1 커패시터를 구성하고, 제2 고정 전극(173, 183)은 상응하는 각각의 이동 전극(115, 125)과 함께 제2 커패시터를 구성할 수 있다.The plurality of fixed electrode groups 170 and 180 may include a first fixed electrode group 170 and a second fixed electrode group 180. The first fixed electrode group 170 may be disposed corresponding to the first moving electrode 115, and the second fixed electrode group 180 may be disposed corresponding to the second moving electrode 125. Each of the fixed electrode groups 170 and 180 may include first fixed electrodes 171 and 181 disposed above and second fixed electrodes 173 and 183 disposed below. The plurality of fixed electrodes 171, 173, 181, and 183 and the plurality of moving electrodes 115 and 125 may be disposed on the same plane. The plurality of fixed electrodes 171, 173, 175, and 177 and the plurality of moving electrodes 115 and 125 have a comb structure and may be coupled to each other. The first fixed electrodes 171, 181 together with the respective moving electrodes 115, 125 constitute a first capacitor, and the second fixed electrodes 173, 183 correspond with the respective moving electrodes 115, 125. ) May be configured with the second capacitor.
복수의 질량체(110~140), 복수의 이동 전극(115, 125), 복수의 고정 전극(171, 173, 175, 177)은 실리콘 또는 금속을 포함할 수 있으나, 이에 제한되는 것은 아니다.The plurality of masses 110 to 140, the plurality of moving electrodes 115 and 125, and the plurality of fixed electrodes 171, 173, 175, and 177 may include silicon or metal, but are not limited thereto.
스프링(161~163)은 각각 복수의 질량체(110~140)와 복수의 이동 전극(125, 145)을 지지할 수 있다.The springs 161 to 163 may support the plurality of masses 110 to 140 and the plurality of moving electrodes 125 and 145, respectively.
명확하게 도시하지 않았으나, 구동 전극이 복수의 제2 질량체(130, 140)에 인접하여 배치될 수 있다. 시변하는 소정의 전압이 구동 전극에 제공됨에 따라, 구동 전극으로부터 발생되는 정전기력에 의해서, 복수의 질량체(110~140)가 진동할 수 있다. 복수의 질량체(110~140)는 예를 들어 도 1 상의 수직 방향 또는 수평 방향과 평행하게 각각 서로 다른 방향으로 구동될 수 있다. 이동 전극(115, 125)은 스프링(163)에 의해 제1 질량체(110, 120)에 연결되어 있으므로, 이동 전극(115, 125)도 제1 질량체(110, 120)와 함께 진동할 수 있다. 구동 전극은 복수의 제1 질량체(110, 120)에 인접하여 배치될 수도 있다.Although not clearly illustrated, the driving electrode may be disposed adjacent to the plurality of second mass bodies 130 and 140. As a predetermined time-varying voltage is provided to the driving electrode, the masses 110 to 140 may vibrate by the electrostatic force generated from the driving electrode. The plurality of masses 110 to 140 may be driven in different directions, respectively, in parallel with the vertical direction or the horizontal direction of FIG. 1, for example. Since the moving electrodes 115 and 125 are connected to the first masses 110 and 120 by the springs 163, the moving electrodes 115 and 125 may also vibrate together with the first masses 110 and 120. The driving electrode may be disposed adjacent to the plurality of first mass bodies 110 and 120.
MEMS 장치(100)가 회전함에 따라 코리올리 힘(Coriolis Force)이 제공되는 때에, 복수의 이동 전극(115, 125)은 복수의 제1 질량체(110, 120)로부터 분리되어 이동할 수 있다. 복수의 이동 전극(115, 125)의 이동에 의하여, 제1 커패시터의 커패시턴스와 제2 커패시터의 커패시턴스는 서로 반대로 증감할 수 있다. 즉, 제1 커패시터의 커패시턴스가 증가하면 제2 커패시터의 커패시턴스가 감소하고, 제1 커패시터의 커패시턴스가 감소하면 제2 커패시터의 커패시턴스가 증가할 수 있다. 상기 커패시턴스의 증감을 이용하여 각속도의 방향 및 크기가 센싱될 수 있다.When the Coriolis Force is provided as the MEMS device 100 rotates, the plurality of moving electrodes 115 and 125 may move apart from the plurality of first masses 110 and 120. By the movement of the plurality of moving electrodes 115 and 125, the capacitance of the first capacitor and the capacitance of the second capacitor may increase or decrease in opposite directions. That is, when the capacitance of the first capacitor is increased, the capacitance of the second capacitor is decreased, and when the capacitance of the first capacitor is decreased, the capacitance of the second capacitor may be increased. The direction and magnitude of the angular velocity may be sensed using the increase or decrease of the capacitance.
한편, 도 1에 도시된 바와 다르게, 복수의 질량체(110~140)의 전체적인 형상, 고정부(150), 스프링(161~163) 등의 배치, 복수의 이동 전극(115, 125)과 복수의 고정 전극(171, 173, 175, 177)의 형상 및 배치는, 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않는 범주 내에서, 실시예에 따라 다양하게 변형될 수 있다. On the other hand, unlike shown in Figure 1, the overall shape of the plurality of mass (110 ~ 140), the arrangement of the fixing part 150, the spring (161 ~ 163), the plurality of moving electrodes (115, 125) and a plurality of The shape and arrangement of the fixed electrodes 171, 173, 175, and 177 may be variously modified according to embodiments, within the scope of not changing the technical spirit or essential features of the present invention.
도 2는 소정의 방향의 회전이 제공되는 때에 도 1의 MEMS 장치의 동작을 개략적으로 도시하는 평면도이다.FIG. 2 is a plan view schematically showing the operation of the MEMS device of FIG. 1 when rotation in a predetermined direction is provided.
도 2를 참조하면, MEMS 장치(100)에 도 2에 도시된 소정의 방향의 회전이 제공되는 때에, 코리올리 힘에 의해서, 복수의 이동 전극(115, 125)은 서로 다른 방향으로 이동한다. 도시된 바와 같이, 복수의 이동 전극(115, 125)은 MEMS 장치(100)의 외측을 향해 각각 이동할 수 있으나, 이에 제한되는 것은 아니고, 제공되는 회전의 방향에 따라 MEMS 장치(100)의 내측을 향해 각각 이동할 수도 있다.Referring to FIG. 2, when the MEMS device 100 is provided with rotation in the predetermined direction shown in FIG. 2, the plurality of moving electrodes 115 and 125 move in different directions by the Coriolis force. As illustrated, the plurality of moving electrodes 115 and 125 may move toward the outside of the MEMS device 100, respectively, but are not limited thereto, and may move the inside of the MEMS device 100 according to the direction of rotation provided. You can also move toward each other.
도 3은 소정의 방향의 회전이 제공되는 때에 도 1의 MEMS 장치의 커패시턴스의 변화를 개략적으로 도시하는 도면이다.FIG. 3 is a diagram schematically showing a change in capacitance of the MEMS device of FIG. 1 when rotation in a predetermined direction is provided. FIG.
도 3을 참조하면, 복수의 이동 전극(115, 125)의 상부에 제1 고정 전극(171, 181)이 배치되고, 그 하부에 제2 고정 전극(173, 183)이 배치될 수 있다.Referring to FIG. 3, first fixed electrodes 171 and 181 may be disposed on the plurality of moving electrodes 115 and 125, and second fixed electrodes 173 and 183 may be disposed below the moving electrodes 115 and 125.
복수의 이동 전극(115, 125)은 다수의 핑거(116, 126)를 포함하고, 각각의 고정 전극(171, 173, 175, 177)도 다수의 핑거(172, 174, 182, 184)를 포함할 수 있다. 복수의 이동 전극(115, 125)의 핑거(116, 126)와 복수의 고정 전극(171, 173, 175, 177)의 핑거(172, 174, 182, 184)는 소정의 간격을 두고 서로 교대로 배치될 수 있다.The plurality of moving electrodes 115, 125 includes a plurality of fingers 116, 126, and each of the fixed electrodes 171, 173, 175, 177 also includes a plurality of fingers 172, 174, 182, 184. can do. The fingers 116, 126 of the plurality of moving electrodes 115, 125 and the fingers 172, 174, 182, 184 of the plurality of fixed electrodes 171, 173, 175, 177 are alternately disposed at predetermined intervals. Can be arranged.
제1 고정 전극(171, 181)의 핑거(172, 174)와 제2 고정 전극(173, 183)의 핑거(174, 184)는 예를 들어 도 3 상의 수평 방향을 축으로 비대칭하게 형성될 수 있다.The fingers 172 and 174 of the first fixed electrodes 171 and 181 and the fingers 174 and 184 of the second fixed electrodes 173 and 183 may be asymmetrically formed, for example, in the horizontal direction on FIG. 3. have.
이에 따라, 도 3에 도시된 바와 같이, 이동 전극(115, 125)이 MEMS 장치(100)의 외측을 향해 이동하는 경우, 이동 전극(115, 125)의 핑거(116, 126)와 제1 고정 전극(171, 181)의 핑거(172, 182) 간의 간격이 감소하므로, 제1 커패시터의 커패시턴스는 증가하고, 이동 전극(115, 125)의 핑거(116, 126)와 제2 고정 전극(173, 183)의 핑거(174, 184) 간의 간격이 증가하므로, 제2 커패시터의 커패시턴스는 감소하게 된다.Accordingly, as shown in FIG. 3, when the moving electrodes 115 and 125 move toward the outside of the MEMS device 100, the fingers 116 and 126 of the moving electrodes 115 and 125 are first fixed. Since the spacing between the fingers 172, 182 of the electrodes 171, 181 decreases, the capacitance of the first capacitor increases, and the fingers 116, 126 of the moving electrodes 115, 125 and the second fixed electrode 173, As the spacing between fingers 174 and 184 of 183 increases, the capacitance of the second capacitor is reduced.
역으로, 명확하게 도시하지 않았으나, 이동 전극(115, 125)이 MEMS 장치(100)의 내측을 향해 이동하는 경우, 이동 전극(115, 125)의 핑거(116, 126)와 제1 고정 전극(171, 181)의 핑거(172, 182) 간의 간격이 증가하므로, 제1 커패시터의 커패시턴스는 감소하고, 이동 전극(115, 125)의 핑거(116, 126)와 제2 고정 전극(173, 183)의 핑거(174, 184) 간의 간격이 감소하므로, 제2 커패시터의 커패시턴스는 증가하게 될 것이다.On the contrary, although not clearly shown, when the moving electrodes 115 and 125 move toward the inside of the MEMS device 100, the fingers 116 and 126 and the first fixed electrode of the moving electrodes 115 and 125 ( Since the spacing between the fingers 172 and 182 of the 171 and 181 increases, the capacitance of the first capacitor decreases, and the fingers 116 and 126 of the moving electrodes 115 and 125 and the second fixed electrodes 173 and 183. As the spacing between the fingers 174 and 184 decreases, the capacitance of the second capacitor will increase.
도 4는 소정의 방향의 가속이 제공되는 때에 도 1의 MEMS 장치의 동작을 개략적으로 도시하는 평면도이다.4 is a plan view schematically illustrating the operation of the MEMS device of FIG. 1 when acceleration in a predetermined direction is provided.
도 4를 참조하면, MEMS 장치(100)에 도 4에 도시된 소정의 방향의 가속이 제공되는 때에, 관성력에 의해서, 복수의 이동 전극(115, 125)은 동일한 방향으로 이동한다. 도시된 바와 같이, 복수의 이동 전극(115, 125)은 MEMS 장치(100)의 일 측을 향해 함께 이동할 수 있으나, 이에 제한되는 것은 아니고, 제공되는 가속의 방향에 따라 MEMS 장치(100)의 다른 측을 향해 함께 이동할 수도 있다.Referring to FIG. 4, when the MEMS device 100 is provided with acceleration in the predetermined direction shown in FIG. 4, the plurality of moving electrodes 115 and 125 move in the same direction by the inertial force. As shown, the plurality of moving electrodes 115, 125 may move together toward one side of the MEMS device 100, but is not limited thereto, and the other movement of the MEMS device 100 may vary depending on the direction of acceleration provided. It can also move together towards the side.
도 5는 소정의 방향의 가속이 제공되는 때에 도 1의 MEMS 장치의 커패시턴스의 변화를 개략적으로 도시하는 도면이다.5 is a diagram schematically showing a change in capacitance of the MEMS device of FIG. 1 when acceleration in a predetermined direction is provided.
도 5에 도시된 바와 같이, 이동 전극(115, 125)이 MEMS 장치(100)의 일 측을 향해 이동하는 경우, 이동 전극(115)의 핑거(116)와 제1 고정 전극 그룹(170)의 제1 고정 전극(171)의 핑거(172) 간의 간격이 감소하므로, 제1 고정 전극 그룹(170) 측의 제1 커패시터의 커패시턴스는 증가하지만, 이동 전극(125)의 핑거(126)와 제2 고정 전극 그룹(180)의 제1 고정 전극(181)의 핑거(182) 간의 간격은 증가하므로, 제2 고정 전극 그룹(180) 측의 제1 커패시터의 커패시턴스는 감소하게 된다. 그리고, 제1 커패시터와 반대로 제1 고정 전극 그룹(170) 측의 제2 커패시터의 커패시턴스는 감소하지만, 제2 고정 전극 그룹(180) 측의 제2 커패시터의 커패시턴스는 증가하게 된다As shown in FIG. 5, when the moving electrodes 115 and 125 move toward one side of the MEMS device 100, the fingers 116 and the first fixed electrode group 170 of the moving electrode 115 are moved. Since the spacing between the fingers 172 of the first fixed electrode 171 decreases, the capacitance of the first capacitor on the side of the first fixed electrode group 170 increases, but the fingers 126 and the second of the moving electrode 125 are increased. Since the distance between the fingers 182 of the first fixed electrode 181 of the fixed electrode group 180 is increased, the capacitance of the first capacitor on the side of the second fixed electrode group 180 is reduced. In contrast to the first capacitor, the capacitance of the second capacitor on the side of the first fixed electrode group 170 decreases, but the capacitance of the second capacitor on the side of the second fixed electrode group 180 increases.
역으로, 명확하게 도시하지 않았으나, 이동 전극(115, 125)이 MEMS 장치(100)의 다른 측을 향해 이동하는 경우, 이동 전극(115)의 핑거(116)와 제1 고정 전극 그룹(170)의 제1 고정 전극(171)의 핑거(172) 간의 간격이 증가하므로, 제1 고정 전극 그룹(170) 측의 제1 커패시터의 커패시턴스는 감소하지만, 이동 전극(125)의 핑거(126)와 제2 고정 전극 그룹(180)의 제1 고정 전극(181)의 핑거(182) 간의 간격은 감소하므로, 제2 고정 전극 그룹(180) 측의 제1 커패시터의 커패시턴스는 증가하게 된다. 그리고, 제1 커패시터와 반대로 제1 고정 전극 그룹(170) 측의 제2 커패시터의 커패시턴스는 증가하지만, 제2 고정 전극 그룹(180) 측의 제2 커패시터의 커패시턴스는 감소하게 될 것이다.Conversely, although not clearly shown, when the moving electrodes 115 and 125 move toward the other side of the MEMS device 100, the finger 116 and the first fixed electrode group 170 of the moving electrode 115 are moved. Since the spacing between the fingers 172 of the first fixed electrode 171 of the first electrode 171 increases, the capacitance of the first capacitor on the side of the first fixed electrode group 170 decreases, but the finger 126 and the first of the movable electrode 125 Since the spacing between the fingers 182 of the first fixed electrode 181 of the second fixed electrode group 180 decreases, the capacitance of the first capacitor on the side of the second fixed electrode group 180 increases. In contrast to the first capacitor, the capacitance of the second capacitor on the side of the first fixed electrode group 170 increases, but the capacitance of the second capacitor on the side of the second fixed electrode group 180 will decrease.
복수의 제1 커패시터의 커패시턴스의 변화량 및/또는 복수의 제2 커패시터의 커패시턴스의 변화량이 합산되어 처리될 수 있다. 이로써, 각속도 측정의 정확도를 증가시키고, 외부 가속도에 의한 영향을 감쇄시킬 수 있다.The amount of change in capacitance of the plurality of first capacitors and / or the amount of change in capacitance of the plurality of second capacitors may be summed and processed. As a result, the accuracy of the angular velocity measurement can be increased, and the influence by external acceleration can be reduced.
한편, 도 3 및 도 5에 도시된 바와 다르게, 복수의 이동 전극(115, 125)의 핑거(116, 126)와 복수의 고정 전극(171, 173, 175, 177)의 핑거(172, 174, 182, 184)의 형상 및 배치는, 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않는 범주 내에서, 실시예에 따라 다양하게 변형될 수 있다.3 and 5, the fingers 116 and 126 of the plurality of moving electrodes 115 and 125 and the fingers 172, 174 and the fingers of the plurality of fixed electrodes 171, 173, 175 and 177 are illustrated. The shape and arrangement of the 182 and 184 may be variously modified according to the embodiment within the scope that does not change the technical spirit or essential features of the present invention.
도 6은 본 발명의 실시예에 따른 MEMS 장치를 포함하는 MEMS패키지를 개략적으로 도시하는 도면이다.6 is a diagram schematically illustrating a MEMS package including a MEMS device according to an embodiment of the present invention.
도 6을 참조하면, MEMS 패키지(1000)는 PCB 기판(1100), PCB 기판(1100) 상에 적층되어 본딩된 MEMS 장치(1200)와 ASIC 장치(1300)를 포함한다. MEMS 장치(1200)는 도 1을 참조하여 설명한 MEMS 장치(100)와 실질적으로 동일하게 형성될 수 있다. 도 6에서는 와이어 본딩 방식을 도시하였으나, 이에 제한되는 것은 아니고, 플립칩 방식이 이용될 수도 있다.Referring to FIG. 6, the MEMS package 1000 includes a PCB substrate 1100, a MEMS device 1200 stacked on the PCB substrate 1100, and an ASIC device 1300. The MEMS device 1200 may be formed substantially the same as the MEMS device 100 described with reference to FIG. 1. 6 illustrates a wire bonding method, but the present invention is not limited thereto, and a flip chip method may be used.
도 7내지 도 8은 본 발명의 실시예에 따른 MEMS 장치를 포함하는 센서 허브를 개략적으로 도시하는 도면이다.7-8 are schematic diagrams of sensor hubs including MEMS devices in accordance with embodiments of the present invention.
도 7을 참조하면, 센서 허브(2000)는 프로세싱 장치(2100), MEMS 장치(2200), ASIC(Application Specific Integrated Circuit) 장치(2300)를 포함할 수 있다. MEMS 장치(2200)는 도 1을 참조하여 설명한 MEMS 장치(100)와 실질적으로 동일하게 형성될 수 있다. ASIC 장치(2300)는 MEMS 장치(2200)의 센싱 신호를 처리할 수 있다. 프로세싱 장치(2100)는, 애플리케이션 프로세서를 대신하여, 센서 데이터 처리를 전문적으로 수행하기 위한 보조 프로세서로 기능할 수 있다.Referring to FIG. 7, the sensor hub 2000 may include a processing device 2100, a MEMS device 2200, and an application specific integrated circuit (ASIC) device 2300. The MEMS device 2200 may be formed substantially the same as the MEMS device 100 described with reference to FIG. 1. The ASIC device 2300 may process the sensing signal of the MEMS device 2200. The processing device 2100 may function as a coprocessor for professionally performing sensor data processing on behalf of the application processor.
도8을 참조하면, 센서 허브(3000)는 복수 개의 MEMS 장치(3200, 3400)와 복수 개의 ASIC 장치(3300, 3500)를 포함할 수 있다. 복수 개의 MEMS 장치(3200, 3400) 중 적어도 하나는 도 1을 참조하여 설명한 MEMS 장치(100)와 실질적으로 동일하게 형성될 수 있다. 제1 MEMS 장치(3200)는 가속도 센서이고, 제2 MEMS 장치(3400)는 자이로 센서일 수 있으나, 이에 제한되는 것은 아니다. 복수 개의 ASIC 장치(3300, 3500)는 각각 대응하는 MEMS 장치(3200, 3400)의 센싱 신호를 처리할 수 있다. 프로세싱 장치(3100)는, 애플리케이션 프로세서를 대신하여, 센서 데이터 처리를 전문적으로 수행하기 위한 보조 프로세서로 기능할 수 있다. 도시된 바와 다르게, 세 개 이상의 MEMS 장치와 ASIC 장치가 센서 허브(3000) 내에 제공될 수 있다. Referring to FIG. 8, the sensor hub 3000 may include a plurality of MEMS devices 3200 and 3400 and a plurality of ASIC devices 3300 and 3500. At least one of the plurality of MEMS devices 3200 and 3400 may be formed substantially the same as the MEMS device 100 described with reference to FIG. 1. The first MEMS device 3200 may be an acceleration sensor, and the second MEMS device 3400 may be a gyro sensor, but is not limited thereto. The plurality of ASIC devices 3300 and 3500 may process sensing signals of the corresponding MEMS devices 3200 and 3400, respectively. The processing device 3100 may function as a coprocessor for professionally performing sensor data processing on behalf of the application processor. Unlike shown, three or more MEMS devices and ASIC devices may be provided within the sensor hub 3000.
도 9는 본 발명의 실시예에 따른 MEMS 장치를 포함하는 사용자 단말기를 개략적으로 도시하는 도면이다.9 is a diagram schematically illustrating a user terminal including a MEMS device according to an embodiment of the present invention.
도 9를 참조하면, 사용자 단말기(200)는 무선 통신부(4100), A/V 입력부(4200), 사용자 입력부(4300), 센싱부(4400), 출력부(4500), 저장부(4600), 인터페이스부(4700), 제어부(48000), 전원 공급부(4900)를 포함한다. Referring to FIG. 9, the user terminal 200 may include a wireless communication unit 4100, an A / V input unit 4200, a user input unit 4300, a sensing unit 4400, an output unit 4500, a storage unit 4600, and the like. The interface unit 4700 includes a control unit 4800 and a power supply unit 4900.
무선 통신부(4100)는 외부 디바이스와 무선 통신할 수 있다. 무선 통신부(4100)는 이동 통신, 와이브로, 와이파이(WiFi), 블루투스(Bluetooth), 지그비(Zigbee), 초음파, 적외선, RF(Radio Frequency) 등과 같은 각종 무선 통신 방식을 이용하여 외부 디바이스와 무선 통신할 수 있다. 무선 통신부(4100)는 외부 디바이스로부터 수신한 데이터 및/또는 정보를 제어부(4800)에 전달하고, 제어부(4800)로부터 전달된 데이터 및/또는 정보를 외부 디바이스에 전송할 수 있다. 이를 위하여, 무선 통신부(4100)는 이동 통신 모듈(4110) 및 근거리 통신 모듈(4120)을 포함할 수 있다.The wireless communication unit 4100 may wirelessly communicate with an external device. The wireless communication unit 4100 may wirelessly communicate with an external device using various wireless communication methods such as mobile communication, WiBro, Wi-Fi, Bluetooth, Zigbee, ultrasonic wave, infrared ray, and RF (Radio Frequency). Can be. The wireless communication unit 4100 may transmit data and / or information received from the external device to the controller 4800, and may transmit data and / or information transmitted from the controller 4800 to the external device. To this end, the wireless communication unit 4100 may include a mobile communication module 4110 and a short range communication module 4120.
또한, 무선 통신부(4100)는 위치 정보 모듈(4130)을 포함하여 사용자 단말기(4000)의 위치 정보를 획득할 수 있다. 사용자 단말기(4000)의 위치 정보는 예를 들어 GPS 측위 시스템, WiFi 측위 시스템, 셀룰러(Cellular) 측위 시스템 또는 비콘(beacon) 측위 시스템들로부터 제공될 수 있으나, 이에 제한되는 것은 아니고, 임의의 측위 시스템들로부터 위치 정보가 제공될 수 있다. 무선 통신부(4100)는 측위 시스템으로부터 수신한 위치 정보를 제어부(4800)에 전달할 수 있다.In addition, the wireless communication unit 4100 may include the location information module 4130 to obtain location information of the user terminal 4000. Location information of the user terminal 4000 may be provided from, for example, a GPS positioning system, a WiFi positioning system, a cellular positioning system, or a beacon positioning system, but is not limited thereto. Location information may be provided. The wireless communication unit 4100 may transfer the location information received from the positioning system to the controller 4800.
A/V 입력부(4200)는 영상 또는 음성 신호 입력을 위한 것으로, 카메라 모듈(4210)과 마이크 모듈(4220)을 포함할 수 있다. 카메라 모듈(4210)은 예를 들어 CMOS(Complementary Metal Oxide Semiconductor) 센서, CCD(Charge Coupled Device) 센서 등과 같은 이미지 센서를 포함할 수 있다.The A / V input unit 4200 is for inputting a video or audio signal and may include a camera module 4210 and a microphone module 4220. The camera module 4210 may include, for example, an image sensor such as a complementary metal oxide semiconductor (CMOS) sensor, a charge coupled device (CCD) sensor, or the like.
사용자 입력부(4300)는 사용자로부터 각종 정보를 입력받는다. 사용자 입력부(4300)는 키, 버튼, 스위치, 터치 패드, 휠 등의 입력 수단을 포함할 수 있다. 터치 패드가 후술하는 디스플레이 모듈(4510)과 상호 레이어 구조를 이루는 경우, 터치스크린을 구성할 수 있다.The user input unit 4300 receives various information from the user. The user input unit 4300 may include input means such as a key, a button, a switch, a touch pad, and a wheel. When the touch pad has a mutual layer structure with the display module 4510 described later, a touch screen may be configured.
센서부(4400)는 사용자 단말기(4000)의 상태 또는 사용자의 상태를 감지한다. 센싱부(4400)는 터치 센서, 근접 센서, 압력 센서, 진동 센서, 지자기 센서, 자이로 센서, 가속도 센서, 생체 인식 센서 등의 감지 수단을 포함할 수 있다. 센싱부(240)는 사용자 입력을 위하여 이용될 수도 있다.The sensor unit 4400 detects a state of the user terminal 4000 or a state of the user. The sensing unit 4400 may include sensing means such as a touch sensor, a proximity sensor, a pressure sensor, a vibration sensor, a geomagnetic sensor, a gyro sensor, an acceleration sensor, and a biometric sensor. The sensing unit 240 may be used for user input.
출력부(4500)는 사용자에게 각종 정보를 통보한다. 출력부(4500)는 텍스트, 영상 또는 음성의 형태로 정보를 출력할 수 있다. 이를 위하여, 출력부(4500)는 디스플레이 모듈(4510) 및 스피커 모듈(4520)을 포함할 수 있다. 디스플레이 모듈(4510)은 PDP, LCD, TFT LCD, OLED, 플렉시블 디스플레이, 3차원 디스플레이, 전자잉크 디스플레이, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태로 제공될 수 있다. 출력부(4500)는 본 발명이 속하는 기술분야에서 잘 알려진 임의의 형태의 출력 수단을 더 포함하여 구성될 수 있다.The output unit 4500 notifies the user of various information. The output unit 4500 may output information in the form of text, video or audio. To this end, the output unit 4500 may include a display module 4510 and a speaker module 4520. The display module 4510 may be provided in a PDP, LCD, TFT LCD, OLED, flexible display, three-dimensional display, electronic ink display, or any form well known in the art. The output unit 4500 may further comprise any form of output means well known in the art.
저장부(4600)는 각종 데이터 및 명령을 저장한다. 저장부(4600)는 사용자 단말기(4000)의 동작을 위한 시스템 소프트웨어와 각종 애플리케이션을 저장할 수도 있다. 저장부(4600)는 RAM, ROM, EPROM, EEPROM, 플래시 메모리, 하드 디스크, 착탈형 디스크, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터로 읽을 수 있는 기록 매체를 포함할 수 있다.The storage unit 4600 stores various data and commands. The storage unit 4600 may store system software and various applications for the operation of the user terminal 4000. The storage unit 4600 may include a RAM, a ROM, an EPROM, an EEPROM, a flash memory, a hard disk, a removable disk, or any type of computer readable recording medium well known in the art.
인터페이스부(4700)는 사용자 단말기(4000)에 접속되는 외부 디바이스와의 통로 역할을 수행한다. 인터페이스부(4700)는 외부 디바이스로부터 데이터 및/또는 정보를 수신하거나 전원을 공급받아 사용자 단말기(4000) 내부의 구성요소들에 전달하거나, 외부 디바이스에 사용자 단말기(4000) 내부의 데이터 및/또는 정보를 전송하거나 내부의 전원을 공급할 수 있다. 인터페이스부(4700)는 예를 들어, 유/무선 헤드셋 포트, 충전용 포트, 유/무선 데이터 포트, 메모리 카드(memory card) 포트, 범용 직렬 버스(Universal Serial Bus; USB) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O(Input/Output) 포트 등을 포함할 수 있다.The interface unit 4700 serves as a path to an external device connected to the user terminal 4000. The interface unit 4700 receives data and / or information from an external device or receives power and transmits the data and / or information to components inside the user terminal 4000, or transmits data and / or information inside the user terminal 4000 to an external device. It can transmit power or supply internal power. The interface unit 4700 includes, for example, a wired / wireless headset port, a charging port, a wired / wireless data port, a memory card port, a universal serial bus (USB) port, and an identification module. Port may be connected to a connected device, an audio input / output (I / O) port, a video input / output (I / O) port, or the like.
제어부(4800)는 다른 구성요소들을 제어하여 사용자 단말기(4000)의 전반적인 동작을 제어한다. 제어부(4800)는 저장부(4600)에 저장된 시스템 소프트웨어와 각종 애플리케이션을 수행할 수 있다. 제어부(2800)는 마이크로 프로세서, 마이크로 컨트롤러, 디지털 신호 처리 코어, 그래픽 처리 코어, 애플리케이션 프로세서 등의 집적 회로 등을 포함할 수 있다.The controller 4800 controls other components to control the overall operation of the user terminal 4000. The controller 4800 may execute system software and various applications stored in the storage 4600. The controller 2800 may include an integrated circuit such as a microprocessor, a microcontroller, a digital signal processing core, a graphics processing core, an application processor, or the like.
전원 공급부(4900)는 무선 통신부(4100), A/V 입력부(4200), 사용자 입력부(4300), 센서부(4400), 출력부(4500), 저장부(4600), 인터페이스부(4700), 제어부(4800)의 동작에 필요한 전원을 공급한다. 전원 공급부(4900)는 내장 배터리를 포함할 수 있다.The power supply unit 4900 may include a wireless communication unit 4100, an A / V input unit 4200, a user input unit 4300, a sensor unit 4400, an output unit 4500, a storage unit 4600, an interface unit 4700, Supply power for the operation of the controller 4800. The power supply 4900 may include an internal battery.
도 1을 참조하여 설명한 MEMS 장치(100) 또는 도 7 내지 도 8을 참조하여 설명한 센서 허브(2000, 3000)가 센서부(4400) 내에 제공될 수 있다.The MEMS device 100 described with reference to FIG. 1 or the sensor hubs 2000 and 3000 described with reference to FIGS. 7 to 8 may be provided in the sensor unit 4400.
본 발명의 실시예와 관련하여 설명된 방법은 프로세서에 의해 수행되는 소프트웨어 모듈로 구현될 수 있다. 소프트웨어 모듈은 RAM, ROM, EPROM, EEPROM, 플래시 메모리, 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터로 읽을 수 있는 기록 매체에 상주할 수도 있다.The method described in connection with an embodiment of the present invention may be implemented as a software module performed by a processor. The software module may reside in RAM, ROM, EPROM, EEPROM, flash memory, hard disk, removable disk, CD-ROM, or any form of computer readable recording medium well known in the art. .
이상, 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. You will understand that. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (10)

  1. 고정부;Fixing part;
    스프링에 의해서 상기 고정부에 연결되고, 제1 방향으로 서로 대향하는 복수의 제1 질량체; 및A plurality of first masses connected to the fixing part by a spring and opposed to each other in a first direction; And
    스프링에 의해서 상기 각각의 제1 질량체에 연결되고, 콤(Comb) 구조를 갖는 복수의 이동 전극을 포함하고, A plurality of moving electrodes connected to the respective first masses by springs and having a comb structure;
    코리올리 힘(Coriolis Force)이 제공되는 때에, 상기 복수의 이동 전극은 상기 복수의 제1 질량체로부터 분리되어 이동 가능한, MEMS 장치.And when a Coriolis Force is provided, the plurality of moving electrodes is movable apart from the plurality of first masses.
  2. 제1항에 있어서,The method of claim 1,
    상기 복수의 이동 전극은 Yaw축 센싱을 위하여 이용되는, MEMS 장치.The plurality of moving electrodes are used for Yaw axis sensing.
  3. 제1항에 있어서,The method of claim 1,
    스프링에 의해서 상기 고정부에 연결되고, 제2 방향으로 서로 대향하는 복수의 제2 질량체를 더 포함하고,A plurality of second masses connected to the fixing part by springs and opposed to each other in a second direction,
    스프링에 의해서 상기 복수의 제1 질량체와 상기 복수의 제2 질량체는 서로 커플링되는, MEMS 장치.And the plurality of first masses and the plurality of second masses are coupled to each other by a spring.
  4. 제1항에 있어서,The method of claim 1,
    상기 각각의 이동 전극과 상응하고, 콤 구조를 갖는 복수의 고정 전극 그룹을 더 포함하고,A plurality of fixed electrode groups corresponding to the respective moving electrodes and having a comb structure,
    상기 각각의 고정 전극 그룹은 제1 커패시터를 구성하는 제1 고정 전극과 제2 커패시터를 구성하는 제2 고정 전극을 포함하는, MEMS 장치.Wherein each group of fixed electrodes comprises a first fixed electrode constituting a first capacitor and a second fixed electrode constituting a second capacitor.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 커패시터의 커패시턴스와 상기 제2 커패시터의 커패시턴스는 서로 반대로(oppositely) 증감하는, MEMS 장치.And the capacitance of the first capacitor and the capacitance of the second capacitor increase and decrease oppositely to each other.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 복수의 제1 커패시터의 커패시턴스의 변화량이 합산되어 처리되거나, 상기 복수의 제2 커패시터의 커패시턴스의 변화량이 합산되어 처리되는, MEMS 장치.The change amount of the capacitance of the plurality of first capacitors is processed by adding up, or the change amount of the capacitance of the plurality of second capacitors is processed by adding up.
  7. 제1항에 있어서,The method of claim 1,
    소정의 방향의 회전이 제공되는 때에, 상기 복수의 이동 전극은 서로 다른 방향으로 이동하는, MEMS 장치.And when a rotation in a predetermined direction is provided, the plurality of moving electrodes move in different directions.
  8. 제1항에 있어서,The method of claim 1,
    소정의 방향의 가속이 제공되는 때에, 상기 복수의 이동 전극은 동일한 방향으로 이동하는, MEMS 장치.When the acceleration in a predetermined direction is provided, the plurality of moving electrodes move in the same direction.
  9. 제1항 내지 제8항 중 어느 하나의 항의 MEMS 장치를 포함하는, MEMS 패키지.MEMS package comprising the MEMS device of claim 1.
  10. 제1항 내지 제8항 중 어느 하나의 항의 MEMS 장치를 포함하는, 사용자 단말기.A user terminal comprising the MEMS device of any one of claims 1 to 8.
PCT/KR2015/010530 2015-10-06 2015-10-06 Mems device, mems package comprising same and user terminal WO2017061638A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/010530 WO2017061638A1 (en) 2015-10-06 2015-10-06 Mems device, mems package comprising same and user terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/010530 WO2017061638A1 (en) 2015-10-06 2015-10-06 Mems device, mems package comprising same and user terminal

Publications (1)

Publication Number Publication Date
WO2017061638A1 true WO2017061638A1 (en) 2017-04-13

Family

ID=58487811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010530 WO2017061638A1 (en) 2015-10-06 2015-10-06 Mems device, mems package comprising same and user terminal

Country Status (1)

Country Link
WO (1) WO2017061638A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112744779A (en) * 2019-10-30 2021-05-04 台湾积体电路制造股份有限公司 Micro-electro-mechanical system and method of manufacturing the same
TWI736428B (en) * 2020-03-23 2021-08-11 台灣積體電路製造股份有限公司 Mems structure and method for forming the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080053224A1 (en) * 2004-03-12 2008-03-06 Matsushita Electric Works, Ltd. Gyro Sensor And Sensor Apparatus Using Same
US20080210005A1 (en) * 2005-07-05 2008-09-04 Thales Micro-Machined Gyrometric Sensor For Differential Measurement of the Movement of Vibrating Masses
US20110030473A1 (en) * 2009-08-04 2011-02-10 Cenk Acar Micromachined inertial sensor devices
KR20110134492A (en) * 2009-03-26 2011-12-14 센서다이내믹스 아게 Micro gyroscope for determining rotational movements about three spatial axes which are perpendicular to one another
JP2014240821A (en) * 2013-06-12 2014-12-25 株式会社デンソー Sensor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080053224A1 (en) * 2004-03-12 2008-03-06 Matsushita Electric Works, Ltd. Gyro Sensor And Sensor Apparatus Using Same
US20080210005A1 (en) * 2005-07-05 2008-09-04 Thales Micro-Machined Gyrometric Sensor For Differential Measurement of the Movement of Vibrating Masses
KR20110134492A (en) * 2009-03-26 2011-12-14 센서다이내믹스 아게 Micro gyroscope for determining rotational movements about three spatial axes which are perpendicular to one another
US20110030473A1 (en) * 2009-08-04 2011-02-10 Cenk Acar Micromachined inertial sensor devices
JP2014240821A (en) * 2013-06-12 2014-12-25 株式会社デンソー Sensor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112744779A (en) * 2019-10-30 2021-05-04 台湾积体电路制造股份有限公司 Micro-electro-mechanical system and method of manufacturing the same
CN112744779B (en) * 2019-10-30 2024-02-23 台湾积体电路制造股份有限公司 Microelectromechanical system and method of manufacturing the same
TWI736428B (en) * 2020-03-23 2021-08-11 台灣積體電路製造股份有限公司 Mems structure and method for forming the same

Similar Documents

Publication Publication Date Title
CN103364588B (en) Physical quantity transducer and electronic equipment
US20170010298A1 (en) Physical quantity sensor, physical quantity sensor device, electronic apparatus, and moving object
US20130263662A1 (en) Physical quantity sensor and electronic apparatus
US20130276536A1 (en) Gyro sensor and electronic apparatus
ITTO20110806A1 (en) MICROELETTROMECANICAL DEVICE INTEGRATING A GYROSCOPE AND AN ACCELEROMETER
CN104297523B (en) Function element, electronic equipment and moving body
US8413511B2 (en) Accelerometer
WO2014046351A1 (en) Camera module
US20160041198A1 (en) Physical quantity sensor, electronic device, and moving object
WO2017061638A1 (en) Mems device, mems package comprising same and user terminal
CN203582456U (en) Micro-electro-mechanical device and electronic system
JP6398348B2 (en) Functional element, method for manufacturing functional element, electronic device, and moving body
WO2018026032A1 (en) Mems device having improved stopper structure, manufacturing method therefor, and mems package and computing system, which comprise mems device
US9846036B2 (en) Angular velocity sensor
WO2016052955A1 (en) Wearable terminal for displaying navigation information, navigation device, and display method therefor
WO2013047933A1 (en) Mems resonant accelerometer
WO2017061640A1 (en) Mems device, mems package comprising same and user terminal
WO2017061635A1 (en) Mems device and method for preparing same
WO2017188514A1 (en) Method for manufacturing mems device having improved offset drift characteristics, mems package including mems device, and computing system
WO2018026031A1 (en) Mems apparatus with improved impact characteristics, mems package comprising same, computing system, and method for manufacturing same
WO2017061636A1 (en) Mems device preparation method, mems package and user terminal
KR20170047858A (en) Mems device, mems package and user terminal comprising the same
WO2017142222A1 (en) Mems device, mems package, and mems device manufacturing method
JP2013232722A (en) Electronic apparatus and imaging module
KR20170047907A (en) Mems device, mems package and user terminal comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15905881

Country of ref document: EP

Kind code of ref document: A1