WO2017061205A1 - Vehicular wireless communication device and wireless communication system - Google Patents

Vehicular wireless communication device and wireless communication system Download PDF

Info

Publication number
WO2017061205A1
WO2017061205A1 PCT/JP2016/075935 JP2016075935W WO2017061205A1 WO 2017061205 A1 WO2017061205 A1 WO 2017061205A1 JP 2016075935 W JP2016075935 W JP 2016075935W WO 2017061205 A1 WO2017061205 A1 WO 2017061205A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
unit
wireless communication
vehicle
communication device
Prior art date
Application number
PCT/JP2016/075935
Other languages
French (fr)
Japanese (ja)
Inventor
章弘 川田
山本 真之
紳一郎 加藤
卓士 篠田
Original Assignee
株式会社デンソー
株式会社日本自動車部品総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社日本自動車部品総合研究所 filed Critical 株式会社デンソー
Publication of WO2017061205A1 publication Critical patent/WO2017061205A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J6/00Arrangement of optical signalling or lighting devices on cycles; Mounting or supporting thereof; Circuits therefor
    • B62J6/06Arrangement of lighting dynamos or drives therefor
    • B62J6/12Dynamos arranged in the wheel hub
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/25Information-providing devices intended to provide information to other road users, e.g. signs or flags

Definitions

  • the present disclosure relates to a vehicular radio communication device and a radio communication system including the vehicular radio communication device.
  • a wireless transmitter that is mounted on a bicycle and transmits a bicycle speed notification capable of notifying the bicycle speed (for example, Patent Document 1). Since the bicycle speed notification is a signal having a pulse period corresponding to the bicycle speed, the bicycle speed can be notified.
  • a signal having a pulse period corresponding to the speed of the bicycle is used as a modulation signal, and this modulation signal is suitable for communication between the bicycle and the vehicle within a range of several hundred kHz to several hundred MHz. It is generated by being modulated with a carrier wave in one frequency band.
  • One of the objects of the present disclosure is to suppress vehicular radio communication after a mobile unit using a device that receives a modulated wave transmitted by a vehicular wireless communication device receives the modulated wave.
  • An object of the present invention is to provide a vehicular radio communication device and a radio communication system capable of suppressing a time until a vehicle in which a communication device is used approaches the moving body from being shortened.
  • a vehicle wireless communication device is a vehicle wireless communication device used in a vehicle, and includes a vehicle speed detection unit that detects a vehicle speed of the vehicle, a transmission data generation unit that generates transmission data, and transmission data.
  • a high-frequency transmission unit that transmits a modulated wave obtained by modulating the transmission data generated by the generation unit with a carrier wave in a preset high-frequency band with higher transmission power as the vehicle speed detected by the vehicle speed detection unit increases.
  • the vehicle wireless communication device includes a vehicle speed detection unit that detects a vehicle speed of a vehicle in which the vehicle wireless communication device is used, and transmits a modulated wave with higher transmission power as the vehicle speed detected by the vehicle speed detection unit is higher. . Therefore, since the modulated wave is transmitted with relatively large transmission power when the vehicle speed is relatively high, the modulated wave is transmitted relatively far from the vehicle when the vehicle speed is relatively high. Thus, even when the vehicle speed is relatively high, the vehicle wireless communication device is used after the mobile body that uses the device that receives the modulated wave transmitted by the vehicle wireless communication device receives the modulated wave. It can be suppressed that the time until the moving vehicle approaches the moving body is shortened.
  • the modulated wave is transmitted with relatively small transmission power when the vehicle speed is relatively low, it is possible to suppress interference with the modulated wave transmitted by another nearby vehicle wireless communication device.
  • a wireless communication system includes the above-described vehicle wireless communication device, and is used in a moving body different from the vehicle in which the vehicle wireless communication device is used. It is a radio
  • the mobile wireless communication device includes a short-range transmission unit that sequentially transmits short-range communication signals.
  • the vehicular wireless communication device includes a short-range receiving unit that receives the short-range communication signal transmitted by the short-range transmitting unit.
  • the high-frequency transmission unit is based on the vehicle speed detected by the vehicle speed detection unit being lower than a preset low vehicle speed determination threshold, and the short-range reception unit has received the short-range communication signal, While the modulated wave is transmitted with a fixed power set in advance so that the communication distance is longer than the communication distance of the short-range communication signal, the vehicle speed detected by the vehicle speed detection unit is lower than the low vehicle speed determination threshold value.
  • vehicle speed proportional control is performed to control the transmission power to be greater as the vehicle speed detected by the vehicle speed detection unit is higher, and the vehicle speed proportional In the control, the transmission power when the vehicle speed detected by the vehicle speed detection unit is lower than the low vehicle speed determination threshold is smaller than the fixed power.
  • FIG. 1 is a configuration diagram of a wireless communication system according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of the bicycle wireless communication apparatus of FIG.
  • FIG. 3 is a diagram illustrating a circuit configuration of the vehicle speed detection unit of FIG.
  • FIG. 4 is a diagram illustrating a waveform of a voltage output from the hub dynamo included in the bicycle.
  • FIG. 5 is a flowchart illustrating processing executed by the power control pattern determination unit in FIG.
  • FIG. 6 is a diagram for explaining the fixed power and vehicle speed proportional control shown in FIG.
  • FIG. 7 is a diagram showing the configuration of the RF power control unit in FIG.
  • FIG. 8 is a circuit diagram showing a detailed configuration of the voltage controlled attenuator.
  • FIG. 9 is a block diagram showing a configuration of the automobile wireless communication device of FIG.
  • FIG. 10 is a block diagram illustrating a configuration of the bicycle wireless communication apparatus according to the second embodiment.
  • FIG. 11 is a flowchart illustrating processing executed by the transmission data generation unit and the carrier sense unit of FIG.
  • the wireless communication system 1 of the present embodiment includes a bicycle wireless communication device 20 that is a wireless communication device mounted on a bicycle 2 and a vehicle that is a wireless communication device mounted on a vehicle 3.
  • Wireless communication device 30 is provided.
  • FIG. 1 shows a bicycle 2 equipped with a bicycle wireless communication device 20 and a vehicle 3 equipped with a vehicle wireless communication device 30 one by one. There may be a plurality of automobiles 3 each equipped with the wireless communication device 30 for use.
  • the bicycle 2 is a vehicle, and the bicycle wireless communication device 20 corresponds to a vehicle wireless communication device.
  • the automobile 3 is a mobile body, and the automobile wireless communication device 30 corresponds to a mobile body wireless communication device.
  • the bicycle wireless communication device 20 periodically transmits a modulated wave in order to inform the surroundings of the presence of the bicycle 2.
  • the automotive radio communication device 30 has a configuration capable of receiving the modulated wave.
  • the bicycle wireless communication device 20 includes a vehicle speed detection unit 21, an LF antenna 22, an LF reception unit 23, a power control pattern determination unit 24, a transmission data generation unit 25, and an RF transmission unit. 26T, RF antenna 27 is provided.
  • the bicycle 2 of this embodiment includes a hub dynamo 2a.
  • the vehicle speed detector 21 is connected to the hub dynamo 2a.
  • the hub dynamo 2a is an AC generator, and as is well known, there is a linear range in which the output voltage increases linearly as the rotational speed increases. In the range where the rotational speed is higher than this linear range, the output voltage does not change much even if the rotational speed changes.
  • the vehicle speed detection unit 21 uses a DC vehicle speed signal Sv that increases as the output voltage increases based on an AC output voltage generated by the hub dynamo 2a when the bicycle 2 travels, as a power control pattern determination unit. 24 and the RF transmitter 26T. As described above, if the rotational speed of the hub dynamo 2a is in a linear range, the output voltage generated by the hub dynamo 2a increases as the rotational speed increases. Therefore, the vehicle speed signal Sv is a signal that represents the vehicle speed V of the bicycle 2 by its voltage value.
  • FIG. 3 shows a specific configuration example of the vehicle speed detection unit 21.
  • FIG. 3 also shows a power supply circuit 29 of the bicycle wireless communication device 20.
  • the power supply circuit 29 includes a known full-wave rectifier circuit 291 and a smoothing step-down circuit 292.
  • the full-wave rectifier circuit 291 and the smoothing step-down circuit 292 convert the AC voltage generated by the hub dynamo 2a into a predetermined DC voltage by being rectified, smoothed and stepped down.
  • the “circuit” in FIG. 3 means a configuration outside the vehicle speed detection unit 21 in the bicycle wireless communication device 20 shown in FIG.
  • the power supply circuit 29 is omitted in FIG.
  • the vehicle speed detection unit 21 shown in FIG. 3 is an analog circuit including a voltage doubler rectifier circuit 211 and a smoothing circuit 212.
  • the voltage doubler rectifier circuit 211 receives the voltage across the hub dynamo 2a and rectifies the AC voltage generated by the hub dynamo 2a shown in FIG.
  • the smoothing circuit 212 smoothes the voltage rectified by the voltage doubler rectifier circuit 211.
  • the output voltage generated by the hub dynamo 2a increases in accordance with the rotational speed of the hub dynamo 2a in the above-described linear range. Therefore, the vehicle speed signal Sv output from the vehicle speed detector 21 having the configuration shown in FIG. 3 represents the vehicle speed V of the bicycle 2 by the voltage value.
  • the voltage doubler rectifier circuit 211 is used as the rectifier circuit, the amount of change in the voltage value of the vehicle speed signal Sv due to the speed change of the bicycle 2 becomes large. This facilitates power control based on the vehicle speed signal Sv.
  • the LF antenna 22 has an electrical length capable of receiving LF band radio waves, and outputs a signal representing the received radio waves to the LF receiver 23.
  • the LF antenna 22 is, for example, a bar antenna.
  • the LF reception unit 23 amplifies and demodulates the signal acquired from the LF antenna 22, and outputs the demodulated signal (hereinafter, “LF reception signal”) to the power control pattern determination unit 24.
  • the frequency demodulated by the LF receiver 23, that is, the frequency received by the LF receiver 23 is the 135 kHz band.
  • the LF receiver 23 corresponds to a short distance receiver.
  • the power control pattern determination unit 24 determines whether the transmission power P of the RF transmission unit 26T is fixed power Pf or power corresponding to the vehicle speed V.
  • the power control pattern determination unit 24 is stored in a non-transitional tangible recording medium such as a ROM using a temporary storage function of the RAM in a computer including a CPU, a ROM, a RAM, and the like. It is realized by executing the program.
  • the transmission data generation unit 25 is also realized by a computer. Note that some or all of the functions executed by the power control pattern determination unit 24 and the transmission data generation unit 25 may be configured by hardware using one or a plurality of ICs.
  • FIG. 5 shows a process in which the power control pattern determination unit 24 determines the transmission power pattern.
  • the power control pattern determination unit 24 executes the process shown in FIG. 5 at a predetermined cycle.
  • step S ⁇ b> 1 a vehicle speed signal Sv is acquired from the vehicle speed detection unit 21.
  • step S2 the vehicle speed V indicated by the acquired vehicle speed signal Sv in step S1 it is determined whether or not lower than the lower vehicle speed determination threshold TH LV.
  • the low vehicle speed determination threshold value TH LV is a threshold value for determining that the bicycle 2 is traveling at such a low speed that a pedestrian walks, and is set to, for example, 5 km / h.
  • step S2 determines whether or not a signal transmitted from the automobile wireless communication device 30 (hereinafter, an automobile notification signal) has been received.
  • the automobile notification signal is a signal transmitted by the automobile wireless communication device 30 using an LF band radio wave, and the receivable distance is a short distance because it is an LF band radio wave.
  • the receivable distance of the automobile notification signal is about 5 m.
  • This automobile notification signal is a short-range communication signal.
  • step S3 is performed by acquiring an LF reception signal from the LF receiver 23. If it is determined that the signal acquired from the LF receiving unit 23 is the vehicle notification signal within the past certain time, it is determined that the LF receiving unit 23 has received the vehicle notification signal. The past fixed time is set to, for example, about several times the cycle in which the vehicle radio communication device 30 transmits the vehicle notification signal. If the determination in step S3 is YES, the process proceeds to step S4. In step S4, it is determined that the transmission power P is fixed power Pf. If any one of the determination in step S2 and the determination in step S3 is NO, the process proceeds to step S5. In step S5, it is determined that the vehicle speed proportional control is executed in order to determine the transmission power P.
  • FIG. 6 is a diagram for explaining the vehicle speed proportional control and the fixed power Pf.
  • the transmission lower limit vehicle speed V L is the lower limit vehicle speed V at which control for transmitting a modulated wave is started.
  • the transmission power P increases as the vehicle speed V increases from the transmission lower limit vehicle speed V L to the upper limit vehicle speed V U , and when the vehicle speed V exceeds the upper limit vehicle speed V U , a control for the transmission power P and fixed upper limit power P U.
  • the upper limit vehicle speed V U is, for example, 20 km / h.
  • the fixed power Pf is power set such that the communication distance of the modulated wave is longer than the communication distance of the automobile notification signal transmitted by the radio wave in the LF band.
  • transmission power P LF is transmission power P for making the communication distance of the modulated wave the same communication distance as the communication distance of the automobile notification signal.
  • the fixed power Pf is larger than the transmission power PLF .
  • the transmission data generation unit 25 periodically generates transmission data.
  • the transmission data is data for notifying the surroundings of the existence of the bicycle 2.
  • the transmission data generation cycle is a constant value set between several tens of milliseconds and several hundreds of milliseconds.
  • the RF transmission unit 26T uses the transmission data generated by the transmission data generation unit 25 as a modulation signal, modulates the transmission data with an RF band carrier wave to generate a modulation wave, and transmits the modulation wave from the RF antenna 27 as a radio wave.
  • the RF transmitter 26T corresponds to a high frequency transmitter.
  • the RF transmission unit 26T includes a modulation unit 26T1, a power amplification unit 26T2, and an RF power control unit 26T3 as detailed configurations.
  • the modulation unit 26T1 acquires transmission data from the transmission data generation unit 25, and modulates the transmission data with a carrier wave in an RF band (that is, a high frequency band).
  • the RF band in this embodiment is specifically a 315 MHz band.
  • the power amplifying unit 26T2 amplifies the signal generated by the modulating unit 26T1 so as to have a predetermined constant power.
  • the modulation unit 26T1 and the power amplification unit 26T2 correspond to the modulation amplification unit.
  • the RF power control unit 26T3 performs vehicle speed proportional control when the power control pattern determination unit 24 determines that the transmission power P is power corresponding to the vehicle speed V.
  • the vehicle speed proportional control is a control for increasing the transmission power P as the vehicle speed V increases.
  • the RF power control unit 26T3 of the present embodiment attenuates the amplified transmission data amplified by the power amplification unit 26T2 with an attenuation factor that decreases as the vehicle speed V increases and transmits the transmission data from the RF antenna 27. .
  • the RF power control unit 26T3 sets the transmission data after amplification amplified by the power amplification unit 26T2 in advance.
  • the signal is attenuated at a fixed attenuation rate and transmitted from the RF antenna 27.
  • the fixed attenuation rate is an attenuation rate at which the transmission power P after attenuation is larger than the transmission power P when the vehicle speed V is lower than the low vehicle speed determination threshold TH LV when the vehicle speed proportional control is performed.
  • the RF antenna 27 radiates the modulated wave supplied from the RF transmitter 26T into the air as a radio wave.
  • the RF power control unit 26T3 includes a voltage control attenuator 2631, a fixed attenuator 2632, and switching units 2633 and 2634 as a subdivided configuration.
  • the voltage-controlled attenuator 2631 corresponds to a voltage-controlled attenuating unit.
  • the signal representing the modulated wave output from the power amplifying unit 26T2 is used as an input signal, and the vehicle speed signal Sv is used as a control signal. The higher the value, the lower the input signal that is attenuated.
  • fixed attenuator 2632 outputs a signal representing the modulated wave output from power amplifying unit 26T2 with fixed power Pf.
  • the transmission line can also be used as the fixed attenuator 2632 if the power of the signal representing the modulated wave output from the power amplifier 26T2 is the fixed power Pf.
  • This fixed attenuator 2632 corresponds to a fixed power unit.
  • the switching unit 2633 switches whether the input signal input to the RF power control unit 26T3 is input to the voltage controlled attenuator 2631 or the fixed attenuator 2632.
  • the switching unit 2634 switches whether the output signal of the RF power control unit 26T3 is a signal output from the voltage control attenuator 2631 or a signal output from the fixed attenuator 2632.
  • the power control pattern determination unit 24 performs switching control.
  • the power control pattern determination unit 24 determines that the transmission power P is the fixed power Pf
  • the power control pattern determination unit 24 connects the switching units 2633 and 2634 to the fixed attenuator 2632.
  • the switching units 2633 and 2634 are connected to the voltage control attenuator 2631.
  • FIG. 8 is a circuit diagram showing a detailed configuration of the voltage controlled attenuator 2631.
  • the voltage controlled attenuator 2631 is a well-known analog type voltage controlled attenuator using a PIN diode, a resistor, and a capacitor.
  • the automobile radio communication device 30 includes an LF antenna 31, an LF transmission unit 32, an RF antenna 33, an RF reception unit 34, a control unit 35, and a notification unit 36.
  • the LF transmitter 32 corresponds to a short-range transmitter
  • the RF receiver 34 corresponds to a mobile-side receiver.
  • the LF antenna 31, the LF transmitting unit 32, the RF antenna 33, the RF receiving unit 34, and the notification unit 36 use those used in the smart entry system that locks and unlocks the door of the automobile 3 without using a mechanical key. Can do.
  • the LF transmission unit 32 modulates and amplifies the vehicle notification signal generated by the control unit 35 with an LF band radio wave, specifically, a 135 kHz band radio wave, and transmits the modulated signal from the LF antenna 31.
  • the RF receiver 34 receives the modulated wave transmitted by the bicycle radio communication apparatus 20 via the RF antenna 33, amplifies and demodulates the received modulated wave, and supplies the modulated wave to the controller 35.
  • the control unit 35 is a computer including a CPU, a ROM, a RAM, and the like, and periodically generates a vehicle notification signal and supplies the vehicle notification signal to the LF transmission unit 32.
  • the generation period of the vehicle notification signal is, for example, between several tens of milliseconds and several hundreds of milliseconds.
  • the LF band radio wave is transmitted when the automobile 3 is stopped.
  • This control unit 35 periodically generates a vehicle notification signal while the automobile 3 is traveling. To do. Therefore, the automobile radio communication device 30 transmits a vehicle notification signal while the automobile 3 is traveling. The determination that the automobile 3 is traveling is made based on the control unit 35 so that a signal indicating the speed of the automobile 3 is supplied to the controller 35.
  • the automobile 3 can travel if the accelerator pedal is depressed. If the ignition switch is on and the shift position is the travel position, the vehicle 3 can travel if the accelerator pedal is depressed. Therefore, in order to determine this state, the shift position signal and the ignition signal need only be supplied to the control unit 35.
  • control unit 35 acquires a signal from the RF receiving unit 34 and determines whether or not the bicycle 2 exists around the automobile 3. If it is determined that the bicycle 2 exists around the vehicle 3, the driver of the vehicle 3 is further alerted to the bicycle 2 from predetermined parameters such as the distance, speed, and relative traveling direction of the bicycle 2. Determine what needs to be done for. If it is determined that it is necessary to call attention, the notification unit 36 is used to call attention.
  • the bicycle wireless communication apparatus 20 includes the vehicle speed detection unit 21 that detects the vehicle speed V of the bicycle 2, and the RF transmission unit 26 ⁇ / b> T performs the vehicle speed proportional control.
  • the RF transmitter 26T transmits a modulated wave with a relatively small transmission power P when the vehicle speed V is relatively low. Interference with the modulated wave transmitted by the device 20 can be suppressed.
  • the bicycle wireless communication device 20 transmits a vehicle when the vehicle speed V is lower than the low vehicle speed determination threshold value TH LV (S2: YES) and an automobile notification signal is received (S3: YES).
  • the power P is assumed to be a fixed power Pf.
  • the fixed power Pf is power that makes the communication distance longer than the communication distance of the automobile notification signal. Therefore, by transmitting the modulated wave with the fixed power Pf, it is possible to suppress a situation in which the vehicle wireless communication device 30 that has transmitted the vehicle notification signal cannot receive the modulated wave and cannot detect the presence of the bicycle 2.
  • the bicycle wireless communication device 20 when the vehicle speed V is lower than the low vehicle speed determination threshold TH LV (S2: YES), when the vehicle notification signal is not received (S3: NO). Then, vehicle speed proportional control is performed (S5).
  • the transmission power P when the vehicle speed V is lower than the low vehicle speed determination threshold TH LV is smaller than the fixed power Pf. That is, when the possibility that the automobile 3 is present around the bicycle 2 is low, the transmission power P of the modulated wave is set to a small power corresponding to the vehicle speed V, so that interference can be suppressed.
  • the vehicle speed detection unit 21 of the bicycle wireless communication device 20 of the present embodiment detects the vehicle speed V using the output voltage of the hub dynamo 2a, and the vehicle speed signal Sv output from the vehicle speed detection unit 21 is the vehicle speed V. The voltage increases accordingly.
  • the RF power control unit 26T3 included in the RF transmission unit 26T includes a voltage control attenuator 2631 for performing vehicle speed proportional control.
  • the voltage control attenuator 2631 has a vehicle speed signal Sv whose voltage increases according to the vehicle speed V. Is used as a control signal to control the transmission power P.
  • the transmission power P is controlled by an analog circuit using the fact that the output voltage, which is an analog signal output from the hub dynamo 2a, changes according to the vehicle speed. Therefore, the configuration for performing the vehicle speed proportional control is less expensive than the configuration for performing the vehicle speed proportional control configured by a digital circuit using a microcomputer.
  • the wireless communication system of the second embodiment includes the same vehicle wireless communication device 30 as that of the first embodiment, and includes a bicycle wireless communication device 20A shown in FIG. 10 instead of the bicycle wireless communication device 20.
  • the bicycle wireless communication device 20A includes an RF receiver 26R corresponding to a high-frequency receiver in addition to the RF transmitter 26T described in the first embodiment.
  • the configuration including these RF transmitter 26T and RF receiver 26R is referred to as an RF unit 26.
  • the bicycle wireless communication device 20A of the second embodiment also includes a carrier sense unit 28, and the processing performed by the transmission data generation unit 25A is different from the transmission data generation unit 25 of the first embodiment.
  • the other configuration of the bicycle wireless communication device 20A is the same as that of the first embodiment.
  • the RF receiver 26R includes a power amplifier 26R1 and a demodulator 26R2.
  • the power amplifier 26R1 amplifies the radio wave received by the RF antenna 27 and outputs the amplified radio wave to the demodulator 26R2.
  • the demodulator 26R2 extracts a baseband signal from the signal supplied from the demodulator 26R2 and outputs the baseband signal to the carrier sense unit 28.
  • the carrier sense unit 28 and the transmission data generation unit 25A are realized by a computer, for example. However, some or all of the functions executed by the carrier sense unit 28 and the transmission data generation unit 25A may be configured by hardware using one or a plurality of ICs.
  • the carrier sense unit 28 performs carrier sense according to an instruction from the transmission data generation unit 25A, and determines whether or not a frequency channel in which the RF transmission unit 26T transmits a modulated wave is free.
  • the carrier sense when the strength of the signal supplied from the demodulator 26R2 is equal to or higher than a threshold level for determining that the channel is used, the frequency channel through which the RF transmitter 26T transmits the modulated wave is used. It is determined that On the other hand, when the signal strength is lower than the threshold level, it is determined that the channel is free.
  • the transmission data generation unit 25A periodically executes the process shown in FIG. In step S11, it is determined whether or not the transmission cycle has elapsed since the generation of transmission data last time, and the timing for generating and transmitting the transmission data has come.
  • the transmission data generation cycle may be the same as that of the transmission data generation unit 25 of the first embodiment.
  • step S11 determines whether or not the power control pattern determination unit 24 determines that the transmission power P is the fixed power Pf. If this judgment is YES, it will progress to Step S13.
  • step S13 transmission data is generated and output to modulation section 26T1. When the transmission data is output to the modulation unit 26T1, a modulated wave is radiated from the RF antenna 27.
  • step S12 determines whether the power control pattern determination unit 24 determines to perform vehicle speed proportional control. If the determination in step S12 is NO, that is, if the power control pattern determination unit 24 determines to perform vehicle speed proportional control, the process proceeds to step S14. In step S14, the carrier sense unit 28 is instructed to perform carrier sense, and the result of carrier sense is acquired.
  • step S15 it is determined whether or not the frequency channel for transmitting the modulated wave is free as a result of the carrier sense. If this judgment is NO, it will return to Step S14 and will carry out carrier sense again. On the other hand, if the determination in step S15 is YES, the process proceeds to step S13, where transmission data is generated and output to the modulation unit 26T1.
  • the power control pattern determination unit 24 determines the transmission power P as the fixed power Pf, the distance between the bicycle 2 and the car 3 is short.
  • carrier sense is executed when the power control pattern determination unit 24 determines to perform vehicle speed proportional control.
  • the power control pattern determination unit 24 determines the transmission power P to be the fixed power Pf, the modulated wave is transmitted without performing carrier sense.
  • the LF transmission unit 32 that transmits the LF band radio wave is shown as the short-distance transmission unit.
  • the short-distance communication unit has the same communication distance as the LF communication unit or less. Good. Therefore, as the short-distance transmission unit, a transmission unit that transmits in accordance with the Bluetooth Low Energy (hereinafter, BLE) standard may be used.
  • BLE Bluetooth Low Energy
  • Bluetooth is a registered trademark. Since BLE can reduce the transmission power within the range of the standard, a transmission unit conforming to the BLE standard can be used as the short-range transmission unit by reducing the transmission power.
  • a transmission unit that transmits radio waves in the LF band other than the 135 kHz band may be used as the short-distance transmission unit.
  • the vehicle speed V that sets the transmission power P to the fixed power Pf is only that the vehicle speed V is lower than the low vehicle speed determination threshold TH LV .
  • the vehicle speed V of the bicycle 2 is lower than the stop determination threshold value TH s for determining extremely low vehicle speed V close to the stop, even if the vehicle speed V is lower than the low vehicle speed determination threshold TH LV, the vehicle speed proportional Control may be performed.
  • the stop determination threshold TH s is V L ⁇ TH s ⁇ TH LV .
  • V L is the transmission lower limit vehicle speed V L shown in FIG.
  • the transmission data generation unit 25A generates transmission data without performing carrier sense when the power control pattern determination unit 24 determines that the transmission power P is fixed power Pf.
  • the power control pattern determination unit 24 includes a condition that the vehicle speed V is lower than the low vehicle speed determination threshold value TH LV as a condition for setting the transmission power P to the fixed power Pf. Therefore, if the vehicle speed V is equal to or higher than the low vehicle speed determination threshold TH LV , the carrier sense is performed even if the vehicle notification signal is received.
  • transmission data may be generated and a modulated wave transmitted without performing carrier sense.
  • ⁇ Modification 5> Instead of the voltage doubler rectifier circuit 211 shown in FIG. 3, a rectifier circuit that does not boost the voltage may be used.
  • the bicycle wireless communication device 20 used in the bicycle 2 is shown as the vehicle wireless communication device.
  • the vehicle wireless communication device is a vehicle of a different type from the bicycle 2, for example, the automobile 3. May be used.
  • the mobile radio communication device 30 used in the automobile 3 is shown as the mobile radio communication apparatus.
  • the mobile radio communication apparatus may be a different type of mobile body from the automobile 3, for example, The pedestrian and the bicycle 2 may be used.
  • ⁇ Modification 8> As a vehicle speed detection part, you may use the structure which attaches any one of a reed switch and a magnet to a wheel, and attaches the other of a reed switch and a magnet to a fork part. Further, as the RF power control unit, a configuration in which the transmission power P is controlled by a digital circuit such as a microcomputer may be used.

Abstract

Provided is a vehicular wireless communication device (20) used by a vehicle. The vehicular wireless communication device is provided with: a vehicle speed detecting unit (21) that detects the speed of the vehicle; a transmission data generating unit (25, 25A) that generates transmission data; and a radiofrequency transmitting unit (26T) that transmits a modulated wave, which is obtained by the transmission data generated by the transmission data generating unit being modulated with a carrier wave in a preset radiofrequency band, such that the higher the speed detected by the vehicle speed detecting unit is, the higher transmission power is.

Description

車両用無線通信装置および無線通信システムVEHICLE WIRELESS COMMUNICATION DEVICE AND WIRELESS COMMUNICATION SYSTEM 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年10月9日に出願された日本特許出願番号2015-201425号に基づくもので、ここにその開示を参照により援用する。 This application is based on Japanese Patent Application No. 2015-201425 filed on October 9, 2015, the disclosure of which is incorporated herein by reference.
 本開示は、車両用無線通信装置、および、その車両用無線通信装置を備えた無線通信システムに関する。 The present disclosure relates to a vehicular radio communication device and a radio communication system including the vehicular radio communication device.
 自転車に搭載され、自転車速度を通知し得る自転車速度通知を発信する無線発信機が知られている(たとえば特許文献1)。自転車速度通知は、自転車速度に応じたパルス周期の信号となっているので、自転車速度を通知できる。この自転車速度通知は、自転車の速度に応じたパルス周期の信号が変調信号として用いられ、この変調信号が、数百kHz~数百MHzの範囲内で自転車と車両との間の通信に好適な1つの周波数帯の搬送波で変調されて生成される。 There is known a wireless transmitter that is mounted on a bicycle and transmits a bicycle speed notification capable of notifying the bicycle speed (for example, Patent Document 1). Since the bicycle speed notification is a signal having a pulse period corresponding to the bicycle speed, the bicycle speed can be notified. In this bicycle speed notification, a signal having a pulse period corresponding to the speed of the bicycle is used as a modulation signal, and this modulation signal is suitable for communication between the bicycle and the vehicle within a range of several hundred kHz to several hundred MHz. It is generated by being modulated with a carrier wave in one frequency band.
JP2008-143222AJP2008-143222A
 特許文献1に記載の無線発信機を搭載した自転車が同じエリアに多数存在していると、混信が生じてしまう可能性が高くなる。混信が生じてしまう可能性を低くするためには、無線発信機が自転車速度通知を送信する送信電力強度を小さくすることが考えられる。 If there are many bicycles equipped with the wireless transmitter described in Patent Document 1 in the same area, there is a high possibility that interference will occur. In order to reduce the possibility of interference, it is conceivable to reduce the transmission power intensity at which the wireless transmitter transmits a bicycle speed notification.
 しかし、送信電力強度を小さくしてしまうと、自転車速度通知を受信できる距離が短くなる。したがって、自転車の移動速度が高い場合には、自転車速度通知を受信する受信機を搭載した車両が自転車速度通知を受信してから、自転車がその車両に接近するまでの時間が短くなってしまう。その結果、車両で行われる報知や挙動制御が遅れる恐れが生じ得る。 なお、特許文献1における自転車を、自転車以外の車両に代えても、また、特許文献1における車両を車両以外の移動体に代えても、上述の状況が生じ得る。 However, if the transmission power intensity is reduced, the distance at which the bicycle speed notification can be received becomes shorter. Therefore, when the moving speed of the bicycle is high, the time from when the vehicle equipped with the receiver that receives the bicycle speed notification receives the bicycle speed notification until the bicycle approaches the vehicle is shortened. As a result, there is a possibility that notification and behavior control performed in the vehicle may be delayed. It should be noted that the situation described above can occur even if the bicycle in Patent Document 1 is replaced with a vehicle other than a bicycle, or the vehicle in Patent Document 1 is replaced with a moving body other than a vehicle.
 本開示の目的の一つは、混信を抑制しつつも、車両用無線通信装置が送信した変調波を受信する装置が用いられている移動体がその変調波を受信してから、車両用無線通信装置が用いられている車両がその移動体に接近するまでの時間が短くなってしまうことを抑制できる車両用無線通信装置、および無線通信システムを提供することにある。 One of the objects of the present disclosure is to suppress vehicular radio communication after a mobile unit using a device that receives a modulated wave transmitted by a vehicular wireless communication device receives the modulated wave. An object of the present invention is to provide a vehicular radio communication device and a radio communication system capable of suppressing a time until a vehicle in which a communication device is used approaches the moving body from being shortened.
 本開示の一側面の車両用無線通信装置は、車両で用いられる車両用無線通信装置であって、車両の車速を検出する車速検出部と、送信データを生成する送信データ生成部と、送信データ生成部が生成した送信データを予め設定された高周波帯の搬送波で変調した変調波を、車速検出部が検出した車速が高いほど大きい送信電力で送信する高周波送信部とを備える。 A vehicle wireless communication device according to an aspect of the present disclosure is a vehicle wireless communication device used in a vehicle, and includes a vehicle speed detection unit that detects a vehicle speed of the vehicle, a transmission data generation unit that generates transmission data, and transmission data. A high-frequency transmission unit that transmits a modulated wave obtained by modulating the transmission data generated by the generation unit with a carrier wave in a preset high-frequency band with higher transmission power as the vehicle speed detected by the vehicle speed detection unit increases.
 この車両用無線通信装置は、この車両用無線通信装置が用いられている車両の車速を検出する車速検出部を備え、車速検出部が検出した車速が高いほど大きい送信電力で変調波を送信する。したがって、車速が相対的に高いときには相対的に大きい送信電力で変調波を送信するので、車速が相対的に高いときには、車両から比較的遠くまで変調波が送信されることになる。これにより、車速が相対的に高くても、車両用無線通信装置が送信した変調波を受信する装置が用いられている移動体が変調波を受信してから、車両用無線通信装置が用いられている車両がその移動体に接近するまでの時間が短くなってしまうことを抑制できる。 The vehicle wireless communication device includes a vehicle speed detection unit that detects a vehicle speed of a vehicle in which the vehicle wireless communication device is used, and transmits a modulated wave with higher transmission power as the vehicle speed detected by the vehicle speed detection unit is higher. . Therefore, since the modulated wave is transmitted with relatively large transmission power when the vehicle speed is relatively high, the modulated wave is transmitted relatively far from the vehicle when the vehicle speed is relatively high. Thus, even when the vehicle speed is relatively high, the vehicle wireless communication device is used after the mobile body that uses the device that receives the modulated wave transmitted by the vehicle wireless communication device receives the modulated wave. It can be suppressed that the time until the moving vehicle approaches the moving body is shortened.
 また、車速が相対的に低いときには相対的に小さい送信電力で変調波を送信するので、近くに存在する他の車両用無線通信装置が送信した変調波との混信を抑制できる。 In addition, since the modulated wave is transmitted with relatively small transmission power when the vehicle speed is relatively low, it is possible to suppress interference with the modulated wave transmitted by another nearby vehicle wireless communication device.
 本開示の一側面の無線通信システムは、上述の車両用無線通信装置を備え、かつ、前記車両用無線通信装置が用いられている前記車両とは異なる移動体で用いられ、前記車両用無線通信装置が送信する前記変調波を受信する移動体側受信部を備えた移動体用無線通信装置とを備えた無線通信システムである。前記移動体用無線通信装置は、近距離通信信号を逐次送信する近距離送信部を備える。前記車両用無線通信装置は、前記近距離送信部が送信する前記近距離通信信号を受信する近距離受信部を備える。前記高周波送信部は、前記車速検出部が検出した前記車速が予め設定された低車速判定閾値よりも低く、かつ、前記近距離受信部が前記近距離通信信号を受信したことに基づいて、前記近距離通信信号の通信距離よりも通信距離が長くなるように予め設定された固定電力で前記変調波を送信する一方、前記車速検出部が検出した前記車速が前記低車速判定閾値よりも低くても、前記近距離受信部が前記近距離通信信号を受信していない場合、前記車速検出部が検出した前記車速が高いほど大きい前記送信電力とする制御である車速比例制御を行い、前記車速比例制御において、前記車速検出部が検出した前記車速が前記低車速判定閾値よりも低い場合の前記送信電力は、前記固定電力よりも小さい。 A wireless communication system according to one aspect of the present disclosure includes the above-described vehicle wireless communication device, and is used in a moving body different from the vehicle in which the vehicle wireless communication device is used. It is a radio | wireless communications system provided with the radio | wireless communication apparatus for mobile bodies provided with the mobile body side receiving part which receives the said modulated wave which an apparatus transmits. The mobile wireless communication device includes a short-range transmission unit that sequentially transmits short-range communication signals. The vehicular wireless communication device includes a short-range receiving unit that receives the short-range communication signal transmitted by the short-range transmitting unit. The high-frequency transmission unit is based on the vehicle speed detected by the vehicle speed detection unit being lower than a preset low vehicle speed determination threshold, and the short-range reception unit has received the short-range communication signal, While the modulated wave is transmitted with a fixed power set in advance so that the communication distance is longer than the communication distance of the short-range communication signal, the vehicle speed detected by the vehicle speed detection unit is lower than the low vehicle speed determination threshold value. In addition, when the short-range receiving unit has not received the short-range communication signal, vehicle speed proportional control is performed to control the transmission power to be greater as the vehicle speed detected by the vehicle speed detection unit is higher, and the vehicle speed proportional In the control, the transmission power when the vehicle speed detected by the vehicle speed detection unit is lower than the low vehicle speed determination threshold is smaller than the fixed power.
 本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記の詳細な説明から、より明確になる。図面において、
図1は、第1実施形態の無線通信システムの構成図である。 図2は、図1の自転車用無線通信装置の構成を示すブロック図である。 図3は、図2の車速検出部の回路構成を示す図である。 図4は、自転車が備えるハブダイナモが出力する電圧の波形を示す図である。 図5は、図2の電力制御パターン判定部が実行する処理を示すフローチャートである。 図6は、図5に示す固定電力と車速比例制御を説明する図である。 図7は、図2のRF電力制御部の構成を細分化して示す図である。 図8は、電圧制御減衰器の詳細構成を示す回路図である。 図9は、図1の自動車用無線通信装置の構成を示すブロック図である。 図10は、第2実施形態の自転車用無線通信装置の構成を示すブロック図である。 図11は、図10の送信データ生成部およびキャリアセンス部が実行する処理を示すフローチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing
FIG. 1 is a configuration diagram of a wireless communication system according to the first embodiment. FIG. 2 is a block diagram showing a configuration of the bicycle wireless communication apparatus of FIG. FIG. 3 is a diagram illustrating a circuit configuration of the vehicle speed detection unit of FIG. FIG. 4 is a diagram illustrating a waveform of a voltage output from the hub dynamo included in the bicycle. FIG. 5 is a flowchart illustrating processing executed by the power control pattern determination unit in FIG. FIG. 6 is a diagram for explaining the fixed power and vehicle speed proportional control shown in FIG. FIG. 7 is a diagram showing the configuration of the RF power control unit in FIG. FIG. 8 is a circuit diagram showing a detailed configuration of the voltage controlled attenuator. FIG. 9 is a block diagram showing a configuration of the automobile wireless communication device of FIG. FIG. 10 is a block diagram illustrating a configuration of the bicycle wireless communication apparatus according to the second embodiment. FIG. 11 is a flowchart illustrating processing executed by the transmission data generation unit and the carrier sense unit of FIG.
 <第1実施形態>
 以下、実施形態を図面に基づいて説明する。図1に示しているように、本実施形態の無線通信システム1は、自転車2に搭載された無線通信装置である自転車用無線通信装置20と、自動車3に搭載された無線通信装置である自動車用無線通信装置30を備えている。図1には、自転車用無線通信装置20を搭載した自転車2、自動車用無線通信装置30を搭載した自動車3を1台ずつ示しているが、自転車用無線通信装置20を搭載した自転車2、自動車用無線通信装置30を搭載した自動車3がそれぞれ複数台あってもよい。
<First Embodiment>
Hereinafter, embodiments will be described with reference to the drawings. As shown in FIG. 1, the wireless communication system 1 of the present embodiment includes a bicycle wireless communication device 20 that is a wireless communication device mounted on a bicycle 2 and a vehicle that is a wireless communication device mounted on a vehicle 3. Wireless communication device 30 is provided. FIG. 1 shows a bicycle 2 equipped with a bicycle wireless communication device 20 and a vehicle 3 equipped with a vehicle wireless communication device 30 one by one. There may be a plurality of automobiles 3 each equipped with the wireless communication device 30 for use.
 自転車2は車両であり、自転車用無線通信装置20は車両用無線通信装置に相当する。また、自動車3は移動体であり、自動車用無線通信装置30は移動体用無線通信装置に相当する。自転車用無線通信装置20は、自転車2の存在を周囲に知らせるために、周期的に変調波を送信する。自動車用無線通信装置30は、その変調波を受信可能な構成を備える。 The bicycle 2 is a vehicle, and the bicycle wireless communication device 20 corresponds to a vehicle wireless communication device. The automobile 3 is a mobile body, and the automobile wireless communication device 30 corresponds to a mobile body wireless communication device. The bicycle wireless communication device 20 periodically transmits a modulated wave in order to inform the surroundings of the presence of the bicycle 2. The automotive radio communication device 30 has a configuration capable of receiving the modulated wave.
 図2に示すように、第1実施形態の自転車用無線通信装置20は、車速検出部21、LFアンテナ22、LF受信部23、電力制御パターン判定部24、送信データ生成部25、RF送信部26T、RFアンテナ27を備える。また、本実施形態の自転車2はハブダイナモ2aを備える。 As shown in FIG. 2, the bicycle wireless communication device 20 according to the first embodiment includes a vehicle speed detection unit 21, an LF antenna 22, an LF reception unit 23, a power control pattern determination unit 24, a transmission data generation unit 25, and an RF transmission unit. 26T, RF antenna 27 is provided. Moreover, the bicycle 2 of this embodiment includes a hub dynamo 2a.
 車速検出部21は、ハブダイナモ2aに接続されている。ハブダイナモ2aは交流式の発電機であり、周知のように、回転数が高くなるのに応じて出力電圧が直線的に高くなる直線範囲がある。なお、回転数がこの直線範囲よりも高い範囲では、回転数が変化しても出力電圧はあまり変化しない。 The vehicle speed detector 21 is connected to the hub dynamo 2a. The hub dynamo 2a is an AC generator, and as is well known, there is a linear range in which the output voltage increases linearly as the rotational speed increases. In the range where the rotational speed is higher than this linear range, the output voltage does not change much even if the rotational speed changes.
 車速検出部21は、自転車2が走行する際にハブダイナモ2aが発生する交流の出力電圧をもとに、その出力電圧が高いほど高い値となる直流の車速信号Svを、電力制御パターン判定部24およびRF送信部26Tに出力する。前述したように、ハブダイナモ2aの回転数が直線範囲であれば、回転数が高くなるのに応じて、ハブダイナモ2aが発生する出力電圧は高くなる。よって、車速信号Svは、その電圧値により自転車2の車速Vを表す信号である。 The vehicle speed detection unit 21 uses a DC vehicle speed signal Sv that increases as the output voltage increases based on an AC output voltage generated by the hub dynamo 2a when the bicycle 2 travels, as a power control pattern determination unit. 24 and the RF transmitter 26T. As described above, if the rotational speed of the hub dynamo 2a is in a linear range, the output voltage generated by the hub dynamo 2a increases as the rotational speed increases. Therefore, the vehicle speed signal Sv is a signal that represents the vehicle speed V of the bicycle 2 by its voltage value.
 図3に、車速検出部21の具体的構成例を示す。また、図3には、自転車用無線通信装置20の電源回路29も示す。電源回路29は、いずれも周知の全波整流回路291と、平滑降圧回路292を備える。これら全波整流回路291、平滑降圧回路292により、ハブダイナモ2aが発生する交流電圧が、整流され、かつ、平滑化および降圧されることにより、所定の直流電圧に変換される。なお、図3における「回路」は、図2に示す自転車用無線通信装置20のうち、車速検出部21位外の構成を意味する。この電源回路29は、図2では省略している。 FIG. 3 shows a specific configuration example of the vehicle speed detection unit 21. FIG. 3 also shows a power supply circuit 29 of the bicycle wireless communication device 20. The power supply circuit 29 includes a known full-wave rectifier circuit 291 and a smoothing step-down circuit 292. The full-wave rectifier circuit 291 and the smoothing step-down circuit 292 convert the AC voltage generated by the hub dynamo 2a into a predetermined DC voltage by being rectified, smoothed and stepped down. Note that the “circuit” in FIG. 3 means a configuration outside the vehicle speed detection unit 21 in the bicycle wireless communication device 20 shown in FIG. The power supply circuit 29 is omitted in FIG.
 図3に示す車速検出部21は、倍電圧整流回路211と、平滑回路212を備えるアナログ回路である。倍電圧整流回路211は、ハブダイナモ2aの両端電圧が入力され、ハブダイナモ2aが発生する図4に示す交流電圧を2倍の電圧にして整流する。平滑回路212は、倍電圧整流回路211で整流された電圧を平滑化する。ハブダイナモ2aが発生する出力電圧は、前述した直線範囲では、ハブダイナモ2aの回転数に応じて高くなる。したがって、この図3に示した構成の車速検出部21が出力する車速信号Svは、電圧値により自転車2の車速Vを表す。また、整流回路として倍電圧整流回路211を用いているので、自転車2の速度変化による車速信号Svの電圧値の変化量が大きくなる。これにより、車速信号Svに基づく電力制御が容易になる。 The vehicle speed detection unit 21 shown in FIG. 3 is an analog circuit including a voltage doubler rectifier circuit 211 and a smoothing circuit 212. The voltage doubler rectifier circuit 211 receives the voltage across the hub dynamo 2a and rectifies the AC voltage generated by the hub dynamo 2a shown in FIG. The smoothing circuit 212 smoothes the voltage rectified by the voltage doubler rectifier circuit 211. The output voltage generated by the hub dynamo 2a increases in accordance with the rotational speed of the hub dynamo 2a in the above-described linear range. Therefore, the vehicle speed signal Sv output from the vehicle speed detector 21 having the configuration shown in FIG. 3 represents the vehicle speed V of the bicycle 2 by the voltage value. Further, since the voltage doubler rectifier circuit 211 is used as the rectifier circuit, the amount of change in the voltage value of the vehicle speed signal Sv due to the speed change of the bicycle 2 becomes large. This facilitates power control based on the vehicle speed signal Sv.
 説明を図2に戻す。LFアンテナ22は、LF帯の電波を受信可能な電気長になっており、受信した電波を表す信号をLF受信部23に出力する。このLFアンテナ22はたとえばバーアンテナである。LF受信部23は、LFアンテナ22から取得した信号を増幅および復調し、復調した信号(以下、LF受信信号)を電力制御パターン判定部24に出力する。本実施形態では、LF受信部23が復調する周波数、すなわち、LF受信部23が受信する周波数は135kHz帯である。このLF受信部23は近距離受信部に相当する。 Return the explanation to FIG. The LF antenna 22 has an electrical length capable of receiving LF band radio waves, and outputs a signal representing the received radio waves to the LF receiver 23. The LF antenna 22 is, for example, a bar antenna. The LF reception unit 23 amplifies and demodulates the signal acquired from the LF antenna 22, and outputs the demodulated signal (hereinafter, “LF reception signal”) to the power control pattern determination unit 24. In the present embodiment, the frequency demodulated by the LF receiver 23, that is, the frequency received by the LF receiver 23 is the 135 kHz band. The LF receiver 23 corresponds to a short distance receiver.
 電力制御パターン判定部24は、RF送信部26Tの送信電力Pを、固定電力Pfとするか、車速Vに応じた電力とするかを判定する。この電力制御パターン判定部24は、たとえば、CPU、ROM、RAM等を備えたコンピュータにおいて、CPUが、RAMの一時記憶機能を利用しつつ、ROMなどの非遷移的実体的記録媒体に記憶されているプログラムを実行することで実現される。また、送信データ生成部25もコンピュータにより実現される。なお、これら電力制御パターン判定部24、送信データ生成部25が実行する機能の一部または全部を、一つあるいは複数のIC等によりハードウェア的に構成してもよい。 The power control pattern determination unit 24 determines whether the transmission power P of the RF transmission unit 26T is fixed power Pf or power corresponding to the vehicle speed V. The power control pattern determination unit 24 is stored in a non-transitional tangible recording medium such as a ROM using a temporary storage function of the RAM in a computer including a CPU, a ROM, a RAM, and the like. It is realized by executing the program. The transmission data generation unit 25 is also realized by a computer. Note that some or all of the functions executed by the power control pattern determination unit 24 and the transmission data generation unit 25 may be configured by hardware using one or a plurality of ICs.
 図5に、電力制御パターン判定部24が送信電力パターンを判定する処理を示す。電力制御パターン判定部24は、図5に示す処理を所定周期で実行する。ステップS1では、車速検出部21から車速信号Svを取得する。 FIG. 5 shows a process in which the power control pattern determination unit 24 determines the transmission power pattern. The power control pattern determination unit 24 executes the process shown in FIG. 5 at a predetermined cycle. In step S <b> 1, a vehicle speed signal Sv is acquired from the vehicle speed detection unit 21.
 ステップS2では、ステップS1で取得した車速信号Svが表す車速Vが、低車速判定閾値THLVよりも低いか否かを判断する。低車速判定閾値THLVは、自転車2が、歩行者が歩行する程度の遅い速度で走行していることを判定するための閾値であり、たとえば、5km/hに設定される。 In step S2, the vehicle speed V indicated by the acquired vehicle speed signal Sv in step S1 it is determined whether or not lower than the lower vehicle speed determination threshold TH LV. The low vehicle speed determination threshold value TH LV is a threshold value for determining that the bicycle 2 is traveling at such a low speed that a pedestrian walks, and is set to, for example, 5 km / h.
 ステップS2の判断がYESであればステップS3に進む。ステップS3では、LF受信部23が、自動車用無線通信装置30が送信した信号(以下、自動車通知信号)を受信したか否かを判断する。自動車通知信号は、自動車用無線通信装置30がLF帯の電波で送信する信号であり、LF帯の電波であることから受信可能距離は近距離である。たとえば、自動車通知信号の受信可能距離は5m程度である。この自動車通知信号は近距離通信信号である。 If the determination in step S2 is YES, the process proceeds to step S3. In step S <b> 3, the LF receiver 23 determines whether or not a signal transmitted from the automobile wireless communication device 30 (hereinafter, an automobile notification signal) has been received. The automobile notification signal is a signal transmitted by the automobile wireless communication device 30 using an LF band radio wave, and the receivable distance is a short distance because it is an LF band radio wave. For example, the receivable distance of the automobile notification signal is about 5 m. This automobile notification signal is a short-range communication signal.
 ステップS3の判断は、LF受信部23からLF受信信号を取得して行う。過去一定時間内に、LF受信部23から取得した信号が自動車通知信号であると判定している場合には、LF受信部23が自動車通知信号を受信したと判断する。過去一定時間は、たとえば、自動車用無線通信装置30が自動車通知信号を送信する周期の数回分程度に設定される。このステップS3の判断がYESであれば、ステップS4に進む。ステップS4では、送信電力Pを固定電力Pfにすると決定する。ステップS2の判断およびステップS3の判断のいずれか1つでもNOであればステップS5に進む。ステップS5では、送信電力Pを決定するために車速比例制御を実行すると決定する。 The determination in step S3 is performed by acquiring an LF reception signal from the LF receiver 23. If it is determined that the signal acquired from the LF receiving unit 23 is the vehicle notification signal within the past certain time, it is determined that the LF receiving unit 23 has received the vehicle notification signal. The past fixed time is set to, for example, about several times the cycle in which the vehicle radio communication device 30 transmits the vehicle notification signal. If the determination in step S3 is YES, the process proceeds to step S4. In step S4, it is determined that the transmission power P is fixed power Pf. If any one of the determination in step S2 and the determination in step S3 is NO, the process proceeds to step S5. In step S5, it is determined that the vehicle speed proportional control is executed in order to determine the transmission power P.
 図6は、車速比例制御および固定電力Pfを説明する図である。図6において、送信下限車速Vは、変調波を送信する制御を開始する下限の車速Vである。車速比例制御は、図6に破線で示すように、送信下限車速Vから上限車速Vまでは、車速Vが高くなるほど送信電力Pが大きくなり、車速Vが上限車速Vを超えると、送信電力Pを一定の上限電力Pとする制御である。上限車速Vはたとえば20km/hである。 FIG. 6 is a diagram for explaining the vehicle speed proportional control and the fixed power Pf. In FIG. 6, the transmission lower limit vehicle speed V L is the lower limit vehicle speed V at which control for transmitting a modulated wave is started. In the vehicle speed proportional control, as shown by a broken line in FIG. 6, the transmission power P increases as the vehicle speed V increases from the transmission lower limit vehicle speed V L to the upper limit vehicle speed V U , and when the vehicle speed V exceeds the upper limit vehicle speed V U , a control for the transmission power P and fixed upper limit power P U. The upper limit vehicle speed V U is, for example, 20 km / h.
 固定電力Pfは、変調波の通信距離が、LF帯の電波により送信される自動車通知信号の通信距離よりも長くなるように設定された電力である。図6において、送信電力PLFは、変調波の通信距離を、自動車通知信号の通信距離と同程度の通信距離とするための送信電力Pである。固定電力Pfはこの送信電力PLFよりも大きい電力となっている。 The fixed power Pf is power set such that the communication distance of the modulated wave is longer than the communication distance of the automobile notification signal transmitted by the radio wave in the LF band. In FIG. 6, transmission power P LF is transmission power P for making the communication distance of the modulated wave the same communication distance as the communication distance of the automobile notification signal. The fixed power Pf is larger than the transmission power PLF .
 説明を図2に戻す。送信データ生成部25は、送信データを周期的に生成する。送信データは自転車2の存在を周囲に通知するためのデータである。送信データの生成周期に特に制限はない。たとえば、送信データの生成周期は、数十ミリ秒から数百ミリ秒の間で設定された一定値である。 Return the explanation to FIG. The transmission data generation unit 25 periodically generates transmission data. The transmission data is data for notifying the surroundings of the existence of the bicycle 2. There is no particular limitation on the transmission data generation cycle. For example, the transmission data generation cycle is a constant value set between several tens of milliseconds and several hundreds of milliseconds.
 RF送信部26Tは、送信データ生成部25が生成した送信データを変調信号とし、この送信データをRF帯の搬送波で変調して変調波とし、この変調波をRFアンテナ27から電波として送信する。このRF送信部26Tが高周波送信部に相当する。 The RF transmission unit 26T uses the transmission data generated by the transmission data generation unit 25 as a modulation signal, modulates the transmission data with an RF band carrier wave to generate a modulation wave, and transmits the modulation wave from the RF antenna 27 as a radio wave. The RF transmitter 26T corresponds to a high frequency transmitter.
 RF送信部26Tは、詳細構成として、変調部26T1、電力増幅部26T2、RF電力制御部26T3を備える。変調部26T1は、送信データ生成部25から送信データを取得し、その送信データをRF帯(すなわち高周波帯)の搬送波で変調する。本実施形態におけるRF帯は具体的には315MHz帯である。電力増幅部26T2は、変調部26T1が生成した信号を、予め設定された一定電力となるように増幅する。これら変調部26T1と電力増幅部26T2が変調増幅部に相当する。 The RF transmission unit 26T includes a modulation unit 26T1, a power amplification unit 26T2, and an RF power control unit 26T3 as detailed configurations. The modulation unit 26T1 acquires transmission data from the transmission data generation unit 25, and modulates the transmission data with a carrier wave in an RF band (that is, a high frequency band). The RF band in this embodiment is specifically a 315 MHz band. The power amplifying unit 26T2 amplifies the signal generated by the modulating unit 26T1 so as to have a predetermined constant power. The modulation unit 26T1 and the power amplification unit 26T2 correspond to the modulation amplification unit.
 RF電力制御部26T3は、電力制御パターン判定部24が、送信電力Pを車速Vに応じた電力とすると判定している場合、車速比例制御を行う。車速比例制御は、車速Vが高いほど送信電力Pを大きくする制御である。本実施形態のRF電力制御部26T3は、具体的には、電力増幅部26T2が増幅した増幅後の送信データを、車速Vが高いほど低くなる減衰率で減衰させて、RFアンテナ27から送信する。 The RF power control unit 26T3 performs vehicle speed proportional control when the power control pattern determination unit 24 determines that the transmission power P is power corresponding to the vehicle speed V. The vehicle speed proportional control is a control for increasing the transmission power P as the vehicle speed V increases. Specifically, the RF power control unit 26T3 of the present embodiment attenuates the amplified transmission data amplified by the power amplification unit 26T2 with an attenuation factor that decreases as the vehicle speed V increases and transmits the transmission data from the RF antenna 27. .
 一方、RF電力制御部26T3は、電力制御パターン判定部24が送信電力Pを固定電力Pfとすると判定している場合に、電力増幅部26T2が増幅した増幅後の送信データを、予め設定されている固定の減衰率で減衰させて、RFアンテナ27から送信する。固定の減衰率は、減衰後の送信電力Pが、車速比例制御を行っている場合において、車速Vが低車速判定閾値THLVよりも低い場合の送信電力Pよりも大きくなる減衰率である。RFアンテナ27は、RF送信部26Tから供給された変調波を、電波として空中に放射する。 On the other hand, when the power control pattern determination unit 24 determines that the transmission power P is the fixed power Pf, the RF power control unit 26T3 sets the transmission data after amplification amplified by the power amplification unit 26T2 in advance. The signal is attenuated at a fixed attenuation rate and transmitted from the RF antenna 27. The fixed attenuation rate is an attenuation rate at which the transmission power P after attenuation is larger than the transmission power P when the vehicle speed V is lower than the low vehicle speed determination threshold TH LV when the vehicle speed proportional control is performed. The RF antenna 27 radiates the modulated wave supplied from the RF transmitter 26T into the air as a radio wave.
 図7に示すように、RF電力制御部26T3は、細分化した構成として、電圧制御減衰器2631、固定減衰器2632、切替部2633、2634を備える。 As shown in FIG. 7, the RF power control unit 26T3 includes a voltage control attenuator 2631, a fixed attenuator 2632, and switching units 2633 and 2634 as a subdivided configuration.
 電圧制御減衰器2631は、電圧制御減衰部に相当しており、電力増幅部26T2が出力した変調波を表す信号を入力信号とし、車速信号Svを制御信号として用いて、車速信号Svの電圧が高いほど低い減衰率で入力信号を減衰させた信号を出力する。一方、固定減衰器2632は、電力増幅部26T2が出力した変調波を表す信号を固定電力Pfで出力する。なお、電力増幅部26T2が出力した変調波を表す信号の電力が固定電力Pfとなっていれば、伝送線路を固定減衰器2632として用いることもできる。この固定減衰器2632は固定電力部に相当する。 The voltage-controlled attenuator 2631 corresponds to a voltage-controlled attenuating unit. The signal representing the modulated wave output from the power amplifying unit 26T2 is used as an input signal, and the vehicle speed signal Sv is used as a control signal. The higher the value, the lower the input signal that is attenuated. On the other hand, fixed attenuator 2632 outputs a signal representing the modulated wave output from power amplifying unit 26T2 with fixed power Pf. Note that the transmission line can also be used as the fixed attenuator 2632 if the power of the signal representing the modulated wave output from the power amplifier 26T2 is the fixed power Pf. This fixed attenuator 2632 corresponds to a fixed power unit.
 切替部2633は、RF電力制御部26T3に入力される入力信号を、電圧制御減衰器2631に入力するか固定減衰器2632に入力するかを切り替える。切替部2634は、RF電力制御部26T3の出力信号を、電圧制御減衰器2631が出力する信号とするか固定減衰器2632が出力する信号とするかを切り替える。これら切替部2633、2634は、電力制御パターン判定部24が切り替え制御を行う。電力制御パターン判定部24は、送信電力Pを固定電力Pfとすると判定している場合には、切替部2633、2634を固定減衰器2632に接続する。一方、送信電力Pを車速比例制御で決定すると判定している場合には、切替部2633、2634を電圧制御減衰器2631に接続する。 The switching unit 2633 switches whether the input signal input to the RF power control unit 26T3 is input to the voltage controlled attenuator 2631 or the fixed attenuator 2632. The switching unit 2634 switches whether the output signal of the RF power control unit 26T3 is a signal output from the voltage control attenuator 2631 or a signal output from the fixed attenuator 2632. In the switching units 2633 and 2634, the power control pattern determination unit 24 performs switching control. When the power control pattern determination unit 24 determines that the transmission power P is the fixed power Pf, the power control pattern determination unit 24 connects the switching units 2633 and 2634 to the fixed attenuator 2632. On the other hand, when it is determined that the transmission power P is determined by vehicle speed proportional control, the switching units 2633 and 2634 are connected to the voltage control attenuator 2631.
 図8は、電圧制御減衰器2631の詳細構成を示す回路図である。電圧制御減衰器2631は、PINダイオードと抵抗とコンデンサを利用した周知のアナログ型の電圧制御減衰器である。 FIG. 8 is a circuit diagram showing a detailed configuration of the voltage controlled attenuator 2631. The voltage controlled attenuator 2631 is a well-known analog type voltage controlled attenuator using a PIN diode, a resistor, and a capacitor.
 次に、自動車用無線通信装置30の構成を図9を用いて説明する。図9に示すように、自動車用無線通信装置30は、LFアンテナ31、LF送信部32、RFアンテナ33、RF受信部34、制御部35、報知部36を備える。なお、LF送信部32は近距離送信部に相当し、RF受信部34は移動体側受信部に相当する。 Next, the configuration of the automobile wireless communication device 30 will be described with reference to FIG. As shown in FIG. 9, the automobile radio communication device 30 includes an LF antenna 31, an LF transmission unit 32, an RF antenna 33, an RF reception unit 34, a control unit 35, and a notification unit 36. Note that the LF transmitter 32 corresponds to a short-range transmitter, and the RF receiver 34 corresponds to a mobile-side receiver.
 LFアンテナ31、LF送信部32、RFアンテナ33、RF受信部34、報知部36は、機械的な鍵を使用せずに自動車3のドアを施解錠するスマートエントリーシステムに用いられるものを使うことができる。 
 LF送信部32は、LF帯の電波、具体的には135kHz帯の電波で、制御部35が生成した車両通知信号を変調および増幅して、LFアンテナ31から送信する。RF受信部34はRFアンテナ33を介して、自転車用無線通信装置20が送信した変調波を受信し、受信した変調波を増幅および復調して制御部35に供給する。
The LF antenna 31, the LF transmitting unit 32, the RF antenna 33, the RF receiving unit 34, and the notification unit 36 use those used in the smart entry system that locks and unlocks the door of the automobile 3 without using a mechanical key. Can do.
The LF transmission unit 32 modulates and amplifies the vehicle notification signal generated by the control unit 35 with an LF band radio wave, specifically, a 135 kHz band radio wave, and transmits the modulated signal from the LF antenna 31. The RF receiver 34 receives the modulated wave transmitted by the bicycle radio communication apparatus 20 via the RF antenna 33, amplifies and demodulates the received modulated wave, and supplies the modulated wave to the controller 35.
 制御部35は、CPU、ROM、RAM等を備えたコンピュータであり、車両通知信号を周期的に生成してLF送信部32に供給する。車両通知信号の生成周期は、たとえば、数十ミリ秒から数百ミリ秒の間である。なお、公知のスマートエントリーシステムでは、LF帯の電波を送信するのは自動車3が停止しているときであるが、この制御部35は、自動車3が走行中に周期的に車両通知信号を生成する。よって、自動車用無線通信装置30は、自動車3が走行中に車両通知信号を送信する。自動車3が走行中であることの判断は、この制御部35に、自動車3の速度を示す信号が供給されるようにして、その信号から判断する。また、自動車3が実際に走行中であることを判断する代わりに、アクセルペダルが踏まれれば自動車3が走行できる状態であることを判断してもよい。イグニッションスイッチがオンであり、シフトポジションが走行ポジションであれば、アクセルペダルが踏まれれば自動車3が走行できる状態である。したがって、この状態を判断するためには、シフトポジション信号とイグニッション信号が制御部35に供給されるようになっていればよい。 The control unit 35 is a computer including a CPU, a ROM, a RAM, and the like, and periodically generates a vehicle notification signal and supplies the vehicle notification signal to the LF transmission unit 32. The generation period of the vehicle notification signal is, for example, between several tens of milliseconds and several hundreds of milliseconds. In the known smart entry system, the LF band radio wave is transmitted when the automobile 3 is stopped. This control unit 35 periodically generates a vehicle notification signal while the automobile 3 is traveling. To do. Therefore, the automobile radio communication device 30 transmits a vehicle notification signal while the automobile 3 is traveling. The determination that the automobile 3 is traveling is made based on the control unit 35 so that a signal indicating the speed of the automobile 3 is supplied to the controller 35. Further, instead of determining that the automobile 3 is actually traveling, it may be determined that the automobile 3 can travel if the accelerator pedal is depressed. If the ignition switch is on and the shift position is the travel position, the vehicle 3 can travel if the accelerator pedal is depressed. Therefore, in order to determine this state, the shift position signal and the ignition signal need only be supplied to the control unit 35.
 また、制御部35は、RF受信部34から信号を取得して、自動車3の周囲に自転車2が存在しているか否かを判断する。そして、自動車3の周囲に自転車2が存在していると判断した場合には、さらに、自転車2の距離、速度、相対進行方向など、所定のパラメータから自転車2に対する注意喚起を自動車3の運転者に対して行う必要があるかを判断する。注意喚起を行う必要があると判断した場合には、報知部36を用いて注意喚起を行う。 Further, the control unit 35 acquires a signal from the RF receiving unit 34 and determines whether or not the bicycle 2 exists around the automobile 3. If it is determined that the bicycle 2 exists around the vehicle 3, the driver of the vehicle 3 is further alerted to the bicycle 2 from predetermined parameters such as the distance, speed, and relative traveling direction of the bicycle 2. Determine what needs to be done for. If it is determined that it is necessary to call attention, the notification unit 36 is used to call attention.
 以上、説明した第1実施形態の自転車用無線通信装置20は、自転車2の車速Vを検出する車速検出部21を備え、RF送信部26Tは、車速比例制御を行う場合には、車速検出部21が検出した車速Vが高いほど大きい送信電力Pで変調波を送信する。したがって、車速Vが相対的に高いときには相対的に大きい送信電力Pで変調波を送信するので、車速Vが相対的に高いときには、自転車2と自動車3との距離が比較的遠い状態で変調波が送信されることになる。これにより、自転車2の車速Vが相対的に高くても、自動車3が、自転車用無線通信装置20が送信した変調波を受信してから、自転車2が自動車3に接近するまでの時間が短くなってしまうことを抑制できる。 As described above, the bicycle wireless communication apparatus 20 according to the first embodiment includes the vehicle speed detection unit 21 that detects the vehicle speed V of the bicycle 2, and the RF transmission unit 26 </ b> T performs the vehicle speed proportional control. The higher the vehicle speed V detected by 21, the higher the transmission power P is, and the modulated wave is transmitted. Therefore, when the vehicle speed V is relatively high, the modulated wave is transmitted with a relatively large transmission power P. Therefore, when the vehicle speed V is relatively high, the modulated wave is generated in a state where the distance between the bicycle 2 and the automobile 3 is relatively long. Will be sent. Thereby, even if the vehicle speed V of the bicycle 2 is relatively high, the time from when the automobile 3 receives the modulated wave transmitted by the bicycle wireless communication device 20 until the bicycle 2 approaches the automobile 3 is short. It can suppress becoming.
 また、RF送信部26Tは、車速比例制御を行う場合には、車速Vが相対的に低いときには相対的に小さい送信電力Pで変調波を送信するので、近くに存在する他の自転車用無線通信装置20が送信した変調波との混信を抑制できる。 In addition, when performing vehicle speed proportional control, the RF transmitter 26T transmits a modulated wave with a relatively small transmission power P when the vehicle speed V is relatively low. Interference with the modulated wave transmitted by the device 20 can be suppressed.
 また、本実施形態の自転車用無線通信装置20は、車速Vが低車速判定閾値THLVよりも低く(S2:YES)、かつ、自動車通知信号を受信した場合(S3:YES)には、送信電力Pを固定電力Pfとする。この固定電力Pfは、自動車通知信号の通信距離よりも通信距離が長くなる電力である。したがって、固定電力Pfで変調波を送信することにより、自動車通知信号を送信した自動車用無線通信装置30が、この変調波を受信できず、自転車2の存在を検知できない事態を抑制できる。 In addition, the bicycle wireless communication device 20 according to the present embodiment transmits a vehicle when the vehicle speed V is lower than the low vehicle speed determination threshold value TH LV (S2: YES) and an automobile notification signal is received (S3: YES). The power P is assumed to be a fixed power Pf. The fixed power Pf is power that makes the communication distance longer than the communication distance of the automobile notification signal. Therefore, by transmitting the modulated wave with the fixed power Pf, it is possible to suppress a situation in which the vehicle wireless communication device 30 that has transmitted the vehicle notification signal cannot receive the modulated wave and cannot detect the presence of the bicycle 2.
 また、本実施形態の自転車用無線通信装置20は、車速Vが低車速判定閾値THLVよりも低くても(S2:YES)、自動車通知信号を受信していない場合(S3:NO)には、車速比例制御を行う(S5)。この車速比例制御において、車速Vが低車速判定閾値THLVよりも低い場合の送信電力Pは固定電力Pfよりも小さい。つまり、自転車2の周囲に自動車3が存在している可能性が低い場合には、変調波の送信電力Pを車速Vに応じた小さい電力にするので、混信を抑制することができる。 In addition, the bicycle wireless communication device 20 according to the present embodiment, when the vehicle speed V is lower than the low vehicle speed determination threshold TH LV (S2: YES), when the vehicle notification signal is not received (S3: NO). Then, vehicle speed proportional control is performed (S5). In this vehicle speed proportional control, the transmission power P when the vehicle speed V is lower than the low vehicle speed determination threshold TH LV is smaller than the fixed power Pf. That is, when the possibility that the automobile 3 is present around the bicycle 2 is low, the transmission power P of the modulated wave is set to a small power corresponding to the vehicle speed V, so that interference can be suppressed.
 また、本実施形態の自転車用無線通信装置20の車速検出部21は、ハブダイナモ2aの出力電圧を用いて車速Vを検出しており、車速検出部21が出力する車速信号Svは、車速Vに応じて電圧が高くなる。RF送信部26Tが備えるRF電力制御部26T3は、車速比例制御を行うために電圧制御減衰器2631を備えており、この電圧制御減衰器2631は、車速Vに応じて電圧が高くなる車速信号Svを制御信号として送信電力Pを制御する。つまり、本実施形態の車速比例制御は、ハブダイナモ2aが出力するアナログ信号である出力電圧が車速に応じて変化することを利用して、アナログ回路で送信電力Pを制御する。よって、車速比例制御を行うための構成を、マイコンを用いてデジタル回路で構成するよりも、車速比例制御を行う構成が安価になる。 In addition, the vehicle speed detection unit 21 of the bicycle wireless communication device 20 of the present embodiment detects the vehicle speed V using the output voltage of the hub dynamo 2a, and the vehicle speed signal Sv output from the vehicle speed detection unit 21 is the vehicle speed V. The voltage increases accordingly. The RF power control unit 26T3 included in the RF transmission unit 26T includes a voltage control attenuator 2631 for performing vehicle speed proportional control. The voltage control attenuator 2631 has a vehicle speed signal Sv whose voltage increases according to the vehicle speed V. Is used as a control signal to control the transmission power P. That is, in the vehicle speed proportional control of the present embodiment, the transmission power P is controlled by an analog circuit using the fact that the output voltage, which is an analog signal output from the hub dynamo 2a, changes according to the vehicle speed. Therefore, the configuration for performing the vehicle speed proportional control is less expensive than the configuration for performing the vehicle speed proportional control configured by a digital circuit using a microcomputer.
 <第2実施形態>
 次に、第2実施形態を説明する。この第2実施形態以下の説明において、それまでに使用した符号と同一番号の符号を有する要素は、特に言及する場合を除き、それ以前の実施形態における同一符号の要素と同一である。また、構成の一部のみを説明している場合、構成の他の部分については先に説明した実施形態を適用できる。
Second Embodiment
Next, a second embodiment will be described. In the following description of the second embodiment, elements having the same reference numerals as those used so far are the same as elements having the same reference numerals in the previous embodiments unless otherwise specified. Further, when only a part of the configuration is described, the above-described embodiment can be applied to the other parts of the configuration.
 第2実施形態の無線通信システムは、第1実施形態と同じ自動車用無線通信装置30を備え、自転車用無線通信装置20に代えて、図10に示す自転車用無線通信装置20Aを備える。 The wireless communication system of the second embodiment includes the same vehicle wireless communication device 30 as that of the first embodiment, and includes a bicycle wireless communication device 20A shown in FIG. 10 instead of the bicycle wireless communication device 20.
 第2実施形態の自転車用無線通信装置20Aは、第1実施形態で説明したRF送信部26Tに加えて、高周波受信部に相当するRF受信部26Rを備える。これらRF送信部26TとRF受信部26Rを備える構成をRF部26とする。第2実施形態の自転車用無線通信装置20Aは、キャリアセンス部28も備え、送信データ生成部25Aが行う処理が第1実施形態の送信データ生成部25と相違する。自転車用無線通信装置20Aのその他の構成は第1実施形態と同じである。 The bicycle wireless communication device 20A according to the second embodiment includes an RF receiver 26R corresponding to a high-frequency receiver in addition to the RF transmitter 26T described in the first embodiment. The configuration including these RF transmitter 26T and RF receiver 26R is referred to as an RF unit 26. The bicycle wireless communication device 20A of the second embodiment also includes a carrier sense unit 28, and the processing performed by the transmission data generation unit 25A is different from the transmission data generation unit 25 of the first embodiment. The other configuration of the bicycle wireless communication device 20A is the same as that of the first embodiment.
 RF受信部26Rは、電力増幅部26R1と復調部26R2を備える。電力増幅部26R1は、RFアンテナ27が受信した電波を増幅して復調部26R2に出力する。復調部26R2は、復調部26R2から供給された信号からベースバンド信号を取り出して、キャリアセンス部28へ出力する。 The RF receiver 26R includes a power amplifier 26R1 and a demodulator 26R2. The power amplifier 26R1 amplifies the radio wave received by the RF antenna 27 and outputs the amplified radio wave to the demodulator 26R2. The demodulator 26R2 extracts a baseband signal from the signal supplied from the demodulator 26R2 and outputs the baseband signal to the carrier sense unit 28.
 キャリアセンス部28、送信データ生成部25Aは、たとえば、コンピュータにより実現される。ただし、これらキャリアセンス部28、送信データ生成部25Aが実行する機能の一部または全部を、一つあるいは複数のIC等によりハードウェア的に構成してもよい。 The carrier sense unit 28 and the transmission data generation unit 25A are realized by a computer, for example. However, some or all of the functions executed by the carrier sense unit 28 and the transmission data generation unit 25A may be configured by hardware using one or a plurality of ICs.
 キャリアセンス部28は、送信データ生成部25Aの指示によりキャリアセンスを実行して、RF送信部26Tが変調波を送信する周波数チャネルが空いているか否かを判定する。キャリアセンスは、復調部26R2から供給される信号の強度が、チャネルが使用されていると判定する閾値レベル以上である場合には、RF送信部26Tが変調波を送信する周波数チャネルが使用されていると判定する。一方、信号の強度が閾値レベルよりも低い場合にはチャネルが空いていると判定する。 The carrier sense unit 28 performs carrier sense according to an instruction from the transmission data generation unit 25A, and determines whether or not a frequency channel in which the RF transmission unit 26T transmits a modulated wave is free. In the carrier sense, when the strength of the signal supplied from the demodulator 26R2 is equal to or higher than a threshold level for determining that the channel is used, the frequency channel through which the RF transmitter 26T transmits the modulated wave is used. It is determined that On the other hand, when the signal strength is lower than the threshold level, it is determined that the channel is free.
 送信データ生成部25Aは、図11に示す処理を周期的に実行する。ステップS11では、前回、送信データを生成してから送信周期が経過し、送信データを生成して送信するタイミングとなったか否かを判断する。送信データの生成周期は、第1実施形態の送信データ生成部25と同じでよい。 The transmission data generation unit 25A periodically executes the process shown in FIG. In step S11, it is determined whether or not the transmission cycle has elapsed since the generation of transmission data last time, and the timing for generating and transmitting the transmission data has come. The transmission data generation cycle may be the same as that of the transmission data generation unit 25 of the first embodiment.
 ステップS11の判断がNOであれば図11の処理を終了する。一方、ステップのS11の判断がYESであればステップS12に進む。ステップS12では、電力制御パターン判定部24が送信電力Pを固定電力Pfとすると判定しているか否かを判断する。この判断がYESであればステップのS13に進む。ステップS13では、送信データを生成して変調部26T1に出力する。送信データが変調部26T1に出力されると、変調波がRFアンテナ27から放射される。 If the determination in step S11 is NO, the process in FIG. 11 is terminated. On the other hand, if the determination in step S11 is YES, the process proceeds to step S12. In step S12, it is determined whether or not the power control pattern determination unit 24 determines that the transmission power P is the fixed power Pf. If this judgment is YES, it will progress to Step S13. In step S13, transmission data is generated and output to modulation section 26T1. When the transmission data is output to the modulation unit 26T1, a modulated wave is radiated from the RF antenna 27.
 ステップS12の判断がNOである場合、すなわち、電力制御パターン判定部24は車速比例制御を行うと決定している場合、ステップS14に進む。ステップS14では、キャリアセンス部28にキャリアセンスを指示し、キャリアセンスの結果を取得する。 If the determination in step S12 is NO, that is, if the power control pattern determination unit 24 determines to perform vehicle speed proportional control, the process proceeds to step S14. In step S14, the carrier sense unit 28 is instructed to perform carrier sense, and the result of carrier sense is acquired.
 続くステップS15では、キャリアセンスの結果、変調波を送信する周波数チャネルが空いていたか否かを判断する。この判断がNOであればステップS14に戻り、キャリアセンスを再度実行する。一方、ステップS15の判断がYESであればステップS13に進み、送信データを生成して変調部26T1に出力する。 In the subsequent step S15, it is determined whether or not the frequency channel for transmitting the modulated wave is free as a result of the carrier sense. If this judgment is NO, it will return to Step S14 and will carry out carrier sense again. On the other hand, if the determination in step S15 is YES, the process proceeds to step S13, where transmission data is generated and output to the modulation unit 26T1.
 電力制御パターン判定部24が送信電力Pを固定電力Pfに決定している場合には、自転車2と自動車3の距離が近い場合である。第2実施形態では、電力制御パターン判定部24が車速比例制御を行うと決定している場合にはキャリアセンスを実行する。しかし、電力制御パターン判定部24が送信電力Pを固定電力Pfに決定している場合には、キャリアセンスを実行することなく、変調波を送信する。これにより、自転車2と自動車3の距離が近い場合に、自転車2の存在を自動車用無線通信装置30が知るタイミングが遅くなってしまうことが抑制される。 When the power control pattern determination unit 24 determines the transmission power P as the fixed power Pf, the distance between the bicycle 2 and the car 3 is short. In the second embodiment, carrier sense is executed when the power control pattern determination unit 24 determines to perform vehicle speed proportional control. However, when the power control pattern determination unit 24 determines the transmission power P to be the fixed power Pf, the modulated wave is transmitted without performing carrier sense. Thereby, when the distance between the bicycle 2 and the automobile 3 is short, the timing at which the automobile wireless communication device 30 knows the existence of the bicycle 2 is prevented from being delayed.
 以上、実施形態を例示したが、実施形態は、上述の実施形態に限定されるものではなく、次の変形例を含む様々な実施形態が可能である。 As mentioned above, although embodiment was illustrated, embodiment is not limited to the above-mentioned embodiment, Various embodiment including the following modification is possible.
 <変形例1>
 前述の実施形態では低車速判定閾値THLVの具体的速度として5km/hを例示したが、低車速判定閾値は7-8km/hでもよい。
<Modification 1>
In the above-described embodiment, 5 km / h is exemplified as the specific speed of the low vehicle speed determination threshold TH LV , but the low vehicle speed determination threshold may be 7-8 km / h.
 <変形例2>
 前述の実施形態では近距離送信部として、LF帯の電波を送信するLF送信部32を示したが、近距離通信部は、通信距離がLF通信部と同程度、あるいは、それ以下であればよい。よって、近距離送信部として、Bluetooth Low Energy(以下、BLE)の規格に即して送信する送信部を用いてもよい。なお、Bluetoothは登録商標である。BLEは送信電力を規格の範囲内で低くすることができるので、送信電力を小さくすることで、BLEの規格に即した送信部を、近距離送信部として用いることができる。また、近距離通信部として、赤外線通信を行う送信部を用いてもよい。また、135kHz帯以外のLF帯の電波を送信する送信部を、近距離送信部として用いてもよい。
<Modification 2>
In the above-described embodiment, the LF transmission unit 32 that transmits the LF band radio wave is shown as the short-distance transmission unit. However, the short-distance communication unit has the same communication distance as the LF communication unit or less. Good. Therefore, as the short-distance transmission unit, a transmission unit that transmits in accordance with the Bluetooth Low Energy (hereinafter, BLE) standard may be used. Bluetooth is a registered trademark. Since BLE can reduce the transmission power within the range of the standard, a transmission unit conforming to the BLE standard can be used as the short-range transmission unit by reducing the transmission power. Moreover, you may use the transmission part which performs infrared communication as a near field communication part. A transmission unit that transmits radio waves in the LF band other than the 135 kHz band may be used as the short-distance transmission unit.
 <変形例3>
 前述の実施形態では、送信電力Pを固定電力Pfとする車速Vの条件は、車速Vが低車速判定閾値THLVよりも低いことのみであった。しかし、自転車2が走行していても、車速Vが極めて遅ければ、自動車用無線通信装置30が自転車2の存在を確実に知る必要性はそれほど高くない。そこで、自転車2の車速Vが、停止に近い極めて低い車速Vを判断するための停止判断閾値THよりも低い場合には、車速Vが低車速判定閾値THLVよりも低くても、車速比例制御を行ってもよい。この停止判断閾値THは、V<TH<THLVである。なお、Vは図6に示している送信下限車速Vである。
<Modification 3>
In the above-described embodiment, the vehicle speed V that sets the transmission power P to the fixed power Pf is only that the vehicle speed V is lower than the low vehicle speed determination threshold TH LV . However, even if the bicycle 2 is traveling, if the vehicle speed V is extremely slow, the necessity of the automobile wireless communication device 30 to know the existence of the bicycle 2 is not so high. Therefore, the vehicle speed V of the bicycle 2 is lower than the stop determination threshold value TH s for determining extremely low vehicle speed V close to the stop, even if the vehicle speed V is lower than the low vehicle speed determination threshold TH LV, the vehicle speed proportional Control may be performed. The stop determination threshold TH s is V L <TH s <TH LV . V L is the transmission lower limit vehicle speed V L shown in FIG.
 <変形例4>
 第2実施形態では、送信データ生成部25Aは、電力制御パターン判定部24が送信電力Pを固定電力Pfとすると判定している場合に、キャリアセンスを行わずに送信データを生成していた。電力制御パターン判定部24は、送信電力Pを固定電力Pfとする条件として、車速Vが低車速判定閾値THLVよりも低いという条件を含んでいる。したがって、車速Vが低車速判定閾値THLV以上であれば、自動車通知信号を受信してもキャリアセンスを行うことになる。しかし、これとは異なり、車速Vによらず、自動車通知信号を受信した場合にはキャリアセンスを行うことなく送信データを生成して変調波を送信してもよい。
<Modification 4>
In the second embodiment, the transmission data generation unit 25A generates transmission data without performing carrier sense when the power control pattern determination unit 24 determines that the transmission power P is fixed power Pf. The power control pattern determination unit 24 includes a condition that the vehicle speed V is lower than the low vehicle speed determination threshold value TH LV as a condition for setting the transmission power P to the fixed power Pf. Therefore, if the vehicle speed V is equal to or higher than the low vehicle speed determination threshold TH LV , the carrier sense is performed even if the vehicle notification signal is received. However, unlike this, regardless of the vehicle speed V, when a vehicle notification signal is received, transmission data may be generated and a modulated wave transmitted without performing carrier sense.
 <変形例5>
 図3に示した倍電圧整流回路211に代えて、昇圧しない整流回路を用いてもよい。
<Modification 5>
Instead of the voltage doubler rectifier circuit 211 shown in FIG. 3, a rectifier circuit that does not boost the voltage may be used.
 <変形例6>
 前述の実施形態では、車両用無線通信装置として、自転車2で用いられる自転車用無線通信装置20を示したが、車両用無線通信装置は、自転車2とは異なる種類の車両、たとえば、自動車3で用いられてもよい。
<Modification 6>
In the above-described embodiment, the bicycle wireless communication device 20 used in the bicycle 2 is shown as the vehicle wireless communication device. However, the vehicle wireless communication device is a vehicle of a different type from the bicycle 2, for example, the automobile 3. May be used.
 <変形例7>
 前述の実施形態では、移動体用無線通信装置として、自動車3で用いられる自動車用無線通信装置30を示したが、移動体用無線通信装置は、自動車3とは異なる種類の移動体、たとえば、歩行者、自転車2で用いられてもよい。
<Modification 7>
In the above-described embodiment, the mobile radio communication device 30 used in the automobile 3 is shown as the mobile radio communication apparatus. However, the mobile radio communication apparatus may be a different type of mobile body from the automobile 3, for example, The pedestrian and the bicycle 2 may be used.
 <変形例8>
 車速検出部として、車輪に、リードスイッチおよび磁石の何れか一方を取り付け、フォーク部に、リードスイッチおよび磁石の他方を取り付ける構成を用いてもよい。また、RF電力制御部として、マイクロコンピュータ等のデジタル回路により送信電力Pを制御する構成を用いてもよい。
<Modification 8>
As a vehicle speed detection part, you may use the structure which attaches any one of a reed switch and a magnet to a wheel, and attaches the other of a reed switch and a magnet to a fork part. Further, as the RF power control unit, a configuration in which the transmission power P is controlled by a digital circuit such as a microcomputer may be used.

Claims (5)

  1.  車両で用いられる車両用無線通信装置(20)であって、
     前記車両の車速を検出する車速検出部(21)と、
     送信データを生成する送信データ生成部(25、25A)と、
     前記送信データ生成部が生成した前記送信データを予め設定された高周波帯の搬送波で変調した変調波を、前記車速検出部が検出した前記車速が高いほど大きい送信電力で送信する高周波送信部(26T)とを備える車両用無線通信装置。
    A vehicle wireless communication device (20) used in a vehicle,
    A vehicle speed detector (21) for detecting the vehicle speed of the vehicle;
    A transmission data generation unit (25, 25A) for generating transmission data;
    A high-frequency transmission unit (26T) that transmits a modulated wave obtained by modulating the transmission data generated by the transmission data generation unit with a carrier wave in a preset high-frequency band with higher transmission power as the vehicle speed detected by the vehicle speed detection unit is higher. A wireless communication device for a vehicle.
  2.  請求項1に記載の車両用無線通信装置を備え、かつ、前記車両用無線通信装置が用いられている前記車両とは異なる移動体で用いられ、前記車両用無線通信装置が送信する前記変調波を受信する移動体側受信部(34)を備えた移動体用無線通信装置(30)とを備えた無線通信システムであって、
     前記移動体用無線通信装置は、近距離通信信号を逐次送信する近距離送信部(32)を備え、
     前記車両用無線通信装置は、
     前記近距離送信部が送信する前記近距離通信信号を受信する近距離受信部(23)を備え、
     前記高周波送信部は、
     前記車速検出部が検出した前記車速が予め設定された低車速判定閾値よりも低く、かつ、前記近距離受信部が前記近距離通信信号を受信したことに基づいて、前記近距離通信信号の通信距離よりも通信距離が長くなるように予め設定された固定電力で前記変調波を送信する一方、
     前記車速検出部が検出した前記車速が前記低車速判定閾値よりも低くても、前記近距離受信部が前記近距離通信信号を受信していない場合、前記車速検出部が検出した前記車速が高いほど大きい前記送信電力とする制御である車速比例制御を行い、前記車速比例制御において、前記車速検出部が検出した前記車速が前記低車速判定閾値よりも低い場合の前記送信電力は、前記固定電力よりも小さい無線通信システム。
    2. The modulated wave that is provided in the vehicle wireless communication device according to claim 1 and that is used in a moving body different from the vehicle in which the vehicle wireless communication device is used, and is transmitted by the vehicle wireless communication device. A mobile communication system (30) including a mobile-side receiver (34) for receiving
    The mobile wireless communication device includes a short-range transmission unit (32) that sequentially transmits a short-range communication signal,
    The vehicle wireless communication device is:
    A short-range receiver (23) for receiving the short-range communication signal transmitted by the short-range transmitter;
    The high-frequency transmitter is
    Communication of the near field communication signal based on the vehicle speed detected by the vehicle speed detecting unit being lower than a preset low vehicle speed determination threshold and the near field receiving unit receiving the near field communication signal. While transmitting the modulated wave at a fixed power set in advance so that the communication distance is longer than the distance,
    Even if the vehicle speed detected by the vehicle speed detection unit is lower than the low vehicle speed determination threshold, the vehicle speed detected by the vehicle speed detection unit is high when the short-range reception unit has not received the short-range communication signal. Vehicle speed proportional control, which is control for increasing the transmission power as much as possible, is performed, and in the vehicle speed proportional control, the transmission power when the vehicle speed detected by the vehicle speed detection unit is lower than the low vehicle speed determination threshold is the fixed power Smaller wireless communication system.
  3.  請求項2において、
     前記車両用無線通信装置は、
     前記高周波送信部が使用する前記高周波帯の電波を受信する高周波受信部(26R)と、
     前記高周波受信部により前記高周波帯の電波を受信してキャリアセンスを行うキャリアセンス部(28)とを備え、
     前記高周波送信部は、前記車速比例制御を行う場合、前記キャリアセンス部により前記キャリアセンスを実行させて、前記高周波帯のチャネルが空いていると判定した後に前記変調波を送信するが、前記固定電力で前記変調波を送信する場合、前記キャリアセンス部に前記キャリアセンスを実行させることなく前記変調波を送信する無線通信システム。
    In claim 2,
    The vehicle wireless communication device is:
    A high frequency receiver (26R) for receiving radio waves in the high frequency band used by the high frequency transmitter;
    A carrier sense unit (28) for performing carrier sense by receiving radio waves in the high frequency band by the high frequency receiving unit;
    When performing the vehicle speed proportional control, the high-frequency transmission unit transmits the modulated wave after determining that the channel of the high-frequency band is free by causing the carrier sense unit to execute the carrier sense, A wireless communication system that transmits the modulated wave without causing the carrier sense unit to perform the carrier sense when transmitting the modulated wave with power.
  4.  請求項2または3において、
     前記車両は、ダイナモ(2a)を備える自転車(2)であり、
     前記車両用無線通信装置の前記車速検出部(21)は、前記ダイナモの出力電圧を用いて前記車速を検出するものであって、前記車速に応じて高くなる電圧を、前記車速を表す車速信号として出力するものであり、
     前記車両用無線通信装置の前記高周波送信部(26T)は、
     前記送信データ生成部が生成した前記送信データを変調および増幅して、前記変調波を表す信号を出力する変調増幅部(26T1、26T2)と、
     前記変調増幅部が出力した前記変調波を表す信号を入力信号として、前記車速信号の電圧が高いほど低い減衰率で前記入力信号を減衰させた信号を出力する電圧制御減衰部(2631)と、
     前記変調増幅部が出力した前記変調波を表す信号を前記固定電力で出力する固定電力部(2632)と、
     前記固定電力で前記変調波を送信する場合には、前記変調増幅部が出力した前記変調波を表す信号を前記固定電力部に入力する一方、前記車速比例制御を実行する場合には、前記変調増幅部が出力した前記変調波を表す信号を前記電圧制御減衰部に入力する切替部(2633、2634)とを備える無線通信システム。
    In claim 2 or 3,
    The vehicle is a bicycle (2) provided with a dynamo (2a),
    The vehicle speed detection unit (21) of the vehicular wireless communication device detects the vehicle speed using the output voltage of the dynamo, and uses a vehicle speed signal representing the vehicle speed as a voltage that increases according to the vehicle speed. Output as
    The high-frequency transmission unit (26T) of the vehicle wireless communication device is
    A modulation amplification unit (26T1, 26T2) that modulates and amplifies the transmission data generated by the transmission data generation unit and outputs a signal representing the modulated wave;
    A voltage control attenuation unit (2631) that outputs a signal obtained by attenuating the input signal at a lower attenuation rate as the voltage of the vehicle speed signal is higher as a signal representing the modulated wave output from the modulation amplification unit;
    A fixed power unit (2632) for outputting a signal representing the modulated wave output by the modulation amplification unit at the fixed power;
    When transmitting the modulated wave with the fixed power, a signal representing the modulated wave output from the modulation amplifier is input to the fixed power unit, while when performing the vehicle speed proportional control, the modulation is performed. A wireless communication system comprising: a switching unit (2633, 2634) that inputs a signal representing the modulated wave output from the amplification unit to the voltage control attenuation unit.
  5.  請求項2~4のいずれか1項において、
     前記近距離送信部および前記近距離受信部は、LF帯の電波で前記近距離通信信号を送受信する無線通信システム。

     
    In any one of claims 2 to 4,
    The short-range transmission unit and the short-range reception unit are wireless communication systems that transmit and receive the short-range communication signal using LF band radio waves.

PCT/JP2016/075935 2015-10-09 2016-09-05 Vehicular wireless communication device and wireless communication system WO2017061205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015201425A JP6365496B2 (en) 2015-10-09 2015-10-09 Wireless communication system
JP2015-201425 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017061205A1 true WO2017061205A1 (en) 2017-04-13

Family

ID=58487526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075935 WO2017061205A1 (en) 2015-10-09 2016-09-05 Vehicular wireless communication device and wireless communication system

Country Status (2)

Country Link
JP (1) JP6365496B2 (en)
WO (1) WO2017061205A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816743B (en) * 2018-02-09 2023-10-01 日商島野股份有限公司 Wireless receiving device for human powered vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7345118B2 (en) * 2021-12-24 2023-09-15 パナソニックIpマネジメント株式会社 Communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328713A (en) * 2000-05-22 2001-11-27 Yoichi Sato Method and apparatus for physical distribution control
JP2004343467A (en) * 2003-05-16 2004-12-02 Denso Corp Device for radio communication between cars
JP2013016142A (en) * 2011-06-10 2013-01-24 Sanyo Electric Co Ltd Radio equipment
JP2013171445A (en) * 2012-02-21 2013-09-02 Kato Electrical Mach Co Ltd Traffic safety system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328713A (en) * 2000-05-22 2001-11-27 Yoichi Sato Method and apparatus for physical distribution control
JP2004343467A (en) * 2003-05-16 2004-12-02 Denso Corp Device for radio communication between cars
JP2013016142A (en) * 2011-06-10 2013-01-24 Sanyo Electric Co Ltd Radio equipment
JP2013171445A (en) * 2012-02-21 2013-09-02 Kato Electrical Mach Co Ltd Traffic safety system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816743B (en) * 2018-02-09 2023-10-01 日商島野股份有限公司 Wireless receiving device for human powered vehicle

Also Published As

Publication number Publication date
JP2017073749A (en) 2017-04-13
JP6365496B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
US9292984B2 (en) Wireless communication system between a vehicle and a portable device
US9013326B2 (en) Method and system for determining the occupation state of a parking space
US20050163063A1 (en) Configuration and method for bidirectional transmission of signals in a motor vehicle
US11427157B2 (en) Low frequency or ultra wide band control by BLE in identification device
US20170282858A1 (en) Keyless Entry Systems
US10442398B2 (en) Vehicle control system
US9000622B2 (en) Vehicular power transmission device
US20150279138A1 (en) On-board apparatus control system
JP2018182913A (en) Transmitter and micro wave power transmission system
WO2017061205A1 (en) Vehicular wireless communication device and wireless communication system
US9042426B1 (en) Wireless communication system
GB2547293A (en) Remote control system using different types of carrier waves for polling signals
JP6453587B2 (en) Electronic key system
JP2007127461A (en) Device and method for detecting moving person
JP7153866B2 (en) wireless communication system
JP2013212003A (en) On-vehicle system
JP2013209845A (en) On-vehicle system
JP2016099831A (en) On-vehicle apparatus
JP2005171720A (en) Passive keyless entry system
KR101394107B1 (en) Method and apparatus for controlling position of sunroof of vehicle
JP2017073749A5 (en) Wireless communication system
CN110867064A (en) Remote controller and protection system
JP2015074958A (en) Keyless entry system
CN107924592B (en) Driver for quasi-resonant communication with a mobile transponder
JP6926918B2 (en) Wireless receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853359

Country of ref document: EP

Kind code of ref document: A1