WO2017061062A1 - Complex and method for manufacturing same - Google Patents

Complex and method for manufacturing same Download PDF

Info

Publication number
WO2017061062A1
WO2017061062A1 PCT/JP2016/003226 JP2016003226W WO2017061062A1 WO 2017061062 A1 WO2017061062 A1 WO 2017061062A1 JP 2016003226 W JP2016003226 W JP 2016003226W WO 2017061062 A1 WO2017061062 A1 WO 2017061062A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic resin
resin layer
melt film
metal
hot melt
Prior art date
Application number
PCT/JP2016/003226
Other languages
French (fr)
Japanese (ja)
Inventor
正司 平岡
森川 茂保
藤井 孝浩
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Publication of WO2017061062A1 publication Critical patent/WO2017061062A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/40Applying molten plastics, e.g. hot melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes

Definitions

  • the present invention relates to a composite and a method for producing the same.
  • a composite in which a metal shape member and a molded body of a resin composition are joined is lighter than a component made only of metal and higher in strength than a component made only of a resin.
  • such a composite has been manufactured by fitting a metal base material and a molded body of a resin composition.
  • the method for producing a composite by fitting has a large number of work steps and has low productivity. Therefore, in recent years, it is common to manufacture a composite by joining a metal base material and a molded body of a resin composition by insert molding.
  • Patent Document 4 a metal member, an organic coating layer such as a triazine thiol derivative, and a laminate in which a hot melt film is laminated, after a material containing a thermoplastic resin is disposed so as to be in contact with the hot melt film.
  • a method is described in which a hot melt film is melted and the laminate and a thermoplastic resin molded body are joined to produce a composite.
  • the composites produced by the methods described in Patent Documents 1 to 3 have a problem that the adhesion between the metal shaped material and the molded body of the resin composition is not sufficient because they are joined by the anchor effect.
  • the methods for producing composites described in Patent Documents 1 to 3 have a problem that the surface of the metal base material is roughened, so that the production process becomes complicated and the production cost increases.
  • Patent Documents 1 to 4 are for joining a molded body of a resin composition to a metal base material.
  • the method described in Patent Documents 1 to 4 uses a method other than the resin composition. It was unclear whether sufficient adhesion occurred between the material and the metal profile.
  • the present invention has been made in view of such a point, and even if various materials are bonded, a metal shaped material and an object to be bonded that are excellent in adhesion and can be easily manufactured. It aims at providing the composite_body
  • the present invention relates to the following complex and a method for producing the complex.
  • the joined body includes a molded body of one or more materials selected from the group consisting of ferrous metals, non-ferrous metals, organic resins, and glass. The complex described.
  • a painted metal shape material including a metal shape material and an organic resin layer formed on a surface of the metal shape material, and a hot melt film disposed so as to be in contact with the organic resin layer
  • the joined body includes a molded body of one or more materials selected from the group consisting of ferrous metals, non-ferrous metals, organic resins, and glass. The manufacturing method of the composite_body
  • complex containing the metal shape material and to-be-joined body which is excellent in the adhesiveness and can be manufactured easily, and its manufacturing method are provided. Is done.
  • FIG. 1A is a plan view according to an example of the composite of the present invention
  • FIG. 1B is a cross-sectional view of the composite taken along line 1B-1B in FIG. 1A
  • 2A is a plan view according to another example of the composite of the present invention
  • FIG. 2B is a cross-sectional view of the composite taken along line 2B-2B in FIG. 2A
  • FIG. 3A is a plan view of a sample for a tensile test produced in Example
  • FIG. 3B is a front view of the sample for a tensile test.
  • Composite The composite of the present invention has a painted metal shape material, a hot melt film, and an object to be joined.
  • the hot melt film is welded to the organic resin layer of the painted metal shape member and the object to be joined, and joins the painted metal shape material and the object to be joined.
  • FIG. 1A is a plan view of an example of the composite of the present invention
  • FIG. 1B is a cross-sectional view of the composite taken along line 1B-1B in FIG. 1A.
  • the composite 100 has a painted metal base material 10, a hot melt film 30, and a joined body 20.
  • the painted metal base material 10 includes a metal base material 102 and an organic resin layer 104.
  • the hot melt film 30 is welded to both the organic resin layer 104 and the joined body 20, whereby the painted metal shape member 10 and the joined body 20 are joined.
  • the composite 200 has a painted metal raw material 10, a hot melt film 30, and a joined body 40.
  • the joined body 40 includes a concave portion 402 having a rectangular planar shape and a flange portion 404 surrounding the opening of the concave portion 402.
  • the hot melt film 30 in the composite 200 has the same shape as the collar portion 404 of the joined body 40, and the hot melt film 30 is welded to both the collar portion 404 and the organic resin layer 104 of the joined body 40.
  • the painted metal shape member 10 and the joined body 40 are joined.
  • the painted metal material according to the present invention includes a metal material and an organic resin layer.
  • the organic resin layer is formed on the surface of the metal base material.
  • the coated metal preform may have a chemical conversion treatment film formed between the metal preform and the organic resin layer.
  • the painted metal preform according to the present invention includes an organic resin layer, a hot melt film, Therefore, it is not necessary to have a chemical conversion film.
  • each element of the painted metal shape material will be described.
  • the metal shape material is a shape obtained by applying heat or force to a metal.
  • the metal base material used as the coating substrate is a metal plate, a press-molded product thereof, or a metal member formed by casting, forging, cutting, powder metallurgy, or the like.
  • the type of the metal base material is not particularly limited.
  • Examples of the metal shape member include a metal plate, a pressed product of the metal plate, a metal member, and the like.
  • Examples of the metal plate include galvanized steel sheet, Zn—Al alloy plated steel sheet, Zn—Al—Mg alloy plated steel sheet, Zn—Al—Mg—Si alloy plated steel sheet, aluminum plated steel sheet, stainless steel sheet (austenite, martensite).
  • the metal plate may be a rolled steel plate such as a cold rolled steel plate.
  • the metal member include various metal members formed by casting, forging, cutting, and powder metallurgy including aluminum die casting and zinc die casting.
  • the metal shaped material may be subjected to known coating pretreatments such as degreasing and pickling as necessary.
  • the chemical conversion treatment film may be formed between the metal raw material and the organic resin layer.
  • the chemical conversion treatment film is formed on the surface of the metal base material, and improves the adhesion between the metal base material and the organic resin layer and the corrosion resistance of the metal base material.
  • the chemical conversion film may be formed on at least a region (bonding surface) to be bonded to the object to be bonded, which will be described later, on the surface of the metal shape material, but from the viewpoint of facilitating film formation, It is preferably formed on the entire surface of the material.
  • the kind of chemical conversion treatment for forming a chemical conversion treatment film is not particularly limited.
  • the chemical conversion treatment include chromate treatment, chromium-free treatment, and phosphate treatment.
  • the adhesion amount of the chemical conversion treatment film formed by chemical conversion treatment is not particularly limited as long as it is within a range effective for improving the adhesion between the metal raw material and the organic resin layer and the corrosion resistance of the metal raw material.
  • the adhesion amount may be adjusted so that the total Cr conversion adhesion amount is 5 to 100 mg / m 2 .
  • the coating amount of the Ti—Mo composite film is 10 to 500 mg / m 2
  • the fluoroacid-based film has a fluorine conversion adhesion amount or a total metal element conversion adhesion amount of 3 to 100 mg / m 2 . What is necessary is just to adjust the adhesion amount so that it may become in the range. Also, if the phosphate film, the adhesion amount of the coating may be adjusted to adhesion amount such that 0.1 ⁇ 5g / m 2.
  • Organic resin layer is a layer containing an organic resin and improves the adhesion between the metal base material and the hot melt film.
  • the organic resin layer is formed on the metal base material, that is, on the surface of the metal base material or the surface of the chemical conversion treatment film. As the organic resin layer is welded to the hot melt film, in the composite according to the present invention, the metal base material and the object to be joined are more firmly adhered to each other through the organic resin layer and the hot melt film.
  • the type of organic resin contained in the organic resin layer is particularly limited as long as it has a functional group (hydrogen-bonding functional group) that forms a hydrogen bond with the metal shape material and has a weldability to a hot melt film.
  • a functional group hydrogen-bonding functional group
  • the hydrogen bonding functional group include a carboxyl group and an amino group.
  • the resin having a hydrogen bonding functional group and weldability to a hot melt film include epoxy resin, polyolefin resin, phenol resin, acrylic resin, polyester resin, and polycarbonate unit-free polyurethane. System resin is included. These resins may be used alone or in combination of two or more.
  • Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and the like.
  • Examples of the olefin resin include polyethylene resin and polypropylene resin.
  • the phenolic resin includes novolac type resin, resol type resin and the like.
  • the polyurethane resin is obtained by copolymerizing a diol and a diisocyanate.
  • Examples of the diol are other than polycarbonate diol, and include bisphenol A, 1,6-hexanediol, 1,5-pentanediol, and the like.
  • Examples of the isocyanate include aromatic diisocyanate, aliphatic diisocyanate, alicyclic diisocyanate and the like.
  • the organic resin described above can be obtained as a commercial product.
  • the presence of the organic resin in the organic resin layer can be confirmed by ordinary analytical equipment such as NMR, IR, and GC-MS.
  • the organic resin may be cross-linked.
  • the crosslinking of the organic resin can be performed by, for example, a crosslinking agent having two or more crosslinking functional groups that react with the hydrogen bonding functional group in the organic resin.
  • Crosslinking the organic resin is preferable from the viewpoint of improving the strength of the organic resin layer.
  • a known crosslinking agent used for crosslinking the organic resin can be used.
  • the crosslinking agent include an isocyanate crosslinking agent, an epoxy crosslinking agent, an oxazoline crosslinking agent, a melamine crosslinking agent, and a crosslinking agent having a metal salt.
  • the amount of the crosslinking agent used is appropriately determined within a range in which both the adhesiveness of the organic resin layer to the metal shape material and the effect of crosslinking in the organic resin are obtained.
  • the organic resin that is the material of the organic resin layer is preferably a polypropylene resin or a polyurethane resin.
  • the polyurethane resin preferably contains a polycarbonate unit-containing polyurethane resin.
  • the organic resin layer may be formed on at least a part of the bonding surface with the object to be bonded among the surfaces of the metal raw material, but from the viewpoint of further improving the adhesion, The organic resin layer is preferably formed on the entire bonding surface.
  • the polypropylene resin is a polymer compound containing a polypropylene skeleton and a hydrogen bonding functional group.
  • Examples of the polypropylene resin include acid-modified polypropylene.
  • the acid-modified polypropylene is a polypropylene in which a carboxyl group or an anhydride group thereof is introduced into a structural unit of polypropylene.
  • the amount of the hydrogen bonding functional group in the polypropylene resin is appropriately determined from a range in which sufficient adhesiveness to the metal base material is obtained.
  • the polypropylene resin may further contain a functional group other than the hydrogen bonding functional group.
  • the content of the acid-modified polypropylene is preferably 40% by mass or more based on the total resin in the organic resin layer, from the viewpoint of increasing the bonding strength between the painted metal shape material and the hot melt film. Thereby, sufficient joining force of the painted metal shape member to the joined body may not be obtained.
  • the upper limit of the content of the acid-modified polypropylene can be appropriately determined within the range where the effects of the present invention can be obtained.
  • the melt viscosity of the organic resin layer composed of the acid-modified polypropylene is preferably 1000 to 10,000 mPa ⁇ s.
  • the melt viscosity is less than 1000 mPa ⁇ s, the organic resin layer may flow during welding with the joined body. For this reason, an organic resin layer does not weld to a to-be-joined body, but the joining force of the coating metal shape material with respect to the to-be-joined body may become inadequate.
  • the melt viscosity is more than 10,000 mPa ⁇ s, the weldability of the organic resin layer to the hot melt film may be lowered and become insufficient. For this reason, the joining force of the coated metal shaped member to the joined body may be insufficient.
  • the melt viscosity is measured with a Brookfield viscometer.
  • the acid value of the acid-modified polypropylene is preferably 1 to 500 mgKOH / g. If the acid value of the acid-modified polypropylene is within the above range, the acid-modified polypropylene itself acts as a surfactant by neutralizing the acid-modified polypropylene when preparing the emulsion described later.
  • the melting point of the acid-modified polypropylene is preferably 60 to 120 ° C., and the crystallinity of the acid-modified polypropylene is preferably 5 to 20%.
  • the acid-modified polypropylene having the above melting point and crystallinity has high wettability with respect to the surface of the metal base material. For this reason, it is preferable from a viewpoint of forming the organic resin layer closely_contact
  • the melting point is less than 60 ° C. or the crystallinity is less than 5%, the organic resin layer is softened at a relatively low temperature. For example, the coating metal shape material has insufficient blocking resistance during storage. Sometimes. When the melting point is higher than 120 ° C. or the crystallinity is higher than 20%, the bondability of the painted metal shape material to the bonded body may be lowered.
  • the melting point and crystallinity of the acid-modified polypropylene hardly change between the state contained in the organic resin coating (coating for the organic resin layer) (before baking) and the state of the organic resin layer (after baking). Therefore, the degree of crystallinity of the acid-modified polypropylene in the organic resin layer can be examined by measuring an organic resin paint described later containing the acid-modified polypropylene by X-ray diffraction by the Ruland method.
  • the acid-modified polypropylene can be prepared, for example, as an acid-modified polypropylene emulsion having acid-modified polypropylene as a dispersoid.
  • the acid-modified polypropylene emulsion can be prepared by preparing an acid-modified polypropylene and then dispersing the acid-modified polypropylene in water.
  • Various surfactants may be added as an emulsifier to the acid-modified polypropylene emulsion.
  • Polypropylene is known for isotacticity, atacticity, syndiotactic, hemi-isotactic and stereotactic tacticity.
  • the stereoregularity of the polypropylene in the acid-modified polypropylene is preferably isotactic from the viewpoint of mechanical properties such as rigidity and impact strength or durability.
  • the weight average molecular weight of the polypropylene is preferably 1000 to 300,000, and more preferably 5000 to 100,000.
  • the weight average molecular weight of polypropylene is less than 1000, the strength of the organic resin layer may be lowered.
  • the weight average molecular weight of polypropylene exceeds 300000, the viscosity increases when the polypropylene is acid-modified, which may make the operation difficult.
  • the acid modification of polypropylene involves dissolving polypropylene in toluene or xylene, and in the presence of a radical generator, an acid anhydride of ⁇ , ⁇ -unsaturated carboxylic acid and / or ⁇ , ⁇ -unsaturated carboxylic acid and / or 1 This can be done using compounds having one or more double bonds per molecule.
  • a radical generator capable of raising the temperature to the softening temperature or higher than the melting point of polypropylene, ⁇ , ⁇ -unsaturated carboxylic acid and / or ⁇ , ⁇ -unsaturation in the presence or absence of a radical generator
  • Carboxylic acid anhydrides and / or compounds having one or more double bonds per molecule can be used.
  • Examples of the radical generator include peroxide and azonitrile.
  • Examples of the azonitrile include di-tert-butyl perphthalate, tert-butyl hydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxyethyl hexanoate, tert- Examples include butyl peroxypivalate, methyl ethyl ketone peroxide, and di-tert-butyl peroxide.
  • Examples of the azonitrile include azobisisobutyronitrile and azobisisopropionitrile.
  • the blending amount of the radical generator is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of polypropylene. Further, it is particularly preferably 0.5 to 30 parts by mass.
  • Examples of ⁇ , ⁇ -unsaturated carboxylic acids or anhydrides thereof include maleic acid, maleic anhydride, fumaric acid, citraconic acid, citraconic anhydride, mesaconic acid, itaconic acid, itaconic anhydride, aconitic acid, and anhydrous Aconitic acid is included.
  • the ⁇ , ⁇ -unsaturated carboxylic acid or acid anhydride thereof may be one kind or more. When two or more of the above ⁇ , ⁇ -unsaturated carboxylic acids or acid anhydrides are used in combination, the physical properties of the organic resin layer are often improved.
  • Examples of the compound having one or more double bonds per molecule include (meth) acrylic acid monomers and styrene monomers.
  • Examples of the (meth) acrylic acid monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-hydroxy (meth) acrylate.
  • styrenic monomer examples include styrene, ⁇ -methylstyrene, paramethylstyrene, and chloromethylstyrene.
  • vinyl monomers such as divinylbenzene, vinyl acetate, and vinyl esters of versatic acid can be used in combination with the above compounds.
  • the above compound having one or more double bonds per molecule may be one kind or more.
  • the compounding amount of the compound is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of polypropylene. Particularly preferred is 0.5 to 30 parts by mass.
  • the polyurethane resin is a polymer compound including a polyurethane skeleton and the hydrogen bonding functional group.
  • the polyurethane-based resin include polycarbonate-containing polyurethane (hereinafter also referred to as “PC-containing polyurethane”).
  • PC-containing polyurethane polycarbonate-containing polyurethane
  • the amount of the hydrogen-bonding functional group in the polyurethane resin is appropriately determined from a range in which sufficient adhesion to the metal base material can be obtained.
  • the polyurethane resin may further contain a functional group other than the hydrogen bonding functional group.
  • the weight average molecular weight of the polyurethane resin is not particularly limited as long as the effect of the present invention is obtained.
  • PC-containing polyurethane has a polycarbonate unit in the molecular chain.
  • “Polycarbonate unit” refers to the structure shown below in the molecular chain of polyurethane.
  • the carbonate groups may be present individually or continuously in the PC-containing polyurethane.
  • the content of the polycarbonate unit in the organic resin layer is 15 to 80% by mass with respect to the total mass of the resin in the organic resin layer. From the viewpoint of increasing When the content of the polycarbonate unit is less than 15% by mass, the organic resin layer may not adhere to the metal shape material with sufficient strength. When the content is more than 80% by mass, the organic resin layer is bonded. May not weld with sufficient strength to the body.
  • the ratio of the mass of the polycarbonate unit to the mass of the total resin can be determined by nuclear magnetic resonance spectroscopy (NMR analysis) using a sample in which the organic resin layer is dissolved in chloroform.
  • the PC-containing polyurethane can be prepared, for example, by the following steps. First, a urethane prepolymer is produced by reacting an organic polyisocyanate, a polycarbonate polyol, and a polyol having a tertiary amino group or a carboxyl group. In addition, it is possible to use together polyols other than polycarbonate polyol, for example, polyester polyol, polyether polyol, etc. within the range in which the effect of this invention is acquired.
  • the tertiary amino group of the produced urethane prepolymer is neutralized with an acid or quaternized with a quaternizing agent, and then chain-extended with water.
  • a cationic polycarbonate unit-containing polyurethane can be produced.
  • the carboxyl group of the urethane prepolymer is neutralized with a basic compound such as triethylamine, trimethylamine, diethanolmonomethylamine, diethylethanolamine, caustic soda, or caustic potassium, and converted to a carboxylic acid salt.
  • an anionic polycarbonate unit-containing polyurethane can be produced.
  • the PC-containing polyurethane may be a cationic polycarbonate unit-containing polyurethane or an anionic polycarbonate unit-containing polyurethane.
  • organic polyisocyanate is not particularly limited.
  • organic polyisocyanates include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 3,3'-dichloro-4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydro Naphthalene diisocyanate, tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,3-cyclohexy
  • the polycarbonate polyol is obtained by reacting a carbonate compound and a diol compound.
  • the carbonate compound include dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate.
  • the diol compound include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1, 4 -Butanediol, 1,4-cyclohexanediol, 1,6-hexanediol and the like.
  • the polycarbonate polyol may be a compound chain-extended with an isocyanate compound.
  • the polycarbonate polyol may be one kind or more.
  • a polyol having a tertiary amino group or a carboxyl group can be obtained, for example, by acid-base reaction or dehydration condensation of an alkanolamine and a dicarboxylic acid in the presence of an initiator.
  • initiators include ammonia, primary or secondary monoamines, primary or secondary aliphatic polyamines, and primary or secondary aromatic mono- or aromatic polyamines. Etc. are included.
  • the primary or secondary monoamines include methylamine and ethylamine.
  • Examples of the primary or secondary aliphatic polyamines include ethylenediamine, hexamethylenediamine, N, N′-dimethylethylenediamine and the like.
  • Examples of the primary or secondary aromatic mono- or aromatic polyamines include aniline, diphenylamine, toluenediamine, diphenylmethanediamine, and N-methylaniline.
  • Examples of the alkanolamines include monoethanolamine and diethanolamine.
  • Examples of the dicarboxylic acid include adipic acid and phthalic acid.
  • the polyol having a tertiary amino group or carboxyl group may be a compound chain-extended with an isocyanate compound.
  • the polyol having the tertiary amino group or carboxyl group may be one kind or more.
  • the organic resin layer may further contain an additive as long as the effects of the present invention are obtained.
  • the additive include metal oxides, rust inhibitors, phosphorus compounds, lubricants, antifoaming agents, etching agents, inorganic compounds, and coloring materials.
  • the above rust preventive improves the corrosion resistance of the painted metal profile, and as a result, improves the corrosion resistance of the composite.
  • One or more rust inhibitors may be used.
  • the rust inhibitor include a metal compound rust inhibitor, a non-metal compound rust inhibitor, and an organic compound rust inhibitor.
  • the content of the rust preventive agent in the organic resin layer can be appropriately determined from the range in which the rust preventive effect of the rust preventive agent and the effect of the present invention can be obtained according to the type of the rust preventive agent.
  • metal compound rust preventive examples include oxides, hydroxides of metals selected from the group consisting of Si, Ti, Zr, V, Mo, Cr, Hf, Nb, Ta, W, Mg, and Ca. Or fluoride.
  • the content of the anticorrosive agent in the organic resin layer can be appropriately determined as long as the function of the metal oxide is expressed.
  • the content of the rust inhibitor in the organic resin layer is 0.5 mass% or more in terms of Si, 0.005 mass% or more in terms of Ti, and Zr content in terms of corrosion resistance. Is 0.05% by mass or more, the Mo equivalent content is 0.005% by mass or more, and the V equivalent content is preferably 0.02% by mass or more.
  • the content of the rust inhibitor in the organic resin layer is such that the content in terms of Si is less than 23.5% by mass, the content in terms of Ti is less than 0.6% by mass, from the viewpoint of storage stability of the organic resin paint. It is preferable that the content in terms of Zr is less than 12.0% by mass, the content in terms of Mo is less than 3.0% by mass, and the content in terms of V is less than 3.0% by mass.
  • non-metallic compound-based rust preventive examples include phosphate compounds such as diammonium hydrogen phosphate and thiol compounds such as thiourea.
  • organic compound rust preventive agent examples include an inhibitor and a chelating agent.
  • inhibitors include carboxylic acids such as oleic acid, dimer acid, naphthenic acid, metal carboxylate soaps (lanolin Ca, Zn naphthenate, oxidized wax Ca, Ba salts, etc.), sulfonates (Na, Ca, Ba). Sulfonates), amine salts, and esters (such as glycerin esters of higher fatty acids, sorbitan monoisostearate, sorbitan monooleate).
  • chelating agent examples include EDTA (ethylenediaminetetraacetic acid), gluconic acid, NTA (nitrilotriacetic acid), HEDTA (hydroxyethyl, ethylenediaminetriacetic acid), DTPA (diethylenetriaminepentaacetic acid), and Na citrate. included.
  • the above-mentioned lubricant can suppress the occurrence of galling on the surface of the painted metal preform.
  • One or more lubricants may be used, and the type of lubricant is not particularly limited.
  • the lubricant include organic waxes such as fluorine, polyethylene, styrene, and polypropylene, and inorganic lubricants such as molybdenum disulfide and talc.
  • the content of the lubricant in the organic resin layer is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the organic resin and the other resin in the organic resin layer. When the lubricant is less than 1 part by mass, generation of galling may not be sufficiently suppressed. On the other hand, when the amount of the lubricant exceeds 20 parts by mass, the effect of suppressing the generation of galling reaches a peak, and the lubricity is too high and the handleability may be inferior.
  • the antifoaming agent suppresses the generation of bubbles during the preparation of the organic resin paint described later.
  • One or more antifoaming agents may be used.
  • the type of antifoaming agent is not particularly limited. An appropriate amount of a known antifoaming agent such as a silicone-based antifoaming agent may be added to the antifoaming agent.
  • the above-mentioned etching agent improves the adhesion of the organic resin layer to the metal base material by activating the surface of the metal base material.
  • the etching agent include fluorides such as hydrofluoric acid, ammonium fluoride, zircon hydrogen fluoride, and titanium hydrogen fluoride.
  • the inorganic compound densifies the organic resin layer to improve water resistance.
  • examples of the inorganic compound include inorganic oxide sols such as silica, alumina and zirconia, and phosphates such as sodium phosphate, calcium phosphate, manganese phosphate and magnesium phosphate.
  • the color material gives a predetermined color tone to the organic resin layer.
  • Examples of the color material include inorganic pigments, organic pigments, and organic dyes.
  • the adhesion amount of the organic resin in the organic resin layer may be an amount that provides sufficient adhesion with a hot melt film described later. From the viewpoint of further improving the corrosion resistance of the painted metal shape material, the adhesion amount of the organic resin is preferably 0.2 g / m 2 or more.
  • the upper limit value of the organic resin adhesion amount is not particularly limited, but can be determined from the viewpoint that the above effect reaches its peak, the viewpoint of productivity, the viewpoint of cost, and the like.
  • the adhesion amount of the organic resin is preferably about 20 g / m 2 or less.
  • the adhesion amount of the organic resin layer may be an adhesion amount that provides sufficient adhesion with the hot melt film described later, and is preferably 0.2 g / m 2 or more.
  • the adhesion amount of the organic resin layer is less than 0.2 g / m 2 , the bonding strength of the hot melt film to the painted metal shape material may be insufficient.
  • the adhesion amount of the organic resin layer is less than 0.2 g / m 2 , the function of the additive contained in the organic resin layer (for example, the rust preventive action of the rust preventive agent) becomes insufficient. There is.
  • the upper limit value of the adhesion amount of the organic resin layer is not particularly limited, but can be determined from the viewpoint that the above effect reaches a peak, the productivity viewpoint, the cost viewpoint, and the like.
  • adhesion of the organic resin layer is preferably 10 g / m 2 or less, 3 g / m 2 or less is more preferable.
  • the organic resin layer is composed of a composition including the organic resin described above and the additive that is optionally blended.
  • the melting point of the composition is preferably equal to or less than that of the above-mentioned bonded body, and is preferably 60 to 160 ° C., for example. When the melting point of the composition is less than 60 ° C., the organic resin layer is softened at a relatively low temperature, so that the blocking resistance of the coated metal base material may be insufficient. If the melting point of the composition is higher than 160 ° C., the bondability of the coated metal shaped material to the bonded body may be insufficient.
  • the melting point of the resin composition can be adjusted by the type of organic resin and the use of additives.
  • the organic resin layer may uniformly cover a region where the organic resin layer is to be formed in the surface of the metal base material, or may be dispersed in the region to cover the surface of the metal base material. .
  • Hot melt film is a film made of an existing method such as stretching or extrusion molding of a thermoplastic resin composition, which is composed of components that melt by heating and develop various members. Or if it is a sheet-like thing, it will not specifically limit.
  • the melting point of the hot melt film is preferably 50 ° C. or higher and 200 ° C. or lower.
  • the hot melt film is softened at a relatively low temperature, so that the hot melt films may stick to each other during storage, Due to the softening, the bonded objects to be bonded may fall off.
  • the melting point is higher than 200 ° C., an excessive amount of heat is required to soften the hot melt film, which is not realistic. Examples of hot melt films having a melting point of 50 ° C. or higher and 200 ° C.
  • hot melt films include polyurethane-based, polyester-based, polyolefin-based, polyamide-based and ethylene / vinyl acetate copolymer (EVA) -based hot melt films.
  • EVA ethylene / vinyl acetate copolymer
  • the to-be-joined body passes through the hot melt film on the surface of the above-mentioned painted metal preform, more precisely, the organic resin layer of the above-mentioned painted metal preform.
  • the shape of the object to be joined is not particularly limited and can be appropriately selected depending on the application.
  • it is preferable that the to-be-joined body is coat
  • the type of the organic resin is not particularly limited as long as it can cover and dry at least a part of the surface of the object to be joined.
  • the organic resin material is included in the organic resin layer used for the painted metal shape material. It can be an organic resin.
  • the material of the object to be bonded is not particularly limited as long as it can be bonded to the hot melt film.
  • thermoplastic resin compositions examples include metals, thermoplastic resin compositions, thermosetting resin compositions, paper, carbon fibers, processed and unprocessed plant pieces, and inorganic compositions.
  • Examples of objects to be joined using metals as materials include ferrous metals, non-ferrous metals, and metal shapes formed from various plating materials. From the viewpoint of further improving the adhesion to the hot melt film, it is preferable that at least a part of the bonding surface with the hot melt film is coated with an organic resin in the metal shaped material, and the organic resin layer is It is preferable that it is the coating metal shape material which has.
  • thermoplastic resin composition examples include cloth, fiber, woven fabric, and fiber reinforced plastics (such as FRTP and CFRTP). From the viewpoint of further improving the adhesion with the hot melt film, at least a part of the joining surface with the hot melt film is coated with an organic resin in the joined body using these thermoplastic resin compositions. It is preferable.
  • thermosetting resin composition examples include cloth, fiber, woven fabric, and fiber reinforced plastics (FRP, CFRP, and the like).
  • thermosetting resin compositions have at least a part of the bonding surface with the hot melt film coated with an organic resin. Preferably it is.
  • joined bodies using plant pieces as materials include joined bodies formed from petals, leaves, and other woody materials.
  • the joined body using an inorganic composition as a material examples include a joined body formed from glass, ceramics, and mineral.
  • a joined body formed from glass, ceramics, and mineral it is preferable that at least a part of the bonding surface with the hot melt film is coated with an organic resin in the bonded body using these inorganic compositions. preferable.
  • the joined body preferably includes a molded body formed by molding a material such as a ferrous metal, a non-ferrous metal, an organic resin, or glass.
  • thermoplastic resin composition or a thermosetting resin composition containing an organic resin as a material is preferable because it has higher adhesion to a hot melt film.
  • the manufacturing method of the coating metal shape material which concerns on this invention is not specifically limited.
  • the painted metal profile according to the present invention can be manufactured by the following method.
  • the object to be joined is disposed so as to be in contact with the hot melt film with respect to a laminate including the painted metal preform and the hot melt film.
  • a step of welding the hot melt film and the organic resin layer to the joined body is disposed so as to be in contact with the hot melt film with respect to a laminate including the painted metal preform and the hot melt film.
  • the exemplary production method of the composite according to the present invention further includes: 3) arranging the hot melt film so as to contact the organic resin layer of the metal shaped material on which the organic resin layer is formed; A step of forming a body may be included before the step 1).
  • the exemplary manufacturing method of the composite of the present invention may further include 4) a step of forming an organic resin layer on the metal base material before 3) the step.
  • the object to be bonded is coated metal element so that at least the part to be bonded of the object to be bonded and the part to be bonded of the painted metal shape member are in contact via the hot melt film.
  • the part to be joined of the object to be joined and the part to be joined of the painted metal shape material are in contact with each other via a hot melt film at the time of performing step 2) described later. Just do it.
  • Step of welding a hot melt film to the joined body In this step, the hot melt film is heated and heat-fused to the organic resin layer and the joined body, and the hot melt film is interposed therebetween.
  • a to-be-joined body is joined to the above-mentioned paint metal shape material. Heating may be performed on at least a part of the surface where the object to be bonded and the hot melt film are in contact, but from the viewpoint of further improving the adhesion, the heating should be performed on the entire surface of the surface in contact. Is preferred.
  • the heating method is not particularly limited, and may be appropriately selected from known methods. Examples of such heating methods include direct heating with a flame or the like, heater heating, ultrasonic heating, electromagnetic induction heating and laser heating.
  • the object to be bonded and the coated metal shaped material can be closely bonded via the hot melt film.
  • the upper limit value of the amount of adhesion of the ultimate plate temperature is not particularly limited, but can be determined from the viewpoint that the above effect reaches a peak or the viewpoint of suppressing the decomposition of the hot melt film or the organic resin layer. It can be as follows.
  • a hot-melt film is arrange
  • the painted metal shape material may be manufactured by the step 4) described later, or may be prepared separately.
  • the method for arranging the hot melt film is not particularly limited, and may be appropriately selected from known methods.
  • Examples of such a method include a method for bonding a resin for hot melt film previously formed into a film shape to the surface of a painted metal base material by a hot roll or the like, and a resin for hot melt film supplied from an extruder And a method of laminating a layer on a painted metal shape material and cooling and fixing with a cooling roller or the like. Moreover, you may install so that the sheet-like hot-melt film previously shape
  • Step of forming an organic resin layer on a metal base material a metal base material to be a coating base material is prepared, an organic resin layer is formed on the metal base material, and a paint metal base material is formed. And In the case of forming a chemical conversion treatment film, the metal base material is subjected to chemical conversion treatment before the organic resin layer is formed. When the chemical conversion film is not formed, the organic resin layer is formed as it is.
  • the chemical conversion treatment film can be formed by applying a chemical conversion treatment liquid to the surface of the metal raw material and drying it.
  • the method for applying the chemical conversion liquid is not particularly limited, and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, a spray method, and a dip pulling method. What is necessary is just to set suitably the drying conditions of a chemical conversion liquid according to the composition of a chemical conversion liquid, etc.
  • the surface of the metal shape material can be obtained by putting the metal shape material coated with the chemical conversion treatment solution into a drying oven without washing, and heating so that the ultimate plate temperature is in the range of 80 to 250 ° C. A uniform chemical conversion coating can be formed.
  • the organic resin layer can be formed, for example, by applying and baking a paint containing the above-described organic resin on the surface of a metal base material (or chemical conversion film).
  • the method for applying the paint is not particularly limited and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, a spray method, and a dip pulling method.
  • the baking condition of the paint may be set as appropriate according to the composition of the paint. For example, a metal shape material (or chemical conversion treatment) is applied by putting a metal shape material coated with paint into a drying oven and drying it with a hot air drier so that the ultimate plate temperature is in the range of 110 to 200 ° C.
  • a uniform organic resin layer can be formed on the surface of the film.
  • the organic resin layer enhances the adhesion between the metal preform and the hot melt film. Excellent adhesion.
  • the painted metal shape material according to the present invention can be easily manufactured simply by applying and baking a paint containing an organic resin.
  • the base steel plate was a cold rolled steel plate (SPCC) having a thickness of 1.6 mm.
  • urethane resin emulsion and polypropylene resin emulsion were used.
  • a commercially available polyurethane resin emulsion (Adekabon titer HUX-386: ADEKA Corporation, also simply referred to as “UE”) containing a polycarbonate unit was used.
  • a commercially available acid-modified polypropylene resin emulsion (Hardren NZ-1005: Toyobo Co., Ltd., also simply referred to as “PPE”) was used for the polypropylene resin emulsion.
  • polyethylene wax a commercially available polyethylene wax (E-9015: Toho Chemical Industry Co., Ltd.) was used.
  • the addition amount of the polyethylene wax is 3.0 parts by mass with respect to 100 parts by mass of the total mass of the organic resin.
  • crosslinking agent a commercially available epoxy crosslinking agent (HUX-XW3: ADEKA Corporation) was used.
  • the addition amount of a crosslinking agent is 3.0 mass parts with respect to 100 mass parts of total mass of the said organic resin.
  • a rust inhibitor and an antifoaming agent were further added to the obtained organic resin paint.
  • a metal compound (B1) As the rust preventive agent, a metal compound (B1), a nonmetal compound (B2), and an organic compound (B3) were used.
  • Si, Ti, Zr, V, and Mo oxides were used as the metal compound (B1).
  • SiO 2 Nisan Chemical Industry Co., Ltd., colloidal silica ST-N, also referred to as “B11” was used.
  • TiO 2 (IV) Kishida Chemical Co., Ltd., also referred to as “B12” was used as the Ti oxide.
  • Zr oxide (NH 4 ) 2 ZrO (CO 3 ) 2 (first rare element chemical industry, also referred to as “B13”) was used.
  • V 2 O 5 (Taiyo Kogyo Co., Ltd., also referred to as “B14”) was used as the V oxide.
  • the Mo oxide was used (NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O ( Kishida Chemical Co., also referred to as "B15”). The above metal compounds were added alone or in combination.
  • Phosphorus oxide and thiol compound were used for the nonmetallic compound (B2).
  • As the phosphorus oxide (NH 4 ) 2 HPO 4 (Kishida Chemical Co., Ltd., also referred to as “B21”) was used.
  • NH 2 CSNH 2 (Kishida Chemical Co., Ltd., also referred to as “B22”) was used as the thiol compound.
  • the non-metallic compounds were added alone or in combination.
  • a chelate compound was used as the organic compound (B3).
  • Na citrate Na 3 (C 3 H 5 O (COO) 3 )
  • B31 Na citrate (Kishida Chemical Co., Ltd., also referred to as “B31”) was used.
  • the antifoaming agent a commercially available silicone-based antifoaming agent resin (KM-73: Shin-Etsu Chemical Co., Ltd.) was used.
  • the addition amount of the antifoaming agent is 0.05% by mass with respect to the total mass of the organic resin.
  • Organic resin paints 1 to 9 were prepared using the above materials in the types and amounts shown in Tables 1 and 2 below.
  • the content of the rust inhibitor is a ratio of a specific element or component in the rust inhibitor to the total mass of the organic resin layer.
  • the said element or component is written together with the numerical value of content of a rust preventive agent.
  • P is phosphorus
  • SH is (thiol component)
  • Zr is zirconium
  • V is vanadium
  • Si is silicon
  • Ti titanium
  • Mo molybdenum
  • the organic resin paints 2 to 6 and 8 contained a metal compound rust preventive agent, but exhibited good storage stability. This is because the content of the metal compound rust inhibitor is Ti: less than 0.6 mass%, Zr: less than 12.0 mass%, Mo: less than 3.0 mass%, and V: less than 3.0 mass%. It is thought that there was.
  • the organic resin paints 1 and 7 do not contain a rust preventive agent, they showed good storage stability. In addition, the storage stability of the organic resin paint 9 was insufficient. This is presumably because the content of the rust inhibitor of the metal compound was Ti: 0.6% by mass or more and Zr: 12.0% by mass or more.
  • a coated metal plate 10 was obtained in the same manner except that the organic resin paint was not applied and dried.
  • Table 3 shows the types of the coating original plates, the types of organic resin paints, and the adhesion amounts of the organic resin layers of the coated metal plates 1 to 10. Note that (NH 4 ) 2 ZrO (CO 3 ) 2 is considered to be present in the state of ZrO in the organic resin layer. V 2 O 5 is considered to be present in the form of V 2 O 5 in the organic resin layer. (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O is considered to be present in the state of Mo 7 O 24 in the organic resin layer.
  • the coated metal plate 1 was cut into a width of 70 mm and a length of 150 mm, and the end face was sealed on the entire circumference to prepare a sample 1. Next, Sample 1 was put into a salt spray tester, and the white rust generation area ratio after 72 hours was obtained, and the corrosion resistance of the coated metal plate 1 was evaluated from the white rust generation area ratio. The case where the white rust occurrence area ratio after 72 hours of salt spray was less than 10% was evaluated as “ ⁇ ”, 10% or more but less than 30% as “ ⁇ ”, and 30% or more as “x”. Further, the corrosion resistance of the coated metal plates 2 to 10 was evaluated in the same manner except that each of the painted metal plates 2 to 12 was used instead of the painted metal plate 1. The results are shown in Table 3.
  • each of the coated metal plates 1 to 9 exhibited corrosion resistance with no practical problem.
  • the coated metal plates 5, 8 and 9 showed good corrosion resistance. This is because the adhesion amount of the organic resin layer is 0.2 g / m 2 or more, the content of the metal compound rust inhibitor is Ti: 0.005 mass% or more, Zr: 0.05 mass% or more, Mo: It is thought that it was 0.005 mass% or more and V: 0.02 mass% or more.
  • the coated metal plates 1 to 4, 6 and 7 had no practical problem, but exhibited corrosion resistance lower than the corrosion resistance of the coated metal plates 5, 8 and 9.
  • the coated metal plate 6 has a metal compound rust inhibitor content of Ti: less than 0.005 mass%, Zr: less than 0.05 mass%, Mo: less than 0.005 mass%, and V: 0.02 mass%. because there was less than%, considered, coated metal plate 7 is probably because amount of adhering the organic resin layer is less than 0.2 g / m 2.
  • Painted metal preform 1 to 10 Each of the painted metal sheets 1 to 10 is cut to have a width (W 11 ) of 25 mm ⁇ length (L 12 ) of 100 mm. 10 were prepared (see FIG. 1A and FIG. 1B). The thickness of each of the painted metal preforms 1 to 10 is 1.6 mm.
  • Example 2 To-be-joined body (2-1) Painted metal plate As a coated metal plate, the same metal plate as the coated metal plates 1 to 10 used in Example 1 was prepared, and the same as the above coated metal plates 1 to 10. It cut
  • CFRP As a CFRP, an epoxy resin-impregnated prepreg having a thickness of 0.2 mm (Torayca 3255S-25 manufactured by Toray Industries, Inc.) was prepared and used as the bonded body 14.
  • CFRTP As CFRTP, a polypropylene resin-impregnated prepreg (SA-3203PT1 manufactured by Sakai Obec Co., Ltd.) having a thickness of 2 mm was prepared and used as the bonded body 15.
  • Hot melt film As a hot melt film, a polyurethane (hereinafter also referred to as “PU”) hot melt film, a polyester (hereinafter also referred to as “PE”) hot melt film, a polyamide (hereinafter also referred to as “PA”). ) Hot melt film, polyurethane elastomer (hereinafter also referred to as “PU-E”) hot melt film, and polypropylene (hereinafter also referred to as “PP”) hot melt film.
  • PU polyurethane
  • PE polyester
  • PA polyamide
  • PU-E polyurethane elastomer
  • PP polypropylene
  • SHM107-PUR Silicon Co., Ltd. having a thickness of 70 ⁇ m was used.
  • the melting point of the PU hot melt film was 110 ° C.
  • Elfan NT120 (Nihon Matai Co., Ltd.) having a thickness of 100 ⁇ m was used for the PA-based hot melt film.
  • the melting point of the PA-based hot melt film was 120 ° C.
  • PU-E hot melt film 200 ⁇ m thick Ecelan SHM605-CDR (Nippon Matai Co., Ltd.) was used.
  • the melting point of the PU-E hot melt film was 190 ° C.
  • Admer QE060 (Mitsui Chemicals Tosero Co., Ltd.) having a thickness of 40 ⁇ m was used for the PP hot melt film.
  • the melting point of the PP hot melt film was 139 ° C.
  • a PU hot melt film 30 having a width (W 11 ) of 25 mm and a length (L 11 ) of 12.5 mm is applied to an organic resin on one piece in the longitudinal direction of a painted metal plate 1 (25 mm ⁇ 100 mm) as a painted metal shape member 10.
  • the coating metal plate 1 (25 mm ⁇ 100 mm) as the bonded body 20 was stacked and adhered so as to be in contact with the layers and sandwich the PU hot melt film (FIGS. 3A and 3B).
  • a sample in which the hot melt film 30 is sandwiched between the coated metal base material 10 and the two coated metal plates 1 as the joined bodies 20 is placed on a fixed plate 500 heated to 200 ° C., and heated to 200 ° C. from the top.
  • a sample for tensile test was prepared by sandwiching with another plate 500 and applying pressure at 2.4 MPa for 15 seconds using a press machine.
  • Example 2 to 15 and Comparative Examples 1 to 4 A sample for a tensile test was produced in the same manner as in Example 1 except that the types of the painted metal shape material, the hot melt film, and the joined body were changed as shown in Table 4 below.
  • Example 4 which joined the to-be-joined body 12 which is a piece of wood which has an organic resin layer evaluated the joining force higher than Example 2 which joined the to-be-joined body 11 which is a piece of wood which does not have an organic resin layer.
  • the to-be-joined body 14 which is CFRP, or the to-be-joined body 15 which is CFRTP contains organic resin, the tendency for shear strength to become high was seen in Example 8 and 10 which joined these.
  • the composite of the present invention is excellent in adhesion between the painted metal base material and the object to be joined.
  • the object to be joined For example, in various electronic devices, household appliances, medical devices, automobile bodies, vehicle-mounted products, building materials, etc. Preferably used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The purpose of the present invention is to provide a complex including a metal shaped material and a bonded body, the complex being excellent in adhesion and capable of being easily manufactured even if various materials are bonded together. The complex comprises: a coated metal shaped material including a metal shaped material and an organic resin layer formed on a surface of the metal shaped material; a hot melt film; and a bonded body. In the complex, the hot melt film is welded to the organic resin layer and the bonded body.

Description

複合体およびその製造方法Composite and production method thereof
 本発明は、複合体およびその製造方法に関する。 The present invention relates to a composite and a method for producing the same.
 金属板もしくはそのプレス成形品、または鋳造、鍛造、切削、粉末冶金などにより成形された金属製の部材である、いわゆる「金属素形材」は、自動車などの様々な工業製品に使用されている。また、金属素形材と樹脂組成物の成形体とが接合された複合体は、金属のみからなる部品よりも軽量であり、かつ樹脂のみからなる部品よりも強度が高いため、携帯電話機やパーソナルコンピューターなどの様々な電子機器に使用されている。従来、このような複合体は、金属素形材と樹脂組成物の成形体を嵌合させることにより製造されていた。しかしながら、嵌合による複合体の製造方法は、作業工程数が多く、生産性が低かった。そこで、近年は、インサート成形により金属素形材と樹脂組成物の成形体とを接合して、複合体を製造するのが一般的である。 A so-called “metal body”, which is a metal plate or a press-molded product thereof, or a metal member formed by casting, forging, cutting, powder metallurgy, or the like, is used in various industrial products such as automobiles. . In addition, a composite in which a metal shape member and a molded body of a resin composition are joined is lighter than a component made only of metal and higher in strength than a component made only of a resin. Used in various electronic devices such as computers. Conventionally, such a composite has been manufactured by fitting a metal base material and a molded body of a resin composition. However, the method for producing a composite by fitting has a large number of work steps and has low productivity. Therefore, in recent years, it is common to manufacture a composite by joining a metal base material and a molded body of a resin composition by insert molding.
 インサート成形により複合体を製造する場合、金属素形材と樹脂組成物の成形体との密着性を向上させることが重要である。金属素形材と樹脂組成物の成形体との密着性を高める方法としては、例えば、インサート成形を行う前に、金属素形材の表面を粗面化処理することが提案されている(特許文献1~3参照)。特許文献1~3の方法では、アルミニウム合金の表面を粗面化処理することで、アルミニウム合金と樹脂組成物の成形体との接合性を向上させている。 When manufacturing a composite body by insert molding, it is important to improve the adhesion between the metal base material and the molded body of the resin composition. As a method for improving the adhesion between the metal shaped material and the molded body of the resin composition, for example, it is proposed to roughen the surface of the metal shaped material before performing insert molding (patent) Reference 1 to 3). In the methods of Patent Documents 1 to 3, the surface of the aluminum alloy is roughened to improve the bondability between the aluminum alloy and the molded body of the resin composition.
 また、特許文献4には、金属部材、トリアジンチオール誘導体等の有機被覆層、ホットメルトフィルムを積層させた積層体に対して、ホットメルトフィルムに接するように熱可塑性樹脂を含む材料を配置した後に、ホットメルトフィルムを溶融させて、上記積層体と熱可塑性樹脂の成形体とを接合させて複合体を製造する方法が記載されている。 Further, in Patent Document 4, a metal member, an organic coating layer such as a triazine thiol derivative, and a laminate in which a hot melt film is laminated, after a material containing a thermoplastic resin is disposed so as to be in contact with the hot melt film. A method is described in which a hot melt film is melted and the laminate and a thermoplastic resin molded body are joined to produce a composite.
特開2006-027018号公報JP 2006-027018 A 特開2004-050488号公報JP 2004-050488 A 特開2005-342895号公報JP 2005-342895 A 特開2013-244725号公報JP 2013-244725 A
 特許文献1~3に記載の方法で製造した複合体では、アンカー効果によって接合しているため、金属素形材と樹脂組成物の成形体の密着性が十分でないという問題があった。また、特許文献1~3に記載の複合体の製造方法では、金属素形材の表面を粗面化処理するため、製造工程が煩雑となり、製造費用が増大してしまうという問題もあった。 The composites produced by the methods described in Patent Documents 1 to 3 have a problem that the adhesion between the metal shaped material and the molded body of the resin composition is not sufficient because they are joined by the anchor effect. In addition, the methods for producing composites described in Patent Documents 1 to 3 have a problem that the surface of the metal base material is roughened, so that the production process becomes complicated and the production cost increases.
 また、特許文献4に記載の方法で製造した複合体では、熱可塑性樹脂の成形体と金属素形材との密着性が十分に高いとはいえず、より密着性が高い複合体が望まれていた。 In addition, in the composite manufactured by the method described in Patent Document 4, it cannot be said that the adhesiveness between the thermoplastic resin molded body and the metal base material is sufficiently high, and a composite with higher adhesiveness is desired. It was.
 また、特許文献1~4に記載の方法は、樹脂組成物の成形体を金属素形材に接合するものである。複合体の用途を広げるため、樹脂組成物以外の材料が金属素形材に接合された複合体も作製しようとしたときに、特許文献1~4に記載の方法では、前記樹脂組成物以外の材料と金属素形材との間に十分な密着性が生じるか否かは不明であった。 In addition, the methods described in Patent Documents 1 to 4 are for joining a molded body of a resin composition to a metal base material. In order to broaden the application of the composite, when trying to produce a composite in which a material other than the resin composition is bonded to the metal base material, the method described in Patent Documents 1 to 4 uses a method other than the resin composition. It was unclear whether sufficient adhesion occurred between the material and the metal profile.
 本発明は、かかる点に鑑みてなされたものであり、様々な材料が接合されていても、その密着性に優れ、かつ容易に製造することができる、金属素形材と被接合体とを含む複合体およびその製造方法を提供することを目的とする。 The present invention has been made in view of such a point, and even if various materials are bonded, a metal shaped material and an object to be bonded that are excellent in adhesion and can be easily manufactured. It aims at providing the composite_body | complex containing and its manufacturing method.
 本発明は、以下の複合体および複合体の製造方法に関する。
 [1]金属素形材および前記金属素形材の表面に形成されている有機樹脂層を含む塗装金属素形材と、ホットメルトフィルムと、被接合体と、を有する複合体であって、前記ホットメルトフィルムは、前記有機樹脂層および前記被接合体に溶着している、複合体。
 [2]前記有機樹脂層は、ポリプロピレン系樹脂を含む、[1]に記載の複合体。
 [3]前記有機樹脂層は、ポリウレタン系樹脂を含む、[1]に記載の複合体。
 [4]前記有機樹脂層の付着量は、0.2g/m以上である、[1]~[3]のいずれかに記載の複合体。
 [5]前記ホットメルトフィルムの融点は、50~200℃である、[1]~[4]のいずれかに記載の複合体。
 [6]前記被接合体は、鉄系金属、非鉄系金属、有機樹脂およびガラスからなる群から選択される一または複数の材料の成形体を含む、[1]~[5]のいずれかに記載の複合体。
 [7]前記有機樹脂層は、防錆剤を含有する、[1]~[6]のいずれかに記載の複合体。
 [8]金属素形材および前記金属素形材の表面に形成されている有機樹脂層を含む塗装金属素形材と、前記有機樹脂層に接するように配置されているホットメルトフィルムとを有する積層体に対して、前記ホットメルトフィルムに接するように被接合体を配置する工程と、前記被接合体が接している前記ホットメルトフィルムの少なくとも一部を、加熱して、前記ホットメルトフィルムを前記有機樹脂層および前記被接合体に溶着させる工程と、を含む、複合体の製造方法。
 [9]さらに、前記金属素形材の、前記有機樹脂層に接するように前記ホットメルトフィルムを配置して、前記積層体を形成する工程を含む、[8]に記載の複合体の製造方法。
 [10]前記有機樹脂層は、ポリプロピレン系樹脂を含む、[8]または[9]に記載の複合体の製造方法。
 [11]前記有機樹脂層は、ポリウレタン系樹脂を含む、[8]または[9]に記載の複合体の製造方法。
 [12]前記有機樹脂層の付着量は、0.2g/m以上である、[8]~[11]のいずれかに記載の複合体の製造方法。
 [13]前記ホットメルトフィルムの融点は、50~200℃である、[8]~[12]のいずれかに記載の複合体の製造方法。
 [14]前記被接合体は、鉄系金属、非鉄系金属、有機樹脂およびガラスからなる群から選択される一または複数の材料の成形体を含む、[8]~[13]のいずれかに記載の複合体の製造方法。
 [15]前記有機樹脂層は、防錆剤を含有する、[8]~[14]のいずれかに記載の複合体の製造方法。
The present invention relates to the following complex and a method for producing the complex.
[1] A composite having a metal base material and a painted metal base material including an organic resin layer formed on a surface of the metal base material, a hot melt film, and a joined body, The said hot-melt film is the composite_body | complex which is welded to the said organic resin layer and the said to-be-joined body.
[2] The composite according to [1], wherein the organic resin layer includes a polypropylene resin.
[3] The composite according to [1], wherein the organic resin layer includes a polyurethane resin.
[4] The composite according to any one of [1] to [3], wherein an adhesion amount of the organic resin layer is 0.2 g / m 2 or more.
[5] The composite according to any one of [1] to [4], wherein the hot-melt film has a melting point of 50 to 200 ° C.
[6] The joined body includes a molded body of one or more materials selected from the group consisting of ferrous metals, non-ferrous metals, organic resins, and glass. The complex described.
[7] The composite according to any one of [1] to [6], wherein the organic resin layer contains a rust inhibitor.
[8] A painted metal shape material including a metal shape material and an organic resin layer formed on a surface of the metal shape material, and a hot melt film disposed so as to be in contact with the organic resin layer A step of disposing a body to be in contact with the hot melt film with respect to the laminate, and heating at least a part of the hot melt film in contact with the body to be bonded, And a step of welding to the organic resin layer and the joined body.
[9] The method for producing a composite according to [8], further including a step of forming the laminate by disposing the hot melt film so as to contact the organic resin layer of the metal base material. .
[10] The method for producing a composite according to [8] or [9], wherein the organic resin layer includes a polypropylene resin.
[11] The method for producing a composite according to [8] or [9], wherein the organic resin layer includes a polyurethane-based resin.
[12] The method for producing a composite according to any one of [8] to [11], wherein the adhesion amount of the organic resin layer is 0.2 g / m 2 or more.
[13] The method for producing a composite according to any one of [8] to [12], wherein the melting point of the hot melt film is 50 to 200 ° C.
[14] The joined body includes a molded body of one or more materials selected from the group consisting of ferrous metals, non-ferrous metals, organic resins, and glass. The manufacturing method of the composite_body | complex described.
[15] The method for producing a composite according to any one of [8] to [14], wherein the organic resin layer contains a rust inhibitor.
 本発明によれば、様々な材料が接合されていても、その密着性に優れ、かつ容易に製造することができる、金属素形材と被接合体とを含む複合体およびその製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, even if various materials are joined, the composite_body | complex containing the metal shape material and to-be-joined body which is excellent in the adhesiveness and can be manufactured easily, and its manufacturing method are provided. Is done.
図1Aは、本発明の複合体の一例に係る平面図であり、図1Bは、当該複合体の、図1A中の1B-1B線に沿っての断面図である。FIG. 1A is a plan view according to an example of the composite of the present invention, and FIG. 1B is a cross-sectional view of the composite taken along line 1B-1B in FIG. 1A. 図2Aは、本発明の複合体の別の例に係る平面図であり、図2Bは、当該複合体の、図2A中の2B-2B線に沿っての断面図である。2A is a plan view according to another example of the composite of the present invention, and FIG. 2B is a cross-sectional view of the composite taken along line 2B-2B in FIG. 2A. 図3Aは、実施例で作製した引張り試験用のサンプルの平面図であり、図3Bは、当該引張り試験用サンプルの正面図である。FIG. 3A is a plan view of a sample for a tensile test produced in Example, and FIG. 3B is a front view of the sample for a tensile test.
 1.複合体
 本発明の複合体は、塗装金属素形材と、ホットメルトフィルムと、被接合体とを有する。前記ホットメルトフィルムは、前記塗装金属素形材の有機樹脂層と、前記被接合体とに溶着し、前記塗装金属素形材と前記被接合体とを接合している。
1. Composite The composite of the present invention has a painted metal shape material, a hot melt film, and an object to be joined. The hot melt film is welded to the organic resin layer of the painted metal shape member and the object to be joined, and joins the painted metal shape material and the object to be joined.
 図1Aは、本発明の複合体の一例についての平面図であり、図1Bは、当該複合体の、図1A中の1B-1B線に沿っての断面図である。複合体100は、図1Aおよび図1Bに示されるように、塗装金属素形材10、ホットメルトフィルム30および被接合体20を有する。塗装金属素形材10は、金属素形材102および有機樹脂層104を有する。複合体100では、有機樹脂層104および被接合体20の双方にホットメルトフィルム30が溶着することで、塗装金属素形材10と被接合体20とが接合している。 FIG. 1A is a plan view of an example of the composite of the present invention, and FIG. 1B is a cross-sectional view of the composite taken along line 1B-1B in FIG. 1A. As shown in FIGS. 1A and 1B, the composite 100 has a painted metal base material 10, a hot melt film 30, and a joined body 20. The painted metal base material 10 includes a metal base material 102 and an organic resin layer 104. In the composite body 100, the hot melt film 30 is welded to both the organic resin layer 104 and the joined body 20, whereby the painted metal shape member 10 and the joined body 20 are joined.
 本発明の他の実施形態に係る複合体を図2Aおよび図2Bに示す。複合体200は、図2Aおよび図2Bに示されるように、塗装金属素形材10、ホットメルトフィルム30および被接合体40を有する。被接合体40は、平面形状が矩形の凹部402と、凹部402の開口部を囲むつば部404とを有する。複合体200におけるホットメルトフィルム30は、被接合体40のつば部404と同じ形状を有しており、被接合体40のつば部404および有機樹脂層104の双方にホットメルトフィルム30が溶着することで、塗装金属素形材10と被接合体40とが接合している。 2A and 2B show a complex according to another embodiment of the present invention. As shown in FIGS. 2A and 2B, the composite 200 has a painted metal raw material 10, a hot melt film 30, and a joined body 40. The joined body 40 includes a concave portion 402 having a rectangular planar shape and a flange portion 404 surrounding the opening of the concave portion 402. The hot melt film 30 in the composite 200 has the same shape as the collar portion 404 of the joined body 40, and the hot melt film 30 is welded to both the collar portion 404 and the organic resin layer 104 of the joined body 40. Thus, the painted metal shape member 10 and the joined body 40 are joined.
 1-1.塗装金属素形材
 本発明に係る塗装金属素形材は、金属素形材および有機樹脂層を含む。有機樹脂層は、金属素形材の表面に形成されている。塗装金属素形材は、金属素形材と有機樹脂層との間に化成処理皮膜が形成されていてもよいが、本発明に係る塗装金属素形材は、有機樹脂層とホットメルトフィルムとの密着性が高いため、化成処理皮膜を有さなくてもよい。以下、塗装金属素形材の各要素について説明する。
1-1. Painted metal material The painted metal material according to the present invention includes a metal material and an organic resin layer. The organic resin layer is formed on the surface of the metal base material. The coated metal preform may have a chemical conversion treatment film formed between the metal preform and the organic resin layer. However, the painted metal preform according to the present invention includes an organic resin layer, a hot melt film, Therefore, it is not necessary to have a chemical conversion film. Hereinafter, each element of the painted metal shape material will be described.
 (1)金属素形材
 金属素形材とは、金属に熱や力などが加えられ、形を与えられたものをいう。塗装基材となる金属素形材は、金属板、そのプレス成形品、あるいは、鋳造、鍛造、切削、粉末冶金などにより成形された金属製の部材である。金属素形材の種類は、特に限定されない。金属素形材の例には、金属板、金属板のプレス加工品および金属部材などが含まれる。上記金属板の例には、亜鉛めっき鋼板、Zn-Al合金めっき鋼板、Zn-Al-Mg合金めっき鋼板、Zn-Al-Mg-Si合金めっき鋼板、アルミニウムめっき鋼板、ステンレス鋼板(オーステナイト系、マルテンサイト系、フェライト系、およびフェライト・マルテンサイト二相系を含む)、アルミニウム板、アルミニウム合金板、および銅板などが含まれる。金属板は、冷延鋼板などの圧延された鋼板でもよい。上記金属部材の例には、アルミダイカストおよび亜鉛ダイカストを含む鋳造、鍛造、切削加工、および粉末冶金などにより成形された各種金属部材などが含まれる。金属素形材は、必要に応じて、脱脂、酸洗などの公知の塗装前処理が施されていてもよい。
(1) Metal shape material The metal shape material is a shape obtained by applying heat or force to a metal. The metal base material used as the coating substrate is a metal plate, a press-molded product thereof, or a metal member formed by casting, forging, cutting, powder metallurgy, or the like. The type of the metal base material is not particularly limited. Examples of the metal shape member include a metal plate, a pressed product of the metal plate, a metal member, and the like. Examples of the metal plate include galvanized steel sheet, Zn—Al alloy plated steel sheet, Zn—Al—Mg alloy plated steel sheet, Zn—Al—Mg—Si alloy plated steel sheet, aluminum plated steel sheet, stainless steel sheet (austenite, martensite). Site, ferrite, and ferrite-martensite two-phase), aluminum plates, aluminum alloy plates, and copper plates. The metal plate may be a rolled steel plate such as a cold rolled steel plate. Examples of the metal member include various metal members formed by casting, forging, cutting, and powder metallurgy including aluminum die casting and zinc die casting. The metal shaped material may be subjected to known coating pretreatments such as degreasing and pickling as necessary.
 (2)化成処理皮膜
 前述のように、塗装金属素形材は、金属素形材と有機樹脂層との間に化成処理皮膜が形成されていてもよい。化成処理皮膜は、金属素形材の表面に形成されており、金属素形材と有機樹脂層との間の密着性および金属素形材の耐食性を向上させる。化成処理皮膜は、金属素形材の表面のうち、少なくとも後述する被接合体と接合する領域(接合面)に形成されていればよいが、皮膜形成を容易にする観点からは、金属素形材の表面全体に形成されることが好ましい。
(2) Chemical conversion treatment film As mentioned above, as for the coating metal raw material, the chemical conversion treatment film may be formed between the metal raw material and the organic resin layer. The chemical conversion treatment film is formed on the surface of the metal base material, and improves the adhesion between the metal base material and the organic resin layer and the corrosion resistance of the metal base material. The chemical conversion film may be formed on at least a region (bonding surface) to be bonded to the object to be bonded, which will be described later, on the surface of the metal shape material, but from the viewpoint of facilitating film formation, It is preferably formed on the entire surface of the material.
 化成処理皮膜を形成するための化成処理の種類は、特に限定されない。化成処理の例には、クロメート処理、クロムフリー処理、およびリン酸塩処理などが含まれる。化成処理によって形成された化成処理皮膜の付着量は、金属素形材と有機樹脂層との間の密着性および金属素形材の耐食性の向上に有効な範囲内であれば特に限定されない。たとえば、クロメート皮膜の場合、全Cr換算付着量が5~100mg/mとなるように付着量を調整すればよい。また、クロムフリー皮膜の場合、Ti-Mo複合皮膜では皮膜の付着量が10~500mg/m、フルオロアシッド系皮膜ではフッ素換算付着量または総金属元素換算付着量が3~100mg/mの範囲内となるように付着量を調整すればよい。また、リン酸塩皮膜の場合、皮膜の付着量が0.1~5g/mとなるように付着量を調整すればよい。 The kind of chemical conversion treatment for forming a chemical conversion treatment film is not particularly limited. Examples of the chemical conversion treatment include chromate treatment, chromium-free treatment, and phosphate treatment. The adhesion amount of the chemical conversion treatment film formed by chemical conversion treatment is not particularly limited as long as it is within a range effective for improving the adhesion between the metal raw material and the organic resin layer and the corrosion resistance of the metal raw material. For example, in the case of a chromate film, the adhesion amount may be adjusted so that the total Cr conversion adhesion amount is 5 to 100 mg / m 2 . In the case of a chromium-free film, the coating amount of the Ti—Mo composite film is 10 to 500 mg / m 2 , and the fluoroacid-based film has a fluorine conversion adhesion amount or a total metal element conversion adhesion amount of 3 to 100 mg / m 2 . What is necessary is just to adjust the adhesion amount so that it may become in the range. Also, if the phosphate film, the adhesion amount of the coating may be adjusted to adhesion amount such that 0.1 ~ 5g / m 2.
 (3)有機樹脂層
 有機樹脂層は、有機樹脂を含有する層であり、金属素形材とホットメルトフィルムとの間の密着性を向上させる。有機樹脂層は、金属素形材上、すなわち金属素形材の表面または化成処理皮膜の表面、に形成されている。有機樹脂層がホットメルトフィルムに溶着することにより、本発明の複合体では、金属素形材および被接合体が、有機樹脂層およびホットメルトフィルムを介して、より強固に密着される。
(3) Organic resin layer The organic resin layer is a layer containing an organic resin and improves the adhesion between the metal base material and the hot melt film. The organic resin layer is formed on the metal base material, that is, on the surface of the metal base material or the surface of the chemical conversion treatment film. As the organic resin layer is welded to the hot melt film, in the composite according to the present invention, the metal base material and the object to be joined are more firmly adhered to each other through the organic resin layer and the hot melt film.
 有機樹脂層が含有する有機樹脂の種類は、金属素形材と水素結合する官能基(水素結合性官能基)を有し、かつ、ホットメルトフィルムに対する溶着性を有するものであれば、特に限定されない。上記水素結合性官能基の例には、カルボキシル基およびアミノ基が含まれる。水素結合性官能基を有し、かつ、ホットメルトフィルムに対する溶着性を有する樹脂の例には、エポキシ系樹脂、ポリオレフィン系樹脂、フェノール系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリカーボネートユニット非含有ポリウレタン系樹脂が含まれる。これらの樹脂は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The type of organic resin contained in the organic resin layer is particularly limited as long as it has a functional group (hydrogen-bonding functional group) that forms a hydrogen bond with the metal shape material and has a weldability to a hot melt film. Not. Examples of the hydrogen bonding functional group include a carboxyl group and an amino group. Examples of the resin having a hydrogen bonding functional group and weldability to a hot melt film include epoxy resin, polyolefin resin, phenol resin, acrylic resin, polyester resin, and polycarbonate unit-free polyurethane. System resin is included. These resins may be used alone or in combination of two or more.
 エポキシ系樹脂の例には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂などが含まれる。オレフィン系樹脂の例には、ポリエチレン樹脂、ポリプロピレン樹脂などが含まれる。フェノール系樹脂には、ノボラック型樹脂、レゾール型樹脂などが含まれる。ポリウレタン系樹脂は、ジオールとジイソシアネートが共重合することで得られる。ジオールの例には、ポリカーボネートジオール以外であって、ビスフェノールA、1,6-ヘキサンジオール、1,5-ペンタンジオールなどが含まれる。イソシアネートの例には、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートなどが含まれる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and the like. Examples of the olefin resin include polyethylene resin and polypropylene resin. The phenolic resin includes novolac type resin, resol type resin and the like. The polyurethane resin is obtained by copolymerizing a diol and a diisocyanate. Examples of the diol are other than polycarbonate diol, and include bisphenol A, 1,6-hexanediol, 1,5-pentanediol, and the like. Examples of the isocyanate include aromatic diisocyanate, aliphatic diisocyanate, alicyclic diisocyanate and the like.
 前述した有機樹脂は、市販品として入手することが可能である。また、有機樹脂層中の上記有機樹脂の存在は、NMR、IR、およびGC-MSなどの通常の分析機器によって確認することが可能である。 The organic resin described above can be obtained as a commercial product. In addition, the presence of the organic resin in the organic resin layer can be confirmed by ordinary analytical equipment such as NMR, IR, and GC-MS.
 さらに、上記有機樹脂は、架橋されていてもよい。上記有機樹脂の架橋は、例えば、有機樹脂中の上記水素結合性官能基と反応する二以上の架橋性官能基を有する架橋剤によって行うことができる。上記有機樹脂を架橋することは、有機樹脂層の強度を向上させる観点から好ましい。上記架橋剤には、上記有機樹脂の架橋に用いられる公知の架橋剤を用いることができる。架橋剤の例には、イソシアネート系架橋剤、エポキシ系架橋剤、オキサゾリン系架橋剤、メラミン系架橋剤、および金属塩を有する架橋剤が含まれる。架橋剤の使用量は、金属素形材に対する有機樹脂層の接着性と、上記有機樹脂における架橋による効果との両方が得られる範囲で適宜に決められる。 Furthermore, the organic resin may be cross-linked. The crosslinking of the organic resin can be performed by, for example, a crosslinking agent having two or more crosslinking functional groups that react with the hydrogen bonding functional group in the organic resin. Crosslinking the organic resin is preferable from the viewpoint of improving the strength of the organic resin layer. As the crosslinking agent, a known crosslinking agent used for crosslinking the organic resin can be used. Examples of the crosslinking agent include an isocyanate crosslinking agent, an epoxy crosslinking agent, an oxazoline crosslinking agent, a melamine crosslinking agent, and a crosslinking agent having a metal salt. The amount of the crosslinking agent used is appropriately determined within a range in which both the adhesiveness of the organic resin layer to the metal shape material and the effect of crosslinking in the organic resin are obtained.
 後述するホットメルトフィルムとの間の密着性をより高める観点からは、有機樹脂層の材料である有機樹脂はポリプロピレン系樹脂またはポリウレタン系樹脂であることが好ましい。上記ポリウレタン系樹脂は、ポリカーボネートユニット含有ポリウレタン樹脂を含んでいることが好ましい。有機樹脂層は、化成処理皮膜と同様に、金属素形材の表面のうち、被接合体との接合面の少なくとも一部に形成されていればよいが、密着性をより高める観点からは、有機樹脂層は、接合面の全部に形成されることが好ましい。 From the viewpoint of further improving the adhesion between the hot melt film described later, the organic resin that is the material of the organic resin layer is preferably a polypropylene resin or a polyurethane resin. The polyurethane resin preferably contains a polycarbonate unit-containing polyurethane resin. Similar to the chemical conversion treatment film, the organic resin layer may be formed on at least a part of the bonding surface with the object to be bonded among the surfaces of the metal raw material, but from the viewpoint of further improving the adhesion, The organic resin layer is preferably formed on the entire bonding surface.
 (ポリプロピレン系樹脂)
 上記ポリプロピレン系樹脂は、ポリプロピレン骨格と、水素結合性官能基とを含む高分子化合物である。上記ポリプロピレン系樹脂の例には、酸変性ポリプロピレンが含まれる。上記酸変性ポリプロピレンは、ポリプロピレンの構成単位中にカルボキシル基またはその無水物基が導入されたポリプロピレンである。上記ポリプロピレン系樹脂中の当該水素結合性官能基の量は、金属素形材に対する十分な接着性が得られる範囲から適宜に決められる。また、上記ポリプロピレン系樹脂は、上記水素結合性官能基以外の他の官能基をさらに含んでいてもよい。
(Polypropylene resin)
The polypropylene resin is a polymer compound containing a polypropylene skeleton and a hydrogen bonding functional group. Examples of the polypropylene resin include acid-modified polypropylene. The acid-modified polypropylene is a polypropylene in which a carboxyl group or an anhydride group thereof is introduced into a structural unit of polypropylene. The amount of the hydrogen bonding functional group in the polypropylene resin is appropriately determined from a range in which sufficient adhesiveness to the metal base material is obtained. The polypropylene resin may further contain a functional group other than the hydrogen bonding functional group.
 上記酸変性ポリプロピレンの含有量は、有機樹脂層中の全樹脂に対して40質量%以上であることが、塗装金属素形材とホットメルトフィルムとの間の接合力を高める観点から好ましい。これにより、上記被接合体に対する塗装金属素形材の十分な接合力が得られないことがある。酸変性ポリプロピレンの上記含有量の上限値は、本発明の効果が得られる範囲において、適宜に決めることができる。 The content of the acid-modified polypropylene is preferably 40% by mass or more based on the total resin in the organic resin layer, from the viewpoint of increasing the bonding strength between the painted metal shape material and the hot melt film. Thereby, sufficient joining force of the painted metal shape member to the joined body may not be obtained. The upper limit of the content of the acid-modified polypropylene can be appropriately determined within the range where the effects of the present invention can be obtained.
 上記酸変性ポリプロピレンで構成された有機樹脂層の溶融粘度は、1000~10000mPa・sであることが好ましい。当該溶融粘度が1000mPa・s未満の場合、被接合体との溶着の際に、上記有機樹脂層が流動してしまうことがある。このため、有機樹脂層が被接合体に溶着せず、上記被接合体に対する塗装金属素形材の接合力が不十分となることがある。一方、上記溶融粘度が10000mPa・s超の場合、ホットメルトフィルムに対する上記有機樹脂層の溶着性が低下して不十分となることがある。このため、上記被接合体に対する塗装金属素形材の接合力が不十分となることがある。上記溶融粘度は、ブルックフィールド型粘度計で測定される。 The melt viscosity of the organic resin layer composed of the acid-modified polypropylene is preferably 1000 to 10,000 mPa · s. In the case where the melt viscosity is less than 1000 mPa · s, the organic resin layer may flow during welding with the joined body. For this reason, an organic resin layer does not weld to a to-be-joined body, but the joining force of the coating metal shape material with respect to the to-be-joined body may become inadequate. On the other hand, when the melt viscosity is more than 10,000 mPa · s, the weldability of the organic resin layer to the hot melt film may be lowered and become insufficient. For this reason, the joining force of the coated metal shaped member to the joined body may be insufficient. The melt viscosity is measured with a Brookfield viscometer.
 酸変性ポリプロピレンの酸価は、1~500mgKOH/gであることが好ましい。酸変性ポリプロピレンの酸価が上記の範囲内であれば、後述のエマルジョンを作製する際に酸変性ポリプロピレンを中和することで、酸変性ポリプロピレン自体が界面活性剤として作用する。 The acid value of the acid-modified polypropylene is preferably 1 to 500 mgKOH / g. If the acid value of the acid-modified polypropylene is within the above range, the acid-modified polypropylene itself acts as a surfactant by neutralizing the acid-modified polypropylene when preparing the emulsion described later.
 上記酸変性ポリプロピレンの融点が60~120℃であり、かつ上記酸変性ポリプロピレンの結晶化度が5~20%であることが好ましい。上記融点および結晶化度を有する酸変性ポリプロピレンは、金属素形材の表面に対する濡れ性が高い。このため、金属素形材の表面の微細な凹凸にも密着した有機樹脂層を形成する観点から好ましい。上記融点が60℃未満または上記結晶化度が5%未満の場合、比較的低温で有機樹脂層が軟化してしまうため、例えば、保管時に塗装金属素形材の耐ブロッキング性が不十分となることがある。上記融点が120℃超または上記結晶化度が20%超の場合、上記被接合体に対する塗装金属素形材の接合性が低下することがある。 The melting point of the acid-modified polypropylene is preferably 60 to 120 ° C., and the crystallinity of the acid-modified polypropylene is preferably 5 to 20%. The acid-modified polypropylene having the above melting point and crystallinity has high wettability with respect to the surface of the metal base material. For this reason, it is preferable from a viewpoint of forming the organic resin layer closely_contact | adhered also to the fine unevenness | corrugation of the surface of a metal raw material. When the melting point is less than 60 ° C. or the crystallinity is less than 5%, the organic resin layer is softened at a relatively low temperature. For example, the coating metal shape material has insufficient blocking resistance during storage. Sometimes. When the melting point is higher than 120 ° C. or the crystallinity is higher than 20%, the bondability of the painted metal shape material to the bonded body may be lowered.
 なお、酸変性ポリプロピレンの融点および結晶化度は、有機樹脂塗料(有機樹脂層用の塗料)に含まれる状態(焼き付け前)と有機樹脂層の状態(焼き付けた後)とでほとんど変化しない。したがって、有機樹脂層中の酸変性ポリプロピレンの結晶化度は、酸変性ポリプロピレンを含む後述の有機樹脂塗料を、Ruland法によるX線回折により測定することで調べることができる。 It should be noted that the melting point and crystallinity of the acid-modified polypropylene hardly change between the state contained in the organic resin coating (coating for the organic resin layer) (before baking) and the state of the organic resin layer (after baking). Therefore, the degree of crystallinity of the acid-modified polypropylene in the organic resin layer can be examined by measuring an organic resin paint described later containing the acid-modified polypropylene by X-ray diffraction by the Ruland method.
 上記酸変性ポリプロピレンは、例えば、酸変性ポリプロピレンを分散質とする酸変性ポリプロピレン系エマルジョンとして調製されうる。酸変性ポリプロピレン系エマルジョンは、酸変性ポリプロピレンを調製した後、酸変性ポリプロピレンを水に配合して分散することで調製されうる。また、酸変性ポリプロピレン系エマルジョンには、乳化剤として各種界面活性剤を添加してもよい。 The acid-modified polypropylene can be prepared, for example, as an acid-modified polypropylene emulsion having acid-modified polypropylene as a dispersoid. The acid-modified polypropylene emulsion can be prepared by preparing an acid-modified polypropylene and then dispersing the acid-modified polypropylene in water. Various surfactants may be added as an emulsifier to the acid-modified polypropylene emulsion.
 ポリプロピレンには、アイソタクティク、アタクティク、シンジオタクティク、ヘミアイソタクティクおよびステレオタクティクの立体規則性が知られている。酸変性ポリプロピレンにおけるポリプロピレンの立体規則性は、剛性や衝撃強さなどの力学特性または耐久性の観点から、アイソタクティクであることが好ましい。 Polypropylene is known for isotacticity, atacticity, syndiotactic, hemi-isotactic and stereotactic tacticity. The stereoregularity of the polypropylene in the acid-modified polypropylene is preferably isotactic from the viewpoint of mechanical properties such as rigidity and impact strength or durability.
 上記ポリプロピレンの重量平均分子量は、1000~300000であることが好ましく、5000~100000であることがさらに好ましい。ポリプロピレンの重量平均分子量が1000未満の場合、有機樹脂層の強度が低下することがある。一方、ポリプロピレンの重量平均分子量が300000超の場合、ポリプロピレンを酸変性する際に、粘度が増大してしまうため、作業が困難になることがある。 The weight average molecular weight of the polypropylene is preferably 1000 to 300,000, and more preferably 5000 to 100,000. When the weight average molecular weight of polypropylene is less than 1000, the strength of the organic resin layer may be lowered. On the other hand, when the weight average molecular weight of polypropylene exceeds 300000, the viscosity increases when the polypropylene is acid-modified, which may make the operation difficult.
 ポリプロピレンの酸変性は、ポリプロピレンをトルエンまたはキシレンに溶解させ、ラジカル発生剤の存在下で、α,β-不飽和カルボン酸および/またはα,β-不飽和カルボン酸の酸無水物および/または1分子当たり1個以上の二重結合を有する化合物を用いて行うことができる。または、ポリプロピレンの軟化温度あるいは融点以上まで昇温させることができる機器を使用し、ラジカル発生剤の存在下または非存在下で、α,β-不飽和カルボン酸および/またはα,β-不飽和カルボン酸の酸無水物および/または1分子当たり1個以上の二重結合を有する化合物を用いて行うことができる。ポリプロピレンの変性反応をトルエンおよび/またはキシレンなどの有機溶剤中で溶液状態として行う場合、または水系などでの非溶媒中で行う不均一分散系での反応の場合には、窒素置換を充分に行う必要がある。このようにして、酸変性ポリプロピレンが調製されうる。 The acid modification of polypropylene involves dissolving polypropylene in toluene or xylene, and in the presence of a radical generator, an acid anhydride of α, β-unsaturated carboxylic acid and / or α, β-unsaturated carboxylic acid and / or 1 This can be done using compounds having one or more double bonds per molecule. Alternatively, using an apparatus capable of raising the temperature to the softening temperature or higher than the melting point of polypropylene, α, β-unsaturated carboxylic acid and / or α, β-unsaturation in the presence or absence of a radical generator Carboxylic acid anhydrides and / or compounds having one or more double bonds per molecule can be used. When the polypropylene modification reaction is carried out as a solution in an organic solvent such as toluene and / or xylene, or in a heterogeneous dispersion system carried out in a non-solvent such as an aqueous system, nitrogen substitution is sufficiently performed. There is a need. In this way, acid-modified polypropylene can be prepared.
 上記ラジカル発生剤の例には、パーオキサイドおよびアゾニトリルが含まれる。上記アゾニトリルの例には、ジ-tert-ブチルパーフタレート、tert-ブチルヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシエチルヘキサノエート、tert-ブチルパーオキシピバレート、メチルエチルケトンパーオキサイド、およびジ-tert-ブチルパーオキサイドなどが含まれる。上記アゾニトリルの例には、アゾビスイソブチロニトリル、およびアゾビスイソプロピオニトリルなどが含まれる。ラジカル発生剤の配合量は、ポリプロピレン100質量部に対して0.1~50質量部であることが好ましい。また、特に好ましくは、0.5~30質量部である。 Examples of the radical generator include peroxide and azonitrile. Examples of the azonitrile include di-tert-butyl perphthalate, tert-butyl hydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxyethyl hexanoate, tert- Examples include butyl peroxypivalate, methyl ethyl ketone peroxide, and di-tert-butyl peroxide. Examples of the azonitrile include azobisisobutyronitrile and azobisisopropionitrile. The blending amount of the radical generator is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of polypropylene. Further, it is particularly preferably 0.5 to 30 parts by mass.
 α,β-不飽和カルボン酸またはその酸無水物の例には、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、無水シトラコン酸、メサコン酸、イタコン酸、無水イタコン酸、アコニット酸、および無水アコニット酸が含まれる。上記α,β-不飽和カルボン酸またはその酸無水物は、一種でもそれ以上でもよい。上記α,β-不飽和カルボン酸またはその酸無水物の2種以上を組み合わせて使用すると、有機樹脂層の物性が良好になる場合が多い。 Examples of α, β-unsaturated carboxylic acids or anhydrides thereof include maleic acid, maleic anhydride, fumaric acid, citraconic acid, citraconic anhydride, mesaconic acid, itaconic acid, itaconic anhydride, aconitic acid, and anhydrous Aconitic acid is included. The α, β-unsaturated carboxylic acid or acid anhydride thereof may be one kind or more. When two or more of the above α, β-unsaturated carboxylic acids or acid anhydrides are used in combination, the physical properties of the organic resin layer are often improved.
 上記の1分子当たり1個以上の二重結合を有する化合物の例には、(メタ)アクリル酸系モノマーおよびスチレン系モノマーが含まれる。上記(メタ)アクリル酸系モノマーの例には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸-4-ヒドロキブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-ヒドロキシブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸、ジ(メタ)アクリル酸(ジ)エチレングリコール、ジ(メタ)アクリル酸-1,4-ブタンジオール、ジ(メタ)アクリル酸-1,6-ヘキサンジオール、トリ(メタ)アクリル酸トリメチロールプロパン、ジ(メタ)アクリル酸グリセリン、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、およびアクリルアミドなどが含まれる。上記スチレン系モノマーの例には、スチレン、α-メチルスチレン、パラメチルスチレン、およびクロロメチルスチレンなどが含まれる。さらに、上記化合物に、ジビニルベンゼン、酢酸ビニル、バーサチック酸のビニルエステルなどのビニル系モノマーを併用することができる。 Examples of the compound having one or more double bonds per molecule include (meth) acrylic acid monomers and styrene monomers. Examples of the (meth) acrylic acid monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-hydroxy (meth) acrylate. Ethyl, (meth) acrylic acid-2-hydroxypropyl, (meth) acrylic acid-4-hydroxybutyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid tetrahydrofurfuryl, (meth) acrylic acid isobornyl, (meth) Benzyl acrylate, 2-hydroxybutyl (meth) acrylate, benzyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylic acid, di (meth) acrylic acid (di) ethylene glycol, di (meth) ) Acrylic acid-1,4-butanediol, di (meth) acrylic acid-1,6-hexanedioe , Tri (meth) acrylate of trimethylolpropane, di (meth) glycerol acrylate, (meth) acrylic acid 2-ethylhexyl, lauryl (meth) acrylic acid, (meth) acrylate, stearyl and acrylamide. Examples of the styrenic monomer include styrene, α-methylstyrene, paramethylstyrene, and chloromethylstyrene. Furthermore, vinyl monomers such as divinylbenzene, vinyl acetate, and vinyl esters of versatic acid can be used in combination with the above compounds.
 上記の1分子当たり1個以上の二重結合を有する化合物は、一種でもそれ以上でもよい。当該化合物の配合量は、ポリプロピレン100質量部に対して0.1~50質量部であることが好ましい。特に好ましくは、0.5~30質量部である。 The above compound having one or more double bonds per molecule may be one kind or more. The compounding amount of the compound is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of polypropylene. Particularly preferred is 0.5 to 30 parts by mass.
 (ポリウレタン系樹脂)
 上記ポリウレタン系樹脂は、ポリウレタン骨格と、上記水素結合性官能基とを含む高分子化合物である。上記ポリウレタン系樹脂の例には、ポリカーボネート含有ポリウレタン(以下、「PC含有ポリウレタン」とも言う)が含まれる。上記ポリウレタン系樹脂中の当該水素結合性官能基の量は、金属素形材に対する十分な接着性が得られる範囲から適宜に決められる。また、上記ポリウレタン系樹脂は、上記水素結合性官能基以外の他の官能基をさらに含んでいてもよい。また、上記ポリウレタン系樹脂の重量平均分子量は、本発明の効果が得られる範囲において特に限定されない。
(Polyurethane resin)
The polyurethane resin is a polymer compound including a polyurethane skeleton and the hydrogen bonding functional group. Examples of the polyurethane-based resin include polycarbonate-containing polyurethane (hereinafter also referred to as “PC-containing polyurethane”). The amount of the hydrogen-bonding functional group in the polyurethane resin is appropriately determined from a range in which sufficient adhesion to the metal base material can be obtained. The polyurethane resin may further contain a functional group other than the hydrogen bonding functional group. The weight average molecular weight of the polyurethane resin is not particularly limited as long as the effect of the present invention is obtained.
 PC含有ポリウレタンは、分子鎖中にポリカーボネートユニットを有する。「ポリカーボネートユニット」とは、ポリウレタンの分子鎖中において下記に示す構造をいう。当該カーボネート基は、上記PC含有ポリウレタン中に、個別に存在していてもよいし、連続して存在していてもよい。有機樹脂層におけるポリカーボネートユニットの含有量は、有機樹脂層中の全樹脂の質量に対して15~80質量%であることが、金属素形材に対する接着性と被接合体に対する溶着性との両方を高める観点から好ましい。ポリカーボネートユニットの上記含有量が15質量%よりも少ないと、有機樹脂層が金属素形材に対して十分な強度で接着しないことがあり、80質量%よりも多いと、有機樹脂層が被接合体に対して十分な強度で溶着しないことがある。全樹脂の質量に対するポリカーボネートユニットの質量の割合は、有機樹脂層をクロロホルムに溶解させたサンプルを用いて、核磁気共鳴分光法(NMR分析)により求めることができる。 PC-containing polyurethane has a polycarbonate unit in the molecular chain. “Polycarbonate unit” refers to the structure shown below in the molecular chain of polyurethane. The carbonate groups may be present individually or continuously in the PC-containing polyurethane. The content of the polycarbonate unit in the organic resin layer is 15 to 80% by mass with respect to the total mass of the resin in the organic resin layer. From the viewpoint of increasing When the content of the polycarbonate unit is less than 15% by mass, the organic resin layer may not adhere to the metal shape material with sufficient strength. When the content is more than 80% by mass, the organic resin layer is bonded. May not weld with sufficient strength to the body. The ratio of the mass of the polycarbonate unit to the mass of the total resin can be determined by nuclear magnetic resonance spectroscopy (NMR analysis) using a sample in which the organic resin layer is dissolved in chloroform.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 PC含有ポリウレタンは、例えば、以下の工程により調製することができる。まず、有機ポリイソシアネートと、ポリカーボネートポリオールと、三級アミノ基またはカルボキシル基を有するポリオールとを反応させてウレタンプレポリマーを生成する。なお、本発明の効果が得られる範囲内において、ポリカーボネートポリオール以外のポリオール、例えばポリエステルポリオールやポリエーテルポリオールなどを併用することは可能である。 The PC-containing polyurethane can be prepared, for example, by the following steps. First, a urethane prepolymer is produced by reacting an organic polyisocyanate, a polycarbonate polyol, and a polyol having a tertiary amino group or a carboxyl group. In addition, it is possible to use together polyols other than polycarbonate polyol, for example, polyester polyol, polyether polyol, etc. within the range in which the effect of this invention is acquired.
 次いで、製造したウレタンプレポリマーの三級アミノ基を、酸で中和するかまたは四級化剤で四級化した後、水で鎖伸長する。こうして、カチオン性のポリカーボネートユニット含有ポリウレタンを生成することができる。あるいは、上記ウレタンプレポリマーのカルボキシル基を、トリエチルアミンやトリメチルアミン、ジエタノールモノメチルアミン、ジエチルエタノールアミン、苛性ソーダ、苛性カリウムなどの塩基性化合物で中和してカルボン酸の塩類に変換する。こうして、アニオン性のポリカーボネートユニット含有ポリウレタンを生成することができる。上記PC含有ポリウレタンは、カチオン性のポリカーボネートユニット含有ポリウレタンであってもよいし、アニオン性のポリカーボネートユニット含有ポリウレタンであってもよい。 Next, the tertiary amino group of the produced urethane prepolymer is neutralized with an acid or quaternized with a quaternizing agent, and then chain-extended with water. Thus, a cationic polycarbonate unit-containing polyurethane can be produced. Alternatively, the carboxyl group of the urethane prepolymer is neutralized with a basic compound such as triethylamine, trimethylamine, diethanolmonomethylamine, diethylethanolamine, caustic soda, or caustic potassium, and converted to a carboxylic acid salt. Thus, an anionic polycarbonate unit-containing polyurethane can be produced. The PC-containing polyurethane may be a cationic polycarbonate unit-containing polyurethane or an anionic polycarbonate unit-containing polyurethane.
 上記有機ポリイソシアネートの種類は、特に限定されない。有機ポリイソシアネートの例には、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、3,3’-ジクロロ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、1,5-テトラヒドロナフタレンジイソシアネート、テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、水素添加キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、および4,4’-ジシクロヘキシルメタンジイソシアネートが含まれる。上記有機ポリイソシアネートは、一種でもそれ以上でもよい。 The type of the organic polyisocyanate is not particularly limited. Examples of organic polyisocyanates include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 3,3'-dichloro-4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydro Naphthalene diisocyanate, tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,3-cyclohexyl Down diisocyanate, 1,4-cyclohexylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate include isophorone diisocyanate, and 4,4'-dicyclohexylmethane diisocyanate. The organic polyisocyanate may be one kind or more.
 上記ポリカーボネートポリオールは、カーボネート化合物と、ジオール化合物と、を反応させることで得られる。上記カーボネート化合物の例には、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、およびプロピレンカーボネートなどが含まれる。上記ジオール化合物の例には、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ネオペンチルグリコール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジオール、および1,6-ヘキサンジオールなどが含まれる。上記ポリカーボネートポリオールは、イソシアネート化合物によって鎖延長された化合物であってもよい。上記ポリカーボネートポリオールは、一種でもそれ以上でもよい。 The polycarbonate polyol is obtained by reacting a carbonate compound and a diol compound. Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate. Examples of the diol compound include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1, 4 -Butanediol, 1,4-cyclohexanediol, 1,6-hexanediol and the like. The polycarbonate polyol may be a compound chain-extended with an isocyanate compound. The polycarbonate polyol may be one kind or more.
 三級アミノ基またはカルボキシル基を有するポリオールは、例えば、開始剤の存在下でアルカノールアミン類とジカルボン酸とを、酸塩基反応または脱水縮合させることによって得られる。上記開始剤の例には、アンモニア、第1級または第2級のモノアミン類、第1級または第2級の脂肪族ポリアミン類、および第1級または第2級の芳香族モノまたは芳香族ポリアミン類などが含まれる。上記第1級または第2級のモノアミン類の例には、メチルアミン、およびエチルアミンなどが含まれる。上記第1級または第2級の脂肪族ポリアミン類の例には、エチレンジアミン、ヘキサメチレンジアミン、N,N’-ジメチルエチレンジアミンなどが含まれる。上記第1級または第2級の芳香族モノまたは芳香族ポリアミン類の例には、アニリン、ジフェニルアミン、トルエンジアミン、ジフェニルメタンジアミン、およびN-メチルアニリンなどが含まれる。上記アルカノールアミン類の例には、モノエタノールアミンおよびジエタノールアミンなどが含まれる。上記ジカルボン酸の例には、アジピン酸およびフタル酸などが含まれる。上記三級アミノ基またはカルボキシル基を有するポリオールは、イソシアネート化合物によって鎖延長された化合物であってもよい。上記三級アミノ基またはカルボキシル基を有するポリオールは、一種でもそれ以上でもよい。 A polyol having a tertiary amino group or a carboxyl group can be obtained, for example, by acid-base reaction or dehydration condensation of an alkanolamine and a dicarboxylic acid in the presence of an initiator. Examples of such initiators include ammonia, primary or secondary monoamines, primary or secondary aliphatic polyamines, and primary or secondary aromatic mono- or aromatic polyamines. Etc. are included. Examples of the primary or secondary monoamines include methylamine and ethylamine. Examples of the primary or secondary aliphatic polyamines include ethylenediamine, hexamethylenediamine, N, N′-dimethylethylenediamine and the like. Examples of the primary or secondary aromatic mono- or aromatic polyamines include aniline, diphenylamine, toluenediamine, diphenylmethanediamine, and N-methylaniline. Examples of the alkanolamines include monoethanolamine and diethanolamine. Examples of the dicarboxylic acid include adipic acid and phthalic acid. The polyol having a tertiary amino group or carboxyl group may be a compound chain-extended with an isocyanate compound. The polyol having the tertiary amino group or carboxyl group may be one kind or more.
 (添加剤)
 有機樹脂層は、本発明の効果が得られる範囲において、添加剤をさらに含有していてもよい。当該添加剤の例には、金属酸化物、防錆剤、リン化合物、潤滑剤、消泡剤、エッチング剤、無機化合物、ならびに色材などが含まれる。
(Additive)
The organic resin layer may further contain an additive as long as the effects of the present invention are obtained. Examples of the additive include metal oxides, rust inhibitors, phosphorus compounds, lubricants, antifoaming agents, etching agents, inorganic compounds, and coloring materials.
 上記防錆剤は、塗装金属素形材の耐食性を向上させ、その結果、複合体の耐食性を向上させる。防錆剤は、一種でもそれ以上でもよい。防錆剤の例には、金属化合物系防錆剤、非金属化合物系防錆剤、および有機化合物系防錆剤が含まれる。有機樹脂層における防錆剤の含有量は、防錆剤の種類に応じて、防錆剤による防錆効果と本発明の効果とが得られる範囲から適宜に決めることができる。 The above rust preventive improves the corrosion resistance of the painted metal profile, and as a result, improves the corrosion resistance of the composite. One or more rust inhibitors may be used. Examples of the rust inhibitor include a metal compound rust inhibitor, a non-metal compound rust inhibitor, and an organic compound rust inhibitor. The content of the rust preventive agent in the organic resin layer can be appropriately determined from the range in which the rust preventive effect of the rust preventive agent and the effect of the present invention can be obtained according to the type of the rust preventive agent.
 上記金属化合物系防錆剤の例には、Si、Ti、Zr、V、Mo、Cr、Hf、Nb、Ta、W、MgおよびCaからなる群から選択される金属の酸化物、水酸化物またはフッ化物、が含まれる。 Examples of the metal compound rust preventive include oxides, hydroxides of metals selected from the group consisting of Si, Ti, Zr, V, Mo, Cr, Hf, Nb, Ta, W, Mg, and Ca. Or fluoride.
 有機樹脂層における上記防錆剤の含有量は、当該金属酸化物の機能が発現される範囲において、適宜に決めることができる。たとえば、有機樹脂層における当該防錆剤の含有量は、上記耐食性の観点からは、Si換算含有量が0.5質量%以上、Ti換算含有量が0.005質量%以上、Zr換算含有量が0.05質量%以上、Mo換算含有量が0.005質量%以上、V換算含有量が0.02質量%以上であることが好ましい。また、有機樹脂層における防錆剤の含有量は、上記有機樹脂塗料の保管安定性の観点から、Si換算含有量が23.5質量%未満、Ti換算含有量が0.6質量%未満、Zr換算含有量が12.0質量%未満、Mo換算含有量が3.0質量%未満、V換算含有量が3.0質量%未満であることが好ましい。 The content of the anticorrosive agent in the organic resin layer can be appropriately determined as long as the function of the metal oxide is expressed. For example, the content of the rust inhibitor in the organic resin layer is 0.5 mass% or more in terms of Si, 0.005 mass% or more in terms of Ti, and Zr content in terms of corrosion resistance. Is 0.05% by mass or more, the Mo equivalent content is 0.005% by mass or more, and the V equivalent content is preferably 0.02% by mass or more. In addition, the content of the rust inhibitor in the organic resin layer is such that the content in terms of Si is less than 23.5% by mass, the content in terms of Ti is less than 0.6% by mass, from the viewpoint of storage stability of the organic resin paint. It is preferable that the content in terms of Zr is less than 12.0% by mass, the content in terms of Mo is less than 3.0% by mass, and the content in terms of V is less than 3.0% by mass.
 上記非金属化合物系防錆剤の例には、リン酸水素二アンモニウムなどのリン酸化合物、および、チオ尿素などのチオール化合物、が含まれる。 Examples of the non-metallic compound-based rust preventive include phosphate compounds such as diammonium hydrogen phosphate and thiol compounds such as thiourea.
 上記有機化合物系防錆剤の例には、インヒビターおよびキレート化剤が含まれる。当該インヒビターの例には、オレイン酸、ダイマー酸、ナフテン酸などのカルボン酸、カルボン酸金属石鹸(ラノリンCa、ナフテン酸Zn、酸化ワックスCa、Ba塩など)、スルフォン酸塩(Na、Ca、Baスルフォネート)、アミン塩、および、エステル(高級脂肪酸のグリセリンエステル,ソルビタンモノイソステアレート,ソルビタンモノオレートなど)が含まれる。上記キレート化剤の例には、EDTA(エチランジアミンテトラ酢酸)、グルコン酸,NTA(ニトリロトリ酢酸)、HEDTA(ヒドロキシエチル、エチレンジアミン三酢酸)、DTPA(ジエチレントリアミン五酢酸)、および、クエン酸Naが含まれる。 Examples of the organic compound rust preventive agent include an inhibitor and a chelating agent. Examples of such inhibitors include carboxylic acids such as oleic acid, dimer acid, naphthenic acid, metal carboxylate soaps (lanolin Ca, Zn naphthenate, oxidized wax Ca, Ba salts, etc.), sulfonates (Na, Ca, Ba). Sulfonates), amine salts, and esters (such as glycerin esters of higher fatty acids, sorbitan monoisostearate, sorbitan monooleate). Examples of the chelating agent include EDTA (ethylenediaminetetraacetic acid), gluconic acid, NTA (nitrilotriacetic acid), HEDTA (hydroxyethyl, ethylenediaminetriacetic acid), DTPA (diethylenetriaminepentaacetic acid), and Na citrate. included.
 上記潤滑剤は、塗装金属素形材の表面におけるカジリの発生を抑制することができる。潤滑剤は、一種でもそれ以上でもよく、潤滑剤の種類は、特に限定されない。潤滑剤の例には、フッ素系やポリエチレン系、スチレン系、ポリプロピレン系などの有機ワックス、および、二硫化モリブデンやタルクなどの無機潤滑剤、が含まれる。有機樹脂層中の潤滑剤の含有量は、有機樹脂層における上記有機樹脂および上記他の樹脂の総量100質量部に対して1~20質量部であることが好ましい。潤滑剤が1質量部未満の場合、カジリの発生を十分に抑制することができないことがある。一方、潤滑剤が20質量部超の場合、カジリの発生を抑制する効果が頭打ちとなり、また、潤滑性が高すぎて取り扱い性が劣ることがある。 The above-mentioned lubricant can suppress the occurrence of galling on the surface of the painted metal preform. One or more lubricants may be used, and the type of lubricant is not particularly limited. Examples of the lubricant include organic waxes such as fluorine, polyethylene, styrene, and polypropylene, and inorganic lubricants such as molybdenum disulfide and talc. The content of the lubricant in the organic resin layer is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the organic resin and the other resin in the organic resin layer. When the lubricant is less than 1 part by mass, generation of galling may not be sufficiently suppressed. On the other hand, when the amount of the lubricant exceeds 20 parts by mass, the effect of suppressing the generation of galling reaches a peak, and the lubricity is too high and the handleability may be inferior.
 上記消泡剤は、後述する有機樹脂塗料の調製時における気泡の発生を抑制する。消泡剤は、一種でもそれ以上でもよい。消泡剤の種類は、特に限定されない。消泡剤は、シリコーン系消泡剤などの既知の消泡剤を適量添加すればよい。 The antifoaming agent suppresses the generation of bubbles during the preparation of the organic resin paint described later. One or more antifoaming agents may be used. The type of antifoaming agent is not particularly limited. An appropriate amount of a known antifoaming agent such as a silicone-based antifoaming agent may be added to the antifoaming agent.
 上記エッチング剤は、金属素形材の表面を活性化することで、金属素形材に対する有機樹脂層の密着性を向上させる。エッチング剤の例には、フッ化水素酸、フッ化アンモニウム、ジルコンフッ化水素、チタンフッ化水素などのフッ化物が含まれる。 The above-mentioned etching agent improves the adhesion of the organic resin layer to the metal base material by activating the surface of the metal base material. Examples of the etching agent include fluorides such as hydrofluoric acid, ammonium fluoride, zircon hydrogen fluoride, and titanium hydrogen fluoride.
 上記無機化合物は、有機樹脂層を緻密化して耐水性を向上させる。無機化合物の例には、シリカ、アルミナ、ジルコニアなどの無機系酸化物ゾル、リン酸ナトリウム、リン酸カルシウム、リン酸マンガン、リン酸マグネシウムなどのリン酸塩などが含まれる。 The inorganic compound densifies the organic resin layer to improve water resistance. Examples of the inorganic compound include inorganic oxide sols such as silica, alumina and zirconia, and phosphates such as sodium phosphate, calcium phosphate, manganese phosphate and magnesium phosphate.
 上記色材は、有機樹脂層に所定の色調を付与する。色材の例には、無機顔料、有機顔料および有機染料などが含まれる。 The color material gives a predetermined color tone to the organic resin layer. Examples of the color material include inorganic pigments, organic pigments, and organic dyes.
 (有機樹脂層の性状)
 有機樹脂層における上記有機樹脂の付着量は、後述のホットメルトフィルムとの間の密着性が十分となる量であればよい。塗装金属素形材の耐食性をより高める観点からは、有機樹脂の付着量は、0.2g/m以上が好ましい。有機樹脂の付着量の上限値は、特に限定されないが、上記の効果が頭打ちになる観点や、生産性の観点、コストの観点などから決めることができる。たとえば、有機樹脂の付着量は、20g/m程度以下であることが好ましい。
(Properties of organic resin layer)
The adhesion amount of the organic resin in the organic resin layer may be an amount that provides sufficient adhesion with a hot melt film described later. From the viewpoint of further improving the corrosion resistance of the painted metal shape material, the adhesion amount of the organic resin is preferably 0.2 g / m 2 or more. The upper limit value of the organic resin adhesion amount is not particularly limited, but can be determined from the viewpoint that the above effect reaches its peak, the viewpoint of productivity, the viewpoint of cost, and the like. For example, the adhesion amount of the organic resin is preferably about 20 g / m 2 or less.
 上記有機樹脂層の付着量は、後述のホットメルトフィルムとの間の密着性が十分となる付着量であればよく、0.2g/m以上であることが好ましい。有機樹脂層の付着量が0.2g/m未満であると、塗装金属素形材に対するホットメルトフィルムの接合力が不十分となることがある。また、有機樹脂層の付着量が0.2g/m未満であると、有機樹脂層中に含まれる添加物の機能(例えば、防錆剤の防錆作用)の発現が不十分となることがある。有機樹脂層の付着量の上限値は、特に制限されないが、上記の効果が頭打ちになる観点や、生産性の観点、コストの観点などから決めることができる。たとえば、有機樹脂層の付着量は、10g/m以下が好ましく、3g/m以下がより好ましい。 The adhesion amount of the organic resin layer may be an adhesion amount that provides sufficient adhesion with the hot melt film described later, and is preferably 0.2 g / m 2 or more. When the adhesion amount of the organic resin layer is less than 0.2 g / m 2 , the bonding strength of the hot melt film to the painted metal shape material may be insufficient. Moreover, when the adhesion amount of the organic resin layer is less than 0.2 g / m 2 , the function of the additive contained in the organic resin layer (for example, the rust preventive action of the rust preventive agent) becomes insufficient. There is. The upper limit value of the adhesion amount of the organic resin layer is not particularly limited, but can be determined from the viewpoint that the above effect reaches a peak, the productivity viewpoint, the cost viewpoint, and the like. For example, adhesion of the organic resin layer is preferably 10 g / m 2 or less, 3 g / m 2 or less is more preferable.
 上記有機樹脂層は、前述した有機樹脂および任意に配合される上記添加剤を含む組成物によって構成される。当該組成物の融点は、上記被接合体と同等以下が好ましく、例えば60~160℃であることが好ましい。上記組成物の融点が60℃未満であると、比較的低温で有機樹脂層が軟化してしまうため、塗装金属素形材の耐ブロッキング性が不十分となることがある。上記組成物の融点が160℃よりも高いと、上記被接合体に対する塗装金属素形材の接合性が不十分となることがある。上記樹脂組成物の融点は、有機樹脂の種類および添加剤の使用によって調整することが可能である。 The organic resin layer is composed of a composition including the organic resin described above and the additive that is optionally blended. The melting point of the composition is preferably equal to or less than that of the above-mentioned bonded body, and is preferably 60 to 160 ° C., for example. When the melting point of the composition is less than 60 ° C., the organic resin layer is softened at a relatively low temperature, so that the blocking resistance of the coated metal base material may be insufficient. If the melting point of the composition is higher than 160 ° C., the bondability of the coated metal shaped material to the bonded body may be insufficient. The melting point of the resin composition can be adjusted by the type of organic resin and the use of additives.
 上記有機樹脂層は、金属素形材の表面のうち有機樹脂層を形成すべき領域を均一に被覆してもよいし、上記領域に分散されて金属素形材の表面を被覆してもよい。 The organic resin layer may uniformly cover a region where the organic resin layer is to be formed in the surface of the metal base material, or may be dispersed in the region to cover the surface of the metal base material. .
 1-2.ホットメルトフィルム
 ホットメルトフィルムの種類は、熱可塑性樹脂組成物の延伸または押し出し成形などの既存の方法で作製された、加熱により溶融して種々の部材と接合力を発現する成分で構成されるフィルムまたはシート状のものであれば、特に限定されない。
1-2. Hot melt film The type of hot melt film is a film made of an existing method such as stretching or extrusion molding of a thermoplastic resin composition, which is composed of components that melt by heating and develop various members. Or if it is a sheet-like thing, it will not specifically limit.
 ホットメルトフィルムの融点は50℃以上200℃以下であることが好ましい。ホットメルトフィルムの融点が50℃より低い場合には、比較的低温でホットメルトフィルムが軟化してしまうため、保管時などにホットメルトフィルム同士が貼りついてしまうおそれや、接合後のホットメルトフィルムの軟化により、接合された被接合体が脱落してしまうおそれがある。融点が200℃より高い場合には、ホットメルトフィルムを軟化させるために過大な熱量が必要となり、現実的ではない。融点が50℃以上200℃以下であるホットメルトフィルムの例には、ポリウレタン系、ポリエステル系、ポリオレフィン系、ポリアミド系およびエチレン・酢酸ビニル共重合体(EVA)系のホットメルトフィルムが含まれる。これらのホットメルトフィルムは、市販のものでもよいし、所望の特性を有するものを合成して用いてもよい。上記融点は、JIS K 0064に即して測定される。 The melting point of the hot melt film is preferably 50 ° C. or higher and 200 ° C. or lower. When the melting point of the hot melt film is lower than 50 ° C., the hot melt film is softened at a relatively low temperature, so that the hot melt films may stick to each other during storage, Due to the softening, the bonded objects to be bonded may fall off. When the melting point is higher than 200 ° C., an excessive amount of heat is required to soften the hot melt film, which is not realistic. Examples of hot melt films having a melting point of 50 ° C. or higher and 200 ° C. or lower include polyurethane-based, polyester-based, polyolefin-based, polyamide-based and ethylene / vinyl acetate copolymer (EVA) -based hot melt films. These hot melt films may be commercially available or may be synthesized and used having desired characteristics. The melting point is measured according to JIS K0064.
 1-3.被接合体
 本発明の複合体において、被接合体は、前述の塗装金属素形材の表面、より正確には、前述の塗装金属素形材が有する有機樹脂層、に前記ホットメルトフィルムを介して接合されている。被接合体の形状は、特に限定されず、用途に応じて適宜選択されうる。なお、ホットメルトフィルムとの密着性をより高める観点からは、被接合体は、ホットメルトフィルムとの接合面の少なくとも一部が有機樹脂で被覆されていることが好ましい。上記有機樹脂の材料は、被接合体の表面の少なくとも一部を被覆し、かつ乾燥させることができれば、その種類は特に限定されず、たとえば、上記塗装金属素形材に用いる有機樹脂層に含まれうる有機樹脂とすることができる。
1-3. To-be-joined body In the composite of the present invention, the to-be-joined body passes through the hot melt film on the surface of the above-mentioned painted metal preform, more precisely, the organic resin layer of the above-mentioned painted metal preform. Are joined. The shape of the object to be joined is not particularly limited and can be appropriately selected depending on the application. In addition, from a viewpoint of improving adhesiveness with a hot-melt film, it is preferable that the to-be-joined body is coat | covered with the organic resin at least one part of the joining surface with a hot-melt film. The type of the organic resin is not particularly limited as long as it can cover and dry at least a part of the surface of the object to be joined. For example, the organic resin material is included in the organic resin layer used for the painted metal shape material. It can be an organic resin.
 被接合体の材料は、上記ホットメルトフィルムに接合可能であれば、その種類は特に限定されない。 The material of the object to be bonded is not particularly limited as long as it can be bonded to the hot melt film.
 このような材料の例には、金属、熱可塑性樹脂組成物、熱硬化性樹脂組成物、紙、カーボン繊維、加工済みおよび未加工の植物片ならびに無機組成物が含まれる。 Examples of such materials include metals, thermoplastic resin compositions, thermosetting resin compositions, paper, carbon fibers, processed and unprocessed plant pieces, and inorganic compositions.
 材料として金属を用いた被接合体の例には、鉄系金属、非鉄系金属および各種めっき材から成形した金属素形材が含まれる。なお、ホットメルトフィルムとの密着性をより高める観点からは、金属素形材は、ホットメルトフィルムとの接合面の少なくとも一部が有機樹脂で被覆されていることが好ましく、上記有機樹脂層を有する塗装金属素形材であることが好ましい。 Examples of objects to be joined using metals as materials include ferrous metals, non-ferrous metals, and metal shapes formed from various plating materials. From the viewpoint of further improving the adhesion to the hot melt film, it is preferable that at least a part of the bonding surface with the hot melt film is coated with an organic resin in the metal shaped material, and the organic resin layer is It is preferable that it is the coating metal shape material which has.
 材料として熱可塑性樹脂組成物を用いた被接合体の例には、布、繊維、織物および繊維強化プラスチック類(FRTPおよびCFRTPなど)が含まれる。なお、ホットメルトフィルムとの密着性をより高める観点からは、これらの熱可塑性樹脂組成物を用いた被接合体は、ホットメルトフィルムとの接合面の少なくとも一部が有機樹脂で被覆されていることが好ましい。 Examples of the joined body using the thermoplastic resin composition as a material include cloth, fiber, woven fabric, and fiber reinforced plastics (such as FRTP and CFRTP). From the viewpoint of further improving the adhesion with the hot melt film, at least a part of the joining surface with the hot melt film is coated with an organic resin in the joined body using these thermoplastic resin compositions. It is preferable.
 材料として熱硬化性樹脂組成物を用いた被接合体の例には、布、繊維、織物および繊維強化プラスチック類(FRPおよびCFRPなど)が含まれる。なお、ホットメルトフィルムとの密着性をより高める観点からは、これらの熱硬化性樹脂組成物を用いた被接合体は、ホットメルトフィルムとの接合面の少なくとも一部が有機樹脂で被覆されていることが好ましい。 Examples of the joined body using the thermosetting resin composition as a material include cloth, fiber, woven fabric, and fiber reinforced plastics (FRP, CFRP, and the like). In addition, from the viewpoint of further improving the adhesion with the hot melt film, to-be-joined bodies using these thermosetting resin compositions have at least a part of the bonding surface with the hot melt film coated with an organic resin. Preferably it is.
 材料として植物片を用いた被接合体の例には、花弁、葉、およびその他の木質材料から成形した被接合体が含まれる。なお、ホットメルトフィルムとの密着性をより高める観点からは、これらの植物片を用いた被接合体は、ホットメルトフィルムとの接合面の少なくとも一部が有機樹脂で被覆されていることが好ましい。 Examples of joined bodies using plant pieces as materials include joined bodies formed from petals, leaves, and other woody materials. In addition, from the viewpoint of further improving the adhesion to the hot melt film, it is preferable that at least a part of the bonding surface with the hot melt film is coated with an organic resin in the bonded body using these plant pieces. .
 材料として無機組成物を用いた被接合体の例には、ガラス、セラミックスおよび鉱物から成形した被接合体が含まれる。なお、ホットメルトフィルムとの密着性をより高める観点からは、これらの無機組成物を用いた被接合体は、ホットメルトフィルムとの接合面の少なくとも一部が有機樹脂で被覆されていることが好ましい。 Examples of the joined body using an inorganic composition as a material include a joined body formed from glass, ceramics, and mineral. In addition, from the viewpoint of further improving the adhesion with the hot melt film, it is preferable that at least a part of the bonding surface with the hot melt film is coated with an organic resin in the bonded body using these inorganic compositions. preferable.
 これらのうち、より広い分野に複合体の用途を広げる観点からは、被接合体は、鉄系金属、非鉄系金属、有機樹脂またはガラスなどの材料を成形した成形体を含むことが好ましい。 Of these, from the viewpoint of expanding the application of the composite to a wider field, the joined body preferably includes a molded body formed by molding a material such as a ferrous metal, a non-ferrous metal, an organic resin, or glass.
 また、有機樹脂を含む熱可塑性樹脂組成物または熱硬化性樹脂組成物を材料として用いた被接合体は、ホットメルトフィルムとの密着性がより高いため好ましい。 In addition, a bonded body using a thermoplastic resin composition or a thermosetting resin composition containing an organic resin as a material is preferable because it has higher adhesion to a hot melt film.
 2.複合体の製造方法
 本発明に係る塗装金属素形材の製造方法は、特に限定されない。たとえば、本発明に係る塗装金属素形材は、以下の方法により製造されうる。
2. Manufacturing method of composite The manufacturing method of the coating metal shape material which concerns on this invention is not specifically limited. For example, the painted metal profile according to the present invention can be manufactured by the following method.
 本発明の複合体の例示的な製造方法は、1)前記塗装金属素形材と前記ホットメルトフィルムとを含む積層体に対して、前記ホットメルトフィルムに接するように前記被接合体を配置する工程と、2)前記ホットメルトフィルムおよび前記有機樹脂層を前記被接合体に溶着させる工程と、を有する。本発明の複合体の例示的な製造方法は、さらに、3)有機樹脂層が形成された前記金属素形材の、前記有機樹脂層に接するように前記ホットメルトフィルムを配置して、前記積層体を形成する工程を、1)工程の前に含んでいてもよい。本発明の複合体の例示的な製造方法は、さらに、4)金属素形材に有機樹脂層を形成する工程を、3)工程の前に含んでもよい。 In an exemplary method for producing a composite according to the present invention, 1) the object to be joined is disposed so as to be in contact with the hot melt film with respect to a laminate including the painted metal preform and the hot melt film. And 2) a step of welding the hot melt film and the organic resin layer to the joined body. The exemplary production method of the composite according to the present invention further includes: 3) arranging the hot melt film so as to contact the organic resin layer of the metal shaped material on which the organic resin layer is formed; A step of forming a body may be included before the step 1). The exemplary manufacturing method of the composite of the present invention may further include 4) a step of forming an organic resin layer on the metal base material before 3) the step.
 (1)ホットメルトフィルムに接するように被接合体を配置する工程
 本工程では、前記塗装金属素形材と、塗装金属素形材の有機樹脂層に接するように配置されている前記ホットメルトフィルムとを有する積層体に対して、上記有機樹脂層に接するように配置されているホットメルトフィルムに接するように前記被接合体を配置する。前記積層体は、後述する3)、4)の工程により製造したものでもよいし、別途用意したものでもよい。
(1) The process of arrange | positioning a to-be-joined body so that it may contact | connect a hot-melt film In this process, the said hot-melt film arrange | positioned so that the said coating metal shape material and the organic resin layer of a coating metal shape material may be touched The bonded body is disposed so as to be in contact with the hot melt film disposed so as to be in contact with the organic resin layer. The laminate may be manufactured by the processes 3) and 4) described later, or may be prepared separately.
 例えば、上記被接合体は、少なくとも、上記被接合体の接合されるべき部分と、塗装金属素形材の接合されるべき部分とが、上記ホットメルトフィルムを介して接するように、塗装金属素形材の表面に配置される。当該工程において、当該被接合体の接合されるべき部分と、塗装金属素形材の接合されるべき部分とは、少なくとも後述する2)工程を行う時点で、ホットメルトフィルムを介して接触していればよい。このとき、上記被接合体および塗装金属素形材は、固定用の治具などによって互いに押圧されて付着していることが、位置ずれ防止などの観点から好ましい。また、ホットメルトフィルムは、後述する3)工程で被接合体と接触させる部位の少なくとも一部に配置すればよい。 For example, the object to be bonded is coated metal element so that at least the part to be bonded of the object to be bonded and the part to be bonded of the painted metal shape member are in contact via the hot melt film. Arranged on the surface of the profile. In this process, the part to be joined of the object to be joined and the part to be joined of the painted metal shape material are in contact with each other via a hot melt film at the time of performing step 2) described later. Just do it. At this time, it is preferable from the viewpoint of preventing misalignment that the object to be joined and the painted metal shape member are pressed and adhered to each other by a fixing jig or the like. Moreover, what is necessary is just to arrange | position a hot-melt film in at least one part of the site | part made to contact with a to-be-joined body at the process 3) mentioned later.
 (2)ホットメルトフィルムを前記被接合体に溶着させる工程
 本工程では、前記ホットメルトフィルムを加熱して、前記有機樹脂層および前記被接合体に加熱融着させて、ホットメルトフィルムを介して被接合体を前記塗装金属素形材に接合させる。加熱は、上記被接合体とホットメルトフィルムとが接触している面の少なくとも一部に行えばよいが、より密着性を高める観点からは、上記接触している面の全面に対して行うことが好ましい。
(2) Step of welding a hot melt film to the joined body In this step, the hot melt film is heated and heat-fused to the organic resin layer and the joined body, and the hot melt film is interposed therebetween. A to-be-joined body is joined to the above-mentioned paint metal shape material. Heating may be performed on at least a part of the surface where the object to be bonded and the hot melt film are in contact, but from the viewpoint of further improving the adhesion, the heating should be performed on the entire surface of the surface in contact. Is preferred.
 加熱方法は、特に限定されず、公知の方法から適宜選択すればよい。そのような加熱方法の例には、炎などによる直接加熱、ヒーター加熱、超音波加熱、電磁誘導加熱およびレーザー加熱が含まれる。 The heating method is not particularly limited, and may be appropriately selected from known methods. Examples of such heating methods include direct heating with a flame or the like, heater heating, ultrasonic heating, electromagnetic induction heating and laser heating.
 このとき、たとえば、到達板温が上記ホットメルトフィルムの融点以上となるように加熱することで、ホットメルトフィルムを介して被接合体と前記塗装金属素形材とを密接に接合させることができる。到達板温の付着量の上限値は、特に制限されないが、上記の効果が頭打ちになる観点や、ホットメルトフィルムや有機樹脂層の分解を抑制する観点などから決めることができ、たとえば、250℃以下とすることができる。 At this time, for example, by heating so that the ultimate plate temperature is equal to or higher than the melting point of the hot melt film, the object to be bonded and the coated metal shaped material can be closely bonded via the hot melt film. . The upper limit value of the amount of adhesion of the ultimate plate temperature is not particularly limited, but can be determined from the viewpoint that the above effect reaches a peak or the viewpoint of suppressing the decomposition of the hot melt film or the organic resin layer. It can be as follows.
 (3)有機樹脂層に接するようにホットメルトフィルムを配置する工程
 本工程では、塗装金属素形材に対して、その有機樹脂層に接するようにホットメルトフィルムを配置する。上記塗装金属素形材は、後述する4)工程により製造したものでもよいし、別途用意したものでもよい。ホットメルトフィルムを配置する方法は、特に限定されず、公知の方法から適宜選択すればよい。そのような方法の例には、あらかじめフィルム状に成形したホットメルトフィルム用樹脂を、塗装金属素形材の表面に熱ロール等により接着する方法、および、押出機から供給したホットメルトフィルム用樹脂を塗装金属素形材に層状に積層して、冷却ローラーなどによって冷却および固着する方法などが含まれる。また、あらかじめ成形したシート状のホットメルトフィルムを、接着または固着させずに、有機樹脂層に接するように設置してもよい。
(3) The process of arrange | positioning a hot-melt film so that an organic resin layer may be contacted In this process, a hot-melt film is arrange | positioned so that the organic resin layer may be contact | connected with respect to a coating metal shape material. The painted metal shape material may be manufactured by the step 4) described later, or may be prepared separately. The method for arranging the hot melt film is not particularly limited, and may be appropriately selected from known methods. Examples of such a method include a method for bonding a resin for hot melt film previously formed into a film shape to the surface of a painted metal base material by a hot roll or the like, and a resin for hot melt film supplied from an extruder And a method of laminating a layer on a painted metal shape material and cooling and fixing with a cooling roller or the like. Moreover, you may install so that the sheet-like hot-melt film previously shape | molded may contact | connect an organic resin layer, without adhere | attaching or adhering.
 (4)金属素形材に有機樹脂層を形成する工程
 本工程では、塗装基材となる金属素形材を用意し、この金属素形材に有機樹脂層を形成し、塗装金属素形材とする。化成処理皮膜を形成する場合は、有機樹脂層を形成する前に金属素形材に化成処理を行う。化成処理皮膜を形成しない場合は、このまま有機樹脂層を形成する。
(4) Step of forming an organic resin layer on a metal base material In this step, a metal base material to be a coating base material is prepared, an organic resin layer is formed on the metal base material, and a paint metal base material is formed. And In the case of forming a chemical conversion treatment film, the metal base material is subjected to chemical conversion treatment before the organic resin layer is formed. When the chemical conversion film is not formed, the organic resin layer is formed as it is.
 金属素形材の表面に化成処理皮膜を形成する場合、化成処理皮膜は、金属素形材の表面に化成処理液を塗布し、乾燥させることで形成することができる。化成処理液の塗布方法は、特に限定されず、公知の方法から適宜選択すればよい。そのような塗布方法の例には、ロールコート法やカーテンフロー法、スピンコート法、スプレー法、浸漬引き上げ法などが含まれる。化成処理液の乾燥条件は、化成処理液の組成などに応じて適宜設定すればよい。たとえば、化成処理液を塗布した金属素形材を水洗することなく乾燥オーブン内に投入し、到達板温が80~250℃の範囲内となるように加熱することで、金属素形材の表面に均一な化成処理皮膜を形成することができる。 When forming a chemical conversion treatment film on the surface of the metal raw material, the chemical conversion treatment film can be formed by applying a chemical conversion treatment liquid to the surface of the metal raw material and drying it. The method for applying the chemical conversion liquid is not particularly limited, and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, a spray method, and a dip pulling method. What is necessary is just to set suitably the drying conditions of a chemical conversion liquid according to the composition of a chemical conversion liquid, etc. For example, the surface of the metal shape material can be obtained by putting the metal shape material coated with the chemical conversion treatment solution into a drying oven without washing, and heating so that the ultimate plate temperature is in the range of 80 to 250 ° C. A uniform chemical conversion coating can be formed.
 有機樹脂層は、たとえば、金属素形材(または化成処理皮膜)の表面に、前述の有機樹脂を含む塗料を塗布し、焼き付けることで形成することができる。塗料の塗布方法は、特に限定されず、公知の方法から適宜選択すればよい。そのような塗布方法の例には、ロールコート法やカーテンフロー法、スピンコート法、スプレー法、浸漬引き上げ法などが含まれる。塗料の焼き付け条件は、塗料の組成などに応じて適宜設定すればよい。たとえば、塗料を塗布した金属素形材を乾燥オーブン内に投入し、到達板温が110~200℃の範囲内となるように熱風乾燥機で乾燥させることで、金属素形材(または化成処理皮膜)の表面に均一な有機樹脂層を形成することができる。 The organic resin layer can be formed, for example, by applying and baking a paint containing the above-described organic resin on the surface of a metal base material (or chemical conversion film). The method for applying the paint is not particularly limited and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, a spray method, and a dip pulling method. The baking condition of the paint may be set as appropriate according to the composition of the paint. For example, a metal shape material (or chemical conversion treatment) is applied by putting a metal shape material coated with paint into a drying oven and drying it with a hot air drier so that the ultimate plate temperature is in the range of 110 to 200 ° C. A uniform organic resin layer can be formed on the surface of the film.
 以上のように、本発明に係る塗装金属素形材は、有機樹脂層が金属素形材とホットメルトフィルムとの間の密着性を高めるため、塗装金属素形材と被接合体との間の密着性に優れている。また、本発明に係る塗装金属素形材は、有機樹脂を含む塗料を塗布し、焼き付けるだけで、容易に製造されうる。 As described above, in the painted metal preform according to the present invention, the organic resin layer enhances the adhesion between the metal preform and the hot melt film. Excellent adhesion. In addition, the painted metal shape material according to the present invention can be easily manufactured simply by applying and baking a paint containing an organic resin.
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 1.塗装金属板の作製
 (1)金属板
 溶融Zn-Al-Mg合金めっき鋼板として、片面あたりのめっき付着量が45g/mの溶融Zn-6質量%Al-3質量%Mg合金めっき鋼板を使用した。基材鋼板は板厚が1.6mmの冷間圧延鋼板(SPCC)を使用した。
1. As the manufacturing (1) metal plate hot-dip Zn-Al-Mg alloy plated steel sheet coated metal plate, the coating weight per one side using a melt Zn-6 mass% Al-3 mass% Mg alloy plated steel sheet of 45 g / m 2 did. The base steel plate was a cold rolled steel plate (SPCC) having a thickness of 1.6 mm.
 (2)有機樹脂塗料の調製
 有機樹脂のエマルジョン、ポリエチレンワックスおよび架橋剤を水に添加して、不揮発成分が20質量%の有機樹脂塗料を調製した。
(2) Preparation of organic resin coating Organic resin emulsion, polyethylene wax and cross-linking agent were added to water to prepare an organic resin coating with a non-volatile component of 20% by mass.
 有機樹脂のエマルジョンには、ウレタン系樹脂のエマルジョン、ポリプロピレン系樹脂のエマルジョンを用いた。ウレタン系樹脂のエマルジョンには、市販のポリカーボネートユニットを含有するポリウレタン樹脂のエマルジョン(アデカボンタイターHUX-386:株式会社ADEKA、単に「UE」とも記す)を用いた。ポリプロピレン系樹脂のエマルジョンには、市販の酸変性ポリプロピレン樹脂エマルジョン(ハードレンNZ-1005:東洋紡株式会社、単に「PPE」とも記す)を用いた。 For the emulsion of organic resin, urethane resin emulsion and polypropylene resin emulsion were used. As the urethane resin emulsion, a commercially available polyurethane resin emulsion (Adekabon titer HUX-386: ADEKA Corporation, also simply referred to as “UE”) containing a polycarbonate unit was used. A commercially available acid-modified polypropylene resin emulsion (Hardren NZ-1005: Toyobo Co., Ltd., also simply referred to as “PPE”) was used for the polypropylene resin emulsion.
 ポリエチレンワックスには、市販のポリエチレンワックス(E-9015:東邦化学工業株式会社)を用いた。ポリエチレンワックスの添加量は、上記有機樹脂の合計質量100質量部に対して3.0質量部である。 As the polyethylene wax, a commercially available polyethylene wax (E-9015: Toho Chemical Industry Co., Ltd.) was used. The addition amount of the polyethylene wax is 3.0 parts by mass with respect to 100 parts by mass of the total mass of the organic resin.
 架橋剤には、市販のエポキシ系架橋剤(HUX-XW3:株式会社ADEKA)を用いた。架橋剤の添加量は、上記有機樹脂の合計質量100質量部に対して3.0質量部である。 As the crosslinking agent, a commercially available epoxy crosslinking agent (HUX-XW3: ADEKA Corporation) was used. The addition amount of a crosslinking agent is 3.0 mass parts with respect to 100 mass parts of total mass of the said organic resin.
 得られた有機樹脂塗料に、防錆剤および消泡剤をさらに添加した。 A rust inhibitor and an antifoaming agent were further added to the obtained organic resin paint.
 防錆剤には、金属化合物(B1)、非金属化合物(B2)および有機系化合物(B3)を用いた。 As the rust preventive agent, a metal compound (B1), a nonmetal compound (B2), and an organic compound (B3) were used.
 金属化合物(B1)には、Si、Ti、Zr、VおよびMoの酸化物を用いた。Si酸化物には、SiO(日産化学工業株式会社、コロイダルシリカST-N、「B11」とも記す)を用いた。Ti酸化物には、TiO(IV)(キシダ化学株式会社、「B12」とも記す)を用いた。Zr酸化物には、(NHZrO(CO(第一稀元素化学工業株式会社、「B13」とも記す)を用いた。V酸化物には、V(太陽鋼工株式会社、「B14」とも記す)を用いた。Mo酸化物には、(NHMo24・4HO(キシダ化学株式会社、「B15」とも記す)を用いた。上記の金属化合物を、単独でまたは組み合わせて添加した。 As the metal compound (B1), Si, Ti, Zr, V, and Mo oxides were used. As the Si oxide, SiO 2 (Nissan Chemical Industry Co., Ltd., colloidal silica ST-N, also referred to as “B11”) was used. TiO 2 (IV) (Kishida Chemical Co., Ltd., also referred to as “B12”) was used as the Ti oxide. As the Zr oxide, (NH 4 ) 2 ZrO (CO 3 ) 2 (first rare element chemical industry, also referred to as “B13”) was used. V 2 O 5 (Taiyo Kogyo Co., Ltd., also referred to as “B14”) was used as the V oxide. The Mo oxide was used (NH 4) 6 Mo 7 O 24 · 4H 2 O ( Kishida Chemical Co., also referred to as "B15"). The above metal compounds were added alone or in combination.
 非金属化合物(B2)には、リン酸化物およびチオール化合物を用いた。リン酸化物には、(NHHPO(キシダ化学株式会社、「B21」とも記す)を用いた。チオール化合物には、NHCSNH(キシダ化学株式会社、「B22」とも記す)を用いた。上記非金属化合物を、単独でまたは組み合わせて添加した。 Phosphorus oxide and thiol compound were used for the nonmetallic compound (B2). As the phosphorus oxide, (NH 4 ) 2 HPO 4 (Kishida Chemical Co., Ltd., also referred to as “B21”) was used. NH 2 CSNH 2 (Kishida Chemical Co., Ltd., also referred to as “B22”) was used as the thiol compound. The non-metallic compounds were added alone or in combination.
 有機系化合物(B3)には、キレート化合物を用いた。キレート化合物には、クエン酸Na(Na(CO(COO)))(キシダ化学株式会社、「B31」とも記す)を用いた。 A chelate compound was used as the organic compound (B3). As the chelate compound, Na citrate (Na 3 (C 3 H 5 O (COO) 3 )) (Kishida Chemical Co., Ltd., also referred to as “B31”) was used.
 消泡剤には、市販のシリコーン系消泡剤樹脂(KM-73:信越化学工業株式会社)を用いた。消泡剤の添加量は、上記有機樹脂の合計質量に対して0.05質量%である。 As the antifoaming agent, a commercially available silicone-based antifoaming agent resin (KM-73: Shin-Etsu Chemical Co., Ltd.) was used. The addition amount of the antifoaming agent is 0.05% by mass with respect to the total mass of the organic resin.
 下記表1および表2に示す種類および量で上記材料を用いて、有機樹脂塗料1~9を調製した。 Organic resin paints 1 to 9 were prepared using the above materials in the types and amounts shown in Tables 1 and 2 below.
 (3)有機樹脂塗料の安定性の評価
 調製した9種類の有機樹脂塗料について、保管安定性を評価した。密閉容器に入れた各有機樹脂塗料を40℃恒温槽中で保管し、有機樹脂塗料の状態を観察した。各有機樹脂塗料について、30日以上安定であったものを「○」、30日未満で増粘あるいは固化したものを「×」と評価した。結果を表1および表2に示す。
(3) Evaluation of stability of organic resin coating The storage stability of the nine types of prepared organic resin coatings was evaluated. Each organic resin paint placed in a sealed container was stored in a constant temperature bath at 40 ° C., and the state of the organic resin paint was observed. About each organic resin coating material, what was stable for 30 days or more was evaluated as "(circle)", and what thickened or solidified in less than 30 days was evaluated as "*". The results are shown in Tables 1 and 2.
 表1および表2中、防錆剤の含有量は、当該防錆剤中の特定の元素または成分の、有機樹脂層の総質量に対する割合である。当該元素または成分は、防錆剤の含有量の数値に併記されている。「P」はリンを、「SH」は(チオール成分)を、「Zr」はジルコニウムを、「V」はバナジウムを、「Si」はケイ素を、「Ti」はチタンを、「Mo」はモリブデンを、それぞれ示す。なお、有機樹脂塗料5および有機樹脂塗料8における防錆剤B31の含有量の欄には、B31の含有量を示す。  In Tables 1 and 2, the content of the rust inhibitor is a ratio of a specific element or component in the rust inhibitor to the total mass of the organic resin layer. The said element or component is written together with the numerical value of content of a rust preventive agent. “P” is phosphorus, “SH” is (thiol component), “Zr” is zirconium, “V” is vanadium, “Si” is silicon, “Ti” is titanium, “Mo” is molybdenum Are shown respectively. In addition, in the column of content of the rust preventive agent B31 in the organic resin paint 5 and the organic resin paint 8, the content of B31 is shown. *
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2に示されるように、有機樹脂塗料2~6および8は、金属化合物の防錆剤を含有するが、良好な保管安定性を示した。これは、金属化合物の防錆剤の含有量は、Ti:0.6質量%未満、Zr:12.0質量%未満、Mo:3.0質量%未満、V:3.0質量%未満であったため、と考えられる。 As shown in Tables 1 and 2, the organic resin paints 2 to 6 and 8 contained a metal compound rust preventive agent, but exhibited good storage stability. This is because the content of the metal compound rust inhibitor is Ti: less than 0.6 mass%, Zr: less than 12.0 mass%, Mo: less than 3.0 mass%, and V: less than 3.0 mass%. It is thought that there was.
 また、有機樹脂塗料1および7は、防錆剤を含有しないことから、良好な保管安定性を示した。なお、有機樹脂塗料9の保管安定性は、不十分であった。これは、金属化合物の防錆剤の含有量が、Ti:0.6質量%以上、Zr:12.0質量%以上であったため、と考えられる。 In addition, since the organic resin paints 1 and 7 do not contain a rust preventive agent, they showed good storage stability. In addition, the storage stability of the organic resin paint 9 was insufficient. This is presumably because the content of the rust inhibitor of the metal compound was Ti: 0.6% by mass or more and Zr: 12.0% by mass or more.
 (4)有機樹脂層の形成
 上記金属板を液温40℃、pH12のアルカリ脱脂水溶液(SD-270;日本ペイント株式会社)に1分間浸漬して、表面を脱脂した。次いで、脱脂した金属板の表面に、上記(2)で調製した有機樹脂塗料1をロールコーターで塗布し、到達板温が150℃となるように、熱風乾燥機で乾燥させて、有機樹脂層を形成した。こうして、塗装金属板1を得た。また、有機樹脂塗料1に代えて有機樹脂塗料2~9のそれぞれを用いる以外は同様にして、塗装金属板2~9を得た。
(4) Formation of organic resin layer The above metal plate was immersed in an alkaline degreasing aqueous solution (SD-270; Nippon Paint Co., Ltd.) having a liquid temperature of 40 ° C. and pH 12 for 1 minute to degrease the surface. Next, the organic resin paint 1 prepared in (2) above is applied to the surface of the degreased metal plate with a roll coater and dried with a hot air dryer so that the ultimate plate temperature becomes 150 ° C. Formed. Thus, a coated metal plate 1 was obtained. Also, coated metal plates 2 to 9 were obtained in the same manner except that each of the organic resin paints 2 to 9 was used in place of the organic resin paint 1.
 また、有機樹脂塗料を塗布および乾燥しない以外は同様にして、塗装金属板10を得た。 Also, a coated metal plate 10 was obtained in the same manner except that the organic resin paint was not applied and dried.
 表3に、塗装金属板1~10の、塗装原板の種類、有機樹脂塗料の種類、および有機樹脂層の付着量を示す。なお、(NHZrO(COは、有機樹脂層中ではZrOの状態で存在していると考えられる。Vは、有機樹脂層中ではVの状態で存在していると考えられる。(NHMo24・4HOは、有機樹脂層中ではMo24の状態で存在していると考えられる。 Table 3 shows the types of the coating original plates, the types of organic resin paints, and the adhesion amounts of the organic resin layers of the coated metal plates 1 to 10. Note that (NH 4 ) 2 ZrO (CO 3 ) 2 is considered to be present in the state of ZrO in the organic resin layer. V 2 O 5 is considered to be present in the form of V 2 O 5 in the organic resin layer. (NH 4 ) 6 Mo 7 O 24 · 4H 2 O is considered to be present in the state of Mo 7 O 24 in the organic resin layer.
 耐食性の評価
 塗装金属板1を幅70mm×長さ150mmに切り出し、端面部を全周シールしてサンプル1を作製した。次いで、サンプル1を塩水噴霧試験機に投入し、72時間後の白錆発生面積率を求め、当該白錆発生面積率から塗装金属板1の耐食性を評価した。塩水噴霧72時間後の白錆発生面積率が10%未満の場合を「○」、10%以上30%未満を「△」、30%以上を「×」と評価した。また、塗装金属板1に代えて塗装金属板2~12のそれぞれを用いた以外は同様にして、塗装金属板2~10の耐食性を評価した。結果を表3に示す。
Evaluation of Corrosion Resistance The coated metal plate 1 was cut into a width of 70 mm and a length of 150 mm, and the end face was sealed on the entire circumference to prepare a sample 1. Next, Sample 1 was put into a salt spray tester, and the white rust generation area ratio after 72 hours was obtained, and the corrosion resistance of the coated metal plate 1 was evaluated from the white rust generation area ratio. The case where the white rust occurrence area ratio after 72 hours of salt spray was less than 10% was evaluated as “◯”, 10% or more but less than 30% as “Δ”, and 30% or more as “x”. Further, the corrosion resistance of the coated metal plates 2 to 10 was evaluated in the same manner except that each of the painted metal plates 2 to 12 was used instead of the painted metal plate 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、塗装金属板1~9は、それぞれ、実用上問題のない耐食性を示した。中でも、塗装金属板5、8および9は、良好な耐食性を示した。これは、有機樹脂層の付着量が0.2g/m以上であり、金属化合物の防錆剤の含有量がTi:0.005質量%以上、Zr:0.05質量%以上、Mo:0.005質量%以上、V:0.02質量%以上であったため、と考えられる。 As shown in Table 3, each of the coated metal plates 1 to 9 exhibited corrosion resistance with no practical problem. Among these, the coated metal plates 5, 8 and 9 showed good corrosion resistance. This is because the adhesion amount of the organic resin layer is 0.2 g / m 2 or more, the content of the metal compound rust inhibitor is Ti: 0.005 mass% or more, Zr: 0.05 mass% or more, Mo: It is thought that it was 0.005 mass% or more and V: 0.02 mass% or more.
 一方、塗装金属板1~4、6および7は、実用上問題ないが、塗装金属板5、8および9の耐食性よりは低い耐食性を示した。その理由としては、塗装金属板1~4は、Ti、Zr、Mo、Vなどの金属化合物の防錆成分のうち一部の元素しか含まれていないためと考えられる。また、塗装金属板6は金属化合物の防錆剤の含有量がTi:0.005質量%未満、Zr:0.05質量%未満、Mo:0.005質量%未満、V:0.02質量%未満であったため、と考えられ、塗装金属板7は有機樹脂層の付着量が0.2g/m未満であったためと考えられる。 On the other hand, the coated metal plates 1 to 4, 6 and 7 had no practical problem, but exhibited corrosion resistance lower than the corrosion resistance of the coated metal plates 5, 8 and 9. The reason is considered that the coated metal plates 1 to 4 contain only a part of the rust preventive components of metal compounds such as Ti, Zr, Mo and V. The coated metal plate 6 has a metal compound rust inhibitor content of Ti: less than 0.005 mass%, Zr: less than 0.05 mass%, Mo: less than 0.005 mass%, and V: 0.02 mass%. because there was less than%, considered, coated metal plate 7 is probably because amount of adhering the organic resin layer is less than 0.2 g / m 2.
 さらに、塗装金属板10の耐食性は、不十分であった。その理由としては、有機樹脂の層が形成されていないため、と考えられる。 Furthermore, the corrosion resistance of the coated metal plate 10 was insufficient. This is probably because the organic resin layer is not formed.
 2.複合体の作製と評価
 (1)塗装金属素形材
 塗装金属板1~10のそれぞれを切断し、幅(W11)25mm×長さ(L12)100mmの寸法の塗装金属素形材1~10を準備した(図1Aおよび図1B参照)。なお、塗装金属素形材1~10のそれぞれの厚さは、1.6mmである。
2. Fabrication and evaluation of composite (1) Painted metal preform 1 to 10 Each of the painted metal sheets 1 to 10 is cut to have a width (W 11 ) of 25 mm × length (L 12 ) of 100 mm. 10 were prepared (see FIG. 1A and FIG. 1B). The thickness of each of the painted metal preforms 1 to 10 is 1.6 mm.
 (2)被接合体
 (2-1)塗装金属板
 塗装金属板として、実施例1で用いた塗装金属板1~10と同様の金属板を用意し、上記塗装金属板1~10と同様に切断して、それぞれ被接合体1~10とした。
(2) To-be-joined body (2-1) Painted metal plate As a coated metal plate, the same metal plate as the coated metal plates 1 to 10 used in Example 1 was prepared, and the same as the above coated metal plates 1 to 10. It cut | disconnected and it was set as the to-be-joined bodies 1-10, respectively.
 (2-2)木片
 木片として、厚さ9mmのヒノキ材を用意して、被接合体11とした。また、上記木片に、実施例1で調製した有機樹脂塗料4をハケ塗りし、60℃の乾燥オーブン内で1時間乾燥させて有機樹脂層を形成し、被接合体12とした。
(2-2) Wood Piece As a piece of wood, a cypress material having a thickness of 9 mm was prepared and used as the joined body 11. Moreover, the organic resin coating material 4 prepared in Example 1 was brushed on the above wood pieces, and dried in a drying oven at 60 ° C. for 1 hour to form an organic resin layer.
 (2-3)ガラス板
 ガラス板として、厚さ6mmのフロート板ガラスを用意して、被接合体13とした。
(2-3) Glass Plate Float plate glass having a thickness of 6 mm was prepared as the glass plate, and the bonded body 13 was obtained.
 (2-4)CFRP
 CFRPとして、厚さ0.2mmのエポキシ樹脂含浸プリプレグ(東レ製、トレカ3255S-25)を用意して、被接合体14とした。
(2-4) CFRP
As a CFRP, an epoxy resin-impregnated prepreg having a thickness of 0.2 mm (Torayca 3255S-25 manufactured by Toray Industries, Inc.) was prepared and used as the bonded body 14.
 (2-5)CFRTP
 CFRTPとして、厚さ2mmのポリプロピレン樹脂含浸プリプレグ(サカイオーベック製、SA-3203PT1)を用意して、被接合体15とした。
(2-5) CFRTP
As CFRTP, a polypropylene resin-impregnated prepreg (SA-3203PT1 manufactured by Sakai Obec Co., Ltd.) having a thickness of 2 mm was prepared and used as the bonded body 15.
 (2-6)紙
 紙として、厚さ5mmのAフルートダンボール片を用意して、被接合体16とした。
(2-6) Paper A flute corrugated cardboard piece having a thickness of 5 mm was prepared as the paper, and the joined body 16 was obtained.
 (3)ホットメルトフィルム
 ホットメルトフィルムとして、ポリウレタン(以下、「PU」とも記す)系ホットメルトフィルム、ポリエステル(以下、「PE」とも記す)系ホットメルトフィルム、ポリアミド(以下、「PA」とも記す)系ホットメルトフィルム、ポリウレタンエラストマー(以下、「PU-E」とも記す)系ホットメルトフィルム、およびポリプロピレン(以下、「PP」とも記す)系ホットメルトフィルムを準備した。
(3) Hot melt film As a hot melt film, a polyurethane (hereinafter also referred to as “PU”) hot melt film, a polyester (hereinafter also referred to as “PE”) hot melt film, a polyamide (hereinafter also referred to as “PA”). ) Hot melt film, polyurethane elastomer (hereinafter also referred to as “PU-E”) hot melt film, and polypropylene (hereinafter also referred to as “PP”) hot melt film.
 PU系ホットメルトフィルムには、厚さ70μmのSHM107-PUR(シーダム株式会社)を用いた。PU系ホットメルトフィルムの融点は、110℃だった。 As the PU hot melt film, SHM107-PUR (Seadam Co., Ltd.) having a thickness of 70 μm was used. The melting point of the PU hot melt film was 110 ° C.
 PE系ホットメルトフィルムには、厚さ200μmのエセランSHM244-PES(シーダム株式会社)を用いた。PE系ホットメルトフィルムの融点は、120℃だった。 For the PE hot melt film, 200 μm thick Ecelan SHM244-PES (Seadam Co., Ltd.) was used. The melting point of the PE hot melt film was 120 ° C.
 PA系ホットメルトフィルムには、厚さ100μmのエルファンNT120(日本マタイ株式会社)を用いた。PA系ホットメルトフィルムの融点は、120℃だった。 Elfan NT120 (Nihon Matai Co., Ltd.) having a thickness of 100 μm was used for the PA-based hot melt film. The melting point of the PA-based hot melt film was 120 ° C.
 PU-E系ホットメルトフィルムには、厚さ200μmのエセランSHM605-CDR(日本マタイ株式会社)を用いた。PU-E系ホットメルトフィルムの融点は、190℃だった。 For the PU-E hot melt film, 200 μm thick Ecelan SHM605-CDR (Nippon Matai Co., Ltd.) was used. The melting point of the PU-E hot melt film was 190 ° C.
 PP系ホットメルトフィルムには、厚さ40μmのアドマーQE060(三井化学東セロ株式会社)を用いた。PP系ホットメルトフィルムの融点は、139℃だった。 Admer QE060 (Mitsui Chemicals Tosero Co., Ltd.) having a thickness of 40 μm was used for the PP hot melt film. The melting point of the PP hot melt film was 139 ° C.
 [実施例1]
 塗装金属素形材10としての塗装金属板1(25mm×100mm)の長手方向の一片に、幅(W11)25mm、長さ(L11)12.5mmのPU系ホットメルトフィルム30を有機樹脂層に接するように配置し、前記PU系ホットメルトフィルムを挟み込むようにして、被接合体20としての塗装金属板1(25mm×100mm)を重ねて密着させた(図3A、図3B)。
[Example 1]
A PU hot melt film 30 having a width (W 11 ) of 25 mm and a length (L 11 ) of 12.5 mm is applied to an organic resin on one piece in the longitudinal direction of a painted metal plate 1 (25 mm × 100 mm) as a painted metal shape member 10. The coating metal plate 1 (25 mm × 100 mm) as the bonded body 20 was stacked and adhered so as to be in contact with the layers and sandwich the PU hot melt film (FIGS. 3A and 3B).
 200℃に加熱した定板500上に前記塗装金属素形材10および被接合体20としての2枚の塗装金属板1でホットメルトフィルム30を挟み込んだサンプルを置き、上部から200℃に加熱した別の定板500で挟み込み、プレス機を用いて、2.4MPaで15秒間加圧して、引張り試験用のサンプルを作製した。 A sample in which the hot melt film 30 is sandwiched between the coated metal base material 10 and the two coated metal plates 1 as the joined bodies 20 is placed on a fixed plate 500 heated to 200 ° C., and heated to 200 ° C. from the top. A sample for tensile test was prepared by sandwiching with another plate 500 and applying pressure at 2.4 MPa for 15 seconds using a press machine.
 [実施例2~15および比較例1~4]
 塗装金属素形材、ホットメルトフィルムおよび被接合体の種類を下記表4に示されるように変更した以外は実施例1と同様にして、引張り試験用のサンプルを作製した。
[Examples 2 to 15 and Comparative Examples 1 to 4]
A sample for a tensile test was produced in the same manner as in Example 1 except that the types of the painted metal shape material, the hot melt film, and the joined body were changed as shown in Table 4 below.
 (4)複合体の接合力の評価
 実施例1~15および比較例1~4で得られた引張り試験用のサンプルにおける塗装金属板を島津製作所製、オートグラフAG-ISに設置し、室温で、上記サンプルの両端を引張速度5mm/分で引っ張り、上記接合部が破断したときの最大荷重(N)を接合面積で除した値(N/mm=MPa)を算出し、せん断強度とした。上記サンプルを引っ張る向きは、接合面と平行でかつ互いに反対向きの方向(図3A中のX方向)であり、引張速度は、100mm/分であった。
(4) Evaluation of the bonding strength of the composite The coated metal plate in the sample for tensile test obtained in Examples 1 to 15 and Comparative Examples 1 to 4 was installed in an autograph AG-IS manufactured by Shimadzu Corporation at room temperature. Then, the both ends of the sample were pulled at a tensile speed of 5 mm / min, and a value (N / mm 2 = MPa) obtained by dividing the maximum load (N) when the bonded portion was broken by the bonded area was calculated as the shear strength. . The direction of pulling the sample was a direction parallel to the bonding surface and opposite to each other (X direction in FIG. 3A), and the tensile speed was 100 mm / min.
 上記接合力が10MPa未満の場合を「×」、接合力が10MPa以上であって15MPa未満の場合を「△」、接合力が15MPa以上であって20MPa未満の場合を「○」、接合力が20MPa以上の場合を「◎」と評価した。各サンプル(複合体)の接合力(せん断強度)の測定結果および評価結果を表4に示す。 The case where the joining force is less than 10 MPa is “x”, the case where the joining force is 10 MPa or more and less than 15 MPa is “Δ”, the case where the joining force is 15 MPa or more and less than 20 MPa is “◯”, and the joining force is The case of 20 MPa or more was evaluated as “◎”. Table 4 shows the measurement results and evaluation results of the bonding strength (shear strength) of each sample (composite).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~15に係る複合体では、いずれも、接合力が10MPa以上と良好であった。これは、有機樹脂層が形成された塗装金属板にホットメルトフィルムが積層された積層体を塗装金属素形材として、被接合体を接合させたため、と考えられる。 In the composites according to Examples 1 to 15, all had good bonding strength of 10 MPa or more. This is presumably because the object to be joined was joined using a laminated body in which a hot melt film was laminated on a painted metal plate on which an organic resin layer was formed as a painted metal shape material.
 有機樹脂層を有する木片である被接合体12を接合した実施例4は、有機樹脂層を有さない木片である被接合体11を接合した実施例2よりも接合力の評価が高かった。また、CFRPである被接合体14またはCFRTPである被接合体15はいずれも有機樹脂を含むが、これらを接合させた実施例8および10ではせん断強度が高くなる傾向が見られた。 Example 4 which joined the to-be-joined body 12 which is a piece of wood which has an organic resin layer evaluated the joining force higher than Example 2 which joined the to-be-joined body 11 which is a piece of wood which does not have an organic resin layer. Moreover, although the to-be-joined body 14 which is CFRP, or the to-be-joined body 15 which is CFRTP contains organic resin, the tendency for shear strength to become high was seen in Example 8 and 10 which joined these.
 対して、比較例1~4に係る複合体では、上記接合力が不十分であった。これは、有機樹脂層を有さない金属素形材とホットメルトフィルムとの組み合わせに被接合体を接合させたため、と考えられる。 On the other hand, in the composites according to Comparative Examples 1 to 4, the bonding force was insufficient. This is presumably because the object to be joined was joined to a combination of a metal base material having no organic resin layer and a hot melt film.
 本出願は、2015年10月9日出願の日本国出願番号2015-200950号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲、明細書および図面に記載された内容は本出願に援用される。 This application claims priority based on Japanese Patent Application No. 2015-200500 filed on Oct. 9, 2015, and the contents described in the claims, specification and drawings of this application are Incorporated into the application.
 本発明の複合体は、塗装金属素形材と被接合体との密着性に優れているため、例えば各種電子機器、家庭用電化製品、医療機器、自動車車体、車両搭載用品、建築資材などに好適に用いられる。 The composite of the present invention is excellent in adhesion between the painted metal base material and the object to be joined. For example, in various electronic devices, household appliances, medical devices, automobile bodies, vehicle-mounted products, building materials, etc. Preferably used.
 10 塗装金属素形材
 20、40 被接合体
 30 ホットメルトフィルム
 100、200、300 複合体
 102 金属素形材
 104 有機樹脂層
 402 凹部
 404 つば部
 500 定板
DESCRIPTION OF SYMBOLS 10 Painted metal shaped material 20, 40 To-be-joined body 30 Hot- melt film 100, 200, 300 Composite 102 Metal shaped material 104 Organic resin layer 402 Concave part 404 Brim part 500 Surface plate

Claims (15)

  1.  金属素形材および前記金属素形材の表面に形成されている有機樹脂層を含む塗装金属素形材と、
     ホットメルトフィルムと、
     被接合体と、
     を有する複合体であって、
     前記ホットメルトフィルムは、前記有機樹脂層および前記被接合体に溶着している、複合体。
    A metal metal material and a painted metal material comprising an organic resin layer formed on the surface of the metal material; and
    Hot melt film,
    To-be-joined,
    A complex having
    The said hot-melt film is the composite_body | complex which is welded to the said organic resin layer and the said to-be-joined body.
  2.  前記有機樹脂層は、ポリプロピレン系樹脂を含む、請求項1に記載の複合体。 The composite according to claim 1, wherein the organic resin layer includes a polypropylene resin.
  3.  前記有機樹脂層は、ポリウレタン系樹脂を含む、請求項1に記載の複合体。 The composite according to claim 1, wherein the organic resin layer includes a polyurethane resin.
  4.  前記有機樹脂層の付着量は、0.2g/m以上である、請求項1~3のいずれか1項に記載の複合体。 The composite according to any one of claims 1 to 3, wherein an adhesion amount of the organic resin layer is 0.2 g / m 2 or more.
  5.  前記ホットメルトフィルムの融点は、50~200℃である、請求項1~4のいずれか1項に記載の複合体。 The composite according to any one of claims 1 to 4, wherein the hot-melt film has a melting point of 50 to 200 ° C.
  6.  前記被接合体は、鉄系金属、非鉄系金属、有機樹脂およびガラスからなる群から選択される一または複数の材料の成形体を含む、請求項1~5のいずれか1項に記載の複合体。 The composite according to any one of claims 1 to 5, wherein the joined body includes a molded body of one or a plurality of materials selected from the group consisting of ferrous metals, non-ferrous metals, organic resins, and glass. body.
  7.  前記有機樹脂層は、防錆剤を含有する、請求項1~6のいずれか1項に記載の複合体。 The composite according to any one of claims 1 to 6, wherein the organic resin layer contains a rust inhibitor.
  8.  金属素形材および前記金属素形材の表面に形成されている有機樹脂層を含む塗装金属素形材と、前記有機樹脂層に接するように配置されているホットメルトフィルムとを有する積層体に対して、前記ホットメルトフィルムに接するように被接合体を配置する工程と、
     前記被接合体が接している前記ホットメルトフィルムの少なくとも一部を、加熱して、前記ホットメルトフィルムを前記有機樹脂層および前記被接合体に溶着させる工程と、
     を含む、複合体の製造方法。
    A laminate having a metal base material and a painted metal base material including an organic resin layer formed on a surface of the metal base material, and a hot melt film disposed so as to be in contact with the organic resin layer On the other hand, the step of arranging the object to be bonded so as to contact the hot melt film,
    Heating at least a part of the hot melt film in contact with the joined body, and welding the hot melt film to the organic resin layer and the joined body;
    The manufacturing method of the composite_body | complex containing.
  9.  さらに、前記塗装金属素形材の、前記有機樹脂層に接するように前記ホットメルトフィルムを配置して、前記積層体を形成する工程を、前記配置する工程の前に含む、請求項8に記載の複合体の製造方法。 Furthermore, the process of arrange | positioning the said hot-melt film so that the said organic resin layer of the said coating metal shape material may contact | connect, and forming the said laminated body is included before the said process to arrange | position. A method for producing the composite.
  10.  前記有機樹脂層は、ポリプロピレン系樹脂を含む、請求項8または9に記載の複合体の製造方法。 The said organic resin layer is a manufacturing method of the composite_body | complex of Claim 8 or 9 containing a polypropylene resin.
  11.  前記有機樹脂層は、ポリウレタン系樹脂を含む、請求項8または9に記載の複合体の製造方法。 The method for producing a composite according to claim 8 or 9, wherein the organic resin layer contains a polyurethane resin.
  12.  前記有機樹脂層の付着量は、0.2g/m以上である、請求項8~11のいずれか1項に記載の複合体の製造方法。 The method for producing a composite according to any one of claims 8 to 11, wherein the adhesion amount of the organic resin layer is 0.2 g / m 2 or more.
  13.  前記ホットメルトフィルムの融点は、50~200℃である、請求項8~12のいずれか1項に記載の複合体の製造方法。 The method for producing a composite according to any one of claims 8 to 12, wherein the melting point of the hot melt film is 50 to 200 ° C.
  14.  前記被接合体は、鉄系金属、非鉄系金属、有機樹脂およびガラスからなる群から選択される一または複数の材料の成形体を含む、請求項8~13のいずれか1項に記載の複合体の製造方法。 The composite according to any one of claims 8 to 13, wherein the joined body includes a molded body of one or more materials selected from the group consisting of ferrous metals, non-ferrous metals, organic resins, and glass. Body manufacturing method.
  15.  前記有機樹脂層は、防錆剤を含有する、請求項8~14のいずれか1項に記載の複合体の製造方法。 The method for producing a composite according to any one of claims 8 to 14, wherein the organic resin layer contains a rust inhibitor.
PCT/JP2016/003226 2015-10-09 2016-07-07 Complex and method for manufacturing same WO2017061062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-200950 2015-10-09
JP2015200950A JP6651324B2 (en) 2015-10-09 2015-10-09 Composite and method for producing the same

Publications (1)

Publication Number Publication Date
WO2017061062A1 true WO2017061062A1 (en) 2017-04-13

Family

ID=58487375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003226 WO2017061062A1 (en) 2015-10-09 2016-07-07 Complex and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6651324B2 (en)
TW (1) TW201713502A (en)
WO (1) WO2017061062A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139142A (en) * 1976-05-17 1977-11-19 Sumitomo Chem Co Ltd Paints with excellent adhesiveness to polyethylene
JPS54106587A (en) * 1978-02-08 1979-08-21 Taiyo Seiko Kk Metal laminated steel plate
JPS6119337A (en) * 1984-07-06 1986-01-28 Tateyama Alum Kogyo Kk Laminating method of decorative sheet made of synthetic resin onto aluminum material
JPH03134083A (en) * 1989-10-19 1991-06-07 Sumitomo Metal Ind Ltd Jointing of coated steel sheet
JPH10157006A (en) * 1996-11-28 1998-06-16 Ykk Corp Decorative sheet-stuck aluminum material and its manufacture
JP2004122745A (en) * 2002-08-08 2004-04-22 Nippon Steel Corp Organic material-coated metal sheet with excellent adhesive stability and method for adhesion
JP2012188483A (en) * 2011-03-09 2012-10-04 Kaneka Corp Hot melt adhesive material for dielectric heating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139142A (en) * 1976-05-17 1977-11-19 Sumitomo Chem Co Ltd Paints with excellent adhesiveness to polyethylene
JPS54106587A (en) * 1978-02-08 1979-08-21 Taiyo Seiko Kk Metal laminated steel plate
JPS6119337A (en) * 1984-07-06 1986-01-28 Tateyama Alum Kogyo Kk Laminating method of decorative sheet made of synthetic resin onto aluminum material
JPH03134083A (en) * 1989-10-19 1991-06-07 Sumitomo Metal Ind Ltd Jointing of coated steel sheet
JPH10157006A (en) * 1996-11-28 1998-06-16 Ykk Corp Decorative sheet-stuck aluminum material and its manufacture
JP2004122745A (en) * 2002-08-08 2004-04-22 Nippon Steel Corp Organic material-coated metal sheet with excellent adhesive stability and method for adhesion
JP2012188483A (en) * 2011-03-09 2012-10-04 Kaneka Corp Hot melt adhesive material for dielectric heating

Also Published As

Publication number Publication date
JP6651324B2 (en) 2020-02-19
TW201713502A (en) 2017-04-16
JP2017071183A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6051141B2 (en) Composite and production method thereof
JP6262951B2 (en) Composite and production method thereof
JP6703803B2 (en) Surface-treated metal plate and metal plate composite resin molded product
JP5355803B1 (en) Painted metal preform, composite, and production method thereof
TWI533992B (en) Composite jointed by rough-shaped material of coated metal and molded article of thermal plastic resin composition and producing method thereof
JP6809053B2 (en) Method of manufacturing the complex
JP6189048B2 (en) Complex
JP6189049B2 (en) Complex
WO2017061062A1 (en) Complex and method for manufacturing same
AU2016213296B2 (en) Method for producing coated metal strip
JP2018020499A (en) Composite and manufacturing method therefor
JP7265124B2 (en) SURFACE TREATMENT LIQUID FOR METAL MATERIALS, COMPOSITE MANUFACTURING METHOD AND TREATMENT LIQUID DISPENSER
JP2019171768A (en) Method for producing composite and apparatus for producing composite
KR100822731B1 (en) Adhesive composition of one component for adhering metal film on plated steel sheet
WO2016158619A1 (en) Surface-treated metal plate
WO2016092785A1 (en) Treatment liquid for shaped metallic materials
JP6080876B2 (en) Composite body in which painted metal base material and cloth containing chemical fiber are joined, and method for producing the same
KR101500422B1 (en) Method for preparing laminating steel sheet with embossed external appearance
TW201627435A (en) Treatment liquid for shaped metallic materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853221

Country of ref document: EP

Kind code of ref document: A1