WO2017060971A1 - Dptssケーブル - Google Patents

Dptssケーブル Download PDF

Info

Publication number
WO2017060971A1
WO2017060971A1 PCT/JP2015/078299 JP2015078299W WO2017060971A1 WO 2017060971 A1 WO2017060971 A1 WO 2017060971A1 JP 2015078299 W JP2015078299 W JP 2015078299W WO 2017060971 A1 WO2017060971 A1 WO 2017060971A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
optical fiber
embedded
dptss
metal wire
Prior art date
Application number
PCT/JP2015/078299
Other languages
English (en)
French (fr)
Inventor
欣増 岸田
良昭 山内
Original Assignee
ニューブレクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニューブレクス株式会社 filed Critical ニューブレクス株式会社
Priority to PCT/JP2015/078299 priority Critical patent/WO2017060971A1/ja
Priority to CN201580083595.4A priority patent/CN108139235B/zh
Priority to US15/758,392 priority patent/US10612947B2/en
Priority to JP2017544099A priority patent/JP6440858B2/ja
Publication of WO2017060971A1 publication Critical patent/WO2017060971A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35374Particular layout of the fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/005Power cables including optical transmission elements

Definitions

  • the present invention makes it easy to assemble or manufacture an optical fiber cable in place of a conventional optical fiber cable equipped with FIMT, for example, a drawing process, and continuously measure pressure distribution and strain distribution using an optical fiber.
  • the present invention relates to an optical fiber cable that can be easily measured.
  • FIMT Fiber In Metallic Tube
  • FIMT Fiber In Metallic Tube
  • the optical fiber in FIMT is not subjected to pressure load, it can function as a temperature sensor and measure a long-distance continuous temperature distribution along the optical fiber. Widely used in various fields including radiation thermometers.
  • an optical fiber buffer tube that can be used at high temperatures.
  • An optical fiber as a sensor is provided.
  • an optical fiber cable provided with the optical fiber buffer tube and a conductor with high conductivity (see, for example, Patent Document 1).
  • an optical fiber strain sensor is housed in a sensor housing groove formed in the longitudinal direction of the trolley wire, and heat is generated by a current flowing through a portion where the cross-sectional area decreases due to wear of the trolley wire over a long section and a long time.
  • a current flowing through a portion where the cross-sectional area decreases due to wear of the trolley wire over a long section and a long time there is one that can measure the amount and detect a risk of disconnection of the trolley wire (see, for example, Patent Document 2).
  • an optical fiber strain measurement method is also described. In other words, the optical fiber was mounted in a metal tube in a negative extra length state, and in the state of no tension load, the optical fiber was contained with a gap in a shorter state than the metal tube containing it, and the metal tube was given tension.
  • Non-Patent Document 1 As another example, in the field of industrial distributed optical fiber sensing, it has been pointed out that there are only a limited number of examples in which strain or temperature can be measured (see, for example, Non-Patent Document 1). This is because commercially available systems and actual industry requirements are not particularly matched in spatial resolution and accuracy (eg, distance resolution and temperature resolution are generally trade-offs). It is in). Also shown here is a hybrid Brillouin-Rayleigh backscattered light measurement system that demonstrates capabilities beyond the measurement method using strain gauges. The principle of this system is illustrated taking into account an optical fiber calibration method, and equations for determining strain, temperature, and water pressure are derived and discussed. However, it has been shown that hysteresis occurs in the relationship between temperature and Brillouin frequency shift, or temperature and Rayleigh frequency shift. It is also shown that there is an influence of the thickness of the coating agent that is a protective film of the optical fiber.
  • K. KISHIDA et.al “Study of Optical Fibers Strain-Temperature Sensitivities Using Hybrid Brillouin-Rayleigh System”, “PHOTONIC SENSORS”, 2 Sep. 2013. J. Wojcik et.al, “V type high birefringent PCF fiber for hydrostatic pressure sensing”, PHOTONIC LETTERS OF POLAND, vol.2 (1), 10-12, 2010.
  • FIMT Distributed Pressure, Temperature, and Strain System
  • at least one fiber that does not receive pressure and one that receives pressure have been provided.
  • FIMT which has arrange
  • the outer diameter of the metal tube (pipe) is about 0.8 mm ⁇ to several mm ⁇ , and its thickness Is 0.1 mm to 0.2 mm, it is easy to break, and it is difficult to manufacture a long optical fiber cable.
  • the thickness of the pipe is 0.1 mm or less. It becomes difficult.
  • the optical fiber core wire for measuring the pressure of the measured object and the temperature of the measured object are measured.
  • the FIMT in the armored cable is provided, and a fixing material for fixing the optical fiber core wire and the armored cable is spaced in the axial direction of the optical fiber cable so that an annular gap layer is formed between the optical fiber core wire and the armored cable. There is something that was set up.
  • the present invention has been made in view of the above problems, and since it does not employ FIMT, there is no problem of pinholes, there is almost no fear of disconnection, and the assembly of a large number of cables to be used is easy. It is an object of the present invention to provide a DPTSS cable that can be easily manufactured and can continuously measure strain distribution.
  • the DPTSS cable according to this invention is In order to measure the pressure distribution, strain distribution, and temperature distribution of the measured object based on the frequency change of Brillouin scattering and Rayleigh scattering, which is the scattering of pulsed laser light emitted to the optical fiber,
  • a DPTSS cable having at least two metal wire cables formed with grooves in the axial direction of the outer peripheral portion and provided with optical fibers in the grooves,
  • One metal wire cable is an embedded optical fiber cable in which an optical fiber is embedded and held along the groove of the metal wire cable.
  • the other metal wire cable is a metal wire cable having a characteristic different from that of the optical fiber embedded cable, and is a sensitivity coefficient of pressure change with respect to frequency change of Brillouin scattering and Rayleigh scattering of the optical fiber embedded cable. It is configured to have different pressure change sensitivity coefficients.
  • the present invention compared to the case of using the conventional FIMT, it is possible to completely eliminate the problem of pinholes, and since special laser welding is unnecessary, high-speed and economical production is possible. Therefore, the assemblability can be improved when assembling the cable structure. In addition, there is no loss of pressure blocking function due to pinholes. Furthermore, continuous strain distribution measurement, which is impossible with the conventional method of providing a fixed point using a DPTSS cable, is possible.
  • FIG. 1 is a diagram showing an example of a basic structure of an optical fiber embedded cable that is a metal wire cable used for the DPTSS cable 10 according to the first embodiment of the present invention.
  • FIG. 1A is a conceptual diagram of the basic structure of the optical fiber embedded cable 1.
  • FIGS. 1B and 1C are views in a direction perpendicular to the axis of the optical fiber embedded cable 1. It is sectional drawing and is equivalent to A arrow view of Fig.1 (a). In the example shown in FIG.
  • the outer peripheral portion of one optical fiber embedded cable 1 is formed in a concave shape (cut groove) along the longitudinal direction, and is a direction orthogonal to the axis of the optical fiber embedded cable.
  • the optical fiber 3 is embedded and housed in the groove 2 having a U-shaped cross section, and the optical fiber is held by resin or the like over the entire length in the longitudinal direction of the optical fiber embedded cable 1 (this portion is hereinafter referred to as “the portion”). , Referred to as an optical fiber holding unit 4).
  • the basic structure of the DPTSS cable two types of structures having different sensitivity to pressure are proposed.
  • the optical fiber holding part 4 is composed of a water-soluble coating 5a, and this optical fiber holding part is fixed (embedded) in a wire having a cut. Yes (see FIG. 1B).
  • the wire with this basic structure can be handled as a single wire when stranded, making it possible to manufacture a DPTSS cable. After the DPTSS cable is completed, the water-soluble coating is dissolved, The structure has pressure sensitivity in all parts (100% part).
  • the second basic structure (hereinafter also referred to as type 2) is a case where the optical fiber holding portion 4 is made of the adhesive 5c or the coated portion of the optical fiber is made of an elastic material 5d.
  • the wire having this basic structure is the same as that of the first basic structure in that it can be handled as one wire when it is stranded (twisted wire), and enables the production of a DPTSS cable.
  • the pressure applied to the optical fiber is only a part of the hydrostatic pressure around the cable due to the shape of the groove and the connection method with the wire, and the sensitivity to the pressure of the optical fiber in this case is It is different from that of the first basic structure.
  • a DPTSS cable is manufactured using a wire in which the above-described two types of optical fibers are embedded.
  • the embedding distance h 0 is set to be larger than the deformation amount of the embedded optical fiber cable (the amount of deformation in the radial direction of the cable) during use. Even if there is a torsional deformation around it, the measurement by the optical fiber 3 is not adversely affected thereby.
  • D is the diameter of the optical fiber embedded cable
  • b is the opening width of the U-shaped groove at the outermost peripheral radius position of the optical fiber embedded cable
  • h is the groove depth of the U-shaped groove.
  • D 1.17 mm
  • b 0.3 mm
  • FIG. 2 is a view showing an example of the configuration of a DPTSS cable 10 using the optical fiber embedded cable 1, and is a cross-sectional view in a direction perpendicular to the axis of the DPTSS cable.
  • 2A is a cross-sectional view showing a configuration of a metal wire cable used for the DPTSS cable
  • FIGS. 2B, 2C, and 2D are respectively a part of FIG. 2A.
  • FIG. 2 is a view showing an example of the configuration of a DPTSS cable 10 using the optical fiber embedded cable 1, and is a cross-sectional view in a direction perpendicular to the axis of the DPTSS cable.
  • 2A is a cross-sectional view showing a configuration of a metal wire cable used for the DPTSS cable
  • FIGS. 2B, 2C, and 2D are respectively a part of FIG. 2A.
  • the DPTSS cable 10 is typically characterized by a structure having at least one of two types of wires having different basic structures as described above. Two types of wires are placed in the first layer (the layer in the frame of the one-dot chain line in the figure) which is the inner layer, and the outer periphery is the second layer (the layer in the frame of the one-dot chain line and the two-dot chain line in the figure) It is a DPTSS cable with a cross-strand strand structure surrounded by an outer layer.
  • FIG. 2B which is an enlarged view of the embedded optical fiber cable 1a shown in FIG. 2A
  • the optical fiber holding portion 4 as the first basic structure is attached to the water-soluble coating 5a.
  • the optical fiber 3a is embedded in the groove. Since the water-soluble coating 5a is dissolved by the aqueous solution that is the object to be measured at the time of use, the optical fiber 3a is used in a free state.
  • the optical fiber embedded cable 1b shown in FIG. 2 (a) as shown in the enlarged view of FIG. 2 (c), the optical fiber holding portion 4 which is the second basic structure is bonded with an adhesive 5c such as resin.
  • the metal wire cable is configured, and the optical fiber 3b is embedded in the groove.
  • FIG. 2D is a diagram for explaining a dummy cable 9 that is different from any of the above two types of metal wire cables.
  • FIG. 2A is a strand (stranded wire) composed of a plurality of wires.
  • the combination of the metal wire cables shown in FIG. 2A is not limited to the above, and any one of the optical fiber embedded cable 1a or 1b, which is a metal wire cable, may be used instead of the dummy cable 9. Good.
  • the DPTSS cable In such a system using an optical fiber embedded cable, it is usually necessary to make the DPTSS cable have a multilayer structure as shown in FIG. Hereinafter, this multilayered structure is referred to as a strand structure 6.
  • this multilayered structure is referred to as a strand structure 6.
  • the cut portion of the type 1 metal wire cable is arranged in the direction of the central axis of the DPTSS cable.
  • the reason for this is as follows. That is, when measurement is performed under a condition where water pressure such as in a liquid is applied using this cable, the liquid usually contains a proppant, that is, a substance mainly composed of sand.
  • a proppant that is, a substance mainly composed of sand.
  • the sand wears the surface of the metal wire cable, and as a result, the sand component directly contacts the optical fiber. This may damage the optical fiber.
  • the multilayered structure of the present embodiment fulfills a filter function for preventing sand intrusion and maintains a function for measuring water pressure. In addition, this filter function is more effective as the inner peripheral portion becomes multilayered.
  • the multilayered optical fiber embedded cable in FIG. 2 is arranged as the strand structure (strand structure) 6 as described above
  • the strand structure (strand structure) used here is Usually, it has a structure called cross twist. Since cross strands use strands having substantially the same diameter, they are generally easy to handle and inexpensive.
  • the inner layer and the outer layer have a strand structure in which the helical pitch is different, and the outer layer embedded optical fiber embedded cable layer is in contact with each other so as to straddle the unevenness of the inner layer embedded optical fiber embedded cable. It has become. Therefore, in the case of cross-twisting, there is a possibility that the strain of the outer layer cannot be faithfully transmitted to the central wire, but the stability of the cable structure is excellent.
  • FIG. 2 shows a DPTSS cable in which only one outer layer is formed on the outer side of an optical fiber embedded cable having a basic structure.
  • the present invention is not limited to this, and the strand includes two or more outer layers. It may be a structure.
  • the layer in which the optical fiber embedded cable having the basic structure is arranged is referred to as an inner layer
  • the layer immediately outside the inner layer is referred to as an intermediate layer
  • the outer layer is referred to as an outermost layer.
  • strands of different diameters are generally twisted at the same time and are twisted at the same pitch in the longitudinal direction of the cable from the inner layer to the outer layer.
  • an inner layer that is a first layer in which an optical fiber embedded cable having the above-described basic structure is disposed, an intermediate layer that is a second layer immediately outside the first layer, and a third layer positioned outside the second layer.
  • the outermost layer which is a layer, can have a structure in which the first layer to the third layer are twisted at the same pitch in the longitudinal direction of the cable.
  • each optical fiber is embedded.
  • the contact state between the mold cables 1 is a so-called line contact, it is also called a line contact twist. That is, the second layer overlaps between the first layer troughs of the strands, and the third layer overlaps with the second layer troughs of the strands so that the layers are arranged without gaps. For this reason, there is an advantage that disconnection due to wear or metal fatigue between the optical fiber embedded cables 1 is difficult to occur, and there is a feature that deformation or deformation hardly occurs and a breaking load increases.
  • there is a method of strengthening the bonding between layers by using wires having different diameters for the strands but conventionally, the cable structure does not include an optical fiber. Detailed description is omitted.
  • Brillouin scattering which is the scattered light of pulsed laser light emitted to the optical fiber due to the deformation of the optical fiber generated by the deformation generated in this shape due to the external pressure of the shape embedded with the optical fiber.
  • C 11 , C 12 , and C 13 are a sensitivity coefficient with respect to a strain change of the optical fiber in a Brillouin scattering frequency change, a sensitivity coefficient with respect to a temperature change, and a sensitivity coefficient with respect to a pressure change, respectively.
  • C 21 , C 22 , and C 23 are a sensitivity coefficient with respect to a change in strain of the optical fiber, a sensitivity coefficient with respect to a change in temperature, and a sensitivity coefficient with respect to a change in pressure, respectively.
  • K 23 which is a sensitivity coefficient representing the relationship between ⁇ R and ⁇ P, is summed up, and this is again set to K 23.
  • K 23 has characteristics as shown in FIG. 3 by measurement in water. Show. That is, the sensitivity coefficient varies depending on the material to be fixed, and the case where the fixing material is steel (Steel) is the smallest (low sensitivity), and then aluminum (Al). The largest value was shown when the optical fiber was not particularly fixed (in the case of a free structure).
  • an evaluation formula that can be used in the present embodiment is derived based on the formulas (1) and (2).
  • an evaluation formula that can be used in the present embodiment is derived based on the formulas (1) and (2).
  • the coefficients represented by the following (9) and (10) are the temperature and frequency shift measured when temperature or pressure is applied to a free P fiber and B fiber that do not add tension or the like, respectively. It is a coefficient representing the slope of an expression representing the relationship between pressure and frequency shift function. These coefficients include strain due to thermal expansion for temperature, and strain due to volume compression for pressure. Therefore, the values are different between the P fiber and the B fiber.
  • the coefficients of (9) and (10) are expressed by the following equations (11) to (18).
  • the optical fiber is divided into terms specific to the optical fiber (terms without the coefficient ⁇ or ⁇ ), terms due to thermal strain (terms including the coefficient ⁇ ), and terms due to volume compression (terms including the coefficient ⁇ ) Can be expressed.
  • Equation (23) and Equation (25) it seems that ⁇ T and ⁇ P can be obtained (obtained independently) by combining these equations.
  • the right side of Expression (23) is equivalent to the right side of Expression (24)
  • the right side of Expression (25) is equivalent to the right side of Expression (26)
  • the right side of Expression (24) And it can be seen that ⁇ T and ⁇ P cannot be obtained independently of each other, considering that the right side of the equation (26) is exactly the same equation. That is, ⁇ T and ⁇ P cannot be obtained from the above equations.
  • the Brillouin frequency shift of the optical fiber due to the change of only the pressure is expressed by the following equation (29) in consideration of the deformation due to ⁇ P of the metal.
  • equation (30) the coefficient of ⁇ P on the left side of the right side
  • the true sensitivity coefficient for the pressure change of the B fiber can be regarded as represented by the left side of equation (30).
  • the Rayleigh frequency shift of the optical fiber due to a change in pressure alone is similarly expressed by Expression (31).
  • equation (24) of the P fiber from which the distortion has been eliminated the coefficient is replaced with a simplified symbol and expressed as equation (32). Also, the expression (26) for the B fiber is similarly expressed as an expression (33) using the expressions (30) and (32).
  • S, R, Q 1 and Q 2 are as follows.
  • ⁇ T and ⁇ P can be obtained independently of each other. That is, by simultaneously using the P fiber and B fiber of the system of the first embodiment, the temperature distribution and pressure distribution of the measurement object can be obtained.
  • each sensitivity coefficient of ⁇ T and ⁇ P satisfies the following relational expression (42).
  • ⁇ P and ⁇ B are values represented by the following equations (43) and (44).
  • FIG. an example of the first embodiment that realizes the above-described equations (38) to (41) is shown in FIG. That is, the frequency change of the Brillouin scattering and the frequency change of the Rayleigh scattering due to the pressure change or the like of the measured object are measured by the P fiber of the first basic structure, and the measured object is measured by the B fiber of the second basic structure. The frequency change of Brillouin scattering and the frequency change of Rayleigh scattering due to the pressure change of the light are measured.
  • the system using the embedded optical fiber cable 1 as described above can overcome the demerits such as the improvement of assemblability and the loss of the pressure blocking function due to the pinhole when the conventional FIMT is used.
  • Continuous strain measurement which was a drawback of the method, can be performed.
  • the optical fiber is a groove provided on the outer periphery of a metal such as a steel wire having a larger outer diameter than the conventional one (for example, the diameter of the dummy cable shown in FIG. 2D may be assumed as the conventional cable diameter).
  • the DPTSS cable is relatively easy to manufacture.
  • the DPTSS cable having a multi-layered strand structure has been described.
  • the present invention is not limited to this, and as shown in FIG. 4, the second type includes two types of metal wire cables constituting the inner layer shown in FIG. It goes without saying that the same effect can be obtained even with a structure in which only one layer of the structure is wound in a spiral.
  • the DPTSS cable 10 having such a configuration can be manufactured more easily, and can easily cope with a case where the specification of the DPTSS cable has to be changed, for example, the object to be measured is changed. Can do.
  • the reason why the metal wire cables are configured as three cables instead of two is to make the contact state between the metal wire cables into a line contact state and to stabilize the structure as a DPTSS cable. That is, it is intended to provide the characteristics that the metal wire cables are not easily broken due to wear or metal fatigue, are not easily deformed or deformed, and have a high breaking load.
  • the distortion generated in the fibers of the equations (40) to (41), which are the principle equations for measurement is equal to the distortion of the optical fiber embedded cable, and therefore, the distortion of the measured object eventually occurs in the B fiber. I want to confirm once again that this is a distortion.
  • channel which embeds an optical fiber demonstrated by the U-shaped thing, if it is not only this shape but a concave shape, there exists the same effect.
  • the U-shaped groove 2 for embedding the optical fiber has been described as having a concave portion on the outer peripheral side.
  • the present invention is not limited to this, and as shown in FIG.
  • Even when the above-described embedded optical fiber cables 1a and 1b are used for the DPTSS cable even in the embedded optical fiber cable 1c covered with the chemical protective layer 7 such as a resin and the optical fiber 3c embedded in the groove 2 Has the same effect as.
  • the structure covered with the chemical protective layer 7 as shown in FIG. 5 can effectively prevent the intrusion of hydrogen gas or the like into the inside, and therefore has an effect of preventing the performance of the optical fiber 3c from being deteriorated. .
  • each of the wire cables constituting the outer layer, the intermediate layer, or the outermost layer is any of the above-described dummy cable 9 and optical fiber embedded cable 1 (1a to 1c, 1e, 1e will be described later). It may be.
  • FIG. 6 is a diagram showing a cross-sectional shape model orthogonal to the axis of the optical fiber embedded cable used in this simulation, and is a diagram for explaining each parameter used in this simulation.
  • 6A is a diagram for explaining main shape parameters in this model diagram
  • FIG. 6B is a more detailed explanation of the shape parameters of the optical fiber holding portion in FIG. 6A. Therefore, it is the figure which expanded the part corresponded to the optical fiber holding
  • D is the outer diameter of the fiber optic embedded cable
  • h is the depth of the groove
  • b is the width of the upper opening of the U-shaped groove
  • c is the thickness of the adhesive
  • d is the coating.
  • the included optical fiber outer diameter, d 0 is the cladding outer diameter, and e is the distance from the outer surface of the embedded optical fiber cable to the center position of the optical fiber.
  • the material of the optical fiber embedded cable is a steel wire.
  • the right direction is the positive direction of the x axis and the upward direction is the positive direction of the y axis, as shown in the figure.
  • the z direction is a direction perpendicular to the paper surface (the direction from the bottom to the top of the paper is the plus direction) and corresponds to the axial direction of the optical fiber embedded cable.
  • Fig. 7 shows an example of simulation results when external pressure is applied.
  • This figure shows a case 1 where the optical fiber has an elastic modulus of 3.2 Gpa and a Poisson's ratio of 0.35, and as case 2 an optical fiber has an elastic modulus of 0.3 Gpa and the Poisson's ratio is 0.45 (in liquid (In case of similar characteristics).
  • the horizontal axis of the graph indicates x, y, and x in case 1 and case 2 when the thickness c (see FIG. 7B) of the adhesive (in this example, epoxy resin) is changed with respect to the horizontal axis of the graph. It shows the stress in the z direction.
  • the temperature distribution and pressure distribution of the measurement object can be measured using the Brillouin scattering frequency change and the Rayleigh scattering frequency change.
  • the sensitivity coefficients of ⁇ T and ⁇ P are different from those of the prior art, and also between the B fiber and the P fiber, ⁇ T And ⁇ P have different sensitivity coefficients. That is, in the first embodiment, it is necessary to evaluate the measurement values obtained as the frequency change of Brillouin scattering and the frequency change of Rayleigh scattering in consideration of these differences.
  • a single-core optical fiber has been described as an example.
  • the present invention is not limited to this, and a multi-core optical fiber may be employed.
  • the strain, temperature, and pressure of each core in the same optical fiber are the same.
  • the same argument as in the case of a single core optical fiber is established.
  • a multi-core it is possible to connect a plurality of measuring devices directly and simultaneously without using an optical switch, which is excellent in high-speed measurement.
  • Embodiment 2 FIG.
  • the difference in the pressure sensitivity characteristics of the two types of metal wire cables is mainly due to the difference in the optical fiber holding portion rather than the influence of the optical fiber itself.
  • the above-described two types of metal wire cables are constituted by two types of optical fibers having different pressure coefficients, for example, the optical fiber used therein is about 1 digit.
  • the difference in the characteristics of the pressure sensitivity of the cable is not due to the difference in the optical fiber holding part, but rather the influence of the difference in the characteristics of the optical fiber itself.
  • the effect similar to that of the first embodiment can be obtained also by using the DPTSS cable having such a configuration.
  • the present embodiment will be described in detail with reference to the drawings.
  • the inner layer (first layer) is a total of three metal wire cables including two optical fiber embedded cables which are the basic structure of the DPTSS cable and one dummy cable 9 shown in the first embodiment.
  • the outer layer (first layer) is configured in the same manner as in the first embodiment, and is a DPTSS cable configured as a whole with a strand structure.
  • an optical fiber 3a having a free structure is used for an optical fiber embedded cable 1a (hereinafter also referred to as Type 3), which is one of two optical fiber embedded cables, as in the first embodiment.
  • the other optical fiber embedded cable 1d (hereinafter also referred to as type 4) uses an optical fiber 3d having a free structure different from that of the first embodiment, and is different from the first embodiment in this respect.
  • the optical fiber 3d is an optical fiber having a pressure coefficient that is about one digit larger than that of the optical fiber 3a (see, for example, Non-Patent Document 2 for such an optical fiber). Is different. Even with this configuration, the same effect as described in the expression (28) can be obtained in the first embodiment. Therefore, the same effect as that of the first embodiment can be obtained as the entire DPTSS cable. Is.
  • the two optical fiber embedded cables constituting the DPTSS cable 10 of the present embodiment have an optical fiber holding portion similar to the P fiber described in the first embodiment. By using it, it is possible to measure the pressure change and temperature change of the measurement object. In addition, by adding an optical fiber fixing part (details will be described later) indicated by reference numeral 9 in the figure as an option, it is possible to detect changes in strain in addition to changes in pressure and temperature of the measured object. Become.
  • FIG. 9 shows another example of the configuration of the DPTSS cable 10 according to the present embodiment.
  • the inner layer which is the first layer, is used as a component, and three metals are used.
  • Wire cables are wound around each other in a spiral shape. 8 and 9 show a cross section in a direction perpendicular to the axis of the DPTSS cable on the assumption that a cross section B1-B1 and a cross section B2-B2 of FIG. 10 to be described later are on the same cross section. .
  • the DPTSS cable having such a configuration can be manufactured more easily than the DTSSS cable having the structure shown in FIG. 8, and the specification of the DPTSS cable has to be changed, such as the object to be measured is changed. Such a case can be easily handled.
  • the reason for configuring the metal wire cable as three cables instead of two is the same reason as in FIG.
  • optical fiber embedded cable shown in FIGS. 8 and 9
  • the optical fiber embedded cable of this embodiment can be manufactured roughly by the method shown in FIG.
  • an outline of a method for manufacturing the optical fiber embedded cable will be described by comparing the two types of optical fiber embedded cables 1a and 1d used in the present embodiment.
  • FIG. 10A shows an example of a manufacturing process of the optical fiber embedded cable 1a
  • FIG. 10B shows an example of a manufacturing process of the optical fiber embedded cable 1d
  • the optical fiber embedded cable 1a is generally manufactured in the order of steps STEP1 to STEP4 in FIG.
  • An optical fiber 3a having a normal pressure sensitivity characteristic is adopted as a core wire of the optical fiber embedded cable (STEP 1), and a water-soluble film 5b partially coated with a water-insoluble portion is coated (STEP 2). Thereafter, it is inserted into the groove 2 of the metal wire cable and held (STEP 3). Thereafter, in actual use, the water-soluble film portion of the water-soluble film 5b is dissolved in the solution to be measured (STEP 4). And it uses for actual measurement.
  • the water-soluble film 5a described in the first embodiment is entirely made of a water-soluble film, whereas the water-soluble film 5b shown in FIG. Although it is made of a water-soluble film, a part is made of a water-insoluble film.
  • the water-insoluble annular coating serves as a fixing portion 8 that fixes the optical fiber to the groove portion during use.
  • a plurality of the fixing portions 8 are provided in the longitudinal direction (axial direction) of the optical fiber embedded cable at a predetermined interval L (see STEP 2 in FIG. 10A).
  • B1-B1 of STEP4 in FIG. 10A and B2-B2 of STEP4 in FIG. 10B indicate cross sections orthogonal to the axis of each metal wire cable.
  • the optical fiber embedded type cable 1d is manufactured in the order of steps STEP1 to STEP4 in FIG. Unlike the manufacturing process of the above-described embedded optical fiber cable 1a, only the optical fiber 3d having a pressure sensitivity characteristic about one digit larger than the normal pressure sensitivity performance is adopted as the core of the embedded optical fiber cable (STEP 1). Other manufacturing processes are the same as the manufacturing process of the above-described optical fiber embedded cable 1a (detailed description is omitted).
  • the two types of embedded optical fiber cables are described as having the fixing portion 8, but not limited to this, only one of the two types has the fixing portion 8. May be. In addition, both may have no fixed portion. In either case, the same effects as in the first embodiment are obtained.
  • metal wire cables other than the metal wire cable which is the two types of optical fiber embedded cables shown in FIGS. 8 and 9 are type 3, type 4, or dummy cable 9 shown in the first embodiment. Any of these may be used, and the same effects as those of the first embodiment can be obtained with any configuration.
  • At least one of the three metal wire cables is a basic structure embedded optical fiber cable.
  • it has at least one embedded optical fiber cable whose characteristics are different from those of the above-mentioned basic structure embedded optical fiber cable. Is a feature.
  • the same effect as that of the first embodiment can be obtained by using two free-structure optical fibers without a fixed portion as a basic-structure optical fiber embedded cable.
  • an optical fiber embedded cable having a fixing portion another effect can be obtained. This will be described below.
  • the strain change is directly measured using the optical fiber 3a of the optical fiber embedded cable 1a having the fixing portion 8 in FIG. 10, and the pressure change and the temperature change are measured with the light having the fixing portion 8 in FIG. Measurement can be performed using the optical fiber 3a of the fiber embedded type cable 1a, the optical fiber 3d of the optical fiber embedded type cable 1d having no fixed portion, and two types of optical fibers.
  • these two types of embedded optical fiber cables have different optical fiber characteristics, the sensitivity coefficients of pressure change and temperature change are different from each other.
  • the pressure distribution and temperature distribution are obtained by measuring the frequency change of Brillouin scattering of the pressure change and temperature change of two types of optical fiber embedded cables, and the frequency change of Rayleigh scattering, and the optical fiber embedded cable Together with the obtained strain distribution measured in 1a, the required temperature distribution, pressure distribution, and strain distribution can be obtained.
  • the coating for coating the free-structure optical fiber at the time of manufacture may be an oil-soluble coating as well as a water-soluble coating. Is possible. The latter is used when the object to be measured is oily, such as an oil well.
  • Embodiment 3 a material that is one of the cable characteristics of an optical fiber embedded cable will be taken up, and an application example in the case where the material has characteristics will be described below.
  • the embedded optical fiber cable has the same structure as that shown in the first embodiment, and uses different metal materials for the metal wire cable. This is different from the first embodiment.
  • the third embodiment will be described with reference to the drawings.
  • FIG. 11 shows an example of the DPTSS cable 10 according to the third embodiment.
  • an optical fiber embedded cable 1e is used instead of the optical fiber embedded cable 1a.
  • the optical fiber embedded cable 1e is the same as the optical fiber embedded cable 1b in the point of using the optical fiber holding portion 4 having an adhesive, but is the same as in the first embodiment.
  • the material of the metal constituting 1e is basically different from that of the optical fiber embedded cable 1b (for example, in the case of the first embodiment, it is steel, and in this embodiment, it is aluminum).
  • the pressure sensitivity characteristic of the optical fiber 3e used here is also different from the characteristic of the optical fiber 3b of the optical fiber embedded cable 1b.
  • the sensitivity coefficient of ⁇ P is different from that in the first embodiment. Therefore, even when the configuration shown in FIG. 11 is used, ⁇ T and ⁇ P can be obtained.
  • a dummy cable 9 different from these is shown as the third cable.
  • the other one cable is not limited to this, and one of the two types of embedded optical fiber cables is used. It may be the same as one.
  • the DPTSS cable having the multilayer strand structure has been described.
  • the present invention is not limited to this, and the DPTSS cable shown in FIG. Needless to say, the same effect can be obtained.
  • the DPTSS cable 10 having such a configuration can be manufactured more easily, and can easily cope with a case where the specification of the DPTSS cable has to be changed, for example, the object to be measured is changed. Can do.
  • the same effect as that of the first embodiment can be obtained. Furthermore, in the configuration of the DPTSS cable according to the third embodiment, since a free-structure fiber is not used in the production, there is no need to provide a water-soluble coating production process for the optical fiber. For this reason, there is an effect that the manufacture becomes easier and a cost advantage can be obtained.
  • the present invention is not limited to the contents shown in each of the above embodiments, and each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted within the scope of the invention. It is.
  • the chemical protective layer of FIG. 5 can be similarly applied to the optical fiber embedded cable of the third embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

 DPTSSケーブルを、外周部の軸方向に溝を形成し、この溝内に光ファイバを備えた金属ワイヤケーブルを少なくとも2本備えたものとし、うち1本の金属ワイヤケーブルは、溝に沿って光ファイバを埋め込んだ光ファイバ埋め込み型ケーブルとし、他の1本の金属ワイヤケーブルは、前者の金属ワイヤケーブルとは、その特性が異なるものとした。

Description

DPTSSケーブル
 本発明は、従来のFIMTを備えた光ファイバケーブルに代わる光ファイバケーブルの組立、あるいは製造、例えば絞線加工、を容易にし、光ファイバを用いた圧力分布、ひずみ分布等の測定において、連続的な測定が可能な光ファイバケーブルに関するものである。
 従来、光ファイバ素線を金属管で被覆した芯線であるFIMT(Fiber In Metallic Tube)は、複数素線の被覆ができ、水あるいは水素ガスに対する密封性がよく、補強なしで所要の引張強度他の機械強度が保てる等、の利点があり、FIMT中の光ファイバは圧力による荷重を受けないため、温度センサとして機能して光ファイバに沿った長距離の連続的な温度分布を測定できるため、放射温度計をはじめ、種々の分野で広く利用されている。
 上記のようなFIMTの一例として、高温下で使用できる光ファイバ緩衝管を備えたものがあり、この光ファイバ緩衝管は、最低でも200℃以上、例えば350℃の高温下で動作する高温測定のセンサとしての光ファイバを備えている。また、上記光ファイバ緩衝管と高導電率の導体を備えた光ファイバケーブルがある(例えば特許文献1参照)。
 また、別の例として、トロリ線長手方向に形成されたセンサ収納溝に光ファイバ歪センサを収納し、長い区間及び長期間にわたり、トロリ線の摩耗により断面積が減少する部位に流れる電流による発熱量を計測し、トロリ線の断線危険部位を検出することができるものがある(例えば特許文献2参照)。この例では、光ファイバのひずみ測定による方法も述べられている。つまり金属管に負余長状態で光ファイバを実装し、張力無負荷の状態で、光ファイバはこれを内包する金属管より短い状態で間隙を持って内包され、金属管が張力を付与された状態でトロリ線長手方向に距離をおいて10cm~4m程度の間隔で間欠的に固定されている。光ファイバは温度もひずみも検出できるため、温度情報とひずみ情報を同時に監視し、いわゆるダブルパラメータ監視により確実性を高める計測方法もある。
 また、別の例として、工業用の分布型光ファイバセンシングの分野で、歪あるいは温度を旨く測定できた例がごく限られていることが指摘されている(例えば、非特許文献1参照)。これは、商用的に利用可能なシステムと実際の産業での要求とが、特に、空間分解能と精度においてマッチングしていないからである(例えば、一般的に距離分解能と温度分解能はトレードオフの関係にある)。ここでは、歪ゲージを使用した測定方法を超える能力を示すハイブリッドブリルアン・レイリー(Brillouin-Rayleigh)後方散乱光測定システムについても示されている。このシステムの原理が、光ファイバ校正方法を考慮して図示されるとともに、歪、温度、水圧を決めるための式が導き出され、議論されている。ただし、温度とブリルアン(Brillouin)周波数シフト、あるいは温度とレイリー(Rayleigh)周波数シフトの関係においてヒステリシスが生ずることが示されている。また光ファイバの保護膜である塗布剤の厚みの影響があることについても示されている。
米国特許出願公開第2013/0209044号明細書 特開2007-176426号公報 国際公開2014/083989号
 DPTSS(Distributed Pressure, Temperature, and Strain System)計測するには、これまで圧力を受けないファイバと圧力を受けるファイバをそれぞれ少なくとも1本ずつ設けて実現していた。そして、圧力を受けないファイバを金属管の中に配置するFIMTが採用されていた。
 しかしながら、従来、光ファイバ素線を金属管で被覆した芯線であるFIMT(Fiber In Metallic Tube)では、金属管(パイプ)の外径は約0.8mmφ~数mmφ程度であって、その肉厚は0.1mm~0.2mmであるため、断線しやすく、長尺の光ファイバケーブルを製造することは難しかった。
 特に、複数の金属管被覆芯線を撚りあわせて用いるFIMTにおいては、ケーブル外径が1mmφ程度の場合には、パイプの肉厚は0.1mm以下となり、機械強度の点などから、絞線加工が困難となる。
 また、従来のFIMTにおいては、密封性が良いとはいえ、被覆する金属管に1箇所でもピンホールがあると、圧力遮断機能が喪失して、精度の高い圧力の測定ができなくなるという問題がある。すなわち、ピンホールがあると、測定の対象となる流体がピンホールを通じてFIMTの内部に侵入するため、FIMTの内外での圧力差がなくなり、圧力測定ができなくなる。
 実際上、数km長のFIMTを製造する場合において、ピンホールを100%検出することは困難であり、コストがかかるという問題もある。地上部分でFIMTを開口して内部圧力を解放する方法もあるが、FIMT内部に通常充填されているグリースにより、この方法による効果も万全とはいえない。
 また、従来のFIMTを備えた光ファイバケーブルによる圧力、歪、温度測定においては、例えば、光ファイバケーブルには、被測定体の圧力を計測する光ファイバ芯線と、被測定体の温度を計測するアーマードケーブル中のFIMTが備えられ、当該光ファイバ芯線とアーマードケーブル間に環状の空隙層が形成されるよう、光ファイバ芯線とアーマードケーブルを固定する固定材を光ファイバケーブルの軸方向に、間隔をおいて設けたものがある。
 この装置においては、被測定体の歪を正確に測定するため、所定の間隔でアーマードケーブルと光ファイバを固定する固定材を設け、その固定材の設置位置で両者を固定する必要があり、この固定材の設置された箇所では圧力を正確に測定できないという問題が生じていた。このことから、固定材の設置位置では、光ファイバに生ずる歪を正確に求めることができず、従って、連続的な歪分布が測定できないという問題が生じていた。
 また、多層アーマードケーブルの場合においては、各層間の相対すべりにより、アーマードケーブルの歪と光ファイバ芯線の歪との間にずれが生ずるような場合においても、正確な歪分布を得ることはできないという問題もある。
 本発明は上記の課題に鑑みてなされたもので、FIMTを採用していないためピンホールの問題は生じず、断線等の懸念がほとんどなく、また、使用する多数本のケーブルの組立が容易であることなどによって製造が容易であって、かつ連続的な歪分布測定可能なDPTSSケーブルを提供することを目的とする。
 この発明に係るDPTSSケーブルは、
光ファイバに出射されたパルスレーザ光の散乱であるブリルアン散乱とレイリー散乱の周波数変化をもとに、被測定体の圧力分布、歪分布、温度分布を測定するため、
外周部の軸方向に溝を形成し当該溝内に光ファイバを備えた金属ワイヤケーブルを、少なくとも2本備えたDPTSSケーブルであって、
一の前記金属ワイヤケーブルは、当該金属ワイヤケーブルの前記溝に沿って光ファイバを埋め込んで保持した光ファイバ埋め込み型ケーブルであり、
他の前記金属ワイヤケーブルは、前記光ファイバ埋め込み型ケーブルとは異なる特性を持つ金属ワイヤケーブルであって、前記光ファイバ埋め込み型ケーブルのブリルアン散乱およびレイリー散乱の周波数変化に対する圧力変化の感度係数とは異なる圧力変化の感度係数を持つよう構成したものである。
 この発明によれば、従来のFIMTを用いた場合に比べて、ピンホールの課題を完全に排除することが可能となり、また特殊なレーザー溶接が不要であることから、高速かつ経済的な製造が可能となるため、ケーブル構造を組み立てる際に組立性の改善が図れる。また、ピンホールによる圧力遮断機能の喪失がない。さらに、従来のDPTSSケーブルを用いた固定点を設ける方式では不可能であった連続的なひずみ分布計測が可能となる。
この発明の実施の形態1によるDPTSSケーブルに用いられる光ファイバ埋め込み型ケーブルの基本構造の一例を示す図である。 この発明の実施の形態1によるDPTSSケーブルの構成の一例を示す図である。 材質の違いによる圧力変化とレイリー散乱の周波数変化との関係の一例を示す図である。 この発明の実施の形態1によるDPTSSケーブルの構成の他の例を示す図である。 この発明の実施の形態1によるDPTSSケーブルに用いられる光ファイバ埋め込み型ケーブルの基本構造の他の例を示す図である。 応力シミュレーションに用いた光ファイバ埋め込み型ケーブルの基本構造のパラメータを説明するための図である。 応力シミュレーション結果の一例を示す図である。 この発明の実施の形態2によるDPTSSケーブルの構成の一例を示す図である。 この発明の実施の形態2によるDPTSSケーブルの構成の他の例を示す図である。 この発明の実施の形態2によるDPTSSケーブルに用いられる光ファイバ埋め込み型ケーブルの製造方法を説明するための図である。 この発明の実施の形態3によるDPTSSケーブルの構成の一例を示す図である。 この発明の実施の形態3によるDPTSSケーブルの構成の他の例を示す図である。
実施の形態1.
 以下、本発明の実施の形態1について図を用いて説明する。本実施の形態の具体例を示す前に、まず本発明に係るDPTSSケーブル10の基本構造について図1を用いて説明する。図1は、本発明の実施の形態1によるDPTSSケーブル10に用いられる金属ワイヤケーブルである光ファイバ埋め込み型ケーブルの基本構造の一例を示す図である。図1(a)は、この光ファイバ埋め込み型ケーブル1の基本構造の概念図であり、図1(b)、図1(c)は、この光ファイバ埋め込み型ケーブル1の軸に直交する方向の断面図であり、図1(a)のA矢視に相当する。図1に示す例では、1本の光ファイバ埋め込み型ケーブル1の外周部分であって、その長手方向に沿って凹状(切り込み溝)に形成され、この光ファイバ埋め込み型ケーブルの軸に直交する方向の断面形状がU字状の溝2に、光ファイバ3を埋め込んで収納し、この光ファイバ埋め込み型ケーブル1の長手方向の全長にわたって樹脂等により光ファイバを保持したものである(この部分を以降、光ファイバ保持部4と呼ぶ)。本発明では、DPTSSケーブルの基本構造として、圧力を受ける感度の異なる2種類の構造のものを提案している。
 第1の基本構造(以下タイプ1とも呼ぶ)は、光ファイバ保持部4が水溶性被膜5aで構成されており、この光ファイバ保持部を切込みのあるワイヤの中に固定する(埋め込む)ものである(図1(b)参照)。本基本構造をもつワイヤは、ストランド(撚り線)する際に、ワイヤ1本として扱え、DPTSSケーブル製作を可能にするものであって、DPTSSケーブル完成後、上記水溶性被膜を溶解させ、ケーブル周りの全部分(100%の部分)で圧力感度を有する構造のものである。
 第2の基本構造(以下タイプ2とも呼ぶ)は、光ファイバ保持部4が接着剤5c、あるいは光ファイバの被覆部分が弾性材5dで構成されているような場合であり、接着剤による接着効果、あるいは被覆部分の弾性効果を利用してワイヤの切込み部分に実装する(埋め込む)ものである(図1(c)参照)。本基本構造をもつワイヤは、ストランド(撚り線)する際に、ワイヤ1本として扱え、DPTSSケーブル製作を可能にするものである点は上記第1の基本構造のものと同じである。しかし、圧力測定時においては、溝の形状、ワイヤとの結合方法により、光ファイバに負荷される圧力はケーブル周りの静水圧の一部でしかなく、この場合の光ファイバの圧力に対する感度は、上記第1の基本構造のものとは異なる。そして、本実施の形態においては、上述の2種類の光ファイバを埋め込んだワイヤを用いて、DPTSSケーブルを製造する。
 なお、図1(c)において、埋め込み距離hは使用時における光ファイバ埋め込み型ケーブル変形量(ケーブルの径方向変形量)より大きく設定されており、光ファイバ埋め込み型ケーブル1の長手方向において軸回りのねじり変形があっても、それによって光ファイバ3による計測に悪影響を及ぼすことはない。また、この図において、Dは光ファイバ埋め込み型ケーブルの直径、bは光ファイバ埋め込み型ケーブルの最外周半径位置でのU字形状の溝の開口幅、hはU字形状の溝の溝深さであり、例えば、D=1.17mm、b=0.3mm、h=0.3mmに設定されている。また、さらに詳細にいうと、このU字形状の溝は外周側に凹状の段差部分を持っている。この部分を以降、凹部と呼ぶ。以上を前提にして、以下、実施の形態1の具体例の詳細を説明する。
 図2は、この光ファイバ埋め込み型ケーブル1を用いたDPTSSケーブル10の構成の一例を示す図であり、DPTSSケーブルの軸に直交する方向の断面図である。図2(a)は、DPTSSケーブルに用いられる金属ワイヤケーブルの構成を示す断面図、図2(b)、図2(c)、図2(d)は、それぞれ、図2(a)の一部拡大図である。
 図2(a)に示すように、DPTSSケーブル10では、通常、上述のような、基本構造の異なる2種類のワイヤを少なくとも各1本ずつ備えた構造となっていることが特徴であり、これら2種類のワイヤを内層である第1層(図中、一点鎖線の枠内の層)に配置し、その外周を第2層(図中、一点鎖線と二点鎖線の枠内の層)である外層で取り囲んだ交差撚りのストランド構造のDPTSSケーブルとなっている。
 ここで、図2(a)に示す光ファイバ埋め込み型ケーブル1aは、その拡大図である図2(b)に示すように、第1の基本構造である光ファイバ保持部4を水溶性被膜5aで構成した金属ワイヤケーブルであり、光ファイバ3aを溝に埋め込んでいる。この水溶性被膜5aは、使用時において、被測定体である水溶液によって溶解するため、光ファイバ3aはフリーな状態で使用に供される。
 同様に図2(a)に示す光ファイバ埋め込み型ケーブル1bは、図2(c)の拡大図に示すように、第2の基本構造である光ファイバ保持部4を樹脂等の接着剤5cで構成した金属ワイヤケーブルであり、光ファイバ3bを溝に埋め込んでいる。以降では、これら、溝に埋め込んだ光ファイバを総称して、ビルトインファイバと呼び、そのうちタイプ1に用いられるファイバをPファイバ、タイプ2に用いられるファイバをBファイバと以下称する。
 また、図2(d)は、上記2種類の金属ワイヤケーブルのいずれとも異なるダミーケーブル9を説明する図であり、金属ワイヤケーブルである光ファイバ埋め込み型ケーブル1a、1bに比較して、細径の複数本のワイヤで構成されたストランド(撚り線)となっている。
 なお、図2(a)に示す金属ワイヤケーブルの組み合わせは上記に限らず、ダミーケーブル9に代えて、金属ワイヤケーブルである光ファイバ埋め込み型ケーブル1a、あるいは1bのいずれか1本を用いてもよい。また、上記では、フリー構造の光ファイバを作成するため、水溶性被膜を用いた例を示したが、被測定体が石油などの油性である場合には、水溶性被膜を油溶性被膜に代えることで同様の効果を得ることができる。また、同じワイヤ上に溝を2つ設けて、それぞれに光ファイバを1本づつ、計2本実装することもできる。
 このような光ファイバ埋め込み型ケーブルを使う方式においては、図2(a)に示したように、通常、DPTSSケーブルを多層化構造とする必要がある。以下、この多層化された構造体をストランド構造体6と呼ぶ。特にタイプ1の金属ワイヤケーブルはその切込み部をDPTSSケーブルの中心軸の向きに配置するのが好ましい。
 この理由は、以下の通りである。すなわち、本ケーブルを用いて液体中などの水圧が負荷された条件下で計測する場合には、その液体に通常、プロッパント(proppant)、すなわち砂を主成分とする物質が含まれている。本実施の形態の光ファイバ埋め込み型ケーブルでは光ファイバが金属ワイヤケーブルの表面近くに配置されているため、この砂が金属ワイヤケーブルの表面を摩耗させ、この結果、砂成分が光ファイバに直接接触して光ファイバにダメージを与える可能性がある。本実施の形態の多層化構造は、砂侵入を阻止するフィルタ機能を果たすとともに、水圧を測定する機能を維持している。また、このフィルタ機能は、多層化した内周部ほど効果が大きい。
 ところで、図2における多層化した光ファイバ埋め込み型ケーブルは上述のようにストランド構造体(撚り線構造体)6として配置されているが、ここで用いられるストランド構造体(撚り線構造体)は、通常、交差撚りといわれる構造のものである。交差撚りでは、ほぼ同径の素線を使用するため、一般的には、取扱い易く安価であるという特徴がある。そして、内層と外層間で螺旋のピッチが異なるストランド構造となっており、内側の層の光ファイバ埋め込み型ケーブルの並びの凹凸をまたぐように外側の層の光ファイバ埋め込み型ケーブルの層が接する配置となっている。従って、交差撚りの場合、外層のひずみを忠実に中央のワイヤに伝えられない可能性があるが、ケーブル構造の安定性がすぐれている。また、ケーブルに砂侵入の可能性がないときは、ひずみ測定ワイヤを外層に配置することも可能となり、ひずみ測定が有効に実現できる。
 なお、図2では一例として、基本構造を有する光ファイバ埋め込み型ケーブルの外側に1層のみの外層を構成したDPTSSケーブルを示したが、これに限らず、外層が2層以上で構成されるストランド構造体であってもよい。例えば外層が2層の場合には、基本構造を有する光ファイバ埋め込み型ケーブルが配置されている層を内層、この内層のすぐ外側の層を中間層、その外側の層を最外層、と以下称する。
 また、別のストランド構造である平行撚りを採用してもよい。平行撚りの場合には、一般に異なる径の素線を同時に撚り合わせて、内層から外層まで、互いにケーブルの長手方向に同一ピッチで撚られている。例えば、上述の基本構造を有する光ファイバ埋め込み型ケーブルが配置されている第1層である内層と、そのすぐ外側の第2層である中間層と、この第2層の外側に位置する第3層である最外層は、第1層から第3層までが、互いに、ケーブルの長手方向に同一ピッチで撚られた構造とすることができ、このような構造の平行撚りでは、各光ファイバ埋め込み型ケーブル1同士の接触状態はいわゆる線接触であるため線接触撚りとも呼ばれる。すなわち、ストランドの第1層の谷間に第2層が重なり、ストランドの第2層の谷間に第3層が重なって各層が隙間なく配置されるような構造となる。このため、各光ファイバ埋め込み型ケーブル1同士の摩耗あるいは金属疲労による断線が起こり難いという長所があり、また、型くずれ、あるいは変形が起こり難く破断荷重も高くなるという特徴を備えている。
 さらに、ストランド構成するワイヤに異なる直径のものを用いて、層と層の間の結合を強化する方法もあるが、従来、光ファイバが含まれていないケーブル構造体で熟知されており、ここでは詳細な説明を省略する。
 ところで、最近の研究によって、光ファイバを埋め込んだ形状体の外圧により、この形状体に発生した変形によって発生した光ファイバの変形によって、光ファイバに出射されたパルスレーザ光の散乱光であるブリルアン散乱の周波数変化は以下の式(1)により、またレイリー散乱の周波数変化は以下の式(2)で表されることが示されている(特許文献3参照)。
Figure JPOXMLDOC01-appb-M000001

ここでC11、C12、C13は、それぞれ、ブリルアン散乱の周波数変化における光ファイバの歪変化に対する感度係数、温度変化に対する感度係数、圧力変化に対する感度係数である。
Figure JPOXMLDOC01-appb-M000002

ここでC21、C22、C23は、それぞれ、レイリー散乱の周波数変化における光ファイバの歪変化に対する感度係数、温度変化に対する感度係数、圧力変化に対する感度係数である。
 この原理を今回提示するDPTSSケーブルに適用することで、所望の被測定体の圧力、温度、歪の連続的な分布が測定できることを以下順に説明する。
 光ファイバを鋼線などに固定して変形させた場合、鋼線の剛性は光ファイバの剛性に比較して非常に大きいため、光ファイバの変形は鋼線の変形に一致する。発明者の最近の研究によれば、圧力変化に関わる項目に限定して考えた場合、βを圧力変化に対する体積変化係数として、光ファイバの圧力変化によるレイリー散乱の周波数変化は次の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、ΔνとΔPとの関係を表す感度係数であるC23+βC21をまとめ、これを改めてK23とおくと、K23は水中での計測等により、図3に示すような特性を示す。つまり、固定する材質によって感度係数が異なる特性をもち、固定材質が鋼(Steel)の場合が一番小さく(感度が低く)、ついでアルミ(Al)であった。そして光ファイバを特に固定しない場合(フリー構造の場合)に一番大きな値を示した。
 さらに、レイリー散乱においては、適当な固定物質を選べば、次式(4)が成立する場合があることが判っている。
Figure JPOXMLDOC01-appb-M000004

すなわち、光ファイバに圧力変化が生じても、レイリー散乱の周波数は変化しないという特性を持つ場合があることが判っている。
 従って、実際の計測においては、必要な精度に応じて、上述のような、感度係数を上げる構造等を選択することが重要になる。
 本実施の形態1においては、従来形式のFIMTを用いるわけではないので、上記の式(1)、あるいは式(2)の周波数変化の評価式をそのまま使用して、歪などを評価することはできない。そこで、まず、本実施の形態で使用できる評価式を上記式(1)、(2)をもとに導出する。以下では、2種類の金属ワイヤケーブルの光ファイバとして、上述のタイプ1のPファイバとタイプ2のBファイバを組み合わせた場合を例に説明する。
 PファイバとBファイバの素線は同一とすると、上記式(1)、(2)から、各ファイバについて、以下の式(5)~式(8)が成立する。
Figure JPOXMLDOC01-appb-M000005

Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-M000007

Figure JPOXMLDOC01-appb-M000008

ここで、各式において、上付き符号P、Bは、それぞれ、Pファイバの場合、Bファイバの場合を示し、下付き符号B、Rはそれぞれ、ブリルアン散乱の場合、レイリー散乱の場合を示す。
 また、下記の(9)、(10)で表される係数は、それぞれ、張力等を付加しないフリーのPファイバ、Bファイバに、温度または圧力を負荷したときに計測される温度と周波数シフト、圧力と周波数シフト関間の関係を表す式の傾きを表わす係数である。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 そして、これらの係数は、温度については、熱膨張による歪を、また、圧力については、体積圧縮による歪を含んでいる。従って、PファイバとBファイバとでは、値が異なっている。
 そこで、これらの歪による影響を考えるため、熱歪による係数をα、体積圧縮による係数をβとすると、上記(9)、(10)の各係数は、以下の式(11)~(18)で示すように、光ファイバ固有の項(係数α、あるいは係数βを含まない項)、熱歪による項(係数αを含む項)、および体積圧縮による項(係数βを含む項)に分離して表すことができる。
Figure JPOXMLDOC01-appb-M000011

Figure JPOXMLDOC01-appb-M000012

Figure JPOXMLDOC01-appb-M000013


Figure JPOXMLDOC01-appb-M000015

Figure JPOXMLDOC01-appb-M000016

Figure JPOXMLDOC01-appb-M000017

Figure JPOXMLDOC01-appb-M000018
 式(11)~式(18)を用いると、式(5)~式(8)は、下記の式(19)~式(22)で、それぞれ表される。
Figure JPOXMLDOC01-appb-M000019

Figure JPOXMLDOC01-appb-M000020

Figure JPOXMLDOC01-appb-M000021

Figure JPOXMLDOC01-appb-M000022
 そこで、計測によって求まる各式左辺のブリルアン散乱の周波数変化の値、およびレイリー散乱の周波数変化の値、および既知である各感度係数(C11他)の値を基に、以上の式を用いて、ΔT、ΔPを求めることを考える。上述の式(5)、式(6)から、以下の式(23)が求まる。
Figure JPOXMLDOC01-appb-M000023

また、式(19)、式(20)より、以下の式(24)が求まる。
Figure JPOXMLDOC01-appb-M000024
 同様に、式(7)、式(8)から、以下の式(25)が求まる。
Figure JPOXMLDOC01-appb-M000025

また、式(21)、式(22)より、以下の式(26)が求まる。
Figure JPOXMLDOC01-appb-M000026
 式(23)、式(25)から、これらの式を連立することにより、ΔT、ΔPが求まる(独立して求められる)ように思われる。しかしながら、式(23)の右辺は式(24)の右辺と等価であり、式(25)の右辺は式(26)の右辺と等価であることを考慮し、かつ、式(24)の右辺と、式(26)の右辺は全く同一の式になっていることを考慮すれば、ΔT、ΔPは互いに独立して求めることができないことが判る。つまり、以上の式からはΔT、ΔPを求めることはできない。
 そこで、この問題を解決するためには、以下の考えを導入することが必要であることが判る。すなわち、Bファイバについては、このファイバが受ける圧力をΔPとしてきたが、一般に、Bファイバがそれより剛な材料に囲まれているときには、実際にBファイバが受ける圧力ΔP1は、式(27)の関係になっていると考えられる。
Figure JPOXMLDOC01-appb-M000027

すなわち、Bファイバについては、以下の式(28)が一般的に成立する。
Figure JPOXMLDOC01-appb-M000028

なお、Pファイバについては、k=1とすればよい。
 よって、圧力のみの変化による光ファイバのブリルアン周波数シフトは、金属のΔPによる変形を考えると、次式(29)で表される。
Figure JPOXMLDOC01-appb-M000029

ここで、右辺の左側のΔPの係数を式(30)で置きなおせば、Bファイバの圧力変化に対する真の感度係数は、式(30)の左辺で表されると見なせる。
Figure JPOXMLDOC01-appb-M000030

なお、従来のFIMTは、この式(30)でk=0となる極端な場合の例と言える。
 一方、圧力のみの変化による光ファイバのレイリー周波数シフトについても、同様に式(31)で表される。
Figure JPOXMLDOC01-appb-M000031
 そこで、歪を消去したPファイバの式(24)を見やすくするため、係数を簡略化した記号で置き換え、式(32)として表す。
Figure JPOXMLDOC01-appb-M000032

また、Bファイバの式(26)を、式(30)、式(32)を用いて、同様に式(33)として表す。
Figure JPOXMLDOC01-appb-M000033
 ここで、S、R、Q1、Q2は、以下の通りである。
Figure JPOXMLDOC01-appb-M000034

Figure JPOXMLDOC01-appb-M000035

Figure JPOXMLDOC01-appb-M000036

Figure JPOXMLDOC01-appb-M000037

 上記の式(32)、式(33)では、各右辺の式は互いに異なるため、ΔT、ΔPは互いに独立して求めることができることがわかる。すなわち、本実施の形態1の方式のPファイバとBファイバを同時に用いることにより、被測定体の温度分布、圧力分布を求めることができることになる。
 以上をまとめると、実施の形態1でのPファイバとBファイバにおけるブリルアン散乱の周波数変化、およびレイリー散乱の周波数変化は、式(19)~式(21)及び式(30)、式(31)などから、結局、以下の式(38)~式(41)で表される。
Figure JPOXMLDOC01-appb-M000038

Figure JPOXMLDOC01-appb-M000039

Figure JPOXMLDOC01-appb-M000040

Figure JPOXMLDOC01-appb-M000041
 ここで、ΔTとΔPの各感度係数は以下の関係式(42)を満たす。また、Δε、Δεは以下の式(43)、式(44)で表される値である。
Figure JPOXMLDOC01-appb-M000042

Figure JPOXMLDOC01-appb-M000043

Figure JPOXMLDOC01-appb-M000044
 なお、上記の式(38)~式(41)から、BファイバとPファイバ間で、ΔTとΔPの感度係数が異なるものとなっていることが確かめられる。すなわち、PファイバとBファイバなど、感度の異なる2種類のファイバを用いることで、これらのファイバの温度変化、圧力変化によるブリルアン散乱の周波数変化、およびレイリー散乱の周波数変化をそれぞれ求め、これら4種類のデータが式(38)~式(41)によることを基に、これらの式から歪変化Δε、Δεをそれぞれ消去して求めたΔTとΔPの関係式(ΔTとΔPを2つの未知数とする2元連立方程式)から、ΔTとΔPを求めることができる。
 つまり、上記の式(38)~式(41)の原理式を実現する実施の形態1の一例が上記の図2に示したものである。すなわち、第1の基本構造のPファイバにより、被測定体の圧力変化等によるブリルアン散乱の周波数変化、およびレイリー散乱の周波数変化を計測するとともに、第2の基本構造のBファイバにより、被測定体の圧力変化等によるブリルアン散乱の周波数変化、およびレイリー散乱の周波数変化を計測する。
 そして、予め求めておいたΔε、ΔT、およびΔPの感度係数と、上記式(38)~式(41)を基にして、これらの式を連立させて演算することにより、Δε、ΔT、およびΔPが求められ、結局、所定のケーブル位置での求めるべき圧力、温度、歪が求まり、この位置と異なるケーブル軸上の多点位置で同様に計測値が求まることで、被測定体の圧力分布、温度分布、歪分布を求めることができる。
 以上のような光ファイバ埋め込み型ケーブル1を使う方式により、従来のFIMTを用いた場合の組立性の改善、ピンホールによる圧力遮断機能の喪失といったデメリットを克服できることは勿論、従来の固定点を設ける方式の欠点であった連続的な歪測定が可能となる。また、光ファイバは、従来より外径の大きな鋼線など(従来のケーブル径としては、例えば図2(d)に示したダミーケーブルの径を想定すればよい)の金属の外周に設けた溝に埋め込むだけの構造であり、DPTSSケーブルの製造は比較的容易である。
 また、上述の説明においては、多層のストランド構造のDPTSSケーブルについて説明したが、これに限らず、図4に示すように、図2に示した内層を構成する2種類の金属ワイヤケーブルを含む第1層の構成のみを用いて螺旋に巻回した構造のものでも、同一の効果を奏することはいうまでもない。また、このような構成のDPTSSケーブル10は、より簡易に製造することが可能であり、被測定体が変わるなど、DPTSSケーブルの仕様を変更しなければならないような場合にも容易に対応することができる。なお、金属ワイヤケーブルを、2本ではなく3本のケーブルとして構成するのは、各金属ワイヤケーブル同士の接触状態を線接触状態にして、DPTSSケーブルとして構造の安定化を図るためである。すなわち、各金属ワイヤケーブル同士の摩耗あるいは金属疲労による断線が起こり難くし、また、型くずれ、あるいは変形が起こり難く破断荷重も高くなるという特徴を備えるようにするためである。
 なお、計測の原理式である式(40)~式(41)のファイバに生ずる歪は、そのまま、光ファイバ埋め込み型ケーブルの歪に等しく、従って、結局、被測定体の歪はBファイバに生ずる歪となっていることを、ここで、もう一度、確認しておきたい。また、光ファイバを埋め込む溝の形状はU字形状のもので説明したが、この形状に限らず、凹状の形状であれば、同様の効果を奏する。
 また、以上では光ファイバを埋め込むU字形状の溝2は外周側に凹部を持つものを示して説明したが、これに限らず、図5に示すように、この凹部の外側寄り(金属ワイヤケーブルの外周寄り)に樹脂などの化学保護層7で覆われ、光ファイバ3cを溝2に埋め込んだ光ファイバ埋め込み型ケーブル1cでも、DPTSSケーブルに上述の光ファイバ埋め込み型ケーブル1a、1bを採用した場合と同様の効果を奏する。さらに、この図5のような化学保護層7で覆った構造のものでは、水素ガス等の内部への侵入を有効に防ぐことができるため、光ファイバ3cの性能の劣化を防止できる効果がある。
 なお、以上の説明において、外層である中間層、あるいは最外層を構成する各ワイヤケーブルは、上述のダミーケーブル9、光ファイバ埋め込み型ケーブル1(1a~1c、1e。1eについては後述)のいずれであってもよい。
 ここで、U字形状の溝を有する光ファイバ埋め込み型ケーブル内に設置された光ファイバに対する歪に密接に関係する応力について、3次元シミュレーション解析により確認したので、以下図を用いて説明する。なお、本シミュレーション解析では、光ファイバ埋め込み型ケーブルの形状を格子状に分割したモデルを用いた。このモデルでは、光ファイバ保持部のうちでも光ファイバが存在する領域の近傍では、それ以外の領域に比較してこの格子の間隔を特に細かく設定しており、このように設定したモデルを用いて3次元領域で発生する応力のシミュレーションを行った。
 図6は、本シミュレーションに用いた光ファイバ埋め込み型ケーブルの軸に直交する断面形状モデルを示す図であって、本シミュレーションに用いる各パラメータを説明するための図である。図6(a)では、このモデル図における主な形状パラメータを説明するための図、図6(b)は、図6(a)のうち、光ファイバ保持部の形状のパラメータをさらに詳細に説明するため、図6(a)の光ファイバ保持部に相当する部分を拡大した図である。これらの図において、Dは光ファイバ埋め込み型ケーブルの外径、hは溝の深さ、bはU字形状の溝の上部の開口部分の幅、cは接着剤の厚さ、dは被膜を含めた光ファイバ外径、dはクラッド外径、eは光ファイバ埋め込み型ケーブルの外表面から光ファイバの中心位置までの距離、をそれぞれ示す。また、光ファイバ埋め込み型ケーブルの材質は鋼線とする。また、座標は図中に示した通り、右方向がx軸のプラス方向、上方向がy軸のプラス方向である。なおz方向は紙面に垂直な方向(紙面下側から上に向かう方向がプラス方向)であり、光ファイバ埋め込み型ケーブルの軸方向に相当する。
 図7に外圧が作用した場合のシミュレーション結果の一例を示す。この図はケース1として光ファイバの弾性係数が3.2Gpa、ポアソン比が0.35の場合と、ケース2として光ファイバの弾性係数が0.3Gpa、ポアソン比が0.45の場合(液体に似た特性の場合)とを採り上げ、比較したものである。図中、グラフの横軸は接着剤(本例ではエポキシ樹脂)の厚さc(図7(b)参照)をグラフの横軸にとって変化させた場合のケース1とケース2のx、y、z方向の応力を示したものである。
 この結果から、応力の値は全て負の値を取るので、いずれの方向にも圧縮応力が負荷されていることが判る。また、応力の値は、ケース2の方が横方向xの応力と縦方向yの応力がより近い状態となっているが、両者ともほぼ等方的(x、yの2方向の応力の値がほぼ等しい)になっているといえる。
 このことは、実施の形態1に示した光ファイバ埋め込み方式の光ファイバ埋め込み型ケーブルを用いたDPTSSケーブルにおいて、歪分布についても適正な計測が可能であることを数値解析的に裏付けるものである。なお、本シミュレーションで用いたパラメータの値は、D=0.75mm、b=0.3mm、d=0.25mm、d=0.125mm、h=0.6mmである。
 以上説明したように、ブリルアン散乱の周波数変化、およびレイリー散乱の周波数変化を用いて、被測定対象物の温度分布、圧力分布の計測が可能であるが、これらの式、すなわち、式(38)~式(41)と式(1)、式(2)との対比から判るように、ΔTとΔPの感度係数は、従来とは異なるものであり、また、BファイバとPファイバ間でも、ΔTとΔPの感度係数が異なるものとなることが特徴である。すなわち、本実施の形態1では、これらの違いに留意してブリルアン散乱の周波数変化、およびレイリー散乱の周波数変化として得られる計測値を評価する必要がある。
 以上においては、シングルコアの光ファイバを例にして説明したがこれに限らず、マルチコアの光ファイバを採用して実施する場合もある。その場合、同一の光ファイバ中の各コアのひずみ、温度、圧力は同じであると仮定することができる。そして、以上に述べた各数式におけるひずみ、温度、圧力は、同一の光ファイバ中の各コアの値とみなすことにより、シングルコアの光ファイバの場合と同様の議論が成立する。マルチコアの場合においては、光スイッチを介することなく、複数の計測機器を直接、同時に接続することが可能となるため、高速測定において優れている。
実施の形態2.
 以上の実施の形態1では、2種類の金属ワイヤケーブルを同軸状に配置し、多層のストランド構造体6として構成したDPTSSケーブル10の一例を示した。この2種類の金属ワイヤケーブルの圧力感度の特性の違いは、光ファイバ自体の影響というよりは、主としてその光ファイバ保持部の差によるものであった。
 この実施の形態2では、上記2種類の金属ワイヤケーブルを、そこに使用される光ファイバを例えば1ケタ程度、圧力係数の異なる2種類の光ファイバで構成するものであり、2種類の金属ワイヤケーブルの圧力感度の特性の違いが、その光ファイバ保持部の差によるものというよりは、光ファイバ自体の特性の差による影響が大きい構成としたものである。このような構成としたDPTSSケーブルを用いることによっても、実施の形態1と同様の効果を得ることができる。以下本実施の形態について図を用いて詳しく説明する。
 本実施の形態のDPTSSケーブル10の構成の一例を図8に示す。図8において、内層(第1層)は、DPTSSケーブルの基本構造である光ファイバ埋め込み型ケーブル2本と、実施の形態1で示したダミーケーブル9が1本の計3本の金属ワイヤケーブルで構成され、外層(第1層)は、実施の形態1と同様に構成され、全体としてストランド構造で構成されたDPTSSケーブルである。
 図において、2本の光ファイバ埋め込み型ケーブルのうちの1つである光ファイバ埋め込み型ケーブル1a(以下タイプ3とも呼ぶ)には、実施の形態1と同様、フリー構造の光ファイバ3aが使用されており、もう1つの光ファイバ埋め込み型ケーブル1d(以下タイプ4とも呼ぶ)には実施の形態1とは異なるフリー構造の光ファイバ3dが使用されており、この点で実施の形態1とは異なる。すなわち、光ファイバ3dは、光ファイバ3aと比較して圧力係数が1ケタ程度大きい光ファイバであり(このような光ファイバについては、例えば非特許文献2参照)、この点で光ファイバ3aとは異なるものである。
 このような構成とすることによっても、実施の形態1において、式(28)で説明したのと同様の効果が得られ、従って、DPTSSケーブル全体として、実施の形態1と同様の効果が得られるものである。
 本実施の形態のDPTSSケーブル10を構成する2本の光ファイバ埋め込み型ケーブルは、実施の形態1で説明したPファイバと同様の光ファイバ保持部を有するものであり、この光ファイバ埋め込み型ケーブルを用いることにより、被測定体の圧力の変化、および温度変化を計測することが可能である。なお、図中、符号9で示した光ファイバの固定部(詳細は後述)を追加しオプションとして設けることにより、被測定体の圧力の変化、および温度変化に加え、歪変化の検知も可能となる。
 図9は、本実施の形態のDPTSSケーブル10の構成の他の例であり、図4と同様に、図8の構成要素のうち、第1層である内層のみを構成要素として3本の金属ワイヤケーブルを互いに螺旋状に巻回するものである。なお、これら図8、図9は、後述する図10の断面B1-B1と断面B2-B2とが同一の断面上にあるとして、DPTSSケーブルの軸に垂直な方向の断面を示したものである。この図に示すように、1層で2種類の金属ワイヤケーブルを用いて構成したものでも、図8と同一の効果を奏することはいうまでもない。
 さらに、このような構成のDPTSSケーブルは、図8の構造のものに比較して、より簡易に製造することが可能であり、被測定体が変わるなど、DPTSSケーブルの仕様を変更しなければならないような場合にも容易に対応することができる。なお、金属ワイヤケーブルを、2本ではなく3本のケーブルとして構成するのは、図4の場合と同様の理由である。
 次に、図10を用いて、図8、図9で示した光ファイバ埋め込み型ケーブルの製法について説明する。本実施の形態の光ファイバ埋め込み型ケーブルは、概略、図10で示す方法により製作することができる。以下、この光ファイバ埋め込み型ケーブルの製作方法の概略を、本実施の形態に用いられる2種類の光ファイバ埋め込み型ケーブル1aと1dを比較しながら説明する。
 図10(a)は、光ファイバ埋め込み型ケーブル1aの製作工程の一例を示し、図10(b)は、光ファイバ埋め込み型ケーブル1dの製作工程の一例を示す。光ファイバ埋め込み型ケーブル1aの製作は、概略、図10(a)のSTEP1からSTEP4の工程順に行う。光ファイバ埋め込み型ケーブルの芯線として、通常の圧力感度特性を持つ光ファイバ3aを採用し(STEP1)、この芯線に、一部に非水溶性部分を設けた水溶性被膜5bをコーティング(STEP2)した後、金属ワイヤケーブルの溝2に挿入して保持する(STEP3)。その後、実際の使用時において、被測定体である溶液中で水溶性被膜5bの水溶性の被膜部分を溶解させる(STEP4)。そして、実際の計測に使用する。
 ここで、実施の形態1で説明した水溶性被膜5aは、そのすべての部分が水溶性の被膜で作られているのに対して、この図で示した水溶性被膜5bは、その大部分が水溶性の被膜で作られているものの、一部分は非水溶性の被膜で作られている。そして、この非水溶性の環状の被膜が、使用時に光ファイバを溝の部分に固定する固定部8となる。この固定部8は、所定の間隔Lで光ファイバ埋め込み型ケーブルの長手方向(軸方向)に複数個設けられる(図10(a)のSTEP2参照)。その後、この水溶性被膜5bで被膜した光ファイバ3aを金属ワイヤケーブルの溝2に挿入した後、実際の使用時において、被測定体である溶液中で水溶性被膜5bの水溶性の被膜部分が溶解し、非水溶性の被膜部分である固定部のみが残る構成となっている(図10(a)のSTEP4参照)。なお。図10(a)のSTEP4のB1-B1、及び図10(b)のSTEP4のB2-B2は、各金属ワイヤケーブルの軸に直交する断面を示す。
 一方、光ファイバ埋め込み型ケーブル1dの製作は、概略、図10(b)のSTEP1からSTEP4の工程順に行う。光ファイバ埋め込み型ケーブルの芯線として通常の圧力感度性能より1桁程度大きい圧力感度特性を持つ光ファイバ3dを採用(STEP1)するところだけが、上述の光ファイバ埋め込み型ケーブル1aの製作工程と異なり、他の製作工程は、上述の光ファイバ埋め込み型ケーブル1aの製作工程と同様である(詳細説明は省略する)。
 以上、図10の説明においては、2種類の光ファイバ埋め込み型ケーブルはいずれも固定部8を持つ場合について説明したが、これに限らず、2種類の一方のみが固定部8を持つものであってもよい。また、両者とも固定部のないものであってもよい。いずれの場合にも、実施の形態1と同様の効果を奏する。
 また、図8、図9において示した2種類の光ファイバ埋め込み型ケーブルである金属ワイヤケーブル以外の金属ワイヤケーブルは、タイプ3、タイプ4、あるいは実施の形態1で示したダミーケーブル9のうち、いずれでもよく、いずれの構成とした場合も実施の形態1と同様の効果を奏する。
 以上説明したように、本実施の形態2のDPTSSケーブルにおいては、3本の金属ワイヤケーブルのうち、少なくとも1本が基本構造の光ファイバ埋め込み型ケーブルとなっている。また、このケーブル以外に、光ファイバの特性自体が異なるようにして、上記の基本構造の光ファイバ埋め込み型ケーブルとは特性が異なるようにした光ファイバ埋め込み型ケーブルを少なくとも1本有していることが特徴となっている。
 このような構造を持つ実施の形態2のDPTSSケーブルにおいては、固定部のないフリー構造の光ファイバを2本、基本構造の光ファイバ埋め込み型ケーブルとして用いることで、実施の形態1と同様の効果を得ることができるが、固定部のある光ファイバ埋め込み型ケーブルを用いることで、さらに別の効果を得ることができる。これについて以下説明する。
 例えば、歪変化については、図10で固定部8のある光ファイバ埋め込み型ケーブル1aの光ファイバ3aを用いて直接、計測し、圧力変化、温度変化については、図10で固定部8のある光ファイバ埋め込み型ケーブル1aの光ファイバ3aと、固定部のない光ファイバ埋め込み型ケーブル1dの光ファイバ3d、2種類の光ファイバを用いて計測することができる。この結果、これら2種類の光ファイバ埋め込み型ケーブルは、その光ファイバの特性が互いに異なることで、圧力変化と温度変化の感度係数は互いに異なるものとなるため、上記、実施の形態1の原理式が成立し、2種類の光ファイバ埋め込み型ケーブルの圧力変化と温度変化のブリルアン散乱の周波数変化、およびレイリー散乱の周波数変化を計測することにより、圧力分布、温度分布が求まり、光ファイバ埋め込み型ケーブル1aで測定した求めた歪分布と併せて、所要の温度分布、圧力分布、歪分布を求めることができる。
 なお、実施の形態2においては、フリー構造の光ファイバを用いた計測が可能となるものであるが、製作時にこのフリー構造の光ファイバを被覆する被膜は水溶性被膜以外に油溶性被膜でも適用可能である。後者は、石油井など、被測定対象が油性の場合に使用されることとなる。
実施の形態3.
 本実施の形態3では、光ファイバ埋め込み型ケーブルのケーブル特性の1つである材質について取り上げ、材質に特徴がある場合の適用例について以下説明する。本実施の形態では、光ファイバ埋め込み型ケーブルには実施の形態1で示したものと同じ構造のものを用いる点、かつ金属ワイヤケーブルを構成する金属の材質が互いに異なるものを用いる点が、実施の形態1の場合と相違する。以下この実施の形態3について、図を用いて説明する。
 図11は実施の形態3に係るDPTSSケーブル10の一例を示す。光ファイバ埋め込み型ケーブル1aの代わりに、光ファイバ埋め込み型ケーブル1eを用いる点が実施の形態1と異なる。すなわち、この光ファイバ埋め込み型ケーブル1eは光ファイバ埋め込み型ケーブル1bとは、接着剤をもつ光ファイバ保持部4を用いる点では、実施の形態1の場合と同じであるが、光ファイバ埋め込み型ケーブル1eを構成する金属の材質が光ファイバ埋め込み型ケーブル1bとは基本的に異なるものである(例えば、実施の形態1の場合には鋼であり、本実施の形態ではアルミニウムである)。その結果、ここで用いられる光ファイバ3eもその圧力感度特性が光ファイバ埋め込み型ケーブル1bの光ファイバ3bの特性とは異なるものとなる
 つまり、このように構成した場合には、光ファイバ埋め込み型ケーブル1eに埋め込まれたBファイバが実際に受ける圧力をΔP2とすると、このΔP2は実施の形態1で示した式(28)の右辺の値ではなく、この式(28)の右辺のkをkとは異なるkで置き換えたものとなっていると考えられる。すなわち、次式(45)の関係が成立していると考えられる。
Figure JPOXMLDOC01-appb-M000045

ここでk≠k1であることに注意する。
 このことから、実施の形態3においては、ΔPの感度係数は、実施の形態1とは異なるものであることがわかる。よって、図11に示すような構成とした場合においても、ΔTとΔPをそれぞれ求めることができる。なお、図11においても、第3のケーブルとして、これらとは異なるダミーケーブル9を示したが、他の1本のケーブルは、これに限らず、上記2種類の光ファイバ埋め込み型ケーブルのいずれか1つと同じものであってもよい。
 なお、上述の説明においては、多層ストランド構造のDPTSSケーブルについて説明したが、これに限らず、図12に示すように、第2層である外層のない構造のものでも、図11のDPTSSケーブルと同一の効果を奏することはいうまでもない。また、このような構成のDPTSSケーブル10は、より簡易に製造することが可能であり、被測定体が変わるなど、DPTSSケーブルの仕様を変更しなければならないような場合にも容易に対応することができる。
 以上により、本実施の形態3のDPTSSケーブルを用いた場合でも実施の形態1と同様の効果を得ることが可能である。さらに、本実施の形態3のDPTSSケーブルの構成においては、その製造に際して、フリー構造のファイバを用いないため、光ファイバに対する水溶性被膜の製造工程を設ける必要がない。このため、製造がより簡単になり、コスト的な利点が得られるという効果がある。
 なお、本発明は、上記各実施の形態に示した内容に止まらず、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。例えば、図5の化学保護層は、実施の形態3の光ファイバ埋め込み型ケーブルにも、同様に適用できる。
 1、1a、1b、1c、1d、1e 光ファイバ埋め込み型ケーブル、2 溝、3、3a、3b、3c、3d、3e 光ファイバ、4 光ファイバ保持部、5a 水溶性被膜(非水溶性の被膜部分なし)、5b 水溶性被膜(非水溶性の被膜部分あり)、5c 接着剤 5d 弾性材 、6 ストランド構造体、7 化学保護層、8 固定部、9 ダミーケーブル、10 DPTSSケーブル。

Claims (6)

  1.  光ファイバに出射されたパルスレーザ光の散乱であるブリルアン散乱とレイリー散乱の周波数変化をもとに、被測定体の圧力分布、歪分布、温度分布を測定するため、
    外周部の軸方向に溝を形成し当該溝内に光ファイバを備えた金属ワイヤケーブルを、少なくとも2本備えたDPTSSケーブルであって、
    一の前記金属ワイヤケーブルは、当該金属ワイヤケーブルの前記溝に沿って光ファイバを埋め込んで保持した光ファイバ埋め込み型ケーブルであり、
    他の前記金属ワイヤケーブルは、前記光ファイバ埋め込み型ケーブルとは異なる特性を持つ金属ワイヤケーブルであって、前記光ファイバ埋め込み型ケーブルのブリルアン散乱およびレイリー散乱の周波数変化に対する圧力変化の感度係数とは異なる圧力変化の感度係数を持つよう構成したことを特徴とするDPTSSケーブル。
  2.  前記光ファイバ埋め込み型ケーブルとは異なる特性を持つ金属ワイヤケーブルは、
    前記溝内に埋め込まれた光ファイバの特性が、前記光ファイバ埋め込み型ケーブルの溝内に埋め込まれた光ファイバの特性と異なることを特徴とする請求項1に記載のDPTSSケーブル。
  3.  前記光ファイバ埋め込み型ケーブルとは異なる特性を持つ金属ワイヤケーブルは、
    前記光ファイバ埋め込み型ケーブルの外部を構成する金属とは異なる材質の金属で構成されていることを特徴とする請求項1に記載のDPTSSケーブル。
  4.  前記光ファイバ埋め込み型ケーブルの外側に、当該光ファイバ埋め込み型ケーブルに対して螺旋状に巻回された少なくとも一層のケーブル構造体を有するストランド構造体を配置したことを特徴とする請求項1に記載のDPTSSケーブル。
  5.  前記金属ワイヤケーブルは、前記溝内に備えた光ファイバが固定部により部分的に固定されていることを特徴とする請求項2に記載のDPTSSケーブル。
  6.  前記光ファイバ埋め込み型ケーブルは、前記溝の外側寄りに化学保護層を備えたことを特徴とする請求項1、請求項3、または請求項5のいずれか1項に記載のDPTSSケーブル。
PCT/JP2015/078299 2015-10-06 2015-10-06 Dptssケーブル WO2017060971A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/078299 WO2017060971A1 (ja) 2015-10-06 2015-10-06 Dptssケーブル
CN201580083595.4A CN108139235B (zh) 2015-10-06 2015-10-06 Dptss电缆
US15/758,392 US10612947B2 (en) 2015-10-06 2015-10-06 Distributed pressure, temperature, strain sensing cable using metal wires with slot grooves and optical fibers in the slot grooves
JP2017544099A JP6440858B2 (ja) 2015-10-06 2015-10-06 Dptssケーブル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078299 WO2017060971A1 (ja) 2015-10-06 2015-10-06 Dptssケーブル

Publications (1)

Publication Number Publication Date
WO2017060971A1 true WO2017060971A1 (ja) 2017-04-13

Family

ID=58488246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078299 WO2017060971A1 (ja) 2015-10-06 2015-10-06 Dptssケーブル

Country Status (4)

Country Link
US (1) US10612947B2 (ja)
JP (1) JP6440858B2 (ja)
CN (1) CN108139235B (ja)
WO (1) WO2017060971A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040926A1 (en) 2017-08-25 2019-02-28 Schlumberger Technology Corporation SENSOR CONSTRUCTION FOR DISTRIBUTED PRESSURE DETECTION
CN111830346A (zh) * 2020-07-13 2020-10-27 华南理工大学 基于压力检测的电力电缆进水评估试验方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116327A1 (en) * 2016-12-23 2018-06-28 Redaelli Tecna S.P.A. Monitoring sensor for a rope of cableway systems
GB201814298D0 (en) * 2018-09-03 2018-10-17 Ziebel As Apparatus for obtaining wellbore pressure measurements
EP3772403A1 (en) * 2019-08-06 2021-02-10 The Boeing Company Remote detection of induction weld temperature
US11840910B2 (en) 2021-10-14 2023-12-12 Neubrex Energy Services, Inc. Systems and methods for creating a fluid communication path between production wells
WO2023192371A1 (en) * 2022-04-01 2023-10-05 Baker Hughes Oilfield Operations Llc Method of packaging optical fiber for simultaneous temperature and strain measurement facilitating industrial asset management

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226857A (ja) * 1995-02-21 1996-09-03 Fujikura Ltd 管路内温度測定用ロッドおよび管路内温度測定用の先端治具付きロッド
JP2004109039A (ja) * 2002-09-20 2004-04-08 Dai Ichi High Frequency Co Ltd 長尺光ファイバセンサー
JP2007176426A (ja) * 2005-12-28 2007-07-12 East Japan Railway Co 光ファイバ歪みセンサ入りトロリ線
JP2008139238A (ja) * 2006-12-05 2008-06-19 Fujikura Ltd 光ファイバセンサケーブル
JP2011053146A (ja) * 2009-09-03 2011-03-17 Neubrex Co Ltd 検知用ケーブル及びこれを備えた監視システム
WO2014027592A1 (ja) * 2012-08-17 2014-02-20 公益財団法人地球環境産業技術研究機構 物質の圧力、温度、ひずみ分布測定システム、これを用いた二酸化炭素地中貯留の監視方法、二酸化炭素注入による地層安定性への影響評価方法、および結氷監視方法
JP2015501420A (ja) * 2011-10-03 2015-01-15 エーエフエル・テレコミュニケーションズ・エルエルシー センシングケーブル

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782124B2 (ja) * 1991-07-05 1998-07-30 株式会社フジクラ 光ファイバケーブル
CA2503268C (en) * 2005-04-18 2011-01-04 Core Laboratories Canada Ltd. Systems and methods for acquiring data in thermal recovery oil wells
US8636063B2 (en) * 2011-02-16 2014-01-28 Halliburton Energy Services, Inc. Cement slurry monitoring
MX2014004575A (es) * 2011-10-17 2014-08-22 Schlumberger Technology Bv Cable de doble uso con envoltura de fibra optica para su uso en operaciones de perforacion de pozos.
US8929701B2 (en) 2012-02-15 2015-01-06 Draka Comteq, B.V. Loose-tube optical-fiber cable
CA3088574C (en) * 2012-05-25 2023-01-17 Phyzhon Health Inc. Optical fiber pressure sensor
JP5851630B2 (ja) 2012-11-30 2016-02-03 ニューブレクス株式会社 3次元位置計測装置
US10120102B2 (en) * 2015-11-04 2018-11-06 General Electric Company Fluid sensor cable assembly, system, and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226857A (ja) * 1995-02-21 1996-09-03 Fujikura Ltd 管路内温度測定用ロッドおよび管路内温度測定用の先端治具付きロッド
JP2004109039A (ja) * 2002-09-20 2004-04-08 Dai Ichi High Frequency Co Ltd 長尺光ファイバセンサー
JP2007176426A (ja) * 2005-12-28 2007-07-12 East Japan Railway Co 光ファイバ歪みセンサ入りトロリ線
JP2008139238A (ja) * 2006-12-05 2008-06-19 Fujikura Ltd 光ファイバセンサケーブル
JP2011053146A (ja) * 2009-09-03 2011-03-17 Neubrex Co Ltd 検知用ケーブル及びこれを備えた監視システム
JP2015501420A (ja) * 2011-10-03 2015-01-15 エーエフエル・テレコミュニケーションズ・エルエルシー センシングケーブル
WO2014027592A1 (ja) * 2012-08-17 2014-02-20 公益財団法人地球環境産業技術研究機構 物質の圧力、温度、ひずみ分布測定システム、これを用いた二酸化炭素地中貯留の監視方法、二酸化炭素注入による地層安定性への影響評価方法、および結氷監視方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040926A1 (en) 2017-08-25 2019-02-28 Schlumberger Technology Corporation SENSOR CONSTRUCTION FOR DISTRIBUTED PRESSURE DETECTION
CN111108423A (zh) * 2017-08-25 2020-05-05 斯伦贝谢技术有限公司 用于分布压力感测的传感器构造
EP3673310A4 (en) * 2017-08-25 2021-06-09 Services Pétroliers Schlumberger SENSOR CONSTRUCTION ALLOWING DISTRIBUTED PRESSURE DETECTION
CN111830346A (zh) * 2020-07-13 2020-10-27 华南理工大学 基于压力检测的电力电缆进水评估试验方法
CN111830346B (zh) * 2020-07-13 2021-07-16 华南理工大学 基于压力检测的电力电缆进水评估试验方法

Also Published As

Publication number Publication date
US20180252556A1 (en) 2018-09-06
US10612947B2 (en) 2020-04-07
JP6440858B2 (ja) 2018-12-19
JPWO2017060971A1 (ja) 2018-04-05
CN108139235A (zh) 2018-06-08
CN108139235B (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
JP6440858B2 (ja) Dptssケーブル
CA2813250C (en) Sensing cable
JP5980419B2 (ja) 光ファイバケーブル、光ファイバケーブルの製造方法、および分布型測定システム
US10170219B2 (en) Load carrying bundle intended for use in a power cable or a power umbilical
WO2017212559A1 (ja) 物質の圧力、温度、ひずみ分布測定用ケーブル
US9250120B2 (en) Fiber-optic monitoring cable
US9529169B2 (en) Logging cable
US20150136264A1 (en) Flexible pipe body and method
JP4954687B2 (ja) 光ファイバセンサケーブル
AU2014321627B2 (en) High temperature fiber optic cable
US9651176B2 (en) Elongate element for flexible pipe body and method
JP7416492B2 (ja) アーマードdssケーブル
WO2023118859A1 (en) Optical sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544099

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15758392

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905791

Country of ref document: EP

Kind code of ref document: A1