WO2017060917A1 - Process for the preparation of azoxystrobin - Google Patents
Process for the preparation of azoxystrobin Download PDFInfo
- Publication number
- WO2017060917A1 WO2017060917A1 PCT/IN2016/050088 IN2016050088W WO2017060917A1 WO 2017060917 A1 WO2017060917 A1 WO 2017060917A1 IN 2016050088 W IN2016050088 W IN 2016050088W WO 2017060917 A1 WO2017060917 A1 WO 2017060917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peg
- crown
- improved process
- formula
- mixture
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- WFDXOXNFNRHQEC-GHRIWEEISA-N azoxystrobin Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1OC1=CC(OC=2C(=CC=CC=2)C#N)=NC=N1 WFDXOXNFNRHQEC-GHRIWEEISA-N 0.000 title abstract description 31
- 239000005730 Azoxystrobin Substances 0.000 title description 28
- 150000003839 salts Chemical group 0.000 claims abstract description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 239000002202 Polyethylene glycol Substances 0.000 claims description 20
- 239000003054 catalyst Substances 0.000 claims description 20
- 229920001223 polyethylene glycol Polymers 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 17
- 239000002904 solvent Substances 0.000 claims description 16
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 15
- 239000002585 base Substances 0.000 claims description 15
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 10
- 150000001447 alkali salts Chemical class 0.000 claims description 10
- 150000003983 crown ethers Chemical group 0.000 claims description 10
- -1 2-Cyanophenol compound Chemical class 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 claims description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 7
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 claims description 7
- BBGKDYHZQOSNMU-UHFFFAOYSA-N dicyclohexano-18-crown-6 Chemical compound O1CCOCCOC2CCCCC2OCCOCCOC2CCCCC21 BBGKDYHZQOSNMU-UHFFFAOYSA-N 0.000 claims description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 6
- 239000008118 PEG 6000 Substances 0.000 claims description 5
- 229920002584 Polyethylene Glycol 6000 Polymers 0.000 claims description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 4
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 claims description 4
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 claims description 4
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 claims description 4
- 229920002523 polyethylene Glycol 1000 Polymers 0.000 claims description 4
- XQQZRZQVBFHBHL-UHFFFAOYSA-N 12-crown-4 Chemical compound C1COCCOCCOCCO1 XQQZRZQVBFHBHL-UHFFFAOYSA-N 0.000 claims description 3
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 claims description 3
- KFBWZNOWOCNKRF-UHFFFAOYSA-N 2,5,12,15,22,25,32,35-octaoxapentacyclo[34.4.0.06,11.016,21.026,31]tetraconta-1(40),6,8,10,16,18,20,26,28,30,36,38-dodecaene Chemical compound O1CCOC2=CC=CC=C2OCCOC2=CC=CC=C2OCCOC2=CC=CC=C2OCCOC2=CC=CC=C21 KFBWZNOWOCNKRF-UHFFFAOYSA-N 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- 229920002535 Polyethylene Glycol 1500 Polymers 0.000 claims description 3
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 3
- YSSSPARMOAYJTE-UHFFFAOYSA-N dibenzo-18-crown-6 Chemical compound O1CCOCCOC2=CC=CC=C2OCCOCCOC2=CC=CC=C21 YSSSPARMOAYJTE-UHFFFAOYSA-N 0.000 claims description 3
- FNEPSTUXZLEUCK-UHFFFAOYSA-N benzo-15-crown-5 Chemical compound O1CCOCCOCCOCCOC2=CC=CC=C21 FNEPSTUXZLEUCK-UHFFFAOYSA-N 0.000 claims description 2
- 239000000010 aprotic solvent Substances 0.000 claims 1
- WFDXOXNFNRHQEC-UHFFFAOYSA-N methyl 2-[2-[6-(2-cyanophenoxy)pyrimidin-4-yl]oxyphenyl]-3-methoxyprop-2-enoate Chemical compound COC=C(C(=O)OC)C1=CC=CC=C1OC1=CC(OC=2C(=CC=CC=2)C#N)=NC=N1 WFDXOXNFNRHQEC-UHFFFAOYSA-N 0.000 claims 1
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims 1
- 241000607479 Yersinia pestis Species 0.000 abstract description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- 235000011181 potassium carbonates Nutrition 0.000 description 13
- CHZCERSEMVWNHL-UHFFFAOYSA-N 2-hydroxybenzonitrile Chemical compound OC1=CC=CC=C1C#N CHZCERSEMVWNHL-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- YRYZZSRRDCTETP-DHZHZOJOSA-N methyl (e)-2-[2-(6-chloropyrimidin-4-yl)oxyphenyl]-3-methoxyprop-2-enoate Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1OC1=CC(Cl)=NC=N1 YRYZZSRRDCTETP-DHZHZOJOSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 239000012141 concentrate Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 235000017550 sodium carbonate Nutrition 0.000 description 4
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000011736 potassium bicarbonate Substances 0.000 description 3
- 235000015497 potassium bicarbonate Nutrition 0.000 description 3
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000012973 diazabicyclooctane Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- NZMAJUHVSZBJHL-UHFFFAOYSA-N n,n-dibutylformamide Chemical compound CCCCN(C=O)CCCC NZMAJUHVSZBJHL-UHFFFAOYSA-N 0.000 description 2
- 150000004707 phenolate Chemical class 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- WDHJXSMUPXCIHL-NTEUORMPSA-N (E)-3-[2-(6-chloropyrimidin-4-yl)oxyphenyl]-3-methoxy-2-methylprop-2-enoic acid Chemical compound C/C(\C(O)=O)=C(/C(C=CC=C1)=C1OC1=NC=NC(Cl)=C1)\OC WDHJXSMUPXCIHL-NTEUORMPSA-N 0.000 description 1
- 0 *c(cccc1)c1Oc1ncnc(Oc(cccc2)c2C#N)c1 Chemical compound *c(cccc1)c1Oc1ncnc(Oc(cccc2)c2C#N)c1 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- QVCUKHQDEZNNOC-UHFFFAOYSA-N 1,2-diazabicyclo[2.2.2]octane Chemical compound C1CC2CCN1NC2 QVCUKHQDEZNNOC-UHFFFAOYSA-N 0.000 description 1
- NLMDJJTUQPXZFG-UHFFFAOYSA-N 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane Chemical compound C1COCCOCCNCCOCCOCCN1 NLMDJJTUQPXZFG-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 238000007080 aromatic substitution reaction Methods 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- VUYXVWGKCKTUMF-UHFFFAOYSA-N tetratriacontaethylene glycol monomethyl ether Chemical compound COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO VUYXVWGKCKTUMF-UHFFFAOYSA-N 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003799 water insoluble solvent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/46—Two or more oxygen, sulphur or nitrogen atoms
- C07D239/52—Two oxygen atoms
Definitions
- the present invention relates to an improved process for preparation of methyl (E)-2- ⁇ 2- [6-(2-cyanophenoxy) pyrimidin-4-yloxy] phenyl ⁇ -3-methoxyacrylate of formula (I) in free form or in agro chemically acceptable salt form useful as a pest control agent.
- Azoxystrobin methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy) pyrimidin-4-yloxy] phenyl ⁇ -3 -methoxyacry late (chemical common name: Azoxystrobin), particularly drew the attention of the present inventors.
- Azoxystrobin disclosed in U.S. Pat. No. 5,395,837, is a plant protection fungicide with protectant, curative, eradicant, translaminar and systemic properties.
- azoxystrobin involves an aromatic substitution reaction between 2- cyanophenol and (E)-Methyl 2-[2-(6-chlorpyridimin-4-yloxy)phenyl]-3- methoxypropenoate also known as (E)-Methyl- 2-[2- (6-chloropyrimidin -4-yloxy)- phenyl] -3-methoxyacrylate, at temperatures at 95° to 100° C. in DMF in the presence of stoichiometric amounts of potassium carbonate and a catalytic amount of copper(I) chloride.
- WO 01/72719 discloses a method for producing asymmetrical 4,6- bis(aryloxy)pyrimidine derivatives in which a 6-chloro-4-aryloxypyrimidine is reacted with a phenol, optionally in the presence of a solvent and/or a base, with the addition of from 2 to 40 mol % of l,4-diazabicyclo[2.2.2]octane (DABCO).
- DABCO l,4-diazabicyclo[2.2.2]octane
- CN101157657 discloses process for the preparation of Azoxystrobin using Lewis acid such as titanium tetrachloride with trimethylorthoformate or methyl formate for formylating 2-(2-[6-chloropyrimidloxy]phenyl)methylacetate.
- Lewis acid such as titanium tetrachloride with trimethylorthoformate or methyl formate for formylating 2-(2-[6-chloropyrimidloxy]phenyl)methylacetate.
- the above process involves usage of titanium tetrachloride in excess which is unfavorable for the industry and major drawback of this reaction lies in the hydrolysis of the said formylated product. Without completion of hydrolysis the yields of the reaction are quite low.
- the present invention is directed to the above drawbacks, the purpose is to provide novel process for the preparation of Azoxystrobin of formula I which is a mild reaction conditions, simple operation, less expensive & cost effective process.
- One of the objectives of the present invention is to provide novel process for the preparation of Azoxystrobin in the presence of a catalyst.
- catalysts are selected form a group of Crown ethers or Polyethylene glycol (PEG), wherein Crown ethers are selected form a group 18-Crown-6, Dicyclohexano-18-Crown-6, Dibenzo-18- Crown-6, 4,13-Diaza-18-Crown-6, 15-crown-5, 12-crown-4, bis (4-t-butylbenzo)-21- Crown-7, Tetrabenzo-24-crown-8, monocyclohexano-27-crown-9, 30-crown-lO or Polyethylene glycol (PEG) are selected form a group PEG (PEG-200, PEG-300, PEG 400, PEG 600, PEG 1000, PEG-1500, PEG-4000, and PEG-6000).
- PEG Polyethylene glycol
- a further objective of the present invention is to provide novel process method involves in preparing the Azoxystrobin in greater yield.
- the product obtained in this method is of high purity with high yield. The method even though involves higher time for maximum conversion than the said above process, productivity is more.
- the present invention provides an improved process for the preparation of compound of formula (I).
- the present invention provides an improved process for the preparation of methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy) pyrimidin-4-yloxy] phenyl ⁇ -3 -methoxyacry late
- the present invention provides an improved process for the preparation of compound of formula (I) using Crown ethers or Polyethylene glycol (PEG) as a catalyst, the order of addition of the reaction components has an effect on the yield and reaction rate.
- the present invention provides an improved process for the preparation of compound of formula (I). This process involves reacting o-cyanophenol compound of formula (III) with compound of formula (II) in the presence of base or acid acceptor like alkali salt of a carbonate and an alkali salt of hydrogen carbonate with the action of catalyst.
- the catalyst can be added before the base or acid acceptor or along with the base or acid acceptor.
- the base or acid acceptor is selected from a mixture of an alkali salt of a carbonate and an alkali salt of hydrogen carbonate.
- Alkali salts refer to salts containing preferably sodium and/or potassium as cations.
- the carbonate and the phosphate may be present in any crystal modification, in pure form, as technical quality, or as hydrates.
- Especially preferred carbonates are selected from sodium carbonate, potassium carbonate, and mixtures thereof.
- especially preferred hydrogen carbonates are selected from sodium hydrogen carbonate, potassium hydrogen carbonate, and mixtures thereof.
- the base contains especially preferred mixtures of potassium carbonate and potassium hydrogen carbonate; or sodium carbonate and sodium hydrogen carbonate.
- the base or acid acceptor chosen in this process involves generally alkali hydroxides, alkali carbonates, organic carbonates, and preferably sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, triethylamine, DBU, and most preferably sodium carbonate and potassium carbonate.
- the ratio of base or acid acceptor to raw material is 1.0: 1.0 to 2.0 generally and most preferably between 1.0: 1.0 to 1.5.
- the two raw materials are in the ratio of 1.0: 1.0 to 1.3, and most preferably 1.0: 1.0 to 1.1.
- the catalysts chosen in this process is Crown ethers or Polyethylene glycol (PEG) wherein Crown ethers are selected form group ethers 18-crown-6 (1, 4, 7, 10, 13, 16- hexaoxacyclooctadecane), dibenzo-18-crown-6 (2, 3, 11, 12-dibenzo-l, 4, 7, 10, 13, 16- hexaoacyclootadeca-2, 11-diene), and dicyclohexano-18-crown-6 (2, 3, 11, 12- dicyclohexano- 1 , 4, 7, 10, 13, 16-hexaoxacyclooctadecane) also names as 2, 5, 8, 15, 18, 21-hexaoxatricyclo [20.4.0.09, 14 ] hexacosane, 12-crown-4, monobenzo-15-crown-5, bis(4-t-butylbenzo)-21-crown-7, tetrabenzo-24-crown-8, monocyclohe
- Crown ethers or Polyethylene glycol (PEG) facilitate in catalyzing the reaction for greater purity and higher conversion of (E) 2-Methyl-[2-(6-chloropyrimidine-4-yloxy) phenyl] -3-methoxypropenoate to Azoxystrobin using o-cyanophenol.
- the catalysts soluble in water and can be easily removed by washing with water from the organic layer.
- the catalyst of choice has high solubility and does not remain in product when washed.
- the catalyst promotes the reaction by acting on o-cyanophenol compound of formula (III) to convert it into its corresponding phenolate salt and thus reacting with Methyl 3- methoxy (2-(2-(6-chloropyrimidine)-4-yl) oxyphenyl) acrylate compound of formula (II) to form Azoxystrobin compound of formula (I).
- the catalyst to raw material ratio generally lies between 0.01 : 1.0 to 0.1 : 1.0.
- the catalyst mole ratio with raw material generally is 0.01 mole % to 100 mole %.
- the most preferred catalyst ratio is between 0.05 to 2.0 mole %.
- the solvents involved in this process are selected form group alcohols, methanol, ethanol, C 3 to Cs alcohols, nonpolar solvents like xylene, toluene, hexane, heptane, benzene, chlorinated solvents like ethylene dichloride, methylene dichloride, chloroform, chloro benzene, dichloro benzene, tetrachloroethylene, ⁇ , ⁇ -dimethyl formamide, acetonitrile, N-methylpyrrolidone, N,N-dimethylacetamide, dibutylformamide, acetone, Dimethyl sulfoxide or mixture thereof.
- the solvents involved in reaction process are selected form group N, N-dimethyl formamide, acetonitrile, N-methylpyrrolidone, N, N-dimethylacetamide, dibutylformamide, acetone, Dimethyl sulfoxide or mixture thereof.
- the reaction can be conducted in simple ways like, taking Methyl 3-methoxy (2-(2-(6- chloropyrimidine)-4-yl) oxyphenyl) acrylate compound of formula (II) into solvent , then adding base and other raw material o-cyanophenol compound of formula (III), heating to desired temperature and then adding catalyst in lots till the end of raw material.
- inorganics can be separated from the reaction mass through filtration or by any means known to art, then adding water insoluble solvent and separating phases, and removal of solvents under vacuum to isolate Azoxystrobin.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention relates to an improved process for preparation of methyl (E)-2-{2- [6-(2-cyanophenoxy) pyrimidin-4-yloxy] phenyl}-3-methoxyacrylate of formula (I) in free form or in agro chemically acceptable salt form useful as a pest control agent.
Description
PROCESS FOR THE PREPARATION OF AZOXYSTROBIN
FIELD OF THE INVENTION
The present invention relates to an improved process for preparation of methyl (E)-2-{2- [6-(2-cyanophenoxy) pyrimidin-4-yloxy] phenyl} -3-methoxyacrylate of formula (I) in free form or in agro chemically acceptable salt form useful as a pest control agent.
AZOXYSTROBIN
Formula (I)
BACKGROUND OF THE INVENTION
In the field of industrial chemical synthesis, the improvement of the yield and selectivity of chemical processes bears considerable impact on the industry. Particularly, the focus in said improvements is on lowering costs, simplifying unit operations and environmental considerations. These three factors are particularly important in the field of agrochemicals where the volume of chemicals is large and the marginal profit is relatively small.
Of the many agrochemical compounds which are synthesized by multi-stage synthesis, methyl (E)-2-{2-[6-(2-cyanophenoxy) pyrimidin-4-yloxy] phenyl} -3 -methoxyacry late
(chemical common name: Azoxystrobin), particularly drew the attention of the present inventors. Azoxystrobin, disclosed in U.S. Pat. No. 5,395,837, is a plant protection fungicide with protectant, curative, eradicant, translaminar and systemic properties. The preparation of azoxystrobin involves an aromatic substitution reaction between 2- cyanophenol and (E)-Methyl 2-[2-(6-chlorpyridimin-4-yloxy)phenyl]-3- methoxypropenoate also known as (E)-Methyl- 2-[2- (6-chloropyrimidin -4-yloxy)- phenyl] -3-methoxyacrylate, at temperatures at 95° to 100° C. in DMF in the presence of stoichiometric amounts of potassium carbonate and a catalytic amount of copper(I) chloride. The reported yield of azoxystrobin is 65% wherein the product was found to have a melting point of 110° C.-l l l° C, indicating a final product of relatively low purity, which subsequently required further purification. It has been suggested that reactions of 2-cyanophenol or other isomers of cyanophenol or phenols in general under conditions of temperatures of about 90° C. and above, in the presence of basic reagents which can promote the formation of phenolate salts, may cause polymerization and the formation of tars. This clearly is a highly undesirable side effect.
WO 01/72719 discloses a method for producing asymmetrical 4,6- bis(aryloxy)pyrimidine derivatives in which a 6-chloro-4-aryloxypyrimidine is reacted with a phenol, optionally in the presence of a solvent and/or a base, with the addition of from 2 to 40 mol % of l,4-diazabicyclo[2.2.2]octane (DABCO). In addition, it has previously been found by the present inventors that even lower concentrations of DABCO (for example, between 0.1 and 2 mol %) are also able to catalyze this reaction.
CN101157657 discloses process for the preparation of Azoxystrobin using Lewis acid such as titanium tetrachloride with trimethylorthoformate or methyl formate for formylating 2-(2-[6-chloropyrimidloxy]phenyl)methylacetate. The above process involves usage of titanium tetrachloride in excess which is unfavorable for the industry and major drawback of this reaction lies in the hydrolysis of the said formylated product. Without completion of hydrolysis the yields of the reaction are quite low. One of the
other drawbacks is that this process uses number of raw materials like titanium tetrachloride; triethylamine; hydrochloric acid; methyl formate or trimethylorthoformate; then dimethylsulfate for esterification and caustic soda lye. Other drawback is that dimethylsulfate is used in molar quantities and it requires lot of care as Dimethylsulfate is poisonous.
Thus, it is the objective of the present invention to provide a process for reacting phenols under basic conditions in which the yield and selectivity is improved.
The present invention is directed to the above drawbacks, the purpose is to provide novel process for the preparation of Azoxystrobin of formula I which is a mild reaction conditions, simple operation, less expensive & cost effective process.
OBJECTIVES OF THE INVENTION
One of the objectives of the present invention is to provide novel process for the preparation of Azoxystrobin in the presence of a catalyst.
AZOXYSTROBIN
Formula (I)
Further objective of the present invention is to provide novel process wherein catalysts are selected form a group of Crown ethers or Polyethylene glycol (PEG), wherein Crown
ethers are selected form a group 18-Crown-6, Dicyclohexano-18-Crown-6, Dibenzo-18- Crown-6, 4,13-Diaza-18-Crown-6, 15-crown-5, 12-crown-4, bis (4-t-butylbenzo)-21- Crown-7, Tetrabenzo-24-crown-8, monocyclohexano-27-crown-9, 30-crown-lO or Polyethylene glycol (PEG) are selected form a group PEG (PEG-200, PEG-300, PEG 400, PEG 600, PEG 1000, PEG-1500, PEG-4000, and PEG-6000).
In a further objective of the present invention is to provide novel process method involves in preparing the Azoxystrobin in greater yield. The product obtained in this method is of high purity with high yield. The method even though involves higher time for maximum conversion than the said above process, productivity is more.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides an improved process for the preparation of compound of formula (I).
Formula (I)
Wherein W is the methyl (E)-2-(3-methoxy) acrylate group C(C02CH3)=CHOCH3. The present invention provides an improved process for the preparation of methyl (E)-2- { 2-[6-(2-cyanophenoxy) pyrimidin-4-yloxy] phenyl} -3 -methoxyacry late
(Azoxystrobin) compound of formula (I).
AZOXYSTROBIN
Formula (I)
The following description is illustrative of embodiments of the invention. The following description is not to be construed as limiting, it being understood that the skilled person may carry out many obvious variations to the invention.
The present invention provides an improved process for the preparation of compound of formula (I) using Crown ethers or Polyethylene glycol (PEG) as a catalyst, the order of addition of the reaction components has an effect on the yield and reaction rate. In one embodiment the present invention provides an improved process for the preparation of compound of formula (I). This process involves reacting o-cyanophenol compound of formula (III) with compound of formula (II) in the presence of base or acid acceptor like alkali salt of a carbonate and an alkali salt of hydrogen carbonate with the action of catalyst. The catalyst can be added before the base or acid acceptor or along with the base or acid acceptor.
Formula (II) Formula (III)
Formula (I)
This process involves reacting o-cyanophenol compound of formula (III) with Methyl 3- methoxy (2-(2-(6-chloropyrimidine)-4-yl) oxyphenyl) acrylate compound of formula (II) in the presence of base like alkali salt of a carbonate and an alkali salt of hydrogen carbonate with the action of catalyst in suitable solvent. The catalyst can be added before the base or along with the base.
For higher productivity catalyst can be added in one lot or in lots as per convenience in regular intervals. Typically, the base or acid acceptor is selected from a mixture of an alkali salt of a carbonate and an alkali salt of hydrogen carbonate. Alkali salts refer to salts containing preferably sodium and/or potassium as cations. The carbonate and the phosphate may be present in any crystal modification, in pure form, as technical quality, or as hydrates. Especially preferred carbonates are selected from sodium carbonate, potassium carbonate, and mixtures thereof. In another form, especially preferred hydrogen carbonates are selected from sodium hydrogen carbonate, potassium hydrogen carbonate, and mixtures thereof. The base contains especially preferred mixtures of potassium carbonate and potassium hydrogen carbonate; or sodium carbonate and sodium hydrogen carbonate.
The base or acid acceptor chosen in this process involves generally alkali hydroxides, alkali carbonates, organic carbonates, and preferably sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, triethylamine, DBU, and most preferably sodium carbonate and potassium carbonate.
The ratio of base or acid acceptor to raw material is 1.0: 1.0 to 2.0 generally and most preferably between 1.0: 1.0 to 1.5. The two raw materials are in the ratio of 1.0: 1.0 to 1.3, and most preferably 1.0: 1.0 to 1.1. The catalysts chosen in this process is Crown ethers or Polyethylene glycol (PEG) wherein Crown ethers are selected form group ethers 18-crown-6 (1, 4, 7, 10, 13, 16- hexaoxacyclooctadecane), dibenzo-18-crown-6 (2, 3, 11, 12-dibenzo-l, 4, 7, 10, 13, 16- hexaoacyclootadeca-2, 11-diene), and dicyclohexano-18-crown-6 (2, 3, 11, 12- dicyclohexano- 1 , 4, 7, 10, 13, 16-hexaoxacyclooctadecane) also names as 2, 5, 8, 15, 18, 21-hexaoxatricyclo [20.4.0.09, 14 ] hexacosane, 12-crown-4, monobenzo-15-crown-5, bis(4-t-butylbenzo)-21-crown-7, tetrabenzo-24-crown-8, monocyclohexano-27-crown- 9, 30-crown-lO or a mixture thereof; wherein Polyethylene glycol (PEG) are selected form group PEG-200, PEG-300, PEG -400, PEG- 600, PEG- 1000, PEG- 1500, PEG- 4000, PEG-6000 or a mixture thereof.
Crown ethers or Polyethylene glycol (PEG) facilitate in catalyzing the reaction for greater purity and higher conversion of (E) 2-Methyl-[2-(6-chloropyrimidine-4-yloxy) phenyl] -3-methoxypropenoate to Azoxystrobin using o-cyanophenol. The catalysts soluble in water and can be easily removed by washing with water from the organic layer.
The catalyst of choice has high solubility and does not remain in product when washed. The catalyst promotes the reaction by acting on o-cyanophenol compound of formula (III) to convert it into its corresponding phenolate salt and thus reacting with Methyl 3- methoxy (2-(2-(6-chloropyrimidine)-4-yl) oxyphenyl) acrylate compound of formula (II) to form Azoxystrobin compound of formula (I).
AZOXYSTROBIN
Formula (I)
The catalyst to raw material ratio generally lies between 0.01 : 1.0 to 0.1 : 1.0. The catalyst mole ratio with raw material generally is 0.01 mole % to 100 mole %. The most preferred catalyst ratio is between 0.05 to 2.0 mole %.
The solvents involved in this process are selected form group alcohols, methanol, ethanol, C3 to Cs alcohols, nonpolar solvents like xylene, toluene, hexane, heptane, benzene, chlorinated solvents like ethylene dichloride, methylene dichloride, chloroform, chloro benzene, dichloro benzene, tetrachloroethylene, Ν,Ν-dimethyl formamide, acetonitrile, N-methylpyrrolidone, N,N-dimethylacetamide, dibutylformamide, acetone, Dimethyl sulfoxide or mixture thereof.
The solvents involved in reaction process are selected form group N, N-dimethyl formamide, acetonitrile, N-methylpyrrolidone, N, N-dimethylacetamide, dibutylformamide, acetone, Dimethyl sulfoxide or mixture thereof.
In another embodiment the present invention provides an improved process for the preparation of Azoxystrobin comprising the following steps:
The reaction can be conducted in simple ways like, taking Methyl 3-methoxy (2-(2-(6- chloropyrimidine)-4-yl) oxyphenyl) acrylate compound of formula (II) into solvent , then adding base and other raw material o-cyanophenol compound of formula (III), heating to
desired temperature and then adding catalyst in lots till the end of raw material. After reaction is completed, inorganics can be separated from the reaction mass through filtration or by any means known to art, then adding water insoluble solvent and separating phases, and removal of solvents under vacuum to isolate Azoxystrobin.
The above process can be represented stepwise as shown below:
Me
AZOXYSTROBIN
Formula (II) Formula (III)
Formula (I)
The process of the invention is illustrated with reference to the following working Examples and is not intended to limit or enlarge the scope of the invention.
Example 1:-
(E)-methyl-2-[2-(6-chloropyrimidin-4-yloxy) phenyl] -3 -methoxypropenoate (320 gm at 96.1% strength) was added to 1500 ml N, N-Dimethyformamide followed by 2- Cyanophenol (130 gm), PEG-6000 (3.00 gm ) and potassium carbonate (208 gm) and was heated to 80°C and monitored for the end of the reaction (complete after 10 hours). Solvent was removed under vacuum. Toluene was added to the resulting concentrate and washed with water .Analysis of the Toluene layer revealed a 97.8% yield of methyl (E)-2-{2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy] phenyl} -3-methoxystrobin (Azoxystrobin)
Example 2:-
(E)-methyl-2-[2-(6-chloropyrimidin-4-yloxy)phenyl]-3-methoxypropenoate (320gm at 96.1% strength) was added to N, N-Dimethyformamide followed by 2-Cyanophenol ( 130gm) , PEG-4000 (3. lOgm) and potassium carbonate (208gm ) and was heated to 80°c and monitored for the end of the reaction ( complete after 10 hours). Solvent was removed under vacuum. Toluene was added to the resulting concentrate and washed with water .Analysis of the Toluene layer revealed a 97.5% yield of methyl (E)-2-{2-[6-(2- cyanophenoxy)-pyrimidin-4-yloxy]phenyl}-3-methoxystrobin( Azoxystrobin)
Example 3:-
(E)-methyl-2-[2-(6-chloropyrimidin-4-yloxy)phenyl]-3-methoxypropenoate (320gm at 96.1% strength) was added to N,N-Dimethylacetamide followed by 2-Cyanophenol (130gm), PEG -1000 (4.1gm) and potassium carbonate (208gm) and was heated to 80°C and monitored for the end of the reaction (complete after 8 hours). Solvent was removed under vacuum. Toluene was added to the resulting concentrate and washed with water
.Analysis of the Toluene layer revealed a 96.1 % yield of methyl (E)-2-{2-[6-(2- cyanophenoxy)-pyrimidin-4-yloxy] phenyl }-3-methoxystrobin (Azoxystrobin)
Example 4:-
(E)-methyl-2-[2-(6-chloropyrimidin-4-yloxy)phenyl]-3-methoxypropenoate (320gm at 96.1% strength) was added to Acetonitrile followed by 2-Cyanophenol (130gm), PEG - 2000 (3.0gm) and potassium carbonate (208gm) and was heated to 80°C and monitored for the end of the reaction (complete after 8 hours). Solvent was removed under vacuum. Toluene was added to the resulting concentrate and washed with water. Analysis of the Toluene layer revealed a 93.2 % yield of methyl (E)-2-{2-[6-(2-cyanophenoxy)- pyrimidin-4-yloxy] phenyl} -3 -methoxystrobin (Azoxystrobin).
Example 5:-
(E)-methyl-2-[2-(6-chloropyrimidin-4-yloxy)phenyl]-3-methoxypropenoate (320 gm at 96.1% strength) was added to, N-Mehyl pyrrolidone followed by 2-Cyanophenol (130 gm), PEG-4000 (4.1gm) and potassium carbonate (208gm) and was heated to 80°C and monitored for the end of the reaction (complete after 08 hours). Solvent was removed under vacuum. Toluene was added to the resulting concentrate and washed with water. Analysis of the Toluene layer revealed a 92.8% yield of methyl (E)-2-{2-[6-(2- cyanophenoxy)-pyrimidin-4-yloxy] phenyl} -3-methoxystrobin (Azoxystrobin).
Example 6:-
(E)-methyl-2-[2-(6-chloropyrimidin-4-yloxy)phenyl]-3-methoxypropenoate (320gm at 96.1% strength) was added to Acetonitrile followed by 2-Cyanophenol (130gm) ,PEG - 4000 (4.0gm) and potassium carbonate (207gm) and was heated to 80°c and monitored for the end of the reaction ( complete after 11 hours). Solvent was removed under vacuum.
Toluene was added to the resulting concentrate and washed with water. Analysis of the Toluene layer revealed a 93.4 % yield of methyl (E)-2-{2-[6-(2-cyanophenoxy)- pyrimidin-4-yloxy] phenyl} -3 -methoxystrobin (Azoxystrobin).
Example 7:-
(E)-methyl-2-[2-(6-chloropyrimidin-4-yloxy)phenyl]-3-methoxypropenoate (320gm at 96.1% strength) was added to N, N-Dimethyformamide followed by 2-Cyanophenol (130gm), 18-CROWN-6 (3.20gm) and potassium carbonate (207gm) and was heated to 80°C and monitored for the end of the reaction (complete after 12 hours). Solvent was removed under vacuum. Dichloroethane was added to the resulting concentrate and washed with water. Analysis of the Toluene layer revealed a 93.5% yield of methyl (E)- 2-{2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]phenyl}-3-methoxystrobin
(Azoxystrobin)
Example 8:-
(E)-methyl-2-[2-(6-chloropyrimidin-4-yloxy)phenyl]-3-methoxypropenoate (320gm at 96.1% strength) was added to N,N-Dimethyformamide followed by 2- Cyanophenol(130gm), 15-crown-5 (3.10gm ) and potassium carbonate (207gm) and was heated to 80°c and monitored for the end of the reaction (complete after 12 hours). Solvent was removed under vacuum. Dichloroethane was added to the resulting concentrate and washed with water. Analysis of the Toluene layer revealed a 93.0 % yield of methyl (E)-2-{2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]phenyl}-3- methoxystrobin (Azoxystrobin)
Claims
WE CLAIM
CLAIMS:-
Formula (I)
comprising the reaction of compound of the formula (II) with the 2-Cyanophenol compound of the formula (III) or a salt thereof in the presence of base like alkali salt of a carbonate and an alkali salt of hydrogen carbonate with the action of catalyst in suitable solvent; the said catalyst is selected from Crown ethers or Polyethylene glycol (PEG) or a mixture thereof.
Formula (II) Formula (III)
2) An improved process as claimed in claim 1 product of the formula (I) wherein W is the methyl (E)-2-(3-methoxy) acrylate group C(C02CH3)=CHOCH3.
3) An improved process as claimed in claim 1 wherein compound of formula II is 2-Methyl-3-Methoxy(2-(2-(6-Chloropyrimidine)-4-yloxy phenyl) Acrylate.
4) An improved process as claimed in claim 1 wherein compound of formula I is 2- {2-[6-(2-Cyano-phenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxy-acrylic acid methyl ester.
An improved process as claimed in claim 1 wherein reaction is carried out at a temperature from 0 °c to 150°C.
An improved process as claimed in claim 1 wherein polyethylene glycol or Crown Ethers or a mixture thereof is in ratio of 0.05 to 2.0 mole %.
An improved process as claimed in claim 1 wherein catalysts crown ethers are selected from 18-crown-6 (1, 4, 7, 10, 13, 16-hexaoxacyclooctadecane), dibenzo-18-crown-6 (2, 3, 11, 12-dibenzo-l, 4, 7, 10, 13, 16- hexaoacyclootadeca-2, 11-diene), and dicyclohexano-18-crown-6 (2, 3, 11, 12- dicyclohexano-1, 4, 7, 10, 13, 16-hexaoxacyclooctadecane) also names as 2, 5, 8, 15, 18, 21-hexaoxatricyclo [20.4.0.09,14 ] hexacosane, 12-crown-4, monobenzo-15-crown-5, bis(4-t-butylbenzo)-21-crown-7, tetrabenzo-24- crown-8, monocyclohexano-27-crown-9, 30-crown-lO or a mixture thereof.
An improved process as claimed in claim 7 wherein preferred crown ethers are selected from 18-crown-6 or 15-crown-5 mixture thereof.
An improved process as claimed in claim 1 wherein catalyst Polyethylene glycol (PEG) are selected form group PEG-200, PEG-300, PEG 400, PEG 600, PEG 1000, PEG- 1500, PEG-4000, PEG-6000 or a mixture thereof.
An improved process as claimed in claim 9 wherein preferred polyethylene glycol is PEG-200, PEG 400, PEG 600, PEG-4000 or PEG-6000 or mixture thereof.
An improved process as claimed in claim 1 wherein reaction is carried out in presence of base or acid acceptor.
An improved process as claimed in claim 11 wherein base or acid acceptor are selected from a mixture of an alkali salt of a carbonate.
An improved process as claimed in claim 12 wherein carbonates are selected from sodium carbonate, potassium carbonate, and mixtures thereof.
An improved process as claimed in claim 1 wherein using dipolar aprotic solvents such as Ν,Ν-dimethyl formamide, acetonitrile, N-methylpyrrolidone, N,N-dimethylacetamide, or mixtures thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680017913.1A CN107428704A (en) | 2015-10-06 | 2016-03-17 | The method for preparing Fluoxastrobin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN3782MU2015 | 2015-10-06 | ||
IN3782/MUM/2015 | 2015-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017060917A1 true WO2017060917A1 (en) | 2017-04-13 |
Family
ID=56178410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IN2016/050088 WO2017060917A1 (en) | 2015-10-06 | 2016-03-17 | Process for the preparation of azoxystrobin |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107428704A (en) |
WO (1) | WO2017060917A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3770147A4 (en) * | 2018-03-23 | 2021-10-13 | Purpana (Beijing) Technologies Co., Ltd | MANUFACTURING PROCESS FOR AZOXYSTROBIN AND INTERMEDIATE THEREOF |
WO2023203574A1 (en) * | 2022-04-22 | 2023-10-26 | Nacl Industries Limited | A process for preparation of azoxystrobin |
WO2023226456A1 (en) | 2022-05-26 | 2023-11-30 | 安徽广信农化股份有限公司 | Method for preparing azoxystrobin and intermediate thereof |
US11952350B2 (en) | 2019-04-18 | 2024-04-09 | Upl Ltd. | Process for the preparation of fungicidally active strobilurin compounds and intermediates thereof |
US12024492B2 (en) | 2019-04-18 | 2024-07-02 | Upl Ltd | Process for preparation of azoxystrobin and intermediates thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108997209B (en) * | 2018-06-11 | 2020-08-04 | 山东罗欣药业集团恒欣药业有限公司 | Preparation method of regorafenib |
CN113831279A (en) * | 2021-09-27 | 2021-12-24 | 江苏禾裕泰化学有限公司 | Synthesis method of diflufenican |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5395837A (en) | 1989-02-10 | 1995-03-07 | Zeneca Limited | Fungicides |
WO2001072719A1 (en) | 2000-03-24 | 2001-10-04 | Bayer Aktiengesellschaft | Method for producing asymmetrical 4,6-bis(aryloxy)pyrimidine derivatives |
CN101157657A (en) | 2007-10-24 | 2008-04-09 | 北京颖新泰康科技有限公司 | Method for preparing azoxystrobin and its analogue |
WO2008043977A1 (en) * | 2006-10-09 | 2008-04-17 | Syngenta Limited | Process for preparing 6-phen0xypyrimidin-4-ol derivatives in the presence of a quinuclidine or a n-methyl pyrrolidine derivative |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101239919B (en) * | 2008-01-11 | 2011-01-12 | 南京工业大学 | Synthetic method of aromatic diamine monomer |
CN101885670A (en) * | 2010-07-19 | 2010-11-17 | 扬州大学 | The synthetic method of m-phenoxytoluene |
-
2016
- 2016-03-17 CN CN201680017913.1A patent/CN107428704A/en active Pending
- 2016-03-17 WO PCT/IN2016/050088 patent/WO2017060917A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5395837A (en) | 1989-02-10 | 1995-03-07 | Zeneca Limited | Fungicides |
WO2001072719A1 (en) | 2000-03-24 | 2001-10-04 | Bayer Aktiengesellschaft | Method for producing asymmetrical 4,6-bis(aryloxy)pyrimidine derivatives |
WO2008043977A1 (en) * | 2006-10-09 | 2008-04-17 | Syngenta Limited | Process for preparing 6-phen0xypyrimidin-4-ol derivatives in the presence of a quinuclidine or a n-methyl pyrrolidine derivative |
CN101157657A (en) | 2007-10-24 | 2008-04-09 | 北京颖新泰康科技有限公司 | Method for preparing azoxystrobin and its analogue |
Non-Patent Citations (1)
Title |
---|
PARRA J ET AL: "Concise and modular synthesis of regioisomeric haptens for the production of high-affinity and stereoselective antibodies to the strobilurin azoxystrobin", TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 67, no. 3, 21 January 2011 (2011-01-21), pages 624 - 635, XP027564155, ISSN: 0040-4020, [retrieved on 20101217] * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3770147A4 (en) * | 2018-03-23 | 2021-10-13 | Purpana (Beijing) Technologies Co., Ltd | MANUFACTURING PROCESS FOR AZOXYSTROBIN AND INTERMEDIATE THEREOF |
US11214552B2 (en) | 2018-03-23 | 2022-01-04 | Purpana (Beijing) Technologies Co., Ltd | Preparation method for azoxystrobin and intermediate thereof |
US11952350B2 (en) | 2019-04-18 | 2024-04-09 | Upl Ltd. | Process for the preparation of fungicidally active strobilurin compounds and intermediates thereof |
US12024492B2 (en) | 2019-04-18 | 2024-07-02 | Upl Ltd | Process for preparation of azoxystrobin and intermediates thereof |
WO2023203574A1 (en) * | 2022-04-22 | 2023-10-26 | Nacl Industries Limited | A process for preparation of azoxystrobin |
WO2023226456A1 (en) | 2022-05-26 | 2023-11-30 | 安徽广信农化股份有限公司 | Method for preparing azoxystrobin and intermediate thereof |
Also Published As
Publication number | Publication date |
---|---|
CN107428704A (en) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017060917A1 (en) | Process for the preparation of azoxystrobin | |
EP3107884B1 (en) | Process for producing 2,5-dihalophenolethers | |
JP7553689B2 (en) | Method for producing phenylisoxazoline compounds | |
DK2102174T3 (en) | PROCEDURE FOR PREPARING SUBSTITUTED CYNOPHENOXY-PYRIMIDINYLOXY-PHENYLACRYLATE DERIVATIVES | |
KR101469879B1 (en) | A method for preparing methyl (E)-2-[2-[6-(2-cyanophenoxy)pyrimidine-4-yloxy]phenyl]-3-methoxyacrylate | |
EP3770147B1 (en) | Preparation method for azoxystrobin and intermediate thereof | |
CN102548972B (en) | The preparation method of 4,6-dialkoxy-2-cyano methyl pyrimidine and synthetic intermediate thereof | |
CN105026376A (en) | Method for preparing bispyribac sodium and its intermediates | |
CN102574814B (en) | The preparation method of pyrimidyl acetonitrile derivative and synthetic intermediate thereof | |
JP5516567B2 (en) | Process for producing 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde | |
WO2015102016A1 (en) | Process for the preparation of methyl 2-[2-(6-chloropyrimidin-4-yloxy) phenyl]-3,3- dimethoxypropionate | |
Liu et al. | A concise synthesis of azoxystrobin using a Suzuki cross-coupling reaction | |
JP4032861B2 (en) | Process for producing β-oxonitrile derivative or alkali metal salt thereof | |
JP5507147B2 (en) | Process for producing pyrimidinyl alcohol derivatives and synthetic intermediates thereof | |
JP5205971B2 (en) | Method for producing tetrahydropyran compound | |
JP4608888B2 (en) | Method for producing 2-cyano-2- (4-tetrahydropyranyl) acetate | |
CN110655491A (en) | Simple preparation method of 2-aminopyrimidine-5-formic ether | |
JP2017206453A (en) | Process for producing pyrazole derivatives and intermediates thereof | |
JP2007031331A (en) | Process for producing 5-hydroxy-4-methoxy-2-nitrobenzoic acid compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16731348 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16731348 Country of ref document: EP Kind code of ref document: A1 |