WO2017057345A1 - Positive electrode for aluminum secondary battery, and aluminum secondary battery - Google Patents

Positive electrode for aluminum secondary battery, and aluminum secondary battery Download PDF

Info

Publication number
WO2017057345A1
WO2017057345A1 PCT/JP2016/078417 JP2016078417W WO2017057345A1 WO 2017057345 A1 WO2017057345 A1 WO 2017057345A1 JP 2016078417 W JP2016078417 W JP 2016078417W WO 2017057345 A1 WO2017057345 A1 WO 2017057345A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
positive electrode
aluminum
aluminum secondary
binder
Prior art date
Application number
PCT/JP2016/078417
Other languages
French (fr)
Japanese (ja)
Inventor
一生 村松
哲哉 津田
桑畑 進
Original Assignee
株式会社インキュベーション・アライアンス
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社インキュベーション・アライアンス, 国立大学法人大阪大学 filed Critical 株式会社インキュベーション・アライアンス
Priority to JP2017543423A priority Critical patent/JP6813852B2/en
Publication of WO2017057345A1 publication Critical patent/WO2017057345A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel positive electrode that can be used for an aluminum secondary battery, and an aluminum secondary battery comprising the positive electrode.
  • Aluminum has a high electric capacity per unit volume and unit mass, and in particular has a theoretical energy density equivalent to about four times that of lithium on a volume basis.
  • the element abundance ratio is large and can be easily obtained at low cost. Therefore, if aluminum or an aluminum alloy can be used for the negative electrode of the battery, a high energy density battery can be realized at low cost. For these reasons, the aluminum secondary battery is one of the promising batteries in the future.
  • Patent Document 1 discloses an aluminum secondary battery that uses an aluminum halide ionic liquid as an electrolyte and uses activated carbon or the like as a positive electrode in order to increase charging efficiency.
  • materials that can be used as a positive electrode are limited.
  • the positive electrode capacity is not sufficient.
  • the present invention intends to provide a positive electrode for an aluminum secondary battery capable of improving discharge voltage, discharge capacity, coulomb efficiency and cycle characteristics, and an aluminum secondary battery using the positive electrode.
  • the present inventors have found that when graphite is used for the positive electrode, significant deterioration of the positive electrode, which is considered to be caused by insertion of anions between the graphite layers, is observed, and this deterioration is The inventors found that this can be prevented by using a nanocarbon material as an active material and using a predetermined binder, and further studies were made to complete the present invention.
  • a positive electrode for an aluminum secondary battery comprising an active material that is a nanocarbon material and a Lewis acid-stable binder, [2] The above, wherein the binder is at least one selected from the group consisting of a polyether polymer, a polymer that is alginic acid or an alginic acid derivative, a polymer that is a polyamic acid derivative, and a polymer that is a cellulose derivative.
  • binder is at least one selected from the group consisting of polysulfone, polyethersulfone, alginic acid, sodium alginate, ammonium alginate, propylene glycol alginate, polyimide, and carboxymethylcellulose.
  • Positive electrode for battery [4] Any of the above [1] to [3], wherein the nanocarbon material is at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, fullerenes, carbon nanofibers, and single-layer to multi-layer graphene Or a positive electrode for an aluminum secondary battery according to claim 1, [5] The aluminum according to any one of [1] to [4], wherein the weight ratio of the nanocarbon material to the binder (nanocarbon material: binder) is in the range of 50:50 to 90:10.
  • Positive electrode for secondary battery [6] An aluminum secondary battery comprising the positive electrode for an aluminum secondary battery according to any one of [1] to [5] above, [7]
  • the electrolytic solution contains AlX 4 ⁇ (wherein X is a halogen selected from the group consisting of Cl, Br and I, and four X contained in one molecule are the same or different).
  • the aluminum secondary battery according to item 1 [10] The aluminum secondary battery according to any one of [6] to [9], wherein the negative electrode is aluminum or an aluminum alloy. About.
  • the present invention it is possible to provide a positive electrode for an aluminum secondary battery that can increase discharge voltage, discharge capacity, and coulomb efficiency, and an aluminum secondary battery using the positive electrode. Further, the aluminum secondary battery does not require a rare metal and is excellent in resource procurement, and is very useful in recent years when the price of the rare metal is rising.
  • the cycle characteristics refer to the characteristics of the secondary battery in which the charge / discharge capacity decreases with repeated charge / discharge.
  • a secondary battery having a small decrease in charge / discharge capacity is a secondary battery having excellent cycle characteristics, and a secondary battery having a large decrease in charge / discharge capacity is a secondary battery having inferior cycle characteristics.
  • the aluminum secondary battery of this embodiment includes a pair of electrodes, and an electrolyte exists between the electrodes.
  • An active material that is a nanocarbon material and a binder that is stable to Lewis acid are used for the positive electrode. It is characterized by that.
  • the configuration of the aluminum secondary battery will be described.
  • the negative electrode is not particularly limited as long as it enables precipitation / dissolution of aluminum or dealumination / alloying reaction of aluminum ions from an aluminum alloy, but examples of the negative electrode material suitable for such purpose include metal Aluminum or an aluminum alloy such as Al—Mn or Al—Mg can be given.
  • an electrolytic solution containing AlX 4 ⁇ (symbol X has the same meaning as described above) can be used.
  • a halogen reaction can be used for the positive electrode reaction. That is, in order to use aluminum for the negative electrode reaction, it is necessary to deposit and dissolve aluminum.
  • the oxidation-reduction potential of aluminum is as low as ⁇ 1.66 V with respect to the standard hydrogen electrode, The following reactions (1) to (4) are used.
  • the oxidation-reduction reaction represented by Formula 1 is an Al precipitation / dissolution reaction, and generally proceeds with a Coulomb efficiency of 100%. This reaction becomes a negative electrode reaction of the aluminum secondary battery.
  • the oxidation-reduction reactions shown in Formulas 2 to 4 are positive electrode reactions.
  • the total reaction formula of the secondary battery system of the present invention is expressed as the following formulas 5-7.
  • AlX 4 ⁇ X is a halogen selected from the group consisting of Cl, Br and I, and four X contained in one molecule are the same or different. That is, AlX 4 ⁇ may be composed of a plurality of halogen species.
  • AlX 4 ⁇ includes, for example, AlCl 4 ⁇ , AlBr 4 ⁇ , AlI 4 ⁇ , AlClBr 3 ⁇ , AlClI 3 ⁇ , AlCl 2 BrI ⁇ , AlClBr 2 I ⁇ and AlClBrI 2 ⁇ may be used, and these may be mixed.
  • the non-aqueous solvent is not limited as long as it can generate AlX 4 ⁇ in the electrolytic solution.
  • the non-aqueous solvent is an ionic liquid because it has characteristics such as high ionic conductivity, low volatility, and high thermal stability. Is preferred. Thereby, it is hard to produce a malfunction in an aluminum secondary battery.
  • the “ionic liquid” here means a salt that exists in a liquid state even at room temperature. Examples of the cation of the ionic liquid include imidazolium, pyridinium, pyrrolidinium, piperidinium, tetraalkylammonium, pyrazolium, phosphonium, and the like.
  • imidazolium examples include 1-ethyl-3-methylimidazolium (C 2 mim + ), 1-butyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-allyl- Examples include 3-methylimidazolium, 1-allyl-3-ethylimidazolium, 1-allyl-3-butylimidazolium, 1,3-diallylimidazolium, and the like.
  • pyridinium examples include 1-propylpyridinium, 1-butylpyridinium, 1-ethyl-3- (hydroxymethyl) pyridinium, 1-ethyl-3-methylpyridinium, and the like.
  • pyrrolidinium examples include N-methyl-N-propylpyrrolidinium, N-methyl-N-butylpyrrolidinium, N-methyl-N-methoxymethylpyrrolidinium, and the like.
  • examples of the piperidinium include N-methyl-N-propylpiperidinium.
  • tetraalkylammonium examples include N, N, N-trimethyl-N-propylammonium and methyltrioctylammonium.
  • Examples of the pyrazolium include 1-ethyl-2,3,5-trimethylpyrazolium, 1-propyl-2,3,5-trimethylpyrazolium, 1-butyl-2,3,5-trimethyl. Examples include pyrazolium.
  • the cation can be used alone or in combination of two or more.
  • AlCl 4 ⁇ , AlBr 4 ⁇ and AlI 4 ⁇ are preferable from the viewpoint of reversibility of the positive electrode reaction and power storage performance.
  • An anion can be used individually by 1 type or in combination of 2 or more types.
  • the ratio of AlX 3 in the electrolytic solution is preferably 50 mol% or more and 66.7 mol% or less.
  • AlX 4 ⁇ is AlCl 4 ⁇ or AlBr 4 ⁇ (in this case, AlX 3 is AlCl 3 or AlBr 3 )
  • the non-aqueous solvent is 1-ethyl-3-methylimidazolium bromide or 1-ethyl-3-methylimidazolium chloride is preferred.
  • the electrolyte solution may contain a non-aqueous solvent other than the non-aqueous solvent.
  • a non-aqueous solvent for example, the non-aqueous solvent and the cation are common, and the anions are BF 4 ⁇ , NO 3 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , CH 3 CH 2 OSO 3 ⁇ , CH 3 CO. 2 ⁇ , (FSO 2 ) 2 N— [bis (fluorosulfonyl) imide anion], or an ionic liquid that is a fluoroalkyl group-containing anion.
  • a compound may be added to the electrolytic solution.
  • urea lithium chloride, sodium chloride, potassium chloride, calcium chloride, magnesium chloride and the like can be mentioned.
  • fluoroalkyl group-containing anion examples include CF 3 CO 2 ⁇ and perfluoroalkylsulfonyl group-containing anions.
  • perfluoroalkylsulfonyl group-containing anion examples include CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N- [bis (trifluoromethylsulfonyl) imide], (CF 3 SO 2 ) 3 C— and the like. Is done.
  • the active material uses a nanocarbon material.
  • the nanocarbon material is a nanomaterial represented by carbon nanotubes, carbon nanohorns, fullerenes, carbon nanofibers, and single-layer to multi-layer graphene, and the walls constituting them are composed of a single layer to several tens of layers. It is a graphene sheet.
  • the thickness of the wall is not particularly limited as long as it exhibits characteristics as a nanocarbon material such as good electrical conductivity and thermal conductivity, and also exhibits flexibility in insertion of anions between graphene layers.
  • a preferable range is, for example, about 20 nm or less, more preferably about 15 nm or less, and still more preferably about 10 nm or less.
  • multilayer graphene is preferable from the viewpoint of availability and ease of handling, and the shape is preferably scaly.
  • the size of the scaly multilayer graphene is, for example, a width of 3 to 30 ⁇ m, preferably 5 to 25 ⁇ m, and a length of 3 to 30 ⁇ m, preferably 5 to 25 ⁇ m. By being in such a range, the stress change which arises at the time of insertion of an anion between graphene layers can be eased more.
  • Specific examples of scaly multilayer graphene include Strem Chemicals, Inc. The graphene nanoplatelet made from is mentioned.
  • the binder is not particularly limited as long as it is a binder that is stable with respect to Lewis acid in the electrolytic solution.
  • a binder include polyether polymers such as polysulfone and polyethersulfone, alginic acid. And polymers such as sodium alginate, ammonium alginate, propylene glycol alginate, etc., polymers such as polyimide, polyamic acid derivatives such as polyimide, and polymers such as carboxymethyl cellulose.
  • polyether polymers such as polysulfone, polymers that are alginic acid derivatives such as sodium alginate, polymers that are polyamic acid derivatives such as polyimide, and the like are preferable.
  • polysulfone examples include polysulfone (CAS number: 25135-51-7; number average molecular weight (Mn) to 22,000) available from SIGMA-ALDRICH.
  • sodium alginate examples include sodium alginate available from Kimika Co., Ltd.
  • polyimide i. S. The thing which pre-dried the dream bond available from Tei, and heat-vacuum-polymerized is mentioned.
  • the blending ratio of active material: binder is preferably in the range of 50:50 to 90:10, more preferably in the range of 60:40 to 80:20, and even more preferably. Is in the range of 65:35 to 75:25, most preferably about 70:30. In this case, “about” means to allow an error of ⁇ 3%, preferably ⁇ 2%, more preferably ⁇ 1%.
  • the amount of the binder is less than 50% by weight, the active material tends to deteriorate mainly during charging during repeated charging and discharging.
  • the amount of the binder is more than 90% by weight, the amount of the active material decreases, and there is a tendency that sufficient performance as a battery cannot be exhibited.
  • the electrodes using these active materials and binders may adopt a known configuration, and may further contain a conductive aid, a thickener, and the like as desired.
  • a conductive aid include carbons such as carbon black, acetylene black, and ketjen black, graphite, and metals.
  • the thickener include carboxymethyl cellulose and ethylene glycol.
  • Examples of the current collector used for the electrode include platinum, molybdenum, nickel, and copper.
  • the tip is usually used in the form of a foil.
  • the type of the aluminum secondary battery is not particularly limited, and examples thereof include a cylindrical type, a coin type, a button type, and a laminate type.
  • the aluminum secondary battery of the present invention can be produced according to a conventional method using a negative electrode and an electrolyte for the positive electrode, and further, if desired, a member such as a separator.
  • the positive electrode is prepared by mixing a particulate positive electrode active material with a binder and optionally other components and a solvent to prepare a paste-like positive electrode material, applying the positive electrode material to a current collector, and then drying the paste.
  • the positive electrode is obtained by kneading the positive electrode active material with a binder and, if necessary, other components and a small amount of solvent in a mortar, etc. It can also be manufactured by pressure bonding to an electric body.
  • the solvent include dichloromethane, acetone, N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like. These solvents can be used alone or in combination of two or more.
  • the amount of the positive electrode material applied to the current collector is preferably in the range of 0.2 to 1.4 mg / cm 2 , more preferably in the range of 0.3 to 1.0 mg / cm 2 , and still more preferably 0.
  • the range is from 4 to 0.8 mg / cm 2 .
  • Graphene nanoplatelets Strem Chemicals, Inc. Available from the company, thickness 6-8nm, width 5 ⁇ m and 25 ⁇ m Polysulfone: available from SIGMA-ALDRICH, number average molecular weight (Mn) to 22,000 (measured by membrane osmometry), bead polyimide: i.
  • S. A dream bond available from Tei is pre-dried (temperature: 100 ° C., pressure: 1 Pa, time: 12 hours), and then synthesized by heating vacuum polymerization (temperature: 300 ° C., pressure: 1 Pa, time: 5 hours). .
  • Test (1) ⁇ Production of aluminum secondary battery> (Positive electrode) (1) Nanocarbon material electrode using polysulfone as a binder Graphene nanoplatelet (GNP 5 ⁇ m ) with a width of 5 ⁇ m and polysulfone are added to dichloromethane at respective weight ratios of 90:10, 70:30, and 50:50, and subjected to ultrasonic treatment. Then, acetone was added and allowed to stand to obtain a positive electrode material. On the other hand, a molybdenum plate current collector in which the lead wire spot portion is secured in advance and the upper portion is covered with Teflon (registered trademark) tape in order to make the exposed area 1.0 cm 2 (vertical 1.0 cm, horizontal 1.0 cm).
  • Teflon registered trademark
  • a body (available from Niraco Co., Ltd., 99.95%, thickness 0.1 mm) was prepared, and a positive electrode material was applied to the exposed surface (application amount: 0.7 mg). The applied material was dried to remove the solvent, and then pressure-bonded to the current collector at 30 kN using a hydraulic press.
  • Al aluminum
  • a mixed acid for cleaning Al 100 mL of sulfuric acid, 121 mL of phosphoric acid, and 29 mL of nitric acid
  • As One USM ultrapure water
  • VS-300SD Tokyo Science Instrument Co., Ltd.
  • Reference electrode As a reference electrode, an Al (III) / Al electrode in which an aluminum wire was immersed in an electrolytic solution partitioned by a glass filter was used.
  • Alignment secondary battery (Aluminum secondary battery) Using the positive electrode, the negative electrode, the reference electrode, and the electrolytic solution, a cylindrical three-electrode cell was produced in an argon atmosphere glove box according to Table 1, and an aluminum secondary battery was obtained.
  • a schematic diagram of an aluminum secondary battery according to an embodiment of the present invention is shown in FIG.
  • GNP 5 ⁇ m : Polysulfone 90: 10 Positive electrode
  • GNP 5 ⁇ m : Polysulfone 70: 30 Positive electrode
  • GNP 5 ⁇ m : Polysulfone 50: 50 Positive electrode
  • GNP 25 ⁇ m : Polysulfone 90: 10 Positive electrode
  • GNP 5 ⁇ m : Sodium alginate 70: 30
  • the discharge capacity of the aluminum secondary battery according to the example of the present invention does not decrease even at a high discharge rate.
  • the coulomb efficiency has cleared the excellent value. Therefore, the positive electrode according to the present invention exhibits excellent electrode characteristics, and an aluminum secondary battery using the electrode exhibits excellent characteristics in discharge voltage, discharge capacity, and coulomb efficiency.
  • Test (2) ⁇ Production of aluminum secondary battery> Treated in the same manner as in “Preparation of aluminum secondary battery” in Test (1) except that polyimide was used in place of polysulfone as the binder and the weight ratio of graphene nanoplatelet to polyimide was as shown in Table 3. Thus, an aluminum secondary battery described in Table 3 according to the example was obtained.
  • Example 1 The aluminum secondary batteries of Example 1 and Example 6 were subjected to a charge / discharge test under the conditions of a cutoff voltage (upper limit: 2.4 V; lower limit: 0.8 V) and a temperature of 25 ° C.
  • a cutoff voltage upper limit: 2.4 V; lower limit: 0.8 V
  • the discharge voltage and discharge capacity of the 1000th cycle and the coulomb efficiency (definition: discharge capacity / charge capacity ⁇ 100) were determined. The results are shown in Table 5. Also, the relationship between the discharge capacity and the number of cycles during this period is shown in FIG. Furthermore, about the positive electrode of Example 6, the result of having observed the mode of the positive electrode surface in the 100th cycle before a test start with the scanning electron microscope is shown in FIG. FIG. 5 shows that even after 100 cycles, almost no change such as peeling is observed on the positive electrode surface.
  • the aluminum secondary battery according to the example of the present invention exhibits extremely excellent characteristics that the discharge capacity does not decrease even at a high discharge rate and charge / discharge of 1000 cycles or more is possible. Therefore, the positive electrode according to the present invention exhibits excellent electrode characteristics, and an aluminum secondary battery using the electrode exhibits excellent characteristics in discharge voltage, discharge capacity, coulomb efficiency, and cycle characteristics.
  • Test (3) The aluminum secondary battery of Example 6 was subjected to a charge / discharge test while changing the discharge rate as shown in Table 6 under the conditions of a cutoff voltage (upper limit: 2.4 V; lower limit: 0.8 V) and a temperature of 25 ° C. It was.
  • a cutoff voltage upper limit: 2.4 V; lower limit: 0.8 V
  • an aluminum secondary battery positive electrode capable of improving discharge voltage, discharge capacity, coulomb efficiency and cycle characteristics, and an aluminum secondary battery using the positive electrode.

Abstract

The present invention relates to a positive electrode for an aluminum secondary battery characterized by comprising an active material which is a nano carbon material, and a binder that is stable in a Lewis acid, thereby providing a positive electrode for an aluminum secondary battery and an aluminum secondary batter using said positive electrode capable of improving discharge voltage, discharge capacity, coulombic efficiency, and cycle characteristics.

Description

アルミニウム二次電池用正極およびアルミニウム二次電池Positive electrode for aluminum secondary battery and aluminum secondary battery
 本発明は、アルミニウム二次電池に用いることができる新規な正極、および、該正極を含んでなるアルミニウム二次電池に関する。 The present invention relates to a novel positive electrode that can be used for an aluminum secondary battery, and an aluminum secondary battery comprising the positive electrode.
 アルミニウムは、単位体積および単位質量当たりの電気容量が高く、特に体積基準ではリチウムの約4倍に相当する理論エネルギー密度を持っている。また、元素存在比も多く低コストで容易に入手が可能である。従って、アルミニウム又はアルミニウム合金を電池の負極に用いることができれば、高エネルギー密度の電池を低コストで実現できることになる。このような理由から、アルミニウム二次電池は、今後の有望な電池の一つである。 Aluminum has a high electric capacity per unit volume and unit mass, and in particular has a theoretical energy density equivalent to about four times that of lithium on a volume basis. In addition, the element abundance ratio is large and can be easily obtained at low cost. Therefore, if aluminum or an aluminum alloy can be used for the negative electrode of the battery, a high energy density battery can be realized at low cost. For these reasons, the aluminum secondary battery is one of the promising batteries in the future.
 特許文献1は、充電効率を高めるべくアルミニウムハライド系イオン液体を電解液とし、かつ、正極として活性炭等を用いたアルミニウム二次電池を開示しているが、正極として用いることができる材料が限られていること、また、正極容量も十分でないという問題があった。 Patent Document 1 discloses an aluminum secondary battery that uses an aluminum halide ionic liquid as an electrolyte and uses activated carbon or the like as a positive electrode in order to increase charging efficiency. However, materials that can be used as a positive electrode are limited. In addition, the positive electrode capacity is not sufficient.
特開2014-222609号公報JP 2014-222609 A
 本発明は、放電電圧、放電容量、クーロン効率およびサイクル特性を高めることのできるアルミニウム二次電池用正極および該正極を用いたアルミニウム二次電池を提供しようとするものである。 The present invention intends to provide a positive electrode for an aluminum secondary battery capable of improving discharge voltage, discharge capacity, coulomb efficiency and cycle characteristics, and an aluminum secondary battery using the positive electrode.
 本発明者らは、上記課題解決のため鋭意検討した結果、グラファイトを正極に使用するとグラファイト層間へのアニオンの挿入に起因すると考えられる正極の著しい劣化が観察されること、および、該劣化は正極活物質としてナノ炭素材料を使用しかつ所定のバインダーを使用することで防止できることを見出し、さらに検討を重ねて、本発明を完成した。 As a result of intensive studies for solving the above problems, the present inventors have found that when graphite is used for the positive electrode, significant deterioration of the positive electrode, which is considered to be caused by insertion of anions between the graphite layers, is observed, and this deterioration is The inventors found that this can be prevented by using a nanocarbon material as an active material and using a predetermined binder, and further studies were made to complete the present invention.
 すなわち、本発明は、
[1]ナノ炭素材料である活物質と、ルイス酸に安定なバインダーとを含んでなる、アルミニウム二次電池用正極、
[2]バインダーが、ポリエーテル系高分子、アルギン酸またはアルギン酸誘導体である高分子、ポリアミド酸誘導体である高分子、およびセルロース誘導体である高分子からなる群から選択される少なくとも一つである、上記[1]記載のアルミニウム二次電池用正極、
[3]バインダーが、ポリスルホン、ポリエーテルスルホン、アルギン酸、アルギン酸ナトリウム、アルギン酸アンモニウム、アルギン酸プロピレングリコール、ポリイミド、カルボキシメチルセルロースからなる群から選択される少なくとも一つである、上記[1]記載のアルミニウム二次電池用正極、
[4]ナノ炭素材料が、カーボンナノチューブ、カーボンナノホーン、フラーレン、カーボンナノファイバー、および単層ないし多層のグラフェンからなる群から選択される少なくとも一つである、上記[1]~[3]のいずれか1項に記載のアルミニウム二次電池用正極、
[5]ナノ炭素材料とバインダーとの重量比(ナノ炭素材料:バインダー)が、50:50~90:10の範囲である、上記[1]~[4]のいずれか1項に記載のアルミニウム二次電池用正極、
[6]上記[1]~[5]のいずれか1項に記載のアルミニウム二次電池用正極を含んでなるアルミニウム二次電池、
[7]電解液がAlX4 -(但し、XはCl、BrおよびIからなる群から選択されるハロゲンであり、一分子中に含まれる4つのXは同一または異なるものである。)を含んでなるものである、上記[6]記載のアルミニウム二次電池、
[8]電解液が非水系溶媒であるイオン液体に上記AlX4 -が溶解したものである、上記[6]または[7]記載のアルミニウム二次電池、
[9]イオン性液体のカチオンがイミダゾリウム、ピリジニウム、ピロリジニウム、ピペリジニウム、テトラアルキルアンモニウム、ピラゾリウム、およびホスホニウムからなる群から選択される少なくとも一つである、上記[6]~[8]のいずれか1項に記載のアルミニウム二次電池、
[10]負極がアルミニウムまたはアルミニウム合金である、上記[6]~[9]のいずれか1項に記載のアルミニウム二次電池、
に関する。
That is, the present invention
[1] A positive electrode for an aluminum secondary battery, comprising an active material that is a nanocarbon material and a Lewis acid-stable binder,
[2] The above, wherein the binder is at least one selected from the group consisting of a polyether polymer, a polymer that is alginic acid or an alginic acid derivative, a polymer that is a polyamic acid derivative, and a polymer that is a cellulose derivative. [1] The positive electrode for an aluminum secondary battery according to [1],
[3] The aluminum secondary as described in [1] above, wherein the binder is at least one selected from the group consisting of polysulfone, polyethersulfone, alginic acid, sodium alginate, ammonium alginate, propylene glycol alginate, polyimide, and carboxymethylcellulose. Positive electrode for battery,
[4] Any of the above [1] to [3], wherein the nanocarbon material is at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, fullerenes, carbon nanofibers, and single-layer to multi-layer graphene Or a positive electrode for an aluminum secondary battery according to claim 1,
[5] The aluminum according to any one of [1] to [4], wherein the weight ratio of the nanocarbon material to the binder (nanocarbon material: binder) is in the range of 50:50 to 90:10. Positive electrode for secondary battery,
[6] An aluminum secondary battery comprising the positive electrode for an aluminum secondary battery according to any one of [1] to [5] above,
[7] The electrolytic solution contains AlX 4 (wherein X is a halogen selected from the group consisting of Cl, Br and I, and four X contained in one molecule are the same or different). The aluminum secondary battery according to the above [6], comprising:
[8] The aluminum secondary battery according to [6] or [7] above, wherein the AlX 4 is dissolved in an ionic liquid whose electrolyte is a non-aqueous solvent.
[9] Any of the above [6] to [8], wherein the cation of the ionic liquid is at least one selected from the group consisting of imidazolium, pyridinium, pyrrolidinium, piperidinium, tetraalkylammonium, pyrazolium, and phosphonium. The aluminum secondary battery according to item 1,
[10] The aluminum secondary battery according to any one of [6] to [9], wherein the negative electrode is aluminum or an aluminum alloy.
About.
 本発明によれば、放電電圧、放電容量、およびクーロン効率を高めることのできるアルミニウム二次電池用正極および該正極を用いたアルミニウム二次電池を提供することができる。また、アルミニウム二次電池は、レアメタルを必要とせず、資源の調達面で優れており、レアメタルの価格が高騰する近年において、非常に有用である。 According to the present invention, it is possible to provide a positive electrode for an aluminum secondary battery that can increase discharge voltage, discharge capacity, and coulomb efficiency, and an aluminum secondary battery using the positive electrode. Further, the aluminum secondary battery does not require a rare metal and is excellent in resource procurement, and is very useful in recent years when the price of the rare metal is rising.
 さらに、本発明によれば、サイクル特性を高めることのできるアルミニウム二次電池用正極および該正極を用いたアルミニウム二次電池を提供することができる。ここで、サイクル特性とは、充放電の繰り返しに伴って充放電容量が低下する二次電池の特性を指す。充放電容量の低下度合いが小さい二次電池はサイクル特性に優れる二次電池であり、充放電容量の低下度合いの大きな二次電池はサイクル特性に劣る二次電池である。 Furthermore, according to the present invention, it is possible to provide an aluminum secondary battery positive electrode capable of improving cycle characteristics and an aluminum secondary battery using the positive electrode. Here, the cycle characteristics refer to the characteristics of the secondary battery in which the charge / discharge capacity decreases with repeated charge / discharge. A secondary battery having a small decrease in charge / discharge capacity is a secondary battery having excellent cycle characteristics, and a secondary battery having a large decrease in charge / discharge capacity is a secondary battery having inferior cycle characteristics.
実施例で使用した正極(2)(GNP5μm:ポリスルホン=70:30)を写した図面代用写真である。It is a drawing substitute photograph which copied the positive electrode (2) used in the Example (GNP 5 μm : polysulfone = 70: 30). 実施例で使用した正極(5)(GNP5μm:アルギン酸ナトリウム=70:30)を写した図面代用写真である。It is a drawing substitute photograph which copied the positive electrode (5) (GNP 5micrometer : sodium alginate = 70: 30) used in the Example. 本発明の実施形態に係るアルミニウム二次電池の模式図である。It is a schematic diagram of the aluminum secondary battery which concerns on embodiment of this invention. 実施例1(ポリスルホン)と実施例6(ポリイミド)のアルミニウム二次電池について充放電試験を繰り返した際の、放電容量とサイクル数との関係を示した図である。It is the figure which showed the relationship between the discharge capacity and the cycle number at the time of repeating a charging / discharging test about the aluminum secondary battery of Example 1 (polysulfone) and Example 6 (polyimide). 実施例6のアルミニウム二次電池の正極表面の様子を、充放電試験の開始前および同第10サイクルの時点において、走査型電子顕微鏡で観察した結果である。It is the result of having observed the state of the positive electrode surface of the aluminum secondary battery of Example 6 with the scanning electron microscope before the start of a charging / discharging test and the time of the 10th cycle. 実施例6のアルミニウム二次電池について、放電レートを表6のとおり変化させながら充放電試験を行った際の、充電容量および放電容量とサイクル数との関係を示した図である。It is the figure which showed the relationship between the charge capacity | capacitance and discharge capacity | capacitance, and the number of cycles at the time of performing a charge / discharge test about the aluminum secondary battery of Example 6, changing a discharge rate as shown in Table 6. FIG.
 以下、本発明の実施の形態について説明するが、本発明はこれに限定されるものではなく、様々な変形が可能である。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to these embodiments, and various modifications are possible.
 本実施形態のアルミニウム二次電池は、一対の電極を備え、該電極間に電解液が存在するものであり、その正極に、ナノ炭素材料である活物質とルイス酸に安定なバインダーを使用したことを特徴とする。以下、当該アルミニウム二次電池の構成について説明する。 The aluminum secondary battery of this embodiment includes a pair of electrodes, and an electrolyte exists between the electrodes. An active material that is a nanocarbon material and a binder that is stable to Lewis acid are used for the positive electrode. It is characterized by that. Hereinafter, the configuration of the aluminum secondary battery will be described.
<負極>
 負極としては、アルミニウムの析出・溶解あるいはアルミニウム合金からのアルミニウムイオンの脱合金・合金化反応を可能とするものであれば、特に限定されないが、そのような目的に適う負極材料として、例えば、金属アルミニウム、または、Al-MnやAl-Mgの如きアルミニウム合金が挙げられる。
<Negative electrode>
The negative electrode is not particularly limited as long as it enables precipitation / dissolution of aluminum or dealumination / alloying reaction of aluminum ions from an aluminum alloy, but examples of the negative electrode material suitable for such purpose include metal Aluminum or an aluminum alloy such as Al—Mn or Al—Mg can be given.
<電解液>
 電解液としては、AlX4 -(記号Xは、前記と同一意味を有する。)を含んでなる電解液を使用することができる。該電解液を使用する場合、ハロゲンの反応を正極反応に利用することができる。すなわち、アルミニウムを負極反応に利用するためには、アルミニウムを析出および溶解させる必要があるが、アルミニウムの酸化還元電位は、標準水素電極基準で-1.66Vと低いため、非水溶媒系での下記(1)~(4)の反応を利用する。
<Electrolyte>
As the electrolytic solution, an electrolytic solution containing AlX 4 (symbol X has the same meaning as described above) can be used. When the electrolytic solution is used, a halogen reaction can be used for the positive electrode reaction. That is, in order to use aluminum for the negative electrode reaction, it is necessary to deposit and dissolve aluminum. However, since the oxidation-reduction potential of aluminum is as low as −1.66 V with respect to the standard hydrogen electrode, The following reactions (1) to (4) are used.
Figure JPOXMLDOC01-appb-C000001
 (記号Xは、前記と同一意味を有する。)
Figure JPOXMLDOC01-appb-C000001
(The symbol X has the same meaning as described above.)
 式1で示した酸化還元反応はAlの析出・溶解反応であり、通常クーロン効率100%で進行する。この反応はアルミニウム二次電池の負極反応となる。一方、式2~4に示した酸化還元反応が、正極反応となる。 The oxidation-reduction reaction represented by Formula 1 is an Al precipitation / dissolution reaction, and generally proceeds with a Coulomb efficiency of 100%. This reaction becomes a negative electrode reaction of the aluminum secondary battery. On the other hand, the oxidation-reduction reactions shown in Formulas 2 to 4 are positive electrode reactions.
 本発明の二次電池系の全反応式は、下記式5~7のように表される。 The total reaction formula of the secondary battery system of the present invention is expressed as the following formulas 5-7.
Figure JPOXMLDOC01-appb-C000002
 (記号Xは、前記と同一意味を有する。)
Figure JPOXMLDOC01-appb-C000002
(The symbol X has the same meaning as described above.)
 AlX4 -において、XはCl、BrおよびIからなる群から選択されるハロゲンであり、一分子中に含まれる4つのXは同一または異なるものである。すなわち、AlX4 -は複数のハロゲン種から構成されていてもよく、AlX4 -は、例えば、AlCl4 -、AlBr4 -、AlI4 -、AlClBr3 -、AlClI3 -、AlCl2BrI-、AlClBr2-、AlClBrI2 -であってよく、これらが混在していてもよい。 In AlX 4 , X is a halogen selected from the group consisting of Cl, Br and I, and four X contained in one molecule are the same or different. That is, AlX 4 may be composed of a plurality of halogen species. For example, AlX 4 includes, for example, AlCl 4 , AlBr 4 , AlI 4 , AlClBr 3 , AlClI 3 , AlCl 2 BrI , AlClBr 2 I and AlClBrI 2 may be used, and these may be mixed.
 上記非水系溶媒は、電解液中にAlX4 -を生じさせ得るものであれば限定されないが、高いイオン伝導性、難揮発性、高い熱安定性などの特徴を有することからイオン液体であることが好ましい。これにより、アルミニウム二次電池に不具合が生じ難い。ここでいう「イオン液体」とは、室温でも液体で存在する塩を意味する。このイオン液体のカチオンとしては、例えば、イミダゾリウム、ピリジニウム、ピロリジニウム、ピペリジニウム、テトラアルキルアンモニウム、ピラゾリウム、又はホスホニウム等が挙げられる。 The non-aqueous solvent is not limited as long as it can generate AlX 4 in the electrolytic solution. However, the non-aqueous solvent is an ionic liquid because it has characteristics such as high ionic conductivity, low volatility, and high thermal stability. Is preferred. Thereby, it is hard to produce a malfunction in an aluminum secondary battery. The “ionic liquid” here means a salt that exists in a liquid state even at room temperature. Examples of the cation of the ionic liquid include imidazolium, pyridinium, pyrrolidinium, piperidinium, tetraalkylammonium, pyrazolium, phosphonium, and the like.
 前記イミダゾリウムとしては、例えば、1-エチル-3-メチルイミダゾリウム(C2mim+)、1-ブチル-3-メチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1-アリル-3-メチルイミダゾリウム、1-アリル-3-エチルイミダゾリウム、1-アリル-3-ブチルイミダゾリウム、1,3-ジアリルイミダゾリウム等が挙げられる。 Examples of the imidazolium include 1-ethyl-3-methylimidazolium (C 2 mim + ), 1-butyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-allyl- Examples include 3-methylimidazolium, 1-allyl-3-ethylimidazolium, 1-allyl-3-butylimidazolium, 1,3-diallylimidazolium, and the like.
 また、前記ピリジニウムとしては、例えば、1-プロピルピリジニウム、1-ブチルピリジニウム、1-エチル-3-(ヒドロキシメチル)ピリジニウム、1-エチル-3-メチルピリジニウム等が挙げられる。 Examples of the pyridinium include 1-propylpyridinium, 1-butylpyridinium, 1-ethyl-3- (hydroxymethyl) pyridinium, 1-ethyl-3-methylpyridinium, and the like.
 前記ピロリジニウムとしては、例えば、N-メチル-N-プロピルピロリジニウム、N-メチル-N-ブチルピロリジニウム、N-メチル-N-メトキシメチルピロリジニウム等が挙げられる。 Examples of the pyrrolidinium include N-methyl-N-propylpyrrolidinium, N-methyl-N-butylpyrrolidinium, N-methyl-N-methoxymethylpyrrolidinium, and the like.
 また、前記ピペリジニウムとしては、例えば、N-メチル-N-プロピルピペリジニウム等が挙げられる。 Also, examples of the piperidinium include N-methyl-N-propylpiperidinium.
 また、前記テトラアルキルアンモニウムとしては、例えば、N,N,N-トリメチル-N-プロピルアンモニウム、メチルトリオクチルアンモニウム等が挙げられる。 Examples of the tetraalkylammonium include N, N, N-trimethyl-N-propylammonium and methyltrioctylammonium.
 また、前記ピラゾリウムとしては、例えば、1-エチル-2,3,5-トリメチルピラゾリウム、1-プロピル-2,3,5-トリメチルピラゾリウム、1-ブチル-2,3,5-トリメチルピラゾリウム等が挙げられる。 Examples of the pyrazolium include 1-ethyl-2,3,5-trimethylpyrazolium, 1-propyl-2,3,5-trimethylpyrazolium, 1-butyl-2,3,5-trimethyl. Examples include pyrazolium.
 カチオンは、1種単独でまたは2種以上を組み合わせて使用することができる。 The cation can be used alone or in combination of two or more.
 上記カチオンと組み合わされてイオン液体を構成するアニオンとしては、正極反応の可逆性や蓄電性能の面から、AlCl4 -、AlBr4 -およびAlI4 -が好ましい。アニオンは、1種単独でまたは2種以上を組み合わせて使用することができる。 As the anion constituting the ionic liquid in combination with the cation, AlCl 4 , AlBr 4 and AlI 4 are preferable from the viewpoint of reversibility of the positive electrode reaction and power storage performance. An anion can be used individually by 1 type or in combination of 2 or more types.
 電解液中のAlX4 -の濃度を高め、二次電池の容量を向上させる観点から、電解液におけるAlX3の比率は、好ましくは50mol%以上、66.7mol%以下である。実用性の高いアルミニウム二次電池を提供する観点から、特に、AlX4 -がAlCl4 -またはAlBr4 -であり(この場合、AlX3はAlCl3またはAlBr3である)、上記非水系溶媒が1-エチル-3-メチルイミダゾリウムブロマイドまたは1-エチル-3-メチルイミダゾリウムクロライドであることが好ましい。 From the viewpoint of increasing the concentration of AlX 4 in the electrolytic solution and improving the capacity of the secondary battery, the ratio of AlX 3 in the electrolytic solution is preferably 50 mol% or more and 66.7 mol% or less. From the viewpoint of providing a highly practical aluminum secondary battery, in particular, AlX 4 is AlCl 4 or AlBr 4 (in this case, AlX 3 is AlCl 3 or AlBr 3 ), and the non-aqueous solvent is 1-ethyl-3-methylimidazolium bromide or 1-ethyl-3-methylimidazolium chloride is preferred.
 なお、電解液には、上記非水系溶媒以外の他の非水系溶媒が含有されていてもよい。他の非水系溶媒としては、例えば、上記非水系溶媒とカチオンが共通し、アニオンが、BF4 -、NO3 -、PF6 -、SbF6 -、CH3CH2OSO3 -、CH3CO2 -、(FSO2)2N-[ビス(フルオロスルフォニル)イミドアニオン]、又はフルオロアルキル基含有アニオンであるイオン液体が挙げられる。また、電解液には化合物が添加されていてもよい。例えば、尿素、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウムなどが挙げられる。 The electrolyte solution may contain a non-aqueous solvent other than the non-aqueous solvent. As other non-aqueous solvents, for example, the non-aqueous solvent and the cation are common, and the anions are BF 4 , NO 3 , PF 6 , SbF 6 , CH 3 CH 2 OSO 3 , CH 3 CO. 2 , (FSO 2 ) 2 N— [bis (fluorosulfonyl) imide anion], or an ionic liquid that is a fluoroalkyl group-containing anion. In addition, a compound may be added to the electrolytic solution. For example, urea, lithium chloride, sodium chloride, potassium chloride, calcium chloride, magnesium chloride and the like can be mentioned.
 前記フルオロアルキル基含有アニオンとしては、例えば、CF3CO2 -、パーフルオロアルキルスルホニル基含有アニオン等が挙げられる。前記パーフルオロアルキルスルホニル基含有アニオンとしては、例えば、CF3SO3 -、(CF3SO2)2N-[ビス(トリフルオロメチルスルフォニル)イミド]、(CF3SO23C-等が例示される。 Examples of the fluoroalkyl group-containing anion include CF 3 CO 2 and perfluoroalkylsulfonyl group-containing anions. Examples of the perfluoroalkylsulfonyl group-containing anion include CF 3 SO 3 , (CF 3 SO 2 ) 2 N- [bis (trifluoromethylsulfonyl) imide], (CF 3 SO 2 ) 3 C— and the like. Is done.
<正極>
(活物質)
 正極について、活物質はナノ炭素材料を使用する。ここにナノ炭素材料とは、カーボンナノチューブ、カーボンナノホーン、フラーレン、カーボンナノファイバー、および単層ないし多層のグラフェンなどに代表されるナノ素材であり、これらを構成するウォールが単層から数十層のグラフェンシートであることを特徴とする。該ウォールの厚さは、良好な電気伝導性や熱伝導性といったナノ炭素材料としての特性を示し、かつ、アニオンのグラフェン層間への挿入に対しても柔軟性を示す範囲であれば特に限定されないが、好ましい範囲としては、例えば、約20nm以下、より好ましくは約15nm以下、さらに好ましくは約10nm以下である。なお、ウォールの厚さの下限については特に制限はなく、グラフェンシート1層の厚さである0.335nmであっても差し支えない。
<Positive electrode>
(Active material)
For the positive electrode, the active material uses a nanocarbon material. Here, the nanocarbon material is a nanomaterial represented by carbon nanotubes, carbon nanohorns, fullerenes, carbon nanofibers, and single-layer to multi-layer graphene, and the walls constituting them are composed of a single layer to several tens of layers. It is a graphene sheet. The thickness of the wall is not particularly limited as long as it exhibits characteristics as a nanocarbon material such as good electrical conductivity and thermal conductivity, and also exhibits flexibility in insertion of anions between graphene layers. However, a preferable range is, for example, about 20 nm or less, more preferably about 15 nm or less, and still more preferably about 10 nm or less. In addition, there is no restriction | limiting in particular about the minimum of the thickness of a wall, Even if it is 0.335 nm which is the thickness of one graphene sheet layer, it does not interfere.
 上記ナノ炭素材料のうち、入手容易性や取扱いの容易さなどの観点から、多層グラフェンが好ましく、その形状としては、鱗片状であることが好ましい。鱗片状の多層グラフェンの大きさは、例えば、幅が3~30μm、好ましくは5~25μm、長さが3~30μm、好ましくは5~25μmである。このような範囲にあることで、アニオンのグラフェン層間への挿入時に生じる応力変化をより緩和できる。鱗片状の多層グラフェンの具体例としては、Strem Chemicals,Inc.製のグラフェンナノプレートレットが挙げられる。 Among the above-mentioned nanocarbon materials, multilayer graphene is preferable from the viewpoint of availability and ease of handling, and the shape is preferably scaly. The size of the scaly multilayer graphene is, for example, a width of 3 to 30 μm, preferably 5 to 25 μm, and a length of 3 to 30 μm, preferably 5 to 25 μm. By being in such a range, the stress change which arises at the time of insertion of an anion between graphene layers can be eased more. Specific examples of scaly multilayer graphene include Strem Chemicals, Inc. The graphene nanoplatelet made from is mentioned.
(バインダー)
 バインダーとしては、電解液中のルイス酸に対して安定なバインダーであれば特に限定されず、そのようなバインダーの具体例としては、ポリスルホン、ポリエーテルスルホンなどのポリエーテル系高分子の他、アルギン酸、アルギン酸ナトリウム、アルギン酸アンモニウム、アルギン酸プロピレングリコール等のアルギン酸誘導体である高分子、ポリイミド等のポリアミド酸誘導体である高分子、カルボキシメチルセルロース等のセルロース誘導体である高分子等が挙げられる。このうち、ポリスルホンなどのポリエーテル系高分子、アルギン酸ナトリウムなどのアルギン酸誘導体である高分子、ポリイミドなどのポリアミド酸誘導体である高分子等が好ましい。ポリスルホンとしては、例えば、SIGMA-ALDRICH社から入手可能なポリスルホン(CAS番号:25135-51-7;数平均分子量(Mn)~22,000)が挙げられる。アルギン酸ナトリウムとしては、(株)キミカより入手可能なアルギン酸ナトリウムが挙げられる。ポリイミドとしては、(株)アイ.エス.テイより入手可能なドリームボンドを予備乾燥し、加熱真空重合したものが挙げられる。
(binder)
The binder is not particularly limited as long as it is a binder that is stable with respect to Lewis acid in the electrolytic solution. Specific examples of such a binder include polyether polymers such as polysulfone and polyethersulfone, alginic acid. And polymers such as sodium alginate, ammonium alginate, propylene glycol alginate, etc., polymers such as polyimide, polyamic acid derivatives such as polyimide, and polymers such as carboxymethyl cellulose. Among these, polyether polymers such as polysulfone, polymers that are alginic acid derivatives such as sodium alginate, polymers that are polyamic acid derivatives such as polyimide, and the like are preferable. Examples of the polysulfone include polysulfone (CAS number: 25135-51-7; number average molecular weight (Mn) to 22,000) available from SIGMA-ALDRICH. Examples of sodium alginate include sodium alginate available from Kimika Co., Ltd. As the polyimide, i. S. The thing which pre-dried the dream bond available from Tei, and heat-vacuum-polymerized is mentioned.
 バインダーを配合する場合の配合割合は、活物質:バインダー(重量比)で、50:50~90:10の範囲であることが好ましく、より好ましくは60:40~80:20の範囲、さらに好ましくは65:35~75:25の範囲、最も好ましくは約70:約30である。この場合の「約」とは、±3%、好ましくは±2%、さらに好ましくは±1%の誤差を許容する趣旨である。バインダーの量が50重量%未満であると、充放電を繰り返す中で、主に充電時に活物質が劣化する傾向がある。一方、バインダー量が90重量%超であると、活物質の量が少なくなり、電池としての十分な性能を発揮できない傾向がある。 When blending the binder, the blending ratio of active material: binder (weight ratio) is preferably in the range of 50:50 to 90:10, more preferably in the range of 60:40 to 80:20, and even more preferably. Is in the range of 65:35 to 75:25, most preferably about 70:30. In this case, “about” means to allow an error of ± 3%, preferably ± 2%, more preferably ± 1%. When the amount of the binder is less than 50% by weight, the active material tends to deteriorate mainly during charging during repeated charging and discharging. On the other hand, when the amount of the binder is more than 90% by weight, the amount of the active material decreases, and there is a tendency that sufficient performance as a battery cannot be exhibited.
 これらの活物質およびバインダーを用いた電極は、公知の構成を採用すればよく、所望により、導電助剤や増粘剤などをさらに配合してもよい。導電助剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック等の炭素類、黒鉛、金属類を例示できる。また、増粘剤としては、カルボキシメチルセルロース、エチレングリコールなどを例示できる。 The electrodes using these active materials and binders may adopt a known configuration, and may further contain a conductive aid, a thickener, and the like as desired. Examples of the conductive aid include carbons such as carbon black, acetylene black, and ketjen black, graphite, and metals. Examples of the thickener include carboxymethyl cellulose and ethylene glycol.
(集電体)
 電極に用いる集電体としては、白金、モリブデン、ニッケル、銅などが挙げられる。その先端は、通常、箔の形態で用いる。
(Current collector)
Examples of the current collector used for the electrode include platinum, molybdenum, nickel, and copper. The tip is usually used in the form of a foil.
(その他の電池構成材料)
 その他、アルミニウム二次電池を構築するための装置構成、例えば、正極と負極との間に設置され、両電極の短絡を防止するセパレータ、電池容器などは、所望により、公知の二次電池に使用された構成を転用することができる。上記セパレータとしては、ガラス繊維、フッ素ポリマー系、ポリエチレン系あるいはポリプロピレン系などのセパレータが挙げられる。フッ素ポリマー系のセパレータは、均一な細孔を有し、本アルミニウム二次電池において、負極によるAlの析出を均一にし、アルミニウム二次電池の安定した作動に寄与する。
(Other battery components)
Other equipment configurations for constructing aluminum secondary batteries, such as separators and battery containers installed between the positive and negative electrodes to prevent short-circuiting of both electrodes, are used for known secondary batteries as required. The configuration made can be diverted. Examples of the separator include glass fiber, fluoropolymer, polyethylene, and polypropylene separators. The fluoropolymer separator has uniform pores, and in the present aluminum secondary battery, Al deposition by the negative electrode is made uniform, contributing to stable operation of the aluminum secondary battery.
<アルミニウム二次電池>
 アルミニウム二次電池の種類は特に限定されないが、円筒型、コイン型、ボタン型、ラミネート型などが挙げられる。
<Aluminum secondary battery>
The type of the aluminum secondary battery is not particularly limited, and examples thereof include a cylindrical type, a coin type, a button type, and a laminate type.
 本発明のアルミニウム二次電池は、正極に、負極および電解質、さらには、所望により、セパレータ等の部材を使用して、常法に従い、作製することができる。 The aluminum secondary battery of the present invention can be produced according to a conventional method using a negative electrode and an electrolyte for the positive electrode, and further, if desired, a member such as a separator.
 正極は、粒子状にした正極活物質を、バインダーおよび所望によりその他の成分並びに溶媒と混合してペースト状の正極材料を調製し、当該正極材料を集電体に塗布した後、乾燥させ、所望により圧着することによって作製することができる。また、その他の方法として、該正極は、例えば、正極活物質を、バインダーおよび所望によりその他の成分並びに少量の溶媒とともに乳鉢などで混練し、かつフィルム状にしたのち、プレス機等を用いて集電体に圧着して作製することもできる。溶媒としては、ジクロロメタン、アセトン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアルデヒド、アルコール、水等が例示される。これら溶媒は、1種または2種以上を使用することができる。 The positive electrode is prepared by mixing a particulate positive electrode active material with a binder and optionally other components and a solvent to prepare a paste-like positive electrode material, applying the positive electrode material to a current collector, and then drying the paste. Can be produced by pressure bonding. As another method, for example, the positive electrode is obtained by kneading the positive electrode active material with a binder and, if necessary, other components and a small amount of solvent in a mortar, etc. It can also be manufactured by pressure bonding to an electric body. Examples of the solvent include dichloromethane, acetone, N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like. These solvents can be used alone or in combination of two or more.
 正極材料の集電体への塗布量は、0.2~1.4mg/cm2の範囲であることが好ましく、より好ましくは0.3~1.0mg/cm2の範囲、さらに好ましくは0.4~0.8mg/cm2の範囲である。塗布量が上記の範囲内であることで、容量増加の傾向がある。 The amount of the positive electrode material applied to the current collector is preferably in the range of 0.2 to 1.4 mg / cm 2 , more preferably in the range of 0.3 to 1.0 mg / cm 2 , and still more preferably 0. The range is from 4 to 0.8 mg / cm 2 . When the application amount is within the above range, the capacity tends to increase.
 本発明を実施例に基づいて説明するが、本発明は、実施例にのみ限定されるものではない。 The present invention will be described based on examples, but the present invention is not limited to the examples.
 以下に、本明細書において使用した材料をまとめて示す。各材料は必要に応じて常法に従い精製を行った。 The materials used in this specification are summarized below. Each material was purified according to a conventional method as necessary.
<試験に使用した材料等>
グラフェンナノプレートレット:Strem Chemicals,Inc.社より入手可能、厚さ6~8nm、幅5μmおよび25μm
ポリスルホン:SIGMA-ALDRICH社より入手可能、数平均分子量(Mn)~22,000(膜浸透圧法(Membrane Osmometry)で測定)、ビーズ
ポリイミド:株式会社アイ.エス.テイより入手可能であるドリームボンドを予備乾燥した後(温度:100℃、圧力:1Pa、時間:12時間)、加熱真空による重合(温度:300℃、圧力:1Pa、時間:5時間)により合成。
アルギン酸ナトリウム:(株)キミカより入手可能、I-1G
ジクロロメタン:和光純薬工業(株)より入手可能、特級
アセトン:和光純薬工業(株)より入手可能、特級
アルミニウム(Al)コイル:(株)ニラコより入手可能、直径1mm、純度99.999%以上
ガラスフィルター:Ace Glass社から入手可能、G4
AlCl3:SIGMA-ALDRICH社より入手可能、無水≧99.0%
1-エチル-3-メチルイミダゾリウムクロリド([C2mim]Cl):東京化成工業(株)より入手
硫酸:和光純薬工業(株)より入手可能、特級
リン酸:和光純薬工業(株)より入手可能、特級
硝酸:和光純薬工業(株)より入手可能、特級
超純水:Milli-Q system Gradient A 10(Millipore)により精製
<Materials used for testing>
Graphene nanoplatelets: Strem Chemicals, Inc. Available from the company, thickness 6-8nm, width 5μm and 25μm
Polysulfone: available from SIGMA-ALDRICH, number average molecular weight (Mn) to 22,000 (measured by membrane osmometry), bead polyimide: i. S. A dream bond available from Tei is pre-dried (temperature: 100 ° C., pressure: 1 Pa, time: 12 hours), and then synthesized by heating vacuum polymerization (temperature: 300 ° C., pressure: 1 Pa, time: 5 hours). .
Sodium alginate: available from Kimika Co., Ltd., I-1G
Dichloromethane: available from Wako Pure Chemical Industries, Ltd., special grade acetone: available from Wako Pure Chemical Industries, Ltd., special grade aluminum (Al) coil: available from Nilaco Corporation, diameter 1 mm, purity 99.999% Glass filter: Available from Ace Glass, G4
AlCl 3 : available from SIGMA-ALDRICH, anhydrous ≧ 99.0%
1-ethyl-3-methylimidazolium chloride ([C 2 mim] Cl): obtained from Tokyo Chemical Industry Co., Ltd. sulfuric acid: available from Wako Pure Chemical Industries, Ltd., special grade phosphoric acid: Wako Pure Chemical Industries, Ltd. ), Special grade nitric acid: Available from Wako Pure Chemical Industries, Ltd., Special grade ultrapure water: Purified by Milli-Q system Gradient A 10 (Millipore)
試験(1)
<アルミニウム二次電池の作製>
(正極)
(1)ポリスルホンをバインダーとしたナノ炭素材料電極
 幅5μmのグラフェンナノプレートレット(GNP5μm)とポリスルホンを、90:10、70:30、50:50の各重量比でジクロロメタンに加え、超音波処理で撹拌した後、アセトンを加えて静置し、正極材料とした。一方、予めリード線スポット部分を確保し、かつ、露出面積を1.0cm2(縦1.0cm、横1.0cm)とするために上部をテフロン(登録商標)テープで覆ったモリブデン板集電体((株)ニラコより入手可能、99.95%、厚さ0.1mm)を準備し、該露出面に正極材料を塗布した(塗布量:0.7mg)。該塗布物を乾燥させて溶媒を除去した後、油圧プレス機を用いて30kNで、集電体に圧着した。こうして得た集電体に白金線をリード線としてスポット溶接して、それぞれ、正極(1)(GNP5μm:ポリスルホン=90:10)、正極(2)(GNP5μm:ポリスルホン=70:30)(図1)、正極(3)(GNP5μm:ポリスルホン=50:50)とした。
Test (1)
<Production of aluminum secondary battery>
(Positive electrode)
(1) Nanocarbon material electrode using polysulfone as a binder Graphene nanoplatelet (GNP 5 μm ) with a width of 5 μm and polysulfone are added to dichloromethane at respective weight ratios of 90:10, 70:30, and 50:50, and subjected to ultrasonic treatment. Then, acetone was added and allowed to stand to obtain a positive electrode material. On the other hand, a molybdenum plate current collector in which the lead wire spot portion is secured in advance and the upper portion is covered with Teflon (registered trademark) tape in order to make the exposed area 1.0 cm 2 (vertical 1.0 cm, horizontal 1.0 cm). A body (available from Niraco Co., Ltd., 99.95%, thickness 0.1 mm) was prepared, and a positive electrode material was applied to the exposed surface (application amount: 0.7 mg). The applied material was dried to remove the solvent, and then pressure-bonded to the current collector at 30 kN using a hydraulic press. The current collector thus obtained was spot welded with a platinum wire as a lead wire, and the positive electrode (1) (GNP 5 μm : polysulfone = 90: 10) and the positive electrode (2) (GNP 5 μm : polysulfone = 70: 30) ( FIG. 1) and a positive electrode (3) (GNP 5 μm : polysulfone = 50: 50).
 幅25μmのグラフェンナノプレートレット(GNP25μm)とポリスルホンを、90:10の重量比で上記と同様に処理して、正極(4)(GNP25μm:ポリスルホン=90:10)を作製した。 A graphene nanoplatelet (GNP 25 μm ) having a width of 25 μm and polysulfone were treated in the same manner as described above at a weight ratio of 90:10 to prepare a positive electrode (4) (GNP 25 μm : polysulfone = 90: 10).
(2)アルギン酸ナトリウムをバインダーとしたナノ炭素材料電極
 幅5μmのグラフェンナノプレートレット(GNP5μm)とアルギン酸ナトリウムを、70:30の重量比で超純水に加え、乳鉢で混練して静置し、正極材料とした。該正極材料を用いて、上記と同様に処理して、正極(5)(GNP5μm:アルギン酸ナトリウム=70:30)を作製した(図2)。
(2) Nano-carbon material electrode with sodium alginate as binder Bifene graphene nanoplatelet (GNP 5 μm ) and sodium alginate are added to ultrapure water at a weight ratio of 70:30, kneaded in a mortar and left to stand. A positive electrode material was obtained. The positive electrode material was treated in the same manner as described above to prepare a positive electrode (5) (GNP 5 μm : sodium alginate = 70: 30) (FIG. 2).
(負極)
 負極としては、アルミニウム(Al)コイルを用いた。Alコイルは、使用前にAl洗浄用の混酸(硫酸100mL、リン酸121mL、および硝酸29mLを混合したもの)に十分浸漬させ、超音波洗浄機(アズワンのUSM)を用いて超純水で洗浄した後、真空乾燥機(東京理科器械(株)のVOS-300SD)で乾燥させてから使用した。
(Negative electrode)
An aluminum (Al) coil was used as the negative electrode. Before use, the Al coil should be sufficiently immersed in a mixed acid for cleaning Al (100 mL of sulfuric acid, 121 mL of phosphoric acid, and 29 mL of nitric acid), and cleaned with ultrapure water using an ultrasonic cleaner (As One USM). Then, it was used after being dried with a vacuum dryer (VOS-300SD, Tokyo Science Instrument Co., Ltd.).
(参照極)
 参照極としては、アルミニウム線をガラスフィルターで仕切られた電解液に浸したAl(III)/Al電極を用いた。
(Reference electrode)
As a reference electrode, an Al (III) / Al electrode in which an aluminum wire was immersed in an electrolytic solution partitioned by a glass filter was used.
(電解液)
 アルゴン雰囲気のグローブボックス(VAC NEXUS II SYSTEM、H2O<1ppm、O2<1ppm)内で、AlCl3と[C2mim]Clとを、モル比が3:2となるように混合して、60.0-40.0mol%のAlCl3-[C2mim]Clイオン液体を調製した。調製後、Alコイル電極をカソードおよびアノードとして定電流電解(5mA、72時間)することで、浴中に存在するわずかな不純物イオンや水分を電気化学的に取り除き、これを電解液として使用した。
(Electrolyte)
In a glove box (VAC NEXUS II SYSTEM, H 2 O <1 ppm, O 2 <1 ppm) in an argon atmosphere, AlCl 3 and [C 2 mim] Cl were mixed at a molar ratio of 3: 2. 60.0-40.0 mol% AlCl 3- [C 2 mim] Cl ionic liquid was prepared. After the preparation, by performing constant current electrolysis (5 mA, 72 hours) using the Al coil electrode as a cathode and an anode, slight impurity ions and moisture present in the bath were removed electrochemically, and this was used as an electrolytic solution.
(アルミニウム二次電池)
 上記正極、負極、参照極および電解液を用いて、表1に従い、アルゴン雰囲気のグローブボックス内で、円筒型の3電極式セルを作製し、アルミニウム二次電池とした。本発明の実施例に係るアルミニウム二次電池の模式図を図3に示す。
(Aluminum secondary battery)
Using the positive electrode, the negative electrode, the reference electrode, and the electrolytic solution, a cylindrical three-electrode cell was produced in an argon atmosphere glove box according to Table 1, and an aluminum secondary battery was obtained. A schematic diagram of an aluminum secondary battery according to an embodiment of the present invention is shown in FIG.
Figure JPOXMLDOC01-appb-T000003
 正極(1) GNP5μm:ポリスルホン=90:10
 正極(2) GNP5μm:ポリスルホン=70:30
 正極(3) GNP5μm:ポリスルホン=50:50
 正極(4) GNP25μm:ポリスルホン=90:10
 正極(5) GNP5μm:アルギン酸ナトリウム=70:30
Figure JPOXMLDOC01-appb-T000003
Positive electrode (1) GNP 5 μm : Polysulfone = 90: 10
Positive electrode (2) GNP 5 μm : Polysulfone = 70: 30
Positive electrode (3) GNP 5 μm : Polysulfone = 50: 50
Positive electrode (4) GNP 25 μm : Polysulfone = 90: 10
Positive electrode (5) GNP 5 μm : Sodium alginate = 70: 30
<評価>
 実施例1~5のアルミニウム二次電池について、カットオフ電圧(上限:2.1V; 下限:0.8V)、温度25℃の条件下、充放電試験を行った。第1サイクルの放電電圧と放電容量、およびクーロン効率(定義:放電容量/充電容量×100)をそれぞれ求めた。なお、すべての電気化学測定は、ポテンショスタット/ガルバノスタット(IVIUM社製 Compact Stat)または充放電装置(北斗電工(株)、HJ-1001SD8)を用いて、アルゴン雰囲気のグローブボックス内で行った(以下、特に断りのない限り同様)。結果を表2に示す。
<結果>
<Evaluation>
The aluminum secondary batteries of Examples 1 to 5 were subjected to a charge / discharge test under the conditions of a cutoff voltage (upper limit: 2.1 V; lower limit: 0.8 V) and a temperature of 25 ° C. The discharge voltage and discharge capacity of the first cycle and the Coulomb efficiency (definition: discharge capacity / charge capacity × 100) were determined. All electrochemical measurements were performed in an argon atmosphere glove box using a potentiostat / galvanostat (Compact Stat manufactured by IVIUM) or a charge / discharge device (Hokuto Denko Co., Ltd., HJ-1001SD8). The same applies hereinafter unless otherwise noted). The results are shown in Table 2.
<Result>
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上より、本発明の実施例に係るアルミニウム二次電池は、高い放電レートでも、放電容量が低下しない。また、クーロン効率も優れた値をクリアしている。したがって、本発明に係る正極は優れた電極特性を示すものであり、該電極を用いたアルミニウム二次電池は、放電電圧、放電容量、およびクーロン効率において、優れた特性を示す。 As described above, the discharge capacity of the aluminum secondary battery according to the example of the present invention does not decrease even at a high discharge rate. In addition, the coulomb efficiency has cleared the excellent value. Therefore, the positive electrode according to the present invention exhibits excellent electrode characteristics, and an aluminum secondary battery using the electrode exhibits excellent characteristics in discharge voltage, discharge capacity, and coulomb efficiency.
試験(2)
<アルミニウム二次電池の作製>
 バインダーとしてポリスルホンに代えてポリイミドを用い、かつ、グラフェンナノプレートレットとポリイミドの重量比を表3記載のとおりとした以外は、試験(1)における「アルミニウム二次電池の作製」と同様に処理して、実施例に係る表3の記載のアルミニウム二次電池を得た。
Test (2)
<Production of aluminum secondary battery>
Treated in the same manner as in “Preparation of aluminum secondary battery” in Test (1) except that polyimide was used in place of polysulfone as the binder and the weight ratio of graphene nanoplatelet to polyimide was as shown in Table 3. Thus, an aluminum secondary battery described in Table 3 according to the example was obtained.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<評価>
 実施例1および実施例6のアルミニウム二次電池について、カットオフ電圧(上限:2.4V; 下限:0.8V)、温度25℃の条件下、充放電試験を行った。
<Evaluation>
The aluminum secondary batteries of Example 1 and Example 6 were subjected to a charge / discharge test under the conditions of a cutoff voltage (upper limit: 2.4 V; lower limit: 0.8 V) and a temperature of 25 ° C.
<結果>
 第10サイクルの放電電圧と放電容量、およびクーロン効率(定義:放電容量/充電容量×100)をそれぞれ求めた。結果を表4に示す。
<Result>
The discharge voltage and discharge capacity of the 10th cycle and the Coulomb efficiency (definition: discharge capacity / charge capacity × 100) were determined. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 第1000サイクルの放電電圧と放電容量、およびクーロン効率(定義:放電容量/充電容量×100)をそれぞれ求めた。結果を表5に示す。また、この間の放電容量とサイクル数の関係を図4に示す。さらに、実施例6の正極について、試験開始前および第100サイクルにおける正極表面の様子を走査型電子顕微鏡で観察した結果を図5に示す。図5からは、100サイクル経過後も、正極表面には剥離等の変化がほとんど認められないことがわかる。 The discharge voltage and discharge capacity of the 1000th cycle and the coulomb efficiency (definition: discharge capacity / charge capacity × 100) were determined. The results are shown in Table 5. Also, the relationship between the discharge capacity and the number of cycles during this period is shown in FIG. Furthermore, about the positive electrode of Example 6, the result of having observed the mode of the positive electrode surface in the 100th cycle before a test start with the scanning electron microscope is shown in FIG. FIG. 5 shows that even after 100 cycles, almost no change such as peeling is observed on the positive electrode surface.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上より、本発明の実施例に係るアルミニウム二次電池は、高い放電レートでも、放電容量が低下しないとともに、1000サイクル以上の充放電が可能という極めて優れた特徴を示すものである。したがって、本発明に係る正極は優れた電極特性を示すものであり、該電極を用いたアルミニウム二次電池は、放電電圧、放電容量、クーロン効率、およびサイクル特性において、優れた特性を示す。 As described above, the aluminum secondary battery according to the example of the present invention exhibits extremely excellent characteristics that the discharge capacity does not decrease even at a high discharge rate and charge / discharge of 1000 cycles or more is possible. Therefore, the positive electrode according to the present invention exhibits excellent electrode characteristics, and an aluminum secondary battery using the electrode exhibits excellent characteristics in discharge voltage, discharge capacity, coulomb efficiency, and cycle characteristics.
試験(3)
<評価>
 実施例6のアルミニウム二次電池について、カットオフ電圧(上限:2.4V; 下限:0.8V)、温度25℃の条件下、放電レートを表6のとおり変化させながら、充放電試験を行った。
Test (3)
<Evaluation>
The aluminum secondary battery of Example 6 was subjected to a charge / discharge test while changing the discharge rate as shown in Table 6 under the conditions of a cutoff voltage (upper limit: 2.4 V; lower limit: 0.8 V) and a temperature of 25 ° C. It was.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<結果>
 結果を、図6に示す。放電レートが1000mAhg-1から10000mAhg-1へと速くなるにつれて放電容量は減少するが、放電レートを1000mAhg-1に戻すと放電容量もほぼ元の値に戻ることが示されている。
<Result>
The results are shown in FIG. It is shown that the discharge capacity decreases as the discharge rate increases from 1000 mAhg −1 to 10000 mAhg −1 , but when the discharge rate is returned to 1000 mAhg −1 , the discharge capacity returns almost to the original value.
 本発明によれば、放電電圧、放電容量、クーロン効率およびサイクル特性を高めることのできるアルミニウム二次電池用正極および該正極を用いたアルミニウム二次電池を提供することができる。 According to the present invention, it is possible to provide an aluminum secondary battery positive electrode capable of improving discharge voltage, discharge capacity, coulomb efficiency and cycle characteristics, and an aluminum secondary battery using the positive electrode.
1   アルミニウム二次電池
11  正極
12  Mo集電体
13  Pt集電体
14  負極
15  参照極
16  電解液
DESCRIPTION OF SYMBOLS 1 Aluminum secondary battery 11 Positive electrode 12 Mo current collector 13 Pt current collector 14 Negative electrode 15 Reference electrode 16 Electrolyte

Claims (10)

  1. ナノ炭素材料である活物質と、ルイス酸に安定なバインダーとを含んでなる、アルミニウム二次電池用正極。 A positive electrode for an aluminum secondary battery, comprising an active material that is a nanocarbon material and a Lewis acid-stable binder.
  2. バインダーが、ポリエーテル系高分子、アルギン酸またはアルギン酸誘導体である高分子、ポリアミド酸誘導体である高分子、およびセルロース誘導体である高分子からなる群から選択される少なくとも一つである、請求項1記載のアルミニウム二次電池用正極。 The binder is at least one selected from the group consisting of a polyether polymer, a polymer that is alginic acid or an alginic acid derivative, a polymer that is a polyamic acid derivative, and a polymer that is a cellulose derivative. Positive electrode for aluminum secondary battery.
  3. バインダーが、ポリスルホン、ポリエーテルスルホン、アルギン酸、アルギン酸ナトリウム、アルギン酸アンモニウム、アルギン酸プロピレングリコール、ポリイミド、カルボキシメチルセルロースからなる群から選択される少なくとも一つである、請求項1記載のアルミニウム二次電池用正極。 The positive electrode for an aluminum secondary battery according to claim 1, wherein the binder is at least one selected from the group consisting of polysulfone, polyethersulfone, alginic acid, sodium alginate, ammonium alginate, propylene glycol alginate, polyimide, and carboxymethylcellulose.
  4. ナノ炭素材料が、カーボンナノチューブ、カーボンナノホーン、フラーレン、カーボンナノファイバー、および単層ないし多層のグラフェンからなる群から選択される少なくとも一つである、請求項1~3のいずれか1項に記載のアルミニウム二次電池用正極。 The nanocarbon material according to any one of claims 1 to 3, wherein the nanocarbon material is at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, fullerenes, carbon nanofibers, and single-layer to multi-layer graphene. Positive electrode for aluminum secondary battery.
  5. ナノ炭素材料とバインダーとの重量比(ナノ炭素材料:バインダー)が、50:50~90:10の範囲である、請求項1~4のいずれか1項に記載のアルミニウム二次電池用正極。 The positive electrode for an aluminum secondary battery according to any one of claims 1 to 4, wherein a weight ratio of the nanocarbon material to the binder (nanocarbon material: binder) is in the range of 50:50 to 90:10.
  6. 請求項1~5のいずれか1項に記載のアルミニウム二次電池用正極を含んでなるアルミニウム二次電池。 An aluminum secondary battery comprising the positive electrode for an aluminum secondary battery according to any one of claims 1 to 5.
  7. 電解液がAlX4 -(但し、XはCl、BrおよびIからなる群から選択されるハロゲンであり、一分子中に含まれる4つのXは同一または異なるものである。)を含んでなるものである、請求項6記載のアルミニウム二次電池。 The electrolyte solution contains AlX 4 (wherein X is a halogen selected from the group consisting of Cl, Br and I, and four X contained in one molecule are the same or different). The aluminum secondary battery according to claim 6, wherein
  8. 電解液が非水系溶媒であるイオン液体に上記AlX4 -が溶解したものである、請求項6または7記載のアルミニウム二次電池。 The aluminum secondary battery according to claim 6 or 7, wherein the AlX 4 - is dissolved in an ionic liquid whose electrolyte is a non-aqueous solvent.
  9. イオン性液体のカチオンがイミダゾリウム、ピリジニウム、ピロリジニウム、ピペリジニウム、テトラアルキルアンモニウム、ピラゾリウム、およびホスホニウムからなる群から選択される少なくとも一つである、請求項6~8のいずれか1項に記載のアルミニウム二次電池。 The aluminum according to any one of claims 6 to 8, wherein the cation of the ionic liquid is at least one selected from the group consisting of imidazolium, pyridinium, pyrrolidinium, piperidinium, tetraalkylammonium, pyrazolium, and phosphonium. Secondary battery.
  10. 負極がアルミニウムまたはアルミニウム合金である、請求項6~9のいずれか1項に記載のアルミニウム二次電池。 The aluminum secondary battery according to any one of claims 6 to 9, wherein the negative electrode is aluminum or an aluminum alloy.
PCT/JP2016/078417 2015-10-02 2016-09-27 Positive electrode for aluminum secondary battery, and aluminum secondary battery WO2017057345A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543423A JP6813852B2 (en) 2015-10-02 2016-09-27 Positive electrode for aluminum secondary battery and aluminum secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015197208 2015-10-02
JP2015-197208 2015-10-02

Publications (1)

Publication Number Publication Date
WO2017057345A1 true WO2017057345A1 (en) 2017-04-06

Family

ID=58427478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078417 WO2017057345A1 (en) 2015-10-02 2016-09-27 Positive electrode for aluminum secondary battery, and aluminum secondary battery

Country Status (3)

Country Link
JP (1) JP6813852B2 (en)
TW (1) TWI639266B (en)
WO (1) WO2017057345A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200091369A (en) * 2020-07-20 2020-07-30 한국에너지기술연구원 High capacity aluminum secondary battery and method for manufacturing thereof
WO2023199868A1 (en) * 2022-04-13 2023-10-19 冨士色素株式会社 Aluminum secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124568A (en) * 1994-10-19 1996-05-17 Canon Inc Secondary battery, its negative electrode material forming method and the negative electrode metarial handling method
JP2014222609A (en) * 2013-05-13 2014-11-27 学校法人 関西大学 Aluminum secondary battery
WO2015050697A1 (en) * 2013-10-04 2015-04-09 Toyota Motor Engineering & Manufacturing North America, Inc. Fullerene cathodes for a rechargeable magnesium battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2916380B1 (en) 2012-10-30 2017-06-21 Sony Corporation Aluminum secondary battery and electronic device
CN104393290B (en) 2014-10-29 2016-08-24 北京科技大学 A kind of employing MoS2aluminium ion battery for positive electrode and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124568A (en) * 1994-10-19 1996-05-17 Canon Inc Secondary battery, its negative electrode material forming method and the negative electrode metarial handling method
JP2014222609A (en) * 2013-05-13 2014-11-27 学校法人 関西大学 Aluminum secondary battery
WO2015050697A1 (en) * 2013-10-04 2015-04-09 Toyota Motor Engineering & Manufacturing North America, Inc. Fullerene cathodes for a rechargeable magnesium battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITSUKI KOKUBO ET AL.: "Electrode Behaviors of Graphite Cathode for Aluminum Rechargeable Battery", ABSTRACTS, BATTERY SYMPOSIUM IN JAPAN, vol. 55, 19 November 2014 (2014-11-19), pages 581 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200091369A (en) * 2020-07-20 2020-07-30 한국에너지기술연구원 High capacity aluminum secondary battery and method for manufacturing thereof
KR102248668B1 (en) * 2020-07-20 2021-05-07 한국에너지기술연구원 High capacity aluminum secondary battery and method for manufacturing thereof
WO2023199868A1 (en) * 2022-04-13 2023-10-19 冨士色素株式会社 Aluminum secondary battery

Also Published As

Publication number Publication date
JPWO2017057345A1 (en) 2018-07-26
TW201727973A (en) 2017-08-01
TWI639266B (en) 2018-10-21
JP6813852B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
Chen et al. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes
JP6195236B2 (en) Aluminum secondary battery
JP6423453B2 (en) Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
Su et al. Scalable fabrication of MnO 2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor
JP6642941B2 (en) Anode for high energy batteries
Li et al. Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage
JP5979117B2 (en) Aluminum foil manufacturing method and aluminum foil
JP2016521914A5 (en)
Liu et al. Low-cost gel polymer electrolyte for high-performance aluminum-ion batteries
EP3439086A1 (en) Aqueous secondary cell
WO2011059023A1 (en) Aluminum foil which supports carbonaceous particles scattered thereon
JP2015073104A (en) Electrochemical energy storage system
JPWO2010055762A1 (en) Electric double layer capacitor
Wang et al. Fabrication of manganese dioxide nanosheet-based thin-film electrode and its electrochemical capacitance performance
Chiou et al. Cycle stability of the electrochemical capacitors patterned with vertically aligned carbon nanotubes in an LiPF 6-based electrolyte
Liang et al. MXene derivative Ta4C3-Ta2O5 heterostructure as bi-functional barrier for Li-S batteries
Lethesh et al. Prospects and design insights of neat ionic liquids as supercapacitor electrolytes
WO2017057345A1 (en) Positive electrode for aluminum secondary battery, and aluminum secondary battery
US9382634B2 (en) Method for preparing low-melting-point plating solution for aluminum electroplating, plating solution for aluminum electroplating, method for producing aluminum foil, and method for lowering melting point of plating solution for aluminum electroplating
Song et al. NbSe 2@ PPy nanosheets as anode materials for flexible all-solid-state asymmetric supercapacitors
EP4210078A1 (en) Electrical double layer capacitor
JP6846745B2 (en) Electrode sheet and non-aqueous electrolyte secondary battery used for non-aqueous electrolyte secondary battery
JP7418805B2 (en) Anolytes for polyvalent metal secondary batteries and polyvalent metal secondary batteries
Xu et al. Synergistic Ion Sieve and Solvation Regulation by Recyclable Clay-Based Electrolyte Membrane for Stable Zn-Iodine Battery
JP2012243924A (en) Capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851516

Country of ref document: EP

Kind code of ref document: A1