JP6813852B2 - Positive electrode for aluminum secondary battery and aluminum secondary battery - Google Patents

Positive electrode for aluminum secondary battery and aluminum secondary battery Download PDF

Info

Publication number
JP6813852B2
JP6813852B2 JP2017543423A JP2017543423A JP6813852B2 JP 6813852 B2 JP6813852 B2 JP 6813852B2 JP 2017543423 A JP2017543423 A JP 2017543423A JP 2017543423 A JP2017543423 A JP 2017543423A JP 6813852 B2 JP6813852 B2 JP 6813852B2
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
aluminum
aluminum secondary
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017543423A
Other languages
Japanese (ja)
Other versions
JPWO2017057345A1 (en
Inventor
一生 村松
一生 村松
哲哉 津田
哲哉 津田
桑畑 進
進 桑畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
INCUBATION ALLIANCE Inc
Original Assignee
Osaka University NUC
INCUBATION ALLIANCE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, INCUBATION ALLIANCE Inc filed Critical Osaka University NUC
Publication of JPWO2017057345A1 publication Critical patent/JPWO2017057345A1/en
Application granted granted Critical
Publication of JP6813852B2 publication Critical patent/JP6813852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、アルミニウム二次電池に用いることができる新規な正極、および、該正極を含んでなるアルミニウム二次電池に関する。 The present invention relates to a novel positive electrode that can be used in an aluminum secondary battery, and an aluminum secondary battery that includes the positive electrode.

アルミニウムは、単位体積および単位質量当たりの電気容量が高く、特に体積基準ではリチウムの約4倍に相当する理論エネルギー密度を持っている。また、元素存在比も多く低コストで容易に入手が可能である。従って、アルミニウム又はアルミニウム合金を電池の負極に用いることができれば、高エネルギー密度の電池を低コストで実現できることになる。このような理由から、アルミニウム二次電池は、今後の有望な電池の一つである。 Aluminum has a high electric capacity per unit volume and mass, and in particular, has a theoretical energy density equivalent to about four times that of lithium on a volume basis. In addition, it has a large elemental abundance ratio and can be easily obtained at low cost. Therefore, if aluminum or an aluminum alloy can be used as the negative electrode of the battery, a battery having a high energy density can be realized at low cost. For this reason, aluminum secondary batteries are one of the promising batteries in the future.

特許文献1は、充電効率を高めるべくアルミニウムハライド系イオン液体を電解液とし、かつ、正極として活性炭等を用いたアルミニウム二次電池を開示しているが、正極として用いることができる材料が限られていること、また、正極容量も十分でないという問題があった。 Patent Document 1 discloses an aluminum secondary battery in which an aluminum halide-based ionic liquid is used as an electrolytic solution and activated carbon or the like is used as a positive electrode in order to improve charging efficiency, but materials that can be used as a positive electrode are limited. There was also a problem that the positive electrode capacity was not sufficient.

特開2014−222609号公報Japanese Unexamined Patent Publication No. 2014-222609

本発明は、放電電圧、放電容量、クーロン効率およびサイクル特性を高めることのできるアルミニウム二次電池用正極および該正極を用いたアルミニウム二次電池を提供しようとするものである。 The present invention is intended to provide a positive electrode for an aluminum secondary battery capable of enhancing discharge voltage, discharge capacity, Coulomb efficiency and cycle characteristics, and an aluminum secondary battery using the positive electrode.

本発明者らは、上記課題解決のため鋭意検討した結果、グラファイトを正極に使用するとグラファイト層間へのアニオンの挿入に起因すると考えられる正極の著しい劣化が観察されること、および、該劣化は正極活物質としてナノ炭素材料を使用しかつ所定のバインダーを使用することで防止できることを見出し、さらに検討を重ねて、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors have observed significant deterioration of the positive electrode, which is considered to be caused by insertion of anions between the graphite layers, when graphite is used for the positive electrode, and the deterioration is the positive electrode. We have found that this can be prevented by using a nanocarbon material as an active material and using a predetermined binder, and further studies have been carried out to complete the present invention.

すなわち、本発明は、
[1]ナノ炭素材料である活物質と、ルイス酸に安定なバインダーとを含んでなる、アルミニウム二次電池用正極、
[2]バインダーが、ポリエーテル系高分子、アルギン酸またはアルギン酸誘導体である高分子、ポリアミド酸誘導体である高分子、およびセルロース誘導体である高分子からなる群から選択される少なくとも一つである、上記[1]記載のアルミニウム二次電池用正極、
[3]バインダーが、ポリスルホン、ポリエーテルスルホン、アルギン酸、アルギン酸ナトリウム、アルギン酸アンモニウム、アルギン酸プロピレングリコール、ポリイミド、カルボキシメチルセルロースからなる群から選択される少なくとも一つである、上記[1]記載のアルミニウム二次電池用正極、
[4]ナノ炭素材料が、カーボンナノチューブ、カーボンナノホーン、フラーレン、カーボンナノファイバー、および単層ないし多層のグラフェンからなる群から選択される少なくとも一つである、上記[1]〜[3]のいずれか1項に記載のアルミニウム二次電池用正極、
[5]ナノ炭素材料とバインダーとの重量比(ナノ炭素材料:バインダー)が、50:50〜90:10の範囲である、上記[1]〜[4]のいずれか1項に記載のアルミニウム二次電池用正極、
[6]上記[1]〜[5]のいずれか1項に記載のアルミニウム二次電池用正極を含んでなるアルミニウム二次電池、
[7]電解液がAlX4 -(但し、XはCl、BrおよびIからなる群から選択されるハロゲンであり、一分子中に含まれる4つのXは同一または異なるものである。)を含んでなるものである、上記[6]記載のアルミニウム二次電池、
[8]電解液が非水系溶媒であるイオン液体に上記AlX4 -が溶解したものである、上記[6]または[7]記載のアルミニウム二次電池、
[9]イオン性液体のカチオンがイミダゾリウム、ピリジニウム、ピロリジニウム、ピペリジニウム、テトラアルキルアンモニウム、ピラゾリウム、およびホスホニウムからなる群から選択される少なくとも一つである、上記[6]〜[8]のいずれか1項に記載のアルミニウム二次電池、
[10]負極がアルミニウムまたはアルミニウム合金である、上記[6]〜[9]のいずれか1項に記載のアルミニウム二次電池、
に関する。
That is, the present invention
[1] A positive electrode for an aluminum secondary battery, which comprises an active material which is a nanocarbon material and a binder which is stable to Lewis acid.
[2] The binder is at least one selected from the group consisting of a polyether polymer, a polymer which is an alginic acid or an alginic acid derivative, a polymer which is a polyamic acid derivative, and a polymer which is a cellulose derivative. [1] The positive electrode for an aluminum secondary battery,
[3] The aluminum secondary according to the above [1], wherein the binder is at least one selected from the group consisting of polysulfone, polyethersulfone, alginic acid, sodium alginate, ammonium alginate, propylene glycol alginate, polyimide, and carboxymethyl cellulose. Positive electrode for batteries,
[4] Any of the above [1] to [3], wherein the nanocarbon material is at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, fullerenes, carbon nanofibers, and single-walled or multilayer graphene. The positive electrode for aluminum secondary battery according to item 1.
[5] The aluminum according to any one of the above [1] to [4], wherein the weight ratio of the nanocarbon material to the binder (nanocarbon material: binder) is in the range of 50:50 to 90:10. Positive electrode for secondary battery,
[6] An aluminum secondary battery comprising the positive electrode for an aluminum secondary battery according to any one of the above [1] to [5].
[7] electrolyte AlX 4 - (where, X is Cl, a halogen selected from the group consisting of Br and I, 4 single X contained in one molecule are the same or different.) Include The aluminum secondary battery according to the above [6], which is made of.
[8] The aluminum secondary battery according to the above [6] or [7], wherein the electrolytic solution is an ionic liquid which is a non-aqueous solvent in which the above AlX 4 - is dissolved.
[9] Any one of the above [6] to [8], wherein the cation of the ionic liquid is at least one selected from the group consisting of imidazolium, pyridinium, pyrrolidinium, piperidinium, tetraalkylammonium, pyrazolium, and phosphonium. The aluminum secondary battery according to item 1.
[10] The aluminum secondary battery according to any one of [6] to [9] above, wherein the negative electrode is aluminum or an aluminum alloy.
Regarding.

本発明によれば、放電電圧、放電容量、およびクーロン効率を高めることのできるアルミニウム二次電池用正極および該正極を用いたアルミニウム二次電池を提供することができる。また、アルミニウム二次電池は、レアメタルを必要とせず、資源の調達面で優れており、レアメタルの価格が高騰する近年において、非常に有用である。 According to the present invention, it is possible to provide a positive electrode for an aluminum secondary battery capable of increasing the discharge voltage, discharge capacity, and Coulomb efficiency, and an aluminum secondary battery using the positive electrode. Further, the aluminum secondary battery does not require a rare metal and is excellent in terms of resource procurement, and is very useful in recent years when the price of a rare metal is soaring.

さらに、本発明によれば、サイクル特性を高めることのできるアルミニウム二次電池用正極および該正極を用いたアルミニウム二次電池を提供することができる。ここで、サイクル特性とは、充放電の繰り返しに伴って充放電容量が低下する二次電池の特性を指す。充放電容量の低下度合いが小さい二次電池はサイクル特性に優れる二次電池であり、充放電容量の低下度合いの大きな二次電池はサイクル特性に劣る二次電池である。 Further, according to the present invention, it is possible to provide a positive electrode for an aluminum secondary battery capable of enhancing cycle characteristics and an aluminum secondary battery using the positive electrode. Here, the cycle characteristic refers to the characteristic of a secondary battery whose charge / discharge capacity decreases with repeated charging / discharging. A secondary battery having a small decrease in charge / discharge capacity is a secondary battery having excellent cycle characteristics, and a secondary battery having a large decrease in charge / discharge capacity is a secondary battery having inferior cycle characteristics.

実施例で使用した正極(2)(GNP5μm:ポリスルホン=70:30)を写した図面代用写真である。It is a drawing substitute photograph which showed the positive electrode (2) (GNP 5 μm : polysulfone = 70:30) used in an Example. 実施例で使用した正極(5)(GNP5μm:アルギン酸ナトリウム=70:30)を写した図面代用写真である。It is a drawing substitute photograph which showed the positive electrode (5) (GNP 5 μm : sodium alginate = 70:30) used in an Example. 本発明の実施形態に係るアルミニウム二次電池の模式図である。It is a schematic diagram of the aluminum secondary battery which concerns on embodiment of this invention. 実施例1(ポリスルホン)と実施例6(ポリイミド)のアルミニウム二次電池について充放電試験を繰り返した際の、放電容量とサイクル数との関係を示した図である。It is a figure which showed the relationship between the discharge capacity and the number of cycles when the charge / discharge test was repeated about the aluminum secondary battery of Example 1 (polysulfone) and Example 6 (polyimide). 実施例6のアルミニウム二次電池の正極表面の様子を、充放電試験の開始前および同第10サイクルの時点において、走査型電子顕微鏡で観察した結果である。It is a result of observing the state of the positive electrode surface of the aluminum secondary battery of Example 6 with a scanning electron microscope before the start of the charge / discharge test and at the time of the tenth cycle. 実施例6のアルミニウム二次電池について、放電レートを表6のとおり変化させながら充放電試験を行った際の、充電容量および放電容量とサイクル数との関係を示した図である。It is a figure which showed the relationship between the charge capacity and the discharge capacity, and the number of cycles when the charge / discharge test was performed while changing the discharge rate as shown in Table 6 about the aluminum secondary battery of Example 6.

以下、本発明の実施の形態について説明するが、本発明はこれに限定されるものではなく、様々な変形が可能である。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to this, and various modifications are possible.

本実施形態のアルミニウム二次電池は、一対の電極を備え、該電極間に電解液が存在するものであり、その正極に、ナノ炭素材料である活物質とルイス酸に安定なバインダーを使用したことを特徴とする。以下、当該アルミニウム二次電池の構成について説明する。 The aluminum secondary battery of the present embodiment is provided with a pair of electrodes, and an electrolytic solution exists between the electrodes, and a binder stable to an active material which is a nanocarbon material and Lewis acid is used for the positive electrode thereof. It is characterized by that. Hereinafter, the configuration of the aluminum secondary battery will be described.

<負極>
負極としては、アルミニウムの析出・溶解あるいはアルミニウム合金からのアルミニウムイオンの脱合金・合金化反応を可能とするものであれば、特に限定されないが、そのような目的に適う負極材料として、例えば、金属アルミニウム、または、Al−MnやAl−Mgの如きアルミニウム合金が挙げられる。
<Negative electrode>
The negative electrode is not particularly limited as long as it enables precipitation / melting of aluminum or dealloying / alloying reaction of aluminum ions from an aluminum alloy, but a negative electrode material suitable for such a purpose is, for example, a metal. Examples include aluminum or aluminum alloys such as Al-Mn and Al-Mg.

<電解液>
電解液としては、AlX4 -(記号Xは、前記と同一意味を有する。)を含んでなる電解液を使用することができる。該電解液を使用する場合、ハロゲンの反応を正極反応に利用することができる。すなわち、アルミニウムを負極反応に利用するためには、アルミニウムを析出および溶解させる必要があるが、アルミニウムの酸化還元電位は、標準水素電極基準で−1.66Vと低いため、非水溶媒系での下記(1)〜(4)の反応を利用する。
<Electrolytic solution>
As an electrolytic solution, AlX 4 - (symbol X have the same meanings as defined above.) Can be used an electrolyte comprising a. When the electrolytic solution is used, the halogen reaction can be utilized for the positive electrode reaction. That is, in order to utilize aluminum for the negative electrode reaction, it is necessary to precipitate and dissolve aluminum, but since the redox potential of aluminum is as low as -1.66V based on the standard hydrogen electrode, it is used in a non-aqueous solvent system. The following reactions (1) to (4) are used.

Figure 0006813852
(記号Xは、前記と同一意味を有する。)
Figure 0006813852
(The symbol X has the same meaning as described above.)

式1で示した酸化還元反応はAlの析出・溶解反応であり、通常クーロン効率100%で進行する。この反応はアルミニウム二次電池の負極反応となる。一方、式2〜4に示した酸化還元反応が、正極反応となる。 The redox reaction represented by the formula 1 is an Al precipitation / dissolution reaction, and usually proceeds at a Coulomb efficiency of 100%. This reaction is the negative electrode reaction of the aluminum secondary battery. On the other hand, the redox reaction represented by the formulas 2 to 4 is the positive electrode reaction.

本発明の二次電池系の全反応式は、下記式5〜7のように表される。 The total reaction formula of the secondary battery system of the present invention is represented by the following formulas 5 to 7.

Figure 0006813852
(記号Xは、前記と同一意味を有する。)
Figure 0006813852
(The symbol X has the same meaning as described above.)

AlX4 -において、XはCl、BrおよびIからなる群から選択されるハロゲンであり、一分子中に含まれる4つのXは同一または異なるものである。すなわち、AlX4 -は複数のハロゲン種から構成されていてもよく、AlX4 -は、例えば、AlCl4 -、AlBr4 -、AlI4 -、AlClBr3 -、AlClI3 -、AlCl2BrI-、AlClBr2-、AlClBrI2 -であってよく、これらが混在していてもよい。AlX 4 - In, X is a halogen selected from the group consisting of Cl, Br and I, 4 single X contained in one molecule are the same or different. That, AlX 4 - Multiple may be composed of halogen species, AlX 4 -, for example, AlCl 4 -, AlBr 4 - , AlI 4 -, AlClBr 3 -, AlClI 3 -, AlCl 2 BrI -, AlClBr 2 I -, AlClBrI 2 - a may be, may they be mixed.

上記非水系溶媒は、電解液中にAlX4 -を生じさせ得るものであれば限定されないが、高いイオン伝導性、難揮発性、高い熱安定性などの特徴を有することからイオン液体であることが好ましい。これにより、アルミニウム二次電池に不具合が生じ難い。ここでいう「イオン液体」とは、室温でも液体で存在する塩を意味する。このイオン液体のカチオンとしては、例えば、イミダゾリウム、ピリジニウム、ピロリジニウム、ピペリジニウム、テトラアルキルアンモニウム、ピラゾリウム、又はホスホニウム等が挙げられる。The non-aqueous solvent, AlX 4 in the electrolyte solution - it is not limited as long as it can cause, high ionic conductivity, low volatility, an ionic liquid has the feature such as high thermal stability Is preferable. As a result, the aluminum secondary battery is less likely to malfunction. The term "ionic liquid" as used herein means a salt that exists as a liquid even at room temperature. Examples of the cation of this ionic liquid include imidazolium, pyridinium, pyrrolidinium, piperidinium, tetraalkylammonium, pyrazolium, phosphonium and the like.

前記イミダゾリウムとしては、例えば、1−エチル−3−メチルイミダゾリウム(C2mim+)、1−ブチル−3−メチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリウム、1−アリル−3−メチルイミダゾリウム、1−アリル−3−エチルイミダゾリウム、1−アリル−3−ブチルイミダゾリウム、1,3−ジアリルイミダゾリウム等が挙げられる。Examples of the imidazolium include 1-ethyl-3-methylimidazolium (C 2 mim + ), 1-butyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, and 1-allyl-. Examples thereof include 3-methylimidazolium, 1-allyl-3-ethylimidazolium, 1-allyl-3-butylimidazolium, and 1,3-diallyl imidazolium.

また、前記ピリジニウムとしては、例えば、1−プロピルピリジニウム、1−ブチルピリジニウム、1−エチル−3−(ヒドロキシメチル)ピリジニウム、1−エチル−3−メチルピリジニウム等が挙げられる。 Examples of the pyridinium include 1-propylpyridinium, 1-butylpyridinium, 1-ethyl-3- (hydroxymethyl) pyridinium, 1-ethyl-3-methylpyridinium and the like.

前記ピロリジニウムとしては、例えば、N−メチル−N−プロピルピロリジニウム、N−メチル−N−ブチルピロリジニウム、N−メチル−N−メトキシメチルピロリジニウム等が挙げられる。 Examples of the pyrrolidinium include N-methyl-N-propylpyrrolidinium, N-methyl-N-butylpyrrolidinium, N-methyl-N-methoxymethylpyrrolidinium and the like.

また、前記ピペリジニウムとしては、例えば、N−メチル−N−プロピルピペリジニウム等が挙げられる。 In addition, examples of the piperidinium include N-methyl-N-propyl piperidinium and the like.

また、前記テトラアルキルアンモニウムとしては、例えば、N,N,N−トリメチル−N−プロピルアンモニウム、メチルトリオクチルアンモニウム等が挙げられる。 Further, examples of the tetraalkylammonium include N, N, N-trimethyl-N-propylammonium, methyltrioctylammonium and the like.

また、前記ピラゾリウムとしては、例えば、1−エチル−2,3,5−トリメチルピラゾリウム、1−プロピル−2,3,5−トリメチルピラゾリウム、1−ブチル−2,3,5−トリメチルピラゾリウム等が挙げられる。 Examples of the pyrazolium include 1-ethyl-2,3,5-trimethylpyrazolium, 1-propyl-2,3,5-trimethylpyrazolium, and 1-butyl-2,3,5-trimethyl. Pyrazolium and the like can be mentioned.

カチオンは、1種単独でまたは2種以上を組み合わせて使用することができる。 The cations can be used alone or in combination of two or more.

上記カチオンと組み合わされてイオン液体を構成するアニオンとしては、正極反応の可逆性や蓄電性能の面から、AlCl4 -、AlBr4 -およびAlI4 -が好ましい。アニオンは、1種単独でまたは2種以上を組み合わせて使用することができる。Examples of the anion constituting the ionic liquid in combination with the cationic, in terms of reversibility and energy storage capability of the cathode reaction, AlCl 4 -, AlBr 4 - and AlI 4 - are preferred. Anions can be used alone or in combination of two or more.

電解液中のAlX4 -の濃度を高め、二次電池の容量を向上させる観点から、電解液におけるAlX3の比率は、好ましくは50mol%以上、66.7mol%以下である。実用性の高いアルミニウム二次電池を提供する観点から、特に、AlX4 -がAlCl4 -またはAlBr4 -であり(この場合、AlX3はAlCl3またはAlBr3である)、上記非水系溶媒が1−エチル−3−メチルイミダゾリウムブロマイドまたは1−エチル−3−メチルイミダゾリウムクロライドであることが好ましい。AlX 4 in the electrolyte solution - increasing the concentration of, from the viewpoint of improving the capacity of the secondary battery, the ratio of AlX 3 in the electrolytic solution is preferably at least 50 mol%, or less 66.7mol%. From the viewpoint of providing a high aluminum secondary battery of utility, particularly, AlX 4 - is AlCl 4 - or AlBr 4 - a is (in this case, AlX 3 is AlCl 3 or AlBr 3), the non-aqueous solvent It is preferably 1-ethyl-3-methylimidazolium bromide or 1-ethyl-3-methylimidazolium chloride.

なお、電解液には、上記非水系溶媒以外の他の非水系溶媒が含有されていてもよい。他の非水系溶媒としては、例えば、上記非水系溶媒とカチオンが共通し、アニオンが、BF4 -、NO3 -、PF6 -、SbF6 -、CH3CH2OSO3 -、CH3CO2 -、(FSO2)2N−[ビス(フルオロスルフォニル)イミドアニオン]、又はフルオロアルキル基含有アニオンであるイオン液体が挙げられる。また、電解液には化合物が添加されていてもよい。例えば、尿素、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウムなどが挙げられる。The electrolytic solution may contain a non-aqueous solvent other than the above-mentioned non-aqueous solvent. Other non-aqueous solvents, for example, commonly is the non-aqueous solvent and a cation, anion, BF 4 -, NO 3 - , PF 6 -, SbF 6 -, CH 3 CH 2 OSO 3 -, CH 3 CO 2 -, (FSO 2) 2N- [ bis (fluoro sulfonyl) imide anion, or ionic liquids include fluoroalkyl group-containing anionic. Further, a compound may be added to the electrolytic solution. For example, urea, lithium chloride, sodium chloride, potassium chloride, calcium chloride, magnesium chloride and the like can be mentioned.

前記フルオロアルキル基含有アニオンとしては、例えば、CF3CO2 -、パーフルオロアルキルスルホニル基含有アニオン等が挙げられる。前記パーフルオロアルキルスルホニル基含有アニオンとしては、例えば、CF3SO3 -、(CF3SO2)2N−[ビス(トリフルオロメチルスルフォニル)イミド]、(CF3SO23C−等が例示される。Examples of the fluoroalkyl group-containing anions such as, CF 3 CO 2 -, perfluoroalkyl sulfonyl group-containing anion, and the like. Examples of the perfluoroalkyl sulfonyl group-containing anions such as, CF 3 SO 3 -, ( CF 3 SO 2) 2N- [ bis (trifluoromethylsulfonyl) imide], (CF 3 SO 2) 3 C- or the like is exemplified Will be done.

<正極>
(活物質)
正極について、活物質はナノ炭素材料を使用する。ここにナノ炭素材料とは、カーボンナノチューブ、カーボンナノホーン、フラーレン、カーボンナノファイバー、および単層ないし多層のグラフェンなどに代表されるナノ素材であり、これらを構成するウォールが単層から数十層のグラフェンシートであることを特徴とする。該ウォールの厚さは、良好な電気伝導性や熱伝導性といったナノ炭素材料としての特性を示し、かつ、アニオンのグラフェン層間への挿入に対しても柔軟性を示す範囲であれば特に限定されないが、好ましい範囲としては、例えば、約20nm以下、より好ましくは約15nm以下、さらに好ましくは約10nm以下である。なお、ウォールの厚さの下限については特に制限はなく、グラフェンシート1層の厚さである0.335nmであっても差し支えない。
<Positive electrode>
(Active material)
For the positive electrode, a nanocarbon material is used as the active material. Here, the nanocarbon material is a nanomaterial typified by carbon nanotubes, carbon nanohorns, fullerenes, carbon nanofibers, and single-layer or multi-layer graphene, and the walls constituting these are monolayer to several tens of layers. It is characterized by being a graphene sheet. The thickness of the wall is not particularly limited as long as it exhibits characteristics as a nanocarbon material such as good electrical conductivity and thermal conductivity, and also exhibits flexibility for insertion of anions into graphene layers. However, the preferable range is, for example, about 20 nm or less, more preferably about 15 nm or less, still more preferably about 10 nm or less. The lower limit of the wall thickness is not particularly limited, and may be 0.335 nm, which is the thickness of one graphene sheet layer.

上記ナノ炭素材料のうち、入手容易性や取扱いの容易さなどの観点から、多層グラフェンが好ましく、その形状としては、鱗片状であることが好ましい。鱗片状の多層グラフェンの大きさは、例えば、幅が3〜30μm、好ましくは5〜25μm、長さが3〜30μm、好ましくは5〜25μmである。このような範囲にあることで、アニオンのグラフェン層間への挿入時に生じる応力変化をより緩和できる。鱗片状の多層グラフェンの具体例としては、Strem Chemicals,Inc.製のグラフェンナノプレートレットが挙げられる。 Among the above-mentioned nanocarbon materials, multi-layer graphene is preferable from the viewpoint of easy availability and handling, and the shape thereof is preferably scaly. The size of the scaly multilayer graphene is, for example, 3 to 30 μm in width, preferably 5 to 25 μm, and 3 to 30 μm in length, preferably 5 to 25 μm. Within such a range, the stress change that occurs when the anion is inserted between the graphene layers can be further relaxed. Specific examples of scaly multilayer graphene include Strem Chemicals, Inc. Graphene nanoplatelets made by.

(バインダー)
バインダーとしては、電解液中のルイス酸に対して安定なバインダーであれば特に限定されず、そのようなバインダーの具体例としては、ポリスルホン、ポリエーテルスルホンなどのポリエーテル系高分子の他、アルギン酸、アルギン酸ナトリウム、アルギン酸アンモニウム、アルギン酸プロピレングリコール等のアルギン酸誘導体である高分子、ポリイミド等のポリアミド酸誘導体である高分子、カルボキシメチルセルロース等のセルロース誘導体である高分子等が挙げられる。このうち、ポリスルホンなどのポリエーテル系高分子、アルギン酸ナトリウムなどのアルギン酸誘導体である高分子、ポリイミドなどのポリアミド酸誘導体である高分子等が好ましい。ポリスルホンとしては、例えば、SIGMA−ALDRICH社から入手可能なポリスルホン(CAS番号:25135−51−7;数平均分子量(Mn)〜22,000)が挙げられる。アルギン酸ナトリウムとしては、(株)キミカより入手可能なアルギン酸ナトリウムが挙げられる。ポリイミドとしては、(株)アイ.エス.テイより入手可能なドリームボンドを予備乾燥し、加熱真空重合したものが挙げられる。
(binder)
The binder is not particularly limited as long as it is a binder stable to Lewis acid in the electrolytic solution, and specific examples of such a binder include polyether polymers such as polysulfone and polyethersulfone, as well as alginic acid. , Polymers that are alginic acid derivatives such as sodium alginate, ammonium alginate, and propylene glycol alginate, polymers that are polyamic acid derivatives such as polyimide, and polymers that are cellulose derivatives such as carboxymethyl cellulose. Of these, polyether polymers such as polysulfone, polymers that are alginic acid derivatives such as sodium alginate, and polymers that are polyamic acid derivatives such as polyimide are preferable. Examples of the polysulfone include polysulfone (CAS number: 25135-51-7; number average molecular weight (Mn) to 22,000) available from SIGMA-ALDRICH. Examples of sodium alginate include sodium alginate available from Chimica Co., Ltd. As polyimide, Ai Co., Ltd. S. A dream bond available from Tay is pre-dried and heat-vacuum polymerized.

バインダーを配合する場合の配合割合は、活物質:バインダー(重量比)で、50:50〜90:10の範囲であることが好ましく、より好ましくは60:40〜80:20の範囲、さらに好ましくは65:35〜75:25の範囲、最も好ましくは約70:約30である。この場合の「約」とは、±3%、好ましくは±2%、さらに好ましくは±1%の誤差を許容する趣旨である。バインダーの量が50重量%未満であると、充放電を繰り返す中で、主に充電時に活物質が劣化する傾向がある。一方、バインダー量が90重量%超であると、活物質の量が少なくなり、電池としての十分な性能を発揮できない傾向がある。 When the binder is blended, the blending ratio is the active material: binder (weight ratio), preferably in the range of 50:50 to 90:10, more preferably in the range of 60:40 to 80:20, and even more preferably. Is in the range of 65: 35 to 75:25, most preferably about 70: about 30. In this case, "about" means to allow an error of ± 3%, preferably ± 2%, and more preferably ± 1%. If the amount of the binder is less than 50% by weight, the active material tends to deteriorate mainly during charging during repeated charging and discharging. On the other hand, if the amount of the binder is more than 90% by weight, the amount of the active material is small, and there is a tendency that sufficient performance as a battery cannot be exhibited.

これらの活物質およびバインダーを用いた電極は、公知の構成を採用すればよく、所望により、導電助剤や増粘剤などをさらに配合してもよい。導電助剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック等の炭素類、黒鉛、金属類を例示できる。また、増粘剤としては、カルボキシメチルセルロース、エチレングリコールなどを例示できる。 The electrode using these active materials and the binder may adopt a known constitution, and if desired, a conductive auxiliary agent, a thickener, or the like may be further blended. Examples of the conductive auxiliary agent include carbons such as carbon black, acetylene black, and Ketjen black, graphite, and metals. Further, examples of the thickener include carboxymethyl cellulose and ethylene glycol.

(集電体)
電極に用いる集電体としては、白金、モリブデン、ニッケル、銅などが挙げられる。その先端は、通常、箔の形態で用いる。
(Current collector)
Examples of the current collector used for the electrode include platinum, molybdenum, nickel, and copper. Its tip is usually used in the form of foil.

(その他の電池構成材料)
その他、アルミニウム二次電池を構築するための装置構成、例えば、正極と負極との間に設置され、両電極の短絡を防止するセパレータ、電池容器などは、所望により、公知の二次電池に使用された構成を転用することができる。上記セパレータとしては、ガラス繊維、フッ素ポリマー系、ポリエチレン系あるいはポリプロピレン系などのセパレータが挙げられる。フッ素ポリマー系のセパレータは、均一な細孔を有し、本アルミニウム二次電池において、負極によるAlの析出を均一にし、アルミニウム二次電池の安定した作動に寄与する。
(Other battery components)
In addition, an apparatus configuration for constructing an aluminum secondary battery, for example, a separator installed between the positive electrode and the negative electrode to prevent short-circuiting of both electrodes, a battery container, etc., is used for a known secondary battery, if desired. The configured configuration can be diverted. Examples of the separator include glass fiber, fluoropolymer-based, polyethylene-based and polypropylene-based separators. The fluoropolymer-based separator has uniform pores, makes the precipitation of Al by the negative electrode uniform in the present aluminum secondary battery, and contributes to the stable operation of the aluminum secondary battery.

<アルミニウム二次電池>
アルミニウム二次電池の種類は特に限定されないが、円筒型、コイン型、ボタン型、ラミネート型などが挙げられる。
<Aluminum secondary battery>
The type of the aluminum secondary battery is not particularly limited, and examples thereof include a cylindrical type, a coin type, a button type, and a laminated type.

本発明のアルミニウム二次電池は、正極に、負極および電解質、さらには、所望により、セパレータ等の部材を使用して、常法に従い、作製することができる。 The aluminum secondary battery of the present invention can be produced according to a conventional method by using a negative electrode, an electrolyte, and, if desired, a member such as a separator for the positive electrode.

正極は、粒子状にした正極活物質を、バインダーおよび所望によりその他の成分並びに溶媒と混合してペースト状の正極材料を調製し、当該正極材料を集電体に塗布した後、乾燥させ、所望により圧着することによって作製することができる。また、その他の方法として、該正極は、例えば、正極活物質を、バインダーおよび所望によりその他の成分並びに少量の溶媒とともに乳鉢などで混練し、かつフィルム状にしたのち、プレス機等を用いて集電体に圧着して作製することもできる。溶媒としては、ジクロロメタン、アセトン、N−メチル−2−ピロリドン、N,N−ジメチルホルムアルデヒド、アルコール、水等が例示される。これら溶媒は、1種または2種以上を使用することができる。 For the positive electrode, a particulate positive electrode active material is mixed with a binder and, if desired, other components and a solvent to prepare a paste-like positive electrode material, the positive electrode material is applied to a current collector, dried, and desired. It can be produced by crimping with. As another method, for example, the positive electrode is obtained by kneading the positive electrode active material together with a binder, other components if desired, and a small amount of solvent in a mortar or the like to form a film, and then collecting the positive electrode using a press or the like. It can also be produced by crimping to an electric body. Examples of the solvent include dichloromethane, acetone, N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like. One kind or two or more kinds of these solvents can be used.

正極材料の集電体への塗布量は、0.2〜1.4mg/cm2の範囲であることが好ましく、より好ましくは0.3〜1.0mg/cm2の範囲、さらに好ましくは0.4〜0.8mg/cm2の範囲である。塗布量が上記の範囲内であることで、容量増加の傾向がある。The coating amount of the current collector of the positive electrode material is preferably in the range of 0.2~1.4mg / cm 2, more preferably 0.3~1.0mg / cm 2 range, more preferably 0 It is in the range of 4 to 0.8 mg / cm 2 . When the coating amount is within the above range, the capacity tends to increase.

本発明を実施例に基づいて説明するが、本発明は、実施例にのみ限定されるものではない。 Although the present invention will be described based on examples, the present invention is not limited to the examples.

以下に、本明細書において使用した材料をまとめて示す。各材料は必要に応じて常法に従い精製を行った。 The materials used in this specification are summarized below. Each material was purified according to a conventional method as needed.

<試験に使用した材料等>
グラフェンナノプレートレット:Strem Chemicals,Inc.社より入手可能、厚さ6〜8nm、幅5μmおよび25μm
ポリスルホン:SIGMA−ALDRICH社より入手可能、数平均分子量(Mn)〜22,000(膜浸透圧法(Membrane Osmometry)で測定)、ビーズ
ポリイミド:株式会社アイ.エス.テイより入手可能であるドリームボンドを予備乾燥した後(温度:100℃、圧力:1Pa、時間:12時間)、加熱真空による重合(温度:300℃、圧力:1Pa、時間:5時間)により合成。
アルギン酸ナトリウム:(株)キミカより入手可能、I−1G
ジクロロメタン:和光純薬工業(株)より入手可能、特級
アセトン:和光純薬工業(株)より入手可能、特級
アルミニウム(Al)コイル:(株)ニラコより入手可能、直径1mm、純度99.999%以上
ガラスフィルター:Ace Glass社から入手可能、G4
AlCl3:SIGMA−ALDRICH社より入手可能、無水≧99.0%
1−エチル−3−メチルイミダゾリウムクロリド([C2mim]Cl):東京化成工業(株)より入手
硫酸:和光純薬工業(株)より入手可能、特級
リン酸:和光純薬工業(株)より入手可能、特級
硝酸:和光純薬工業(株)より入手可能、特級
超純水:Milli−Q system Gradient A 10(Millipore)により精製
<Materials used in the test>
Graphene nanoplatelets: Strem Chemicals, Inc. Available from the company, thickness 6-8 nm, width 5 μm and 25 μm
Polysulfone: available from SIGMA-ALDRICH, number average molecular weight (Mn) to 22,000 (measured by membrane osmometer), bead polyimide: Eye Co., Ltd. S. After pre-drying the dream bond available from Tay (temperature: 100 ° C, pressure: 1 Pa, time: 12 hours), it is synthesized by polymerization by heating vacuum (temperature: 300 ° C, pressure: 1 Pa, time: 5 hours). ..
Sodium alginate: Available from Chimica Co., Ltd., I-1G
Dichloromethane: Available from Wako Pure Chemical Industries, Ltd., Special grade acetone: Available from Wako Pure Chemical Industries, Ltd., Special grade aluminum (Al) coil: Available from Niraco Co., Ltd., Diameter 1 mm, Purity 99.999% Glass filter: Available from Ace Glass, G4
AlCl 3 : Available from SIGMA-ALDRICH, anhydrous ≥99.0%
1-Ethyl-3-methylimidazolium chloride ([C 2 mim] Cl): Obtained from Tokyo Chemical Industry Co., Ltd. Sulfuric acid: Available from Wako Pure Chemical Industries, Ltd., Special grade phosphoric acid: Wako Pure Chemical Industries, Ltd. ), Special grade nitric acid: Available from Wako Pure Chemical Industries, Ltd., Special grade ultrapure water: Purified by Milli-Q system Grade A 10 (Millipore)

試験(1)
<アルミニウム二次電池の作製>
(正極)
(1)ポリスルホンをバインダーとしたナノ炭素材料電極
幅5μmのグラフェンナノプレートレット(GNP5μm)とポリスルホンを、90:10、70:30、50:50の各重量比でジクロロメタンに加え、超音波処理で撹拌した後、アセトンを加えて静置し、正極材料とした。一方、予めリード線スポット部分を確保し、かつ、露出面積を1.0cm2(縦1.0cm、横1.0cm)とするために上部をテフロン(登録商標)テープで覆ったモリブデン板集電体((株)ニラコより入手可能、99.95%、厚さ0.1mm)を準備し、該露出面に正極材料を塗布した(塗布量:0.7mg)。該塗布物を乾燥させて溶媒を除去した後、油圧プレス機を用いて30kNで、集電体に圧着した。こうして得た集電体に白金線をリード線としてスポット溶接して、それぞれ、正極(1)(GNP5μm:ポリスルホン=90:10)、正極(2)(GNP5μm:ポリスルホン=70:30)(図1)、正極(3)(GNP5μm:ポリスルホン=50:50)とした。
Test (1)
<Manufacturing of aluminum secondary battery>
(Positive electrode)
(1) Nanocarbon material electrode using polysulfone as a binder Graphene nanoplatelets (GNP 5 μm ) with a width of 5 μm and polysulfone are added to dichloromethane at 90:10, 70:30, and 50:50 weight ratios, and sonicated. After stirring with, acetone was added and allowed to stand to prepare a positive electrode material. On the other hand, a molybdenum plate current collector whose upper part is covered with Teflon (registered trademark) tape in order to secure a lead wire spot portion in advance and to make the exposed area 1.0 cm 2 (length 1.0 cm, width 1.0 cm). A body (available from Nirako Co., Ltd., 99.95%, thickness 0.1 mm) was prepared, and a positive electrode material was applied to the exposed surface (application amount: 0.7 mg). After the coating material was dried to remove the solvent, it was pressure-bonded to the current collector at 30 kN using a hydraulic press. A platinum wire was spot-welded to the current collector thus obtained as a lead wire, and the positive electrode (1) (GNP 5 μm : polysulfone = 90:10) and the positive electrode (2) (GNP 5 μm : polysulfone = 70:30) ( FIG. 1) and the positive electrode (3) (GNP 5 μm : polysulfone = 50: 50).

幅25μmのグラフェンナノプレートレット(GNP25μm)とポリスルホンを、90:10の重量比で上記と同様に処理して、正極(4)(GNP25μm:ポリスルホン=90:10)を作製した。Graphene nanoplatelets (GNP 25 μm ) with a width of 25 μm and polysulfone were treated in the same manner as above at a weight ratio of 90:10 to prepare positive electrodes (4) (GNP 25 μm : polysulfone = 90:10).

(2)アルギン酸ナトリウムをバインダーとしたナノ炭素材料電極
幅5μmのグラフェンナノプレートレット(GNP5μm)とアルギン酸ナトリウムを、70:30の重量比で超純水に加え、乳鉢で混練して静置し、正極材料とした。該正極材料を用いて、上記と同様に処理して、正極(5)(GNP5μm:アルギン酸ナトリウム=70:30)を作製した(図2)。
(2) Nanocarbon material electrode using sodium alginate as a binder Graphene nanoplatelets (GNP 5 μm ) with a width of 5 μm and sodium alginate are added to ultrapure water at a weight ratio of 70:30, kneaded in a dairy pot, and allowed to stand. , As a positive electrode material. Using the positive electrode material, a positive electrode (5) (GNP 5 μm : sodium alginate = 70:30) was prepared by treating in the same manner as described above (FIG. 2).

(負極)
負極としては、アルミニウム(Al)コイルを用いた。Alコイルは、使用前にAl洗浄用の混酸(硫酸100mL、リン酸121mL、および硝酸29mLを混合したもの)に十分浸漬させ、超音波洗浄機(アズワンのUSM)を用いて超純水で洗浄した後、真空乾燥機(東京理科器械(株)のVOS−300SD)で乾燥させてから使用した。
(Negative electrode)
An aluminum (Al) coil was used as the negative electrode. The Al coil is sufficiently immersed in a mixed acid for cleaning Al (a mixture of 100 mL of sulfuric acid, 121 mL of phosphoric acid, and 29 mL of nitric acid) before use, and washed with ultrapure water using an ultrasonic cleaner (USM of AS ONE). After that, it was dried with a vacuum dryer (VOS-300SD of Tokyo Science Instruments Co., Ltd.) before use.

(参照極)
参照極としては、アルミニウム線をガラスフィルターで仕切られた電解液に浸したAl(III)/Al電極を用いた。
(Reference pole)
As the reference electrode, an Al (III) / Al electrode in which an aluminum wire was immersed in an electrolytic solution partitioned by a glass filter was used.

(電解液)
アルゴン雰囲気のグローブボックス(VAC NEXUS II SYSTEM、H2O<1ppm、O2<1ppm)内で、AlCl3と[C2mim]Clとを、モル比が3:2となるように混合して、60.0−40.0mol%のAlCl3−[C2mim]Clイオン液体を調製した。調製後、Alコイル電極をカソードおよびアノードとして定電流電解(5mA、72時間)することで、浴中に存在するわずかな不純物イオンや水分を電気化学的に取り除き、これを電解液として使用した。
(Electrolytic solution)
In a glove box (VAC NEXUS II SYSTEM, H 2 O <1 ppm, O 2 <1 ppm) in an argon atmosphere, AlCl 3 and [C 2 mim] Cl are mixed so as to have a molar ratio of 3: 2. , 60.0-40.0 mol% AlCl 3- [C 2 mim] Cl ionic liquid was prepared. After the preparation, constant current electrolysis (5 mA, 72 hours) was performed using the Al coil electrode as a cathode and an anode to electrochemically remove a small amount of impurity ions and water present in the bath, and this was used as an electrolytic solution.

(アルミニウム二次電池)
上記正極、負極、参照極および電解液を用いて、表1に従い、アルゴン雰囲気のグローブボックス内で、円筒型の3電極式セルを作製し、アルミニウム二次電池とした。本発明の実施例に係るアルミニウム二次電池の模式図を図3に示す。
(Aluminum secondary battery)
Using the positive electrode, the negative electrode, the reference electrode, and the electrolytic solution, a cylindrical three-electrode cell was produced in a glove box having an argon atmosphere according to Table 1, and used as an aluminum secondary battery. A schematic diagram of an aluminum secondary battery according to an embodiment of the present invention is shown in FIG.

Figure 0006813852
正極(1) GNP5μm:ポリスルホン=90:10
正極(2) GNP5μm:ポリスルホン=70:30
正極(3) GNP5μm:ポリスルホン=50:50
正極(4) GNP25μm:ポリスルホン=90:10
正極(5) GNP5μm:アルギン酸ナトリウム=70:30
Figure 0006813852
Positive electrode (1) GNP 5 μm : polysulfone = 90:10
Positive electrode (2) GNP 5 μm : Polysulfone = 70:30
Positive electrode (3) GNP 5 μm : Polysulfone = 50:50
Positive electrode (4) GNP 25 μm : polysulfone = 90:10
Positive electrode (5) GNP 5 μm : Sodium alginate = 70:30

<評価>
実施例1〜5のアルミニウム二次電池について、カットオフ電圧(上限:2.1V; 下限:0.8V)、温度25℃の条件下、充放電試験を行った。第1サイクルの放電電圧と放電容量、およびクーロン効率(定義:放電容量/充電容量×100)をそれぞれ求めた。なお、すべての電気化学測定は、ポテンショスタット/ガルバノスタット(IVIUM社製 Compact Stat)または充放電装置(北斗電工(株)、HJ−1001SD8)を用いて、アルゴン雰囲気のグローブボックス内で行った(以下、特に断りのない限り同様)。結果を表2に示す。
<結果>
<Evaluation>
The aluminum secondary batteries of Examples 1 to 5 were subjected to a charge / discharge test under the conditions of a cutoff voltage (upper limit: 2.1 V; lower limit: 0.8 V) and a temperature of 25 ° C. The discharge voltage and discharge capacity of the first cycle, and the Coulomb efficiency (definition: discharge capacity / charge capacity × 100) were determined, respectively. All electrochemical measurements were performed in a glove box with an argon atmosphere using a potentiostat / galvanostat (Compact Stat manufactured by IVIUM) or a charging / discharging device (Hokuto Denko Co., Ltd., HJ-1001SD8) ( The same shall apply hereinafter unless otherwise specified). The results are shown in Table 2.
<Result>

Figure 0006813852
Figure 0006813852

以上より、本発明の実施例に係るアルミニウム二次電池は、高い放電レートでも、放電容量が低下しない。また、クーロン効率も優れた値をクリアしている。したがって、本発明に係る正極は優れた電極特性を示すものであり、該電極を用いたアルミニウム二次電池は、放電電圧、放電容量、およびクーロン効率において、優れた特性を示す。 From the above, the aluminum secondary battery according to the embodiment of the present invention does not decrease in discharge capacity even at a high discharge rate. In addition, the Coulomb efficiency also clears the excellent value. Therefore, the positive electrode according to the present invention exhibits excellent electrode characteristics, and the aluminum secondary battery using the electrode exhibits excellent characteristics in discharge voltage, discharge capacity, and Coulomb efficiency.

試験(2)
<アルミニウム二次電池の作製>
バインダーとしてポリスルホンに代えてポリイミドを用い、かつ、グラフェンナノプレートレットとポリイミドの重量比を表3記載のとおりとした以外は、試験(1)における「アルミニウム二次電池の作製」と同様に処理して、実施例に係る表3の記載のアルミニウム二次電池を得た。
Test (2)
<Manufacturing of aluminum secondary battery>
Treated in the same manner as in "Preparation of aluminum secondary battery" in test (1), except that polyimide was used instead of polysulfone as the binder and the weight ratio of graphene nanoplatelets to polyimide was as shown in Table 3. The aluminum secondary batteries shown in Table 3 according to the examples were obtained.

Figure 0006813852
Figure 0006813852

<評価>
実施例1および実施例6のアルミニウム二次電池について、カットオフ電圧(上限:2.4V; 下限:0.8V)、温度25℃の条件下、充放電試験を行った。
<Evaluation>
The aluminum secondary batteries of Examples 1 and 6 were subjected to a charge / discharge test under the conditions of a cutoff voltage (upper limit: 2.4 V; lower limit: 0.8 V) and a temperature of 25 ° C.

<結果>
第10サイクルの放電電圧と放電容量、およびクーロン効率(定義:放電容量/充電容量×100)をそれぞれ求めた。結果を表4に示す。
<Result>
The discharge voltage and discharge capacity of the 10th cycle, and the Coulomb efficiency (definition: discharge capacity / charge capacity × 100) were determined, respectively. The results are shown in Table 4.

Figure 0006813852
Figure 0006813852

第1000サイクルの放電電圧と放電容量、およびクーロン効率(定義:放電容量/充電容量×100)をそれぞれ求めた。結果を表5に示す。また、この間の放電容量とサイクル数の関係を図4に示す。さらに、実施例6の正極について、試験開始前および第100サイクルにおける正極表面の様子を走査型電子顕微鏡で観察した結果を図5に示す。図5からは、100サイクル経過後も、正極表面には剥離等の変化がほとんど認められないことがわかる。 The discharge voltage and discharge capacity of the 1000th cycle, and the Coulomb efficiency (definition: discharge capacity / charge capacity × 100) were determined, respectively. The results are shown in Table 5. Further, FIG. 4 shows the relationship between the discharge capacity and the number of cycles during this period. Further, with respect to the positive electrode of Example 6, the results of observing the state of the positive electrode surface before the start of the test and in the 100th cycle with a scanning electron microscope are shown in FIG. From FIG. 5, it can be seen that even after 100 cycles, almost no change such as peeling is observed on the surface of the positive electrode.

Figure 0006813852
Figure 0006813852

以上より、本発明の実施例に係るアルミニウム二次電池は、高い放電レートでも、放電容量が低下しないとともに、1000サイクル以上の充放電が可能という極めて優れた特徴を示すものである。したがって、本発明に係る正極は優れた電極特性を示すものであり、該電極を用いたアルミニウム二次電池は、放電電圧、放電容量、クーロン効率、およびサイクル特性において、優れた特性を示す。 From the above, the aluminum secondary battery according to the embodiment of the present invention exhibits an extremely excellent feature that the discharge capacity does not decrease even at a high discharge rate and the charge / discharge can be performed for 1000 cycles or more. Therefore, the positive electrode according to the present invention exhibits excellent electrode characteristics, and the aluminum secondary battery using the electrodes exhibits excellent characteristics in discharge voltage, discharge capacity, Coulomb efficiency, and cycle characteristics.

試験(3)
<評価>
実施例6のアルミニウム二次電池について、カットオフ電圧(上限:2.4V; 下限:0.8V)、温度25℃の条件下、放電レートを表6のとおり変化させながら、充放電試験を行った。
Test (3)
<Evaluation>
A charge / discharge test was performed on the aluminum secondary battery of Example 6 under the conditions of a cutoff voltage (upper limit: 2.4 V; lower limit: 0.8 V) and a temperature of 25 ° C. while changing the discharge rate as shown in Table 6. It was.

Figure 0006813852
Figure 0006813852

<結果>
結果を、図6に示す。放電レートが1000mAhg-1から10000mAhg-1へと速くなるにつれて放電容量は減少するが、放電レートを1000mAhg-1に戻すと放電容量もほぼ元の値に戻ることが示されている。
<Result>
The results are shown in FIG. It has been shown that the discharge capacity decreases as the discharge rate increases from 1000 mAhg -1 to 10000 mAhg -1 , but when the discharge rate is returned to 1000 mAhg -1 , the discharge capacity also returns to almost the original value.

本発明によれば、放電電圧、放電容量、クーロン効率およびサイクル特性を高めることのできるアルミニウム二次電池用正極および該正極を用いたアルミニウム二次電池を提供することができる。 According to the present invention, it is possible to provide a positive electrode for an aluminum secondary battery capable of enhancing discharge voltage, discharge capacity, Coulomb efficiency and cycle characteristics, and an aluminum secondary battery using the positive electrode.

1 アルミニウム二次電池
11 正極
12 Mo集電体
13 Pt集電体
14 負極
15 参照極
16 電解液
1 Aluminum secondary battery 11 Positive electrode 12 Mo current collector 13 Pt current collector 14 Negative electrode 15 Reference electrode 16 Electrolyte

Claims (9)

ナノ炭素材料である活物質と、ルイス酸に安定なバインダーとを含んでなる、アルミニウム二次電池用正極であって、
バインダーが、ポリスルホン、ポリエーテルスルホン、アルギン酸、アルギン酸ナトリウム、アルギン酸アンモニウム、アルギン酸プロピレングリコール、ポリイミド、カルボキシメチルセルロースからなる群から選択される少なくとも一つである、アルミニウム二次電池用正極
A positive electrode for an aluminum secondary battery, which comprises an active material which is a nanocarbon material and a binder which is stable to Lewis acid .
A positive electrode for an aluminum secondary battery, wherein the binder is at least one selected from the group consisting of polysulfone, polyethersulfone, alginic acid, sodium alginate, ammonium alginate, propylene glycol alginate, polyimide, and carboxymethyl cellulose .
バインダーが、ポリスルホン、アルギン酸ナトリウム、ポリイミドからなる群から選択される少なくとも一つである、請求項1記載のアルミニウム二次電池用正極。 Binder, polysulfone, sodium A alginic acid, is at least one selected from the port Riimi de or Ranaru group, a positive electrode for aluminum secondary battery according to claim 1, wherein. ナノ炭素材料が、カーボンナノチューブ、カーボンナノホーン、フラーレン、カーボンナノファイバー、および単層ないし多層のグラフェンからなる群から選択される少なくとも一つである、請求項1または2記載のアルミニウム二次電池用正極。 The positive electrode for an aluminum secondary battery according to claim 1 or 2 , wherein the nanocarbon material is at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, fullerenes, carbon nanofibers, and single-walled or multilayer graphene. .. ナノ炭素材料とバインダーとの重量比(ナノ炭素材料:バインダー)が、50:50〜90:10の範囲である、請求項1〜のいずれか1項に記載のアルミニウム二次電池用正極。 The positive electrode for an aluminum secondary battery according to any one of claims 1 to 3 , wherein the weight ratio of the nanocarbon material to the binder (nanocarbon material: binder) is in the range of 50:50 to 90:10. 請求項1〜のいずれか1項に記載のアルミニウム二次電池用正極を含んでなるアルミニウム二次電池。 An aluminum secondary battery comprising the positive electrode for an aluminum secondary battery according to any one of claims 1 to 4 . 電解液がAlX4 -(但し、XはCl、BrおよびIからなる群から選択されるハロゲンであり、一分子中に含まれる4つのXは同一または異なるものである。)を含んでなるものである、請求項記載のアルミニウム二次電池。 Electrolyte AlX 4 - (where, X is Cl, a halogen selected from the group consisting of Br and I, 4 single X contained in one molecule are the same or different.) Those comprising The aluminum secondary battery according to claim 5 . 電解液が非水系溶媒であるイオン液体に上記AlX4 -が溶解したものである、請求項または記載のアルミニウム二次電池。 The aluminum secondary battery according to claim 5 or 6 , wherein the AlX 4 - is dissolved in an ionic liquid in which the electrolytic solution is a non-aqueous solvent. イオン性液体のカチオンがイミダゾリウム、ピリジニウム、ピロリジニウム、ピペリジニウム、テトラアルキルアンモニウム、ピラゾリウム、およびホスホニウムからなる群から選択される少なくとも一つである、請求項のいずれか1項に記載のアルミニウム二次電池。 The aluminum according to any one of claims 5 to 7 , wherein the cation of the ionic liquid is at least one selected from the group consisting of imidazolium, pyridinium, pyrrolidinium, piperidinium, tetraalkylammonium, pyrazolium, and phosphonium. Secondary battery. 負極がアルミニウムまたはアルミニウム合金である、請求項のいずれか1項に記載のアルミニウム二次電池。 The aluminum secondary battery according to any one of claims 5 to 8 , wherein the negative electrode is aluminum or an aluminum alloy.
JP2017543423A 2015-10-02 2016-09-27 Positive electrode for aluminum secondary battery and aluminum secondary battery Active JP6813852B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015197208 2015-10-02
JP2015197208 2015-10-02
PCT/JP2016/078417 WO2017057345A1 (en) 2015-10-02 2016-09-27 Positive electrode for aluminum secondary battery, and aluminum secondary battery

Publications (2)

Publication Number Publication Date
JPWO2017057345A1 JPWO2017057345A1 (en) 2018-07-26
JP6813852B2 true JP6813852B2 (en) 2021-01-13

Family

ID=58427478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017543423A Active JP6813852B2 (en) 2015-10-02 2016-09-27 Positive electrode for aluminum secondary battery and aluminum secondary battery

Country Status (3)

Country Link
JP (1) JP6813852B2 (en)
TW (1) TWI639266B (en)
WO (1) WO2017057345A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248668B1 (en) * 2020-07-20 2021-05-07 한국에너지기술연구원 High capacity aluminum secondary battery and method for manufacturing thereof
JP2023156753A (en) * 2022-04-13 2023-10-25 冨士色素株式会社 aluminum secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359164B2 (en) * 1994-10-19 2002-12-24 キヤノン株式会社 Rechargeable battery
JP6332031B2 (en) 2012-10-30 2018-05-30 株式会社村田製作所 Aluminum secondary battery and electronic device
JP6195236B2 (en) * 2013-05-13 2017-09-13 学校法人 関西大学 Aluminum secondary battery
US9225023B2 (en) * 2013-10-04 2015-12-29 Toyota Motor Engineering & Manufacturing North America, Inc. Fullerenes as high capacity cathode materials for a rechargeable magnesium battery
CN104393290B (en) 2014-10-29 2016-08-24 北京科技大学 A kind of employing MoS2aluminium ion battery for positive electrode and preparation method thereof

Also Published As

Publication number Publication date
JPWO2017057345A1 (en) 2018-07-26
TWI639266B (en) 2018-10-21
WO2017057345A1 (en) 2017-04-06
TW201727973A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
Leonard et al. Water-in-salt electrolyte for potassium-ion batteries
JP6195236B2 (en) Aluminum secondary battery
JP5979117B2 (en) Aluminum foil manufacturing method and aluminum foil
US20160218352A1 (en) Lithium-sulfur electric current producing cell
Liu et al. Low-cost gel polymer electrolyte for high-performance aluminum-ion batteries
EP3439086B1 (en) Aqueous secondary cell
JP2016521914A5 (en)
WO2014181809A1 (en) Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
EP2500969A1 (en) Aluminum foil which supports carbonaceous particles scattered thereon
Wang et al. Fabrication of manganese dioxide nanosheet-based thin-film electrode and its electrochemical capacitance performance
CN108352510A (en) All solid state rechargeable lithium battery
JP2016219419A (en) Electrolytic solution for battery and battery
JP6813852B2 (en) Positive electrode for aluminum secondary battery and aluminum secondary battery
US9382634B2 (en) Method for preparing low-melting-point plating solution for aluminum electroplating, plating solution for aluminum electroplating, method for producing aluminum foil, and method for lowering melting point of plating solution for aluminum electroplating
Li et al. Conquering poor reversibility of zinc powder electrode through in-situ surface engineering towards long-life zinc-ion batteries
US7824800B1 (en) Lithium-ion cell with a wide operating temperature range
JP2016192279A (en) Aqueous pseudo solid secondary battery
Seon et al. Ultrahigh energy density and long-life cyclic stability of surface-treated aluminum-ion supercapacitors
EP4210078A1 (en) Electrical double layer capacitor
JP7418805B2 (en) Anolytes for polyvalent metal secondary batteries and polyvalent metal secondary batteries
JP6846745B2 (en) Electrode sheet and non-aqueous electrolyte secondary battery used for non-aqueous electrolyte secondary battery
JP2016189239A (en) Lithium ion secondary battery
Dou et al. A coral-inspired nanoscale design of Sn–Cu/PANi/GO hybrid anode materials for high performance lithium-ion batteries
JP2012243924A (en) Capacitor
WO2022075287A1 (en) Electrolyte for aluminum secondary batteries, and aluminum secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201210

R150 Certificate of patent or registration of utility model

Ref document number: 6813852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250