WO2017057260A1 - 蒸気発生装置 - Google Patents

蒸気発生装置 Download PDF

Info

Publication number
WO2017057260A1
WO2017057260A1 PCT/JP2016/078239 JP2016078239W WO2017057260A1 WO 2017057260 A1 WO2017057260 A1 WO 2017057260A1 JP 2016078239 W JP2016078239 W JP 2016078239W WO 2017057260 A1 WO2017057260 A1 WO 2017057260A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
pressure
gas
liquid drum
external equipment
Prior art date
Application number
PCT/JP2016/078239
Other languages
English (en)
French (fr)
Inventor
浩史 小坂
紘基 片山
泰英 岡▲崎▼
浩一 井本
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2017057260A1 publication Critical patent/WO2017057260A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a steam generator using sunlight.
  • the steam of the heat collection medium is sent directly to the heat accumulator and further to the turbine.
  • the temperature of the steam is higher than the heat storage temperature of the heat storage device, heat is supplied to the heat storage material of the heat storage device.
  • the steam pressure of the brackish water drum is detected and compared with the set value, and the steam flow supplied from the brackish drum to the load is controlled to set the braided water drum pressure.
  • a pressure control device that maintains the value is disclosed.
  • a method for stabilizing the steam flow rate by increasing the pressure set value when the steam flow rate is increasing and decreasing the pressure set value when the steam flow rate is decreasing.
  • the pressure water tank which is a heat accumulator is arrange
  • the present invention is directed to a steam generator using sunlight, and aims to provide a novel heat storage method.
  • a steam generator includes a solar light collector that heats a fluid by condensed sunlight, a gas-liquid drum that stores vapor and liquid of the fluid, the solar light collector, and the gas.
  • a pump that continuously circulates the fluid between the liquid drum, a steam supply path that connects the gas-liquid drum and external equipment, and an internal pressure of the gas-liquid drum is determined by the external equipment. The steam is blocked from passing through the steam supply path, and when the internal pressure is equal to or higher than the set pressure, partially in the steam supply path
  • a pressure adjusting unit that varies the internal pressure while supplying the steam to the external equipment by allowing the steam to pass through a throttle unit having a reduced flow path area.
  • heat can be stored in the gas-liquid drum while supplying steam to the external equipment when the amount of solar radiation is large, and steam can be supplied to the external equipment for a certain period even when the amount of solar radiation is small. it can.
  • the pressure adjusting unit adjusts an area of the flow path through which the steam passes in the steam supply path.
  • the internal pressure is maintained at approximately the upper limit pressure.
  • the pressure adjusting unit includes a pressure control valve provided in the steam supply path, and the opening degree of the pressure control valve is adjusted when the internal pressure is equal to or higher than the upper limit pressure.
  • the pressure control valve functions as the throttle portion.
  • the upper limit pressure is twice or more the set pressure.
  • a steam accumulator may not be provided.
  • an auxiliary boiler that generates steam with fuel is provided.
  • FIG. 1 is a diagram showing a configuration of a steam generator 1 according to an embodiment of the present invention.
  • the steam generator 1 is an apparatus that generates steam using sunlight, and is a direct steam generation system that directly generates water steam without using another heat medium.
  • the steam generator 1 is used, for example, in a seawater desalination plant (fresh water plant) that generates fresh water by steam heating of seawater.
  • the steam generator 1 includes a solar light collector 2, a gas-liquid drum 31, a pump 32, a steam supply path 41, and a pressure adjustment unit 42.
  • the gas-liquid drum 31 is a brackish water drum for storing water vapor and liquid as a heat medium.
  • the gas-liquid drum 31 is provided with a circulation path 33 for circulating water between the solar light collecting device 2.
  • the pump 32 is provided in a portion of the circulation path 33 from the gas-liquid drum 31 toward the solar light collecting device 2.
  • the pump 32 feeds liquid water existing below the gas-liquid drum 31 to the solar light collector 2 at an approximately constant flow rate, and passes through the solar light collector 2 (for example, water Steam) returns to the gas-liquid drum 31. In this way, the pump 32 continuously circulates water along the circulation path 33 that connects the gas-liquid drum 31 and the solar light collecting device 2.
  • a pressure sensor 331, a valve (check valve) 332, a valve 333, and a temperature sensor 334 are provided between the pump 32 and the solar light collecting device 2.
  • the pressure sensor 331 measures the pressure of water due to the liquid feeding of the pump 32.
  • the temperature sensor 334 measures the temperature of water immediately before flowing into the solar light collecting device 2.
  • another path arranged in parallel is provided for a portion including the combination of the pump 32, the pressure sensor 331, and the check valve 332, and the same combination as the above combination is provided in the path. May be. In this case, during the maintenance of one pump 32, the steam generator 1 can be continuously operated using the other pump 32 (the same applies to the pump 521 described later).
  • the gas-liquid drum 31 is provided with a pressure sensor 422 and a level sensor 311.
  • the pressure sensor 422 is a part of the pressure adjusting unit 42, and the internal pressure (steam pressure) of the gas-liquid drum 31 is measured by the pressure sensor 422.
  • the level sensor 311 measures the position of the liquid level in the gas-liquid drum 31.
  • One end of a steam supply path 41 is connected to the upper part of the gas-liquid drum 31.
  • the steam supply path 41 connects the gas-liquid drum 31 and the external equipment 9.
  • the external equipment 9 includes a seawater heater and the like, and the steam supply path 41 is connected to the heater.
  • the external equipment 9 has an auxiliary boiler 91 that generates steam with fuel, and can supply the steam from the auxiliary boiler 91 to the heater.
  • Information such as measured values of each sensor in the steam generator 1 is input to a control unit (not shown) of the external equipment 9, and the auxiliary boiler 91 and the like are controlled according to the information.
  • a pressure control valve 421, a temperature sensor 411, a pressure sensor 412, and a flow rate sensor 413 are provided in order from the gas-liquid drum 31 toward the external equipment 9.
  • the temperature, pressure, and flow rate of the steam flowing through the steam supply path 41 are measured by the temperature sensor 411, the pressure sensor 412, and the flow rate sensor 413, respectively.
  • the pressure control valve 421 is a part of the pressure adjustment unit 42.
  • the pressure adjustment unit 42 further includes an internal pressure control unit 423. In the pressure adjustment unit 42, the measurement value of the internal pressure of the gas-liquid drum 31 acquired by the pressure sensor 422 is input to the internal pressure control unit 423, and the pressure control valve 421 is activated according to the measurement value by the internal pressure control unit 423. Be controlled. Details of the control of the pressure control valve 421 in the pressure adjusting unit 42 will be described later.
  • the steam generator 1 further includes a water supply tank 51, a water supply path 52, and a water supply flow rate control unit 53.
  • the water supply tank 51 stores water for water supply.
  • the water supply path 52 connects the water supply tank 51 to the circulation path 33. Specifically, one end of the water supply path 52 is connected to the water supply tank 51, and the other end is connected between the pump 32 and the solar light collector 2 in the circulation path 33. The other end of the water supply path 52 may be connected between the gas-liquid drum 31 and the pump 32 in the circulation path 33 or to the gas-liquid drum 31 itself.
  • a pump 521 In the water supply path 52, a pump 521, a pressure sensor 522, a valve (check valve) 523, a temperature sensor 524, a flow sensor 525, and a flow control valve 526 are provided in order from the water supply tank 51 toward the circulation path 33.
  • the pressure sensor 522 measures the pressure of water due to the liquid feeding by the pump 521.
  • the temperature sensor 524 and the flow rate sensor 525 measure the temperature and flow rate of the water flowing through the water supply channel 52, respectively.
  • the measured value of the flow rate of the steam flowing through the steam supply path 41 and the measured value of the liquid surface position in the gas-liquid drum 31 are input to the water supply flow rate control unit 53 from the flow rate sensor 413 and the level sensor 311, respectively. Based on these measured values, the feed water flow rate control unit 53 controls the flow rate control valve 526 so that the position of the liquid level in the gas-liquid drum 31 is constant.
  • FIG. 2 is a diagram illustrating a configuration of the solar light collecting device 2.
  • the solar light collecting device 2 is a so-called Fresnel type light collecting device, and heats water with the concentrated sunlight.
  • the solar light collecting device 2 includes a large number of mirrors 21 and a heat recovery tube 22.
  • the water sent from the gas-liquid drum 31 by the pump 32 flows inside the heat recovery pipe 22, and a large number of mirrors 21 concentrate the sunlight on the heat recovery pipe 22, whereby the heat recovery pipe 22.
  • the water inside is heated.
  • the temperature of the water that has passed through the heat recovery pipe 22 is measured by the temperature sensor 23.
  • the water heated by the solar light collecting device 2 is returned to the gas-liquid drum 31 through the circulation path 33.
  • a plurality of solar light collecting devices 2 are provided, and water is heated by the plurality of solar light collecting devices 2.
  • the sunlight concentrating device 2 may be a trough type, a tower type, a dish type, or the like.
  • FIG. 3 is a diagram showing an operation flow of the pressure adjusting unit 42 in the steam generation process of the steam generator 1.
  • the operation of FIG. 3 is always performed while the steam generator 1 is driven.
  • the operation of the pressure adjusting unit 42 in the steam generation process will be described.
  • the steam generation process water is continuously circulated along the circulation path 33 by driving the pump 32. As described above, the water passing through the solar light collecting device 2 is heated by the condensed sunlight and then returned to the gas-liquid drum 31. Further, in the pressure sensor 422 of the pressure adjusting unit 42, the measurement value of the internal pressure of the gas-liquid drum 31 is repeatedly acquired at predetermined time intervals during the steam generation process.
  • the internal pressure (measured value) of the gas-liquid drum 31 is less than a predetermined set pressure (for example, 1.0 MPa (megapascal)). Is confirmed (step S11), and the pressure control valve 421 is closed (step S12).
  • the set pressure is a pressure set to use steam in the external equipment 9, and when the internal pressure of the gas-liquid drum 31 is less than the set pressure, the gas-liquid drum 31 to the external equipment 9 Steam is not supplied.
  • a necessary amount of steam is generated using the auxiliary boiler 91.
  • the steam supply path 41 is provided with a check valve (not shown), and the steam from the auxiliary boiler 91 does not flow back through the steam supply path 41.
  • the temperature of the water circulating in the circulation path 33 is gradually increased by the heating by the solar light collector 2, and the internal pressure of the gas-liquid drum 31 is also increased.
  • the internal pressure becomes equal to or higher than the set pressure (step S11)
  • the internal pressure is less than a predetermined upper limit pressure (eg, 2.2 MPa) higher than the set pressure (step S13). Details of the upper limit pressure will be described later.
  • the opening degree of the pressure control valve 421 is equal to or less than a predetermined set opening degree (step S14)
  • the pressure control valve 421 is set to the set opening degree (step S15).
  • the opening degree of the pressure control valve 421 is 0% (closed state) and the set opening degree is larger than 0% as will be described later, the pressure control valve 421 is slowly opened to become the set opening degree. . When the pressure control valve 421 is already at the set opening, the set opening is maintained.
  • the set opening degree of the pressure control valve 421 is an arbitrary opening degree that is larger than 0% and sufficiently smaller than 100%.
  • the set opening is preferably an opening of 50% or less, and more preferably the minimum adjustable opening.
  • the pressure control valve 421 having the set opening can be regarded as a throttle portion in which the flow passage area is partially reduced in the steam supply passage 41.
  • the pressure adjustment unit 42 adjusts the opening degree of the pressure control valve 421 so that the internal pressure is maintained at approximately the upper limit pressure. That is, constant pressure control of the internal pressure is performed (step S16).
  • the area of the flow path through which the steam passes in the steam supply path 41 is adjusted based on the measurement value of the pressure sensor 422. For example, when the internal pressure is somewhat higher than the upper limit pressure, the opening degree of the pressure control valve 421 is slowly increased. In the constant pressure control, the opening degree of the pressure control valve 421 is adjusted within a range not less than the set opening degree.
  • the upper limit pressure is, for example, the maximum operating pressure defined as the specification of the gas-liquid drum 31 or a pressure slightly lower than the maximum operating pressure. Therefore, the gas-liquid drum 31 is not damaged by controlling the gas-liquid drum 31 to approximately the upper limit pressure.
  • the internal pressure of the gas-liquid drum 31 reaches the upper limit pressure, heat storage of an amount corresponding to the difference between the upper limit pressure and the set pressure in the gas-liquid drum 31 is substantially completed.
  • the steam supply flow rate to the external equipment 9 gradually increases as the opening degree of the pressure control valve 421 increases. At this time, when a constant amount of steam is used in the external equipment 9, the amount of steam generated by the auxiliary boiler 91 is gradually reduced.
  • the opening degree of the pressure control valve 421 is larger than the set opening degree. After confirming this (step S14), the opening degree of the pressure control valve 421 is lowered so that the internal pressure is maintained at approximately the upper limit pressure. That is, the constant pressure control of the internal pressure is performed as described above (step S16).
  • the internal pressure of the gas-liquid drum 31 continuously becomes higher than the set pressure and lower than the upper limit pressure (steps S11 and S13). Also in this case, as long as the opening degree of the pressure control valve 421 is larger than the set opening degree (step S14), as the constant pressure control of the internal pressure, the opening degree of the pressure control valve 421 is lowered within the range above the set opening degree. (Step S16). Therefore, even in a state where the amount of solar radiation is small, the internal pressure of the gas-liquid drum 31 is kept near the upper limit pressure for a while. Further, the supply of steam from the steam generator 1 to the external facility 9 is continued.
  • the internal pressure of the gas-liquid drum 31 gradually decreases from the vicinity of the upper limit pressure toward the set pressure (steps S11 and S13).
  • the opening of the pressure control valve 421 is lowered to the set opening as the constant pressure control (step S14)
  • the pressure control valve 421 is maintained at the set opening (step S15).
  • the internal pressure of the gas-liquid drum 31 gradually decreases to near the set pressure.
  • the pressure adjusting unit 42 since the pressure control valve 421 is maintained at the set opening degree even during this period, the supply of steam to the external equipment 9 is continued although the supply flow rate is relatively small.
  • step S11 when the internal pressure becomes less than the set pressure (step S11), the pressure control valve 421 is slowly closed and closed (step S12). Thereby, the supply flow rate of the steam from the steam generator 1 to the external facility 9 becomes zero.
  • the steam generator 1 when the internal pressure of the gas-liquid drum 31 has reached the upper limit pressure (that is, when water at a temperature corresponding to the upper limit pressure is stored in the gas-liquid drum 31), the amount of solar radiation is Even when there is almost no state, the supply of steam can be continued, for example, for about 10 minutes by heat storage in the gas-liquid drum 31. Therefore, by gradually increasing the output of the auxiliary boiler 91 during this period, it is possible to secure a necessary amount of steam in the external equipment 9 when the steam supply flow rate becomes zero.
  • the steam generator 1 when the amount of solar radiation disappears due to sunset, the driving of the pump 32 is stopped, and the steam generation process ends.
  • the capacity of the gas-liquid drum 31 is 2.5 m 3
  • the supply pressure to the external equipment 9 is 0.8 MPa (absolute pressure, the same applies hereinafter)
  • the gas-liquid drum 31 in step S11 It is assumed that the set pressure is 1.1 MPa and the upper limit pressure of the gas-liquid drum 31 in step S13 is 2.3 MPa.
  • the opening degree of the pressure control valve 421 is 100%
  • the Cv value is 5,
  • the internal pressure of the gas-liquid drum 31 is 2.3 MPa
  • the steam supply flow rate is 1.3 ton / h (1.3 hour / hour). Tons).
  • the range ability of the pressure control valve 421 is 30: 1.
  • the set opening degree of the pressure control valve 421 in step S15 is 30%.
  • the Cv value becomes 0.5 due to the equal percentage characteristic.
  • the opening degree of the pressure control valve 421 is 30%, when the internal pressure is 1.1 MPa, the steam supply flow rate is 50 kg / h, and when the internal pressure is 2.3 MPa, the steam supply flow rate is 110 kg / h.
  • the opening degree of the pressure control valve 421 increases by the constant pressure control in step S16.
  • the pressure adjusting unit 42 of the steam generator 1 when the internal pressure of the gas-liquid drum 31 is less than the set pressure, the passage of the steam through the steam supply path 41 is blocked.
  • the internal pressure when the internal pressure is equal to or higher than the set pressure, the steam is passed through the constricted portion in which the flow passage area is partially reduced in the steam supply path 41, thereby supplying the steam to the external equipment 9 Vary the pressure.
  • the steam is supplied to the external equipment 9 when the amount of solar radiation is large, and the internal pressure of the gas-liquid drum 31 is made higher than the set pressure in a short time to substantially store heat. Is possible.
  • the internal pressure of the gas-liquid drum 31 becomes equal to or higher than the upper limit pressure, the internal pressure is maintained at approximately the upper limit pressure by the pressure adjusting unit 42. Thereby, when there is a sufficient amount of solar radiation, it is possible to supply steam to the external equipment 9 at a relatively high supply flow rate while continuously storing excess heat in the gas-liquid drum 31. Further, when the upper limit pressure is twice or more the set pressure, the control range of the internal pressure of the gas-liquid drum 31 can be increased, and the amount of heat that can be stored in the gas-liquid drum 31 can be increased.
  • the gas-liquid drum 31 As described above, in the steam generator 1, heat is stored in the gas-liquid drum 31 that is higher than the set pressure, and therefore, no steam accumulator is provided in the steam supply path 41. As described above, the gas-liquid drum 31 also functions as a steam accumulator, whereby heat can be efficiently stored with a small amount of high-temperature water while simplifying the configuration of the steam generator 1. Depending on the design of the steam generator 1, a steam accumulator may be provided in the steam supply path 41 as an auxiliary.
  • an auxiliary boiler 91 that generates steam by fuel is provided in the external equipment 9.
  • the auxiliary boiler 91 it is difficult to rapidly change the amount of steam generated.
  • the steam supply flow rate to the external equipment 9 can be gradually changed as described above. Therefore, in the external equipment 9, a certain amount of steam is generated by the steam generator 1 and the auxiliary boiler 91. Can be used stably.
  • the steam generator 1 can be variously modified.
  • the pressure control valve 421 adjusted to the set opening functions as a throttle unit in the steam supply path 41, whereby the pressure regulator 42 is realized with a simple configuration.
  • two flow paths arranged in parallel in a part of the steam supply path 41 are provided, and a pipe member having a partially reduced flow area is provided as a throttle part in one flow path, and the upper limit is provided in the other flow path.
  • a constant pressure valve (pressure reducing valve) for pressure is provided.
  • the two flow paths are connected to the gas-liquid drum 31 via a switching valve, and by selectively switching the two flow paths according to the internal pressure of the gas-liquid drum 31, the steam is allowed to pass through the throttle portion. And it is implement
  • the constant pressure control may be omitted. That is, when the internal pressure of the gas-liquid drum 31 is less than the set pressure, the passage of the steam through the steam supply path 41 is blocked, and when the internal pressure is equal to or higher than the set pressure, the steam in the throttle portion of the steam supply path 41 Only the control of changing the internal pressure by passing the pressure may be performed in the pressure adjusting unit 42.
  • water is stored in the gas-liquid drum 31, but other fluids such as ammonia may be stored in the gas-liquid drum 31, for example.
  • the steam generator 1 that uses sunlight can be used for various purposes such as salt production and brewing in addition to seawater desalination (fresh water).
  • the steam generator 1 can be added to various facilities having a boiler, and thereby the fuel consumed in the boiler (auxiliary boiler) can be reduced.
  • the steam generator 1 may be used for power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

蒸気発生装置(1)では、太陽光により流体を加熱する太陽光集光装置(2)と、流体の蒸気および液体を貯溜する気液ドラム(31)とが設けられ、当該流体が両者の間で連続的に循環する。気液ドラム(31)は、蒸気供給路(41)により外部設備(9)と接続される。圧力調整部(42)は、気液ドラム(31)の内部圧力が、外部設備(9)にて蒸気を使用するために設定された設定圧力未満である場合に、蒸気の蒸気供給路(41)の通過を遮断し、当該内部圧力が設定圧力以上である場合に、蒸気供給路(41)において部分的に流路面積が低減された絞り部に蒸気を通過させることにより、蒸気を外部設備(9)に供給しつつ内部圧力を変動させる。これにより、日射量が多い場合に蒸気を外部設備(9)に供給しつつ気液ドラム(31)において蓄熱することができ、日射量が少ない場合にもある程度の期間、蒸気を外部設備(9)に供給することができる。

Description

蒸気発生装置
 本発明は、太陽光を利用する蒸気発生装置に関する。
 近年、太陽光を集光して熱媒体を加熱することにより太陽熱エネルギーを回収する技術の実用化が進められている。当該技術に係る蒸気発生装置では、集光させた太陽光を利用して蒸気を発生させ、当該蒸気が様々な用途に用いられる。
 一方、熱源である日射は、天候や時間帯等により変化する。そこで、特開昭53-59155号公報(文献1)の太陽熱発電システムでは、蓄熱器とアキュムレータとが設けられ、日照量が少なく、集光器出口の温度が一定温度以下の場合には、液状の集熱媒体がアキュムレータに送られる。アキュムレータ内の圧力が一定の圧力以上になると、アキュムレータ内で発生する飽和蒸気が、蓄熱器を介して過熱蒸気とされてタービンへと送られる。また、日照量が増加し、集光器出口の温度が十分上昇すると、集熱媒体の蒸気が直接蓄熱器に送られ、さらにタービンへと送られる。このとき、蒸気の温度が蓄熱器の蓄熱温度よりも高い場合には、蓄熱器の蓄熱材に熱が供給される。
 特開昭58-160703号公報(文献2)の装置では、太陽光エネルギーにより吸熱器の蒸発管内の水が加熱され、汽水ドラムに蒸気として蓄えられる。蒸気は、発電用タービンへ供給されたり、蓄熱槽に蓄えられる。また、蓄熱槽から汽水ドラムへの蒸気流量を調節する蒸気流量調節弁が設けられ、吸熱器の起動時に汽水ドラムの温度勾配が一定となるように、蒸気流量調節弁が制御される。また、汽水ドラムの圧力が所定の圧力となると、汽水ドラムの圧力が所定値となるように、汽水ドラムから蓄熱槽または負荷側へと送出される蒸気の流量が制御される。
 特公昭61-8323号公報(文献3)では、汽水ドラムの蒸気圧力を検出してその設定値と比較し、汽水ドラムから負荷へ供給する蒸気流量を制御することにより、汽水ドラムの圧力を設定値に保つ圧力制御装置が開示されている。また、当該装置において、蒸気流量が増加中である場合に圧力設定値を上げ、蒸気流量が減少中である場合に圧力設定値を下げることにより、蒸気流量を安定化する手法も開示されている。文献3の装置においても、蓄熱器である圧力水タンクが負荷側に配置される。
 ところで、文献1ないし3の装置では、蓄熱を行うために、蓄熱器(蓄熱槽を含む。)が必須の構成要素となるため、蒸気発生装置の設計等に一定の制限が生じる。したがって、蓄熱器の省略が可能な新規な蓄熱手法が求められている。
 本発明は、太陽光を利用する蒸気発生装置に向けられており、新規な蓄熱手法を提供することを目的としている。
 本発明に係る蒸気発生装置は、集光させた太陽光により流体を加熱する太陽光集光装置と、前記流体の蒸気および液体を貯溜する気液ドラムと、前記太陽光集光装置と前記気液ドラムとの間にて前記流体を連続的に循環させるポンプと、前記気液ドラムと外部設備とを接続する蒸気供給路と、前記気液ドラムの内部圧力が、前記外部設備にて前記蒸気を使用するために設定された設定圧力未満である場合に、前記蒸気の前記蒸気供給路の通過を遮断し、前記内部圧力が前記設定圧力以上である場合に、前記蒸気供給路において部分的に流路面積が低減された絞り部に前記蒸気を通過させることにより、前記蒸気を前記外部設備に供給しつつ前記内部圧力を変動させる圧力調整部とを備える。
 本発明によれば、日射量が多い場合に蒸気を外部設備に供給しつつ気液ドラムにおいて蓄熱することができ、日射量が少ない場合にもある程度の期間、蒸気を外部設備に供給することができる。
 本発明の一の好ましい形態では、前記内部圧力が前記設定圧力よりも高い上限圧力以上となる場合に、前記圧力調整部が、前記蒸気供給路において前記蒸気が通過する流路の面積を調整することにより、前記内部圧力をおよそ前記上限圧力に保つ。
 この場合に、より好ましくは、前記圧力調整部が、前記蒸気供給路に設けられた圧力制御弁を備え、前記内部圧力が前記上限圧力以上となる場合に、前記圧力制御弁の開度が調整され、前記内部圧力が前記設定圧力以上、かつ、前記上限圧力未満である場合に、前記圧力制御弁が前記絞り部として機能する。
 好ましい蒸気発生装置では、前記上限圧力が前記設定圧力の2倍以上である。
 前記蒸気供給路において、蒸気アキュムレータが設けられなくてもよい。
 好ましくは、前記外部設備において、燃料により蒸気を発生させる補助ボイラが設けられている。
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
蒸気発生装置の構成を示す図である。 太陽光集光装置の構成を示す図である。 圧力調整部の動作の流れを示す図である。
 図1は、本発明の一の実施の形態に係る蒸気発生装置1の構成を示す図である。蒸気発生装置1は、太陽光を利用して蒸気を発生させる装置であり、他の熱媒体を用いることなく水の蒸気を直接生成する直接蒸気生成(Direct Steam Generation)方式の装置である。蒸気発生装置1は、例えば、海水の蒸気加熱により淡水を生成する海水淡水化プラント(造水プラント)に用いられる。
 蒸気発生装置1は、太陽光集光装置2と、気液ドラム31と、ポンプ32と、蒸気供給路41と、圧力調整部42とを備える。気液ドラム31は、熱媒体である水の蒸気および液体を貯溜する汽水ドラムである。気液ドラム31には、太陽光集光装置2との間で水を循環させるための循環経路33が設けられる。ポンプ32は、循環経路33において気液ドラム31から太陽光集光装置2へと向かう部分に設けられる。ポンプ32が、気液ドラム31の下部に存在する液体の水を太陽光集光装置2へとおよそ一定の流量にて送液し、太陽光集光装置2を通過した水(例えば、水の蒸気)が気液ドラム31へと戻る。このように、ポンプ32は、気液ドラム31と太陽光集光装置2との間を接続する循環経路33に沿って水を連続的に循環させる。
 循環経路33において、ポンプ32と太陽光集光装置2との間には、圧力センサ331、弁(逆止弁)332、弁333および温度センサ334が設けられる。圧力センサ331により、ポンプ32の送液による水の圧力が測定される。温度センサ334により、太陽光集光装置2に流入する直前の水の温度が測定される。例えば、循環経路33において、ポンプ32、圧力センサ331および逆止弁332の組合せを含む部分に対して、並列に配置された他の経路が設けられ、当該経路に上記組合せと同様の組合せが設けられてもよい。この場合、一方のポンプ32のメンテナンス時等において、他方のポンプ32を利用して蒸気発生装置1を継続して稼働させることが可能である(後述のポンプ521において同様)。
 気液ドラム31には、圧力センサ422と、レベルセンサ311とが設けられる。圧力センサ422は、圧力調整部42の一部であり、圧力センサ422により、気液ドラム31の内部圧力(蒸気の圧力)が測定される。レベルセンサ311により、気液ドラム31内の液面の位置が測定される。気液ドラム31の上部には、蒸気供給路41の一端が接続される。
 蒸気供給路41は、気液ドラム31と外部設備9とを接続する。蒸気発生装置1が海水淡水化プラントにて用いられる場合には、外部設備9は海水の加熱器等を含み、蒸気供給路41は、当該加熱器に接続される。外部設備9は、燃料により蒸気を発生させる補助ボイラ91を有し、補助ボイラ91からの蒸気を当該加熱器に供給することが可能である。外部設備9の制御部(図示省略)には、蒸気発生装置1における各センサの測定値等の情報が入力されており、当該情報に従って補助ボイラ91等が制御される。
 蒸気供給路41には、気液ドラム31から外部設備9に向かって順に、圧力制御弁421、温度センサ411、圧力センサ412、流量センサ413が設けられる。温度センサ411、圧力センサ412および流量センサ413により、蒸気供給路41を流れる蒸気の温度、圧力および流量がそれぞれ測定される。圧力制御弁421は、圧力調整部42の一部である。圧力調整部42は、内部圧力制御部423をさらに有する。圧力調整部42では、圧力センサ422により取得される気液ドラム31の内部圧力の測定値が内部圧力制御部423に入力され、内部圧力制御部423により当該測定値に応じて圧力制御弁421が制御される。圧力調整部42における圧力制御弁421の制御の詳細については後述する。
 蒸気発生装置1は、給水タンク51と、給水路52と、給水流量制御部53とをさらに備える。給水タンク51は、給水用の水を貯溜する。給水路52は、給水タンク51を循環経路33に接続する。詳細には、給水路52の一端は給水タンク51に接続され、他端は循環経路33におけるポンプ32と太陽光集光装置2との間に接続される。給水路52の他端は、循環経路33における気液ドラム31とポンプ32との間、または、気液ドラム31自体に接続されてもよい。給水路52には、給水タンク51から循環経路33に向かって順に、ポンプ521、圧力センサ522、弁(逆止弁)523、温度センサ524、流量センサ525、流量制御弁526が設けられる。圧力センサ522により、ポンプ521の送液による水の圧力が測定される。温度センサ524および流量センサ525により、給水路52を流れる水の温度および流量がそれぞれ測定される。
 給水流量制御部53には、流量センサ413およびレベルセンサ311から、蒸気供給路41を流れる蒸気の流量の測定値、および、気液ドラム31内の液面位置の測定値がそれぞれ入力される。給水流量制御部53では、これらの測定値に基づいて、気液ドラム31内の液面の位置が一定となるように、流量制御弁526が制御される。
 図2は、太陽光集光装置2の構成を示す図である。太陽光集光装置2は、いわゆるフレネル型の集光装置であり、集光させた太陽光により水を加熱する。太陽光集光装置2は、多数のミラー21と、熱回収管22とを備える。熱回収管22の内部には、ポンプ32により気液ドラム31から送液された水が流れており、多数のミラー21が太陽光を熱回収管22に集光することにより、熱回収管22内の水が加熱される。熱回収管22を通過した水の温度は、温度センサ23により測定される。太陽光集光装置2にて加熱された水は、循環経路33を介して気液ドラム31に戻される。好ましい蒸気発生装置1では、複数の太陽光集光装置2が設けられており、複数の太陽光集光装置2により水が加熱される。太陽光集光装置2は、トラフ型、タワー型またはディッシュ型等の集光装置であってもよい。
 図3は、蒸気発生装置1の蒸気発生処理における圧力調整部42の動作の流れを示す図である。圧力調整部42では、蒸気発生装置1の駆動中、図3の動作が常時行われる。以下、蒸気発生処理における圧力調整部42の動作について説明する。
 蒸気発生処理では、ポンプ32の駆動により、循環経路33に沿って水が連続的に循環している。既述のように、太陽光集光装置2を通過する水は、集光させた太陽光により加熱され、その後、気液ドラム31内に戻される。また、圧力調整部42の圧力センサ422では、気液ドラム31の内部圧力の測定値が、蒸気発生処理中に所定の時間間隔にて繰り返し取得される。
 例えば、日の出と同時に蒸気発生装置1の駆動が開始された直後では、気液ドラム31の内部圧力(の測定値)が、所定の設定圧力(例えば1.0MPa(メガパスカル))未満であることが確認され(ステップS11)、圧力制御弁421が閉状態とされる(ステップS12)。圧力制御弁421が既に閉状態である場合には、閉状態が維持される。ここで、設定圧力は、外部設備9にて蒸気を使用するために設定された圧力であり、気液ドラム31の内部圧力が設定圧力未満である場合には、気液ドラム31から外部設備9に蒸気は供給されない。外部設備9では、補助ボイラ91を利用して必要な量の蒸気が生成される。これにより、蒸気発生装置1からの蒸気の供給流量が0である間における外部設備9の稼働が可能となる。なお、蒸気供給路41には逆止弁(図示省略)が設けられており、補助ボイラ91からの蒸気が蒸気供給路41を逆流することはない。
 蒸気発生装置1では、太陽光集光装置2による加熱により循環経路33を循環する水の温度が漸次上昇し、気液ドラム31の内部圧力も増大する。内部圧力が設定圧力以上となると(ステップS11)、続いて、内部圧力が、設定圧力よりも高い所定の上限圧力(例えば2.2MPa)未満であることが確認される(ステップS13)。上限圧力の詳細については後述する。さらに、圧力制御弁421の開度が、所定の設定開度以下であることが確認されると(ステップS14)、圧力制御弁421が当該設定開度とされる(ステップS15)。ここでは、圧力制御弁421の開度が0%(閉状態)であり、後述するように設定開度は0%よりも大きいため、圧力制御弁421がゆっくりと開かれて設定開度となる。圧力制御弁421が既に設定開度である場合には、設定開度が維持される。
 圧力制御弁421の設定開度は、0%よりも大きく、かつ、100%よりも十分に小さい任意の開度である。設定開度は、好ましくは、50%以下の開度であり、より好ましくは、調整可能な最小の開度である。設定開度となっている圧力制御弁421は、蒸気供給路41において部分的に流路面積が低減された絞り部と捉えることができる。圧力制御弁421が設定開度の状態では、気液ドラム31内の蒸気(飽和蒸気)が蒸気供給路41を介して外部設備9に比較的少ない供給流量にて供給される。外部設備9では、補助ボイラ91を利用して、外部設備9において不足する蒸気が補充される。また、蒸気供給路41を流れる蒸気の流量が大きく制限されていることにより、気液ドラム31の内部圧力は、日射量(直達日射量)に依存して変動する。
 気液ドラム31の内部圧力が上限圧力以上となると(ステップS11,S13)、圧力調整部42では、内部圧力がおよそ上限圧力に保たれるように圧力制御弁421の開度が調整される。すなわち、内部圧力の定圧制御が行われる(ステップS16)。定圧制御では、圧力センサ422の測定値に基づいて蒸気供給路41において蒸気が通過する流路の面積が調整される。例えば、内部圧力が上限圧力よりもある程度大きい場合には、圧力制御弁421の開度がゆっくりと上げられる。なお、定圧制御では、圧力制御弁421の開度は、設定開度以上の範囲内で調整される。
 ここで、上限圧力は、例えば気液ドラム31の仕様として定められている最高使用圧力、または、最高使用圧力よりも僅かに低い圧力である。したがって、気液ドラム31がおよそ上限圧力に制御されることにより、気液ドラム31が損傷することはない。気液ドラム31の内部圧力が上限圧力に到達することにより、気液ドラム31において上限圧力と設定圧力との差に相当する量の蓄熱が実質的に完了する。蒸気発生装置1では、圧力制御弁421の開度を大きくするに従って、外部設備9への蒸気の供給流量も漸次増大する。このとき、外部設備9において一定量の蒸気を利用する場合には、補助ボイラ91にて生成する蒸気の量が漸次低減される。
 定圧制御において、例えば、気液ドラム31の内部圧力が設定圧力以上、かつ、上限圧力未満となる場合には(ステップS11,S13)、圧力制御弁421の開度が、設定開度よりも大きいことが確認された後(ステップS14)、内部圧力がおよそ上限圧力に保たれるように圧力制御弁421の開度が下げられる。すなわち、上記と同様に、内部圧力の定圧制御が行われる(ステップS16)。
 例えば、太陽光が雲等により遮られ、日射量が少なくなると、気液ドラム31の内部圧力が継続的に設定圧力以上、かつ、上限圧力未満となる(ステップS11,S13)。この場合も、圧力制御弁421の開度が、設定開度よりも大きい間は(ステップS14)、内部圧力の定圧制御として、圧力制御弁421の開度が設定開度以上の範囲内で下げられる(ステップS16)。したがって、日射量が少ない状態においても、気液ドラム31の内部圧力は、暫くの間、上限圧力近傍にて保たれる。また、蒸気発生装置1から外部設備9への蒸気の供給は継続される。もちろん、圧力制御弁421の開度を小さくするに従って、外部設備9への蒸気の供給流量は漸次減少する。このとき、外部設備9において一定量の蒸気を利用する場合には、補助ボイラ91にて生成する蒸気の量が漸次増大される。
 日射量が少ない状態が長くなると、気液ドラム31の内部圧力は、上限圧力近傍から設定圧力に向かって漸次減少する(ステップS11,S13)。定圧制御として圧力制御弁421の開度が設定開度まで下げられた場合には(ステップS14)、圧力制御弁421が設定開度にて維持される(ステップS15)。日射量が少ない状態がさらに続くことにより、気液ドラム31の内部圧力は、設定圧力近傍まで漸次減少する。圧力調整部42では、この期間においても、圧力制御弁421が設定開度にて維持されるため、比較的少ない供給流量ではあるが、外部設備9への蒸気の供給が継続される。
 そして、内部圧力が設定圧力未満となると(ステップS11)、圧力制御弁421がゆっくりと閉じられて、閉状態となる(ステップS12)。これにより、蒸気発生装置1から外部設備9への蒸気の供給流量が0となる。蒸気発生装置1では、気液ドラム31の内部圧力が上限圧力まで到達していた場合(すなわち、上限圧力に対応する温度の水が気液ドラム31にて貯溜されていた場合)、日射量がほとんど無い状態となっても、気液ドラム31における蓄熱により蒸気の供給を、例えば10分程度継続することが可能である。したがって、この間に、補助ボイラ91の出力を漸次増大させることにより、蒸気の供給流量が0となる際に、外部設備9において必要な量の蒸気を確保することが可能である。なお、蒸気発生装置1では、日没により日射量が無くなると、ポンプ32の駆動が停止され、蒸気発生処理が終了する。
 蒸気発生装置1の一例において、気液ドラム31の容量が2.5m、外部設備9への供給圧力が0.8MPa(絶対圧である。以下同様。)、ステップS11における気液ドラム31の設定圧力が1.1MPa、ステップS13における気液ドラム31の上限圧力が2.3MPaであるとする。圧力制御弁421の開度が100%である場合、Cv値が5となり、気液ドラム31の内部圧力が2.3MPaであるときには、蒸気の供給流量が1.3ton/h(毎時1.3トン)となる。なお、圧力制御弁421のレンジアビリティは30:1である。ステップS15における圧力制御弁421の設定開度は、30%であり、このとき、イコールパーセント特性によりCv値は0.5となる。圧力制御弁421の開度が30%である場合に、内部圧力が1.1MPaであるときには、蒸気の供給流量は50kg/hとなり、内部圧力が2.3MPaであるときには、蒸気の供給流量は110kg/hとなる。既述のように、内部圧力が2.3MPa以上になると、ステップS16における定圧制御により、圧力制御弁421の開度が増加する。気液ドラム31自体を蒸気アキュムレータとして捉えると、初圧2.3MPa、終圧1.1MPaで65kg/mの蒸気を発生するため、163kg(=65×2.5)の蓄熱量となり、1ton/hの供給流量であっても、蒸気の供給を約10分継続することが可能である。
 以上に説明したように、蒸気発生装置1の圧力調整部42では、気液ドラム31の内部圧力が設定圧力未満である場合に、蒸気の蒸気供給路41の通過が遮断される。一方、内部圧力が設定圧力以上である場合には、蒸気供給路41において部分的に流路面積が低減された絞り部に当該蒸気を通過させることにより、蒸気を外部設備9に供給しつつ内部圧力を変動させる。これにより、蒸気発生装置1では、日射量が多い場合に蒸気を外部設備9に供給しつつ、気液ドラム31の内部圧力を短時間に設定圧力よりも高くして、実質的に蓄熱することが可能となる。また、日射量が少ない場合にも、ある程度の期間、蒸気を外部設備9に継続して供給することができる。その結果、蒸気発生装置1では、簡易な構造により、日射量の変化による蒸気の供給流量の急激な変動(主として低下)を防止する、すなわち、外部設備9への蒸気の供給流量を緩やかに変化させることができる。
 また、気液ドラム31の内部圧力が上限圧力以上となる場合に、圧力調整部42により、内部圧力がおよそ上限圧力に保たれる。これにより、日射量が十分にある場合に、余剰となる熱を気液ドラム31にて継続して蓄熱しつつ、蒸気を比較的高い供給流量にて外部設備9に供給することができる。また、上限圧力が設定圧力の2倍以上であることにより、気液ドラム31の内部圧力の制御範囲を大きくして、気液ドラム31にて蓄熱可能な熱量を大きくすることができる。
 既述のように、蒸気発生装置1では、設定圧力よりも高圧となる気液ドラム31において蓄熱されるため、蒸気供給路41において蒸気アキュムレータが設けられない。このように、気液ドラム31が蒸気アキュムレータの機能を兼ねることにより、蒸気発生装置1の構成を簡素化しつつ、少ない高温水により効率よく蓄熱することができる。なお、蒸気発生装置1の設計によっては、蒸気供給路41において蒸気アキュムレータが補助的に設けられてもよい。
 ところで、外部設備9において、燃料により蒸気を発生させる補助ボイラ91が設けられるが、補助ボイラ91では、蒸気の発生量を急激に変化させることは困難である。しかしながら、蒸気発生装置1では、既述のように外部設備9への蒸気の供給流量を緩やかに変化させることができるため、外部設備9において、蒸気発生装置1および補助ボイラ91による一定量の蒸気を安定して利用することができる。
 上記蒸気発生装置1では様々な変形が可能である。
 上記実施の形態では、設定開度に調整された圧力制御弁421が、蒸気供給路41における絞り部として機能することにより、圧力調整部42が簡単な構成にて実現されるが、上記絞り部は、圧力制御弁421以外の構成により実現されてもよい。例えば、蒸気供給路41の一部において並列する2つの流路が設けられ、一方の流路において部分的に流路面積が低減された管部材が絞り部として設けられ、他方の流路に上限圧力の定圧弁(減圧弁)が設けられる。当該2つの流路は切替弁を介して気液ドラム31に接続され、気液ドラム31の内部圧力に応じて2つの流路を選択的に切り替えることにより、絞り部に蒸気を通過させること、および、内部圧力をおよそ上限圧力に保つことが実現される。
 例えば、気液ドラム31において取り得る内部圧力が、気液ドラム31の最高使用圧力よりも低い場合等には、定圧制御が省略されてもよい。すなわち、気液ドラム31の内部圧力が設定圧力未満である場合に、蒸気の蒸気供給路41の通過を遮断し、内部圧力が設定圧力以上である場合に、蒸気供給路41の絞り部に蒸気を通過させて内部圧力を変動させる制御のみが、圧力調整部42において行われてもよい。
 上記実施の形態では、気液ドラム31において水が貯溜されるが、例えば、アンモニア等の他の流体が気液ドラム31において貯溜されてもよい。
 太陽光を利用する蒸気発生装置1は、海水淡水化(造水)以外に、製塩や酒造等の様々な用途に利用することが可能である。蒸気発生装置1は、ボイラを有する様々な設備に追加することが可能であり、これにより、当該ボイラ(補助ボイラ)にて消費される燃料を削減することができる。もちろん、蒸気発生装置1が発電に利用されてもよい。
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
 1  蒸気発生装置
 2  太陽光集光装置
 9  外部設備
 31  気液ドラム
 32  ポンプ
 41  蒸気供給路
 42  圧力調整部
 91  補助ボイラ
 421  圧力制御弁

Claims (6)

  1.  太陽光を利用する蒸気発生装置であって、
     集光させた太陽光により流体を加熱する太陽光集光装置と、
     前記流体の蒸気および液体を貯溜する気液ドラムと、
     前記太陽光集光装置と前記気液ドラムとの間にて前記流体を連続的に循環させるポンプと、
     前記気液ドラムと外部設備とを接続する蒸気供給路と、
     前記気液ドラムの内部圧力が、前記外部設備にて前記蒸気を使用するために設定された設定圧力未満である場合に、前記蒸気の前記蒸気供給路の通過を遮断し、前記内部圧力が前記設定圧力以上である場合に、前記蒸気供給路において部分的に流路面積が低減された絞り部に前記蒸気を通過させることにより、前記蒸気を前記外部設備に供給しつつ前記内部圧力を変動させる圧力調整部と、
    を備える。
  2.  請求項1に記載の蒸気発生装置であって、
     前記内部圧力が前記設定圧力よりも高い上限圧力以上となる場合に、前記圧力調整部が、前記蒸気供給路において前記蒸気が通過する流路の面積を調整することにより、前記内部圧力をおよそ前記上限圧力に保つ。
  3.  請求項2に記載の蒸気発生装置であって、
     前記圧力調整部が、前記蒸気供給路に設けられた圧力制御弁を備え、
     前記内部圧力が前記上限圧力以上となる場合に、前記圧力制御弁の開度が調整され、
     前記内部圧力が前記設定圧力以上、かつ、前記上限圧力未満である場合に、前記圧力制御弁が前記絞り部として機能する。
  4.  請求項1ないし3のいずれかに記載の蒸気発生装置であって、
     前記上限圧力が前記設定圧力の2倍以上である。
  5.  請求項1ないし4のいずれかに記載の蒸気発生装置であって、
     前記蒸気供給路において、蒸気アキュムレータが設けられない。
  6.  請求項1ないし5のいずれかに記載の蒸気発生装置であって、
     前記外部設備において、燃料により蒸気を発生させる補助ボイラが設けられている。
PCT/JP2016/078239 2015-09-30 2016-09-26 蒸気発生装置 WO2017057260A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-192595 2015-09-30
JP2015192595A JP2017067359A (ja) 2015-09-30 2015-09-30 蒸気発生装置

Publications (1)

Publication Number Publication Date
WO2017057260A1 true WO2017057260A1 (ja) 2017-04-06

Family

ID=58427434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078239 WO2017057260A1 (ja) 2015-09-30 2016-09-26 蒸気発生装置

Country Status (2)

Country Link
JP (1) JP2017067359A (ja)
WO (1) WO2017057260A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166526A1 (ja) * 2019-02-14 2020-08-20 株式会社Ihi 蒸気供給装置及び乾燥システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110126824A1 (en) * 2009-05-15 2011-06-02 Areva Solar, Inc. Systems and methods for producing steam using solar radiation
WO2012022273A1 (zh) * 2010-08-16 2012-02-23 上海盛合新能源科技有限公司 太阳能氨水热电转换系统
WO2012081301A1 (ja) * 2010-12-15 2012-06-21 株式会社日立プラントテクノロジー 冷却システム
US20120167873A1 (en) * 2009-07-08 2012-07-05 Areva Solar, Inc. Solar powered heating system for working fluid
US8701773B2 (en) * 2010-07-05 2014-04-22 Glasspoint Solar, Inc. Oilfield application of solar energy collection
US8739774B2 (en) * 2010-07-05 2014-06-03 Glasspoint Solar, Inc. Direct solar steam generation
WO2015011318A1 (es) * 2013-07-22 2015-01-29 Universidad Politécnica de Madrid Procedimiento de acumulación de energía térmica en un dispositivo con fluido condensable
EP2871359A1 (en) * 2013-11-08 2015-05-13 Alstom Technology Ltd Auxiliary steam supply system in solar power plants
EP2873916A1 (fr) * 2013-11-13 2015-05-20 Cockerill Maintenance & Ingéniérie S.A. Procédé et dispositif pour prévenir l'assèchement dans une chaudière de centrale solaire à concentration de type tour

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110126824A1 (en) * 2009-05-15 2011-06-02 Areva Solar, Inc. Systems and methods for producing steam using solar radiation
US20120167873A1 (en) * 2009-07-08 2012-07-05 Areva Solar, Inc. Solar powered heating system for working fluid
US8701773B2 (en) * 2010-07-05 2014-04-22 Glasspoint Solar, Inc. Oilfield application of solar energy collection
US8739774B2 (en) * 2010-07-05 2014-06-03 Glasspoint Solar, Inc. Direct solar steam generation
WO2012022273A1 (zh) * 2010-08-16 2012-02-23 上海盛合新能源科技有限公司 太阳能氨水热电转换系统
WO2012081301A1 (ja) * 2010-12-15 2012-06-21 株式会社日立プラントテクノロジー 冷却システム
WO2015011318A1 (es) * 2013-07-22 2015-01-29 Universidad Politécnica de Madrid Procedimiento de acumulación de energía térmica en un dispositivo con fluido condensable
EP2871359A1 (en) * 2013-11-08 2015-05-13 Alstom Technology Ltd Auxiliary steam supply system in solar power plants
EP2873916A1 (fr) * 2013-11-13 2015-05-20 Cockerill Maintenance & Ingéniérie S.A. Procédé et dispositif pour prévenir l'assèchement dans une chaudière de centrale solaire à concentration de type tour

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166526A1 (ja) * 2019-02-14 2020-08-20 株式会社Ihi 蒸気供給装置及び乾燥システム

Also Published As

Publication number Publication date
JP2017067359A (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP4786504B2 (ja) 熱媒体供給設備および太陽熱複合発電設備ならびにこれらの制御方法
US8671932B2 (en) Method of operating a solar thermal power plant and solar thermal power plant
US10247174B2 (en) Solar thermal power generation system and solar thermal power generation method
EP2784028A1 (en) Integrative system of concentrating solar power plant and desalination plant
US20090260622A1 (en) Solar steam generator having a standby heat supply system
CN103511208A (zh) 一种可在全参数范围内变负荷运行的熔盐蒸汽发生系统
WO2012093354A2 (en) Thermal storage system and methods
JP6033405B2 (ja) 太陽熱集熱システム
CN106545476A (zh) 一种适应太阳能有机朗肯循环的闪蒸主动控制系统及方法
CN103842649A (zh) 太阳能热发电设备
Krüger et al. Experiences with direct steam generation at the Kanchanaburi solar thermal power plant
CN103620303B (zh) 用于运行直接加热的太阳热式蒸汽发生器的方法
Willwerth et al. Experience of operating a solar parabolic trough direct steam generation power plant with superheating
JP5638562B2 (ja) 太陽熱利用発電プラントおよびその運転方法
CN205744023U (zh) 高温高压水蓄能蒸汽发电系统
US20150128594A1 (en) Heat Transfer Fluid Flow Rate and Temperature Regulation System
WO2017057260A1 (ja) 蒸気発生装置
JP5723220B2 (ja) 発電プラント
WO2017057261A1 (ja) 蒸気発生装置
US20150082792A1 (en) Solar and renewable/waste energy powered turbine with two stage heating and graphite body heat exchanger
US20180045077A1 (en) Energy conversion system and method
CN105247208B (zh) 具有蓄热器的太阳能集热器厂
WO2015159310A1 (en) Improvement and control of the high pressure superheated steam directly produced by a solar field. description
EP2686551A2 (en) Solar energy system
EP2289150B1 (en) Solar steam generator having a standby heat supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851431

Country of ref document: EP

Kind code of ref document: A1