WO2017057229A1 - Louver device - Google Patents

Louver device Download PDF

Info

Publication number
WO2017057229A1
WO2017057229A1 PCT/JP2016/078176 JP2016078176W WO2017057229A1 WO 2017057229 A1 WO2017057229 A1 WO 2017057229A1 JP 2016078176 W JP2016078176 W JP 2016078176W WO 2017057229 A1 WO2017057229 A1 WO 2017057229A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft body
louver device
clutch gear
elastic member
Prior art date
Application number
PCT/JP2016/078176
Other languages
French (fr)
Japanese (ja)
Inventor
林 勝彦
岳彦 矢澤
顕一 保科
葉 津嘉山
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016041397A external-priority patent/JP6698382B2/en
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to CN201680053002.4A priority Critical patent/CN108027163B/en
Publication of WO2017057229A1 publication Critical patent/WO2017057229A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers

Definitions

  • the present invention relates to a louver device.
  • an arm that supports a wind direction plate (louver 5) along an arcuate cam surface (guide surface 322e) provided in a case (second cases 312 and 322).
  • a louver device (louver device 1) is disclosed in which an arm is reciprocated between a retracted position and an advanced position by sliding a cam follower portion (arc portions 213, 223) of a second louver support member 22). ing.
  • the problem to be solved by the present invention is that an excessive force is applied to the motor and the power transmission member even when an external force is applied to the louver device in either the opening direction or the closing direction of the wind direction plate.
  • An object of the present invention is to provide a louver device that can prevent the transmission of various stresses.
  • a louver device includes a first drive source, an arm member that supports a wind direction plate that is a plate-like member, and a driving force of the first drive source directly or via another member.
  • the gear member has a fixed gear and a clutch gear arranged on a common shaft body, and the fixed gear always rotates integrally with the shaft body in the circumferential direction
  • the clutch gear has the shaft body inserted through a shaft hole thereof, and the clutch gear and the shaft body are integrated in the circumferential direction when the torque applied to the gear member is equal to or less than a predetermined threshold value.
  • a connected state that rotates Wherein when the gear member to the torque exceeds a predetermined threshold value is applied, characterized by comprising the uncoupling state either idles.
  • a gear member having an overload protection mechanism is arranged in the reduction gear train, and the clutch gear and the shaft body are integrally rotated in the circumferential direction when the torque applied to the gear member is below a predetermined threshold value ( When a torque exceeding a predetermined threshold is applied, a configuration in which one of them is idled (to be in a disconnected state) can transmit excessive stress to the motor and the power transmission member. Can be blocked. Further, by incorporating a gear member having an overload protection mechanism as a part of the reduction gear train, the number of parts can be reduced as compared with the case where a separate overload protection mechanism is provided, and the apparatus can be downsized.
  • the clutch gear and the shaft body in the connected state rotate integrally in the circumferential direction by a frictional force that acts directly or via another member rod between the clutch gear and the shaft body.
  • the overload protection mechanism can be mounted with a simple structure. In addition, even when an external force is applied in any of the opening direction and the closing direction of the wind direction plate, it is possible to prevent excessive stress from being transmitted to the motor and the power transmission member.
  • the gear member further includes an elastic member, and the elastic member is disposed between the fixed gear and the clutch gear, and the fixed gear and the clutch gear are arranged along the axial direction of the shaft body. It is preferable that the clutch gears are biased in directions opposite to each other, and the clutch gear is connected to the shaft body by being biased in the axial direction by the elastic member.
  • An elastic member is disposed between the fixed gear and the clutch gear, and the elastic member is elastically moved by urging these gears in opposite directions with the elastic member so that the clutch gear and the shaft body are connected.
  • a locking portion having an outer diameter larger than the diameter of the shaft hole of the clutch gear is provided at an end of the shaft body on the clutch gear side in the axial direction.
  • the elastic member is biased toward the locking portion, and the movement in the direction is locked by the locking portion, whereby the axial position of the shaft body is determined.
  • the opposing surface of a stop part and the said clutch gearwheel comprises the connection part which makes the said shaft body and the said clutch gearwheel the said connection state.
  • the axial position of the clutch gear in the shaft body is determined, and the locking portion and the locking portion of the clutch gear
  • the opposite surface on the side can be used as a connecting portion that connects the shaft body and the clutch gear.
  • the locking portion may be constituted by an enlarged diameter portion in which the outer diameter of the shaft body itself is increased.
  • a flange portion extending radially outward from the shaft body is formed at an end portion of the shaft body on the fixed gear side in the axial direction, and the fixed gear includes the shaft body and the flange portion.
  • a shaft hole that can be inserted is formed, and a concave portion is formed on a surface of the end face of the fixed gear opposite to the surface on the elastic member side in which the flange portion is inserted into the shaft hole.
  • the fixed gear is urged toward the flange portion by the elastic member, and the movement in the direction is locked by the flange portion, so that the axial arrangement position of the shaft body is increased.
  • the shaft body and the fixed gear can rotate integrally in the circumferential direction when the flange portion and the concave portion in which the flange portion is fitted are engaged with each other in the circumferential direction. preferable.
  • the shaft of the fixed gear is positioned in the axial direction by fitting the flange of the shaft body into the recess provided on the end surface of the fixed gear, and urging the fixed gear toward the flange with an elastic member. And the shaft body can be integrally rotated in the circumferential direction.
  • the fixed gear is integrally formed with the shaft body.
  • the locking portion is constituted by a locking member separate from the shaft body, and the end of the shaft body on the clutch gear side in the axial direction is radially outward from the shaft body.
  • An extended collar portion is formed, and the locking member has a shaft hole through which the shaft body and the collar portion can be inserted, and of the end surface of the locking member, the side opposite to the surface on the clutch gear side On the surface, a recess is formed in which the flange portion inserted through the shaft hole is fitted, and the locking member is urged toward the flange portion by the elastic member via the clutch gear.
  • the axial position of the shaft body is determined by the movement in the direction being locked by the flange portion, and the flange portion and the flange portion are fitted. Positions in the circumferential direction of the shaft body by engaging the recesses with each other in the circumferential direction It is preferable that has been determined.
  • the clutch gear can be disposed on the shaft body even if the fixed gear is a gear member formed integrally with the shaft body. .
  • the elastic member is a cylindrical member, and the shaft body is inserted through a hollow portion of the elastic member.
  • a first annular plate having an outer diameter equal to or larger than the outer diameter of the elastic member is disposed between the elastic member and the elastic member.
  • the surface position of the contact surface of the first annular plate with the elastic member is equal to the surface position of the inner surface of the clutch gear in the vicinity of the first annular plate, or the surface of the inner surface. It is preferable that it is located in the axial direction center side of the said gear member rather than a position.
  • the first annular plate By making the assembled state of the first annular plate easily visible from the outside, for example, the first annular plate is mistakenly assembled twice, and the threshold torque in the connected state and the disconnected state deviates from the original value. Can be prevented.
  • a second annular plate having an outer diameter equal to or larger than the outer diameter of the elastic member is disposed between the engaging portion and the engaging portion.
  • the surface position of the contact surface of the second annular plate with the engaging portion is equal to the surface position of the outer surface of the clutch gear in the vicinity of the second annular plate, or It is preferable that the gear member is located outside the surface position in the axial direction.
  • the second annular plate By making the assembled state of the second annular plate easily visible from the outside, for example, the second annular plate is mistakenly assembled twice, and the threshold torque in the connected state and the disconnected state deviates from the original value. Can be prevented.
  • first annular plate and the second annular plate are made of a metal material when the clutch gear is made of a resin material, and made of a resin material when the clutch gear is made of a metal material.
  • each annular plate is preferably made of a resin material.
  • a concentric ridge having an outer diameter equal to or smaller than the outer diameter of the first annular plate is formed at the contact portion of the clutch gear with the first annular plate side. Preferably it is.
  • the contact area becomes unstable.
  • concentric protrusions that is, irregularities
  • the contact portion of the clutch gear with the second annular plate side is formed with a concentric protrusion having an outer diameter equal to or smaller than the outer diameter of the second annular plate. Preferably it is.
  • the contact area becomes unstable.
  • concentric ridges that is, irregularities
  • a cylindrical guide portion extending from the end surface to the elastic member side is formed on an end surface of the fixed gear on the elastic member side, and the end portion of the elastic member on the fixed gear side is formed on the guide gear.
  • a gap is provided between the inner peripheral surface of the elastic member and the outer peripheral surface of the shaft body.
  • a cylindrical guide part is provided on the end surface of the fixed gear on the elastic member side, and the end of the elastic member is arranged on the guide part, thereby preventing the elastic member from falling off the end surface of the fixed gear when the gear member is assembled. Is done. Thereby, the radial positioning of the fixed gear and the gear member is facilitated, and the assembly efficiency of the gear member can be increased. Further, by providing a gap between the inner peripheral surface of the elastic member and the outer peripheral surface of the shaft body, it is possible to prevent the elastic member and the shaft body from contacting each other even when the elastic member is drawn and squeezed. Can do.
  • the elastic member is preferably a coil spring.
  • a wide variety of coil springs are widely available in the market, and by using such coil springs as elastic members, the overload protection mechanism of the present invention adjusted to a desired operating torque can be realized more easily. Can do.
  • a shaft hole which is a through hole extending in the axial direction is formed at the rotation center of the shaft body.
  • the louver device can be easily assembled by inserting the fixed shaft into the through hole of the shaft body to support the shaft body.
  • the support shaft inserted through the shaft hole of the shaft body is fixed to the first drive source.
  • the gear member By supporting the gear member with the support shaft fixed to the first drive source, the gear member can be positioned with high accuracy, and the inclination and rattling of the gear member can be suppressed. Thereby, the meshing accuracy of the gear member is increased, the operation of the overload protection mechanism of the gear member becomes more accurate, and the noise and the deterioration of the component life due to the rattling of the gear member can be suppressed.
  • the gear member is configured to mesh with the pinion gear of the first drive source.
  • the overload protection mechanism for a gear member of the present invention consumes excess torque due to idling. Therefore, even if the torque for operating the overload protection mechanism is too large or too small, the overload protection mechanism cannot achieve its purpose. Naturally, the overload protection mechanism operates when a torque larger than the transmission torque during normal operation is applied. Therefore, if the gear member having a large transmission torque during normal operation is provided with an overload protection mechanism, a protective effect can be obtained only when a higher external force (torque) is applied. On the other hand, if a gear member having a small transmission torque during normal operation is provided with an overload protection mechanism, the torque at which the overload protection mechanism operates needs to be smaller than the torque at which the gear member itself slips and rotates, Restrictions on the setting of the operating torque become severe. A gear member having an overload protection mechanism is meshed with the pinion gear of the first drive source, thereby realizing an overload protection mechanism in which the operation torque can be set relatively easily and can be operated quickly with respect to an abnormality. Can do.
  • the fixed gear meshes with the pinion gear of the first drive source.
  • the gear meshed with the pinion gear of the first drive source has a small meshing length and is particularly susceptible to eccentricity.
  • a link mechanism that swings by the driving force of the first drive source, and a fixing portion that can accommodate the link mechanism, and the first drive source is a motor that can rotate in both forward and reverse directions.
  • the link mechanism includes a plurality of link members and the arm member supported by these link members and reciprocatingly moved in the extending direction and the storing direction, and the plurality of link members are driven by the first drive source.
  • the distal end side is connected to the arm member
  • the proximal end gear portion is connected to the first drive source via the reduction gear train
  • the driven link has the distal end side connected to the arm member and the proximal end side fixed to the fixed portion.
  • the load of the wind direction plate and the arm member can be distributed to each link member by reciprocating the arm member that opens and closes the wind direction plate by the link mechanism. As a result, it is possible to prevent the stress supporting the load from being concentrated on only a part, and to reduce the size of the entire apparatus.
  • the link mechanism is a four-bar link mechanism having the arm member as an intermediate link, and the driven link is disposed on the extension direction side with respect to the drive link.
  • the link mechanism a four-bar link
  • the reciprocating movement of the arm member by the link mechanism can be realized with a minimum number of parts.
  • the driven link does not need to be connected to the first drive source, there are fewer restrictions on the arrangement location than the drive link. Therefore, by disposing the driven link closer to the extending direction of the arm member than the driving link, the driven link can be disposed at the end of the extending direction side of the device, and the arm member is supported farther. Is possible.
  • louver device of the present invention even when an external force is applied to the louver device in either the opening direction or the closing direction of the wind direction plate, transmission of excessive stress to the motor and the power transmission member is prevented. Is possible.
  • louver device is a device that is installed at a blower opening of an air conditioner (not shown) and controls the air direction.
  • width direction means the X direction shown in the coordinate axis display of FIG. 1
  • front-back direction means the Y direction shown in the coordinate axis display
  • vertical direction means the same coordinate axis table.
  • FIG. 1 is an external perspective view showing an example of an arrangement configuration of a louver device.
  • one common wind direction plate 91 is also referred to as two louver devices 10, 10 ′ and one support unit 70 (hereinafter collectively referred to as “louver device 10 etc.”). ).
  • the two louver devices 10 and 10 ' are the same device, and the configuration of the louver device 10 described below is also the configuration of the louver device 10'.
  • These louver devices 10 and the like are all arranged behind the wind direction plate 91 (on the side of the air conditioner casing not shown).
  • the louver devices 10 and 10 ′ are arranged in the vicinity of both ends in the longitudinal direction of the wind direction plate 91, and the support unit 70 is arranged at substantially the center in the longitudinal direction.
  • Arm connection pieces 911 and 912 which are connecting portions with the louver device 10 and the like are formed on the surface of the wind direction plate 91 facing the louver device 10 and the like.
  • the wind direction plate 91 is supported by the arms 42 and 72 by coupling the arm connection pieces 911 and 912 to the wind direction plate connection portions 252 and 721 provided on the arms 42 and 72 of the louver device 10 and the like.
  • the arms 42 and 72 operate integrally.
  • the louver device 10, 10 ' is a drive device that opens and closes and rotates the wind direction plate 91 by the driving force of the drive source provided in the louver device 10, 10'.
  • the support unit 70 is an auxiliary unit that supports the wind direction plate 91 following the operation of the louver devices 10, 10 ′. Even when the length of the wind direction plate 91 in the longitudinal direction is short, or when only the both ends of the wind direction plate 91 are supported by the louver devices 10 and 10 ′, the wind direction plate 91 has a rigidity that does not cause deflection due to its own weight. In some cases, the support unit 70 may be omitted.
  • FIG. 2 is an exploded perspective view showing the internal structure of the louver device 10 (and the louver device 10 ′).
  • the louver device 10 includes a first motor 20 (first drive source) that is a stepping motor, a link mechanism 40 that swings by the driving force of the first motor 20, and a link mechanism 40 that decelerates the rotation of the first motor 20. And a case 50 (fixed portion) that accommodates the link mechanism 40 and the reduction gear train 30.
  • the link mechanism 40 has two link members 41 and an arm 42 (arm member) supported by these link members 41 and reciprocating in an extending direction A and a storage direction B (see FIG. 8) described later. ing.
  • the link member 41 includes a drive link 411 driven by the first motor 20 and a driven link 412 that follows the operation of the drive link 411 via the arm 42.
  • the link mechanism 40 constitutes a four-bar linkage mechanism in which the case 50 is a fixed link and the arm 42 is an intermediate link.
  • the case 50 includes a first case half 51 that can be disassembled in the width direction X, a second case half 52, and an intermediate plate 53.
  • the first case half 51, the second case half 52, and the intermediate plate 53 are integrated by being connected by a set screw 59.
  • the link mechanism 40 is disposed in a space defined by the first case half 51 and the middle plate 53, and the reduction gear train 30 is disposed in a space defined by the second case half 52 and the middle plate 53.
  • the first motor 20 is disposed outside the bottom surface (surface orthogonal to the width direction X) of the second case half 52 and is fixed to the second case half 52 by a set screw 29.
  • a portion corresponding to the position of the pinion gear 21 of the first motor 20 has a covered cylindrical shape protruding toward the opening side (inside the case 50) of the second case half 52.
  • the pinion cover part 521 is provided.
  • the pinion cover portion 521 is open on the pinion gear 21 side, and the pinion gear 21 is accommodated inside the pinion cover portion 521.
  • the pinion cover part 521 is provided with a window part 521a which is an opening partly cut off in the circumferential direction, and the pinion gear 21 housed in the pinion cover part 521 has a part of its tooth part. Is exposed to the inside of the second case half 52 through the window 521a.
  • the reduction gear train 30 is a composite gear train that includes a large-diameter gear portion and a small-diameter gear portion, respectively. Each gear member of the reduction gear train 30 is rotatably supported by a support shaft 36 erected between the second case half 52 and the intermediate plate 53.
  • the reduction gear train 30 sequentially transmits the rotation of the pinion gear 21 of the first motor 20 from the large diameter gear portion to the small diameter gear portion, thereby reducing the rotation of the pinion gear 21 and transmitting it to the gear portion 411c of the drive link 411. To do.
  • the arm 42 can be reciprocated using a general output motor.
  • a through hole 411b penetrating in the width direction X is formed in the base end portion (base end side) of the drive link 411 constituting the link mechanism 40, and the support shaft erected in the second case half 52 By inserting 522 into the through hole 411b, the base end portion of the drive link 411 is rotatably supported by the case 50.
  • a gear portion 411c extending from the surface on the reduction gear train 30 side toward the reduction gear train 30 side is provided at the base end portion of the drive link 411.
  • a cutout portion 533 through which the gear portion 411c is inserted is formed at a portion corresponding to the position of the gear portion 411c in the intermediate plate 53.
  • the gear portion 411 c is inserted through the notch portion 533, thereby penetrating the intermediate plate 53 and meshing with the final gear of the reduction gear train 30.
  • the driving force of the first motor 20 is transmitted to the drive link 411 via the reduction gear train 30 and the gear portion 411c.
  • the driven link 412 of the link mechanism 40 is provided with a substantially cylindrical shaft body 412b whose axis is parallel to the width direction X at the base end portion (base end side). Bearings 513 and 523 which are circular through holes penetrating in the width direction X are formed at portions corresponding to the positions of the shaft bodies 412 b in the first case half 51 and the second case half 52.
  • the driven link 412 is rotatably supported by the case 50 by fitting the shaft body 412b to the bearings 513 and 523.
  • the “base end” of the link member 41 (drive link 411, driven link 412) in the present invention is a fixed joint, that is, fixed to a predetermined position and allowed to rotate, but in the vertical direction Z and the front-rear direction Y.
  • the “tip” refers to a free joint, that is, an end that is allowed to rotate and swing.
  • the base ends of the drive link 411 and the driven link 412 are both supported by the case 50, but these base ends need not necessarily be supported by the case 50.
  • a member (fixed part) whose position is fixed such as a housing of an air conditioner (not shown), can support the base end part rotatably, and is deformed by the load of the arm 42 and the wind direction plate 91
  • the case 50 can be substituted if it is a member having such a degree of rigidity that it does not.
  • FIG. 3 is an exploded perspective view showing the internal structure of the arm 42.
  • the arm 42 has a first arm half 421 and a second arm half 422 that are case bodies that can be disassembled in the width direction X.
  • the first arm half 421 and the second arm half 422 are set screws. By being combined at 429, they are integrated.
  • the second motor 25 which is a stepping motor, is accommodated in the end of the arm 42 in the extending direction A side.
  • the second motor 25 is a drive source that rotates the wind direction plate 91 within a predetermined angle range.
  • a pinion gear 251 is mounted on the output shaft of the second motor 25 subjected to the D cut, and the rotation of the pinion gear 251 is decelerated and transmitted to the wind direction plate connecting portion 252 via the gear portion 252a of the wind direction plate connecting portion 252.
  • a circular opening portion 421a penetrating in the width direction X is formed at the end of the first arm half 421 on the extending direction A side, and the wind direction plate connecting portion 252 extends from the opening portion 421a to the outside of the arm 42. Exposed to.
  • the wind direction plate connection part 252 of the arm 42 and the arm connection piece 911 of the wind direction plate 91 can be coupled.
  • the wind direction plate 91 is rotated by the second motor 25
  • a more complicated operation of the wind direction plate 91 is possible, and the degree of freedom of wind direction control is enhanced.
  • a portion of the arm 42 on the side of the housing direction B with respect to the housing portion of the second motor 25 is provided with a rib 423 formed in a corrugated shape therein, and the rigidity of the arm 42 is enhanced by the rib 423. Yes.
  • a part of the rib 423 also serves as an arm-side contact portion 67 of the second swing restricting portion 65 described later.
  • FIG. 10 is a diagram for explaining a structure for handling the lead wire 93 of the second motor 25.
  • the lead wire 93 connected to the connector 253 of the second motor 25 is drawn into the case 50 through a gap provided above the rib 423 inside the arm 42.
  • the lead wire 93 drawn into the case 50 passes through the upper side of the drive link 411 and is drawn into the guide piece 532 formed behind the middle plate 53 (left side as viewed in FIG. 10) and guided to the guide piece 532. It is pulled out of the louver device 10 from the outlet 54.
  • the outlet 54 is an opening defined by the first case half 51 and the second case half 52.
  • FIG. 4 is a transparent view showing the meshing structure of the reduction gear train 30.
  • the tooth part shown by the dotted line in FIG. 4 represents the gear part on the rear side of the figure of each gear member.
  • the tooth part of the pinion gear 21 exposed from the window part 521a of the pinion cover part 521 meshes with the large-diameter gear part of the first reduction gear 31 constituting the reduction gear train 30. Thereafter, the small-diameter gear portion of the first reduction gear 31 is the large-diameter gear portion of the second reduction gear 32, the small-diameter gear portion of the second reduction gear 32 is the large-diameter gear portion of the third reduction gear 33, and the third reduction gear.
  • the small-diameter gear portion 33 is in mesh with the large-diameter gear portion of the fourth reduction gear 34, and the small-diameter gear portion of the fourth reduction gear 34 is in mesh with the large-diameter gear portion of the fifth reduction gear 35.
  • the small-diameter gear portion of the fifth reduction gear 35 meshes with the gear portion 411c of the drive link 411. Thereby, the rotation of the first motor 20 is decelerated and transmitted to the drive link 411.
  • FIG. 17 is an exploded perspective view showing a support structure for the first reduction gear 31.
  • 18 is a cross-sectional side view showing the support structure of the first reduction gear 31 (a cross-sectional view in the direction DD in FIG. 17 after the louver device 10 is assembled).
  • the first motor 20 is provided with an attachment plate 201, which is a plate-like metal member, for fixing the first motor 20 to the second case half 52 on the output shaft side end surface of the case body 202. .
  • the attachment plate 201 is formed with a support shaft fixing portion 201a whose upper surface is partially cut and raised.
  • the support shaft 361 of the first reduction gear 31 is fixed to the support shaft fixing portion 201a so as not to move. Yes.
  • the support shaft 361 passes through the support shaft fixing portion 201a in the thickness direction, and is adjusted to an axial position such that the base end portion does not contact the case body 202 of the first motor 20.
  • the support shaft 361 passes through the boss portion 524 formed in the second case half 52 and is inserted into the shaft hole of the first reduction gear 31, and the tip portion is supported by the intermediate plate 53.
  • the first reduction gear 31 is supported by the support shaft 361 that is immovably fixed to the first motor 20, so that the inclination and rattling of the first reduction gear 31 are suppressed and the first relative to the position of the pinion gear 21 is suppressed. Since the relative positional relationship of the reduction gear 31 is kept constant, the meshing accuracy between the pinion gear 21 and the first reduction gear 31 is enhanced. As a result, a torque limiter mechanism (described later) of the first reduction gear 31 can be operated more accurately, and noise and a decrease in the component life due to the rattling of the first reduction gear 31 are suppressed.
  • the first reduction gear 31 constituting the reduction gear train 30 is a torque limiter mechanism (overload protection mechanism) that suppresses transmission torque by consuming excess torque by idling when a torque exceeding a predetermined threshold is applied. ).
  • a predetermined threshold torque As the predetermined threshold torque, a margin value is appropriately added to the upper limit value of the torque that can actually be transmitted to the first reduction gear 31 during normal operation of the louver device 10, and it can be determined that the probability of abnormality is high. What is necessary is just to set a torque.
  • FIG. 5 is an external perspective view of the first reduction gear 31 (FIG. 5A), and a cross-sectional view in the AA direction of the first reduction gear 31 shown in FIG. 5A (FIG. 5B). It is.
  • FIG. 6 is an exploded perspective view of the first reduction gear 31.
  • FIG. 7 is a perspective sectional view of the small-diameter gear portion 311.
  • “upper” and “lower” refer to the upper and lower sides in FIGS. 5 and 6, and “plan view” means from above the first reduction gear 31. This refers to the line-of-sight direction in which the first reduction gear 31 is looked down.
  • the first reduction gear 31 has a small-diameter gear portion 311 (fixed gear) and a large-diameter gear portion 312 (clutch gear) which are two gear portions.
  • the small-diameter gear portion 311 and the large-diameter gear portion 312 are supported by a shaft portion 314 that is a common shaft body.
  • the small-diameter gear portion 311 is above the shaft portion 314 and the large-diameter portion is below the shaft portion 314.
  • a gear portion 312 is arranged.
  • a coil spring 313, which is an elastic member, is arranged in a state compressed in the vertical direction, and the small-diameter gear portion 311 is moved upward by the coil spring 313.
  • the radial gear portion 312 is biased downward.
  • a flange portion 314a extending outward in the radial direction from the shaft portion 314 is formed.
  • the small-diameter gear portion 311 has a shaft hole 311a into which the shaft portion 314 and the flange portion 314a can be inserted, and the upper surface of the small-diameter gear portion 311 has a flange after being inserted into the shaft hole 311a.
  • a recess 311b into which the portion 314a is fitted is formed.
  • the small-diameter gear portion 311 is urged upward by the coil spring 313, and the upward movement is locked by the flange portion 314a fitted in the recess 311b.
  • the arrangement position in the axial direction of the shaft portion 314 is determined.
  • the shaft portion 314 and the small-diameter gear portion 311 are circumferentially engaged with each other in the circumferential direction by the flange portion 314a and the concave portion 311b fitted with the flange portion 314a. Rotate in unison.
  • the small-diameter gear portion 311 (the gear that rotates integrally with the shaft portion 314) and the shaft portion 314 are separable due to the structure of assembling the large-diameter gear portion 312 to the shaft portion 314 described later.
  • the small diameter gear portion 311 and the shaft portion 314 are formed as one member. It may be integrally formed.
  • the bottom surface of the gear portion 311c with which the upper end of the coil spring 313 contacts is a cylindrical guide that extends downward from the peripheral portion of the lower surface.
  • a portion 311d is formed, and the upper end of the coil spring 313 is disposed inside the guide portion 311d. Since the small-diameter gear portion 311 includes the guide portion 311d, the coil spring 313 is prevented from slipping and dropping off the lower surface of the small-diameter gear portion 311 when the first reduction gear 31 is assembled.
  • the guide portion 311d is thinner than the gear portion 311c, and the guide portion 311d is not provided with a tooth portion.
  • an enlarged diameter portion 314b (locking portion) in which the outer diameter of the shaft portion 314 is increased is formed in the vicinity of the lower end of the shaft portion 314.
  • the enlarged diameter portion 314b is larger than the diameter of the shaft hole of the large diameter gear portion 312, and the large diameter gear portion 312 is urged downward by a coil spring 313 (via a first metal plate 315 described later), The downward movement (via a second metal plate 316 described later) is locked by the enlarged diameter portion 314b, whereby the axial position of the shaft portion 314 is determined.
  • the large-diameter gear portion 312 and the shaft portion 314 are applied with a torque equal to or less than a predetermined threshold value to the first reduction gear 31 by a frictional force generated when the large-diameter gear portion 312 is pressed against the enlarged-diameter portion 314b. Rotate in the circumferential direction when connected (connected state)
  • a facing portion between the enlarged diameter portion 314 b of the shaft portion 314 and the large diameter gear portion 312 is a connecting portion 317 that connects the shaft portion 314 and the large diameter gear portion 312.
  • the large-diameter gear portion 312 is pressed toward the diameter-expanded portion 314b by the coil spring 313, so that a circumferential direction is formed between these opposing portions (via a second metal plate 316 described later). A frictional force is generated against the rotation of the.
  • the frictional force is adjusted to be equal to the above threshold torque, so that when a torque equal to or less than a predetermined threshold is applied to the first reduction gear 31, the large diameter gear portion 312 and the shaft portion 314 are Rotates integrally in the circumferential direction.
  • the coil spring 313 of this embodiment is a cylindrical member, and the coil spring 313 is held by the first reduction gear 31 by inserting the shaft portion 314 into the hollow portion. Both ends of the coil spring 313 are not fixed to the small-diameter gear portion 311, the large-diameter gear portion 312, and the like, so that even when the large-diameter gear portion 312 and the shaft portion 314 rotate asynchronously, the coil spring 313 The twisting and the coil spring 313 are prevented from falling off the first reduction gear 31. Further, a gap is provided between the inner peripheral surface of the coil spring 313 and the outer peripheral surface of the shaft portion 314, and the coil spring 313 does not contact the shaft portion 314 even if the coil spring 313 is slightly squeezed. .
  • the elastic member of the present invention is not limited to the coil spring 313 of the present embodiment.
  • the elastic member of the present invention can bias the small-diameter gear portion 311 and the large-diameter gear portion 312 in the vertical direction in addition to a coil spring having a different winding number and winding direction from the coil spring 313, a so-called closed-end coil spring, and the like.
  • a so-called closed-end coil spring As long as it is a member that can slide at least the upper surface of the first metal plate 315, rubber or the like may be used.
  • the torque for operating the torque limiter mechanism can be flexibly adjusted by appropriately replacing the coil spring 313 with another elastic member having a different elastic force.
  • a portion facing the coil spring 313 on the inner side surface 312 i which is a surface directed upward (in the axial direction of the first reduction gear 31), and below (first first gear).
  • a first metal plate 315 which is an annular thin plate member made of a metal material, is provided on a portion facing the enlarged diameter portion 314b of the outer surface 312e, which is a surface facing the reduction gear 31 in the axial direction.
  • a first annular plate) and a second metal plate 316 (second annular plate) are disposed. The outer diameters of the first metal plate 315 and the second metal plate 316 are formed to be slightly larger than the outer diameter of the coil spring 313.
  • D-cuts are made in the center holes of the first metal plate 315 and the second metal plate 316, and the D-cut surfaces 315 a and 316 a are provided in the D-cut provided on the shaft portion 314.
  • the shaft portion 314, the first metal plate 315, and the second metal plate 316 rotate integrally in the circumferential direction.
  • the inner surface 312 i of the large-diameter gear portion 312 may be scraped by the coil spring 313, and the rotation of the large-diameter gear portion 312 may cause the coil spring 313 to rotate. May be hindered. Since the first metal plate 315 is disposed between the large-diameter gear portion 312 and the coil spring 313, these problems are avoided.
  • the surface contact between the resins has a problem that the friction coefficient is difficult to stabilize and a squeak noise is liable to occur during sliding. Since the surface state of the metal plate is stable, such a problem is avoided by arranging the second metal plate 316 between the large-diameter gear portion 312 and the enlarged diameter portion 314b. .
  • the form of the first metal plate and the second metal plate of the present invention is not limited to the first metal plate 315 and the second metal plate 316 in the present embodiment.
  • Other annular members may be used as long as they are members that are not deformed even when urged by the coil spring 313 and do not inhibit the rotation of the coil spring 313.
  • the first metal plate and the second metal plate of the present invention are not essential components. If the above inconvenience does not occur even if the inner side surface 312i and the outer side surface 312e of the large-diameter gear portion 312 are brought into contact with the coil spring 313 or the enlarged diameter portion 314b, or if the inconvenience does not matter, the first metal plate The second metal plate may be omitted.
  • the large-diameter gear portion 312 in this embodiment is a resin gear, but when the large-diameter gear portion 312 is made of a metal material, the first annular plate and the second annular plate are made of resin. Is preferred.
  • Two concentric protrusions 312a are formed at the contact portion with each other.
  • the contact area becomes unstable.
  • concentric ridges that is, irregularities
  • a shaft hole 314c which is a through hole extending in the axial direction, is formed at the rotation center of the shaft portion 314.
  • the louver device 10 can be easily assembled by adopting a configuration in which the support shaft 361 is inserted into the shaft hole 314c of the shaft portion 314 and the shaft portion 314 is supported.
  • the small-diameter gear portion 311 (and the shaft portion 314) is within a torque range in which the shaft portion 314 and the large-diameter gear portion 312 can rotate integrally with the frictional force thereof.
  • the large-diameter gear portion 312 rotates integrally in the circumferential direction and a torque exceeding the frictional force is applied, either the small-diameter gear portion 311 (and the shaft portion 314) or the large-diameter gear portion 312 is idled. Yes (unconnected state).
  • the first reduction gear 31 in the present embodiment is configured such that the large-diameter gear portion 312 and the shaft portion 314 can slip each other, but naturally, the small-diameter gear portion 311 and the shaft portion 314 can slip. A configuration is also possible.
  • the reduction gear train 30 includes the first reduction gear 31 provided with the torque limiter mechanism, the wind direction plate 91 is manually opened and closed by the user during the hold of the first motor 20, for example. Even when an unexpected external force is applied to the power transmission member of the first motor 20 such as the link mechanism 40, the step-out of the first motor 20 and the breakage of the power transmission member are prevented. Further, for example, in the initialization operation of the first motor 20, the first motor 20 is intentionally moved toward the initial position of the drive link 411 in order to synchronize the recognition angle of the first motor 20 and the actual arrangement angle of the drive link 411. Even in the case of a step out of several steps, it is possible to reduce damage and abnormal noise of the power transmission member.
  • the first reduction gear 31 meshes with the pinion gear 21 of the first motor 20.
  • the torque limiter mechanism of the present invention operates when a torque larger than the transmission torque during normal operation is applied. Therefore, if a gear member having a large transmission torque during normal operation is provided with a torque limiter mechanism, a protective effect can be obtained only when a greater external force (torque) is applied.
  • a gear member having a small transmission torque during normal operation is provided with a torque limiter mechanism, the torque at which the torque limiter mechanism operates needs to be smaller than the torque at which the gear member itself slips and rotates. Restrictions on the setting of stricter. Since the first reduction gear 31 that is a torque limiter mechanism is engaged with the pinion gear 21 of the first motor 20, the setting of the operating torque is facilitated, and a torque limiter mechanism that can operate quickly with respect to an abnormality is provided. It has been realized.
  • the torque limiter mechanism as a part of the reduction gear train 30, the number of parts can be reduced as compared with the case where a separate torque limiter mechanism is provided, and the louver device 10 can be downsized.
  • the structure of the 1st reduction gear 81 which is other embodiment of a 1st reduction gear is demonstrated. Similar to the first reduction gear 31, the first reduction gear 81 is a gear member provided with a torque limiter mechanism (overload protection mechanism).
  • FIG. 14 is an external perspective view of the first reduction gear 81 (FIG. 14A), and a cross-sectional view in the AA direction of the first reduction gear 81 shown in FIG. 14A (FIG. 14B). It is.
  • FIG. 15 is an exploded perspective view of the first reduction gear 81.
  • FIG. 16 is a perspective sectional view of the locking member 819 (locking portion).
  • “upper” and “lower” refer to the upper and lower sides in FIGS. 14 and 15, and “plan view” means from above the first reduction gear 81. A line-of-sight direction in which the first reduction gear 81 is looked down.
  • the first reduction gear 81 has a small-diameter gear portion 812 (clutch gear) and a large-diameter gear portion 811 (fixed gear) which are two gear portions.
  • the small-diameter gear portion 812 and the large-diameter gear portion 811 are supported by a shaft portion 814 that is a common shaft body.
  • the small-diameter gear portion 812 is above the shaft portion 814 and the large-diameter portion is below the shaft portion 814.
  • a gear portion 811 is arranged.
  • the large-diameter gear portion 811 of the first reduction gear 81 is integrally formed with the shaft portion 814.
  • the integrally formed large-diameter gear portion 811 meshes with the pinion gear 21 of the first motor 20, the large-diameter gear portion 312 and the first reduction gear 31 according to the previous embodiment are connected.
  • the shaft portion 314 is formed of a separate member, the meshing accuracy between the large-diameter gear portion and the pinion gear 21 is improved. Thereby, noise and torque variations during rotation of the first reduction gear 81 are suppressed.
  • a coil spring 813 which is an elastic member, is arranged in a state compressed in the vertical direction, and the small-diameter gear portion 812 is moved upward by the coil spring 813.
  • the radial gear portion 811 is urged downward.
  • a flange portion 814a extending outward in the radial direction from the shaft portion 814 is formed.
  • the locking member 819 has a shaft hole 819a into which the shaft portion 814 and the flange portion 814a can be inserted, and the flange portion 814a after being inserted into the shaft hole 819a is formed on the upper surface of the locking member 819.
  • a recess 819b is formed in which is fitted.
  • the locking member 819 is urged upward by the coil spring 813 via the small-diameter gear portion 812 and moved upward by the flange portion 814a fitted in the concave portion 819b. Is locked, the axial position of the shaft portion 814 is determined. Further, as shown in FIG. 14A, the locking member 819 has a circumferential portion in the shaft portion 814 by engaging a flange portion 814a and a recess portion 819b fitted with the flange portion 814a with each other in the circumferential direction. The position of the direction is determined.
  • the locking member 819 attached to the upper end of the shaft portion 814 has an outer diameter larger than the diameter of the shaft hole of the small diameter gear portion 812.
  • the small-diameter gear portion 812 is biased upward (via a first metal plate 815 described later) by a coil spring 813 and is moved upward by a locking member 819 (via a second metal plate 816 described later).
  • the axial position of the shaft portion 814 is determined.
  • the small-diameter gear portion 812 and the shaft portion 814 are configured such that when a torque equal to or smaller than a predetermined threshold is applied to the first reduction gear 81 due to frictional force generated when the small-diameter gear portion 812 is pressed against the locking member 819. Rotate integrally in the circumferential direction (connected state).
  • the facing portion of the locking member 819 and the small diameter gear portion 812 in the axial direction of the shaft portion 814 constitutes a connecting portion 817 that connects the shaft portion 814 and the small diameter gear portion 812.
  • a frictional force against rotation in the circumferential direction is generated between these facing portions (via a second metal plate 816 described later).
  • the frictional force is adjusted to be equal to the above threshold torque, so that when a torque equal to or less than a predetermined threshold is applied to the first reduction gear 81, the small-diameter gear portion 812 and the shaft portion 814 rotate around. Rotate integrally in the direction.
  • the locking member 819 is a separate member that can be attached and detached, the small-diameter gear portion 812 is assembled to the shaft portion 814 even if the large-diameter gear portion 811 and the shaft portion 814 are integrally formed. It is possible.
  • the coil spring 813 of this embodiment is a cylindrical member, and the coil spring 813 is held by the first reduction gear 81 by inserting a shaft portion 814 through the hollow portion. Both ends of the coil spring 813 are not fixed to the small-diameter gear portion 812, the large-diameter gear portion 811 or the like, and even when the small-diameter gear portion 812 and the shaft portion 814 rotate asynchronously, the coil spring 813 is twisted or coiled. The spring 813 is prevented from falling off the first reduction gear 81.
  • the coil spring 813 is a closed-end coil spring whose both ends are polished, whereby the inclination of the arrangement position of the coil spring 813 and the bias of the biasing force are suppressed, and a stable threshold torque can be maintained. Has been.
  • the inner surface 812i which is a surface directed downward (in the axial direction center side of the first reduction gear 81), is opposed to the coil spring 813, and upward (first reduction gear).
  • the first metal plate 815 (first metal plate 815), which is a ring-shaped thin plate member made of a metal material, is disposed on the outer surface 812e facing the locking member 819, which is a surface facing the outer side of the gear 81 in the axial direction. 1 annular plate) and a second metal plate 816 (second annular plate) are disposed.
  • the outer diameters of the first metal plate 815 and the second metal plate 816 are formed to be slightly larger than the outer diameter of the coil spring 813.
  • the surface position of the contact surface 815a with the coil spring 813 in the first metal plate 815 is located on the same plane as the surface position of the inner surface 812i in the vicinity of the first metal plate 815.
  • the surface position of the contact surface 816a with the locking member 819 in the second metal plate 816 is located higher than the surface position of the outer surface 812e in the vicinity of the second metal plate 816.
  • the first reduction gear 81 of the present embodiment has a configuration in which the assembled state of the first metal plate 815 and the second metal plate 816 is easily visible from the outside. Such work mistakes are unlikely to occur, and the threshold torque in the connected state and the disconnected state is prevented from deviating from the original value.
  • the surface position of the inner surface 812i of the small-diameter gear portion 812 and the surface position of the first metal plate 815 are on the same plane, but these surface positions are not necessarily on the same plane. There is no need to be. For example, even when the surface position of the first metal plate 815 is lower than the surface position of the inner side surface 812i, the assembled state of the first metal plate 815 can be easily visually recognized from the outside, so the same effect is expected. be able to.
  • D-cuts are made in the center holes of the first metal plate 815 and the second metal plate 816, and the D-cut surfaces 815 a and 816 a are provided on the shaft portion 814.
  • the shaft portion 814, the first metal plate 815 and the second metal plate 816 rotate integrally in the circumferential direction.
  • a shaft hole 814c which is a through hole extending in the axial direction, is formed at the rotation center of the shaft portion 814.
  • the small-diameter gear portion 812 and the large-diameter gear portion 811 (within the torque range in which the shaft portion 814 and the small-diameter gear portion 812 can rotate integrally with the frictional force thereof ( And the shaft portion 814) integrally rotate in the circumferential direction, and when a torque exceeding the frictional force is applied, either the small diameter gear portion 812 or the large diameter gear portion 811 (and the shaft portion 814) idles. (Unconnected state).
  • FIG. 8 is an explanatory view showing the reciprocating motion of the arm 42 by the link mechanism 40.
  • 8A shows a state where the arm 42 has moved to the limit in the storage direction B
  • FIG. 8B shows a state where the arm 42 has moved to the limit in the extending direction A.
  • the link mechanism 40 includes two link members 41 (a drive link 411 and a driven link 412), and is reciprocated in the extending direction A and the storage direction B supported by the link members 41. And an arm 42.
  • the drive link 411 is formed with a circular through hole 411a penetrating in the width direction X at the tip.
  • the support shaft 422a of the arm 42 By inserting the support shaft 422a of the arm 42 into the through hole 411a, the distal end portion of the drive link 411 and the arm 42 are rotatably connected to each other. Further, as described above, the base end portion of the drive link 411 can rotate to the case 50 by inserting the support shaft 522 of the second case half 52 into the through hole 411b formed in the base end portion. It is supported by.
  • the gear portion 411 c formed at the base end portion of the drive link 411 meshes with the fifth reduction gear 35 of the reduction gear train 30.
  • the driven link 412 is arranged on the extending direction A side with respect to the drive link 411.
  • a circular through hole 412a penetrating in the width direction X is formed at the distal end portion of the driven link 412, and the distal end portion of the driven link 412 is inserted by inserting the support shaft 422b of the arm 42 into the through hole 412a.
  • the arm 42 are rotatably connected to each other.
  • the base end portion of the driven link 412 is attached to the case 50 by fitting the shaft body 412b to the bearings 513 and 523 of the first case half 51 and the second case half 52. It is rotatably supported.
  • the drive link 411 when the first motor 20 is rotated in the CW direction, the drive link 411 is also rotated in the CW direction, and the arm 42 is moved in the extending direction A.
  • the arm 42 is also CCW. The arm 42 moves in the storage direction B.
  • the load of the wind direction plate 91 and the arm 42 can be distributed to each link member 41 (the drive link 411 and the driven link 412). As a result, it is possible to prevent the stress supporting the load from being concentrated on only a part, and the entire apparatus is downsized. Further, since the sliding portion of the link mechanism 40 is almost only the joint portion, the sliding resistance accompanying the reciprocating motion of the arm 42 is relatively small.
  • a stepping motor is used as the first motor 20 of the present embodiment.
  • the stepping motor can rotate in both forward and reverse directions, and the rotation angle can be calculated from the number of steps. Therefore, it is not necessary to separately perform feedback control using a rotary encoder or the like in order to detect the arrangement angle of the drive link 411 at that time. Thereby, reduction of the number of parts in the whole apparatus and size reduction of the apparatus are achieved. This also applies to the second motor 25.
  • ribs 511 that support the link member 41 from the width direction X (the axial direction of the indirect portion of each link member) on the surface of the first case half 51 and the intermediate plate 53 on the link mechanism 40 side.
  • ribs 531 are formed.
  • the rib 511 and the rib 531 are linearly extending ribs protruding toward the link mechanism 40 along the rotation trajectory of each link member 41, and each link member 41 is slidably in contact with the rib 511 and the rib 531. Yes.
  • the louver device 10 is provided with a swing restricting portion that is a pair of locking portions that restrict the swingable range of the link mechanism 40 by abutting each other when the link mechanism 40 swings to a predetermined position. Yes.
  • a swing restricting portion that is a pair of locking portions that restrict the swingable range of the link mechanism 40 by abutting each other when the link mechanism 40 swings to a predetermined position.
  • two types of swing restricting portions are provided.
  • FIG. 9 is an explanatory view showing the structure of the first swing restricting portion 60.
  • 9A shows a state where the arm 42 has moved to the limit in the storage direction B
  • FIG. 9B shows a state where the arm 42 has moved to the limit in the extending direction A.
  • the first case half 51 in FIG. 9 is transparently displayed by a broken line.
  • the first swing restricting portion 60 includes a protruding portion 61 formed on the drive link 411 and a contact portion 62 formed on the first case half 51.
  • the protrusion 61 is a substantially rectangular tube-like engagement piece that protrudes from the drive link 411 along the width direction X (the axial direction of the indirect portion of the drive link) toward the first case half 51.
  • the contact portion 62 is a rib-like engagement piece formed at a position where the link mechanism 40 abuts on the protrusion 61 when the link mechanism 40 swings to a predetermined position. The formation position of the contact portion 62 can be determined as appropriate according to the desired swing range of the link mechanism 40.
  • the link mechanism 40 When the link mechanism 40 is swung to a predetermined position, the projection 61 formed on the drive link 411 and the contact portion 62 formed on the first case half 51 are brought into contact with each other, whereby the link The swingable range of the mechanism 40 can be limited to a desired range. Further, when the arm 42 is moved to the limit in the extending direction A side (that is, when the arm 42 is moved to a position where the projecting portion 61 and the contact portion 62 contact each other), the projecting portion 61 and the contact portion 62 are interposed. By supporting the drive link 411 on the first case half 51, the load on the arm 42 and the wind direction plate 91 can be further dispersed.
  • the second swing restricting portion 65 is formed from opposed surfaces 66a and 67a of the bent portion 66 of the driven link 412 bent in a substantially L shape toward the inside of the link mechanism 40 and the arm side contact portion 67 of the arm 42. (See FIG. 8).
  • the bent portion 66 is bent at an angle with which the facing surfaces 66a and 67a abut when the arm 42 extends to a predetermined position in the extending direction A.
  • the bending angle of the bent portion 66 can be appropriately determined according to the desired extension range of the arm 42.
  • FIG. 8B shows the arm 42 moved in the extending direction A.
  • the extension range of the arm 42 in FIG. 8B is limited by the first swing restricting portion 60, and the second swing restricting portion 65 is not acting.
  • the movement of the arm 42 is limited by the contact of the facing surfaces 66a and 67a.
  • the driven link 412 supports the arm 42 not only at its connecting portion but also at these facing surfaces 66a and 67a, so that the load of the arm 42 and the wind direction plate 91 can be further dispersed.
  • the two types of swing restricting portions are provided, but only one of these swing restricting portions may be provided.
  • FIG. 11 is an exploded perspective view showing the internal structure of the support unit 70.
  • FIG. 12 is an explanatory view showing the reciprocating motion of the arm 72 by the support unit 70.
  • the support unit 70 does not include a drive source, and is an auxiliary unit that supports the wind direction plate 91 following the operation of the louver devices 10, 10 ′.
  • the support unit 70 has a case 71 composed of a first case half 711 and a second case half 712 that can be disassembled in the width direction X.
  • An arm 72 and a follower link 73 are swingably supported on the case 71.
  • the configuration and support structure of the driven link 73 are the same as the driven link 412 of the louver device 10.
  • the arm 72 is not provided with a driving source corresponding to the second motor 25 of the louver device 10, and the wind direction plate 91 is rotated by the wind direction plate connecting portion 721 provided at the end portion in the extending direction A side. They are only combined as possible.
  • a pin 751 that protrudes along the width direction X toward the second case half 712 is formed at the base end of the arm 72.
  • the pin 751 is a cam follower that slides along an arcuate cam groove 752 provided in the second case half 712.
  • the arc shape of the cam groove 752 is the same as the swing locus of the link mechanism 40 of the louver device 10.
  • the width of the support unit 70 in the width direction X is smaller than that of the louver devices 10 and 10 ', and the air path of the air conditioner is not obstructed.
  • the use of the support unit 70 prevents the wind direction plate 91 from being bent by its own weight or wind pressure.
  • louver device 11 (Other embodiment of louver device)
  • a louver device 11 according to another embodiment of the present invention will be described with reference to the drawings.
  • components having the same or the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
  • FIG. 13 is an explanatory view showing the reciprocating motion of the arm 42 in the louver device 11.
  • 11A shows a state where the arm 42 has moved to the limit in the storage direction B
  • FIG. 13B shows a state where the arm 42 has moved to the limit in the extending direction A.
  • the louver device 11 is provided with a braking mechanism that brakes the arm 42 by a braking spring 95 that is a coil spring.
  • the brake spring 95 in this embodiment is connected to the drive link 411 and the driven link 412, and when the arm 42 moves in the extending direction A, the driven link 412 is urged toward the storage direction B by its elastic force. Thus, the movement of the arm 42 in the extending direction A is braked.
  • the arm 42 When moving the arm 42 in the extending direction A, the arm 42 is urged toward the extending direction A by the load of the arm 42 and the wind direction plate 91. In particular, when the wind direction plate 91 is receiving a large amount of wind pressure, the urging force is further increased. This may impair the stability of the opening / closing operation of the wind direction plate 91, may damage the power transmission member of the first motor 20, and may cause the first motor 20 to step out.
  • connection target of the brake spring 95 is not limited to the drive link 411 and the driven link 412, and the same effect can be obtained by connecting the case 50 and a part of the link mechanism 40.
  • a four-bar linkage mechanism is employed in order to realize the reciprocating movement of the arm member by the link mechanism with a minimum number of parts. More complex operations may be possible.
  • first motor first drive source
  • 25 second motor 251 pinion gear
  • 30 reduction gear train 31, 81 first reduction gear (gear) Member (overload protection mechanism), 311 small gear part (fixed gear), 311a shaft hole, 311b recess, 311d guide part, 312 large gear part (clutch gear), 312a protrusion, 312i, 812i inner surface, 312e, 812e outer surface, 313, 813 coil spring (elastic member), 314, 814 shaft (common shaft body), 314a, 814a collar, 314b expanded diameter portion (locking portion), 314c, 814c shaft hole, 315, 815 First metal plate (first annular plate), 316, 816 Second metal plate (second annular plate), 317, 817 , 361, first reduction gear support shaft, 811 large diameter gear portion (fixed gear), 812 small diameter gear portion (clutch gear), 819 locking member (locking portion), 819a shaft

Abstract

Provided is a louver device with which it is possible to prevent excess stress from being transmitted to a motor and/or a power transmission member even when the louver device is subjected to an external force in the direction in which a wind-direction plate is either opened or closed. Specifically, the present invention overcomes the problem through a louver device (10) characterized in that a reducing gear train (30) for transmitting drive force from a first drive source (20) to an arm member (42) has a gear member (31) provided with an overload protection mechanism for minimizing transmission torque by consuming the excess torque of the reducing gear train (30) through turning at idle, the gear member (31) having a fixed gear (311) and a clutch gear (312) that are disposed on a shared shaft (314), the fixed gear (311) and the shaft body (314) rotate integrally in the circumferential direction, and the clutch gear (312) and the shaft body (314) rotate integrally in the circumferential direction when the torque is equal to or less than a prescribed threshold value.

Description

ルーバー装置Louver device
 本発明はルーバー装置に関する。 The present invention relates to a louver device.
 下記特許文献1には、ケース(第2ケース312,322)に設けられた円弧状のカム面(ガイド面322e)に沿って、風向板(ルーバ5)を支持するアーム(第1ルーバ支持部材21、第2ルーバ支持部材22)のカムフォロア部(円弧部213,223)を摺動させることにより、アームを後退位置と前進位置との間で往復移動させるルーバー装置(ルーバ装置1)が開示されている。 In Patent Document 1 below, an arm (first louver support member) that supports a wind direction plate (louver 5) along an arcuate cam surface (guide surface 322e) provided in a case (second cases 312 and 322). 21, a louver device (louver device 1) is disclosed in which an arm is reciprocated between a retracted position and an advanced position by sliding a cam follower portion (arc portions 213, 223) of a second louver support member 22). ing.
特開2009-210207号公報JP 2009-210207 A
 上記特許文献1のルーバー装置では、例えばステッピングモータのホールド中に風向板が手動で開閉されるなど、ステッピングモータの動力伝達部材に予期しない外力が加えられた場合、ステッピングモータが脱調したり、ステッピングモータの駆動力を風向板に伝達する動力伝達部材が破損したりするおそれがある。 In the louver device of the above-mentioned Patent Document 1, when an unexpected external force is applied to the power transmission member of the stepping motor, for example, the wind direction plate is manually opened and closed while the stepping motor is held, the stepping motor steps out, The power transmission member that transmits the driving force of the stepping motor to the wind direction plate may be damaged.
 上記問題に鑑み、本発明が解決しようとする課題は、ルーバー装置に対して、風向板の開方向および閉方向のいずれの方向に対する外力が加えられた場合でも、モータや動力伝達部材への過剰な応力の伝達を阻止することができるルーバー装置を提供することにある。 In view of the above problems, the problem to be solved by the present invention is that an excessive force is applied to the motor and the power transmission member even when an external force is applied to the louver device in either the opening direction or the closing direction of the wind direction plate. An object of the present invention is to provide a louver device that can prevent the transmission of various stresses.
 上記課題を解決するため、本発明のルーバー装置は、第1駆動源と、板状部材である風向板を支持するアーム部材と、前記第1駆動源の駆動力を直接または他の部材を介して前記アーム部材に伝達する減速歯車列と、を有するルーバー装置であって、前記減速歯車列は、所定の閾値を超えるトルクが印加されたときに空転により伝達トルクを抑制する過負荷保護機構を備えた歯車部材を有しており、前記歯車部材は、共通の軸体に配置された固定歯車およびクラッチ歯車を有し、前記固定歯車は前記軸体と常に周方向に一体的に回転し、前記クラッチ歯車はその軸穴に前記軸体が挿通されており、前記クラッチ歯車と前記軸体とは、前記歯車部材に印加されるトルクが所定の閾値以下にあるときは周方向へ一体的に回転する連結状態にあり、前記歯車部材に所定の閾値を超えるトルクが印加されたときには、いずれか一方が空転する連結解除状態になることを特徴とする。 In order to solve the above problems, a louver device according to the present invention includes a first drive source, an arm member that supports a wind direction plate that is a plate-like member, and a driving force of the first drive source directly or via another member. A reduction gear train that transmits to the arm member, and the reduction gear train includes an overload protection mechanism that suppresses transmission torque by idling when torque exceeding a predetermined threshold is applied. The gear member has a fixed gear and a clutch gear arranged on a common shaft body, and the fixed gear always rotates integrally with the shaft body in the circumferential direction, The clutch gear has the shaft body inserted through a shaft hole thereof, and the clutch gear and the shaft body are integrated in the circumferential direction when the torque applied to the gear member is equal to or less than a predetermined threshold value. In a connected state that rotates Wherein when the gear member to the torque exceeds a predetermined threshold value is applied, characterized by comprising the uncoupling state either idles.
 過負荷保護機構を備える歯車部材を減速歯車列に配置し、そのクラッチ歯車と軸体とを、歯車部材に印加されるトルクが所定の閾値以下にあるときは周方向へ一体的に回転させ(連結状態とし)、所定の閾値を超えるトルクが印加されたときには、そのいずれか一方を空転させる(連結解除状態にさせる)構成とすることにより、モータや動力伝達部材への過剰な応力の伝達を阻止することができる。また、過負荷保護機構を備える歯車部材を減速歯車列の一部として組み込むことにより、別途過負荷保護機構を設ける場合に比べて部品点数が削減され、装置の小型化を図ることができる。 A gear member having an overload protection mechanism is arranged in the reduction gear train, and the clutch gear and the shaft body are integrally rotated in the circumferential direction when the torque applied to the gear member is below a predetermined threshold value ( When a torque exceeding a predetermined threshold is applied, a configuration in which one of them is idled (to be in a disconnected state) can transmit excessive stress to the motor and the power transmission member. Can be blocked. Further, by incorporating a gear member having an overload protection mechanism as a part of the reduction gear train, the number of parts can be reduced as compared with the case where a separate overload protection mechanism is provided, and the apparatus can be downsized.
 また、前記連結状態にある前記クラッチ歯車および前記軸体は、該クラッチ歯車および該軸体の間に直接または他の部材 を介して作用する摩擦力により周方向へ一体的に回転することが好ましい。 Further, it is preferable that the clutch gear and the shaft body in the connected state rotate integrally in the circumferential direction by a frictional force that acts directly or via another member rod between the clutch gear and the shaft body. .
 摩擦力によりクラッチ歯車と軸体とを連結させることにより、かかる摩擦力を超えるトルクが印加されたときには、これらクラッチ歯車と軸体とが周方向にすべることで超過トルクが消費される。かかる摩擦力を、クラッチ歯車および軸体の連結状態と連結解除状態とを切り替える閾値に合わせて調節することにより、簡易な構造で過負荷保護機構を実装することが可能となる。また、風向板の開方向および閉方向のいずれの方向に対する外力が加えられた場合でも、モータや動力伝達部材への過剰な応力の伝達を阻止することができる。 When the clutch gear and the shaft body are connected by the frictional force, when a torque exceeding the frictional force is applied, the excess torque is consumed by sliding the clutch gear and the shaft body in the circumferential direction. By adjusting the frictional force according to a threshold value for switching between the connected state and the disconnected state of the clutch gear and the shaft body, the overload protection mechanism can be mounted with a simple structure. In addition, even when an external force is applied in any of the opening direction and the closing direction of the wind direction plate, it is possible to prevent excessive stress from being transmitted to the motor and the power transmission member.
 また、前記歯車部材はさらに弾性部材を有し、前記弾性部材は、前記固定歯車と前記クラッチ歯車との間に配置され、該固定歯車と該クラッチ歯車とを前記軸体の軸方向に沿って互いに反対方向に付勢しており、前記クラッチ歯車は、前記弾性部材に前記軸方向に付勢されることにより、前記軸体と前記連結状態になることが好ましい。 The gear member further includes an elastic member, and the elastic member is disposed between the fixed gear and the clutch gear, and the fixed gear and the clutch gear are arranged along the axial direction of the shaft body. It is preferable that the clutch gears are biased in directions opposite to each other, and the clutch gear is connected to the shaft body by being biased in the axial direction by the elastic member.
 固定歯車とクラッチ歯車との間に弾性部材を配置し、かかる弾性部材でこれら歯車を互いに反対方向へと付勢することでクラッチ歯車と軸体とを連結状態にすることにより、弾性部材を弾性力の異なる他の弾性部材に適宜置き換えることにより、過負荷保護機構を作動させるトルク(連結状態を連結解除状態に切り替えるトルク)を柔軟に調節することが可能となる。 An elastic member is disposed between the fixed gear and the clutch gear, and the elastic member is elastically moved by urging these gears in opposite directions with the elastic member so that the clutch gear and the shaft body are connected. By appropriately replacing with another elastic member having a different force, the torque for operating the overload protection mechanism (torque for switching the connected state to the disconnected state) can be flexibly adjusted.
 また、前記軸体のその軸方向における前記クラッチ歯車側の端部には、前記クラッチ歯車の軸穴の径よりも大きな外径を有する係止部が設けられており、前記クラッチ歯車は、前記弾性部材により前記係止部側へ付勢されるとともに、前記係止部によりその方向への移動が係止されることにより、前記軸体における軸方向の配置位置が決められており、前記係止部と前記クラッチ歯車との対向面は、前記軸体と前記クラッチ歯車とを前記連結状態とする連結部を構成していることが好ましい。 In addition, a locking portion having an outer diameter larger than the diameter of the shaft hole of the clutch gear is provided at an end of the shaft body on the clutch gear side in the axial direction. The elastic member is biased toward the locking portion, and the movement in the direction is locked by the locking portion, whereby the axial position of the shaft body is determined. It is preferable that the opposing surface of a stop part and the said clutch gearwheel comprises the connection part which makes the said shaft body and the said clutch gearwheel the said connection state.
 クラッチ歯車に軸体を挿通し、弾性部材でクラッチ歯車を係止部側に付勢することにより、軸体におけるクラッチ歯車の軸方向位置が決められるとともに、係止部とクラッチ歯車の係止部側の対向面とを、軸体とクラッチ歯車とを連結状態にする連結部として用いることが可能となる。 By inserting the shaft body into the clutch gear and urging the clutch gear toward the locking portion with the elastic member, the axial position of the clutch gear in the shaft body is determined, and the locking portion and the locking portion of the clutch gear The opposite surface on the side can be used as a connecting portion that connects the shaft body and the clutch gear.
 また、前記係止部は前記軸体自体の外径が大きくされた拡径部により構成されてもよい。 Further, the locking portion may be constituted by an enlarged diameter portion in which the outer diameter of the shaft body itself is increased.
 また、前記軸体のその軸方向における前記固定歯車側の端部には、前記軸体から径方向外側に延出した鉤部が形成され、前記固定歯車は、前記軸体および前記鉤部を挿通可能な軸穴を有し、前記固定歯車の端面のうち前記弾性部材側となる面の反対側の面には、前記軸穴に挿通後の前記鉤部が嵌合される凹部が形成されており、前記固定歯車は、前記弾性部材により前記鉤部側へ付勢されるとともに、該鉤部によりその方向への移動が係止されることにより、前記軸体における軸方向の配置位置が決められており、前記鉤部と、前記鉤部が嵌合された前記凹部とが周方向に互いに係合することにより、前記軸体および前記固定歯車は周方向に一体的に回転することが好ましい。 Further, a flange portion extending radially outward from the shaft body is formed at an end portion of the shaft body on the fixed gear side in the axial direction, and the fixed gear includes the shaft body and the flange portion. A shaft hole that can be inserted is formed, and a concave portion is formed on a surface of the end face of the fixed gear opposite to the surface on the elastic member side in which the flange portion is inserted into the shaft hole. The fixed gear is urged toward the flange portion by the elastic member, and the movement in the direction is locked by the flange portion, so that the axial arrangement position of the shaft body is increased. The shaft body and the fixed gear can rotate integrally in the circumferential direction when the flange portion and the concave portion in which the flange portion is fitted are engaged with each other in the circumferential direction. preferable.
 固定歯車の端面に設けられた凹部に軸体の鉤部を嵌合し、固定歯車を弾性部材で鉤部側に付勢することにより、固定歯車の軸方向における位置決めがなされるとともに、固定歯車と軸体とを周方向に一体的に回転させることが可能となる。 The shaft of the fixed gear is positioned in the axial direction by fitting the flange of the shaft body into the recess provided on the end surface of the fixed gear, and urging the fixed gear toward the flange with an elastic member. And the shaft body can be integrally rotated in the circumferential direction.
 また、前記固定歯車は前記軸体と一体成形されていることが好ましい。 Further, it is preferable that the fixed gear is integrally formed with the shaft body.
 固定歯車と前記軸体とを一体成形することにより、これらが別部材からなる場合の組立誤差を排除することができる。 ¡By integrally molding the fixed gear and the shaft body, it is possible to eliminate assembly errors when they are made of different members.
 また、前記係止部は前記軸体とは別体の係止部材により構成されており、前記軸体のその軸方向における前記クラッチ歯車側の端部には、前記軸体から径方向外側に延出した鉤部が形成され、前記係止部材は、前記軸体および前記鉤部を挿通可能な軸穴を有し、前記係止部材の端面のうち前記クラッチ歯車側となる面の反対側の面には、前記軸穴に挿通後の前記鉤部が嵌合される凹部が形成されており、前記係止部材は、前記弾性部材により前記クラッチ歯車を介して前記鉤部側へ付勢されるとともに、該鉤部によりその方向への移動が係止されることにより、前記軸体における軸方向の配置位置が決められており、前記鉤部と、前記鉤部が嵌合された前記凹部とが周方向に互いに係合することにより、前記軸体における周方向の配置位置が決められていることが好ましい。 Further, the locking portion is constituted by a locking member separate from the shaft body, and the end of the shaft body on the clutch gear side in the axial direction is radially outward from the shaft body. An extended collar portion is formed, and the locking member has a shaft hole through which the shaft body and the collar portion can be inserted, and of the end surface of the locking member, the side opposite to the surface on the clutch gear side On the surface, a recess is formed in which the flange portion inserted through the shaft hole is fitted, and the locking member is urged toward the flange portion by the elastic member via the clutch gear. In addition, the axial position of the shaft body is determined by the movement in the direction being locked by the flange portion, and the flange portion and the flange portion are fitted. Positions in the circumferential direction of the shaft body by engaging the recesses with each other in the circumferential direction It is preferable that has been determined.
 軸体とは別体の係止部材で係止部を構成することにより、固定歯車が軸体と一体成形された歯車部材であっても、クラッチ歯車を軸体に配置することが可能となる。 By configuring the locking portion with a locking member separate from the shaft body, the clutch gear can be disposed on the shaft body even if the fixed gear is a gear member formed integrally with the shaft body. .
 また、前記弾性部材は円筒形状の部材であり、該弾性部材の中空部には前記軸体が挿通されていることが好ましい。 Further, it is preferable that the elastic member is a cylindrical member, and the shaft body is inserted through a hollow portion of the elastic member.
 弾性部材を円筒形状とし、その中空部に軸体を挿通して該弾性部材を歯車部材に保持することにより、弾性部材の端部を固定歯車やクラッチ歯車に固定する必要がなくなる。またこれにより、クラッチ歯車と軸体とが連結解除状態で回転した場合でも、弾性部材がねじられたり脱落したりすることを防ぐことができる。 It is not necessary to fix the end of the elastic member to the fixed gear or the clutch gear by making the elastic member cylindrical and inserting the shaft into the hollow portion and holding the elastic member on the gear member. Thereby, even when the clutch gear and the shaft are rotated in a disconnected state, the elastic member can be prevented from being twisted or dropped.
 また、前記クラッチ歯車の端面のうち、前記歯車部材の軸方向中心側に向けられた面を前記クラッチ歯車の内側面としたときに、前記クラッチ歯車の前記内側面における前記弾性部材との対向部と、前記弾性部材との間には、前記弾性部材の外径と同等もしくは該外径よりも大きな外径を有する第1環状板が配置されていることが好ましい。 Moreover, when the surface of the end face of the clutch gear that is directed toward the axially central side of the gear member is the inner surface of the clutch gear, the inner surface of the clutch gear is opposed to the elastic member. It is preferable that a first annular plate having an outer diameter equal to or larger than the outer diameter of the elastic member is disposed between the elastic member and the elastic member.
 また、前記第1環状板の前記弾性部材との接触面の面位置は、前記第1環状板の近傍における、前記クラッチ歯車の前記内側面の面位置と等しいか、または、該内側面の面位置よりも前記歯車部材の軸方向中心側に位置していることが好ましい。 The surface position of the contact surface of the first annular plate with the elastic member is equal to the surface position of the inner surface of the clutch gear in the vicinity of the first annular plate, or the surface of the inner surface. It is preferable that it is located in the axial direction center side of the said gear member rather than a position.
 第1環状板の組み付け状態を外部から視認容易な構成とすることにより、例えば第1環状板を誤って二重に組み付けてしまい、連結状態と連結解除状態の閾値トルクが本来の値からずれてしまうことを防止することができる。 By making the assembled state of the first annular plate easily visible from the outside, for example, the first annular plate is mistakenly assembled twice, and the threshold torque in the connected state and the disconnected state deviates from the original value. Can be prevented.
 また、前記クラッチ歯車の端面のうち、前記歯車部材の軸方向外側に向けられた面を前記クラッチ歯車の外側面としたときに、前記クラッチ歯車の前記外側面における前記係止部との対向部と、前記係止部との間には、前記弾性部材の外径と同等もしくは該外径よりも大きな外径を有する第2環状板が配置されていることが好ましい。 Further, when the surface facing the axially outer side of the gear member among the end surfaces of the clutch gear is used as the outer surface of the clutch gear, the portion of the outer surface of the clutch gear that faces the locking portion It is preferable that a second annular plate having an outer diameter equal to or larger than the outer diameter of the elastic member is disposed between the engaging portion and the engaging portion.
 また、前記第2環状板の前記係止部との接触面の面位置は、前記第2環状板の近傍における、前記クラッチ歯車の前記外側面の面位置と等しいか、または、該外側面の面位置よりも前記歯車部材の軸方向外側に位置していることが好ましい。 In addition, the surface position of the contact surface of the second annular plate with the engaging portion is equal to the surface position of the outer surface of the clutch gear in the vicinity of the second annular plate, or It is preferable that the gear member is located outside the surface position in the axial direction.
 第2環状板の組み付け状態を外部から視認容易な構成とすることにより、例えば第2環状板を誤って二重に組み付けてしまい、連結状態と連結解除状態の閾値トルクが本来の値からずれてしまうことを防止することができる。 By making the assembled state of the second annular plate easily visible from the outside, for example, the second annular plate is mistakenly assembled twice, and the threshold torque in the connected state and the disconnected state deviates from the original value. Can be prevented.
 また、前記第1環状板および前記第2環状板は、前記クラッチ歯車が樹脂材料からなるときは金属材料からなり、前記クラッチ歯車が金属材料からなるときは樹脂材料からなることが好ましい。 Further, it is preferable that the first annular plate and the second annular plate are made of a metal material when the clutch gear is made of a resin material, and made of a resin material when the clutch gear is made of a metal material.
 樹脂材料からなるクラッチ歯車の端面に弾性部材が直接接触する場合、弾性部材によりクラッチ歯車の端面が削られるおそれや、クラッチ歯車の回転が弾性部材により阻害されるおそれがある。クラッチ歯車と弾性部材との間に第1環状板を配置することにより、これらの不都合を解消することができる。さらに、樹脂どうしの面接触は、摩擦係数が安定せず、また、摺動時にきしみ音を生じやすい。金属板は面の状態が安定していることから、クラッチ歯車と拡径部との間に第2環状板を配置することにより、これらの不都合を解消することができる。逆にクラッチ歯車(および軸体)が金属材料からなる場合は、各環状板は樹脂材料からなることが好ましい。 When the elastic member is in direct contact with the end face of the clutch gear made of a resin material, the end face of the clutch gear may be scraped by the elastic member, or the rotation of the clutch gear may be hindered by the elastic member. These disadvantages can be eliminated by arranging the first annular plate between the clutch gear and the elastic member. Furthermore, the surface contact between the resins does not stabilize the friction coefficient, and tends to generate a squeak noise when sliding. Since the state of the surface of the metal plate is stable, these disadvantages can be eliminated by arranging the second annular plate between the clutch gear and the enlarged diameter portion. On the contrary, when the clutch gear (and the shaft body) is made of a metal material, each annular plate is preferably made of a resin material.
 また、前記クラッチ歯車の前記第1環状板側との接触部には、該第1環状板の外径と同等もしくは該外径よりも小さな外径を有する同心円状の突条部が形成されていることが好ましい。 Further, a concentric ridge having an outer diameter equal to or smaller than the outer diameter of the first annular plate is formed at the contact portion of the clutch gear with the first annular plate side. Preferably it is.
 平面どうしを接触させる場合、その接触面積が不安定となる。クラッチ歯車の端面に同心円状の突条部(つまり凸凹)を設け、クラッチ歯車と第1環状板との接触部分を意図的に限定することにより、これらクラッチ歯車と第1環状板との接触面積を一定にすることができ、過負荷保護機構の動作を安定させることができる。 場合 When contacting flat surfaces, the contact area becomes unstable. By providing concentric protrusions (that is, irregularities) on the end face of the clutch gear and intentionally limiting the contact portion between the clutch gear and the first annular plate, the contact area between the clutch gear and the first annular plate Can be made constant, and the operation of the overload protection mechanism can be stabilized.
 また、前記クラッチ歯車の前記第2環状板側との接触部には、該第2環状板の外径と同等もしくは該外径よりも小さな外径を有する同心円状の突条部が形成されていることが好ましい。 The contact portion of the clutch gear with the second annular plate side is formed with a concentric protrusion having an outer diameter equal to or smaller than the outer diameter of the second annular plate. Preferably it is.
 平面どうしを接触させる場合、その接触面積が不安定となる。クラッチ歯車の端面に同心円状の突条部(つまり凸凹)を設け、クラッチ歯車と第2環状板との接触部分を意図的に限定することにより、これらクラッチ歯車と第2環状板との接触面積を一定にすることができ、過負荷保護機構の動作を安定させることができる。 場合 When contacting flat surfaces, the contact area becomes unstable. By providing concentric ridges (that is, irregularities) on the end face of the clutch gear and intentionally limiting the contact portion between the clutch gear and the second annular plate, the contact area between the clutch gear and the second annular plate Can be made constant, and the operation of the overload protection mechanism can be stabilized.
 また、前記固定歯車における前記弾性部材側の端面には、該端面から前記弾性部材側に延出する筒状のガイド部が形成され、前記弾性部材の前記固定歯車側の端部は、前記ガイド部の内側に配置され、前記弾性部材の内周面と前記軸体の外周面との間には隙間が設けられていることが好ましい。 Further, a cylindrical guide portion extending from the end surface to the elastic member side is formed on an end surface of the fixed gear on the elastic member side, and the end portion of the elastic member on the fixed gear side is formed on the guide gear. Preferably, a gap is provided between the inner peripheral surface of the elastic member and the outer peripheral surface of the shaft body.
 固定歯車の弾性部材側の端面に筒状のガイド部を設け、かかるガイド部に弾性部材の端部を配置することにより、歯車部材の組立時に弾性部材が固定歯車の端面から脱落することが防止される。これにより、固定歯車と歯車部材との径方向における位置決めが容易になり、歯車部材の組立効率を高めることができる。また、弾性部材の内周面と軸体の外周面との間に隙間が設けられていることにより、弾性部材が巻き絞られた場合でも弾性部材と軸体とが接触することを防止することができる。 A cylindrical guide part is provided on the end surface of the fixed gear on the elastic member side, and the end of the elastic member is arranged on the guide part, thereby preventing the elastic member from falling off the end surface of the fixed gear when the gear member is assembled. Is done. Thereby, the radial positioning of the fixed gear and the gear member is facilitated, and the assembly efficiency of the gear member can be increased. Further, by providing a gap between the inner peripheral surface of the elastic member and the outer peripheral surface of the shaft body, it is possible to prevent the elastic member and the shaft body from contacting each other even when the elastic member is drawn and squeezed. Can do.
 また、前記弾性部材はコイルばねであることが好ましい。 The elastic member is preferably a coil spring.
 市場には豊富な種類のコイルばねが広く一般に流通しており、かかるコイルばねを弾性部材として用いることで、所望の作動トルクに調節された本発明の過負荷保護機構をより簡便に実現することができる。 A wide variety of coil springs are widely available in the market, and by using such coil springs as elastic members, the overload protection mechanism of the present invention adjusted to a desired operating torque can be realized more easily. Can do.
 また、前記軸体の回転中心には、軸方向に延びる貫通孔である軸穴が形成されていることが好ましい。 Further, it is preferable that a shaft hole which is a through hole extending in the axial direction is formed at the rotation center of the shaft body.
 軸体に貫通孔が設けられることにより、軸体が樹脂からなる場合でもヒケの発生が抑えられ、軸体の寸法精度が高められる。また、軸体の貫通孔に固定軸を挿通して軸体を支持する構成とすることにより、ルーバー装置の組み立てが容易となる。 By providing the through hole in the shaft body, the occurrence of sink marks is suppressed even when the shaft body is made of resin, and the dimensional accuracy of the shaft body is increased. In addition, the louver device can be easily assembled by inserting the fixed shaft into the through hole of the shaft body to support the shaft body.
 また、前記軸体の前記軸穴に挿通される支軸は、前記第1駆動源に固定されていることが好ましい。 Further, it is preferable that the support shaft inserted through the shaft hole of the shaft body is fixed to the first drive source.
 第1駆動源に固定された支軸で歯車部材を支持することにより、歯車部材を高い精度で位置決めすることが可能となり、歯車部材の傾きやがたつきを抑えることができる。これにより、歯車部材の噛合い精度が高められ、歯車部材の過負荷保護機構の動作がより正確になるとともに、歯車部材のがたつきによる騒音や部品寿命の低下が抑えることができる。 By supporting the gear member with the support shaft fixed to the first drive source, the gear member can be positioned with high accuracy, and the inclination and rattling of the gear member can be suppressed. Thereby, the meshing accuracy of the gear member is increased, the operation of the overload protection mechanism of the gear member becomes more accurate, and the noise and the deterioration of the component life due to the rattling of the gear member can be suppressed.
 また、前記歯車部材は、前記第1駆動源のピニオンギヤと噛合している構成とすることが好ましい。 Further, it is preferable that the gear member is configured to mesh with the pinion gear of the first drive source.
 本発明の歯車部材の過負荷保護機構は、空転により超過トルクを消費する。そのため、過負荷保護機構を作動させるトルクが大き過ぎても、小さ過ぎても、過負荷保護機構はその目的を達成することができない。過負荷保護機構は、当然、通常動作時の伝達トルクよりも大きなトルクが印加されたときに作動する。従って、通常動作時における伝達トルクが大きな歯車部材に過負荷保護機構をもたせると、それ以上の外力(トルク)が加えられ
たときにしか保護効果は得られない。一方、通常動作時の伝達トルクが小さな歯車部材に過負荷保護機構をもたせると、過負荷保護機構が作動するトルクを、その歯車部材自体がスリップ回転してしまうトルクよりも小さくする必要があり、作動トルクの設定における制約が厳しくなる。過負荷保護機構を備える歯車部材を第1駆動源のピニオンギヤに噛合させることにより、作動トルクの設定が比較的容易となり、かつ、異常に対して機敏に動
作可能な過負荷保護機構を実現することができる。
The overload protection mechanism for a gear member of the present invention consumes excess torque due to idling. Therefore, even if the torque for operating the overload protection mechanism is too large or too small, the overload protection mechanism cannot achieve its purpose. Naturally, the overload protection mechanism operates when a torque larger than the transmission torque during normal operation is applied. Therefore, if the gear member having a large transmission torque during normal operation is provided with an overload protection mechanism, a protective effect can be obtained only when a higher external force (torque) is applied. On the other hand, if a gear member having a small transmission torque during normal operation is provided with an overload protection mechanism, the torque at which the overload protection mechanism operates needs to be smaller than the torque at which the gear member itself slips and rotates, Restrictions on the setting of the operating torque become severe. A gear member having an overload protection mechanism is meshed with the pinion gear of the first drive source, thereby realizing an overload protection mechanism in which the operation torque can be set relatively easily and can be operated quickly with respect to an abnormality. Can do.
 また、前記固定歯車は、前記第1駆動源のピニオンギヤと噛合していることが好ましい。 Further, it is preferable that the fixed gear meshes with the pinion gear of the first drive source.
 クラッチ歯車と軸体とを非同期に回転可能(歯車部材の連結解除状態の動作を可能)とするためには、クラッチ歯車と軸体との間にクリアランスが設けられている必要がある。クリアランスを精度よく設けたとしても、クラッチ歯車および軸体の回転中心の偏りを完全になくすことはできない。また、第1駆動源のピニオンギヤと噛合させる歯車はかみあい長さが小さく、偏心の影響を特に受けやすい。軸体と一体成形された固定歯車を第1駆
動源のピニオンギヤと噛合させることにより、かかる偏心によるノイズやトルクのばらつきを抑えることができる。
In order to allow the clutch gear and the shaft body to rotate asynchronously (operation in a state where the gear member is disengaged) is possible, a clearance needs to be provided between the clutch gear and the shaft body. Even if the clearance is provided with high accuracy, it is impossible to completely eliminate the deviation of the rotation center of the clutch gear and the shaft body. Further, the gear meshed with the pinion gear of the first drive source has a small meshing length and is particularly susceptible to eccentricity. By engaging the fixed gear integrally formed with the shaft body with the pinion gear of the first drive source, it is possible to suppress variations in noise and torque due to such eccentricity.
 また、前記第1駆動源の駆動力により揺動するリンク機構と、前記リンク機構を収容可能な固定部と、をさらに備え、前記第1駆動源は正逆両方向に回転可能なモータであり、前記リンク機構は、複数のリンク部材と、これらリンク部材に支持されて延出方向および収納方向へ往復移動する前記アーム部材と、を有し、前記複数のリンク部材は、前記第1駆動源により駆動される駆動リンクと、該駆動リンクの動作に前記アーム部材を介して追
従する従動リンクと、を有し、前記駆動リンクの基端側には歯車部が形成され、前記駆動リンクは、その先端側が前記アーム部材に、基端側の前記歯車部が前記減速歯車列を介して前記第1駆動源に連結され、前記従動リンクは、その先端側が前記アーム部材に、基端側が前記固定部に連結され、前記アーム部材の前記延出方向の側端部には、前記風向板が回動可能に連結される構成とすることが好ましい。
And a link mechanism that swings by the driving force of the first drive source, and a fixing portion that can accommodate the link mechanism, and the first drive source is a motor that can rotate in both forward and reverse directions. The link mechanism includes a plurality of link members and the arm member supported by these link members and reciprocatingly moved in the extending direction and the storing direction, and the plurality of link members are driven by the first drive source. A drive link that is driven, and a driven link that follows the operation of the drive link via the arm member, and a gear portion is formed on a proximal end side of the drive link, The distal end side is connected to the arm member, the proximal end gear portion is connected to the first drive source via the reduction gear train, and the driven link has the distal end side connected to the arm member and the proximal end side fixed to the fixed portion. Linked to the previous The said side edge portion of the extending direction of the arm member, it is preferable to adopt a configuration in which the wind direction plate is pivotally connected.
 風向板を開閉するアーム部材をリンク機構で往復移動させることにより、風向板とアーム部材の荷重を各リンク部材に分散させることができる。これにより荷重を支持する応力が一部のみに集中することを防ぐことができ、装置全体の小型化を図ることが可能になる。 The load of the wind direction plate and the arm member can be distributed to each link member by reciprocating the arm member that opens and closes the wind direction plate by the link mechanism. As a result, it is possible to prevent the stress supporting the load from being concentrated on only a part, and to reduce the size of the entire apparatus.
 また、前記リンク機構は前記アーム部材を中間リンクとする四節リンク機構であり、前記従動リンクは前記駆動リンクよりも前記延出方向側に配置されていることが好ましい。 Further, it is preferable that the link mechanism is a four-bar link mechanism having the arm member as an intermediate link, and the driven link is disposed on the extension direction side with respect to the drive link.
 リンク機構を四節リンクとすることにより、リンク機構によるアーム部材の往復移動を最小の部品点数で実現することができる。また、従動リンクは第1駆動源に連結される必要がないことから、駆動リンクに比べてその配置場所に関する制約が少ない。そのため、従動リンクを駆動リンクよりもアーム部材の延出方向側に配置することにより、従動リンクを装置の延出方向側の端部に配置することができ、アーム部材をより遠くまで支持することが可能となる。 と す る By making the link mechanism a four-bar link, the reciprocating movement of the arm member by the link mechanism can be realized with a minimum number of parts. Further, since the driven link does not need to be connected to the first drive source, there are fewer restrictions on the arrangement location than the drive link. Therefore, by disposing the driven link closer to the extending direction of the arm member than the driving link, the driven link can be disposed at the end of the extending direction side of the device, and the arm member is supported farther. Is possible.
 本発明のルーバー装置によれば、ルーバー装置に対して、風向板の開方向および閉方向のいずれの方向に対する外力が加えられた場合でも、モータや動力伝達部材への過剰な応力の伝達を阻止することが可能である。 According to the louver device of the present invention, even when an external force is applied to the louver device in either the opening direction or the closing direction of the wind direction plate, transmission of excessive stress to the motor and the power transmission member is prevented. Is possible.
ルーバー装置の配置構成の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the arrangement configuration of a louver apparatus. ルーバー装置の内部構造を示す分解斜視図である。It is a disassembled perspective view which shows the internal structure of a louver apparatus. アームの内部構造を示す分解斜視図である。It is a disassembled perspective view which shows the internal structure of an arm. 減速歯車列の噛合構造を示す透過図である。It is a permeation | transmission figure which shows the meshing structure of a reduction gear train. 第1減速歯車の外観斜視図および断面図である。It is the external appearance perspective view and sectional drawing of a 1st reduction gear. 第1減速歯車の分解斜視図である。It is a disassembled perspective view of a 1st reduction gear. 第1減速歯車の小径歯車部の斜視断面図である。It is a perspective sectional view of the small diameter gear part of the 1st reduction gear. リンク機構によるアームの往復動作を示す説明図である。It is explanatory drawing which shows the reciprocating motion of the arm by a link mechanism. 第1揺動規制部の構造を示す説明図である。It is explanatory drawing which shows the structure of a 1st rocking | fluctuation control part. 第2モータのリード線の取り回し構造を説明する図である。It is a figure explaining the handling structure of the lead wire of the 2nd motor. サポートユニットの内部構造を示す分解斜視図である。It is a disassembled perspective view which shows the internal structure of a support unit. サポートユニットによるアームの往復動作を示す説明図である。It is explanatory drawing which shows the reciprocating motion of the arm by a support unit. ルーバー装置におけるアームの往復動作を示す説明図である。It is explanatory drawing which shows the reciprocating motion of the arm in a louver apparatus. 他の実施形態にかかる第1減速歯車の外観斜視図および断面図である。It is the external appearance perspective view and sectional drawing of the 1st reduction gear gear concerning other embodiment. 他の実施形態にかかる第1減速歯車の分解斜視図である。It is a disassembled perspective view of the 1st reduction gear concerning other embodiment. 他の実施形態にかかる第1減速歯車の小径歯車部の斜視断面図である。It is a perspective sectional view of the small diameter gear part of the 1st reduction gear concerning other embodiments. 第1減速歯車の支持構造を示す分解斜視図である。It is a disassembled perspective view which shows the support structure of a 1st reduction gear. 第1減速歯車の支持構造を示す側面視断面図である。It is sectional drawing seen from the side which shows the support structure of a 1st reduction gear.
 以下、本発明にかかるルーバー装置の実施形態について図面を用いて説明する。本実施形態にかかるルーバー装置は、図示しない空調機の送風口に設置され、その風向を制御する装置である。尚、以下の説明において「幅方向」とは、図1の座標軸表示に示されるX方向を、「前後方向」とは同座標軸表示に示されるY方向を、「上下方向」とは同座標軸表に示されるZ方向をいう。 Hereinafter, embodiments of a louver device according to the present invention will be described with reference to the drawings. The louver device according to the present embodiment is a device that is installed at a blower opening of an air conditioner (not shown) and controls the air direction. In the following description, “width direction” means the X direction shown in the coordinate axis display of FIG. 1, “front-back direction” means the Y direction shown in the coordinate axis display, and “vertical direction” means the same coordinate axis table. Z direction shown in FIG.
(全体構成)
 図1はルーバー装置の配置構成の一例を示す外観斜視図である。図1の配置例では、一枚の共通の風向板91を、二台のルーバー装置10,10´および一台のサポートユニット70(以下、これらを総称して「ルーバー装置10等」ともいう。)で支持している。二台のルーバー装置10,10´は同一の装置であり、以下に説明するルーバー装置10の構成はルーバー装置10´の構成でもある。これらルーバー装置10等はいずれも、風向板91よりも後方(図示しない空調機の筐体側)に配置されている。ルーバー装置10,10´は風向板91の長手方向における両端近傍に配置され、サポートユニット70は同長手方向における略中央に配置されている。
(overall structure)
FIG. 1 is an external perspective view showing an example of an arrangement configuration of a louver device. In the arrangement example of FIG. 1, one common wind direction plate 91 is also referred to as two louver devices 10, 10 ′ and one support unit 70 (hereinafter collectively referred to as “louver device 10 etc.”). ). The two louver devices 10 and 10 'are the same device, and the configuration of the louver device 10 described below is also the configuration of the louver device 10'. These louver devices 10 and the like are all arranged behind the wind direction plate 91 (on the side of the air conditioner casing not shown). The louver devices 10 and 10 ′ are arranged in the vicinity of both ends in the longitudinal direction of the wind direction plate 91, and the support unit 70 is arranged at substantially the center in the longitudinal direction.
 風向板91のルーバー装置10等との対向面には、ルーバー装置10等との連結部であるアーム接続片911,912が形成されている。風向板91は、ルーバー装置10等のアーム42,72に設けられた風向板接続部252,721にアーム接続片911,912が結合されることにより、これらアーム42,72に支持されるとともに、これらアーム42,72と一体的に動作する。 Arm connection pieces 911 and 912 which are connecting portions with the louver device 10 and the like are formed on the surface of the wind direction plate 91 facing the louver device 10 and the like. The wind direction plate 91 is supported by the arms 42 and 72 by coupling the arm connection pieces 911 and 912 to the wind direction plate connection portions 252 and 721 provided on the arms 42 and 72 of the louver device 10 and the like. The arms 42 and 72 operate integrally.
 ルーバー装置10,10´は、ルーバー装置10,10´が備える駆動源の駆動力により風向板91を開閉および回動させる駆動装置である。一方、サポートユニット70はこれらルーバー装置10,10´の動作に追従して風向板91を支持する補助的なユニットである。風向板91の長手方向における長さが短い場合や、ルーバー装置10,10´で風向板91の両端のみを支持した場合でも、風向板91が自重によりたわみが生じない程度の剛性を備えている場合には、サポートユニット70は省略しても良い。 The louver device 10, 10 'is a drive device that opens and closes and rotates the wind direction plate 91 by the driving force of the drive source provided in the louver device 10, 10'. On the other hand, the support unit 70 is an auxiliary unit that supports the wind direction plate 91 following the operation of the louver devices 10, 10 ′. Even when the length of the wind direction plate 91 in the longitudinal direction is short, or when only the both ends of the wind direction plate 91 are supported by the louver devices 10 and 10 ′, the wind direction plate 91 has a rigidity that does not cause deflection due to its own weight. In some cases, the support unit 70 may be omitted.
(ルーバー装置の内部構造)
 図2はルーバー装置10(およびルーバー装置10´)の内部構造を示す分解斜視図である。ルーバー装置10は、ステッピングモータである第1モータ20(第1駆動源)と、第1モータ20の駆動力により揺動するリンク機構40と、第1モータ20の回転を減速してリンク機構40に伝達する減速歯車列30と、リンク機構40および減速歯車列30を収容するケース50(固定部)と、を備えている。
(Internal structure of louver device)
FIG. 2 is an exploded perspective view showing the internal structure of the louver device 10 (and the louver device 10 ′). The louver device 10 includes a first motor 20 (first drive source) that is a stepping motor, a link mechanism 40 that swings by the driving force of the first motor 20, and a link mechanism 40 that decelerates the rotation of the first motor 20. And a case 50 (fixed portion) that accommodates the link mechanism 40 and the reduction gear train 30.
 リンク機構40は、二つのリンク部材41と、これらリンク部材41に支持されて後述する延出方向Aおよび収納方向B(図8参照)へ往復移動するアーム42(アーム部材)と、を有している。リンク部材41は、第1モータ20により駆動される駆動リンク411と、駆動リンク411の動作にアーム42を介して追従する従動リンク412と、を有している。リンク機構40は、駆動リンク411および従動リンク412のほか、ケース50を固定リンクとし、アーム42を中間リンクとする四節リンク機構を構成している。 The link mechanism 40 has two link members 41 and an arm 42 (arm member) supported by these link members 41 and reciprocating in an extending direction A and a storage direction B (see FIG. 8) described later. ing. The link member 41 includes a drive link 411 driven by the first motor 20 and a driven link 412 that follows the operation of the drive link 411 via the arm 42. In addition to the drive link 411 and the driven link 412, the link mechanism 40 constitutes a four-bar linkage mechanism in which the case 50 is a fixed link and the arm 42 is an intermediate link.
 ケース50は、幅方向Xに分解可能な第1ケース半体51、第2ケース半体52、および中板53により構成される。これら第1ケース半体51、第2ケース半体52、および中板53は止めねじ59で結合されることにより一体化される。リンク機構40は、第1ケース半体51および中板53により区画される空間に配置され、減速歯車列30は、第2ケース半体52および中板53により区画される空間に配置される。 The case 50 includes a first case half 51 that can be disassembled in the width direction X, a second case half 52, and an intermediate plate 53. The first case half 51, the second case half 52, and the intermediate plate 53 are integrated by being connected by a set screw 59. The link mechanism 40 is disposed in a space defined by the first case half 51 and the middle plate 53, and the reduction gear train 30 is disposed in a space defined by the second case half 52 and the middle plate 53.
 第1モータ20は第2ケース半体52の底面(幅方向Xに直交する面)の外側に配置され、止めねじ29により第2ケース半体52に固定される。第2ケース半体52の底面における、第1モータ20のピニオンギヤ21の位置に対応する部位には、第2ケース半体52の開口側(ケース50の内部側)に向かって突出した有蓋筒状のピニオンカバー部521が設けられている。ピニオンカバー部521はピニオンギヤ21側が開口しており、ピニオンギヤ21はピニオンカバー部521の内側に収容される。ピニオンカバー部521には、その周方向の一部が切り欠かれた開口部である窓部521aが設けられており、ピニオンカバー部521内に収容されたピニオンギヤ21は、その一部の歯部が窓部521aから第2ケース半体52の内側に露出する。 The first motor 20 is disposed outside the bottom surface (surface orthogonal to the width direction X) of the second case half 52 and is fixed to the second case half 52 by a set screw 29. On the bottom surface of the second case half 52, a portion corresponding to the position of the pinion gear 21 of the first motor 20 has a covered cylindrical shape protruding toward the opening side (inside the case 50) of the second case half 52. The pinion cover part 521 is provided. The pinion cover portion 521 is open on the pinion gear 21 side, and the pinion gear 21 is accommodated inside the pinion cover portion 521. The pinion cover part 521 is provided with a window part 521a which is an opening partly cut off in the circumferential direction, and the pinion gear 21 housed in the pinion cover part 521 has a part of its tooth part. Is exposed to the inside of the second case half 52 through the window 521a.
 減速歯車列30は、それぞれ大径歯車部および小径歯車部を備える複合歯車の輪列である。減速歯車列30の各歯車部材はそれぞれ、第2ケース半体52と中板53との間に立設された支軸36に回転可能に支持されている。減速歯車列30は、第1モータ20のピニオンギヤ21の回転を、大径歯車部から小径歯車部へと順次伝達することにより、ピニオンギヤ21の回転を減速して駆動リンク411の歯車部411cに伝達する。第1モータ20の回転を減速して駆動リンク411に伝達することにより、一般的な出力のモータを用いてアーム42を往復移動させることが可能とされている。 The reduction gear train 30 is a composite gear train that includes a large-diameter gear portion and a small-diameter gear portion, respectively. Each gear member of the reduction gear train 30 is rotatably supported by a support shaft 36 erected between the second case half 52 and the intermediate plate 53. The reduction gear train 30 sequentially transmits the rotation of the pinion gear 21 of the first motor 20 from the large diameter gear portion to the small diameter gear portion, thereby reducing the rotation of the pinion gear 21 and transmitting it to the gear portion 411c of the drive link 411. To do. By decelerating the rotation of the first motor 20 and transmitting it to the drive link 411, the arm 42 can be reciprocated using a general output motor.
 リンク機構40を構成する駆動リンク411の基端部(基端側)には、幅方向Xに貫通された貫通孔411bが形成されており、第2ケース半体52に立設された支軸522が貫通孔411bに挿通されることで、駆動リンク411の基端部はケース50に回転可能に支持される。 A through hole 411b penetrating in the width direction X is formed in the base end portion (base end side) of the drive link 411 constituting the link mechanism 40, and the support shaft erected in the second case half 52 By inserting 522 into the through hole 411b, the base end portion of the drive link 411 is rotatably supported by the case 50.
 また、駆動リンク411の基端部には、その減速歯車列30側の面から、減速歯車列30側に向かって延びる歯車部411cが設けられている。中板53における歯車部411cの位置に対応する部位には、歯車部411cが挿通される切欠部533が形成されている。歯車部411cは、切欠部533に挿通されることにより、中板53を貫通して減速歯車列30の最終歯車と噛合する。歯車部411cが減速歯車列30の最終歯車と噛合することにより、第1モータ20の駆動力は減速歯車列30および歯車部411cを介して駆動リンク411へと伝達される。 Further, a gear portion 411c extending from the surface on the reduction gear train 30 side toward the reduction gear train 30 side is provided at the base end portion of the drive link 411. A cutout portion 533 through which the gear portion 411c is inserted is formed at a portion corresponding to the position of the gear portion 411c in the intermediate plate 53. The gear portion 411 c is inserted through the notch portion 533, thereby penetrating the intermediate plate 53 and meshing with the final gear of the reduction gear train 30. As the gear portion 411c meshes with the final gear of the reduction gear train 30, the driving force of the first motor 20 is transmitted to the drive link 411 via the reduction gear train 30 and the gear portion 411c.
 リンク機構40の従動リンク412は、その基端部(基端側)に、軸線が幅方向Xと平行な略円筒形状の軸体412bが設けられている。第1ケース半体51および第2ケース半体52における軸体412bの位置に対応する部位には、幅方向Xに貫通された円形の貫通孔である軸受513,523が形成されている。従動リンク412は、軸体412bが軸受513,523に嵌合されることによりケース50に回転可能に支持される。 The driven link 412 of the link mechanism 40 is provided with a substantially cylindrical shaft body 412b whose axis is parallel to the width direction X at the base end portion (base end side). Bearings 513 and 523 which are circular through holes penetrating in the width direction X are formed at portions corresponding to the positions of the shaft bodies 412 b in the first case half 51 and the second case half 52. The driven link 412 is rotatably supported by the case 50 by fitting the shaft body 412b to the bearings 513 and 523.
 尚、本発明でいうリンク部材41(駆動リンク411、従動リンク412)の「基端」とは、固定関節、つまり所定位置に固定され、回転は許容されるが上下方向Zおよび前後方向Yへの揺動が規制された端部をいい、「先端」とは、自由関節、つまり回転および揺動が許容された端部をいう。 The “base end” of the link member 41 (drive link 411, driven link 412) in the present invention is a fixed joint, that is, fixed to a predetermined position and allowed to rotate, but in the vertical direction Z and the front-rear direction Y. The “tip” refers to a free joint, that is, an end that is allowed to rotate and swing.
 また、本実施形態においては、駆動リンク411および従動リンク412の基端部がいずれもケース50に支持されているが、これら基端部は必ずしもケース50に支持される必要はない。例えば、図示しない空調機の筐体など、位置が固定された部材(固定部)であって、上記基端部を回転可能に支持することができ、かつアーム42および風向板91の荷重により変形しない程度の剛性を備える部材であれば、ケース50に代替可能である。 In the present embodiment, the base ends of the drive link 411 and the driven link 412 are both supported by the case 50, but these base ends need not necessarily be supported by the case 50. For example, a member (fixed part) whose position is fixed, such as a housing of an air conditioner (not shown), can support the base end part rotatably, and is deformed by the load of the arm 42 and the wind direction plate 91 The case 50 can be substituted if it is a member having such a degree of rigidity that it does not.
(アームの内部構造)
 図3はアーム42の内部構造を示す分解斜視図である。アーム42は幅方向Xに分解可能なケース体である第1アーム半体421と第2アーム半体422とを有し、これら第1アーム半体421および第2アーム半体422は、止めねじ429で結合されることにより一体化される。
(Inner structure of arm)
FIG. 3 is an exploded perspective view showing the internal structure of the arm 42. The arm 42 has a first arm half 421 and a second arm half 422 that are case bodies that can be disassembled in the width direction X. The first arm half 421 and the second arm half 422 are set screws. By being combined at 429, they are integrated.
 アーム42の延出方向A側の端部には、ステッピングモータである第2モータ25がその内部に収容される。第2モータ25は風向板91を所定の角度範囲内において回動させる駆動源である。Dカットが施された第2モータ25の出力軸にはピニオンギヤ251が装着され、ピニオンギヤ251の回転は風向板接続部252の歯車部252aを介して風向板接続部252に減速して伝達される。第1アーム半体421の延出方向A側の端部には、幅方向Xに貫通された円形の開口部421aが形成されており、風向板接続部252は開口部421aからアーム42の外部に露出する。これにより、アーム42の風向板接続部252と風向板91のアーム接続片911とが結合可能となる。風向板91を第2モータ25により回動させる構成とすることにより、風向板91のより複雑な動作が可能となり、風向制御の自由度が高められている。 The second motor 25, which is a stepping motor, is accommodated in the end of the arm 42 in the extending direction A side. The second motor 25 is a drive source that rotates the wind direction plate 91 within a predetermined angle range. A pinion gear 251 is mounted on the output shaft of the second motor 25 subjected to the D cut, and the rotation of the pinion gear 251 is decelerated and transmitted to the wind direction plate connecting portion 252 via the gear portion 252a of the wind direction plate connecting portion 252. . A circular opening portion 421a penetrating in the width direction X is formed at the end of the first arm half 421 on the extending direction A side, and the wind direction plate connecting portion 252 extends from the opening portion 421a to the outside of the arm 42. Exposed to. Thereby, the wind direction plate connection part 252 of the arm 42 and the arm connection piece 911 of the wind direction plate 91 can be coupled. By adopting a configuration in which the wind direction plate 91 is rotated by the second motor 25, a more complicated operation of the wind direction plate 91 is possible, and the degree of freedom of wind direction control is enhanced.
 アーム42における、第2モータ25の収容部よりも収納方向B側の部分には、その内部に波形に形成されたリブ423が設けられており、かかるリブ423によりアーム42の剛性が高められている。尚、リブ423の一部は、後述する第2揺動規制部65のアーム側当接部67としての用途を兼ねている。 In the arm 42, a portion of the arm 42 on the side of the housing direction B with respect to the housing portion of the second motor 25 is provided with a rib 423 formed in a corrugated shape therein, and the rigidity of the arm 42 is enhanced by the rib 423. Yes. A part of the rib 423 also serves as an arm-side contact portion 67 of the second swing restricting portion 65 described later.
 図10は第2モータ25のリード線93の取り回し構造を説明する図である。第2モータ25のコネクタ253に接続されたリード線93は、アーム42の内部におけるリブ423の上側に設けられた隙間を通ってケース50内へと引き込まれる。ケース50内に引き込まれたリード線93は、駆動リンク411の上側を通って中板53の後方(図10視左側)に形成されたガイド片532に引き込まれ、そしてガイド片532に案内されて引出口54からルーバー装置10の外部へと引き出される。尚、図10(b)に示すように、引出口54は第1ケース半体51および第2ケース半体52により区画される開口である。 FIG. 10 is a diagram for explaining a structure for handling the lead wire 93 of the second motor 25. The lead wire 93 connected to the connector 253 of the second motor 25 is drawn into the case 50 through a gap provided above the rib 423 inside the arm 42. The lead wire 93 drawn into the case 50 passes through the upper side of the drive link 411 and is drawn into the guide piece 532 formed behind the middle plate 53 (left side as viewed in FIG. 10) and guided to the guide piece 532. It is pulled out of the louver device 10 from the outlet 54. As shown in FIG. 10B, the outlet 54 is an opening defined by the first case half 51 and the second case half 52.
(減速歯車列)
 図4は減速歯車列30の噛合構造を示す透過図である。図4において点線で示した歯部は、各歯車部材の図視背面側の歯車部を表したものである。
(Reduction gear train)
FIG. 4 is a transparent view showing the meshing structure of the reduction gear train 30. The tooth part shown by the dotted line in FIG. 4 represents the gear part on the rear side of the figure of each gear member.
 ピニオンカバー部521の窓部521aから露出したピニオンギヤ21の歯部は、減速歯車列30を構成する第1減速歯車31の大径歯車部と噛合している。以降、第1減速歯車31の小径歯車部は第2減速歯車32の大径歯車部に、第2減速歯車32の小径歯車部は第3減速歯車33の大径歯車部に、第3減速歯車33の小径歯車部は第4減速歯車34の大径歯車部に、第4減速歯車34の小径歯車部は第5減速歯車35の大径歯車部に順次噛合している。そして、第5減速歯車35の小径歯車部は駆動リンク411の歯車部411cと噛合している。これにより第1モータ20の回転は減速されて駆動リンク411へと伝達される。 The tooth part of the pinion gear 21 exposed from the window part 521a of the pinion cover part 521 meshes with the large-diameter gear part of the first reduction gear 31 constituting the reduction gear train 30. Thereafter, the small-diameter gear portion of the first reduction gear 31 is the large-diameter gear portion of the second reduction gear 32, the small-diameter gear portion of the second reduction gear 32 is the large-diameter gear portion of the third reduction gear 33, and the third reduction gear. The small-diameter gear portion 33 is in mesh with the large-diameter gear portion of the fourth reduction gear 34, and the small-diameter gear portion of the fourth reduction gear 34 is in mesh with the large-diameter gear portion of the fifth reduction gear 35. The small-diameter gear portion of the fifth reduction gear 35 meshes with the gear portion 411c of the drive link 411. Thereby, the rotation of the first motor 20 is decelerated and transmitted to the drive link 411.
 図17は第1減速歯車31の支持構造を示す分解斜視図である。図18は第1減速歯車31の支持構造を示す側面視断面図(ルーバー装置10の組み立て後における、図17のD-D方向断面図)である。第1モータ20は、そのケース体202の出力軸側の端面に、第1モータ20を第2ケース半体52にねじ固定するための板状の金属部材である取り付け板201が設けられている。取り付け板201には、その上面の一部が切り起こされた支軸固定部201aが形成されており、支軸固定部201aには第1減速歯車31の支軸361が移動不能に固定されている。支軸361は、支軸固定部201aをその厚み方向に貫通しており、第1モータ20のケース体202にその基端部が接触しない程度の軸方向位置に調節されている。支軸361は第2ケース半体52に形成されたボス部524を貫通して第1減速歯車31の軸穴に挿通され、中板53によりその先端部が支持されている。 FIG. 17 is an exploded perspective view showing a support structure for the first reduction gear 31. 18 is a cross-sectional side view showing the support structure of the first reduction gear 31 (a cross-sectional view in the direction DD in FIG. 17 after the louver device 10 is assembled). The first motor 20 is provided with an attachment plate 201, which is a plate-like metal member, for fixing the first motor 20 to the second case half 52 on the output shaft side end surface of the case body 202. . The attachment plate 201 is formed with a support shaft fixing portion 201a whose upper surface is partially cut and raised. The support shaft 361 of the first reduction gear 31 is fixed to the support shaft fixing portion 201a so as not to move. Yes. The support shaft 361 passes through the support shaft fixing portion 201a in the thickness direction, and is adjusted to an axial position such that the base end portion does not contact the case body 202 of the first motor 20. The support shaft 361 passes through the boss portion 524 formed in the second case half 52 and is inserted into the shaft hole of the first reduction gear 31, and the tip portion is supported by the intermediate plate 53.
 第1モータ20に移動不能に固定された支軸361で第1減速歯車31が支持されることにより、第1減速歯車31の傾きやがたつきが抑えられるとともに、ピニオンギヤ21の位置に対する第1減速歯車31の相対的な位置関係が一定に保たれることから、ピニオンギヤ21と第1減速歯車31との噛合い精度が高められている。これにより、第1減速歯車31のトルクリミッタ機構(後述)をより正確に動作させることが可能になるとともに、第1減速歯車31のがたつきによる騒音や部品寿命の低下が抑えられている。 The first reduction gear 31 is supported by the support shaft 361 that is immovably fixed to the first motor 20, so that the inclination and rattling of the first reduction gear 31 are suppressed and the first relative to the position of the pinion gear 21 is suppressed. Since the relative positional relationship of the reduction gear 31 is kept constant, the meshing accuracy between the pinion gear 21 and the first reduction gear 31 is enhanced. As a result, a torque limiter mechanism (described later) of the first reduction gear 31 can be operated more accurately, and noise and a decrease in the component life due to the rattling of the first reduction gear 31 are suppressed.
(トルクリミッタ機構)
 減速歯車列30を構成する第1減速歯車31は、所定の閾値を超えるトルクが印加されたときに、空転によりその超過トルクを消費することで伝達トルクを抑制するトルクリミッタ機構(過負荷保護機構)を備えた歯車部材である。上記所定の閾値トルクとしては、ルーバー装置10の通常動作時において実際に第1減速歯車31に伝達されうるトルクの上限値に対して適宜余裕値を加算し、異常の蓋然性が高いと判断可能なトルクを設定すればよい。
(Torque limiter mechanism)
The first reduction gear 31 constituting the reduction gear train 30 is a torque limiter mechanism (overload protection mechanism) that suppresses transmission torque by consuming excess torque by idling when a torque exceeding a predetermined threshold is applied. ). As the predetermined threshold torque, a margin value is appropriately added to the upper limit value of the torque that can actually be transmitted to the first reduction gear 31 during normal operation of the louver device 10, and it can be determined that the probability of abnormality is high. What is necessary is just to set a torque.
 図5は、第1減速歯車31の外観斜視図(図5(a))、および、図5(a)に示される第1減速歯車31のA-A方向断面図(図5(b))である。図6は第1減速歯車31の分解斜視図である。図7は小径歯車部311の斜視断面図である。以下、第1減速歯車31およびトルクリミッタ機構に関する説明において、「上」および「下」とは、図5および図6における上下をいい、「平面視」とは、第1減速歯車31の上方から第1減速歯車31を下方に見下ろす視線方向をいう。 FIG. 5 is an external perspective view of the first reduction gear 31 (FIG. 5A), and a cross-sectional view in the AA direction of the first reduction gear 31 shown in FIG. 5A (FIG. 5B). It is. FIG. 6 is an exploded perspective view of the first reduction gear 31. FIG. 7 is a perspective sectional view of the small-diameter gear portion 311. Hereinafter, in the description of the first reduction gear 31 and the torque limiter mechanism, “upper” and “lower” refer to the upper and lower sides in FIGS. 5 and 6, and “plan view” means from above the first reduction gear 31. This refers to the line-of-sight direction in which the first reduction gear 31 is looked down.
 図5および図6に示すように、第1減速歯車31は、二つの歯車部である小径歯車部311(固定歯車)および大径歯車部312(クラッチ歯車)を有している。小径歯車部311および大径歯車部312は、共通の軸体である軸部314により支持されており、軸部314の上側には小径歯車部311が、軸部314の下側には大径歯車部312が配置されている。 As shown in FIGS. 5 and 6, the first reduction gear 31 has a small-diameter gear portion 311 (fixed gear) and a large-diameter gear portion 312 (clutch gear) which are two gear portions. The small-diameter gear portion 311 and the large-diameter gear portion 312 are supported by a shaft portion 314 that is a common shaft body. The small-diameter gear portion 311 is above the shaft portion 314 and the large-diameter portion is below the shaft portion 314. A gear portion 312 is arranged.
 小径歯車部311と大径歯車部312との間には、弾性部材であるコイルばね313が上下方向に圧縮された状態で配置されており、コイルばね313により小径歯車部311は上方に、大径歯車部312は下方に付勢されている。 Between the small-diameter gear portion 311 and the large-diameter gear portion 312, a coil spring 313, which is an elastic member, is arranged in a state compressed in the vertical direction, and the small-diameter gear portion 311 is moved upward by the coil spring 313. The radial gear portion 312 is biased downward.
 軸部314の上端部近傍には、軸部314から径方向外側に延出した鉤部314aが形成されている。図7に示すように、小径歯車部311は、軸部314および鉤部314aを挿通可能な軸穴311aを有しており、小径歯車部311の上面には、軸穴311aに挿通後の鉤部314aが嵌合される凹部311bが形成されている。 Near the upper end portion of the shaft portion 314, a flange portion 314a extending outward in the radial direction from the shaft portion 314 is formed. As shown in FIG. 7, the small-diameter gear portion 311 has a shaft hole 311a into which the shaft portion 314 and the flange portion 314a can be inserted, and the upper surface of the small-diameter gear portion 311 has a flange after being inserted into the shaft hole 311a. A recess 311b into which the portion 314a is fitted is formed.
 図5(b)に示すように、小径歯車部311は、コイルばね313により上方へ付勢されるとともに、凹部311bに嵌合された鉤部314aにより上方への移動が係止されることにより、軸部314における軸方向の配置位置が決められている。また、図5(a)に示すように、鉤部314aと、鉤部314aが嵌合された凹部311bとが周方向に互いに係合することにより、軸部314および小径歯車部311は周方向に一体的に回転する。 As shown in FIG. 5B, the small-diameter gear portion 311 is urged upward by the coil spring 313, and the upward movement is locked by the flange portion 314a fitted in the recess 311b. The arrangement position in the axial direction of the shaft portion 314 is determined. Further, as shown in FIG. 5A, the shaft portion 314 and the small-diameter gear portion 311 are circumferentially engaged with each other in the circumferential direction by the flange portion 314a and the concave portion 311b fitted with the flange portion 314a. Rotate in unison.
 尚、本実施形態においては、後述する軸部314への大径歯車部312の組み付け構造上、小径歯車部311(軸部314と一体的に回転する歯車)と軸部314とが分離可能な別部材とされているが、小径歯車部311を軸部314から取り外すことなく大径歯車部312を軸部314に組み付けられる構造の場合には、小径歯車部311および軸部314は一部材として一体成形されてもよい。 In the present embodiment, the small-diameter gear portion 311 (the gear that rotates integrally with the shaft portion 314) and the shaft portion 314 are separable due to the structure of assembling the large-diameter gear portion 312 to the shaft portion 314 described later. In the case of a structure in which the large diameter gear portion 312 can be assembled to the shaft portion 314 without removing the small diameter gear portion 311 from the shaft portion 314, the small diameter gear portion 311 and the shaft portion 314 are formed as one member. It may be integrally formed.
 また、小径歯車部311の下面(本実施形態の小径歯車部311においては、コイルばね313の上端が当接する歯車部311cの底面)には、該下面の周縁部から下方に延びる円筒状のガイド部311dが形成されており、コイルばね313の上端は、ガイド部311dの内側に配置されている。小径歯車部311がガイド部311dを備えていることにより、第1減速歯車31の組み立て時に、コイルばね313が小径歯車部311の下面を滑って脱落することが防止されている。これにより、小径歯車部311とコイルばね313との径方向における位置決めが容易となり、第1減速歯車31の組立効率が高められている。尚、ガイド部311dは歯車部311cよりも薄肉であり、ガイド部311dに歯部は設けられていない。 Further, on the lower surface of the small-diameter gear portion 311 (in the small-diameter gear portion 311 of this embodiment, the bottom surface of the gear portion 311c with which the upper end of the coil spring 313 contacts) is a cylindrical guide that extends downward from the peripheral portion of the lower surface. A portion 311d is formed, and the upper end of the coil spring 313 is disposed inside the guide portion 311d. Since the small-diameter gear portion 311 includes the guide portion 311d, the coil spring 313 is prevented from slipping and dropping off the lower surface of the small-diameter gear portion 311 when the first reduction gear 31 is assembled. Thereby, the radial positioning of the small-diameter gear portion 311 and the coil spring 313 is facilitated, and the assembly efficiency of the first reduction gear 31 is increased. The guide portion 311d is thinner than the gear portion 311c, and the guide portion 311d is not provided with a tooth portion.
 また、軸部314の下端近傍部には、軸部314の外径が大きくされた拡径部314b(係止部)が形成されている。拡径部314bは大径歯車部312の軸穴の径よりも大きく、大径歯車部312は、コイルばね313により(後述する第1金属板315を介して)下方へ付勢されるとともに、拡径部314bにより(後述する第2金属板316を介して)下方への移動が係止されることで、軸部314における軸方向の配置位置が決められている。また、大径歯車部312と軸部314とは、大径歯車部312が拡径部314bに押圧されることで生じる摩擦力により、第1減速歯車31に所定の閾値以下のトルクが印加されたときには周方向へ一体的に回転する(連結状態) Further, an enlarged diameter portion 314b (locking portion) in which the outer diameter of the shaft portion 314 is increased is formed in the vicinity of the lower end of the shaft portion 314. The enlarged diameter portion 314b is larger than the diameter of the shaft hole of the large diameter gear portion 312, and the large diameter gear portion 312 is urged downward by a coil spring 313 (via a first metal plate 315 described later), The downward movement (via a second metal plate 316 described later) is locked by the enlarged diameter portion 314b, whereby the axial position of the shaft portion 314 is determined. Further, the large-diameter gear portion 312 and the shaft portion 314 are applied with a torque equal to or less than a predetermined threshold value to the first reduction gear 31 by a frictional force generated when the large-diameter gear portion 312 is pressed against the enlarged-diameter portion 314b. Rotate in the circumferential direction when connected (connected state)
 より詳しくは、軸部314の軸方向における、軸部314の拡径部314bと大径歯車部312との対向部は、軸部314と大径歯車部312とを連結状態にする連結部317を構成しており、コイルばね313により大径歯車部312が拡径部314b側に押圧されることで、(後述する第2金属板316を介して)これら対向部の間には周方向への回転に対する摩擦力が生じる。かかる摩擦力は上記閾値トルクと同等となるように調節されており、これにより、第1減速歯車31に所定の閾値以下のトルクが印加されたときには、大径歯車部312と軸部314とが周方向へ一体的に回転する。 More specifically, in the axial direction of the shaft portion 314, a facing portion between the enlarged diameter portion 314 b of the shaft portion 314 and the large diameter gear portion 312 is a connecting portion 317 that connects the shaft portion 314 and the large diameter gear portion 312. The large-diameter gear portion 312 is pressed toward the diameter-expanded portion 314b by the coil spring 313, so that a circumferential direction is formed between these opposing portions (via a second metal plate 316 described later). A frictional force is generated against the rotation of the. The frictional force is adjusted to be equal to the above threshold torque, so that when a torque equal to or less than a predetermined threshold is applied to the first reduction gear 31, the large diameter gear portion 312 and the shaft portion 314 are Rotates integrally in the circumferential direction.
 本実施形態のコイルばね313は円筒形状の部材であり、コイルばね313はその中空部に軸部314が挿通されることで第1減速歯車31に保持されている。コイルばね313の両端部は小径歯車部311や大径歯車部312などに固定されておらず、これにより、大径歯車部312と軸部314とが非同期に回転した場合でも、コイルばね313がねじれたり、コイルばね313が第1減速歯車31から脱落したりすることが防止されている。さらに、コイルばね313の内周面と軸部314の外周面との間には隙間が設けられており、コイルばね313が多少巻き絞られたとしてもコイルばね313は軸部314には接触しない。 The coil spring 313 of this embodiment is a cylindrical member, and the coil spring 313 is held by the first reduction gear 31 by inserting the shaft portion 314 into the hollow portion. Both ends of the coil spring 313 are not fixed to the small-diameter gear portion 311, the large-diameter gear portion 312, and the like, so that even when the large-diameter gear portion 312 and the shaft portion 314 rotate asynchronously, the coil spring 313 The twisting and the coil spring 313 are prevented from falling off the first reduction gear 31. Further, a gap is provided between the inner peripheral surface of the coil spring 313 and the outer peripheral surface of the shaft portion 314, and the coil spring 313 does not contact the shaft portion 314 even if the coil spring 313 is slightly squeezed. .
 尚、本発明の弾性部材は本実施形態のコイルばね313には限定されない。本発明の弾性部材は、コイルばね313とは巻数や巻き方向が異なるコイルばねや、いわゆるクローズドエンドのコイルばね、その他、小径歯車部311および大径歯車部312を上下方向に付勢可能であり、かつ、少なくとも第1金属板315の上面を滑動可能な部材であれば、ゴムなどを材料とするものでも良い。また、コイルばね313を弾性力の異なる他の弾性部材に適宜置き換えることにより、トルクリミッタ機構を作動させるトルクを柔軟に調節することができる。 Note that the elastic member of the present invention is not limited to the coil spring 313 of the present embodiment. The elastic member of the present invention can bias the small-diameter gear portion 311 and the large-diameter gear portion 312 in the vertical direction in addition to a coil spring having a different winding number and winding direction from the coil spring 313, a so-called closed-end coil spring, and the like. As long as it is a member that can slide at least the upper surface of the first metal plate 315, rubber or the like may be used. Further, the torque for operating the torque limiter mechanism can be flexibly adjusted by appropriately replacing the coil spring 313 with another elastic member having a different elastic force.
 また、大径歯車部312の端面のうち、上方(第1減速歯車31の軸方向中心側)に向けられた面である内側面312iのコイルばね313との対向部、および、下方(第1減速歯車31の軸方向外側)に向けられた面である外側面312eの拡径部314bとの対向部には、それぞれ、金属材料からなる円環形状の薄板部材である第1金属板315(第1環状板)および第2金属板316(第2環状板)が配置されている。これら第1金属板315と第2金属板316の外径は、コイルばね313の外径よりもやや大きくなるよう形成されている。 Further, of the end face of the large-diameter gear portion 312, a portion facing the coil spring 313 on the inner side surface 312 i, which is a surface directed upward (in the axial direction of the first reduction gear 31), and below (first first gear). A first metal plate 315, which is an annular thin plate member made of a metal material, is provided on a portion facing the enlarged diameter portion 314b of the outer surface 312e, which is a surface facing the reduction gear 31 in the axial direction. A first annular plate) and a second metal plate 316 (second annular plate) are disposed. The outer diameters of the first metal plate 315 and the second metal plate 316 are formed to be slightly larger than the outer diameter of the coil spring 313.
 図6に示すように、第1金属板315および第2金属板316の中心穴には、Dカットが施されており、そのDカット面315aおよび316aが、軸部314に設けられたDカット面314dに嵌合されることにより、軸部314と、第1金属板315および第2金属板316とは周方向に一体的に回転する。 As shown in FIG. 6, D-cuts are made in the center holes of the first metal plate 315 and the second metal plate 316, and the D-cut surfaces 315 a and 316 a are provided in the D-cut provided on the shaft portion 314. By being fitted to the surface 314d, the shaft portion 314, the first metal plate 315, and the second metal plate 316 rotate integrally in the circumferential direction.
 例えば大径歯車部312の内側面312iにコイルばね313が直接接触する場合、コイルばね313により大径歯車部312の内側面312iが削られるおそれや、大径歯車部312の回転がコイルばね313により阻害されるおそれがある。大径歯車部312とコイルばね313との間に第1金属板315が配置されていることにより、これらの問題が回避されている。 For example, when the coil spring 313 is in direct contact with the inner side surface 312 i of the large-diameter gear portion 312, the inner surface 312 i of the large-diameter gear portion 312 may be scraped by the coil spring 313, and the rotation of the large-diameter gear portion 312 may cause the coil spring 313 to rotate. May be hindered. Since the first metal plate 315 is disposed between the large-diameter gear portion 312 and the coil spring 313, these problems are avoided.
 また、樹脂どうしの面接触は摩擦係数が安定しづらく、摺動時にきしみ音を生じやすいという問題がある。金属板は面の状態が安定していることから、大径歯車部312と拡径部314bとの間に第2金属板316が配置されていることにより、このような問題も回避されている。 In addition, the surface contact between the resins has a problem that the friction coefficient is difficult to stabilize and a squeak noise is liable to occur during sliding. Since the surface state of the metal plate is stable, such a problem is avoided by arranging the second metal plate 316 between the large-diameter gear portion 312 and the enlarged diameter portion 314b. .
 本発明の第1金属板および第2金属板の形態は、本実施形態における第1金属板315および第2金属板316に限定されない。コイルばね313に付勢されても変形せず、かつ、コイルばね313の回転を阻害しない部材であれば他の環状部材であってもよい。さらに、本発明の第1金属板および第2金属板は必須の構成ではない。大径歯車部312の内側面312iおよび外側面312eを、コイルばね313や拡径部314bに当接させても上記不都合が生じない場合、または上記不都合が問題とならない場合は、第1金属板および第2金属板は省略しても良い。また、本実施形態における大径歯車部312は樹脂製の歯車であるが、大径歯車部312が金属材料からなるときには、第1環状板および第2環状板には樹脂製のものを用いることが好ましい。 The form of the first metal plate and the second metal plate of the present invention is not limited to the first metal plate 315 and the second metal plate 316 in the present embodiment. Other annular members may be used as long as they are members that are not deformed even when urged by the coil spring 313 and do not inhibit the rotation of the coil spring 313. Furthermore, the first metal plate and the second metal plate of the present invention are not essential components. If the above inconvenience does not occur even if the inner side surface 312i and the outer side surface 312e of the large-diameter gear portion 312 are brought into contact with the coil spring 313 or the enlarged diameter portion 314b, or if the inconvenience does not matter, the first metal plate The second metal plate may be omitted. The large-diameter gear portion 312 in this embodiment is a resin gear, but when the large-diameter gear portion 312 is made of a metal material, the first annular plate and the second annular plate are made of resin. Is preferred.
 図5(b)および図6に示すように、大径歯車部312の内側面312iにおける第1金属板315との接触部、および、大径歯車部312の外側面312eにおける第2金属板316との接触部には、同心円状の突条部312aがそれぞれ2本ずつ形成されている。平面どうしを接触させる場合、その接触面積が不安定になるという問題がある。大径歯車部312の端面に同心円状の突条(つまり凸凹)を設け、第1金属板315および第2金属板316と、大径歯車部312との接触部分を意図的に限定することにより、これらの接触面積を一定にすることができる。これにより、トルクリミッタ機構の動作の安定性が高められている。 As shown in FIGS. 5B and 6, the contact portion of the inner surface 312 i of the large-diameter gear portion 312 with the first metal plate 315 and the second metal plate 316 on the outer surface 312 e of the large-diameter gear portion 312. Two concentric protrusions 312a are formed at the contact portion with each other. When the flat surfaces are brought into contact with each other, there is a problem that the contact area becomes unstable. By providing concentric ridges (that is, irregularities) on the end face of the large-diameter gear portion 312 and intentionally limiting the contact portion between the first metal plate 315 and the second metal plate 316 and the large-diameter gear portion 312. These contact areas can be made constant. Thereby, the stability of the operation of the torque limiter mechanism is enhanced.
 また、軸部314の回転中心には、軸方向に延びる貫通孔である軸穴314cが形成されている。軸部314に貫通孔が設けられていることにより、樹脂からなる軸部314の成形時のヒケが抑えられ、軸部314の寸法精度が高められている。また、軸部314の軸穴314cに支軸361が挿通されて軸部314が支持される構成とすることにより、ルーバー装置10が組み立てやすくされている。 Further, a shaft hole 314c, which is a through hole extending in the axial direction, is formed at the rotation center of the shaft portion 314. By providing the through hole in the shaft portion 314, sink marks during molding of the shaft portion 314 made of resin are suppressed, and the dimensional accuracy of the shaft portion 314 is improved. In addition, the louver device 10 can be easily assembled by adopting a configuration in which the support shaft 361 is inserted into the shaft hole 314c of the shaft portion 314 and the shaft portion 314 is supported.
 第1減速歯車31は上記構成を備えることにより、軸部314と大径歯車部312とがその摩擦力で一体的に回転可能なトルクの範囲内では、小径歯車部311(および軸部314)と大径歯車部312が周方向に一体的に回転し、上記摩擦力を超えるトルクが加えられたときには、小径歯車部311(および軸部314)または大径歯車部312のいずれか一方が空転する(連結解除状態)。 Since the first reduction gear 31 has the above-described configuration, the small-diameter gear portion 311 (and the shaft portion 314) is within a torque range in which the shaft portion 314 and the large-diameter gear portion 312 can rotate integrally with the frictional force thereof. When the large-diameter gear portion 312 rotates integrally in the circumferential direction and a torque exceeding the frictional force is applied, either the small-diameter gear portion 311 (and the shaft portion 314) or the large-diameter gear portion 312 is idled. Yes (unconnected state).
 尚、本実施形態における第1減速歯車31は、大径歯車部312と軸部314とが互いにスリップ可能な構成とされているが、当然、小径歯車部311と軸部314とをスリップ可能な構成とすることも可能である。 The first reduction gear 31 in the present embodiment is configured such that the large-diameter gear portion 312 and the shaft portion 314 can slip each other, but naturally, the small-diameter gear portion 311 and the shaft portion 314 can slip. A configuration is also possible.
 減速歯車列30が、トルクリミッタ機構を備えた第1減速歯車31を有していることにより、例えば第1モータ20のホールド中に、風向板91がユーザーにより手動で開閉され、減速歯車列30やリンク機構40など第1モータ20の動力伝達部材に予期しない外力が加えられた場合でも、第1モータ20の脱調や動力伝達部材の破損が防止される。また、例えば第1モータ20のイニシャライズ動作において、第1モータ20の認識角度と駆動リンク411の実際の配置角度とを同期させるため、第1モータ20を駆動リンク411の初期位置方向へ意図的に数ステップ脱調させる場合でも、動力伝達部材の損傷や異常音を低減することが可能とされている。 Since the reduction gear train 30 includes the first reduction gear 31 provided with the torque limiter mechanism, the wind direction plate 91 is manually opened and closed by the user during the hold of the first motor 20, for example. Even when an unexpected external force is applied to the power transmission member of the first motor 20 such as the link mechanism 40, the step-out of the first motor 20 and the breakage of the power transmission member are prevented. Further, for example, in the initialization operation of the first motor 20, the first motor 20 is intentionally moved toward the initial position of the drive link 411 in order to synchronize the recognition angle of the first motor 20 and the actual arrangement angle of the drive link 411. Even in the case of a step out of several steps, it is possible to reduce damage and abnormal noise of the power transmission member.
 また、図4に示すように、第1減速歯車31は第1モータ20のピニオンギヤ21に噛合している。本発明のトルクリミッタ機構は、当然、通常動作時の伝達トルクよりも大きなトルクが印加されたときに作動する。従って、通常動作時における伝達トルクが大きな歯車部材にトルクリミッタ機構をもたせると、それ以上の外力(トルク)が加えられたときにしか保護効果が得られない。一方、通常動作時の伝達トルクが小さな歯車部材にトルクリミッタ機構をもたせると、トルクリミッタ機構が作動するトルクを、その歯車部材自体がスリップ回転してしまうトルクよりも小さくする必要があり、作動トルクの設定における制約が厳しくなる。トルクリミッタ機構である第1減速歯車31が第1モータ20のピニオンギヤ21に噛合されていることにより、作動トルクの設定が容易化され、かつ、異常に対して機敏に動作可能なトルクリミッタ機構が実現されている。 Further, as shown in FIG. 4, the first reduction gear 31 meshes with the pinion gear 21 of the first motor 20. Naturally, the torque limiter mechanism of the present invention operates when a torque larger than the transmission torque during normal operation is applied. Therefore, if a gear member having a large transmission torque during normal operation is provided with a torque limiter mechanism, a protective effect can be obtained only when a greater external force (torque) is applied. On the other hand, if a gear member having a small transmission torque during normal operation is provided with a torque limiter mechanism, the torque at which the torque limiter mechanism operates needs to be smaller than the torque at which the gear member itself slips and rotates. Restrictions on the setting of stricter. Since the first reduction gear 31 that is a torque limiter mechanism is engaged with the pinion gear 21 of the first motor 20, the setting of the operating torque is facilitated, and a torque limiter mechanism that can operate quickly with respect to an abnormality is provided. It has been realized.
 また、トルクリミッタ機構を減速歯車列30の一部として組み込むことにより、別途トルクリミッタ機構を設ける場合に比べ部品点数を削減することができ、ルーバー装置10を小型化することができる。 Further, by incorporating the torque limiter mechanism as a part of the reduction gear train 30, the number of parts can be reduced as compared with the case where a separate torque limiter mechanism is provided, and the louver device 10 can be downsized.
(第1減速歯車の他の実施形態)
 以下に、第1減速歯車の他の実施形態である、第1減速歯車81の構成について説明する。第1減速歯車81は、第1減速歯車31と同様に、トルクリミッタ機構(過負荷保護機構)を備えた歯車部材である。
(Another embodiment of the first reduction gear)
Below, the structure of the 1st reduction gear 81 which is other embodiment of a 1st reduction gear is demonstrated. Similar to the first reduction gear 31, the first reduction gear 81 is a gear member provided with a torque limiter mechanism (overload protection mechanism).
 図14は、第1減速歯車81の外観斜視図(図14(a))、および、図14(a)に示される第1減速歯車81のA-A方向断面図(図14(b))である。図15は第1減速歯車81の分解斜視図である。図16は係止部材819(係止部)の斜視断面図である。以下、第1減速歯車81およびトルクリミッタ機構に関する説明において、「上」および「下」とは、図14および図15における上下をいい、「平面視」とは、第1減速歯車81の上方から第1減速歯車81を下方に見下ろす視線方向をいう。 FIG. 14 is an external perspective view of the first reduction gear 81 (FIG. 14A), and a cross-sectional view in the AA direction of the first reduction gear 81 shown in FIG. 14A (FIG. 14B). It is. FIG. 15 is an exploded perspective view of the first reduction gear 81. FIG. 16 is a perspective sectional view of the locking member 819 (locking portion). Hereinafter, in the description of the first reduction gear 81 and the torque limiter mechanism, “upper” and “lower” refer to the upper and lower sides in FIGS. 14 and 15, and “plan view” means from above the first reduction gear 81. A line-of-sight direction in which the first reduction gear 81 is looked down.
 図14および図15に示すように、第1減速歯車81は、二つの歯車部である小径歯車部812(クラッチ歯車)および大径歯車部811(固定歯車)を有している。小径歯車部812および大径歯車部811は、共通の軸体である軸部814により支持されており、軸部814の上側には小径歯車部812が、軸部814の下側には大径歯車部811が配置されている。 As shown in FIGS. 14 and 15, the first reduction gear 81 has a small-diameter gear portion 812 (clutch gear) and a large-diameter gear portion 811 (fixed gear) which are two gear portions. The small-diameter gear portion 812 and the large-diameter gear portion 811 are supported by a shaft portion 814 that is a common shaft body. The small-diameter gear portion 812 is above the shaft portion 814 and the large-diameter portion is below the shaft portion 814. A gear portion 811 is arranged.
 第1減速歯車81の大径歯車部811は軸部814と一体成形されている。本実施形態では、この一体成形された大径歯車部811が第1モータ20のピニオンギヤ21に噛合することから、先の実施形態にかかる第1減速歯車31のように、大径歯車部312と軸部314とが別部材からなる構成に比べ、大径歯車部とピニオンギヤ21との噛合い精度が高められている。これにより、第1減速歯車81の回転時におけるノイズやトルクのばらつきが抑えられている。 The large-diameter gear portion 811 of the first reduction gear 81 is integrally formed with the shaft portion 814. In the present embodiment, since the integrally formed large-diameter gear portion 811 meshes with the pinion gear 21 of the first motor 20, the large-diameter gear portion 312 and the first reduction gear 31 according to the previous embodiment are connected. Compared with a configuration in which the shaft portion 314 is formed of a separate member, the meshing accuracy between the large-diameter gear portion and the pinion gear 21 is improved. Thereby, noise and torque variations during rotation of the first reduction gear 81 are suppressed.
 小径歯車部812と大径歯車部811との間には、弾性部材であるコイルばね813が上下方向に圧縮された状態で配置されており、コイルばね813により小径歯車部812は上方に、大径歯車部811は下方に付勢されている。 Between the small-diameter gear portion 812 and the large-diameter gear portion 811, a coil spring 813, which is an elastic member, is arranged in a state compressed in the vertical direction, and the small-diameter gear portion 812 is moved upward by the coil spring 813. The radial gear portion 811 is urged downward.
 軸部814の上端には、軸部814から径方向外側に延出した鉤部814aが形成されている。図16に示すように、係止部材819は、軸部814および鉤部814aを挿通可能な軸穴819aを有し、係止部材819の上面には、軸穴819aに挿通後の鉤部814aが嵌合される凹部819bが形成されている。 At the upper end of the shaft portion 814, a flange portion 814a extending outward in the radial direction from the shaft portion 814 is formed. As shown in FIG. 16, the locking member 819 has a shaft hole 819a into which the shaft portion 814 and the flange portion 814a can be inserted, and the flange portion 814a after being inserted into the shaft hole 819a is formed on the upper surface of the locking member 819. A recess 819b is formed in which is fitted.
 図14(b)に示すように、係止部材819は、コイルばね813により小径歯車部812を介して上方へ付勢されるとともに、凹部819bに嵌合された鉤部814aにより上方への移動が係止されることにより、軸部814における軸方向の配置位置が決められている。また、係止部材819は、図14(a)に示すように、鉤部814aと、鉤部814aが嵌合された凹部819bとが周方向に互いに係合することにより、軸部814における周方向の配置位置が決められている。 As shown in FIG. 14B, the locking member 819 is urged upward by the coil spring 813 via the small-diameter gear portion 812 and moved upward by the flange portion 814a fitted in the concave portion 819b. Is locked, the axial position of the shaft portion 814 is determined. Further, as shown in FIG. 14A, the locking member 819 has a circumferential portion in the shaft portion 814 by engaging a flange portion 814a and a recess portion 819b fitted with the flange portion 814a with each other in the circumferential direction. The position of the direction is determined.
 軸部814の上端に取り付けられた係止部材819は、小径歯車部812の軸穴の径よりも大きな外径を有している。小径歯車部812は、コイルばね813により(後述する第1金属板815を介して)上方へ付勢されるとともに、係止部材819により(後述する第2金属板816を介して)上方への移動が係止されることで、軸部814における軸方向の配置位置が決められている。また、小径歯車部812と軸部814とは、小径歯車部812が係止部材819に押圧されることで生じる摩擦力により、第1減速歯車81に所定の閾値以下のトルクが印加されたときには周方向へ一体的に回転する(連結状態)。 The locking member 819 attached to the upper end of the shaft portion 814 has an outer diameter larger than the diameter of the shaft hole of the small diameter gear portion 812. The small-diameter gear portion 812 is biased upward (via a first metal plate 815 described later) by a coil spring 813 and is moved upward by a locking member 819 (via a second metal plate 816 described later). As the movement is locked, the axial position of the shaft portion 814 is determined. Further, the small-diameter gear portion 812 and the shaft portion 814 are configured such that when a torque equal to or smaller than a predetermined threshold is applied to the first reduction gear 81 due to frictional force generated when the small-diameter gear portion 812 is pressed against the locking member 819. Rotate integrally in the circumferential direction (connected state).
 より詳しくは、軸部814の軸方向における、係止部材819と小径歯車部812との対向部は、軸部814と小径歯車部812とを連結状態にする連結部817を構成している。コイルばね813により小径歯車部812が係止部材819側に押圧されることで、(後述する第2金属板816を介して)これら対向部の間には周方向への回転に対する摩擦力が生じる。かかる摩擦力は上記閾値トルクと同等となるように調節されており、これにより、第1減速歯車81に所定の閾値以下のトルクが印加されたときには、小径歯車部812と軸部814とが周方向へ一体的に回転する。 More specifically, the facing portion of the locking member 819 and the small diameter gear portion 812 in the axial direction of the shaft portion 814 constitutes a connecting portion 817 that connects the shaft portion 814 and the small diameter gear portion 812. When the small-diameter gear portion 812 is pressed toward the locking member 819 by the coil spring 813, a frictional force against rotation in the circumferential direction is generated between these facing portions (via a second metal plate 816 described later). . The frictional force is adjusted to be equal to the above threshold torque, so that when a torque equal to or less than a predetermined threshold is applied to the first reduction gear 81, the small-diameter gear portion 812 and the shaft portion 814 rotate around. Rotate integrally in the direction.
 また、係止部材819が着脱可能な別部材とされていることにより、大径歯車部811と軸部814とが一体成形された構成であっても、小径歯車部812を軸部814に組み付けることが可能とされている。 In addition, since the locking member 819 is a separate member that can be attached and detached, the small-diameter gear portion 812 is assembled to the shaft portion 814 even if the large-diameter gear portion 811 and the shaft portion 814 are integrally formed. It is possible.
 本実施形態のコイルばね813は円筒形状の部材であり、コイルばね813はその中空部に軸部814が挿通されることで第1減速歯車81に保持されている。コイルばね813の両端部は小径歯車部812や大径歯車部811などに固定されておらず、小径歯車部812と軸部814とが非同期に回転した場合でも、コイルばね813がねじれたり、コイルばね813が第1減速歯車81から脱落したりすることが防止されている。さらに、コイルばね813の内周面と軸部814の外周面との間には隙間が設けられており、コイルばね813が多少巻き絞られたとしてもコイルばね813は軸部814には接触しない。コイルばね813は、両端が研磨されたクローズドエンドのコイルばねであり、これによりコイルばね813の配置位置の傾きや付勢力の偏りが抑えられており、安定した閾値トルクを維持することが可能とされている。 The coil spring 813 of this embodiment is a cylindrical member, and the coil spring 813 is held by the first reduction gear 81 by inserting a shaft portion 814 through the hollow portion. Both ends of the coil spring 813 are not fixed to the small-diameter gear portion 812, the large-diameter gear portion 811 or the like, and even when the small-diameter gear portion 812 and the shaft portion 814 rotate asynchronously, the coil spring 813 is twisted or coiled. The spring 813 is prevented from falling off the first reduction gear 81. Further, a gap is provided between the inner peripheral surface of the coil spring 813 and the outer peripheral surface of the shaft portion 814, and the coil spring 813 does not contact the shaft portion 814 even if the coil spring 813 is slightly wound. . The coil spring 813 is a closed-end coil spring whose both ends are polished, whereby the inclination of the arrangement position of the coil spring 813 and the bias of the biasing force are suppressed, and a stable threshold torque can be maintained. Has been.
 また、小径歯車部812の端面のうち、下方(第1減速歯車81の軸方向中心側)に向けられた面である内側面812iのコイルばね813との対向部、および、上方(第1減速歯車81の軸方向外側)に向けられた面である外側面812eの係止部材819との対向部には、それぞれ、金属材料からなる円環形状の薄板部材である第1金属板815(第1環状板)および第2金属板816(第2環状板)が配置されている。これら第1金属板815と第2金属板816の外径は、コイルばね813の外径よりもやや大きくなるよう形成されている。 Further, of the end surface of the small-diameter gear portion 812, the inner surface 812i, which is a surface directed downward (in the axial direction center side of the first reduction gear 81), is opposed to the coil spring 813, and upward (first reduction gear). The first metal plate 815 (first metal plate 815), which is a ring-shaped thin plate member made of a metal material, is disposed on the outer surface 812e facing the locking member 819, which is a surface facing the outer side of the gear 81 in the axial direction. 1 annular plate) and a second metal plate 816 (second annular plate) are disposed. The outer diameters of the first metal plate 815 and the second metal plate 816 are formed to be slightly larger than the outer diameter of the coil spring 813.
 第1金属板815におけるコイルばね813との接触面815aの面位置は、第1金属板815近傍部における内側面812iの面位置と同一平面上に位置している。また、第2金属板816における係止部材819との接触面816aの面位置は、第2金属板816近傍部における外側面812eの面位置よりも上方に位置している。本実施形態の第1減速歯車81は、第1金属板815および第2金属板816の組み付け状態が外部から視認容易な構成とされていることにより、例えばこれらを誤って二重に組み付けてしまうような作業ミスが生じにくくされており、連結状態と連結解除状態の閾値トルクが本来の値からずれてしまうことが防止されている。尚、本実施形態は、小径歯車部812の内側面812iの面位置と第1金属板815の面位置とが同一平面上にある構成とされているが、これらの面位置は必ずしも同一平面上にある必要はない。例えば第1金属板815の面位置が内側面812iの面位置よりも下方にある構成とした場合でも、第1金属板815の組み付け状態は外部から容易に視認できるため、同様の効果を期待することができる。 The surface position of the contact surface 815a with the coil spring 813 in the first metal plate 815 is located on the same plane as the surface position of the inner surface 812i in the vicinity of the first metal plate 815. In addition, the surface position of the contact surface 816a with the locking member 819 in the second metal plate 816 is located higher than the surface position of the outer surface 812e in the vicinity of the second metal plate 816. The first reduction gear 81 of the present embodiment has a configuration in which the assembled state of the first metal plate 815 and the second metal plate 816 is easily visible from the outside. Such work mistakes are unlikely to occur, and the threshold torque in the connected state and the disconnected state is prevented from deviating from the original value. In the present embodiment, the surface position of the inner surface 812i of the small-diameter gear portion 812 and the surface position of the first metal plate 815 are on the same plane, but these surface positions are not necessarily on the same plane. There is no need to be. For example, even when the surface position of the first metal plate 815 is lower than the surface position of the inner side surface 812i, the assembled state of the first metal plate 815 can be easily visually recognized from the outside, so the same effect is expected. be able to.
 図15に示すように、第1金属板815および第2金属板816の中心穴にはDカットが施されており、そのDカット面815aおよび816aが、軸部814に設けられたDカット面814d,814eに嵌合されることにより、軸部814と、第1金属板815および第2金属板816とは周方向に一体的に回転する。 As shown in FIG. 15, D-cuts are made in the center holes of the first metal plate 815 and the second metal plate 816, and the D-cut surfaces 815 a and 816 a are provided on the shaft portion 814. By being fitted to 814d and 814e, the shaft portion 814, the first metal plate 815 and the second metal plate 816 rotate integrally in the circumferential direction.
 また、軸部814の回転中心には、軸方向に延びる貫通孔である軸穴814cが形成されている。軸部814に貫通孔が設けられることにより、樹脂からなる軸部814の形成時のヒケが抑えられ、軸部814の寸法精度が高められている。 Also, a shaft hole 814c, which is a through hole extending in the axial direction, is formed at the rotation center of the shaft portion 814. By providing the through hole in the shaft portion 814, sink marks during the formation of the shaft portion 814 made of resin are suppressed, and the dimensional accuracy of the shaft portion 814 is improved.
 第1減速歯車81は上記構成を備えることにより、軸部814と小径歯車部812とがその摩擦力で一体的に回転可能なトルクの範囲内では、小径歯車部812と大径歯車部811(および軸部814)とが周方向に一体的に回転し、上記摩擦力を超えるトルクが加えられたときには、小径歯車部812または大径歯車部811(および軸部814)いずれか一方が空転する(連結解除状態)。 Since the first reduction gear 81 has the above-described configuration, the small-diameter gear portion 812 and the large-diameter gear portion 811 (within the torque range in which the shaft portion 814 and the small-diameter gear portion 812 can rotate integrally with the frictional force thereof ( And the shaft portion 814) integrally rotate in the circumferential direction, and when a torque exceeding the frictional force is applied, either the small diameter gear portion 812 or the large diameter gear portion 811 (and the shaft portion 814) idles. (Unconnected state).
(アームの往復動作)
 図8はリンク機構40によるアーム42の往復動作を示す説明図である。図8(a)はアーム42が収納方向Bに限界まで移動した状態、図8(b)はアーム42が延出方向Aに限界まで移動した状態を示している。
(Arm reciprocation)
FIG. 8 is an explanatory view showing the reciprocating motion of the arm 42 by the link mechanism 40. 8A shows a state where the arm 42 has moved to the limit in the storage direction B, and FIG. 8B shows a state where the arm 42 has moved to the limit in the extending direction A.
 図2および図8に示すように、リンク機構40は、二つのリンク部材41(駆動リンク411および従動リンク412)と、これらリンク部材41に支持されて延出方向Aおよび収納方向Bへ往復移動するアーム42と、を有している。アーム42の延出方向A側の端部には、風向板91を回動させる駆動源である第2モータ25が配置されている。 As shown in FIGS. 2 and 8, the link mechanism 40 includes two link members 41 (a drive link 411 and a driven link 412), and is reciprocated in the extending direction A and the storage direction B supported by the link members 41. And an arm 42. A second motor 25, which is a drive source for rotating the wind direction plate 91, is disposed at the end of the arm 42 on the extending direction A side.
 駆動リンク411は、幅方向Xに貫通する円形の貫通孔411aがその先端部に形成されている。かかる貫通孔411aにアーム42の支軸422aが挿通されることで、駆動リンク411の先端部とアーム42とが互いに回転可能に連結されている。また、上でも述べたように、駆動リンク411の基端部は、基端部に形成された貫通孔411bに第2ケース半体52の支軸522が挿通されることでケース50に回転可能に支持されている。また、駆動リンク411の基端部に形成された歯車部411cは、減速歯車列30の第5減速歯車35と噛合している。 The drive link 411 is formed with a circular through hole 411a penetrating in the width direction X at the tip. By inserting the support shaft 422a of the arm 42 into the through hole 411a, the distal end portion of the drive link 411 and the arm 42 are rotatably connected to each other. Further, as described above, the base end portion of the drive link 411 can rotate to the case 50 by inserting the support shaft 522 of the second case half 52 into the through hole 411b formed in the base end portion. It is supported by. The gear portion 411 c formed at the base end portion of the drive link 411 meshes with the fifth reduction gear 35 of the reduction gear train 30.
 従動リンク412は、駆動リンク411よりも延出方向A側に配置されている。従動リンク412の先端部には、幅方向Xに貫通された円形の貫通孔412aが形成されており、貫通孔412aにアーム42の支軸422bが挿通されることで、従動リンク412の先端部とアーム42とが互いに回転可能に連結されている。また、上でも述べたように、従動リンク412の基端部は、軸体412bが第1ケース半体51および第2ケース半体52の軸受513,523に嵌合されることによりケース50に回転可能に支持されている。 The driven link 412 is arranged on the extending direction A side with respect to the drive link 411. A circular through hole 412a penetrating in the width direction X is formed at the distal end portion of the driven link 412, and the distal end portion of the driven link 412 is inserted by inserting the support shaft 422b of the arm 42 into the through hole 412a. And the arm 42 are rotatably connected to each other. Further, as described above, the base end portion of the driven link 412 is attached to the case 50 by fitting the shaft body 412b to the bearings 513 and 523 of the first case half 51 and the second case half 52. It is rotatably supported.
 本実施形態においては、第1モータ20がCW方向へ回転すると、駆動リンク411もCW方向へ回動し、アーム42は延出方向Aへと移動する、CCW方向へ回転すると、アーム42もCCW方向へ回動し、アーム42は収納方向Bへと移動する。 In the present embodiment, when the first motor 20 is rotated in the CW direction, the drive link 411 is also rotated in the CW direction, and the arm 42 is moved in the extending direction A. When the first motor 20 is rotated in the CCW direction, the arm 42 is also CCW. The arm 42 moves in the storage direction B.
 風向板91を開閉するアーム42をリンク機構40で往復移動させることにより、風向板91とアーム42の荷重を各リンク部材41(駆動リンク411および従動リンク412)に分散させることができる。これにより荷重を支持する応力が一部のみに集中することを防ぐことができ、装置全体の小型化が図られている。また、リンク機構40の摺動部はほぼその関節部のみであることから、アーム42の往復動作に伴う摺動抵抗は比較的小さなものとなる。 By reciprocating the arm 42 that opens and closes the wind direction plate 91 with the link mechanism 40, the load of the wind direction plate 91 and the arm 42 can be distributed to each link member 41 (the drive link 411 and the driven link 412). As a result, it is possible to prevent the stress supporting the load from being concentrated on only a part, and the entire apparatus is downsized. Further, since the sliding portion of the link mechanism 40 is almost only the joint portion, the sliding resistance accompanying the reciprocating motion of the arm 42 is relatively small.
 また、本実施形態の第1モータ20にはステッピングモータが用いられている。ステッピングモータは正逆両方向に回転可能であり、また、ステップ数によりその回転角度を算出することができる。よって、駆動リンク411のその時々における配置角度を検出するために別途ロータリエンコーダなどによるフィードバック制御を行う必要がない。これにより、装置全体における部品点数の削減および装置の小型化が図られている。この点は第2モータ25についても同様である。 Further, a stepping motor is used as the first motor 20 of the present embodiment. The stepping motor can rotate in both forward and reverse directions, and the rotation angle can be calculated from the number of steps. Therefore, it is not necessary to separately perform feedback control using a rotary encoder or the like in order to detect the arrangement angle of the drive link 411 at that time. Thereby, reduction of the number of parts in the whole apparatus and size reduction of the apparatus are achieved. This also applies to the second motor 25.
 また、第1ケース半体51と中板53におけるリンク機構40側の面には、リンク部材41を幅方向X(各リンク部材の間接部の軸方向)から支持するリブ511(図9参照)とリブ531(図8参照)が形成されている。リブ511およびリブ531は各リンク部材41の回動軌跡に沿ってリンク機構40側に突出した線状に延びるリブであり、各リンク部材41はリブ511およびリブ531に摺動可能に接触している。 Also, ribs 511 (see FIG. 9) that support the link member 41 from the width direction X (the axial direction of the indirect portion of each link member) on the surface of the first case half 51 and the intermediate plate 53 on the link mechanism 40 side. And ribs 531 (see FIG. 8) are formed. The rib 511 and the rib 531 are linearly extending ribs protruding toward the link mechanism 40 along the rotation trajectory of each link member 41, and each link member 41 is slidably in contact with the rib 511 and the rib 531. Yes.
 線状のリブで各リンク部材41を支持することにより、リンク機構40のガタつきが防止されるとともに、各リンク部材41との摺動抵抗が低減されている。 Supporting each link member 41 with a linear rib prevents rattling of the link mechanism 40 and reduces sliding resistance with each link member 41.
(揺動規制部)
 ルーバー装置10には、リンク機構40が所定位置まで揺動したときに、互いに当接することでリンク機構40の揺動可能範囲を規制する一対の係止部である揺動規制部が設けられている。尚、本実施形態では第1揺動規制部60および第2揺動規制部65の二種類の揺動規制部が設けられている。
(Swing restriction part)
The louver device 10 is provided with a swing restricting portion that is a pair of locking portions that restrict the swingable range of the link mechanism 40 by abutting each other when the link mechanism 40 swings to a predetermined position. Yes. In the present embodiment, two types of swing restricting portions, the first swing restricting portion 60 and the second swing restricting portion 65, are provided.
 図9は第1揺動規制部60の構造を示す説明図である。図9(a)はアーム42が収納方向Bに限界まで移動した状態、図9(b)はアーム42が延出方向Aに限界まで移動した状態を示している。尚、図9の第1ケース半体51は破線により透過表示されている。 FIG. 9 is an explanatory view showing the structure of the first swing restricting portion 60. 9A shows a state where the arm 42 has moved to the limit in the storage direction B, and FIG. 9B shows a state where the arm 42 has moved to the limit in the extending direction A. The first case half 51 in FIG. 9 is transparently displayed by a broken line.
 第1揺動規制部60は、駆動リンク411に形成された突起部61と、第1ケース半体51に形成された当たり部62とからなる。突起部61は、駆動リンク411から幅方向X(駆動リンクの間接部の軸方向)に沿って第1ケース半体51側に突出した略角筒状の係合片である。当たり部62は、リンク機構40が所定位置まで揺動したときに突起部61と当接する位置に形成されたリブ状の係合片である。当たり部62の形成位置は、リンク機構40の所望の揺動範囲に応じて適宜定めることができる。 The first swing restricting portion 60 includes a protruding portion 61 formed on the drive link 411 and a contact portion 62 formed on the first case half 51. The protrusion 61 is a substantially rectangular tube-like engagement piece that protrudes from the drive link 411 along the width direction X (the axial direction of the indirect portion of the drive link) toward the first case half 51. The contact portion 62 is a rib-like engagement piece formed at a position where the link mechanism 40 abuts on the protrusion 61 when the link mechanism 40 swings to a predetermined position. The formation position of the contact portion 62 can be determined as appropriate according to the desired swing range of the link mechanism 40.
 リンク機構40が所定位置まで揺動したときに、駆動リンク411に形成された突起部61と、第1ケース半体51に形成された当たり部62とを当接させる構成とすることにより、リンク機構40の揺動可能範囲を所望の範囲に制限することができる。また、アーム42を延出方向A側に限界まで移動させたとき(つまり突起部61と当たり部62とが当接する位置まで移動させたとき)には、突起部61と当たり部62とを介して駆動リンク411が第1ケース半体51に支えられることにより、アーム42と風向板91の荷重をさらに分散させることが可能となる。 When the link mechanism 40 is swung to a predetermined position, the projection 61 formed on the drive link 411 and the contact portion 62 formed on the first case half 51 are brought into contact with each other, whereby the link The swingable range of the mechanism 40 can be limited to a desired range. Further, when the arm 42 is moved to the limit in the extending direction A side (that is, when the arm 42 is moved to a position where the projecting portion 61 and the contact portion 62 contact each other), the projecting portion 61 and the contact portion 62 are interposed. By supporting the drive link 411 on the first case half 51, the load on the arm 42 and the wind direction plate 91 can be further dispersed.
 第2揺動規制部65は、リンク機構40の内側に向かって略L字形状に屈曲した従動リンク412の屈曲部66と、アーム42のアーム側当接部67との対向面66a,67aからなる(図8参照)。屈曲部66は、アーム42が延出方向Aにおける所定位置まで延出したときに、これら対向面66a,67aが当接する角度に屈曲している。屈曲部66の屈曲角度は、アーム42の所望の延出範囲に応じて適宜定めることができる。 The second swing restricting portion 65 is formed from opposed surfaces 66a and 67a of the bent portion 66 of the driven link 412 bent in a substantially L shape toward the inside of the link mechanism 40 and the arm side contact portion 67 of the arm 42. (See FIG. 8). The bent portion 66 is bent at an angle with which the facing surfaces 66a and 67a abut when the arm 42 extends to a predetermined position in the extending direction A. The bending angle of the bent portion 66 can be appropriately determined according to the desired extension range of the arm 42.
 図8(b)には延出方向Aへ移動したアーム42が示されている。図8(b)のアーム42は第1揺動規制部60によりその延出範囲が制限されており、第2揺動規制部65は作用していない。しかし、アーム42にさらに大きな荷重がかかり、アーム42が下方にたわんだ場合には、これら対向面66a,67aが当接することによりアーム42の移動が制限される。このように、従動リンク412がアーム42をその連結部のみならずこれら対向面66a,67aでも支えることにより、アーム42と風向板91の荷重をさらに分散させることが可能とされている。 FIG. 8B shows the arm 42 moved in the extending direction A. The extension range of the arm 42 in FIG. 8B is limited by the first swing restricting portion 60, and the second swing restricting portion 65 is not acting. However, when an even greater load is applied to the arm 42 and the arm 42 bends downward, the movement of the arm 42 is limited by the contact of the facing surfaces 66a and 67a. As described above, the driven link 412 supports the arm 42 not only at its connecting portion but also at these facing surfaces 66a and 67a, so that the load of the arm 42 and the wind direction plate 91 can be further dispersed.
 尚、本実施形態においては上記二種類の揺動規制部が設けられているが、これら揺動規制部はいずれか一方のみであっても良い。 In the present embodiment, the two types of swing restricting portions are provided, but only one of these swing restricting portions may be provided.
(サポートユニット)
 図11はサポートユニット70の内部構造を示す分解斜視図である。図12はサポートユニット70によるアーム72の往復動作を示す説明図である。サポートユニット70は駆動源を備えず、ルーバー装置10,10´の動作に追従して風向板91を支持する補助的なユニットである。
(Support unit)
FIG. 11 is an exploded perspective view showing the internal structure of the support unit 70. FIG. 12 is an explanatory view showing the reciprocating motion of the arm 72 by the support unit 70. The support unit 70 does not include a drive source, and is an auxiliary unit that supports the wind direction plate 91 following the operation of the louver devices 10, 10 ′.
 サポートユニット70は幅方向Xに分解可能な第1ケース半体711および第2ケース半体712からなるケース71を有している。ケース71にはアーム72および従動リンク73が揺動可能に支持されている。 The support unit 70 has a case 71 composed of a first case half 711 and a second case half 712 that can be disassembled in the width direction X. An arm 72 and a follower link 73 are swingably supported on the case 71.
 従動リンク73の構成および支持構造はルーバー装置10の従動リンク412と同様である。アーム72には、ルーバー装置10の第2モータ25に相当する駆動源は配置されておらず、その延出方向A側の端部に設けられた風向板接続部721に風向板91が回動可能に結合されるのみである。 The configuration and support structure of the driven link 73 are the same as the driven link 412 of the louver device 10. The arm 72 is not provided with a driving source corresponding to the second motor 25 of the louver device 10, and the wind direction plate 91 is rotated by the wind direction plate connecting portion 721 provided at the end portion in the extending direction A side. They are only combined as possible.
 アーム72の基端部には幅方向Xに沿って第2ケース半体712側に突出したピン751が形成されている。ピン751は第2ケース半体712に設けられた円弧状のカム溝752に沿って摺動するカムフォロアである。カム溝752の円弧形状は、ルーバー装置10のリンク機構40の揺動軌跡と同じ形状とされている。これによりサポートユニット70のアーム72は、ルーバー装置10,10´のアーム42と同軌跡上を往復移動可能とされている。 A pin 751 that protrudes along the width direction X toward the second case half 712 is formed at the base end of the arm 72. The pin 751 is a cam follower that slides along an arcuate cam groove 752 provided in the second case half 712. The arc shape of the cam groove 752 is the same as the swing locus of the link mechanism 40 of the louver device 10. Thereby, the arm 72 of the support unit 70 can reciprocate on the same locus as the arm 42 of the louver device 10, 10 ′.
 サポートユニット70の幅方向Xの幅はルーバー装置10,10´よりも小さく、空調機の風路を妨げない構成とされている。本実施形態においては、サポートユニット70が用いられていることにより、風向板91がその自重や風圧によりたわむことが防止されている。 The width of the support unit 70 in the width direction X is smaller than that of the louver devices 10 and 10 ', and the air path of the air conditioner is not obstructed. In the present embodiment, the use of the support unit 70 prevents the wind direction plate 91 from being bent by its own weight or wind pressure.
(ルーバー装置の他の実施形態)
 以下に、本発明の他の実施形態にかかるルーバー装置11について図面を用いて説明する。なお、以下の説明では、先の実施形態と同様または同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。
(Other embodiment of louver device)
Hereinafter, a louver device 11 according to another embodiment of the present invention will be described with reference to the drawings. In the following description, components having the same or the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
 図13はルーバー装置11におけるアーム42の往復動作を示す説明図である。図11(a)はアーム42が収納方向Bに限界まで移動した状態、図13(b)はアーム42が延出方向Aに限界まで移動した状態を示している。 FIG. 13 is an explanatory view showing the reciprocating motion of the arm 42 in the louver device 11. 11A shows a state where the arm 42 has moved to the limit in the storage direction B, and FIG. 13B shows a state where the arm 42 has moved to the limit in the extending direction A.
 ルーバー装置11には、コイルばねである制動ばね95によりアーム42を制動する制動機構が設けられている。本実施形態における制動ばね95は、駆動リンク411と従動リンク412とに接続され、アーム42が延出方向Aに移動したときに、その弾性力により従動リンク412を収納方向B側に付勢することで、アーム42の延出方向Aへの移動を制動するものである。 The louver device 11 is provided with a braking mechanism that brakes the arm 42 by a braking spring 95 that is a coil spring. The brake spring 95 in this embodiment is connected to the drive link 411 and the driven link 412, and when the arm 42 moves in the extending direction A, the driven link 412 is urged toward the storage direction B by its elastic force. Thus, the movement of the arm 42 in the extending direction A is braked.
 アーム42を延出方向Aに移動させるときには、アーム42と風向板91の荷重によりアーム42は延出方向A側に付勢される。特に風向板91が大風量の風圧を受けているような場合には、その付勢力はさらに大きなものとなる。これにより風向板91の開閉動作の安定性が損なわれるおそれや、第1モータ20の動力伝達部材が損傷するおそれ、第1モータ20が脱調を生じるおそれがある。各リンク部材41を制動ばね95でつなぎ、アーム42の延出方向Aへの移動をその弾性力で制動することにより、このような不具合を未然に防ぐことが可能とされている。 When moving the arm 42 in the extending direction A, the arm 42 is urged toward the extending direction A by the load of the arm 42 and the wind direction plate 91. In particular, when the wind direction plate 91 is receiving a large amount of wind pressure, the urging force is further increased. This may impair the stability of the opening / closing operation of the wind direction plate 91, may damage the power transmission member of the first motor 20, and may cause the first motor 20 to step out. By connecting each link member 41 with a brake spring 95 and braking the movement of the arm 42 in the extending direction A with its elastic force, it is possible to prevent such a problem in advance.
 尚、制動ばね95の接続対象は駆動リンク411と従動リンク412とに限られず、ケース50とリンク機構40の一部とを連結しても同様の効果を得ることができる。 Note that the connection target of the brake spring 95 is not limited to the drive link 411 and the driven link 412, and the same effect can be obtained by connecting the case 50 and a part of the link mechanism 40.
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
 例えば、本実施形態におけるリンク機構40では、リンク機構によるアーム部材の往復移動を最小の部品点数で実現すべく四節リンク機構を採用しているが、リンク部材の数をさらに増やしてアーム部材のより複雑な動作を可能にしても良い。 For example, in the link mechanism 40 according to the present embodiment, a four-bar linkage mechanism is employed in order to realize the reciprocating movement of the arm member by the link mechanism with a minimum number of parts. More complex operations may be possible.
10,10´ ルーバー装置、11 他の実施形態にかかるルーバー装置、20 第1モータ(第1駆動源)、25 第2モータ、251 ピニオンギヤ、30 減速歯車列、31,81 第1減速歯車(歯車部材(過負荷保護機構))、311 小径歯車部(固定歯車)、311a 軸穴、311b 凹部、311d ガイド部、312 大径歯車部(クラッチ歯車)、312a 突条部、312i,812i 内側面、312e,812e 外側面、313,813 コイルばね(弾性部材)、314,814 軸部(共通の軸体)、314a,814a 鉤部、314b 拡径部(係止部)、314c,814c 軸穴、315,815 第1金属板(第1環状板)、316,816 第2金属板(第2環状板)、317,817 連結部、361 第1減速歯車の支軸、811 大径歯車部(固定歯車)、812 小径歯車部(クラッチ歯車)、819 係止部材(係止部)、819a 軸穴、819b 凹部、40 リンク機構、41 リンク部材、411 駆動リンク、412 従動リンク、42 アーム(中間リンク)、50 ケース(固定部)、70 サポートユニット、91 風向板、A 延出方向、B 収納方向 10, 10 'louver device, 11 louver device according to another embodiment, 20 first motor (first drive source), 25 second motor, 251 pinion gear, 30 reduction gear train, 31, 81 first reduction gear (gear) Member (overload protection mechanism), 311 small gear part (fixed gear), 311a shaft hole, 311b recess, 311d guide part, 312 large gear part (clutch gear), 312a protrusion, 312i, 812i inner surface, 312e, 812e outer surface, 313, 813 coil spring (elastic member), 314, 814 shaft (common shaft body), 314a, 814a collar, 314b expanded diameter portion (locking portion), 314c, 814c shaft hole, 315, 815 First metal plate (first annular plate), 316, 816 Second metal plate (second annular plate), 317, 817 , 361, first reduction gear support shaft, 811 large diameter gear portion (fixed gear), 812 small diameter gear portion (clutch gear), 819 locking member (locking portion), 819a shaft hole, 819b recess, 40 link mechanism , 41 link member, 411 drive link, 412 driven link, 42 arm (intermediate link), 50 case (fixed part), 70 support unit, 91 wind direction plate, A extension direction, B storage direction

Claims (24)

  1.  第1駆動源と、
     板状部材である風向板を支持するアーム部材と、
     前記第1駆動源の駆動力を直接または他の部材を介して前記アーム部材に伝達する減速歯車列と、を有するルーバー装置であって、
     前記減速歯車列は、所定の閾値を超えるトルクが印加されたときに空転により伝達トルクを抑制する過負荷保護機構を備えた歯車部材を有しており、
     前記歯車部材は、共通の軸体に配置された固定歯車およびクラッチ歯車を有し、
     前記固定歯車は前記軸体と常に周方向に一体的に回転し、
     前記クラッチ歯車はその軸穴に前記軸体が挿通されており、前記クラッチ歯車と前記軸体とは、前記歯車部材に印加されるトルクが所定の閾値以下にあるときは、周方向へ一体的に回転する連結状態にあり、前記歯車部材に所定の閾値を超えるトルクが印加されたときには、いずれか一方が空転する連結解除状態になることを特徴とするルーバー装置。
    A first drive source;
    An arm member that supports a wind direction plate that is a plate-shaped member;
    A reduction gear train that transmits the driving force of the first drive source to the arm member directly or via another member,
    The reduction gear train has a gear member having an overload protection mechanism that suppresses transmission torque by idling when a torque exceeding a predetermined threshold is applied;
    The gear member has a fixed gear and a clutch gear arranged on a common shaft body,
    The fixed gear always rotates integrally with the shaft body in the circumferential direction,
    The clutch gear has the shaft body inserted through a shaft hole, and the clutch gear and the shaft body are integrated in the circumferential direction when the torque applied to the gear member is equal to or less than a predetermined threshold value. The louver device is in a connected release state in which one of the gear members is idled when a torque exceeding a predetermined threshold is applied to the gear member.
  2.  前記連結状態にある前記クラッチ歯車および前記軸体は、該クラッチ歯車および該軸体の間に直接または他の部材を介して作用する摩擦力により周方向へ一体的に回転することを特徴とする請求項1に記載のルーバー装置。 The clutch gear and the shaft body in the connected state are integrally rotated in the circumferential direction by a frictional force acting directly or via another member between the clutch gear and the shaft body. The louver device according to claim 1.
  3.  前記歯車部材はさらに弾性部材を有し、
     前記弾性部材は、前記固定歯車と前記クラッチ歯車との間に配置され、該固定歯車と該クラッチ歯車とを前記軸体の軸方向に沿って互いに反対方向に付勢しており、
     前記クラッチ歯車は、前記弾性部材に前記軸方向に付勢されることにより、前記軸体と前記連結状態になることを特徴とする請求項1に記載のルーバー装置。
    The gear member further includes an elastic member,
    The elastic member is disposed between the fixed gear and the clutch gear, and urges the fixed gear and the clutch gear in opposite directions along the axial direction of the shaft body,
    2. The louver device according to claim 1, wherein the clutch gear is connected to the shaft body by being urged by the elastic member in the axial direction.
  4.  前記軸体のその軸方向における前記クラッチ歯車側の端部には、前記クラッチ歯車の軸穴の径よりも大きな外径を有する係止部が設けられており、
     前記クラッチ歯車は、前記弾性部材により前記係止部側へ付勢されるとともに、前記係止部によりその方向への移動が係止されることにより、前記軸体における軸方向の配置位置が決められており、
     前記係止部と前記クラッチ歯車との対向面は、前記軸体と前記クラッチ歯車とを前記連結状態とする連結部を構成していることを特徴とする請求項3に記載のルーバー装置。
    A locking portion having an outer diameter larger than the diameter of the shaft hole of the clutch gear is provided at the end of the shaft body on the clutch gear side in the axial direction thereof.
    The clutch gear is urged toward the locking portion by the elastic member, and movement in that direction is locked by the locking portion, thereby determining an axial position of the shaft body. And
    The louver device according to claim 3, wherein a facing surface between the locking portion and the clutch gear constitutes a connecting portion that brings the shaft body and the clutch gear into the connected state.
  5.  前記係止部は前記軸体自体の外径が大きくされた拡径部により構成されることを特徴とする請求項4に記載のルーバー装置。 The louver device according to claim 4, wherein the locking portion is constituted by an enlarged diameter portion in which the outer diameter of the shaft body itself is increased.
  6.  前記軸体のその軸方向における前記固定歯車側の端部には、前記軸体から径方向外側に延出した鉤部が形成され、
     前記固定歯車は、前記軸体および前記鉤部を挿通可能な軸穴を有し、
     前記固定歯車の端面のうち前記弾性部材側となる面の反対側の面には、前記軸穴に挿通後の前記鉤部が嵌合される凹部が形成されており、
     前記固定歯車は、前記弾性部材により前記鉤部側へ付勢されるとともに、該鉤部によりその方向への移動が係止されることにより、前記軸体における軸方向の配置位置が決められており、
     前記鉤部と、前記鉤部が嵌合された前記凹部とが周方向に互いに係合することにより、前記軸体および前記固定歯車は周方向に一体的に回転することを特徴とする請求項3に記載のルーバー装置。
    A flange portion extending radially outward from the shaft body is formed at an end of the shaft body on the fixed gear side in the axial direction,
    The fixed gear has a shaft hole into which the shaft body and the flange can be inserted,
    Of the end surface of the fixed gear, a surface opposite to the surface on the elastic member side is formed with a recess into which the flange portion is inserted into the shaft hole.
    The fixed gear is urged toward the flange by the elastic member, and the movement in that direction is locked by the flange, whereby the axial position of the shaft body is determined. And
    The shaft body and the fixed gear rotate integrally in the circumferential direction when the collar portion and the concave portion in which the collar portion is fitted are engaged with each other in the circumferential direction. 4. The louver device according to 3.
  7.  前記固定歯車は前記軸体と一体成形されていることを特徴とする請求項1に記載のルーバー装置。 The louver device according to claim 1, wherein the fixed gear is integrally formed with the shaft body.
  8.  前記固定歯車は前記軸体と一体成形されており、
     前記係止部は前記軸体とは別体の係止部材により構成されており、
     前記軸体のその軸方向における前記クラッチ歯車側の端部には、前記軸体から径方向外側に延出した鉤部が形成され、
     前記係止部材は、前記軸体および前記鉤部を挿通可能な軸穴を有し、
     前記係止部材の端面のうち前記クラッチ歯車側となる面の反対側の面には、前記軸穴に挿通後の前記鉤部が嵌合される凹部が形成されており、
     前記係止部材は、前記弾性部材により前記クラッチ歯車を介して前記鉤部側へ付勢されるとともに、該鉤部によりその方向への移動が係止されることにより、前記軸体における軸方向の配置位置が決められており、前記鉤部と、前記鉤部が嵌合された前記凹部とが周方向に互いに係合することにより、前記軸体における周方向の配置位置が決められていることを特徴とする請求項4に記載のルーバー装置。
    The fixed gear is integrally formed with the shaft body,
    The locking portion is constituted by a locking member separate from the shaft body,
    An end portion of the shaft body on the side of the clutch gear in the axial direction is formed with a flange extending radially outward from the shaft body,
    The locking member has a shaft hole into which the shaft body and the flange portion can be inserted,
    On the opposite surface of the end surface of the locking member to the clutch gear side, a recess is formed in which the flange portion is inserted into the shaft hole.
    The locking member is urged toward the flange portion by the elastic member via the clutch gear, and the movement in the direction is locked by the flange portion, whereby the axial direction of the shaft body The arrangement position in the circumferential direction of the shaft body is determined by engaging the flange part and the concave part fitted with the flange part in the circumferential direction. The louver device according to claim 4.
  9.  前記弾性部材は円筒形状の部材であり、該弾性部材の中空部には前記軸体が挿通されていることを特徴とする請求項3に記載のルーバー装置。 4. The louver device according to claim 3, wherein the elastic member is a cylindrical member, and the shaft is inserted into a hollow portion of the elastic member.
  10.  前記クラッチ歯車の端面のうち、前記歯車部材の軸方向中心側に向けられた面を前記クラッチ歯車の内側面としたときに、
     前記クラッチ歯車の前記内側面における前記弾性部材との対向部と、前記弾性部材との間には、前記弾性部材の外径と同等もしくは該外径よりも大きな外径を有する第1環状板が配置されていることを特徴とする請求項9に記載のルーバー装置。
    Of the end faces of the clutch gear, when the face directed toward the axial center of the gear member is the inner face of the clutch gear,
    A first annular plate having an outer diameter equal to or larger than the outer diameter of the elastic member is provided between the elastic member and the facing portion of the clutch gear facing the elastic member. The louver device according to claim 9, wherein the louver device is arranged.
  11.  前記第1環状板の前記弾性部材との接触面の面位置は、前記第1環状板の近傍における、前記クラッチ歯車の前記内側面の面位置と等しいか、または、該内側面の面位置よりも前記歯車部材の軸方向中心側に位置していることを特徴とする請求項10に記載のルーバー装置。 The surface position of the contact surface of the first annular plate with the elastic member is equal to the surface position of the inner surface of the clutch gear in the vicinity of the first annular plate, or from the surface position of the inner surface. The louver device according to claim 10, wherein the louver device is also located on the axial center side of the gear member.
  12.  前記弾性部材は円筒形状の部材であり、該弾性部材の中空部には前記軸体が挿通されおり、
     前記クラッチ歯車の端面のうち、前記歯車部材の軸方向外側に向けられた面を前記クラッチ歯車の外側面としたときに、
     前記クラッチ歯車の前記外側面における前記係止部との対向部と、前記係止部との間には、前記弾性部材の外径と同等もしくは該外径よりも大きな外径を有する第2環状板が配置されていることを特徴とする請求項4に記載のルーバー装置。
    The elastic member is a cylindrical member, and the shaft body is inserted through a hollow portion of the elastic member,
    Of the end faces of the clutch gear, when the face directed outward in the axial direction of the gear member is the outer face of the clutch gear,
    A second annular member having an outer diameter equal to or larger than the outer diameter of the elastic member between the engaging portion on the outer side surface of the clutch gear and the engaging portion. The louver device according to claim 4, wherein a plate is arranged.
  13.  前記第2環状板の前記係止部との接触面の面位置は、前記第2環状板の近傍における、前記クラッチ歯車の前記外側面の面位置と等しいか、または、該外側面の面位置よりも前記歯車部材の軸方向外側に位置していることを特徴とする請求項12に記載のルーバー装置。 The surface position of the contact surface of the second annular plate with the locking portion is equal to the surface position of the outer surface of the clutch gear in the vicinity of the second annular plate, or the surface position of the outer surface. The louver device according to claim 12, wherein the louver device is located on the outer side in the axial direction of the gear member.
  14.  前記弾性部材は円筒形状の部材であり、該弾性部材の中空部には前記軸体が挿通されおり、
     前記クラッチ歯車の端面のうち、前記歯車部材の軸方向外側に向けられた面を前記クラッチ歯車の外側面としたときに、
     前記クラッチ歯車の前記外側面における前記係止部との対向部と、前記係止部との間には、前記弾性部材の外径と同等もしくは該外径よりも大きな外径を有する第2環状板が配置されており、
     前記第1環状板および前記第2環状板は、前記クラッチ歯車が樹脂材料からなるときは金属材料からなり、前記クラッチ歯車が金属材料からなるときは樹脂材料からなることを特徴とする請求項10に記載のルーバー装置。
    The elastic member is a cylindrical member, and the shaft body is inserted through a hollow portion of the elastic member,
    Of the end faces of the clutch gear, when the face directed outward in the axial direction of the gear member is the outer face of the clutch gear,
    A second annular member having an outer diameter equal to or larger than the outer diameter of the elastic member between the engaging portion on the outer side surface of the clutch gear and the engaging portion. The board is placed,
    11. The first annular plate and the second annular plate are made of a metal material when the clutch gear is made of a resin material, and made of a resin material when the clutch gear is made of a metal material. The louver device described in 1.
  15.  前記クラッチ歯車の前記第1環状板との接触部には、該第1環状板の外径と同等もしくは該外径よりも小さな外径を有する同心円状の突条部が形成されていることを特徴とする請求項10に記載のルーバー装置。 The contact portion of the clutch gear with the first annular plate is formed with a concentric ridge having an outer diameter equal to or smaller than the outer diameter of the first annular plate. The louver device according to claim 10.
  16.  前記クラッチ歯車の前記第2環状板側との接触部には、該第2環状板の外径と同等もしくは該外径よりも小さな外径を有する同心円状の突条部が形成されていることを特徴とする請求項12に記載のルーバー装置。 A concentric ridge having an outer diameter equal to or smaller than the outer diameter of the second annular plate is formed at the contact portion of the clutch gear with the second annular plate side. The louver device according to claim 12.
  17.  前記固定歯車における前記弾性部材側の端面には、該端面から前記弾性部材側に延出する筒状のガイド部が形成され、
     前記弾性部材の前記固定歯車側の端部は、前記ガイド部の内側に配置され、
     前記弾性部材の内周面と前記軸体の外周面との間には隙間が設けられていることを特徴とする請求項9に記載のルーバー装置。
    A cylindrical guide portion extending from the end surface to the elastic member side is formed on the end surface of the fixed gear on the elastic member side,
    An end portion of the elastic member on the fixed gear side is disposed inside the guide portion,
    The louver device according to claim 9, wherein a gap is provided between an inner peripheral surface of the elastic member and an outer peripheral surface of the shaft body.
  18.  前記弾性部材はコイルばねであることを特徴とする請求項9に記載のルーバー装置。 The louver device according to claim 9, wherein the elastic member is a coil spring.
  19.  前記軸体の回転中心には、軸方向に延びる貫通孔である軸穴が形成されていることを特徴とする請求項1に記載のルーバー装置。 2. A louver device according to claim 1, wherein a shaft hole, which is a through hole extending in the axial direction, is formed at the rotation center of the shaft body.
  20.  前記軸体の前記軸穴に挿通される支軸は、前記第1駆動源に固定されていることを特徴とする請求項19に記載のルーバー装置。 The louver device according to claim 19, wherein a support shaft inserted through the shaft hole of the shaft body is fixed to the first drive source.
  21.  前記歯車部材は、前記第1駆動源のピニオンギヤと噛合していることを特徴とする請求項1に記載のルーバー装置。 2. The louver device according to claim 1, wherein the gear member meshes with a pinion gear of the first drive source.
  22.  前記歯車部材の前記固定歯車は、前記第1駆動源のピニオンギヤと噛合していることを特徴とする請求項7に記載のルーバー装置。 The louver device according to claim 7, wherein the fixed gear of the gear member meshes with a pinion gear of the first drive source.
  23.  前記第1駆動源の駆動力により揺動するリンク機構と、
     前記リンク機構を収容可能な固定部と、をさらに備え、
     前記第1駆動源は正逆両方向に回転可能なモータであり、
     前記リンク機構は、複数のリンク部材と、これらリンク部材に支持されて延出方向および収納方向へ往復移動する前記アーム部材と、を有し、
     前記複数のリンク部材は、前記第1駆動源により駆動される駆動リンクと、該駆動リンクの動作に前記アーム部材を介して追従する従動リンクと、を有し、
     前記駆動リンクの基端側には歯車部が形成され、
     前記駆動リンクは、その先端側が前記アーム部材に、基端側の前記歯車部が前記減速歯車列を介して前記第1駆動源に連結され、
     前記従動リンクは、その先端側が前記アーム部材に、基端側が前記固定部に連結され、
     前記アーム部材の前記延出方向の側端部には、前記風向板が回動可能に連結されることを特徴とする請求項1に記載のルーバー装置。
    A link mechanism that swings by the driving force of the first driving source;
    A fixing portion capable of accommodating the link mechanism;
    The first drive source is a motor that can rotate in both forward and reverse directions,
    The link mechanism includes a plurality of link members and the arm member supported by these link members and reciprocating in the extending direction and the storing direction.
    The plurality of link members include a drive link driven by the first drive source, and a driven link that follows the operation of the drive link via the arm member,
    A gear portion is formed on the base end side of the drive link,
    The drive link has a distal end side connected to the arm member, and a base end side gear portion connected to the first drive source via the reduction gear train,
    The driven link has a distal end side connected to the arm member and a proximal end side connected to the fixed portion.
    The louver device according to claim 1, wherein the wind direction plate is rotatably connected to a side end portion of the arm member in the extending direction.
  24.  前記リンク機構は前記アーム部材を中間リンクとする四節リンク機構であり、
     前記従動リンクは前記駆動リンクよりも前記延出方向側に配置されていることを特徴とする請求項23に記載のルーバー装置。
    The link mechanism is a four-bar link mechanism having the arm member as an intermediate link,
    The louver device according to claim 23, wherein the driven link is disposed on the extension direction side of the drive link.
PCT/JP2016/078176 2015-09-29 2016-09-26 Louver device WO2017057229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680053002.4A CN108027163B (en) 2015-09-29 2016-09-26 Air deflector device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-191803 2015-09-29
JP2015191803 2015-09-29
JP2016-005575 2016-01-14
JP2016005575 2016-01-14
JP2016-041397 2016-03-03
JP2016041397A JP6698382B2 (en) 2015-09-29 2016-03-03 Louver device

Publications (1)

Publication Number Publication Date
WO2017057229A1 true WO2017057229A1 (en) 2017-04-06

Family

ID=58427450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078176 WO2017057229A1 (en) 2015-09-29 2016-09-26 Louver device

Country Status (1)

Country Link
WO (1) WO2017057229A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210156590A1 (en) * 2019-11-22 2021-05-27 Samsung Electronics Co., Ltd. Air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785145U (en) * 1980-11-14 1982-05-26
JPH06129707A (en) * 1992-10-16 1994-05-13 Toyotomi Co Ltd Outlet structure for air-conditioning machine
JPH09210174A (en) * 1996-02-02 1997-08-12 Kato Spring Seisakusho:Kk Torque limitter
JP2006316844A (en) * 2005-05-11 2006-11-24 Toyo Valve Co Ltd Spring return type electric actuator
US20070170385A1 (en) * 2004-03-19 2007-07-26 Belimo Automation Ag Reduction gearing for an electric actuator
JP2007303802A (en) * 2006-04-14 2007-11-22 Nidec Sankyo Corp Motor actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785145U (en) * 1980-11-14 1982-05-26
JPH06129707A (en) * 1992-10-16 1994-05-13 Toyotomi Co Ltd Outlet structure for air-conditioning machine
JPH09210174A (en) * 1996-02-02 1997-08-12 Kato Spring Seisakusho:Kk Torque limitter
US20070170385A1 (en) * 2004-03-19 2007-07-26 Belimo Automation Ag Reduction gearing for an electric actuator
JP2006316844A (en) * 2005-05-11 2006-11-24 Toyo Valve Co Ltd Spring return type electric actuator
JP2007303802A (en) * 2006-04-14 2007-11-22 Nidec Sankyo Corp Motor actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210156590A1 (en) * 2019-11-22 2021-05-27 Samsung Electronics Co., Ltd. Air conditioner
US11585569B2 (en) * 2019-11-22 2023-02-21 Samsung Electronics Co., Ltd. Air conditioner

Similar Documents

Publication Publication Date Title
JP6698382B2 (en) Louver device
US9902324B2 (en) Actuator mechanism for an adjustment device of a wing mirror and clutch assembly thereof
KR102253005B1 (en) Driving Module for Head-UP Display Device
JP5364463B2 (en) Webbing take-up device
US20080297927A1 (en) Vehicle outside mirror device
WO2016158500A1 (en) Electric retractable viewing device for vehicle
WO2018055749A1 (en) Louver device
WO2017057229A1 (en) Louver device
JP6609150B2 (en) Louver device
US20120279335A1 (en) Actuator
JPWO2008056766A1 (en) Lens drive device
US8567277B2 (en) Transmission device
US11885963B2 (en) Head-up display device
JP6727857B2 (en) Case body and louver device including the same
US20110061480A1 (en) Quick-release mechanism of an actuator
WO2021010367A1 (en) Orientation adjustment device for module component
US6533425B1 (en) Retractable rear-view mirror for motor vehicles
JP2009080248A (en) Lens driving device
JP5061914B2 (en) Swing register
US6893092B1 (en) Inertia increasing vehicle seat adjustment mechanism
US10385910B2 (en) Steering gear for boats
JP4652313B2 (en) Lens drive device
JP2005337333A (en) Gear with torque limiter mechanism
JP4418637B2 (en) Screw feeding mechanism and optical space transmission device
JP2014046854A (en) Webbing taking-up device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851400

Country of ref document: EP

Kind code of ref document: A1