WO2017057014A1 - Optical measurement device and method - Google Patents

Optical measurement device and method Download PDF

Info

Publication number
WO2017057014A1
WO2017057014A1 PCT/JP2016/077223 JP2016077223W WO2017057014A1 WO 2017057014 A1 WO2017057014 A1 WO 2017057014A1 JP 2016077223 W JP2016077223 W JP 2016077223W WO 2017057014 A1 WO2017057014 A1 WO 2017057014A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
irradiation
guide plate
unit
wavelength band
Prior art date
Application number
PCT/JP2016/077223
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 鳥海
信一郎 五味
中村 憲一郎
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017057014A1 publication Critical patent/WO2017057014A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present technology relates to an optical measurement apparatus and method, and more particularly, to an optical measurement apparatus and method that can measure a component value of an object more accurately.
  • the reflected light is received by the photodetector, and it is difficult to measure the two-dimensional distribution of the reflected light. For this reason, it has been difficult to suppress variations in measured values caused by uneven distribution of terminal saccharification products.
  • This technology has been proposed in view of such a situation, and aims to more accurately measure the component value of an object.
  • An optical measurement device includes a light emitting unit that emits irradiation light that irradiates an object and includes a predetermined irradiation wavelength band, and the irradiation light emitted from the light emitting unit is received by the side surface and is internally received.
  • a light guide plate that is diffused in a substantially uniform range from the irradiation surface that is wider than the side surface to a predetermined range of the surface of the object, and the irradiation light that is irradiated to the surface of the object through the light guide plate
  • the surface reflected light reflected without substantially wavelength shift on the surface of the object, and the irradiation light irradiated on the surface of the object through the light guide plate is a predetermined excitation wavelength from the irradiation wavelength band inside the object.
  • the optical measuring device includes a light receiving unit that receives the internally reflected light reflected by shifting to the band and receives the light by a plurality of pixels and measures the amount of received light.
  • the irradiation wavelength band may be a near ultraviolet wavelength band, and the light emitting unit may emit light in the near ultraviolet wavelength band or white light as the irradiation light.
  • the light guide plate may include a plurality of the side surfaces.
  • the plurality of light emitting units may be arranged to emit the irradiation light toward the plurality of side surfaces of the light guide plate.
  • a measuring unit that measures the amount of the irradiation light emitted from the light emitting unit can be further provided.
  • the detection unit may be disposed at a position facing the light emitting unit with the light guide plate interposed therebetween.
  • a plurality of the light emitting units are arranged to emit the irradiation light toward a plurality of the side surfaces of the light guide plate, and one or a plurality of the detection units sandwich a part of the light guide plate and a part of the light emitting unit Or it can be made to arrange
  • the light receiving unit may include an image sensor that photoelectrically converts received light.
  • the light receiving unit may include a pixel including a first filter that transmits light in the irradiation wavelength band and a pixel including a second filter that transmits light in the excitation wavelength band. it can.
  • a filter that reflects the light in the irradiation wavelength band and transmits the light in the excitation wavelength band may be further provided on a part of the surface of the light guide plate that faces the irradiation surface.
  • the lens array may be further provided between the light guide plate and the light receiving unit, and forms an image of the surface reflected light and the internal reflected light in proximity to the pixels of the light receiving unit.
  • Each lens of the lens array can have a lens diameter and a focal length corresponding to the distance from the surface of the object to the light receiving unit.
  • a calculation unit for obtaining a predetermined component value in the object by using measurement data of the surface reflection light and the internal reflection light obtained in the light receiving unit may be further provided.
  • Another light emitting unit that emits white light toward the gap between the object formed by the alignment unit and the light guide plate, and an image processing unit that performs image processing on measurement data obtained in the light receiving unit
  • the light receiving unit may further receive reflected light of the white light emitted from the other light emitting unit reflected by the surface of the object, and the image processing unit is obtained in the light receiving unit. It is possible to generate a normal captured image by processing the measurement data of the reflected light.
  • a calculation unit for obtaining a propagation optical path length wherein the light receiving unit further receives near-infrared reflected light reflected by the object from the near-infrared light emitted by the other light-emitting unit, and The calculation unit may obtain the propagation optical path length using data of the near-infrared reflected light received by the light receiving unit.
  • a stop for limiting the irradiation direction of the near-infrared light emitted from the other light emitting unit can be further provided.
  • a reflection film that reflects light may be further provided on a part of the surface of the light guide plate that faces the irradiation surface.
  • the optical measurement method emits irradiation light that irradiates an object and includes a predetermined irradiation wavelength band, receives the irradiation light on a side surface, diffuses the light inside, and wider than the side surface.
  • irradiation light that irradiates an object and includes a predetermined irradiation wavelength band is emitted, and the irradiation light is received by the side surface and diffused inside.
  • internally reflected light that is reflected by the irradiation light irradiated onto the surface of the object through the light guide plate shifted from the irradiation wavelength band to the predetermined excitation wavelength band inside the object is received by a plurality of pixels and The amount of received light is measured.
  • measurement using light can be performed.
  • the component value of the object can be measured more accurately.
  • First Embodiment> ⁇ AGEs measuring instrument>
  • AGEs Advanced Glycation Endproducts
  • FIG. 1 there has been an apparatus for measuring glycation end products (AGEs (Advanced Glycation Endproducts)) by irradiating an object with light and receiving reflected light.
  • the AGEs measuring instrument shown in Fig. 1 irradiates light on the surface of the human body (arm), which is an object placed on the upper part of the device, and measures advanced glycation end products (AGEs) from the reflected light. To do.
  • This AGEs measuring instrument has an LED (Light Emitting Diode) that emits near-ultraviolet light, as shown in FIG. 2, and irradiates the arm shown in FIG. 1 with the near-ultraviolet light emitted by the LED.
  • the AGEs measuring instrument consists of a light-receiving filter (surface reflection) that transmits surface reflected light that is reflected by the surface of the arm of irradiated near-ultraviolet light, and a photodetector (PD) that receives surface reflected light that has passed through the light-receiving filter. (Photo Detector) (surface reflection)).
  • the AGEs measuring instrument has a light receiving filter (internal reflection) that transmits the internally reflected light that is reflected by the irradiated near-ultraviolet light inside the arm, and a photodetector (PD) that receives the internally reflected light that has passed through the light receiving filter. (Internal reflection)).
  • a light receiving filter internal reflection
  • PD photodetector
  • the LED emits near-ultraviolet light in a wavelength range as shown in FIG. 3 (mainly in an irradiation wavelength band (for example, about 330 nm to about 420 nm (also referred to as a near-ultraviolet wavelength band)).
  • This near-ultraviolet light is reflected on the surface of the arm without substantially shifting the wavelength. That is, the main wavelength component of the surface reflected light remains the irradiation wavelength band (near ultraviolet wavelength band).
  • the light receiving filter surface reflection
  • transmits light in a predetermined wavelength band (light receiving filter band (surface reflection) (for example, about 360 nm to about 390 nm) included in the irradiation wavelength band. That is, PD (surface reflection) receives light (surface reflection light) of the light receiving filter band (surface reflection).
  • the wavelength shifts from the irradiation wavelength band to the excitation wavelength band (for example, about 420 nm to about 580 nm (also referred to as a blue-green wavelength band)). That is, the main wavelength component of the internally reflected light is the excitation wavelength band (blue-green wavelength band).
  • the light receiving filter surface reflection
  • transmits light in a predetermined wavelength band (light receiving filter band (internal reflection) (for example, about 430 nm to about 560 nm)) included in the excitation wavelength band. That is, PD (internal reflection) receives light (internal reflection light) of the light receiving filter band (internal reflection).
  • the AGEs measuring instrument calculates the AGE value using the measured values of the external reflection light and internal reflection light received by these PDs. Therefore, the external reflection light received by the PD and the arm portion reflected by the internal reflection light are the photometric range, that is, the range for obtaining the AGE value. Naturally, this photometric range is narrower than the irradiation range in which the LED emits near-ultraviolet light. When the photometric range is narrow, it is difficult to suppress variations in measured values due to uneven distribution of glycation end products.
  • a light emitting unit that emits irradiation light that irradiates an object and includes a predetermined irradiation wavelength band, and irradiation light emitted from the light emitting unit is received by the side surface and diffused inside
  • a light guide plate that irradiates a predetermined area of the surface of the object substantially uniformly from an irradiation surface having a larger area than the side surface thereof, and the irradiation light applied to the surface of the object through the light guide plate is substantially on the surface of the object.
  • a light receiving unit that receives light by a plurality of pixels and measures the amount of received light.
  • irradiation light that irradiates the object and includes a predetermined irradiation wavelength band
  • receives the irradiation light on the side surface diffuses it inside, and extends from the irradiation surface wider than the side surface to a predetermined range on the surface of the object
  • Light reflected from the surface of the object through the light guide plate that irradiates substantially uniformly and reflected from the surface of the object without substantially shifting the wavelength, and irradiation of the surface of the object through the light guide plate
  • the internally reflected light which is reflected by shifting the light from the irradiation wavelength band to the predetermined excitation wavelength band inside the object, is received by a plurality of pixels and the amount of received light is measured.
  • the irradiation range of the irradiated light on the object can be easily enlarged substantially uniformly.
  • the component values can be measured as a two-dimensional distribution. Therefore, the distribution of the component values can be integrated and averaged, and the component value error caused by the uneven distribution can be reduced. That is, the component value of the object can be measured more accurately. Further, more various information can be output using the two-dimensional distribution of measured component values.
  • the light guide plate it is possible to easily realize a reduction in height and to suppress an increase in the light emitting portion, and thus it is possible to more easily realize downsizing of the housing. As a result, other functions can be installed.
  • FIG. 4 is a diagram illustrating a main configuration example of a body composition measuring instrument which is an example of an electronic apparatus which is an embodiment of an optical measuring device to which the present technology is applied.
  • the body composition measuring instrument 100 shown in FIG. 4 is an electronic device that measures the weight and body fat percentage of a user, which is an example of an object.
  • the body composition measuring device 100 measures the advanced glycation end products (AGEs) contained in the user's body using light.
  • AGEs advanced glycation end products
  • FIG. 4 is an external view showing a main configuration example of the upper surface of the body composition measuring instrument 100.
  • the body composition measuring instrument 100 measures the weight and body fat percentage of a user who rides (for example, stands) on the upper surface, and calculates an AGE value that is a parameter relating to the amount of AGEs contained in the user's body. measure.
  • electrodes 111-1 to 111-4 As shown in FIG. 4, on the upper surface of the body composition measuring instrument 100, electrodes 111-1 to 111-4, a measuring unit 112-1, a measuring unit 112-2, a display unit 113, and a display unit 114- 1 and a display unit 114-2.
  • the electrodes 111-1 to 111-4 apply a weak current used for measuring body fat percentage and the like to a contacted object (for example, the sole of a user's foot riding on the body composition measuring instrument 100). It is an electrode for flowing.
  • the electrodes 111-1 to 111-4 are referred to as electrodes 111 when there is no need to distinguish them from each other.
  • the shape, size, number, position, and the like of the electrode 111 are arbitrary and are not limited to the example of FIG.
  • the information measurable using the electrode 111 is arbitrary and is not limited to the body fat percentage.
  • the measurement unit 112-1 and the measurement unit 112-2 measure an AGE value or the like of an object located on each measurement unit (for example, the sole of a user's foot riding on the body composition measuring instrument 100). .
  • the measurement unit 112-1 and the measurement unit 112-2 are referred to as the measurement unit 112 when there is no need to distinguish between them.
  • the configuration of the measurement unit 112 will be described later, the shape, size, number, position, and the like of the electrode 111 are arbitrary and are not limited to the example of FIG.
  • the display unit 113, the display unit 114-1, and the display unit 114-2 each have a display device such as an LCD (Liquid Crystal Display) or an OELD (Organic Electro Electro Luminescence Display). Is displayed.
  • the display unit 114-1 functions as a display unit corresponding to the configuration on the left side (the electrode 111-1, the electrode 111-2, and the measurement unit 112-1), and displays information on the measurement results obtained by these. May be.
  • the display unit 114-2 functions as a display unit corresponding to the configuration on the right side (the electrode 111-3, the electrode 111-4, and the measurement unit 112-2), and displays information on the measurement results obtained by these. You may do it. Then, the display unit 113 may display comprehensive information obtained using the left and right measurement results.
  • the display unit 114-1 displays a message “Foot sole dirty” indicating the diagnosis result based on the AGE value of the object (left foot).
  • the display unit 114-2 displays a message “Foot sole is dirty” indicating a diagnosis result based on the AGE value of the object (right foot).
  • the display unit 114-1 and the display unit 114-2 will be referred to as the display unit 114 when there is no need to distinguish them from each other.
  • the display devices included in the display unit 113, the display unit 114-1, and the display unit 114-2 are arbitrary.
  • Information displayed on the display unit 113, the display unit 114-1, and the display unit 114-2 is also arbitrary. Any message may be displayed on any display section. Further, for example, not only a message but also image information such as a captured image may be displayed.
  • the shape, size, number, position, and the like of the display unit 113, the display unit 114-1, and the display unit 114-2 are arbitrary, and are not limited to the example of FIG.
  • FIG. 5 is a diagram for explaining the measurement unit 112.
  • the user who performs the measurement stands on the body composition measuring instrument 100 so that his / her foot 121 is positioned at a position as shown in FIG.
  • the electrode 111-3 is in contact with the vicinity of the toe on the back surface of the foot 121
  • the electrode 111-4 is in contact with the vicinity of the heel on the back surface of the foot 121.
  • the measuring unit 112-2 is positioned around the arch on the back surface of the foot 121. In this case, the measurement unit 112-2 performs measurement on a part located above itself, that is, around the arch of the foot 121.
  • FIG. 5A shows an example of the right foot, but the left foot is substantially the same.
  • the measuring unit 112 has a configuration as shown in FIG. That is, the measurement unit 112 includes a white LED (Light Emitting Diode) 131, a light guide plate 132, a PD (Photo Detector) 133, and an image sensor 134.
  • a white LED Light Emitting Diode
  • a light guide plate 132 a light guide plate 132
  • a PD Photo Detector
  • the white LED 131 is a light emitting device that emits light for obtaining a predetermined component value in an object such as an AGE value.
  • the body composition measuring instrument 100 irradiates the back surface of the foot 121 with irradiation light in the irradiation wavelength band shown in FIG. 3 in the same manner as described with reference to FIG. Therefore, the white LED 131 emits light including this irradiation wavelength band (near ultraviolet wavelength band).
  • the white LED 131 may emit white light. Since it is only necessary that the irradiation light on the object includes a component in the irradiation wavelength band, the white LED 131 emits near ultraviolet light including the near ultraviolet wavelength band (for example, about 330 nm to about 420 nm). May be.
  • the white LED 131 is installed in such a position as to irradiate white light emitted toward the side surface of the light guide plate 132 at a position in contact with or close to the side surface of the light guide plate 132.
  • the number of white LEDs 131 is arbitrary. In FIG. 5B, eight white LEDs 131 are shown, but it may be 7 or less, or 9 or more.
  • the light guide plate 132 is a rectangular plate-like device that is formed of a transparent material such as quartz or plastic and can transmit light inside.
  • the light guide plate 132 has four sides with a large area that oppose each other with four sides with a low area.
  • the surface on the near side in the drawing is a large-area irradiation surface that irradiates light.
  • the portions indicated by the four sides in the vertical and horizontal directions in the figure are the side surfaces of the light guide plate 132.
  • the foot 121 is disposed on the irradiation surface side (that is, the front side in the figure).
  • the light guide plate 132 diffuses the light propagating through the inside and emits the light substantially uniformly toward the legs 121 from the entire irradiation surface or most of the irradiation surface. That is, the light guide plate 132 receives the white light emitted from the white LED 131 on the side surface and diffuses it inside, and the portion of the foot 121 located on the measuring unit 112 (predetermined from the irradiation surface having a larger area than the side surface). ) In a substantially uniform manner (toward the front side in the figure).
  • PD (Photo Detector) 133 is a measurement unit (photodetector) that receives light emitted from the white LED 131 and measures the amount of light. Based on the measurement result (light quantity) of the PD 133, the light emission intensity of the white LED 131 can be controlled. Therefore, since the program of irradiation light can be set more appropriately, measurement can be performed more accurately.
  • the PD 133 is disposed at a position facing the white LED 131 with the light guide plate 132 interposed therebetween. That is, the PD 133 can receive the light emitted by the white LED 131 via the light guide plate 132 at a position that contacts or approaches the side surface of the light guide plate 132 and faces the white LED 131 via the light guide plate 132. It is installed in a posture. With such an arrangement, the PD 133 is emitted from the white LED 131 and the white light propagating through the light guide plate 132 can be detected more reliably, and the amount of light can be measured more accurately.
  • PDs 133 is arbitrary. In FIG. 5B, eight PDs 133 are shown, but the number may be seven or less, or nine or more.
  • the image sensor 134 is a light receiving device that receives the reflected light reflected by the foot 121 when the white LED 131 emits light and the irradiation light applied to the foot 121 through the light guide plate 132 measures the amount of light received.
  • the image sensor 134 is provided on the surface side facing the irradiation surface of the light guide plate 132 (that is, the back side in the figure). The reflected light reflected by the foot 121 passes through the light guide plate 132 and reaches the image sensor 134.
  • the image sensor 134 is composed of, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the image sensor 134 has a plurality of pixels arranged in a two-dimensional shape (for example, an array), and each pixel generates an electric signal indicating a measurement result of the light amount by photoelectrically converting the received light. obtain.
  • the image sensor 134 outputs an electrical signal obtained from each pixel as measurement data (sensing data) to a subsequent processing unit. That is, the image sensor 134 can obtain measurement data as two-dimensional distribution data. Accordingly, it is possible to more easily detect uneven distribution of component values. That is, the component value of the object can be measured more accurately. In addition, more various information can be output using the two-dimensional distribution of measurement data.
  • the irradiation light applied to the foot 121 includes the irradiation wavelength band of FIG. 3 (for example, about 360 nm to about 390 nm, that is, the near ultraviolet wavelength band).
  • the irradiation light is reflected without substantially shifting the wavelength. That is, the surface reflected light that is the reflected light reflected by the surface of the foot 121 includes this irradiation wavelength band (near ultraviolet wavelength band).
  • the irradiation light is wavelength-shifted from the irradiation wavelength band to the excitation wavelength band (for example, about 420 nm to about 580 nm). That is, the internally reflected light that is the reflected light reflected from the inside of the foot 121 includes this excitation wavelength band (blue-green wavelength band).
  • the image sensor 134 receives light of a plurality of types of wavelength bands as described above. At that time, the image sensor 134 may receive the light (reflected light) by different pixels.
  • the image sensor 134 includes a pixel filter including a filter for each pixel that transmits light in a predetermined wavelength band, and a pixel including a filter that transmits light in the irradiation wavelength band, and transmits light in the excitation wavelength band. You may make it have both a pixel provided with a filter.
  • the image sensor 134 includes a UV filter 141 that transmits an irradiation wavelength band (near ultraviolet wavelength band), and a BG filter 142 that transmits an excitation wavelength band (blue-green wavelength band). May have a pixel filter 140 arranged for each pixel in a predetermined pattern.
  • the UV filters 141 and the BG filters 142 are alternately arranged.
  • the arrangement pattern of the UV filter 141 and the BG filter 142 is arbitrary, and is not limited to the arrangement pattern A in FIG.
  • the image sensor 134 can receive (measure) both surface reflection light and internal reflection light.
  • the image sensor 134 receives the light of each wavelength band in units of pixels in this way, so that the measurement data read out from the image sensor can be selected according to which pixel the measurement data is read out from. It is possible to easily identify whether the measurement data is for light in the band. Therefore, the body composition measuring instrument 100 can more easily perform operations such as AGE values using these measurement data.
  • FIG. 7 is a cross-sectional view for explaining the configuration of the measurement unit 112.
  • the upper direction in the figure indicates the upper side of the body composition measuring instrument 100 (the front side in the figure in FIG. 4).
  • white LEDs 131 and PD 133 are arranged on the side surfaces of the light guide plate 132 so as to face each other.
  • the upper side of the light guide plate 132 in the figure is the irradiation surface, and the foot 121 is located on the irradiation surface side.
  • An alignment portion 151 having a predetermined shape is provided on a part of the light guide plate 132 on the irradiation surface side.
  • the alignment unit 151 is a guide that controls the position of the foot 121.
  • the positional relationship (particularly distance) between the foot 121 and the light guide plate 132 is maintained in a substantially predetermined state.
  • a gap 161 having a predetermined width indicated by a diagonal pattern can be formed.
  • the gap 161 (between the foot 121 and the light guide plate 132) may be a space, or may be filled with a material that transmits light, such as quartz or transparent plastic. However, it is desirable that the various lights passing through the gap 161 are not affected as much as possible.
  • a white LED 181 and a near infrared LED 182 are provided on the upper side of the white LED 131 in the drawing.
  • the white LED 181 is, for example, a light emitting device that emits white light as light for obtaining a visible captured image (normal captured image) of the foot 121.
  • the white LED 181 irradiates the foot 121 with the emitted white light through the gap 161 without passing through the light guide plate 132.
  • the reflected light of the white light reflected from the surface of the foot 121 passes through the light guide plate 132, is received by the image sensor 134, and is subjected to photoelectric conversion, whereby data of a normal captured image is obtained.
  • the image sensor 134 also receives light in a wavelength band other than the above-described irradiation wavelength band and excitation wavelength band. Therefore, the image sensor 134 may include a filter other than the UV filter 141 and the BG filter 142 as the pixel filter 140. For example, as in the arrangement pattern shown in FIG. 6B, an R filter 143 that transmits light in the red wavelength band (red light), a G filter 144 that transmits light in the green wavelength band (green light), and a blue wavelength band A B filter 145 that transmits the light (blue light) may be provided.
  • the arrangement pattern of each filter is arbitrary.
  • the UV filter 141 and the BG filter 142, and the R filter 143, the G filter 144, and the B filter 145 are arranged in pixels in different regions (that is, close to each other).
  • a pixel region that receives light in the ultraviolet wavelength band and blue-green wavelength band and a pixel region that receives red light, blue light, and green light (RGB) may be separated).
  • the pixels in which the filters are arranged may be mixed in one area.
  • the band transmitted by the BG filter 142 can be covered by the B filter 145 and the G filter 144. That is, light in the blue-green wavelength band can be received by the pixel in which the G filter 144 is disposed and the pixel in which the B filter 145 is disposed. Therefore, for example, the BG filter 142 may be omitted as in the arrangement pattern shown in FIG.
  • the near-infrared LED 182 is a light-emitting device that emits light (near-infrared light) in the near-infrared wavelength band (for example, about 780 nm to about 2500 nm).
  • the thickness of subcutaneous fat and the like can be measured by irradiating a human body or the like with light having a high degree of straightness and measuring the propagation optical path length of the skin and deeper than the skin.
  • the near-infrared LED 182 emits near-infrared light having a wavelength longer than that of visible light as irradiation light used for such measurement.
  • the near-infrared LED 182 irradiates the emitted near-infrared light toward the foot 121 through the gap 161 without passing through the light guide plate 132.
  • the near-infrared light travels straight inside the foot 121 and then exits from the surface (the sole of the foot).
  • the emitted light passes through the light guide plate 132, is received by the image sensor 134, is photoelectrically converted, and near-infrared light data is obtained as a two-dimensional distribution (intensity distribution). Based on this intensity distribution, the thickness and the like of the subcutaneous fat of the foot 121 can be measured.
  • the image sensor 134 for example, as a pixel filter 140, in addition to the UV filter 141 and the BG filter 142, as shown in the arrangement pattern shown in FIG.
  • An IR filter 146 that transmits light may be provided.
  • the arrangement pattern of each filter is arbitrary.
  • the UV filter 141, the BG filter 142, and the IR filter 146 may be mixed in the same area as in the arrangement pattern D in FIG. 6, or may be arranged in different pixel areas. .
  • the pixel filter 140 may further include an R filter 143, a G filter 144, and a B filter 145.
  • the UV filter 141 and the BG filter 142, the R filter 143, the G filter 144, the B filter 145, and the IR filter 146 may be arranged in different areas, or the filters may be arranged in the same area. You may make it mix in.
  • a diaphragm 152 and a diaphragm 153 may be provided in the vicinity of the near infrared LED 182.
  • the diaphragm 152 and the diaphragm 153 have a structure that limits the irradiation angle (irradiation direction and irradiation range) of near-infrared light emitted from the near-infrared LED 182 and improves the straightness of the near-infrared light.
  • Near-infrared light is emitted from between the diaphragm 152 and the diaphragm 153 toward the foot 121 in a state of higher straightness. This enables more accurate measurement of the propagation optical path length in a deeper layer and a wider range. Therefore, the thickness of subcutaneous fat or the like can be measured more accurately.
  • the light in the irradiation wavelength band is reflected and the light in the excitation wavelength band is transmitted to a part of the surface (lower surface in the figure) facing the irradiation surface of the light guide plate 132.
  • the filter 171 may be formed. This filter 171 suppresses the leakage of the irradiation light (light in the irradiation wavelength band) propagating through the light guide plate 132 from the surface facing the irradiation surface, and assists the emission from the irradiation surface. .
  • the surface-reflected light that is reflected from the surface of the foot 121 also includes a component in the irradiation wavelength band.
  • the filter 171 is formed only on a part of the surface facing the irradiation surface of the light guide plate 132 so that the surface reflected light toward the image sensor 134 can pass through the light guide plate 132.
  • the width (range) and position of the portion where the filter 171 is formed are arbitrary, but the light amount distribution of the surface reflected light that transmits the light guide plate 132 and the light amount of the irradiation light that propagates inside the light guide plate 132. You may make it set according to distribution. That is, in this case, as shown in FIG. 7, the width and position (distribution) of the portion where the filter 171 is formed may not be uniform over the entire area of the light guide plate 132 (depending on the position of the light guide plate 132). This width and position (distribution) may be changed).
  • each filter of the pixel filter 140 of the image sensor 134 may be set according to the distribution of the filter 171.
  • the pixel directly below the filter 171 may reduce the amount of light received in the irradiation wavelength band.
  • a large number of UV filters 141 that transmit light in the excitation wavelength band are arranged in the pixels where the filter 171 is formed, and a BG filter 142 that transmits light in the irradiation wavelength band is formed in the filter 171.
  • a large number of pixels may be arranged in the non-exposed portion.
  • the material of the filter 171 is arbitrary.
  • the filter 171 may be formed by applying a predetermined material on a surface facing the irradiation surface of the light guide plate 132 or by processing a surface facing the irradiation surface of the light guide plate 132. It may be formed by forming irregularities.
  • the image sensor 134 can acquire a two-dimensional distribution as a close-up image.
  • the amount of light received at each pixel can be increased (sensitivity can be improved).
  • the lens diameter and focal length of each lens of the lens array 172 may be designed according to the distance from the surface of the foot 121 to the image sensor 134. When the distance between the foot 121 and the image sensor 134 is not uniform as in the example of FIG. 7, the lens diameter and focal length of each lens of the lens array 172 may not be uniform.
  • FIG. 8 is a block diagram illustrating a main configuration example inside the body composition measuring instrument 100.
  • the body composition measuring instrument 100 includes, for example, a control unit 211, a light emitting unit 212, a light receiving unit 213, an AGEs calculating unit 231, an image processing unit 232, a propagation optical path length calculating unit 233, an input unit 241, A processing unit such as an output unit 242, a storage unit 243, a communication unit 244, and a drive 245 is included.
  • These processing units are connected to each other via a bus 210 and can exchange arbitrary information (for example, a program and data).
  • the control part 211 performs the process regarding control of each process part of the body composition measuring device 100.
  • FIG. The light emitting unit 212 performs processing related to light emission.
  • the light emitting unit 212 includes the white LED 131, the white LED 181 and the near infrared LED 182 described above.
  • the light emitting unit 212 (for example, the white LED 131, the white LED 181 and the near infrared LED 182) emits light controlled by the control unit 211, for example.
  • the light receiving unit 213 performs processing related to light reception.
  • the light receiving unit 213 includes the PD 133 and the image sensor 134 described above.
  • the light receiving unit 213 includes an optical unit 221 made of an optical device such as a light guide plate 132, a filter 171, a lens array 172, and the like.
  • the image sensor 134 receives light irradiated through the optical unit 221.
  • the optical unit 221 can include any optical device, and is not limited to the above-described example.
  • the PD 133 is controlled by, for example, the control unit 211 to detect light emitted from the white LED 131.
  • the PD 133 is controlled by the control unit 211 and supplies information related to the detection result of the light to the control unit 211 via the bus 210.
  • the control unit 211 controls the light emission intensity of the light emitting unit 212 based on the information.
  • the image sensor 134 is controlled by, for example, the control unit 211 to receive surface reflection light and internal reflection light, and obtain measurement data as a two-dimensional distribution.
  • the image sensor 134 supplies the measurement data of each pixel to the AGEs calculator 231 via the bus 210.
  • the image sensor 134 is controlled by, for example, the control unit 211 to receive visible light and obtain the measurement data as a two-dimensional distribution (image data).
  • the image sensor 134 is controlled by the control unit 211 to supply measurement data (image data) of each pixel to the image processing unit 232 via the bus 210.
  • the image sensor 134 is controlled by, for example, the control unit 211 to receive near infrared light and obtain the measurement data as a two-dimensional distribution.
  • the image sensor 134 is controlled by the control unit 211, for example, and supplies measurement data of each pixel to the propagation optical path length calculation unit 233 via the bus 210.
  • the AGEs calculation unit 231 performs a process related to a calculation for obtaining a predetermined component value in the object such as an AGE value.
  • the AGEs calculation unit 231 is controlled by the control unit 211, for example, and obtains information such as an AGE value using the surface reflection light and the internal reflection light measurement data acquired from the image sensor 134.
  • the AGEs calculation unit 231 is controlled by, for example, the control unit 211 to supply the obtained information (AGE value or the like) to the output unit 242 via the bus 210 and output it as an image, sound, or the like.
  • the AGEs calculation unit 231 may be controlled by the control unit 211, for example, so that the obtained information (AGE value or the like) is supplied to and stored in the storage unit 243 via the bus 210. Further, the AGEs calculation unit 231 may be controlled by, for example, the control unit 211 to supply the obtained information (AGE value or the like) to the communication unit 244 via the bus 210 and supply it to other devices. . Further, the AGEs calculation unit 231 may be controlled by the control unit 211, for example, so that the obtained information (AGE value or the like) is supplied to the drive 245 via the bus 210 and stored in the removable medium 251.
  • the image processing unit 232 performs processing related to image processing.
  • the image processing unit 232 is controlled by the control unit 211, for example, and performs predetermined image processing on the image data acquired from the image sensor 134 to generate image data of a normal captured image (for example, an image of the arch on the back of the foot 121). To do.
  • the image processing unit 232 is controlled by, for example, the control unit 211 to supply the generated image data of the normal captured image to the output unit 242 via the bus 210 and display it as an image or the like.
  • the image processing unit 232 may be controlled by the control unit 211, for example, so that the generated image data of the normal captured image is supplied to the storage unit 243 via the bus 210 and stored therein.
  • the image processing unit 232 may be controlled by the control unit 211, for example, so that the generated image data of the normal captured image is supplied to the communication unit 244 via the bus 210 and supplied to another device. . Further, the image processing unit 232 may be controlled by the control unit 211, for example, so that the generated image data of the normal captured image is supplied to the drive 245 via the bus 210 and stored in the removable medium 251.
  • the propagation optical path length calculation unit 233 performs processing related to the calculation of the propagation optical path length.
  • the propagation optical path length calculation unit 233 is controlled by the control unit 211, for example, and uses near-infrared light measurement data acquired from the image sensor 134, and uses the near-infrared light propagation optical path length and subcutaneous fat inside the foot 121. Find information such as thickness.
  • the propagation optical path length calculation unit 233 is controlled by the control unit 211, for example, and supplies the obtained information (subcutaneous fat thickness or the like) to the output unit 242 via the bus 210 to output it as an image, sound, or the like.
  • the propagation optical path length calculation unit 233 is controlled by the control unit 211, for example, so that the obtained information (such as the thickness of subcutaneous fat) is supplied to the storage unit 243 via the bus 210 and stored therein. Good. Further, the propagation optical path length calculation unit 233 is controlled by, for example, the control unit 211 to supply the obtained information (subcutaneous fat thickness and the like) to the communication unit 244 via the bus 210 to be supplied to other devices. You may do it. Further, the propagation optical path length calculation unit 233 is controlled by, for example, the control unit 211 to supply the obtained information (subcutaneous fat thickness and the like) to the drive 245 via the bus 210 and store it in the removable medium 251. It may be.
  • the input unit 241 performs processing related to input of information (programs, data, etc.) and instructions.
  • the input unit 241 includes an arbitrary input device such as a jog dial (trademark), a key, a button, or a touch panel.
  • the input unit 241 is controlled by, for example, the control unit 211, receives an operation input of the input device by a user or the like, and supplies a signal (user instruction) corresponding to the operation input to another processing unit.
  • the input unit 241 has, for example, an external input terminal, receives information supplied from the outside of the body composition measuring instrument 100 (such as another device connected via the external input terminal), and the information is You may enable it to supply to another process part via the bus
  • FIG. Note that the input unit 241 may include an input device such as a camera or a microphone so that a user's gesture or voice may be received as a user instruction.
  • the output unit 242 performs processing related to output of information (programs, data, etc.).
  • the output unit 242 includes a monitor that displays an image.
  • the output unit 242 is controlled by the control unit 211, for example, and displays an arbitrary image on the monitor.
  • the output unit 242 may display information supplied from another processing unit on the monitor as image information including characters and images.
  • the output unit 242 may include a speaker that outputs sound, and may be controlled by the control unit 211 so that arbitrary sound can be output from the speaker.
  • the output unit 242 may convert information supplied from another processing unit into sound and output the sound from a speaker.
  • the output unit 242 has an external output terminal, and is controlled by the control unit 211, for example, so that arbitrary information (program, data, etc.) is external to the body composition measuring instrument 100 (via the external output terminal). It may be possible to supply to other connected devices.
  • the output unit 242 may supply information acquired from another processing unit to the outside of the body composition measuring instrument 100.
  • the storage unit 243 performs processing related to information storage.
  • the storage unit 243 includes an arbitrary storage medium such as a flash memory, an SSD (Solid State Drive), or a hard disk.
  • the storage unit 243 stores arbitrary information (programs, data, and the like) acquired from other processing units in the storage medium.
  • the storage unit 243 reads information stored in the storage medium and supplies it to an arbitrary processing unit via the bus 210.
  • the communication unit 244 performs processing related to communication.
  • the communication unit 244 is, for example, a wired LAN (Local Area Network), a wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), infrared communication, HDMI (registered trademark) (High-Definition Multimedia Interface), or USB ( It has a communication interface of any standard such as Universal (Serial Bus).
  • the communication unit 244 is controlled by the control unit 211, for example, and communicates with another device via the communication interface, and can exchange arbitrary information with the other device.
  • the communication unit 244 supplies arbitrary information acquired from another processing unit to another device, acquires arbitrary information from another device, and supplies it to another processing unit. May be.
  • the drive 245 performs processing related to the removable media 251 attached to the drive 245.
  • the removable medium 251 is a medium that can be attached to and detached from the drive 245, for example, an arbitrary storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the drive 245 drives a removable medium 251 attached to the drive 245 and reads / writes information from / to the removable medium 251.
  • the drive 245 drives the removable medium 251 attached to the drive 245 as necessary, reads arbitrary information (program, data, etc.) written in the removable medium 251 and supplies it to other processing units. You may make it do.
  • the drive 245 may write arbitrary information supplied from another processing unit to the removable medium 251.
  • the white LED 131 emits white light including a component in the irradiation wavelength band.
  • the white light propagates while being diffused in the light guide plate 132 as indicated by a dotted arrow shown in FIG. Part of the white light reaches the PD 133 and is detected.
  • Some white light is emitted from the irradiation surface.
  • light in the irradiation wavelength band reflected by the filter 171A is emitted from the irradiation surface of the light guide plate 132 and irradiated on the foot 121 as indicated by arrows 261-1, 261-2, and 261-3.
  • a part of the light irradiated on the foot 121 is reflected on the surface of the foot 121 without being substantially shifted in wavelength.
  • the light in the irradiation wavelength band reflected by the filter 171B reaches the foot 121 as indicated by arrows 261-4 and 261-5, and a part of the surface thereof is dotted arrows 262-1 and dotted arrows. Reflects like 262-2 (surface reflected light).
  • the surface reflected light indicated by the dotted arrow 262-1 passes through the light guide plate 132 and the lens array 172 and reaches the image sensor 134. Since the surface reflected light is not substantially shifted in wavelength, it includes a component in the irradiation wavelength band. Accordingly, the image sensor 134 receives this surface reflected light in, for example, a pixel in which the UV filter 141 is disposed. The surface reflected light in the irradiation wavelength band indicated by the dotted arrow 262-2 reaches the filter 171C but is reflected without being transmitted.
  • the light in the irradiation wavelength band reflected by the filter 171D reaches the foot 121 as indicated by arrows 261-6 and 261-7 and penetrates into the inside (curves 263-1 and 263-). 2).
  • the light that has penetrated into the inside of the foot 121 is wavelength-shifted from the irradiation wavelength band to the excitation wavelength band by an optical reaction with an arbitrary substance inside the foot 121, and from the surface (the back of the foot 121) as shown in FIG. It is emitted (internally reflected light).
  • light that has penetrated into the foot 121 as indicated by a curve 263-3 is reflected as internally reflected light after wavelength shift, as indicated by a dotted arrow 264-1, a dotted arrow 264-2, and a dotted arrow 264-3.
  • the light is emitted from the surface 121.
  • the internally reflected light indicated by the dotted line arrows 264-1 to 264-3 passes through the light guide plate 132 and the lens array 172 and reaches the image sensor 134. Since this internally reflected light is shifted in wavelength to the excitation wavelength band, the internally reflected light indicated by the dotted arrow 264-1 also passes through the filter 171E. Further, the internally reflected light indicated by the dotted arrow 264-1 to the dotted arrow 264-3 is imaged close to the image sensor 134 by the lenses 172B of the lens array 172.
  • the image sensor 134 receives the internally reflected light in, for example, a pixel in which the BG filter 142 is disposed.
  • the light that has penetrated into the foot 121 indicated by the curve 263-4 is reflected as the internally reflected light after the wavelength shift, as indicated by a dotted arrow 264-4, a dotted arrow 264-5, and a dotted arrow 264-6.
  • the light is emitted from the surface 121.
  • the internally reflected light indicated by these dotted line arrows 264-4 to 264-6 passes through the light guide plate 132 and the lens array 172 and reaches the image sensor 134. Since this internally reflected light is wavelength-shifted to the excitation wavelength band, the internally reflected light indicated by the dotted arrow 264-5 passes through the filter 171F, and the internally reflected light indicated by the dotted arrow 264-6 passes through the filter 171G.
  • the internally reflected light indicated by the dotted arrow 264-4 to dotted arrow 264-6 is imaged close to the image sensor 134 by the lenses 172C of the lens array 172.
  • the image sensor 134 receives the internally reflected light in, for example, a pixel in which the BG filter 142 is disposed.
  • the white light emitted from the white LED 131 that is the light emitting unit is approximately spread over a wide area of the foot 121 without depending on the distance between the white LED 131 and the foot 121. Uniform irradiation is possible. Therefore, a reduction in the height of the measuring unit 112 can be realized. Thereby, the housing
  • the body composition measuring instrument 100 easily expands the photometric range by receiving the reflected light of the irradiated light whose irradiation range is expanded by using the light guide plate 132 as described above by the multi-pixel image sensor 134. Not only can this be performed, but more accurate measurement can be performed within the expanded photometric range.
  • the body composition measuring instrument 100 can measure the surface reflected light and the internally reflected light in the expanded photometric range as a two-dimensional distribution.
  • the white LED 131 emits light and emits white light in step S101.
  • the image sensor 134 receives surface reflection light and internal reflection light, and obtains measurement data thereof.
  • step S103 the AGEs calculator 231 calculates the AGE value using the measurement data of the surface reflection light and the internal reflection light obtained in step S102. For example, the AGEs calculator 231 calculates the AGE value by integrating and averaging the distribution of component values obtained as a two-dimensional distribution.
  • step S104 the output unit 242 outputs information about the AGE value as an image, sound, or the like (for example, displays an image on a monitor and outputs sound from a speaker).
  • the AGE value measurement process ends.
  • the body composition measuring instrument 100 can measure component values such as AGEs as a two-dimensional distribution. Therefore, the body composition measuring instrument 100 can integrate and average the distribution of the component values, and reduce the component value error caused by the distribution unevenness. That is, the component value of the object can be measured more accurately. Further, more various information can be output using the two-dimensional distribution of measured component values. For example, a distribution map of AGEs can be displayed as an image.
  • the white LED 181 emits white light including a component in the irradiation wavelength band.
  • This white light reaches the foot 121 without passing through the light guide plate 132 as indicated by an arrow 265 shown in FIG. 14, for example, and is reflected on the surface thereof.
  • the reflected light passes through the light guide plate 132, passes through the filter 171 and the lens array 172, and reaches the image sensor 134 as indicated by arrows 266-1, 266-2, and 266-3, for example.
  • the reflected light indicated by the arrow 266-1 reaches the filter 171H.
  • the reflected light is white light, it includes wavelength components other than the irradiation wavelength band. Therefore, components other than the irradiation wavelength band can pass through the filter 171H.
  • the reflected light indicated by the dotted arrow 266-1 to the dotted arrow 266-3 is imaged close to the image sensor 134 by the lenses 172D of the lens array 172.
  • the image sensor 134 receives the reflected light in a pixel or the like in which a filter for visible light such as an R filter 143, a G filter 144, and a B filter 145 is disposed.
  • the white LED 181 emits light and emits white light in step S121.
  • the image sensor 134 receives the white light reflected from the surface of the foot 121 and photoelectrically converts it to obtain pixel value data (image data). That is, the image sensor 134 images the subject (foot 121) and obtains data of the captured image.
  • step S123 the image processing unit 232 performs predetermined image processing on the image data obtained in step S122 to obtain a normal captured image.
  • step S124 the output unit 242 displays (outputs) the captured image on the monitor.
  • the body composition measuring instrument 100 can not only measure the component value of an object but also image the object to obtain a captured image.
  • the near infrared LED 182 emits near infrared light. This near-infrared light is irradiated toward the foot 121 without passing through the light guide plate 132 from between the diaphragm 152 and the diaphragm 153 as indicated by an arrow 267 shown in FIG. Near-infrared light penetrates into the inside of the foot 121 and is emitted as reflected light from the surface of the foot 121 as indicated by arrows 268-1, 268-2, and 268-3.
  • near-infrared light that has penetrated as indicated by an arrow 268-1 is emitted from the surface of the foot 121 as indicated by arrows 269-1, 269-2, and 269-3, for example.
  • the reflected light indicated by the arrows 269-1, 269-2, and 269-3 passes through the light guide plate 132, passes through the filter 171 and the lens array 172, and reaches the image sensor 134.
  • the reflected light indicated by the arrow 269-1 reaches the filter 171J. Since this reflected light is near-infrared light, it can pass through the filter 171J.
  • the reflected light indicated by the arrows 269-1 to 269-3 is imaged close to the image sensor 134 by the lenses 172E of the lens array 172.
  • the image sensor 134 receives the reflected light in a pixel or the like in which the IR filter 146 is disposed.
  • near infrared light that has penetrated as indicated by an arrow 268-2 is emitted from the surface of the foot 121 as indicated by arrows 269-4, 269-5, and 269-6, for example.
  • the reflected light indicated by the arrows 269-4, 269-5, 269-6 passes through the light guide plate 132, passes through the filter 171 and the lens array 172, and reaches the image sensor 134.
  • the reflected light indicated by the arrow 269-5 reaches the filter 171K, but since this reflected light is near infrared light, it can pass through the filter 171K.
  • the reflected light indicated by the arrow 269-6 reaches the filter 171L.
  • the reflected light is near-infrared light, it can pass through the filter 171L. Further, the reflected light indicated by the arrows 269-4 to 269-6 is imaged close to the image sensor 134 by the lenses 172F of the lens array 172. For example, the image sensor 134 receives the reflected light in a pixel or the like in which the IR filter 146 is disposed.
  • near infrared light that has penetrated as indicated by an arrow 268-3 is emitted from the surface of the foot 121 as indicated by an arrow 269-7, an arrow 269-8, and an arrow 269-9, for example.
  • the reflected light indicated by the arrows 269-7, 269-8, and 269-9 passes through the light guide plate 132, passes through the filter 171 and the lens array 172, and reaches the image sensor 134.
  • the reflected light indicated by the arrow 269-8 reaches the filter 171M. Since this reflected light is near-infrared light, it can pass through the filter 171M.
  • the reflected light indicated by the arrow 269-9 reaches the filter 171N, but since this reflected light is near-infrared light, it can pass through the filter 171N. Further, the reflected light indicated by the arrows 269-7 to 269-9 is imaged close to the image sensor 134 by the lenses 172 G of the lens array 172. For example, the image sensor 134 receives the reflected light in a pixel or the like in which the IR filter 146 is disposed.
  • the near infrared LED 182 emits light and irradiates near infrared light in step S141.
  • the image sensor 134 receives the reflected light of the near-infrared light from the foot 121 and obtains measurement data (intensity distribution).
  • the propagation optical path length computing unit 233 calculates the propagation optical path length using the near-infrared light measurement data obtained in step S142. Further, the propagation optical path length calculation unit 233 measures, for example, the thickness of subcutaneous fat using the calculated propagation optical path length.
  • the output unit 242 outputs the information generated by the propagation optical path length calculation unit 233 such as the propagation optical path length and the thickness of subcutaneous fat as an image, sound, or the like (for example, the image is displayed on the monitor and the sound is displayed). Is output from the speaker).
  • the propagation optical path length measurement process ends.
  • the body composition measuring instrument 100 not only measures the component value of the object, but also measures the propagation optical path length inside the object using near infrared light, and determines the thickness of the subcutaneous fat of the object, etc. be able to.
  • the shape of the light-guide plate 132 is arbitrary and is not limited to this example.
  • the irradiation surface of the light guide plate 132 or the surface facing the light irradiation plate 132 may be a curved surface.
  • the irradiation surface of the light guide plate 132 may be formed in a convex shape.
  • the light guide plate 132 may have a shape that fills the gap 161 described above (the foot 121 and the light guide plate 132 are in contact).
  • the irradiation surface of the light guide plate 132 and the shape of the opposing surface are arbitrary and may not be rectangular. For example, it may be a circle, an ellipse, a triangle, a pentagon or more polygon, or a shape other than these. Further, the irradiation surface and the surface facing the irradiation surface do not have to have the same shape, and the sizes thereof may not match. In other words, the number, shape, size, etc. of the side surfaces of the light guide plate 132 are also arbitrary.
  • the positions of the white LED 131 and the PD 133 with respect to the light guide plate 132 are arbitrary, and are not limited to the example of B in FIG.
  • the white LED 131 and the PD 133 may be formed on a plurality of side surfaces of the light guide plate 132.
  • the white LED 131 and the PD 133 may be formed on each of the four side surfaces of the light guide plate 132.
  • the white LED 131 is formed on the upper and left side surfaces of the light guide plate 132 in the drawing
  • the PD 133 is formed on the right side and lower side surfaces of the light guide plate 132 in the drawing. ing.
  • the numbers of white LEDs 131 and PDs 133 do not have to match each other.
  • the white LED 131 may be formed on the three side surfaces with respect to the four side surfaces of the light guide plate 132, and the PD 133 may be formed on the remaining one side surface.
  • the white LED 131 is formed on the upper side, the left side, and the lower side of the light guide plate 132 in the drawing, and the PD 133 is formed on the right side of the light guide plate 132 in the drawing. Yes.
  • the white LED 131 and the PD 133 may be mixed on one side surface of the light guide plate 132.
  • white LEDs 131 and PD 133 may be alternately arranged. Even in such a case, by arranging the white LED 131 and the PD 133 to face each other with the light guide plate 132 interposed therebetween, the PD 133 is more reliably detected from the white LED 131 that is emitted from the white LED 131 and propagates inside the light guide plate 132. The amount of light can be measured more accurately.
  • a plurality of white LEDs 131 are arranged so as to emit irradiation light toward a plurality of side surfaces of the light guide plate 132, and a single or a plurality of PDs 133 are light guide plates.
  • the white LED 131 may be disposed at a position facing part or all of the white LED 131 with the 132 interposed therebetween.
  • the white LED 131 and the PD 133 may be disposed so as to surround the side surfaces thereof as shown in FIG. Also in this case, by arranging the white LED 131 and the PD 133 so as to face each other with the light guide plate 132 interposed therebetween, the PD 133 can detect the white light emitted from the white LED 131 and propagating through the light guide plate 132 more reliably. The amount of light can be measured more accurately.
  • a reflective film 271 may be provided instead of the filter 171 described above.
  • This reflective film 271 reflects at least light in both the irradiation wavelength band and the excitation wavelength band.
  • the reflection film 271 also reflects light in the excitation wavelength band. However, as in the case of light in the irradiation wavelength band, the light in the excitation wavelength band can be transmitted through a portion where the reflection film 271 is not formed. Good.
  • the width (range) and position of the portion where the reflective film 271 is formed may be designed so that light of each wavelength reaches the image sensor 134 sufficiently.
  • the width and position (distribution) of the portion where the reflective film 271 is formed may not be uniform over the entire area of the light guide plate 132 (this width and position may vary depending on the position of the light guide plate 132. The position (distribution) may be changed).
  • the arrangement pattern of each filter of the pixel filter 140 of the image sensor 134 may be set according to the distribution of the reflective film 271. For example, the amount of light received may be reduced in the pixels immediately below the reflective film 271. For this reason, the pixel in the portion where the reflective film 271 is formed may not receive light. Further, such variation in the amount of received light may be corrected by subsequent processing. For example, in a case where light is not received by a pixel in a portion where the reflective film 271 is formed, the pixel value of the pixel may be interpolated using surrounding pixel values.
  • a filter may be provided between the light guide plate 132 and the image sensor 134.
  • a filter 272 may be provided between the lens array 172 and the image sensor 134 instead of the pixel filter 140.
  • the filter 272 includes at least a filter that transmits light in the irradiation wavelength band (near ultraviolet wavelength band) and a filter that transmits light in the excitation wavelength band (blue-green wavelength band).
  • the filter 272 is a filter that transmits light in the red wavelength band, a filter that transmits light in the green wavelength band, a filter that transmits light in the blue wavelength band, and light in the near infrared wavelength band.
  • a filter or the like that transmits the light may be provided.
  • the arrangement pattern of each filter is arbitrary.
  • the image sensor 134 has a vertical spectral structure so that each pixel can receive light of a plurality of wavelength bands in a distinguishable manner (the light of each wavelength band is a different light (component)). Good. Further, the image sensor 134 may be configured by a plurality of PDs arranged in a two-dimensional shape (for example, an array shape).
  • one image sensor 134 that receives reflected light is provided.
  • the number of image sensors 134 is arbitrary.
  • the image sensor 134 may be provided for each wavelength band of received light.
  • the surface reflection light and the internal reflection light may be received by different image sensors.
  • body composition measuring instrument 100 may have functions and configurations other than those described above and can measure any parameter other than those described above.
  • the AGE value on the sole of the user's foot is measured.
  • the part where the measurement is performed is arbitrary, and is not limited to the above-described sole of the foot.
  • it may be the user's foot (instep, finger, shin, calf, thigh, etc.) or the user's arm (shoulder, elbow, palm, finger, etc.)
  • the body of the person chest, abdomen, lower abdomen, buttocks, buttocks, etc.
  • the user's head frontal head, back of head, top of head, face, jaw, ears, neck, etc.
  • other parts may be used.
  • the present technology can be applied not only to the body composition measuring instrument described above but also to any device.
  • the present invention can be applied to any optical measurement device, electronic device, imaging device, information processing device, and the like. That is, an apparatus to which the present technology is applied does not have to measure body weight, body fat percentage, and the like.
  • the object to be measured is arbitrary, and may not be a human body, for example. For example, it may be an animal such as a dog or cat, a plant, or an inorganic substance.
  • the parameter to be measured is also arbitrary and is not limited to AGEs.
  • This recording medium is constituted by, for example, a removable medium 251 on which a program is recorded, which is distributed to distribute the program to the user, separately from the apparatus main body.
  • the removable medium 251 includes a magnetic disk (including a flexible disk) and an optical disk (including a CD-ROM (Compact Disc-Read-Only Memory) and a DVD (Digital Versatile Disc)). Further, magneto-optical disks (including MD (Mini-Disc)) and semiconductor memories are also included.
  • MD Minute-Disc
  • This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be received by the communication unit 244 and installed in the storage unit 243.
  • this program can be installed in advance in a ROM or the like built in the storage unit 243 or the control unit 211.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
  • each step described above can be executed in each device described above or any device other than each device described above.
  • the device that executes the process may have the functions (functional blocks and the like) necessary for executing the process described above.
  • Information necessary for processing may be transmitted to the apparatus as appropriate.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
  • the present technology can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • the present invention is not limited to the device or system on which the measurement unit 112 is mounted, or the manufacturing apparatus or manufacturing method thereof, but any configuration on which the measurement unit 112 is mounted, for example, as a system LSI (Large Scale Scale Integration)
  • the present invention can also be implemented as a processor, a module using a plurality of processors, a unit using a plurality of modules, a set obtained by further adding other functions to the unit, or a manufacturing apparatus or a manufacturing method for manufacturing those configurations.
  • this technique can also take the following structures.
  • a light emitting unit that emits irradiation light including a predetermined irradiation wavelength band, which irradiates an object;
  • a light guide plate that receives the irradiation light emitted from the light emitting unit at a side surface and diffuses the light inside, and irradiates a predetermined range of the surface of the object from the irradiation surface having a larger area than the side surface substantially uniformly;
  • the irradiated light irradiated on the surface of the object through the light guide plate is reflected on the surface of the object without being substantially shifted in wavelength, and is irradiated on the surface of the object through the light guide plate.
  • An optical measurement comprising: a light receiving unit that receives the internally reflected light, which is reflected by shifting the irradiation light from the irradiation wavelength band to a predetermined excitation wavelength band in the object, by a plurality of pixels; apparatus.
  • the irradiation wavelength band is a near ultraviolet wavelength band
  • the light guide plate includes a plurality of the side surfaces.
  • the plurality of light emitting units are arranged to emit the irradiation light toward the plurality of side surfaces of the light guide plate.
  • the optical measurement device according to any one of (1) to (4), further including a measurement unit that measures a light amount of the irradiation light emitted from the light emitting unit.
  • the optical measurement device wherein the detection unit is disposed at a position facing the light emitting unit with the light guide plate interposed therebetween.
  • the plurality of light emitting units are arranged to emit the irradiation light toward the plurality of side surfaces of the light guide plate,
  • the optical measurement device according to (6), wherein the one or more detection units are arranged at positions facing part or all of the light emitting units with the light guide plate interposed therebetween.
  • the optical measurement device according to any one of (1) to (7), wherein the light receiving unit includes an image sensor that photoelectrically converts received light.
  • the light receiving unit includes a pixel including a first filter that transmits light in the irradiation wavelength band, and a pixel including a second filter that transmits light in the excitation wavelength band.
  • the optical measurement device according to any one of (8) to (8).
  • the light guide plate may further include a filter that reflects light in the irradiation wavelength band and transmits light in the excitation wavelength band on a part of a surface facing the irradiation surface of the light guide plate.
  • the optical measuring device according to any one of the above.
  • the lens array may further include a lens array that is disposed between the light guide plate and the light receiving unit and forms an image of the surface reflected light and the internal reflected light in proximity to the pixels of the light receiving unit.
  • the optical measuring device according to any one of the above.
  • (12) The optical measurement device according to (11), wherein each lens of the lens array has a lens diameter and a focal length corresponding to a distance from the surface of the object to the light receiving unit.
  • Any one of (1) to (12) further including a calculation unit that obtains a predetermined component value in the object using measurement data of the surface reflection light and the internal reflection light obtained in the light receiving unit.
  • the optical measurement device according to any one of (1) to (13), further including an alignment unit that positions the object at a predetermined distance from the irradiation surface of the light guide plate.
  • another light emitting unit that emits white light toward a gap between the object formed by the alignment unit and the light guide plate;
  • An image processing unit that performs image processing on measurement data obtained in the light receiving unit, The light receiving unit further receives reflected light of the white light emitted from the other light emitting unit reflected by the surface of the object,
  • the optical measurement device according to (14), wherein the image processing unit generates a normal captured image by performing image processing on the measurement data of the reflected light obtained in the light receiving unit.
  • the optical measurement device further including a diaphragm that restricts an irradiation direction of the near-infrared light emitted by the other light emitting unit.
  • the optical measurement device according to any one of (1) to (17), further including a reflection film that reflects light on a part of a surface of the light guide plate that faces the irradiation surface.
  • a first filter that is disposed between the light guide plate and the light receiving unit and transmits light in a near-ultraviolet wavelength band;
  • the optical measurement device according to any one of (1) to (18), further including: a second filter that is disposed between the light guide plate and the light receiving unit and transmits light in the excitation wavelength band.
  • irradiation light including a predetermined irradiation wavelength band to irradiate an object
  • the irradiation light is received by the side surface, diffused inside, and irradiated to the surface of the object through a light guide plate that irradiates a predetermined range of the surface of the object substantially uniformly from the irradiation surface having a larger area than the side surface.
  • the surface reflected light reflected by the surface of the object without substantially wavelength shift and the irradiation light irradiated on the surface of the object through the light guide plate are inside the object within the irradiation wavelength band.
  • An optical measurement method in which internally reflected light that has been reflected by shifting to a predetermined excitation wavelength band is received by a plurality of pixels and the amount of received light is measured.
  • 100 body composition measuring instrument 111 electrode, 112 measuring unit, 113 display unit, 114 display unit, 121 feet, 131 white LED, 132 light guide plate, 133 PD, 134 image sensor, 140 pixel filter, 141 UV filter, 142 BG filter , 143 R filter, 144 G filter, 145 B filter, 146 IR filter, 151 alignment unit, 152 aperture, 153 aperture, 161 gap, 171 filter, 172 lens array, 181 white LED, 182 near infrared LED, 210 bus , 211 control unit, 212 light emitting unit, 213 light receiving unit, 221 optical unit, 231 AGEs computing unit, 232 image processing unit, 233 propagation optical path length computing unit, 241 input unit, 42 output unit, 243 storage unit, 244 communication unit, 245 drive, 251 a removable media, 271 reflective film, 272 filter

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention pertains to an optical measurement device and method, whereby component values of an object can be more precisely measured. This optical measurement device: emits irradiation light including a prescribed irradiation wavelength band, said irradiation light being irradiated on to an object; receives the irradiation light on a side surface thereof and scatters same internally; and receives surface-reflected light and internally-reflected light by using a plurality of pixels and measures the received light volumes, said surface reflected light being irradiation light reflected by the surface of the object substantially without wavelength shift, said internally-reflected light being irradiated light that has shifted a prescribed excitation wavelength band from the irradiation wavelength band inside the object and has been reflected, and said irradiated light being irradiated on to the surface of the object via a light-guide plate that substantially uniformly irradiates from an irradiation surface having a wider area than a side surface, on to a prescribed range on the object surface. The present invention can be applied, for example, to optical measurement devices, electronic devices, body composition measurement instruments, imaging devices, and information processing devices, etc.

Description

光学計測装置および方法Optical measuring apparatus and method
 本技術は、光学計測装置および方法に関し、特に、物体の成分値をより正確に測定することができるようにした光学計測装置および方法に関する。 The present technology relates to an optical measurement apparatus and method, and more particularly, to an optical measurement apparatus and method that can measure a component value of an object more accurately.
 従来、物体に光を照射し、その反射光を受光して、終末糖化生成物(AGEs(Advanced Glycation Endproducts))を測定する装置があった。 Conventionally, there has been an apparatus for measuring glycated end products (AGEs (Advanced Glycation End Products)) by irradiating an object with light and receiving the reflected light.
 また、レーザ光を光導波路内部に伝搬させ、光導波路から漏えいするレーザ光を任意の物質に照射し、光触媒励起する技術があった(例えば特許文献1参照)。 Further, there has been a technique for propagating laser light to the inside of an optical waveguide, irradiating an arbitrary substance with laser light leaking from the optical waveguide, and photocatalytic excitation (see, for example, Patent Document 1).
特開2000-77752号公報JP 2000-77752 A
 しかしながら、従来の測定装置では、フォトディテクタにより反射光を受光しており、反射光の2次元分布を計測することは困難であった。そのため終末糖化生成物の分布ムラに起因する測定値のバラつきを抑制することが困難であった。 However, in the conventional measuring apparatus, the reflected light is received by the photodetector, and it is difficult to measure the two-dimensional distribution of the reflected light. For this reason, it has been difficult to suppress variations in measured values caused by uneven distribution of terminal saccharification products.
 本技術は、このような状況に鑑みて提案されたものであり、物体の成分値をより正確に測定することを目的とする。 This technology has been proposed in view of such a situation, and aims to more accurately measure the component value of an object.
 本技術の第1の側面の光学計測装置は、物体に照射する、所定の照射波長帯域を含む照射光を発光する発光部と、前記発光部が発光した前記照射光を側面で受光して内部で拡散し、前記側面よりも広面積な照射面から前記物体の表面の所定の範囲に略均一に照射する導光板と、前記導光板を介して前記物体の表面に照射された前記照射光が前記物体の表面で略波長シフトせずに反射した表面反射光と、前記導光板を介して前記物体の表面に照射された前記照射光が前記物体の内部で前記照射波長帯域から所定の励起波長帯域にシフトして反射した内部反射光とを、複数の画素で受光して受光量を計測する受光部とを備える光学計測装置である。 An optical measurement device according to a first aspect of the present technology includes a light emitting unit that emits irradiation light that irradiates an object and includes a predetermined irradiation wavelength band, and the irradiation light emitted from the light emitting unit is received by the side surface and is internally received. A light guide plate that is diffused in a substantially uniform range from the irradiation surface that is wider than the side surface to a predetermined range of the surface of the object, and the irradiation light that is irradiated to the surface of the object through the light guide plate The surface reflected light reflected without substantially wavelength shift on the surface of the object, and the irradiation light irradiated on the surface of the object through the light guide plate is a predetermined excitation wavelength from the irradiation wavelength band inside the object. The optical measuring device includes a light receiving unit that receives the internally reflected light reflected by shifting to the band and receives the light by a plurality of pixels and measures the amount of received light.
 前記照射波長帯域は、近紫外波長帯域であり、前記発光部が、前記照射光として、前記近紫外波長帯域の光若しくは白色光を発光するようにすることができる。 The irradiation wavelength band may be a near ultraviolet wavelength band, and the light emitting unit may emit light in the near ultraviolet wavelength band or white light as the irradiation light.
 前記導光板が前記側面を複数備えるようにすることができる。 The light guide plate may include a plurality of the side surfaces.
 複数の前記発光部が前記導光板の複数の前記側面に向かって前記照射光を発光するように配置されているようにすることができる。 The plurality of light emitting units may be arranged to emit the irradiation light toward the plurality of side surfaces of the light guide plate.
 前記発光部が発光する前記照射光の光量を計測する計測部をさらに備えることができる。 A measuring unit that measures the amount of the irradiation light emitted from the light emitting unit can be further provided.
 前記検出部が前記導光板を挟んで前記発光部に対向する位置に配置されているようにすることができる。 The detection unit may be disposed at a position facing the light emitting unit with the light guide plate interposed therebetween.
 複数の前記発光部が前記導光板の複数の前記側面に向かって前記照射光を発光するように配置されており、単数若しくは複数の前記検出部が前記導光板を挟んで前記発光部の一部若しくは全部と対抗する位置に配置されているようにすることができる。 A plurality of the light emitting units are arranged to emit the irradiation light toward a plurality of the side surfaces of the light guide plate, and one or a plurality of the detection units sandwich a part of the light guide plate and a part of the light emitting unit Or it can be made to arrange | position in the position which opposes all.
 前記受光部が、受光した光を光電変換するイメージセンサを有しているようにすることができる。 The light receiving unit may include an image sensor that photoelectrically converts received light.
 前記受光部が、前記照射波長帯域の光を透過する第1のフィルタを備える画素と、前記励起波長帯域の光を透過する第2のフィルタを備える画素とを有しているようにすることができる。 The light receiving unit may include a pixel including a first filter that transmits light in the irradiation wavelength band and a pixel including a second filter that transmits light in the excitation wavelength band. it can.
 前記導光板の前記照射面に対向する面の一部に、前記照射波長帯域の光を反射し、前記励起波長帯域の光を透過するフィルタをさらに備えることができる。 A filter that reflects the light in the irradiation wavelength band and transmits the light in the excitation wavelength band may be further provided on a part of the surface of the light guide plate that faces the irradiation surface.
 前記導光板と前記受光部との間に配置され、前記表面反射光および前記内部反射光を前記受光部の画素に近接結像させるレンズアレイをさらに備えることができる。 The lens array may be further provided between the light guide plate and the light receiving unit, and forms an image of the surface reflected light and the internal reflected light in proximity to the pixels of the light receiving unit.
 前記レンズアレイの各レンズが、前記物体の表面から前記受光部までの距離に応じたレンズ径および焦点距離を有しているようにすることができる。 Each lens of the lens array can have a lens diameter and a focal length corresponding to the distance from the surface of the object to the light receiving unit.
 前記受光部において得られる前記表面反射光および前記内部反射光の計測データを用いて、前記物体内の所定の成分値を求める演算部をさらに備えることができる。 A calculation unit for obtaining a predetermined component value in the object by using measurement data of the surface reflection light and the internal reflection light obtained in the light receiving unit may be further provided.
 前記物体を前記導光板の前記照射面から所定の距離に位置させるための位置合わせ部をさらに備えることができる。 It is possible to further include an alignment unit for positioning the object at a predetermined distance from the irradiation surface of the light guide plate.
 前記位置合わせ部により形成される前記物体と前記導光板との隙間に向かって白色光を発光する他の発光部と、前記受光部において得られる計測データに対して画像処理する画像処理部とをさらに備えることができ、前記受光部が、前記他の発光部が発光した前記白色光が前記物体の表面で反射した反射光をさらに受光し、前記画像処理部が、前記受光部において得られる前記反射光の計測データを画像処理して通常撮像画像を生成するようにすることができる。 Another light emitting unit that emits white light toward the gap between the object formed by the alignment unit and the light guide plate, and an image processing unit that performs image processing on measurement data obtained in the light receiving unit The light receiving unit may further receive reflected light of the white light emitted from the other light emitting unit reflected by the surface of the object, and the image processing unit is obtained in the light receiving unit. It is possible to generate a normal captured image by processing the measurement data of the reflected light.
 前記位置合わせ部により形成される前記物体と前記導光板との隙間に向かって近赤外光を発光する他の発光部と、前記受光部により受光された光のデータに基づいて前記物体内の伝搬光路長を求める演算部とをさらに備えることができ、前記受光部が、前記他の発光部が発光した前記近赤外光が前記物体で反射した近赤外反射光をさらに受光し、前記演算部が、前記受光部が受光した前記近赤外反射光のデータを用いて前記伝搬光路長を求めるようにすることができる。 Based on data of light received by the light receiving unit, another light emitting unit that emits near-infrared light toward the gap between the object and the light guide plate formed by the alignment unit. A calculation unit for obtaining a propagation optical path length, wherein the light receiving unit further receives near-infrared reflected light reflected by the object from the near-infrared light emitted by the other light-emitting unit, and The calculation unit may obtain the propagation optical path length using data of the near-infrared reflected light received by the light receiving unit.
 前記他の発光部が発光した前記近赤外光の照射方向を制限する絞りをさらに備えることができる。 A stop for limiting the irradiation direction of the near-infrared light emitted from the other light emitting unit can be further provided.
 前記導光板の前記照射面に対向する面の一部に、光を反射する反射膜をさらに備えることができる。 A reflection film that reflects light may be further provided on a part of the surface of the light guide plate that faces the irradiation surface.
 前記導光板と前記受光部との間に配置され、近紫外波長帯域の光を透過する第1のフィルタと、前記導光板と前記受光部との間に配置され、前記励起波長帯域の光を透過する第2のフィルタとをさらに備えることができる。 A first filter that is disposed between the light guide plate and the light receiving unit and transmits light in a near ultraviolet wavelength band, is disposed between the light guide plate and the light receiving unit, and transmits light in the excitation wavelength band. And a second filter that transmits the light.
 本技術の第1の側面の光学計測方法は、物体に照射する、所定の照射波長帯域を含む照射光を発光し、前記照射光を側面で受光して内部で拡散し、前記側面よりも広面積な照射面から前記物体の表面の所定の範囲に略均一に照射する導光板を介して前記物体の表面に照射された前記照射光が前記物体の表面で略波長シフトせずに反射した表面反射光と、前記導光板を介して前記物体の表面に照射された前記照射光が前記物体の内部で前記照射波長帯域から所定の励起波長帯域にシフトして反射した内部反射光とを、複数の画素で受光して受光量を計測する光学計測方法である。 The optical measurement method according to the first aspect of the present technology emits irradiation light that irradiates an object and includes a predetermined irradiation wavelength band, receives the irradiation light on a side surface, diffuses the light inside, and wider than the side surface. A surface in which the irradiation light irradiated to the surface of the object through a light guide plate that irradiates a predetermined range of the surface of the object substantially uniformly from an irradiation surface having a large area is reflected without substantially shifting the wavelength on the surface of the object A plurality of reflected light and internally reflected light reflected by the irradiation light irradiated on the surface of the object via the light guide plate shifted from the irradiation wavelength band to a predetermined excitation wavelength band inside the object. This is an optical measurement method for measuring the amount of received light received by the pixels.
 本技術の第1の側面の光学計測装置および方法においては、物体に照射する、所定の照射波長帯域を含む照射光が発光され、その照射光を側面で受光して内部で拡散し、側面よりも広面積な照射面から物体の表面の所定の範囲に略均一に照射する導光板を介して物体の表面に照射された照射光が物体の表面で略波長シフトせずに反射した表面反射光と、導光板を介して物体の表面に照射された照射光が物体の内部で照射波長帯域から所定の励起波長帯域にシフトして反射した内部反射光とが、複数の画素で受光されてその受光量が計測される。 In the optical measurement device and method according to the first aspect of the present technology, irradiation light that irradiates an object and includes a predetermined irradiation wavelength band is emitted, and the irradiation light is received by the side surface and diffused inside. Surface reflected light that is reflected from the surface of the object through the light guide plate that irradiates the surface of the object approximately uniformly from a large area to the surface of the object without substantially shifting the wavelength. And internally reflected light that is reflected by the irradiation light irradiated onto the surface of the object through the light guide plate shifted from the irradiation wavelength band to the predetermined excitation wavelength band inside the object is received by a plurality of pixels and The amount of received light is measured.
 本技術によれば、光を利用した計測を行うことが出来る。また本技術によれば、物体の成分値をより正確に測定することができる。 According to this technology, measurement using light can be performed. According to the present technology, the component value of the object can be measured more accurately.
従来の計測器の例を示す図である。It is a figure which shows the example of the conventional measuring device. 従来の計測器の構成を説明する図である。It is a figure explaining the structure of the conventional measuring device. 光の波長帯域を説明する図である。It is a figure explaining the wavelength band of light. 体組成計測器の外観の様子の例を示す図である。It is a figure which shows the example of the mode of the external appearance of a body composition measuring device. 計測部について説明する図である。It is a figure explaining a measurement part. 画素フィルタの構成例を説明する図である。It is a figure explaining the structural example of a pixel filter. 体組成計測器の構成例を示す断面図である。It is sectional drawing which shows the structural example of a body composition measuring device. 体組成計測器の内部の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples inside a body composition measuring device. 照射の様子の例を示す図である。It is a figure which shows the example of the mode of irradiation. 表面反射の様子の例を示す図である。It is a figure which shows the example of the mode of surface reflection. 内部反射の様子の例を示す図である。It is a figure which shows the example of the mode of internal reflection. 内部反射の様子の例を示す図である。It is a figure which shows the example of the mode of internal reflection. AGE値測定処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of an AGE value measurement process. 白色光照射の様子の例を説明する図である。It is a figure explaining the example of the mode of white light irradiation. 撮像処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of an imaging process. 近赤外光照射の様子の例を説明する図である。It is a figure explaining the example of the mode of near infrared light irradiation. 伝搬光路長測定処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of a propagation optical path length measurement process. 発光部および受光部の配置例を説明する図である。It is a figure explaining the example of arrangement | positioning of a light emission part and a light-receiving part. 反射膜の例を説明するである。An example of a reflective film will be described. フィルタの例を説明する図である。It is a figure explaining the example of a filter.
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(体組成計測器)
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. 1st Embodiment (body composition measuring device)
 <1.第1の実施の形態>
  <AGEs計測器>
 例えば、図1に示されるような、物体に光を照射し、その反射光を受光して、終末糖化生成物(AGEs(Advanced Glycation Endproducts))を測定する装置があった。図1に示されるAGEs計測器は、装置上部に戴置された物体である人体(腕)の表面に光を照射し、その反射光から終末糖化生成物(AGEs(Advanced Glycation Endproducts))を測定する。
<1. First Embodiment>
<AGEs measuring instrument>
For example, as shown in FIG. 1, there has been an apparatus for measuring glycation end products (AGEs (Advanced Glycation Endproducts)) by irradiating an object with light and receiving reflected light. The AGEs measuring instrument shown in Fig. 1 irradiates light on the surface of the human body (arm), which is an object placed on the upper part of the device, and measures advanced glycation end products (AGEs) from the reflected light. To do.
 このAGEs計測器は、図2に示されるように、近紫外光を発光するLED(Light Emitting Diode)を有し、そのLEDが発光した近紫外光を図1の腕に照射する。また、AGEs計測器は、照射した近紫外光が腕の表面で反射した表面反射光を透過する受光フィルタ(表面反射)と、その受光フィルタを透過した表面反射光を受光する光検出器(PD(Photo Detector)(表面反射))を有する。さらに、AGEs計測器は、照射した近紫外光が腕の内部で反射した内部反射光を透過する受光フィルタ(内部反射)と、その受光フィルタを透過した内部反射光を受光する光検出器(PD(内部反射))を有する。 This AGEs measuring instrument has an LED (Light Emitting Diode) that emits near-ultraviolet light, as shown in FIG. 2, and irradiates the arm shown in FIG. 1 with the near-ultraviolet light emitted by the LED. In addition, the AGEs measuring instrument consists of a light-receiving filter (surface reflection) that transmits surface reflected light that is reflected by the surface of the arm of irradiated near-ultraviolet light, and a photodetector (PD) that receives surface reflected light that has passed through the light-receiving filter. (Photo Detector) (surface reflection)). Furthermore, the AGEs measuring instrument has a light receiving filter (internal reflection) that transmits the internally reflected light that is reflected by the irradiated near-ultraviolet light inside the arm, and a photodetector (PD) that receives the internally reflected light that has passed through the light receiving filter. (Internal reflection)).
 LEDは、図3に示されるような波長域の(主に照射波長帯(例えば約330nm乃約至420nm(近紫外波長帯とも称する))の)近紫外光を照射する。この近紫外光は、腕の表面において略波長シフトせずに反射する。すなわち、表面反射光の主な波長成分は、照射波長帯(近紫外波長帯)のままである。受光フィルタ(表面反射)は、図3に示されるようにこの照射波長帯に含まれる所定の波長帯域(受光フィルタ帯(表面反射)(例えば約360nm乃至約390nm))の光を透過する。つまり、PD(表面反射)は、この受光フィルタ帯(表面反射)の光(表面反射光)を受光する。 The LED emits near-ultraviolet light in a wavelength range as shown in FIG. 3 (mainly in an irradiation wavelength band (for example, about 330 nm to about 420 nm (also referred to as a near-ultraviolet wavelength band)). This near-ultraviolet light is reflected on the surface of the arm without substantially shifting the wavelength. That is, the main wavelength component of the surface reflected light remains the irradiation wavelength band (near ultraviolet wavelength band). As shown in FIG. 3, the light receiving filter (surface reflection) transmits light in a predetermined wavelength band (light receiving filter band (surface reflection) (for example, about 360 nm to about 390 nm)) included in the irradiation wavelength band. That is, PD (surface reflection) receives light (surface reflection light) of the light receiving filter band (surface reflection).
 また、近紫外光は、腕の内部において反射するが、この場合、照射波長帯から励起波長帯(例えば約420nm乃至約580nm(青緑波長帯とも称する))に波長シフトする。すなわち、内部反射光の主な波長成分は、励起波長帯(青緑波長帯)となる。受光フィルタ(表面反射)は、図3に示されるようにこの励起波長帯に含まれる所定の波長帯域(受光フィルタ帯(内部反射)(例えば約430nm乃至約560nm))の光を透過する。つまり、PD(内部反射)は、この受光フィルタ帯(内部反射)の光(内部反射光)を受光する。 Near-ultraviolet light is reflected inside the arm, but in this case, the wavelength shifts from the irradiation wavelength band to the excitation wavelength band (for example, about 420 nm to about 580 nm (also referred to as a blue-green wavelength band)). That is, the main wavelength component of the internally reflected light is the excitation wavelength band (blue-green wavelength band). As shown in FIG. 3, the light receiving filter (surface reflection) transmits light in a predetermined wavelength band (light receiving filter band (internal reflection) (for example, about 430 nm to about 560 nm)) included in the excitation wavelength band. That is, PD (internal reflection) receives light (internal reflection light) of the light receiving filter band (internal reflection).
 AGEs計測器は、これらのPDが受光した外部反射光と内部反射光の計測値を用いてAGE値を求める。したがって、PDが受光する外部反射光や内部反射光が反射した腕部の部分が測光範囲、すなわち、AGE値を求める範囲となる。当然この測光範囲は、LEDが近紫外光を照射する照射範囲よりも狭くなる。測光範囲が狭いと、終末糖化生成物等の分布ムラに起因する測定値のバラつきを抑制することが困難であった。 The AGEs measuring instrument calculates the AGE value using the measured values of the external reflection light and internal reflection light received by these PDs. Therefore, the external reflection light received by the PD and the arm portion reflected by the internal reflection light are the photometric range, that is, the range for obtaining the AGE value. Naturally, this photometric range is narrower than the irradiation range in which the LED emits near-ultraviolet light. When the photometric range is narrow, it is difficult to suppress variations in measured values due to uneven distribution of glycation end products.
 照射範囲を拡大するためには、LEDと腕との間の距離を長くするか、LEDの数を増大させる必要があった。LEDと腕との間の距離を長くすると、筐体の小型化が困難であるとともに、反射光の光量が低減するおそれがあった。また、LEDを多数化すると、多数のLEDの配置により筐体の小型化が困難になるおそれや、コストが増大するおそれや、照射光量にムラが生じるおそれがあった。 In order to expand the irradiation range, it was necessary to increase the distance between the LED and the arm or increase the number of LEDs. If the distance between the LED and the arm is increased, it is difficult to reduce the size of the housing, and the amount of reflected light may be reduced. In addition, when the number of LEDs is increased, there is a risk that it is difficult to reduce the size of the housing due to the arrangement of the LEDs, the cost may increase, and the irradiation light quantity may be uneven.
 また、仮に照射範囲を拡大することができたとしても、測光範囲を拡大するためには、腕からPDまでの距離を長くするか、PDの数を増大させる必要があった。LEDの場合と同様に、腕とPDとの間の距離を長くすると、筐体の小型化が困難であるとともに、反射光の受光量が低減するおそれがあった。また、PDを多数化すると、多数のPDの配置により筐体の小型化が困難になるおそれや、コストが増大するおそれがあった。 Even if the irradiation range could be expanded, it was necessary to increase the distance from the arm to the PD or increase the number of PDs in order to expand the photometric range. As in the case of the LED, if the distance between the arm and the PD is increased, it is difficult to reduce the size of the housing, and the amount of reflected light received may be reduced. In addition, when the number of PDs is increased, there is a risk that it is difficult to reduce the size of the housing due to the arrangement of the large number of PDs, and the cost may increase.
 そのため、終末糖化生成物等の分布ムラに起因する測定値のバラつきを抑制することが困難であり、物体の成分値をより正確に測定することが困難であった。 For this reason, it is difficult to suppress variations in the measured values due to uneven distribution of the glycation end products, and it is difficult to measure the component values of the object more accurately.
  <光学計測装置>
 そこで、光に関する計測を行う光学計測装置において、物体に照射する、所定の照射波長帯域を含む照射光を発光する発光部と、その発光部が発光した照射光を側面で受光して内部で拡散し、その側面よりも広面積な照射面から物体の表面の所定の範囲に略均一に照射する導光板と、その導光板を介して物体の表面に照射された照射光が物体の表面で略波長シフトせずに反射した表面反射光と、その導光板を介して物体の表面に照射された照射光が物体の内部で照射波長帯域から所定の励起波長帯域にシフトして反射した内部反射光とを、複数の画素で受光して受光量を計測する受光部とを備えるようにする。
<Optical measurement device>
Therefore, in an optical measurement device that performs light-related measurements, a light emitting unit that emits irradiation light that irradiates an object and includes a predetermined irradiation wavelength band, and irradiation light emitted from the light emitting unit is received by the side surface and diffused inside A light guide plate that irradiates a predetermined area of the surface of the object substantially uniformly from an irradiation surface having a larger area than the side surface thereof, and the irradiation light applied to the surface of the object through the light guide plate is substantially on the surface of the object. Surface reflected light reflected without wavelength shift and internal reflected light reflected by shifting the irradiation light irradiated to the surface of the object through the light guide plate from the irradiation wavelength band to the predetermined excitation wavelength band inside the object And a light receiving unit that receives light by a plurality of pixels and measures the amount of received light.
 つまり、物体に照射する、所定の照射波長帯域を含む照射光を発光し、照射光を側面で受光して内部で拡散し、側面よりも広面積な照射面から物体の表面の所定の範囲に略均一に照射する導光板を介して物体の表面に照射された照射光が物体の表面で略波長シフトせずに反射した表面反射光と、導光板を介して物体の表面に照射された照射光が物体の内部で照射波長帯域から所定の励起波長帯域にシフトして反射した内部反射光とを、複数の画素で受光して受光量を計測するようにする。 In other words, it emits irradiation light that irradiates the object and includes a predetermined irradiation wavelength band, receives the irradiation light on the side surface, diffuses it inside, and extends from the irradiation surface wider than the side surface to a predetermined range on the surface of the object Light reflected from the surface of the object through the light guide plate that irradiates substantially uniformly and reflected from the surface of the object without substantially shifting the wavelength, and irradiation of the surface of the object through the light guide plate The internally reflected light, which is reflected by shifting the light from the irradiation wavelength band to the predetermined excitation wavelength band inside the object, is received by a plurality of pixels and the amount of received light is measured.
 このように導光板を用いることにより、容易に照射光の物体への照射範囲をムラ無く略均一に拡大することができる。また、複数画素の受光部で反射光を受光することにより、容易に測光範囲を拡大することができるだけでなく、成分値を2次元分布として測定することができる。したがって、その成分値の分布を積分平均化することができ、分布ムラに起因する成分値の誤差を低減することができる。つまり、物体の成分値をより正確に測定することができる。また、測定された成分値の2次元分布を利用してより多様な情報の出力が可能になる。 By using the light guide plate in this way, the irradiation range of the irradiated light on the object can be easily enlarged substantially uniformly. In addition, by receiving the reflected light with the light receiving units of a plurality of pixels, not only can the photometric range be easily expanded, but also the component values can be measured as a two-dimensional distribution. Therefore, the distribution of the component values can be integrated and averaged, and the component value error caused by the uneven distribution can be reduced. That is, the component value of the object can be measured more accurately. Further, more various information can be output using the two-dimensional distribution of measured component values.
 また、導光板を用いることにより、より容易に低背化を実現することができるとともに、発光部の増大を抑制することができるので、より容易に筐体の小型化を実現することができる。その分、他の機能を搭載することもできるようになる。 In addition, by using the light guide plate, it is possible to easily realize a reduction in height and to suppress an increase in the light emitting portion, and thus it is possible to more easily realize downsizing of the housing. As a result, other functions can be installed.
  <体組成計測器>
 図4は、本技術を適用した光学計測装置の一実施の形態である電子機器の一例である体組成計測器の主な構成例を示す図である。図4に示される体組成計測器100は、物体の一例である利用者の体重や体脂肪率を計測する電子機器である。また、体組成計測器100は、光を用いて、利用者の体内に含まれる終末糖化生成物(AGEs(Advanced Glycation Endproducts))を計測する。
<Body composition measuring instrument>
FIG. 4 is a diagram illustrating a main configuration example of a body composition measuring instrument which is an example of an electronic apparatus which is an embodiment of an optical measuring device to which the present technology is applied. The body composition measuring instrument 100 shown in FIG. 4 is an electronic device that measures the weight and body fat percentage of a user, which is an example of an object. Moreover, the body composition measuring device 100 measures the advanced glycation end products (AGEs) contained in the user's body using light.
 図4は、体組成計測器100の上面の主な構成例を示す外観図である。体組成計測器100は、この上面の上に乗った(例えば立位する)利用者の体重や体脂肪率を計測するとともに、利用者の体内に含まれるAGEsの量に関するパラメータであるAGE値を計測する。 FIG. 4 is an external view showing a main configuration example of the upper surface of the body composition measuring instrument 100. The body composition measuring instrument 100 measures the weight and body fat percentage of a user who rides (for example, stands) on the upper surface, and calculates an AGE value that is a parameter relating to the amount of AGEs contained in the user's body. measure.
 図4に示されるように、体組成計測器100の上面には、電極111-1乃至電極111-4、計測部112-1および計測部112-2、表示部113、並びに、表示部114-1および表示部114-2を備える。 As shown in FIG. 4, on the upper surface of the body composition measuring instrument 100, electrodes 111-1 to 111-4, a measuring unit 112-1, a measuring unit 112-2, a display unit 113, and a display unit 114- 1 and a display unit 114-2.
 電極111-1乃至電極111-4は、接触した物体(例えば、体組成計測器100の上に乗った利用者の足の裏等)に、体脂肪率等の計測に用いられる微弱な電流を流すための電極である。以下において、電極111-1乃至電極111-4を互いに区別して説明する必要が無い場合、電極111と称する。なお、電極111の形状、大きさ、数、位置等はいずれも任意であり、図4の例に限定されない。また、電極111を利用して計測可能な情報は任意であり、体脂肪率に限定されない。 The electrodes 111-1 to 111-4 apply a weak current used for measuring body fat percentage and the like to a contacted object (for example, the sole of a user's foot riding on the body composition measuring instrument 100). It is an electrode for flowing. Hereinafter, the electrodes 111-1 to 111-4 are referred to as electrodes 111 when there is no need to distinguish them from each other. Note that the shape, size, number, position, and the like of the electrode 111 are arbitrary and are not limited to the example of FIG. Moreover, the information measurable using the electrode 111 is arbitrary and is not limited to the body fat percentage.
 計測部112-1および計測部112-2は、各計測部上に位置する物体(例えば、体組成計測器100の上に乗った利用者の足の裏等)のAGE値等の計測を行う。以下において、計測部112-1および計測部112-2を互いに区別して説明する必要が無い場合、計測部112と称する。なお、計測部112の構成については後述するが、電極111の形状、大きさ、数、位置等はいずれも任意であり、図4の例に限定されない。 The measurement unit 112-1 and the measurement unit 112-2 measure an AGE value or the like of an object located on each measurement unit (for example, the sole of a user's foot riding on the body composition measuring instrument 100). . Hereinafter, the measurement unit 112-1 and the measurement unit 112-2 are referred to as the measurement unit 112 when there is no need to distinguish between them. Although the configuration of the measurement unit 112 will be described later, the shape, size, number, position, and the like of the electrode 111 are arbitrary and are not limited to the example of FIG.
 また、表示部113、表示部114-1、および表示部114-2は、それぞれ、例えばLCD(Liquid Crystal Display)やOELD(Organic Electro Luminescence Display)等の表示デバイスを有し、計測結果に関する情報等を表示する。例えば、表示部114-1が、左側の構成(電極111-1、電極111-2、および計測部112-1)に対応する表示部として機能し、これらによる計測結果に関する情報を表示するようにしてもよい。また、例えば、表示部114-2が、右側の構成(電極111-3、電極111-4、および計測部112-2)に対応する表示部として機能し、これらによる計測結果に関する情報を表示するようにしてもよい。そして、表示部113には、左右の計測結果を用いて求められた総合的な情報が表示されるようにしてもよい。 The display unit 113, the display unit 114-1, and the display unit 114-2 each have a display device such as an LCD (Liquid Crystal Display) or an OELD (Organic Electro Electro Luminescence Display). Is displayed. For example, the display unit 114-1 functions as a display unit corresponding to the configuration on the left side (the electrode 111-1, the electrode 111-2, and the measurement unit 112-1), and displays information on the measurement results obtained by these. May be. In addition, for example, the display unit 114-2 functions as a display unit corresponding to the configuration on the right side (the electrode 111-3, the electrode 111-4, and the measurement unit 112-2), and displays information on the measurement results obtained by these. You may do it. Then, the display unit 113 may display comprehensive information obtained using the left and right measurement results.
 例えば、図4の場合、表示部114-1には、物体(左足)のAGE値に基づく診断結果を示すメッセージ「足の裏 汚いぞ」が表示されている。また、表示部114-2には、物体(右足)のAGE値に基づく診断結果を示すメッセージ「足の裏 汚いぞ」が表示されている。そして、表示部113には、算出された左右のAGE値から求められる情報として、「AGEs=XXX」や「YY歳相当」等のメッセージが表示されている。 For example, in the case of FIG. 4, the display unit 114-1 displays a message “Foot sole dirty” indicating the diagnosis result based on the AGE value of the object (left foot). In addition, the display unit 114-2 displays a message “Foot sole is dirty” indicating a diagnosis result based on the AGE value of the object (right foot). The display unit 113 displays messages such as “AGEs = XXX” and “YY equivalent” as information obtained from the calculated left and right AGE values.
 以下において、表示部114-1および表示部114-2を互いに区別して説明する必要が無い場合、表示部114と称する。表示部113、表示部114-1、および表示部114-2が有する表示デバイスは、それぞれ、任意である。また、表示部113、表示部114-1、および表示部114-2が表示する情報も任意である。どの表示部にどのようなメッセージが表示されるようにしてもよい。また、例えば、メッセージだけでなく撮像画像等の画像情報が表示されるようにしてもよい。また、表示部113、表示部114-1、および表示部114-2の形状、大きさ、数、位置等はいずれも任意であり、図4の例に限定されない。 Hereinafter, the display unit 114-1 and the display unit 114-2 will be referred to as the display unit 114 when there is no need to distinguish them from each other. The display devices included in the display unit 113, the display unit 114-1, and the display unit 114-2 are arbitrary. Information displayed on the display unit 113, the display unit 114-1, and the display unit 114-2 is also arbitrary. Any message may be displayed on any display section. Further, for example, not only a message but also image information such as a captured image may be displayed. Further, the shape, size, number, position, and the like of the display unit 113, the display unit 114-1, and the display unit 114-2 are arbitrary, and are not limited to the example of FIG.
  <計測部>
 図5は、計測部112について説明する図である。計測を行う利用者は、自身の足121が概ね図5のAに示されるような場所に位置するように、体組成計測器100の上で立位する。図5のAの例では、電極111-3が足121の裏面のつま先近傍に接触し、電極111-4が足121の裏面の踵付近に接触している。そして、計測部112-2が、足121の裏面の土踏まずの辺りに位置する。この場合、計測部112-2は、自身の上に位置する部位、すなわち、足121の土踏まず辺りを対象として計測を行う。図5のAは右足についての例を示しているが左足も略同様である。
<Measurement unit>
FIG. 5 is a diagram for explaining the measurement unit 112. The user who performs the measurement stands on the body composition measuring instrument 100 so that his / her foot 121 is positioned at a position as shown in FIG. In the example of FIG. 5A, the electrode 111-3 is in contact with the vicinity of the toe on the back surface of the foot 121, and the electrode 111-4 is in contact with the vicinity of the heel on the back surface of the foot 121. The measuring unit 112-2 is positioned around the arch on the back surface of the foot 121. In this case, the measurement unit 112-2 performs measurement on a part located above itself, that is, around the arch of the foot 121. FIG. 5A shows an example of the right foot, but the left foot is substantially the same.
 計測部112は、例えば図5のBに示されるような構成を有する。つまり、計測部112は、白色LED(Light Emitting Diode)131、導光板132、PD(Photo Detector)133、およびイメージセンサ134を有する。 The measuring unit 112 has a configuration as shown in FIG. That is, the measurement unit 112 includes a white LED (Light Emitting Diode) 131, a light guide plate 132, a PD (Photo Detector) 133, and an image sensor 134.
 白色LED131は、例えばAGE値等の、物体内の所定の成分値を求めるための光を発光する発光デバイスである。体組成計測器100は、図3を参照して説明した場合と同様に、図3に示される照射波長帯の照射光を足121の裏面に照射する。したがって白色LED131は、この照射波長帯(近紫外波長帯域)を含む光を発光する。例えば、白色LED131は、白色光を発光するようにしてもよい。なお、物体への照射光には照射波長帯の成分が含まれていればよいので、白色LED131は、近紫外波長帯(例えば約330nm乃約至420nm)を含む近紫外光を発光するようにしてもよい。 The white LED 131 is a light emitting device that emits light for obtaining a predetermined component value in an object such as an AGE value. The body composition measuring instrument 100 irradiates the back surface of the foot 121 with irradiation light in the irradiation wavelength band shown in FIG. 3 in the same manner as described with reference to FIG. Therefore, the white LED 131 emits light including this irradiation wavelength band (near ultraviolet wavelength band). For example, the white LED 131 may emit white light. Since it is only necessary that the irradiation light on the object includes a component in the irradiation wavelength band, the white LED 131 emits near ultraviolet light including the near ultraviolet wavelength band (for example, about 330 nm to about 420 nm). May be.
 図5のBに示されるように、白色LED131は、導光板132の側面に接触若しくは近接する位置に、導光板132の側面に向かって発光した白色光を照射するような姿勢で設置されている。白色LED131の数は任意である。図5のBにおいては8個の白色LED131が示されているが、7個以下であってもよいし、9個以上であってもよい。 As shown in FIG. 5B, the white LED 131 is installed in such a position as to irradiate white light emitted toward the side surface of the light guide plate 132 at a position in contact with or close to the side surface of the light guide plate 132. . The number of white LEDs 131 is arbitrary. In FIG. 5B, eight white LEDs 131 are shown, but it may be 7 or less, or 9 or more.
 導光板132は、例えば石英やプラスチック等の透明な素材で形成され、内部に光を透過させることができる、矩形の板状のデバイスである。つまり、導光板132は、低面積の4つの側面と互いに対抗する広面積の2つの面を有する。図5のBにおいて、図中手前側の面が光を照射する広面積の照射面である。また、図中上下左右方向の4辺で示される部分が導光板132の側面である。足121は、この照射面側(すなわち、図中手前側)に配置される。導光板132は、内部を伝搬する光を拡散し、照射面全体若しくはその大部分からその足121に向かって略均一に出射する。つまり、導光板132は、白色LED131が発光した白色光を、側面で受光して内部で拡散し、側面よりも広面積な照射面から、足121の、計測部112上に位置する部分(所定の範囲)に対して(図中手前側に向かって)略均一に照射する。 The light guide plate 132 is a rectangular plate-like device that is formed of a transparent material such as quartz or plastic and can transmit light inside. In other words, the light guide plate 132 has four sides with a large area that oppose each other with four sides with a low area. In FIG. 5B, the surface on the near side in the drawing is a large-area irradiation surface that irradiates light. Further, the portions indicated by the four sides in the vertical and horizontal directions in the figure are the side surfaces of the light guide plate 132. The foot 121 is disposed on the irradiation surface side (that is, the front side in the figure). The light guide plate 132 diffuses the light propagating through the inside and emits the light substantially uniformly toward the legs 121 from the entire irradiation surface or most of the irradiation surface. That is, the light guide plate 132 receives the white light emitted from the white LED 131 on the side surface and diffuses it inside, and the portion of the foot 121 located on the measuring unit 112 (predetermined from the irradiation surface having a larger area than the side surface). ) In a substantially uniform manner (toward the front side in the figure).
 PD(Photo Detector)133は、白色LED131が発光した光を受光し、その光量を計測する計測部(光検出器)である。このPD133の計測結果(光量)に基づいて、白色LED131の発光強度を制御することができる。したがって、照射光の綱領をより適切に設定することができるので、計測をより正確に行うことができる。 PD (Photo Detector) 133 is a measurement unit (photodetector) that receives light emitted from the white LED 131 and measures the amount of light. Based on the measurement result (light quantity) of the PD 133, the light emission intensity of the white LED 131 can be controlled. Therefore, since the program of irradiation light can be set more appropriately, measurement can be performed more accurately.
 PD133は、導光板132を挟んで白色LED131に対向する位置に配置されている。すなわち、PD133は、導光板132の側面に接触若しくは近接する位置の、導光板132を介して白色LED131に対向する位置に、導光板132を介して白色LED131が発光した光を受光することができる姿勢で設置されている。このような配置にすることにより、PD133が白色LED131から出射され、導光板132内部を伝搬する白色光をより確実に検出することができ、その光量をより正確に計測することができる。 The PD 133 is disposed at a position facing the white LED 131 with the light guide plate 132 interposed therebetween. That is, the PD 133 can receive the light emitted by the white LED 131 via the light guide plate 132 at a position that contacts or approaches the side surface of the light guide plate 132 and faces the white LED 131 via the light guide plate 132. It is installed in a posture. With such an arrangement, the PD 133 is emitted from the white LED 131 and the white light propagating through the light guide plate 132 can be detected more reliably, and the amount of light can be measured more accurately.
 なお、PD133の数は任意である。図5のBにおいては8個のPD133が示されているが、7個以下であってもよいし、9個以上であってもよい。 Note that the number of PDs 133 is arbitrary. In FIG. 5B, eight PDs 133 are shown, but the number may be seven or less, or nine or more.
 イメージセンサ134は、白色LED131が発光し、導光板132を介して足121に照射された照射光が、足121において反射した反射光を受光し、その受光量を計測する受光デバイスである。このイメージセンサ134は、導光板132の照射面に対向する面側(すなわち、図中奥側)に設けられる。足121において反射した反射光は、導光板132を透過してイメージセンサ134に到達する。 The image sensor 134 is a light receiving device that receives the reflected light reflected by the foot 121 when the white LED 131 emits light and the irradiation light applied to the foot 121 through the light guide plate 132 measures the amount of light received. The image sensor 134 is provided on the surface side facing the irradiation surface of the light guide plate 132 (that is, the back side in the figure). The reflected light reflected by the foot 121 passes through the light guide plate 132 and reaches the image sensor 134.
 イメージセンサ134は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等により構成される。イメージセンサ134は、2次元状(例えばアレイ状)に配置された複数の画素を有しており、各画素において、受光した光を光電変換することにより、その光量の計測結果を示す電気信号を得る。イメージセンサ134は、このような各画素で得られる電気信号を計測データ(センシングデータ)として後段の処理部に出力する。つまり、イメージセンサ134は、計測データを2次元分布データとして得ることができる。したがって成分値の分布ムラ等をより容易に検出することができる。つまり、物体の成分値をより正確に測定することができる。また、計測データの2次元分布を利用してより多様な情報の出力が可能になる。 The image sensor 134 is composed of, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor. The image sensor 134 has a plurality of pixels arranged in a two-dimensional shape (for example, an array), and each pixel generates an electric signal indicating a measurement result of the light amount by photoelectrically converting the received light. obtain. The image sensor 134 outputs an electrical signal obtained from each pixel as measurement data (sensing data) to a subsequent processing unit. That is, the image sensor 134 can obtain measurement data as two-dimensional distribution data. Accordingly, it is possible to more easily detect uneven distribution of component values. That is, the component value of the object can be measured more accurately. In addition, more various information can be output using the two-dimensional distribution of measurement data.
  <照射光と反射光の波長帯>
 ここで、図3を参照して、照射光と反射光の波長帯について説明する。足121に照射される照射光は、図3の照射波長帯(例えば約360nm乃至約390nm、すなわち、近紫外波長帯)を含む。足121の表面においては、この照射光は、略波長シフトせずに反射する。すなわち、照射光が足121の表面で反射した反射光である表面反射光は、この照射波長帯(近紫外波長帯)を含む。これに対して、足121の内部においては、この照射光は、照射波長帯から励起波長帯(例えば約420nm乃至約580nm)に波長シフトする。すなわち、照射光が足121の内部で反射した反射光である内部反射光は、この励起波長帯(青緑波長帯)を含む。
<Waveband of irradiated light and reflected light>
Here, with reference to FIG. 3, the wavelength band of irradiation light and reflected light is demonstrated. The irradiation light applied to the foot 121 includes the irradiation wavelength band of FIG. 3 (for example, about 360 nm to about 390 nm, that is, the near ultraviolet wavelength band). On the surface of the foot 121, the irradiation light is reflected without substantially shifting the wavelength. That is, the surface reflected light that is the reflected light reflected by the surface of the foot 121 includes this irradiation wavelength band (near ultraviolet wavelength band). On the other hand, in the foot 121, the irradiation light is wavelength-shifted from the irradiation wavelength band to the excitation wavelength band (for example, about 420 nm to about 580 nm). That is, the internally reflected light that is the reflected light reflected from the inside of the foot 121 includes this excitation wavelength band (blue-green wavelength band).
  <画素フィルタ>
 イメージセンサ134は以上のような複数種類の波長帯域の光を受光する。その際、イメージセンサ134が、これらの光(反射光)を互いに異なる画素で受光するようにしてもよい。例えば、イメージセンサ134が、所定の波長帯域の光を透過する画素毎のフィルタからなる画素フィルタを有し、照射波長帯の光を透過するフィルタを備える画素と、励起波長帯の光を透過するフィルタを備える画素との両方を有するようにしてもよい。
<Pixel filter>
The image sensor 134 receives light of a plurality of types of wavelength bands as described above. At that time, the image sensor 134 may receive the light (reflected light) by different pixels. For example, the image sensor 134 includes a pixel filter including a filter for each pixel that transmits light in a predetermined wavelength band, and a pixel including a filter that transmits light in the irradiation wavelength band, and transmits light in the excitation wavelength band. You may make it have both a pixel provided with a filter.
 例えば、図6のAに示されるように、イメージセンサ134が、照射波長帯(近紫外波長帯)を透過するUVフィルタ141と、励起波長帯(青緑波長帯)を透過するBGフィルタ142とが所定のパタンで画素毎に並べられた画素フィルタ140を有するようにしてもよい。図6のAの例の場合、UVフィルタ141とBGフィルタ142とが交互に配置されている。なお、このUVフィルタ141とBGフィルタ142との配置パタンは任意であり、図6のAの配置パタンに限定されない。 For example, as shown in FIG. 6A, the image sensor 134 includes a UV filter 141 that transmits an irradiation wavelength band (near ultraviolet wavelength band), and a BG filter 142 that transmits an excitation wavelength band (blue-green wavelength band). May have a pixel filter 140 arranged for each pixel in a predetermined pattern. In the case of the example of FIG. 6A, the UV filters 141 and the BG filters 142 are alternately arranged. The arrangement pattern of the UV filter 141 and the BG filter 142 is arbitrary, and is not limited to the arrangement pattern A in FIG.
 このような画素フィルタを設けることにより、イメージセンサ134は、表面反射光と内部反射光との両方を受光(計測)することができる。また、イメージセンサ134が、このように各波長帯域の光を画素単位で分けて受光することにより、イメージセンサから読み出された計測データが、それがどの画素から読み出されたかによって、どの波長帯域の光の計測データであるかを容易に識別することができる。したがって、体組成計測器100は、これらの計測データを用いたAGE値等の演算をより容易に行うことができる。 By providing such a pixel filter, the image sensor 134 can receive (measure) both surface reflection light and internal reflection light. In addition, the image sensor 134 receives the light of each wavelength band in units of pixels in this way, so that the measurement data read out from the image sensor can be selected according to which pixel the measurement data is read out from. It is possible to easily identify whether the measurement data is for light in the band. Therefore, the body composition measuring instrument 100 can more easily perform operations such as AGE values using these measurement data.
  <計測部の断面構造>
 図7は、計測部112の構成を説明するための断面図である。図7において図中上方向が、体組成計測器100の上側(図4において図中手前側)を示す。
<Cross-sectional structure of measuring part>
FIG. 7 is a cross-sectional view for explaining the configuration of the measurement unit 112. In FIG. 7, the upper direction in the figure indicates the upper side of the body composition measuring instrument 100 (the front side in the figure in FIG. 4).
 図7に示されるように、導光板132の側面には互いに対向するように白色LED131およびPD133が配置されている。導光板132の図中上側が照射面であり、足121は、その照射面側に位置する。 As shown in FIG. 7, white LEDs 131 and PD 133 are arranged on the side surfaces of the light guide plate 132 so as to face each other. The upper side of the light guide plate 132 in the figure is the irradiation surface, and the foot 121 is located on the irradiation surface side.
 導光板132の照射面側の一部に、所定の形状の位置合わせ部151が設けられている。この位置合わせ部151は、足121の位置を制御するガイドである。この位置合わせ部151によって足121と導光板132との間の位置関係(特に距離)が略所定の状態に保たれる。例えば、図7に示されるように、斜線模様で示される所定の広さの隙間161を形成することができる。なお、この隙間161(足121と導光板132との間)は、空間としてもよいし、石英や透明なプラスチック等の、光を透過する素材によって埋められてもよい。ただし、この隙間161を通過する各種光にできるだけ影響を及ぼさないようにするのが望ましい。 An alignment portion 151 having a predetermined shape is provided on a part of the light guide plate 132 on the irradiation surface side. The alignment unit 151 is a guide that controls the position of the foot 121. By this alignment portion 151, the positional relationship (particularly distance) between the foot 121 and the light guide plate 132 is maintained in a substantially predetermined state. For example, as shown in FIG. 7, a gap 161 having a predetermined width indicated by a diagonal pattern can be formed. The gap 161 (between the foot 121 and the light guide plate 132) may be a space, or may be filled with a material that transmits light, such as quartz or transparent plastic. However, it is desirable that the various lights passing through the gap 161 are not affected as much as possible.
 また、白色LED131の図中上側には、白色LED181および近赤外LED182が設けられている。 Further, a white LED 181 and a near infrared LED 182 are provided on the upper side of the white LED 131 in the drawing.
 白色LED181は、例えば、足121の可視光の撮影画像(通常撮影画像)を得るための光として、白色光を発光する発光デバイスである。白色LED181は、発光した白色光を、導光板132を介さずに、隙間161を介して足121に照射する。この白色光が足121の表面で反射した反射光は、導光板132を透過し、イメージセンサ134により受光されて光電変換され、通常撮像画像のデータが得られる。 The white LED 181 is, for example, a light emitting device that emits white light as light for obtaining a visible captured image (normal captured image) of the foot 121. The white LED 181 irradiates the foot 121 with the emitted white light through the gap 161 without passing through the light guide plate 132. The reflected light of the white light reflected from the surface of the foot 121 passes through the light guide plate 132, is received by the image sensor 134, and is subjected to photoelectric conversion, whereby data of a normal captured image is obtained.
 この場合、イメージセンサ134は、上述の照射波長帯および励起波長帯以外の波長帯域の光も受光する。そこで、イメージセンサ134は、画素フィルタ140として、UVフィルタ141およびBGフィルタ142以外のフィルタを有するようにしてもよい。例えば、図6のBに示される配置パタンように、赤波長帯の光(赤色光)を透過するRフィルタ143、緑波長帯の光(緑色光)を透過するGフィルタ144、および青波長帯の光(青色光)を透過するBフィルタ145を有するようにしてもよい。 In this case, the image sensor 134 also receives light in a wavelength band other than the above-described irradiation wavelength band and excitation wavelength band. Therefore, the image sensor 134 may include a filter other than the UV filter 141 and the BG filter 142 as the pixel filter 140. For example, as in the arrangement pattern shown in FIG. 6B, an R filter 143 that transmits light in the red wavelength band (red light), a G filter 144 that transmits light in the green wavelength band (green light), and a blue wavelength band A B filter 145 that transmits the light (blue light) may be provided.
 この場合も、各フィルタの配置パタンは任意である。例えば、図6のBの配置パタンのように、UVフィルタ141およびBGフィルタ142と、Rフィルタ143、Gフィルタ144、およびBフィルタ145とが、互いに異なる領域の画素に配置される(すなわち、近紫外波長帯および青緑波長帯の光を受光する画素領域と、赤色光、青色光、および緑色光(RGB)を受光する画素領域とが分けられている)ようにしてもよい。また、各フィルタが配置される画素が1つの領域に混在するようにしてもよい。 Also in this case, the arrangement pattern of each filter is arbitrary. For example, like the arrangement pattern of B in FIG. 6, the UV filter 141 and the BG filter 142, and the R filter 143, the G filter 144, and the B filter 145 are arranged in pixels in different regions (that is, close to each other). A pixel region that receives light in the ultraviolet wavelength band and blue-green wavelength band and a pixel region that receives red light, blue light, and green light (RGB) may be separated). Further, the pixels in which the filters are arranged may be mixed in one area.
 また、BGフィルタ142が透過する帯域は、Bフィルタ145およびGフィルタ144でカバーすることができる。つまり、青緑波長帯の光は、Gフィルタ144が配置された画素とBフィルタ145が配置された画素とによって受光することができる。そこで例えば、図6のCに示される配置パタンのように、BGフィルタ142を省略するようにしてもよい。 Also, the band transmitted by the BG filter 142 can be covered by the B filter 145 and the G filter 144. That is, light in the blue-green wavelength band can be received by the pixel in which the G filter 144 is disposed and the pixel in which the B filter 145 is disposed. Therefore, for example, the BG filter 142 may be omitted as in the arrangement pattern shown in FIG.
 図7に戻り、近赤外LED182は、近赤外波長帯(例えば、約780nm乃至約2500nm)の光(近赤外光)を発光する発光デバイスである。一般に、直進性の高い光を人体等の照射し、その皮膚および皮膚より深層の伝搬光路長を計測することにより、皮下脂肪の厚さ等を測定することができる。近赤外LED182は、このような測定に利用する照射光として、可視光よりも長波長の近赤外光を発光する。近赤外LED182は、発光した近赤外光を、導光板132を介さずに、隙間161を介して足121に向けて照射する。この近赤外光は足121の内部を直進した後、表面(足の裏)から出射する。その出射光が、導光板132を透過し、イメージセンサ134により受光されて光電変換され、近赤外光のデータが2次元分布(強度分布)として得られる。この強度分布に基づいて足121の皮下脂肪の厚さ等を測定することができる。 Returning to FIG. 7, the near-infrared LED 182 is a light-emitting device that emits light (near-infrared light) in the near-infrared wavelength band (for example, about 780 nm to about 2500 nm). In general, the thickness of subcutaneous fat and the like can be measured by irradiating a human body or the like with light having a high degree of straightness and measuring the propagation optical path length of the skin and deeper than the skin. The near-infrared LED 182 emits near-infrared light having a wavelength longer than that of visible light as irradiation light used for such measurement. The near-infrared LED 182 irradiates the emitted near-infrared light toward the foot 121 through the gap 161 without passing through the light guide plate 132. The near-infrared light travels straight inside the foot 121 and then exits from the surface (the sole of the foot). The emitted light passes through the light guide plate 132, is received by the image sensor 134, is photoelectrically converted, and near-infrared light data is obtained as a two-dimensional distribution (intensity distribution). Based on this intensity distribution, the thickness and the like of the subcutaneous fat of the foot 121 can be measured.
 この場合、イメージセンサ134は、例えば、図6のDに示される配置パタンように、画素フィルタ140として、UVフィルタ141およびBGフィルタ142以外の他に、近赤外波長帯の光(近赤外光)を透過するIRフィルタ146を有するようにしてもよい。 In this case, the image sensor 134, for example, as a pixel filter 140, in addition to the UV filter 141 and the BG filter 142, as shown in the arrangement pattern shown in FIG. An IR filter 146 that transmits light) may be provided.
 この場合も、各フィルタの配置パタンは任意である。例えば、図6のDの配置パタンのように、UVフィルタ141およびBGフィルタ142と、IRフィルタ146とを同一の領域に混在させてもよいし、互いに異なる画素領域に配置するようにしてもよい。 Also in this case, the arrangement pattern of each filter is arbitrary. For example, the UV filter 141, the BG filter 142, and the IR filter 146 may be mixed in the same area as in the arrangement pattern D in FIG. 6, or may be arranged in different pixel areas. .
 また、図6のEの例のように、画素フィルタ140が、さらに、Rフィルタ143、Gフィルタ144、およびBフィルタ145も有するようにしてもよい。その際、UVフィルタ141およびBGフィルタ142と、Rフィルタ143、Gフィルタ144、およびBフィルタ145と、IRフィルタ146とをそれぞれ異なる領域に配置するようにしてもよいし、各フィルタを同一の領域に混在させるようにしてもよい。 Further, as in the example of E in FIG. 6, the pixel filter 140 may further include an R filter 143, a G filter 144, and a B filter 145. At this time, the UV filter 141 and the BG filter 142, the R filter 143, the G filter 144, the B filter 145, and the IR filter 146 may be arranged in different areas, or the filters may be arranged in the same area. You may make it mix in.
 また、図7に示されるように、近赤外LED182の近傍に、絞り152および絞り153を設けるようにしてもよい。絞り152および絞り153は、近赤外LED182が発光した近赤外光の照射角(照射方向、照射範囲)を制限し、その近赤外光の直進性を向上させる構造を有する。近赤外光は、この絞り152および絞り153の間から、より直進性の高い状態で足121に向けて照射される。これにより、より深層、より広範囲における伝搬光路長のより正確な測定が可能になる。したがって、皮下脂肪等の厚さの測定をより正確に行うことができる。 Further, as shown in FIG. 7, a diaphragm 152 and a diaphragm 153 may be provided in the vicinity of the near infrared LED 182. The diaphragm 152 and the diaphragm 153 have a structure that limits the irradiation angle (irradiation direction and irradiation range) of near-infrared light emitted from the near-infrared LED 182 and improves the straightness of the near-infrared light. Near-infrared light is emitted from between the diaphragm 152 and the diaphragm 153 toward the foot 121 in a state of higher straightness. This enables more accurate measurement of the propagation optical path length in a deeper layer and a wider range. Therefore, the thickness of subcutaneous fat or the like can be measured more accurately.
 また、図7に示されるように、導光板132の照射面に対向する面(図中下側の面)の一部に、照射波長帯の光を反射し、励起波長帯の光を透過するフィルタ171を形成するようにしてもよい。このフィルタ171は、導光板132内部を伝搬する照射光(照射波長帯の光)が照射面に対向する面から漏えいするのを抑制し、照射面から出射するように補助するためのものである。ただし、照射光が足121の表面で反射した表面反射光も照射波長帯の成分を含む。フィルタ171は、イメージセンサ134に向かう表面反射光が導光板132を透過することができるように、導光板132の照射面に対向する面の一部にのみ形成される。 Further, as shown in FIG. 7, the light in the irradiation wavelength band is reflected and the light in the excitation wavelength band is transmitted to a part of the surface (lower surface in the figure) facing the irradiation surface of the light guide plate 132. The filter 171 may be formed. This filter 171 suppresses the leakage of the irradiation light (light in the irradiation wavelength band) propagating through the light guide plate 132 from the surface facing the irradiation surface, and assists the emission from the irradiation surface. . However, the surface-reflected light that is reflected from the surface of the foot 121 also includes a component in the irradiation wavelength band. The filter 171 is formed only on a part of the surface facing the irradiation surface of the light guide plate 132 so that the surface reflected light toward the image sensor 134 can pass through the light guide plate 132.
 なお、このフィルタ171が形成される部分の広さ(範囲)や位置は任意であるが、導光板132を透過する表面反射光の光量分布や、導光板132の内部を伝搬する照射光の光量分布等に応じて設定されるようにしてもよい。つまり、この場合、図7に示されるように、このフィルタ171が形成される部分の広さや位置(分布)が導光板132の全域で均一でなくてもよい(導光板132の位置に応じてこの広さや位置(分布)が変化するようにしてもよい)。 The width (range) and position of the portion where the filter 171 is formed are arbitrary, but the light amount distribution of the surface reflected light that transmits the light guide plate 132 and the light amount of the irradiation light that propagates inside the light guide plate 132. You may make it set according to distribution. That is, in this case, as shown in FIG. 7, the width and position (distribution) of the portion where the filter 171 is formed may not be uniform over the entire area of the light guide plate 132 (depending on the position of the light guide plate 132). This width and position (distribution) may be changed).
 また、イメージセンサ134の画素フィルタ140の各フィルタの配置パタンが、このフィルタ171の分布に応じて設定されるようにしてもよい。例えば、フィルタ171の直下の画素は、照射波長帯の光の受光量が低減する可能性がある。そのような場合、励起波長帯の光を透過するUVフィルタ141が、フィルタ171が形成される部分の画素に多く配置され、照射波長帯の光を透過するBGフィルタ142が、フィルタ171が形成されていない部分の画素に多く配置されるようにしてもよい。 Further, the arrangement pattern of each filter of the pixel filter 140 of the image sensor 134 may be set according to the distribution of the filter 171. For example, the pixel directly below the filter 171 may reduce the amount of light received in the irradiation wavelength band. In such a case, a large number of UV filters 141 that transmit light in the excitation wavelength band are arranged in the pixels where the filter 171 is formed, and a BG filter 142 that transmits light in the irradiation wavelength band is formed in the filter 171. A large number of pixels may be arranged in the non-exposed portion.
 なお、このフィルタ171の素材は任意である。また、このフィルタ171は、導光板132の照射面に対向する面に所定の素材を塗布する等して形成されるようにしてもよいし、導光板132の照射面に対向する面を加工して凹凸を形成する等して形成されるようにしてもよい。 Note that the material of the filter 171 is arbitrary. In addition, the filter 171 may be formed by applying a predetermined material on a surface facing the irradiation surface of the light guide plate 132 or by processing a surface facing the irradiation surface of the light guide plate 132. It may be formed by forming irregularities.
 また、図7に示されるように、導光板132とイメージセンサ134との間に、例えば表面反射光や内部反射光等のようなイメージセンサ134に向かう光を、イメージセンサ134の画素に近接結像させるレンズアレイ172を設けるようにしてもよい。このようなレンズアレイ172を設けることにより、イメージセンサ134は、2次元分布を接写画像的に取得することができる。また、各画素における受光量を増大させることができる(感度を向上させることができる)。 Further, as shown in FIG. 7, between the light guide plate 132 and the image sensor 134, for example, light directed to the image sensor 134, such as surface reflected light or internal reflected light, is closely coupled to the pixels of the image sensor 134. A lens array 172 for imaging may be provided. By providing such a lens array 172, the image sensor 134 can acquire a two-dimensional distribution as a close-up image. In addition, the amount of light received at each pixel can be increased (sensitivity can be improved).
 なお、このレンズアレイ172の各レンズのレンズ径や焦点距離が、足121の表面からイメージセンサ134までの距離に応じて設計されるようにしてもよい。図7の例のように、足121とイメージセンサ134との距離が均一でない場合、レンズアレイ172の各レンズのレンズ径や焦点距離が均一でなくてもよい。 Note that the lens diameter and focal length of each lens of the lens array 172 may be designed according to the distance from the surface of the foot 121 to the image sensor 134. When the distance between the foot 121 and the image sensor 134 is not uniform as in the example of FIG. 7, the lens diameter and focal length of each lens of the lens array 172 may not be uniform.
  <体組成計測器の内部の構成>
 図8は、体組成計測器100の内部の主な構成例を示すブロック図である。図8に示されるように、体組成計測器100は、例えば、制御部211、発光部212、受光部213、AGEs演算部231、画像処理部232、伝搬光路長演算部233、入力部241、出力部242、記憶部243、通信部244、およびドライブ245等の処理部を有する。これらの処理部は、バス210を介して互いに接続されており、任意の情報(例えばプログラムやデータ等)を授受することができる。
<Internal configuration of body composition measuring instrument>
FIG. 8 is a block diagram illustrating a main configuration example inside the body composition measuring instrument 100. As shown in FIG. 8, the body composition measuring instrument 100 includes, for example, a control unit 211, a light emitting unit 212, a light receiving unit 213, an AGEs calculating unit 231, an image processing unit 232, a propagation optical path length calculating unit 233, an input unit 241, A processing unit such as an output unit 242, a storage unit 243, a communication unit 244, and a drive 245 is included. These processing units are connected to each other via a bus 210 and can exchange arbitrary information (for example, a program and data).
 制御部211は、体組成計測器100の各処理部の制御に関する処理を行う。発光部212は、発光に関する処理を行う。例えば、発光部212は、上述した白色LED131、白色LED181、および近赤外LED182等を有する。発光部212(例えば白色LED131、白色LED181、および近赤外LED182)は、例えば制御部211に制御された、発光する。 The control part 211 performs the process regarding control of each process part of the body composition measuring device 100. FIG. The light emitting unit 212 performs processing related to light emission. For example, the light emitting unit 212 includes the white LED 131, the white LED 181 and the near infrared LED 182 described above. The light emitting unit 212 (for example, the white LED 131, the white LED 181 and the near infrared LED 182) emits light controlled by the control unit 211, for example.
 受光部213は、受光に関する処理を行う。例えば、受光部213は、上述したPD133やイメージセンサ134を有する。また、受光部213は、例えば導光板132、フィルタ171、レンズアレイ172等のような光学デバイスよりなる光学部221を有する。イメージセンサ134は、この光学部221を介して照射される光を受光する。光学部221は任意の光学デバイスを有することができ、上述した例に限定されない。 The light receiving unit 213 performs processing related to light reception. For example, the light receiving unit 213 includes the PD 133 and the image sensor 134 described above. The light receiving unit 213 includes an optical unit 221 made of an optical device such as a light guide plate 132, a filter 171, a lens array 172, and the like. The image sensor 134 receives light irradiated through the optical unit 221. The optical unit 221 can include any optical device, and is not limited to the above-described example.
 PD133は、例えば制御部211に制御されて、白色LED131が発光した光の検出を行う。PD133は、例えば制御部211に制御されて、その光の検出結果に関する情報を、バス210を介して制御部211に供給する。制御部211は、その情報に基づいて、発光部212の発光強度を制御する。 The PD 133 is controlled by, for example, the control unit 211 to detect light emitted from the white LED 131. For example, the PD 133 is controlled by the control unit 211 and supplies information related to the detection result of the light to the control unit 211 via the bus 210. The control unit 211 controls the light emission intensity of the light emitting unit 212 based on the information.
 また、イメージセンサ134は、例えば制御部211に制御されて、表面反射光や内部反射光を受光し、その計測データを2次元分布として得る。イメージセンサ134は、その各画素の計測データを、バス210を介してAGEs演算部231に供給する。また、イメージセンサ134は、例えば制御部211に制御されて、可視光を受光し、その計測データを2次元分布(画像データ)として得る。イメージセンサ134は、例えば制御部211に制御されて、その各画素の計測データ(画像データ)を、バス210を介して画像処理部232に供給する。さらに、イメージセンサ134は、例えば制御部211に制御されて、近赤外光を受光し、その計測データを2次元分布として得る。イメージセンサ134は、例えば制御部211に制御されて、その各画素の計測データを、バス210を介して伝搬光路長演算部233に供給する。 Further, the image sensor 134 is controlled by, for example, the control unit 211 to receive surface reflection light and internal reflection light, and obtain measurement data as a two-dimensional distribution. The image sensor 134 supplies the measurement data of each pixel to the AGEs calculator 231 via the bus 210. Further, the image sensor 134 is controlled by, for example, the control unit 211 to receive visible light and obtain the measurement data as a two-dimensional distribution (image data). For example, the image sensor 134 is controlled by the control unit 211 to supply measurement data (image data) of each pixel to the image processing unit 232 via the bus 210. Further, the image sensor 134 is controlled by, for example, the control unit 211 to receive near infrared light and obtain the measurement data as a two-dimensional distribution. The image sensor 134 is controlled by the control unit 211, for example, and supplies measurement data of each pixel to the propagation optical path length calculation unit 233 via the bus 210.
 AGEs演算部231は、例えばAGE値等の、物体内の所定の成分値を求める演算に関する処理を行う。AGEs演算部231は、例えば制御部211に制御されて、イメージセンサ134から取得した表面反射光や内部反射光計測データを用いてAGE値等の情報を求める。AGEs演算部231は、例えば制御部211に制御されて、求めた情報(AGE値等)を、バス210を介して出力部242に供給し、画像や音声等として出力させる。なお、AGEs演算部231が、例えば制御部211に制御されて、求めた情報(AGE値等)を、バス210を介して記憶部243に供給して記憶させるようにしてもよい。また、AGEs演算部231が、例えば制御部211に制御されて、求めた情報(AGE値等)を、バス210を介して通信部244に供給し、他の装置に供給させるようにしてもよい。さらに、AGEs演算部231が、例えば制御部211に制御されて、求めた情報(AGE値等)を、バス210を介してドライブ245に供給し、リムーバブルメディア251に記憶させるようにしてもよい。 The AGEs calculation unit 231 performs a process related to a calculation for obtaining a predetermined component value in the object such as an AGE value. The AGEs calculation unit 231 is controlled by the control unit 211, for example, and obtains information such as an AGE value using the surface reflection light and the internal reflection light measurement data acquired from the image sensor 134. The AGEs calculation unit 231 is controlled by, for example, the control unit 211 to supply the obtained information (AGE value or the like) to the output unit 242 via the bus 210 and output it as an image, sound, or the like. Note that the AGEs calculation unit 231 may be controlled by the control unit 211, for example, so that the obtained information (AGE value or the like) is supplied to and stored in the storage unit 243 via the bus 210. Further, the AGEs calculation unit 231 may be controlled by, for example, the control unit 211 to supply the obtained information (AGE value or the like) to the communication unit 244 via the bus 210 and supply it to other devices. . Further, the AGEs calculation unit 231 may be controlled by the control unit 211, for example, so that the obtained information (AGE value or the like) is supplied to the drive 245 via the bus 210 and stored in the removable medium 251.
 画像処理部232は、画像処理に関する処理を行う。画像処理部232は、例えば制御部211に制御されて、イメージセンサ134から取得した画像データに所定の画像処理を施し、通常撮像画像(例えば足121の裏の土踏まずの画像)の画像データを生成する。画像処理部232は、例えば制御部211に制御されて、生成した通常撮像画像の画像データを、バス210を介して出力部242に供給して画像等として表示させる。なお、画像処理部232が、例えば制御部211に制御されて、生成した通常撮像画像の画像データを、バス210を介して記憶部243に供給して記憶させるようにしてもよい。また、画像処理部232が、例えば制御部211に制御されて、生成した通常撮像画像の画像データを、バス210を介して通信部244に供給し、他の装置に供給させるようにしてもよい。さらに、画像処理部232が、例えば制御部211に制御されて、生成した通常撮像画像の画像データを、バス210を介してドライブ245に供給し、リムーバブルメディア251に記憶させるようにしてもよい。 The image processing unit 232 performs processing related to image processing. The image processing unit 232 is controlled by the control unit 211, for example, and performs predetermined image processing on the image data acquired from the image sensor 134 to generate image data of a normal captured image (for example, an image of the arch on the back of the foot 121). To do. The image processing unit 232 is controlled by, for example, the control unit 211 to supply the generated image data of the normal captured image to the output unit 242 via the bus 210 and display it as an image or the like. Note that the image processing unit 232 may be controlled by the control unit 211, for example, so that the generated image data of the normal captured image is supplied to the storage unit 243 via the bus 210 and stored therein. Further, the image processing unit 232 may be controlled by the control unit 211, for example, so that the generated image data of the normal captured image is supplied to the communication unit 244 via the bus 210 and supplied to another device. . Further, the image processing unit 232 may be controlled by the control unit 211, for example, so that the generated image data of the normal captured image is supplied to the drive 245 via the bus 210 and stored in the removable medium 251.
 伝搬光路長演算部233は、伝搬光路長の算出に関する処理を行う。伝搬光路長演算部233は、例えば制御部211に制御されて、イメージセンサ134から取得した近赤外光の計測データを用いて、足121内部における近赤外光の伝搬光路長や皮下脂肪の厚さ等の情報を求める。伝搬光路長演算部233は、例えば制御部211に制御されて、求めた情報(皮下脂肪の厚さ等)を、バス210を介して出力部242に供給し、画像や音声等として出力させる。なお、伝搬光路長演算部233が、例えば制御部211に制御されて、求めた情報(皮下脂肪の厚さ等)を、バス210を介して記憶部243に供給して記憶させるようにしてもよい。また、伝搬光路長演算部233が、例えば制御部211に制御されて、求めた情報(皮下脂肪の厚さ等)を、バス210を介して通信部244に供給し、他の装置に供給させるようにしてもよい。さらに、伝搬光路長演算部233が、例えば制御部211に制御されて、求めた情報(皮下脂肪の厚さ等)を、バス210を介してドライブ245に供給し、リムーバブルメディア251に記憶させるようにしてもよい。 The propagation optical path length calculation unit 233 performs processing related to the calculation of the propagation optical path length. The propagation optical path length calculation unit 233 is controlled by the control unit 211, for example, and uses near-infrared light measurement data acquired from the image sensor 134, and uses the near-infrared light propagation optical path length and subcutaneous fat inside the foot 121. Find information such as thickness. The propagation optical path length calculation unit 233 is controlled by the control unit 211, for example, and supplies the obtained information (subcutaneous fat thickness or the like) to the output unit 242 via the bus 210 to output it as an image, sound, or the like. The propagation optical path length calculation unit 233 is controlled by the control unit 211, for example, so that the obtained information (such as the thickness of subcutaneous fat) is supplied to the storage unit 243 via the bus 210 and stored therein. Good. Further, the propagation optical path length calculation unit 233 is controlled by, for example, the control unit 211 to supply the obtained information (subcutaneous fat thickness and the like) to the communication unit 244 via the bus 210 to be supplied to other devices. You may do it. Further, the propagation optical path length calculation unit 233 is controlled by, for example, the control unit 211 to supply the obtained information (subcutaneous fat thickness and the like) to the drive 245 via the bus 210 and store it in the removable medium 251. It may be.
 入力部241は、情報(プログラムやデータ等)や指示等の入力に関する処理を行う。入力部241は、例えばジョグダイヤル(商標)、キー、ボタン、タッチパネル等の任意の入力デバイスを有する。入力部241は、例えば制御部211により制御されて、ユーザ等によるその入力デバイスの操作入力を受け付け、その操作入力に対応する信号(ユーザ指示)を他の処理部に供給する。また、入力部241が、例えば外部入力端子を有し、体組成計測器100の外部(その外部入力端子を介して接続される他の装置等)から供給される情報を受け付け、その情報を、バス210を介して他の処理部に供給することができるようにしてもよい。なお、入力部241が、カメラやマイクロホン等の入力デバイスを有するようにし、それらによってユーザのゼスチャや音声等をユーザ指示として受け付けるようにしてもよい。 The input unit 241 performs processing related to input of information (programs, data, etc.) and instructions. The input unit 241 includes an arbitrary input device such as a jog dial (trademark), a key, a button, or a touch panel. The input unit 241 is controlled by, for example, the control unit 211, receives an operation input of the input device by a user or the like, and supplies a signal (user instruction) corresponding to the operation input to another processing unit. In addition, the input unit 241 has, for example, an external input terminal, receives information supplied from the outside of the body composition measuring instrument 100 (such as another device connected via the external input terminal), and the information is You may enable it to supply to another process part via the bus | bath 210. FIG. Note that the input unit 241 may include an input device such as a camera or a microphone so that a user's gesture or voice may be received as a user instruction.
 出力部242は、情報(プログラムやデータ等)等の出力に関する処理を行う。例えば、出力部242は、画像を表示するモニタを有する。出力部242は、例えば制御部211により制御されて、そのモニタに任意の画像を表示する。例えば、出力部242が、他の処理部から供給された情報を、文字や画像等からなる画像情報としてモニタに表示するようにしてもよい。また、出力部242が、音声を出力するスピーカを有し、例えば制御部211により制御されて、そのスピーカから任意の音声を出力することができるようにしてもよい。例えば、出力部242が、他の処理部から供給された情報を音声に変換し、その音声をスピーカから出力するようにしてもよい。また、例えば、出力部242が、外部出力端子を有し、例えば制御部211により制御されて、任意の情報(プログラムやデータ等)を体組成計測器100の外部(その外部出力端子を介して接続される他の装置等)に供給することができるようにしてもよい。例えば、出力部242が、他の処理部から取得した情報を、体組成計測器100の外部に供給するようにしてもよい。 The output unit 242 performs processing related to output of information (programs, data, etc.). For example, the output unit 242 includes a monitor that displays an image. The output unit 242 is controlled by the control unit 211, for example, and displays an arbitrary image on the monitor. For example, the output unit 242 may display information supplied from another processing unit on the monitor as image information including characters and images. Further, the output unit 242 may include a speaker that outputs sound, and may be controlled by the control unit 211 so that arbitrary sound can be output from the speaker. For example, the output unit 242 may convert information supplied from another processing unit into sound and output the sound from a speaker. In addition, for example, the output unit 242 has an external output terminal, and is controlled by the control unit 211, for example, so that arbitrary information (program, data, etc.) is external to the body composition measuring instrument 100 (via the external output terminal). It may be possible to supply to other connected devices. For example, the output unit 242 may supply information acquired from another processing unit to the outside of the body composition measuring instrument 100.
 記憶部243は、情報の記憶に関する処理を行う。記憶部243は、例えばフラッシュメモリ、SSD(Solid State Drive)、ハードディスク等の任意の記憶媒体を有する。記憶部243は、他の処理部から取得した任意の情報(プログラムやデータ等を)その記憶媒体に記憶する。また、記憶部243は、記憶媒体に記憶している情報を読み出し、それを、バス210を介して任意の処理部に供給する。 The storage unit 243 performs processing related to information storage. The storage unit 243 includes an arbitrary storage medium such as a flash memory, an SSD (Solid State Drive), or a hard disk. The storage unit 243 stores arbitrary information (programs, data, and the like) acquired from other processing units in the storage medium. In addition, the storage unit 243 reads information stored in the storage medium and supplies it to an arbitrary processing unit via the bus 210.
 通信部244は、通信に関する処理を行う。通信部244は、例えば、有線LAN(Local Area Network)、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、赤外線通信、HDMI(登録商標)(High-Definition Multimedia Interface)、若しくはUSB(Universal Serial Bus)等の任意の規格の通信インタフェースを有する。通信部244は、例えば制御部211により制御されて、その通信インタフェースを介して他の装置と通信を行い、他の装置と任意の情報を授受することができる。例えば、通信部244は、他の処理部から取得した任意の情報を他の装置に供給したり、他の装置から任意の情報を取得し、それを他の処理部に供給したりするようにしてもよい。 The communication unit 244 performs processing related to communication. The communication unit 244 is, for example, a wired LAN (Local Area Network), a wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), infrared communication, HDMI (registered trademark) (High-Definition Multimedia Interface), or USB ( It has a communication interface of any standard such as Universal (Serial Bus). The communication unit 244 is controlled by the control unit 211, for example, and communicates with another device via the communication interface, and can exchange arbitrary information with the other device. For example, the communication unit 244 supplies arbitrary information acquired from another processing unit to another device, acquires arbitrary information from another device, and supplies it to another processing unit. May be.
 ドライブ245は、自身に装着されたリムーバブルメディア251に関する処理を行う。このリムーバブルメディア251は、例えば、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等の任意の記憶媒体よりなる、ドライブ245に着脱可能なメディアである。ドライブ245は、自身に装着されたリムーバブルメディア251を駆動し、そのリムーバブルメディア251に対する情報の読み書きを行う。例えば、ドライブ245が、自身に装着されたリムーバブルメディア251を必要に応じて駆動し、リムーバブルメディア251に書き込まれている任意の情報(プログラムやデータ等)を読み出し、それを他の処理部に供給するようにしてもよい。また、ドライブ245は、他の処理部から供給された任意の情報をリムーバブルメディア251書き込むようにしてもよい。 The drive 245 performs processing related to the removable media 251 attached to the drive 245. The removable medium 251 is a medium that can be attached to and detached from the drive 245, for example, an arbitrary storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory. The drive 245 drives a removable medium 251 attached to the drive 245 and reads / writes information from / to the removable medium 251. For example, the drive 245 drives the removable medium 251 attached to the drive 245 as necessary, reads arbitrary information (program, data, etc.) written in the removable medium 251 and supplies it to other processing units. You may make it do. Further, the drive 245 may write arbitrary information supplied from another processing unit to the removable medium 251.
  <成分値測定のための光計測>
 次に、光の照射と反射光等の計測の様子について説明する。最初に、物体内の所定の成分値を測定するための光の照射と反射光等の計測の様子について説明する。
<Optical measurement for component value measurement>
Next, the state of measurement of light irradiation and reflected light will be described. First, the state of light irradiation and measurement of reflected light and the like for measuring a predetermined component value in an object will be described.
 白色LED131は、照射波長帯の成分を含む白色光を発光する。この白色光は、図9に示される点線矢印のように導光板132の内部を拡散されながら伝搬する。その一部の白色光は、PD133まで到達し、検出される。また、一部の白色光は、照射面より出射する。例えば、フィルタ171Aで反射した照射波長帯の光が、矢印261-1、矢印261-2、矢印261-3のように、導光板132の照射面から出射して足121に照射される。 The white LED 131 emits white light including a component in the irradiation wavelength band. The white light propagates while being diffused in the light guide plate 132 as indicated by a dotted arrow shown in FIG. Part of the white light reaches the PD 133 and is detected. Some white light is emitted from the irradiation surface. For example, light in the irradiation wavelength band reflected by the filter 171A is emitted from the irradiation surface of the light guide plate 132 and irradiated on the foot 121 as indicated by arrows 261-1, 261-2, and 261-3.
 足121に照射された光の一部は、図10に示されるように、足121の表面で略波長シフトせずに反射する。図10の場合、フィルタ171Bで反射した照射波長帯の光が、矢印261-4および矢印261-5のように足121に到達し、その表面において一部が、点線矢印262-1および点線矢印262-2のように反射する(表面反射光)。 As shown in FIG. 10, a part of the light irradiated on the foot 121 is reflected on the surface of the foot 121 without being substantially shifted in wavelength. In the case of FIG. 10, the light in the irradiation wavelength band reflected by the filter 171B reaches the foot 121 as indicated by arrows 261-4 and 261-5, and a part of the surface thereof is dotted arrows 262-1 and dotted arrows. Reflects like 262-2 (surface reflected light).
 例えば点線矢印262-1で示される表面反射光は、導光板132およびレンズアレイ172を透過し、イメージセンサ134に到達する。この表面反射光は、略波長シフトしていないので照射波長帯の成分を含む。したがって、イメージセンサ134は、例えばUVフィルタ141が配置された画素等においてこの表面反射光を受光する。なお、点線矢印262-2で示される照射波長帯の表面反射光は、フィルタ171Cに到達するも、透過できずに反射される。 For example, the surface reflected light indicated by the dotted arrow 262-1 passes through the light guide plate 132 and the lens array 172 and reaches the image sensor 134. Since the surface reflected light is not substantially shifted in wavelength, it includes a component in the irradiation wavelength band. Accordingly, the image sensor 134 receives this surface reflected light in, for example, a pixel in which the UV filter 141 is disposed. The surface reflected light in the irradiation wavelength band indicated by the dotted arrow 262-2 reaches the filter 171C but is reflected without being transmitted.
 また足121に照射された光の一部は、図11に示されるように、足121の内部に浸透する。図11の場合、フィルタ171Dで反射した照射波長帯の光が、矢印261-6および矢印261-7のように足121に到達し、内部に浸透している(曲線263-1および曲線263-2)。 Further, a part of the light irradiated to the foot 121 penetrates into the inside of the foot 121 as shown in FIG. In the case of FIG. 11, the light in the irradiation wavelength band reflected by the filter 171D reaches the foot 121 as indicated by arrows 261-6 and 261-7 and penetrates into the inside (curves 263-1 and 263-). 2).
 足121の内部に浸透した光は、その内部の任意の物質との光学反応により、照射波長帯から励起波長帯に波長シフトし、図12に示されるように、表面(足121の裏)から出射される(内部反射光)。例えば、曲線263-3のように足121の内部に浸透した光は、波長シフト後に、内部反射光として、点線矢印264-1、点線矢印264-2、点線矢印264-3のように、足121の表面から出射される。 The light that has penetrated into the inside of the foot 121 is wavelength-shifted from the irradiation wavelength band to the excitation wavelength band by an optical reaction with an arbitrary substance inside the foot 121, and from the surface (the back of the foot 121) as shown in FIG. It is emitted (internally reflected light). For example, light that has penetrated into the foot 121 as indicated by a curve 263-3 is reflected as internally reflected light after wavelength shift, as indicated by a dotted arrow 264-1, a dotted arrow 264-2, and a dotted arrow 264-3. The light is emitted from the surface 121.
 点線矢印264-1乃至点線矢印264-3で示される内部反射光は、導光板132およびレンズアレイ172を透過し、イメージセンサ134に到達する。この内部反射光は、励起波長帯に波長シフトしているので、点線矢印264-1で示される内部反射光もフィルタ171Eを透過する。また、点線矢印264-1乃至点線矢印264-3で示される内部反射光は、レンズアレイ172のレンズ172Bによってイメージセンサ134に近接結像される。イメージセンサ134は、例えばBGフィルタ142が配置された画素等においてこれらの内部反射光を受光する。 The internally reflected light indicated by the dotted line arrows 264-1 to 264-3 passes through the light guide plate 132 and the lens array 172 and reaches the image sensor 134. Since this internally reflected light is shifted in wavelength to the excitation wavelength band, the internally reflected light indicated by the dotted arrow 264-1 also passes through the filter 171E. Further, the internally reflected light indicated by the dotted arrow 264-1 to the dotted arrow 264-3 is imaged close to the image sensor 134 by the lenses 172B of the lens array 172. The image sensor 134 receives the internally reflected light in, for example, a pixel in which the BG filter 142 is disposed.
 同様に、曲線263-4で示される足121の内部に浸透した光は、波長シフト後に内部反射光として、点線矢印264-4、点線矢印264-5、点線矢印264-6のように、足121の表面から出射される。これらの点線矢印264-4乃至点線矢印264-6で示される内部反射光は、導光板132およびレンズアレイ172を透過し、イメージセンサ134に到達する。この内部反射光は、励起波長帯に波長シフトしているので、点線矢印264-5で示される内部反射光はフィルタ171Fを透過し、点線矢印264-6で示される内部反射光はフィルタ171Gを透過する。また、点線矢印264-4乃至点線矢印264-6で示される内部反射光は、レンズアレイ172のレンズ172Cによってイメージセンサ134に近接結像される。イメージセンサ134は、例えばBGフィルタ142が配置された画素等においてこれらの内部反射光を受光する。 Similarly, the light that has penetrated into the foot 121 indicated by the curve 263-4 is reflected as the internally reflected light after the wavelength shift, as indicated by a dotted arrow 264-4, a dotted arrow 264-5, and a dotted arrow 264-6. The light is emitted from the surface 121. The internally reflected light indicated by these dotted line arrows 264-4 to 264-6 passes through the light guide plate 132 and the lens array 172 and reaches the image sensor 134. Since this internally reflected light is wavelength-shifted to the excitation wavelength band, the internally reflected light indicated by the dotted arrow 264-5 passes through the filter 171F, and the internally reflected light indicated by the dotted arrow 264-6 passes through the filter 171G. To Penetrate. Further, the internally reflected light indicated by the dotted arrow 264-4 to dotted arrow 264-6 is imaged close to the image sensor 134 by the lenses 172C of the lens array 172. The image sensor 134 receives the internally reflected light in, for example, a pixel in which the BG filter 142 is disposed.
 以上のように、導光板132を用いることにより、発光部である白色LED131において発光された白色光を、その白色LED131と足121との間の距離に依存せずに、足121の広範囲に略均一に照射することができる。したがって、計測部112の低背化を実現することができる。これにより、体組成計測器100の筐体を、より容易に小型化することができる。換言するに、体組成計測器100の筐体を大きくすること無くより多様な機能を搭載することができるようになる。 As described above, by using the light guide plate 132, the white light emitted from the white LED 131 that is the light emitting unit is approximately spread over a wide area of the foot 121 without depending on the distance between the white LED 131 and the foot 121. Uniform irradiation is possible. Therefore, a reduction in the height of the measuring unit 112 can be realized. Thereby, the housing | casing of the body composition measuring device 100 can be reduced more easily. In other words, various functions can be mounted without increasing the body composition measuring instrument 100 casing.
 また、以上のように導光板132を用いることにより照射範囲が拡大した照射光の反射光を、多画素のイメージセンサ134により受光することにより、体組成計測器100は、容易に測光範囲を拡大することができるだけでなく、その拡大した測光範囲でより正確な計測を行うことができる。また、体組成計測器100は、その拡大した測光範囲での表面反射光および内部反射光を2次元分布として計測することができる。 In addition, the body composition measuring instrument 100 easily expands the photometric range by receiving the reflected light of the irradiated light whose irradiation range is expanded by using the light guide plate 132 as described above by the multi-pixel image sensor 134. Not only can this be performed, but more accurate measurement can be performed within the expanded photometric range. The body composition measuring instrument 100 can measure the surface reflected light and the internally reflected light in the expanded photometric range as a two-dimensional distribution.
  <AGE値測定処理の流れ>
 次に、図13のフローチャートを参照して、体組成計測器100により実行されるAGE値測定処理の流れの例を説明する。
<Flow of AGE value measurement process>
Next, an example of the flow of the AGE value measurement process executed by the body composition measuring instrument 100 will be described with reference to the flowchart of FIG.
 AGE値測定処理が開始されると、白色LED131は、ステップS101において、発光し、白色光を照射する。ステップS102において、イメージセンサ134は、表面反射光および内部反射光を受光し、それらの計測データを得る。 When the AGE value measurement process is started, the white LED 131 emits light and emits white light in step S101. In step S102, the image sensor 134 receives surface reflection light and internal reflection light, and obtains measurement data thereof.
 ステップS103において、AGEs演算部231は、ステップS102において得られた表面反射光および内部反射光の計測データを用いてAGE値を算出する。例えば、AGEs演算部231は、2次元分布として得られた成分値の分布を積分平均化することにより、AGE値を算出する。 In step S103, the AGEs calculator 231 calculates the AGE value using the measurement data of the surface reflection light and the internal reflection light obtained in step S102. For example, the AGEs calculator 231 calculates the AGE value by integrating and averaging the distribution of component values obtained as a two-dimensional distribution.
 ステップS104において出力部242は、そのAGE値に関する情報を画像や音声等として出力する(例えば画像をモニタに表示し、音声をスピーカから出力する)。ステップS104の処理が終了すると、AGE値測定処理が終了する。 In step S104, the output unit 242 outputs information about the AGE value as an image, sound, or the like (for example, displays an image on a monitor and outputs sound from a speaker). When the process of step S104 ends, the AGE value measurement process ends.
 このように処理を実行することにより、体組成計測器100は、AGEs等の成分値を2次元分布として測定することができる。したがって、体組成計測器100は、その成分値の分布を積分平均化することができ、分布ムラに起因する成分値の誤差を低減することができる。つまり、物体の成分値をより正確に測定することができる。また、測定された成分値の2次元分布を利用してより多様な情報の出力が可能になる。例えば、AGEsの分布図を画像として表示したりすることができる。 By executing the processing in this way, the body composition measuring instrument 100 can measure component values such as AGEs as a two-dimensional distribution. Therefore, the body composition measuring instrument 100 can integrate and average the distribution of the component values, and reduce the component value error caused by the distribution unevenness. That is, the component value of the object can be measured more accurately. Further, more various information can be output using the two-dimensional distribution of measured component values. For example, a distribution map of AGEs can be displayed as an image.
  <物体の撮像>
 次に、物体の撮像の様子の例について説明する。
<Imaging an object>
Next, an example of how an object is imaged will be described.
 白色LED181は、照射波長帯の成分を含む白色光を発光する。この白色光は、例えば図14に示される矢印265のように導光板132を介さずに足121に到達し、その表面で反射する。その反射光は、例えば矢印266-1、矢印266-2、矢印266-3のように、導光板132を透過し、フィルタ171やレンズアレイ172を透過して、イメージセンサ134に到達する。なお、矢印266-1で示される反射光は、フィルタ171Hに到達するが、この反射光は白色光であるので、照射波長帯以外の波長成分も含む。したがって、その照射波長帯以外の成分は、このフィルタ171Hを透過することができる。 The white LED 181 emits white light including a component in the irradiation wavelength band. This white light reaches the foot 121 without passing through the light guide plate 132 as indicated by an arrow 265 shown in FIG. 14, for example, and is reflected on the surface thereof. The reflected light passes through the light guide plate 132, passes through the filter 171 and the lens array 172, and reaches the image sensor 134 as indicated by arrows 266-1, 266-2, and 266-3, for example. Note that the reflected light indicated by the arrow 266-1 reaches the filter 171H. However, since the reflected light is white light, it includes wavelength components other than the irradiation wavelength band. Therefore, components other than the irradiation wavelength band can pass through the filter 171H.
 また、点線矢印266-1乃至点線矢印266-3で示される反射光は、レンズアレイ172のレンズ172Dによってイメージセンサ134に近接結像される。イメージセンサ134は、例えばRフィルタ143、Gフィルタ144、Bフィルタ145等の可視光線用のフィルタが配置された画素等においてこれらの反射光を受光する。 Further, the reflected light indicated by the dotted arrow 266-1 to the dotted arrow 266-3 is imaged close to the image sensor 134 by the lenses 172D of the lens array 172. The image sensor 134 receives the reflected light in a pixel or the like in which a filter for visible light such as an R filter 143, a G filter 144, and a B filter 145 is disposed.
  <撮像処理の流れ>
 次に、図15のフローチャートを参照して、体組成計測器100により実行される撮像処理の流れの例を説明する。
<Flow of imaging processing>
Next, an example of the flow of imaging processing executed by the body composition measuring instrument 100 will be described with reference to the flowchart of FIG.
 撮像処理が開始されると、白色LED181は、ステップS121において、発光し、白色光を照射する。ステップS122において、イメージセンサ134は、その白色光の、足121の表面における反射光を受光して光電変換し、画素値のデータ(画像データ)を得る。つまり、イメージセンサ134は、被写体(足121)を撮像し、その撮像画像のデータを得る。 When the imaging process is started, the white LED 181 emits light and emits white light in step S121. In step S122, the image sensor 134 receives the white light reflected from the surface of the foot 121 and photoelectrically converts it to obtain pixel value data (image data). That is, the image sensor 134 images the subject (foot 121) and obtains data of the captured image.
 ステップS123において、画像処理部232は、ステップS122において得られた画像データに対して所定の画像処理を行い、通常撮像画像を得る。ステップS124において、出力部242は、その撮像画像をモニタに表示する(出力する)。ステップS124の処理が終了すると、AGE値測定処理が終了する。 In step S123, the image processing unit 232 performs predetermined image processing on the image data obtained in step S122 to obtain a normal captured image. In step S124, the output unit 242 displays (outputs) the captured image on the monitor. When the process of step S124 ends, the AGE value measurement process ends.
 以上のように、体組成計測器100は、物体の成分値を計測するだけでなく、その物体を撮像し、撮像画像を得ることができる。 As described above, the body composition measuring instrument 100 can not only measure the component value of an object but also image the object to obtain a captured image.
  <伝搬光路長の計測>
 次に、伝搬光路長の計測の様子の例について説明する。近赤外LED182は、近赤外光を発光する。この近赤外光は、例えば図16に示される矢印267のように絞り152および絞り153の間から導光板132を介さずに足121に向かって照射される。近赤外光は、矢印268-1、矢印268-2、矢印268-3に示されるように、足121の内部に浸透した後、足121の表面から反射光として出射される。
<Measurement of propagation path length>
Next, an example of how the propagation optical path length is measured will be described. The near infrared LED 182 emits near infrared light. This near-infrared light is irradiated toward the foot 121 without passing through the light guide plate 132 from between the diaphragm 152 and the diaphragm 153 as indicated by an arrow 267 shown in FIG. Near-infrared light penetrates into the inside of the foot 121 and is emitted as reflected light from the surface of the foot 121 as indicated by arrows 268-1, 268-2, and 268-3.
 例えば、矢印268-1のように浸透した近赤外光は、例えば矢印269-1、矢印269-2、矢印269-3のように、足121の表面から出射される。この矢印269-1、矢印269-2、矢印269-3で示される反射光は、導光板132を透過し、フィルタ171やレンズアレイ172を透過して、イメージセンサ134に到達する。なお、矢印269-1で示される反射光は、フィルタ171Jに到達するが、この反射光は近赤外光であるので、このフィルタ171Jを透過することができる。また、矢印269-1乃至矢印269-3で示される反射光は、レンズアレイ172のレンズ172Eによってイメージセンサ134に近接結像される。イメージセンサ134は、例えばIRフィルタ146が配置された画素等においてこれらの反射光を受光する。 For example, near-infrared light that has penetrated as indicated by an arrow 268-1 is emitted from the surface of the foot 121 as indicated by arrows 269-1, 269-2, and 269-3, for example. The reflected light indicated by the arrows 269-1, 269-2, and 269-3 passes through the light guide plate 132, passes through the filter 171 and the lens array 172, and reaches the image sensor 134. Note that the reflected light indicated by the arrow 269-1 reaches the filter 171J. Since this reflected light is near-infrared light, it can pass through the filter 171J. Further, the reflected light indicated by the arrows 269-1 to 269-3 is imaged close to the image sensor 134 by the lenses 172E of the lens array 172. For example, the image sensor 134 receives the reflected light in a pixel or the like in which the IR filter 146 is disposed.
 また例えば、矢印268-2のように浸透した近赤外光は、例えば矢印269-4、矢印269-5、矢印269-6のように、足121の表面から出射される。この矢印269-4、矢印269-5、矢印269-6で示される反射光は、導光板132を透過し、フィルタ171やレンズアレイ172を透過して、イメージセンサ134に到達する。なお、矢印269-5で示される反射光は、フィルタ171Kに到達するが、この反射光は近赤外光であるので、このフィルタ171Kを透過することができる。また矢印269-6で示される反射光は、フィルタ171Lに到達するが、この反射光は近赤外光であるので、このフィルタ171Lを透過することができる。また、矢印269-4乃至矢印269-6で示される反射光は、レンズアレイ172のレンズ172Fによってイメージセンサ134に近接結像される。イメージセンサ134は、例えばIRフィルタ146が配置された画素等においてこれらの反射光を受光する。 Also, for example, near infrared light that has penetrated as indicated by an arrow 268-2 is emitted from the surface of the foot 121 as indicated by arrows 269-4, 269-5, and 269-6, for example. The reflected light indicated by the arrows 269-4, 269-5, 269-6 passes through the light guide plate 132, passes through the filter 171 and the lens array 172, and reaches the image sensor 134. The reflected light indicated by the arrow 269-5 reaches the filter 171K, but since this reflected light is near infrared light, it can pass through the filter 171K. The reflected light indicated by the arrow 269-6 reaches the filter 171L. Since the reflected light is near-infrared light, it can pass through the filter 171L. Further, the reflected light indicated by the arrows 269-4 to 269-6 is imaged close to the image sensor 134 by the lenses 172F of the lens array 172. For example, the image sensor 134 receives the reflected light in a pixel or the like in which the IR filter 146 is disposed.
 また例えば、矢印268-3のように浸透した近赤外光は、例えば矢印269-7、矢印269-8、矢印269-9のように、足121の表面から出射される。この矢印269-7、矢印269-8、矢印269-9で示される反射光は、導光板132を透過し、フィルタ171やレンズアレイ172を透過して、イメージセンサ134に到達する。なお、矢印269-8で示される反射光は、フィルタ171Mに到達するが、この反射光は近赤外光であるので、このフィルタ171Mを透過することができる。また矢印269-9で示される反射光は、フィルタ171Nに到達するが、この反射光は近赤外光であるので、このフィルタ171Nを透過することができる。また、矢印269-7乃至矢印269-9で示される反射光は、レンズアレイ172のレンズ172Gによってイメージセンサ134に近接結像される。イメージセンサ134は、例えばIRフィルタ146が配置された画素等においてこれらの反射光を受光する。 Further, for example, near infrared light that has penetrated as indicated by an arrow 268-3 is emitted from the surface of the foot 121 as indicated by an arrow 269-7, an arrow 269-8, and an arrow 269-9, for example. The reflected light indicated by the arrows 269-7, 269-8, and 269-9 passes through the light guide plate 132, passes through the filter 171 and the lens array 172, and reaches the image sensor 134. Note that the reflected light indicated by the arrow 269-8 reaches the filter 171M. Since this reflected light is near-infrared light, it can pass through the filter 171M. The reflected light indicated by the arrow 269-9 reaches the filter 171N, but since this reflected light is near-infrared light, it can pass through the filter 171N. Further, the reflected light indicated by the arrows 269-7 to 269-9 is imaged close to the image sensor 134 by the lenses 172 G of the lens array 172. For example, the image sensor 134 receives the reflected light in a pixel or the like in which the IR filter 146 is disposed.
  <伝搬光路長測定処理の流れ>
 次に、図17のフローチャートを参照して、体組成計測器100により実行される伝搬光路長測定処理の流れの例を説明する。
<Flow of propagation optical path length measurement process>
Next, an example of the flow of the propagation optical path length measurement process executed by the body composition measuring instrument 100 will be described with reference to the flowchart of FIG.
 伝搬光路長測定処理が開始されると、近赤外LED182は、ステップS141において、発光し、近赤外光を照射する。ステップS142において、イメージセンサ134は、その近赤外光の、足121における反射光を受光してその計測データ(強度分布)を得る。 When the propagation optical path length measurement process is started, the near infrared LED 182 emits light and irradiates near infrared light in step S141. In step S142, the image sensor 134 receives the reflected light of the near-infrared light from the foot 121 and obtains measurement data (intensity distribution).
 ステップS143において、伝搬光路長演算部233は、ステップS142において得られた近赤外光の計測データを用いて伝搬光路長を算出する。また、伝搬光路長演算部233は、例えば、算出された伝搬光路長を用いて例えば皮下脂肪の厚さ等を測定する。ステップS144において、出力部242は、その伝搬光路長や皮下脂肪の厚さ等の伝搬光路長演算部233が生成した情報を、画像や音声等として出力する(例えば画像をモニタに表示し、音声をスピーカから出力する)。ステップS144の処理が終了すると、伝搬光路長測定処理が終了する。 In step S143, the propagation optical path length computing unit 233 calculates the propagation optical path length using the near-infrared light measurement data obtained in step S142. Further, the propagation optical path length calculation unit 233 measures, for example, the thickness of subcutaneous fat using the calculated propagation optical path length. In step S144, the output unit 242 outputs the information generated by the propagation optical path length calculation unit 233 such as the propagation optical path length and the thickness of subcutaneous fat as an image, sound, or the like (for example, the image is displayed on the monitor and the sound is displayed). Is output from the speaker). When the process of step S144 ends, the propagation optical path length measurement process ends.
 以上のように、体組成計測器100は、物体の成分値を計測するだけでなく、近赤外光を用いて物体内部の伝搬光路長を測定し、物体の皮下脂肪の厚さ等を求めることができる。 As described above, the body composition measuring instrument 100 not only measures the component value of the object, but also measures the propagation optical path length inside the object using near infrared light, and determines the thickness of the subcutaneous fat of the object, etc. be able to.
  <白色LEDとPDと導光板>
 なお、以上においては、導光板132の形状が矩形の板状である場合について説明したが、導光板132の形状は任意であり、この例に限定されない。例えば、導光板132の照射面やその対向する面が曲面であってもよい。例えば、導光板132の照射面が凸状に形成されるようにしてもよい。例えば、導光板132が、上述した隙間161を埋めるような(足121と導光板132が接するような)形状を有するようにしてもよい。
<White LED, PD and light guide plate>
In addition, although the case where the shape of the light-guide plate 132 was a rectangular plate shape was demonstrated above, the shape of the light-guide plate 132 is arbitrary and is not limited to this example. For example, the irradiation surface of the light guide plate 132 or the surface facing the light irradiation plate 132 may be a curved surface. For example, the irradiation surface of the light guide plate 132 may be formed in a convex shape. For example, the light guide plate 132 may have a shape that fills the gap 161 described above (the foot 121 and the light guide plate 132 are in contact).
 また、その導光板132の照射面やその対向する面の形状も任意であり矩形でなくてもよい。例えば、円形、楕円形、三角形、若しくは、五角形以上の多角形であってもよいし、これら以外の形状であってもよい。また、照射面とその対向する面とが同一の形状でなくてもよく、大きさも不一致であってもよい。換言するに、導光板132の側面の数、形状、大きさ等も任意である。 Further, the irradiation surface of the light guide plate 132 and the shape of the opposing surface are arbitrary and may not be rectangular. For example, it may be a circle, an ellipse, a triangle, a pentagon or more polygon, or a shape other than these. Further, the irradiation surface and the surface facing the irradiation surface do not have to have the same shape, and the sizes thereof may not match. In other words, the number, shape, size, etc. of the side surfaces of the light guide plate 132 are also arbitrary.
 また、導光板132に対する白色LED131およびPD133の位置も任意であり、図5のBの例に限定されない。例えば、白色LED131やPD133は、導光板132の複数の側面に対して形成されるようにしてもよい。例えば、図18のAのように、導光板132の4側面に対して、白色LED131およびPD133が、2側面ずつ形成されるようにしてもよい。図18のAの場合、白色LED131が、導光板132の図中上側と左側の2側面に対して形成され、PD133が、導光板132の図中右側と下側の2側面に対して形成されている。 Further, the positions of the white LED 131 and the PD 133 with respect to the light guide plate 132 are arbitrary, and are not limited to the example of B in FIG. For example, the white LED 131 and the PD 133 may be formed on a plurality of side surfaces of the light guide plate 132. For example, as shown in FIG. 18A, the white LED 131 and the PD 133 may be formed on each of the four side surfaces of the light guide plate 132. In the case of FIG. 18A, the white LED 131 is formed on the upper and left side surfaces of the light guide plate 132 in the drawing, and the PD 133 is formed on the right side and lower side surfaces of the light guide plate 132 in the drawing. ing.
 また、白色LED131とPD133の数は互いに一致していなくてもよい。例えば、図18のBのように、導光板132の4側面に対して、白色LED131が3側面に形成され、PD133が残りの1側面に形成されるようにしてもよい。図18のBの場合、白色LED131が、導光板132の図中上側と左側と下側の3側面に対して形成され、PD133が、導光板132の図中右側の側面に対して形成されている。 Also, the numbers of white LEDs 131 and PDs 133 do not have to match each other. For example, as shown in FIG. 18B, the white LED 131 may be formed on the three side surfaces with respect to the four side surfaces of the light guide plate 132, and the PD 133 may be formed on the remaining one side surface. In the case of B of FIG. 18, the white LED 131 is formed on the upper side, the left side, and the lower side of the light guide plate 132 in the drawing, and the PD 133 is formed on the right side of the light guide plate 132 in the drawing. Yes.
 また、導光板132の1側面に、白色LED131とPD133とが混在してもよい。例えば、図18のCのように、白色LED131とPD133とが交互に配置されていてもよい。その場合であっても、白色LED131とPD133とが導光板132を挟んで対向するように配置することにより、PD133が白色LED131から出射され、導光板132内部を伝搬する白色光をより確実に検出することができ、その光量をより正確に計測することができる。 Further, the white LED 131 and the PD 133 may be mixed on one side surface of the light guide plate 132. For example, as shown in FIG. 18C, white LEDs 131 and PD 133 may be alternately arranged. Even in such a case, by arranging the white LED 131 and the PD 133 to face each other with the light guide plate 132 interposed therebetween, the PD 133 is more reliably detected from the white LED 131 that is emitted from the white LED 131 and propagates inside the light guide plate 132. The amount of light can be measured more accurately.
 つまり、図18のA乃至図18のCのように、複数の白色LED131が導光板132の複数の側面に向かって照射光を発光するように配置されており、単数若しくは複数のPD133が導光板132を挟んで白色LED131の一部若しくは全部と対抗する位置に配置されているようにしてもよい。 That is, as shown in FIG. 18A to FIG. 18C, a plurality of white LEDs 131 are arranged so as to emit irradiation light toward a plurality of side surfaces of the light guide plate 132, and a single or a plurality of PDs 133 are light guide plates. The white LED 131 may be disposed at a position facing part or all of the white LED 131 with the 132 interposed therebetween.
 また、導光板132の形状が円形の場合、図18のDのように、白色LED131とPD133とをその側面に囲むように配置してもよい。この場合も、白色LED131とPD133とが導光板132を挟んで対向するように配置することにより、PD133が白色LED131から出射され、導光板132内部を伝搬する白色光をより確実に検出することができ、その光量をより正確に計測することができる。 Further, when the shape of the light guide plate 132 is circular, the white LED 131 and the PD 133 may be disposed so as to surround the side surfaces thereof as shown in FIG. Also in this case, by arranging the white LED 131 and the PD 133 so as to face each other with the light guide plate 132 interposed therebetween, the PD 133 can detect the white light emitted from the white LED 131 and propagating through the light guide plate 132 more reliably. The amount of light can be measured more accurately.
  <反射膜>
 また、図19に示されるように、上述したフィルタ171の代わりに、反射膜271を設けるようにしてもよい。この反射膜271は、少なくとも照射波長帯と励起波長帯の両方の光を反射する。導光板132の照射面と対向する面の一部にこのような反射膜271を設けることにより、導光板132の内部を伝搬する白色光がこの面から漏えいするのを抑制することができる。なお、この反射膜271は励起波長帯の光も反射するが、照射波長帯の光の場合と同様に、反射膜271が形成されていない部分で励起波長帯の光を透過させるようにすればよい。つまり、各波長の光がイメージセンサ134に十分に到達するように、反射膜271を形成する部分の広さ(範囲)や位置を設計すれば良い。なお、フィルタ171の場合と同様に、反射膜271が形成される部分の広さや位置(分布)が導光板132の全域で均一でなくてもよい(導光板132の位置に応じてこの広さや位置(分布)が変化するようにしてもよい)。
<Reflective film>
As shown in FIG. 19, a reflective film 271 may be provided instead of the filter 171 described above. This reflective film 271 reflects at least light in both the irradiation wavelength band and the excitation wavelength band. By providing such a reflective film 271 on a part of the surface of the light guide plate 132 that faces the irradiation surface, it is possible to suppress leakage of white light propagating through the light guide plate 132 from this surface. The reflection film 271 also reflects light in the excitation wavelength band. However, as in the case of light in the irradiation wavelength band, the light in the excitation wavelength band can be transmitted through a portion where the reflection film 271 is not formed. Good. That is, the width (range) and position of the portion where the reflective film 271 is formed may be designed so that light of each wavelength reaches the image sensor 134 sufficiently. As in the case of the filter 171, the width and position (distribution) of the portion where the reflective film 271 is formed may not be uniform over the entire area of the light guide plate 132 (this width and position may vary depending on the position of the light guide plate 132. The position (distribution) may be changed).
 また、イメージセンサ134の画素フィルタ140の各フィルタの配置パタンが、この反射膜271の分布に応じて設定されるようにしてもよい。例えば、反射膜271の直下の画素は、受光量が低減する可能性がある。そのため、反射膜271が形成される部分の画素では、受光しないようにしてもよい。また、このような受光量のバラツキを後段の処理により補正するようにしてもよい。例えば、反射膜271が形成される部分の画素で受光しないようにする場合、その画素の画素値を、周囲の画素値を用いて補間するようにしてもよい。 Further, the arrangement pattern of each filter of the pixel filter 140 of the image sensor 134 may be set according to the distribution of the reflective film 271. For example, the amount of light received may be reduced in the pixels immediately below the reflective film 271. For this reason, the pixel in the portion where the reflective film 271 is formed may not receive light. Further, such variation in the amount of received light may be corrected by subsequent processing. For example, in a case where light is not received by a pixel in a portion where the reflective film 271 is formed, the pixel value of the pixel may be interpolated using surrounding pixel values.
  <フィルタ>
 また、フィルタをイメージセンサ134に設ける代わりに、導光板132とイメージセンサ134との間にフィルタを設けるようにしてもよい。例えば、図20のように、画素フィルタ140の代わりに、レンズアレイ172とイメージセンサ134との間に、フィルタ272を設けるようにしてもよい。
<Filter>
Further, instead of providing a filter in the image sensor 134, a filter may be provided between the light guide plate 132 and the image sensor 134. For example, as illustrated in FIG. 20, a filter 272 may be provided between the lens array 172 and the image sensor 134 instead of the pixel filter 140.
 フィルタ272は、画素フィルタ140と同様に、少なくとも、照射波長帯(近紫外波長帯)の光を透過するフィルタと、励起波長帯(青緑波長帯)の光を透過するフィルタとを備える。もちろん、画素フィルタ140と同様に、フィルタ272が、赤波長帯の光を透過するフィルタ、緑波長帯の光を透過するフィルタ、青波長帯の光を透過するフィルタ、近赤外波長帯の光を透過するフィルタ等を備えるようにしてももちろん良い。また、各フィルタの配置パタンは任意である。 As with the pixel filter 140, the filter 272 includes at least a filter that transmits light in the irradiation wavelength band (near ultraviolet wavelength band) and a filter that transmits light in the excitation wavelength band (blue-green wavelength band). Of course, like the pixel filter 140, the filter 272 is a filter that transmits light in the red wavelength band, a filter that transmits light in the green wavelength band, a filter that transmits light in the blue wavelength band, and light in the near infrared wavelength band. Needless to say, a filter or the like that transmits the light may be provided. Moreover, the arrangement pattern of each filter is arbitrary.
 なお、イメージセンサ134が縦型分光構造を有し、各画素において複数の波長帯の光を識別可能に(各波長帯の光を異なる光(成分)として)受光することができるようにしてもよい。また、イメージセンサ134を2次元状(例えばアレイ状)に配置された複数のPDにより構成されるようにしてもよい。 Note that the image sensor 134 has a vertical spectral structure so that each pixel can receive light of a plurality of wavelength bands in a distinguishable manner (the light of each wavelength band is a different light (component)). Good. Further, the image sensor 134 may be configured by a plurality of PDs arranged in a two-dimensional shape (for example, an array shape).
 また、以上においては、反射光を受光するイメージセンサ134を1つ設けるように説明したが、イメージセンサ134の数は任意である。例えば、受光する光の波長帯域毎にイメージセンサ134を設けるようにしてもよい。例えば、表面反射光と内部反射光とを互いに異なるイメージセンサにより受光するようにしてもよい。 In the above description, one image sensor 134 that receives reflected light is provided. However, the number of image sensors 134 is arbitrary. For example, the image sensor 134 may be provided for each wavelength band of received light. For example, the surface reflection light and the internal reflection light may be received by different image sensors.
 なお、体組成計測器100が、上述した以外の機能や構成を有し、上述した以外の任意のパラメータを計測することができるようにしてもよい。 It should be noted that the body composition measuring instrument 100 may have functions and configurations other than those described above and can measure any parameter other than those described above.
 また、以上においては利用者の足の裏のAGE値を計測するように説明したが、計測が行われる部位は任意であり、上述の足の裏に限定されない。例えば、利用者の足(足の甲、指、脛、ふくらはぎ、腿部等)であってもよいし、利用者の腕(肩、肘、手の平、指等)であってもよいし、利用者の胴体(胸、腹、下腹部、臀部、腋等)であってもよいし、利用者の頭部(前頭部、後頭部、頭頂部、顔、顎、耳、首等)であってもよい。もちろん、これら以外の部位であってもよい。 In the above description, the AGE value on the sole of the user's foot is measured. However, the part where the measurement is performed is arbitrary, and is not limited to the above-described sole of the foot. For example, it may be the user's foot (instep, finger, shin, calf, thigh, etc.) or the user's arm (shoulder, elbow, palm, finger, etc.) The body of the person (chest, abdomen, lower abdomen, buttocks, buttocks, etc.) or the user's head (frontal head, back of head, top of head, face, jaw, ears, neck, etc.) Also good. Of course, other parts may be used.
 さらに、本技術は、上述した体組成計測器に限らず、任意の装置に適用することができる。例えば、任意の光学計測装置、電子機器、撮像装置、情報処理装置等に適用することができる。つまり、本技術を適用する装置が、体重や体脂肪率等を計測しなくてもよい。また、計測を行う物体も任意であり、例えば人体でなくてもよい。例えば犬や猫等の動物であってもよいし、植物であってもよいし、無機物であってもよい。さらに、計測対象となるパラメータも任意であり、AGEsに限定されない。 Furthermore, the present technology can be applied not only to the body composition measuring instrument described above but also to any device. For example, the present invention can be applied to any optical measurement device, electronic device, imaging device, information processing device, and the like. That is, an apparatus to which the present technology is applied does not have to measure body weight, body fat percentage, and the like. Further, the object to be measured is arbitrary, and may not be a human body, for example. For example, it may be an animal such as a dog or cat, a plant, or an inorganic substance. Furthermore, the parameter to be measured is also arbitrary and is not limited to AGEs.
  <ソフトウェア>
 上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。上述した一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、ネットワークや記録媒体からインストールされる。
<Software>
The series of processes described above can be executed by hardware or can be executed by software. When the above-described series of processing is executed by software, a program constituting the software is installed from a network or a recording medium.
 この記録媒体は、例えば、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されているリムーバブルメディア251により構成される。このリムーバブルメディア251には、磁気ディスク(フレキシブルディスクを含む)や光ディスク(CD-ROM(Compact Disc - Read Only Memory)やDVD(Digital Versatile Disc)を含む)が含まれる。さらに、光磁気ディスク(MD(Mini Disc)を含む)や半導体メモリ等も含まれる。その場合、例えば、リムーバブルメディア251をドライブ245に装着することにより、そのリムーバブルメディア251に記憶されているこのプログラムを読み出させ、記憶部243等にインストールさせることができる。 This recording medium is constituted by, for example, a removable medium 251 on which a program is recorded, which is distributed to distribute the program to the user, separately from the apparatus main body. The removable medium 251 includes a magnetic disk (including a flexible disk) and an optical disk (including a CD-ROM (Compact Disc-Read-Only Memory) and a DVD (Digital Versatile Disc)). Further, magneto-optical disks (including MD (Mini-Disc)) and semiconductor memories are also included. In this case, for example, by installing the removable medium 251 in the drive 245, the program stored in the removable medium 251 can be read and installed in the storage unit 243 or the like.
 また、このプログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することもできる。例えば、プログラムは、通信部244で受信し、記憶部243にインストールすることができる。 This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. For example, the program can be received by the communication unit 244 and installed in the storage unit 243.
 その他、このプログラムは、記憶部243や制御部211に内蔵されるROM等に、あらかじめインストールしておくこともできる。 In addition, this program can be installed in advance in a ROM or the like built in the storage unit 243 or the control unit 211.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。 Further, in the present specification, the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
 また、上述した各ステップの処理は、上述した各装置、若しくは、上述した各装置以外の任意の装置において、実行することができる。その場合、その処理を実行する装置が、上述した、その処理を実行するのに必要な機能(機能ブロック等)を有するようにすればよい。また、処理に必要な情報を、適宜、その装置に伝送するようにすればよい。 Further, the processing of each step described above can be executed in each device described above or any device other than each device described above. In that case, the device that executes the process may have the functions (functional blocks and the like) necessary for executing the process described above. Information necessary for processing may be transmitted to the apparatus as appropriate.
  <その他>
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
<Others>
In this specification, the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。 Also, in the above, the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units). Conversely, the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit). Of course, a configuration other than that described above may be added to the configuration of each device (or each processing unit). Furthermore, if the configuration and operation of the entire system are substantially the same, a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, the present technology can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and is jointly processed.
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。例えば、上述した計測部112を搭載する装置やシステム、または、それらの製造装置や製造方法に限らず、上述した計測部112を搭載するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等、または、それらの構成を製造する製造装置や製造方法として実施することもできる。 Note that the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology. For example, the present invention is not limited to the device or system on which the measurement unit 112 is mounted, or the manufacturing apparatus or manufacturing method thereof, but any configuration on which the measurement unit 112 is mounted, for example, as a system LSI (Large Scale Scale Integration) The present invention can also be implemented as a processor, a module using a plurality of processors, a unit using a plurality of modules, a set obtained by further adding other functions to the unit, or a manufacturing apparatus or a manufacturing method for manufacturing those configurations.
 なお、本技術は以下のような構成も取ることができる。
 (1) 物体に照射する、所定の照射波長帯域を含む照射光を発光する発光部と、
 前記発光部が発光した前記照射光を側面で受光して内部で拡散し、前記側面よりも広面積な照射面から前記物体の表面の所定の範囲に略均一に照射する導光板と、
 前記導光板を介して前記物体の表面に照射された前記照射光が前記物体の表面で略波長シフトせずに反射した表面反射光と、前記導光板を介して前記物体の表面に照射された前記照射光が前記物体の内部で前記照射波長帯域から所定の励起波長帯域にシフトして反射した内部反射光とを、複数の画素で受光して受光量を計測する受光部と
 を備える光学計測装置。
 (2) 前記照射波長帯域は、近紫外波長帯域であり、
 前記発光部は、前記照射光として、前記近紫外波長帯域の光若しくは白色光を発光する
 (1)に記載の光学計測装置。
 (3) 前記導光板が前記側面を複数備える
 (1)または(2)に記載の光学計測装置。
 (4) 複数の前記発光部が前記導光板の複数の前記側面に向かって前記照射光を発光するように配置されている
 (3)に記載の光学計測装置。
 (5) 前記発光部が発光する前記照射光の光量を計測する計測部をさらに備える
 (1)乃至(4)のいずれかに記載の光学計測装置。
 (6) 前記検出部が前記導光板を挟んで前記発光部に対向する位置に配置されている
 (5)に記載の光学計測装置。
 (7) 複数の前記発光部が前記導光板の複数の前記側面に向かって前記照射光を発光するように配置されており、
 単数若しくは複数の前記検出部が前記導光板を挟んで前記発光部の一部若しくは全部と対抗する位置に配置されている
 (6)に記載の光学計測装置。
 (8) 前記受光部が、受光した光を光電変換するイメージセンサを有している
 (1)乃至(7)のいずれかに記載の光学計測装置。
 (9) 前記受光部が、前記照射波長帯域の光を透過する第1のフィルタを備える画素と、前記励起波長帯域の光を透過する第2のフィルタを備える画素とを有している
 (1)乃至(8)のいずれかに記載の光学計測装置。
 (10) 前記導光板の前記照射面に対向する面の一部に、前記照射波長帯域の光を反射し、前記励起波長帯域の光を透過するフィルタをさらに備える
 (1)乃至(9)のいずれかに記載の光学計測装置。
 (11) 前記導光板と前記受光部との間に配置され、前記表面反射光および前記内部反射光を前記受光部の画素に近接結像させるレンズアレイをさらに備える
 (1)乃至(10)のいずれかに記載の光学計測装置。
 (12) 前記レンズアレイの各レンズが、前記物体の表面から前記受光部までの距離に応じたレンズ径および焦点距離を有している
 (11)に記載の光学計測装置。
 (13) 前記受光部において得られる前記表面反射光および前記内部反射光の計測データを用いて、前記物体内の所定の成分値を求める演算部をさらに備える
 (1)乃至(12)のいずれかに記載の光学計測装置。
 (14) 前記物体を前記導光板の前記照射面から所定の距離に位置させるための位置合わせ部をさらに備える
 (1)乃至(13)のいずれかに記載の光学計測装置。
 (15) 前記位置合わせ部により形成される前記物体と前記導光板との隙間に向かって白色光を発光する他の発光部と、
 前記受光部において得られる計測データに対して画像処理する画像処理部と
 をさらに備え、
 前記受光部は、前記他の発光部が発光した前記白色光が前記物体の表面で反射した反射光をさらに受光し、
 前記画像処理部は、前記受光部において得られる前記反射光の計測データを画像処理して通常撮像画像を生成する
 (14)に記載の光学計測装置。
 (16) 前記位置合わせ部により形成される前記物体と前記導光板との隙間に向かって近赤外光を発光する他の発光部と、
 前記受光部により受光された光のデータに基づいて前記物体内の伝搬光路長を求める演算部と
 をさらに備え、
 前記受光部は、前記他の発光部が発光した前記近赤外光が前記物体で反射した近赤外反射光をさらに受光し、
 前記演算部は、前記受光部が受光した前記近赤外反射光のデータを用いて前記伝搬光路長を求める
 (14)または(15)に記載の光学計測装置。
 (17) 前記他の発光部が発光した前記近赤外光の照射方向を制限する絞りをさらに備える
 (16)に記載の光学計測装置。
 (18) 前記導光板の前記照射面に対向する面の一部に、光を反射する反射膜をさらに備える
 (1)乃至(17)のいずれかに記載の光学計測装置。
 (19) 前記導光板と前記受光部との間に配置され、近紫外波長帯域の光を透過する第1のフィルタと、
 前記導光板と前記受光部との間に配置され、前記励起波長帯域の光を透過する第2のフィルタと
 をさらに備える(1)乃至(18)のいずれかに記載の光学計測装置。
 (20) 物体に照射する、所定の照射波長帯域を含む照射光を発光し、
 前記照射光を側面で受光して内部で拡散し、前記側面よりも広面積な照射面から前記物体の表面の所定の範囲に略均一に照射する導光板を介して前記物体の表面に照射された前記照射光が前記物体の表面で略波長シフトせずに反射した表面反射光と、前記導光板を介して前記物体の表面に照射された前記照射光が前記物体の内部で前記照射波長帯域から所定の励起波長帯域にシフトして反射した内部反射光とを、複数の画素で受光して受光量を計測する
 光学計測方法。
In addition, this technique can also take the following structures.
(1) A light emitting unit that emits irradiation light including a predetermined irradiation wavelength band, which irradiates an object;
A light guide plate that receives the irradiation light emitted from the light emitting unit at a side surface and diffuses the light inside, and irradiates a predetermined range of the surface of the object from the irradiation surface having a larger area than the side surface substantially uniformly;
The irradiated light irradiated on the surface of the object through the light guide plate is reflected on the surface of the object without being substantially shifted in wavelength, and is irradiated on the surface of the object through the light guide plate. An optical measurement comprising: a light receiving unit that receives the internally reflected light, which is reflected by shifting the irradiation light from the irradiation wavelength band to a predetermined excitation wavelength band in the object, by a plurality of pixels; apparatus.
(2) The irradiation wavelength band is a near ultraviolet wavelength band,
The optical measurement device according to (1), wherein the light emitting unit emits light in the near ultraviolet wavelength band or white light as the irradiation light.
(3) The optical measurement device according to (1) or (2), wherein the light guide plate includes a plurality of the side surfaces.
(4) The optical measurement device according to (3), wherein the plurality of light emitting units are arranged to emit the irradiation light toward the plurality of side surfaces of the light guide plate.
(5) The optical measurement device according to any one of (1) to (4), further including a measurement unit that measures a light amount of the irradiation light emitted from the light emitting unit.
(6) The optical measurement device according to (5), wherein the detection unit is disposed at a position facing the light emitting unit with the light guide plate interposed therebetween.
(7) The plurality of light emitting units are arranged to emit the irradiation light toward the plurality of side surfaces of the light guide plate,
The optical measurement device according to (6), wherein the one or more detection units are arranged at positions facing part or all of the light emitting units with the light guide plate interposed therebetween.
(8) The optical measurement device according to any one of (1) to (7), wherein the light receiving unit includes an image sensor that photoelectrically converts received light.
(9) The light receiving unit includes a pixel including a first filter that transmits light in the irradiation wavelength band, and a pixel including a second filter that transmits light in the excitation wavelength band. The optical measurement device according to any one of (8) to (8).
(10) The light guide plate may further include a filter that reflects light in the irradiation wavelength band and transmits light in the excitation wavelength band on a part of a surface facing the irradiation surface of the light guide plate. The optical measuring device according to any one of the above.
(11) The lens array may further include a lens array that is disposed between the light guide plate and the light receiving unit and forms an image of the surface reflected light and the internal reflected light in proximity to the pixels of the light receiving unit. The optical measuring device according to any one of the above.
(12) The optical measurement device according to (11), wherein each lens of the lens array has a lens diameter and a focal length corresponding to a distance from the surface of the object to the light receiving unit.
(13) Any one of (1) to (12) further including a calculation unit that obtains a predetermined component value in the object using measurement data of the surface reflection light and the internal reflection light obtained in the light receiving unit. The optical measuring device described in 1.
(14) The optical measurement device according to any one of (1) to (13), further including an alignment unit that positions the object at a predetermined distance from the irradiation surface of the light guide plate.
(15) another light emitting unit that emits white light toward a gap between the object formed by the alignment unit and the light guide plate;
An image processing unit that performs image processing on measurement data obtained in the light receiving unit,
The light receiving unit further receives reflected light of the white light emitted from the other light emitting unit reflected by the surface of the object,
The optical measurement device according to (14), wherein the image processing unit generates a normal captured image by performing image processing on the measurement data of the reflected light obtained in the light receiving unit.
(16) another light emitting unit that emits near infrared light toward a gap between the object and the light guide plate formed by the alignment unit;
A calculation unit for obtaining a propagation optical path length in the object based on data of light received by the light receiving unit;
The light-receiving unit further receives near-infrared reflected light that the near-infrared light emitted by the other light-emitting unit is reflected by the object,
The optical measurement device according to (14) or (15), wherein the calculation unit obtains the propagation optical path length using data of the near-infrared reflected light received by the light receiving unit.
(17) The optical measurement device according to (16), further including a diaphragm that restricts an irradiation direction of the near-infrared light emitted by the other light emitting unit.
(18) The optical measurement device according to any one of (1) to (17), further including a reflection film that reflects light on a part of a surface of the light guide plate that faces the irradiation surface.
(19) a first filter that is disposed between the light guide plate and the light receiving unit and transmits light in a near-ultraviolet wavelength band;
The optical measurement device according to any one of (1) to (18), further including: a second filter that is disposed between the light guide plate and the light receiving unit and transmits light in the excitation wavelength band.
(20) emitting irradiation light including a predetermined irradiation wavelength band to irradiate an object;
The irradiation light is received by the side surface, diffused inside, and irradiated to the surface of the object through a light guide plate that irradiates a predetermined range of the surface of the object substantially uniformly from the irradiation surface having a larger area than the side surface. The surface reflected light reflected by the surface of the object without substantially wavelength shift and the irradiation light irradiated on the surface of the object through the light guide plate are inside the object within the irradiation wavelength band. An optical measurement method in which internally reflected light that has been reflected by shifting to a predetermined excitation wavelength band is received by a plurality of pixels and the amount of received light is measured.
 100 体組成計測器, 111 電極, 112 計測部, 113 表示部, 114 表示部, 121 足, 131 白色LED, 132 導光板, 133 PD, 134 イメージセンサ, 140 画素フィルタ, 141 UVフィルタ, 142 BGフィルタ, 143 Rフィルタ, 144 Gフィルタ, 145 Bフィルタ, 146 IRフィルタ, 151 位置合わせ部, 152 絞り, 153 絞り, 161 隙間, 171 フィルタ, 172 レンズアレイ, 181 白色LED, 182 近赤外LED, 210 バス, 211 制御部, 212 発光部, 213 受光部, 221 光学部, 231 AGEs演算部, 232 画像処理部, 233 伝搬光路長演算部, 241 入力部, 242 出力部, 243 記憶部, 244 通信部, 245 ドライブ, 251 リムーバブルメディア, 271 反射膜, 272 フィルタ 100 body composition measuring instrument, 111 electrode, 112 measuring unit, 113 display unit, 114 display unit, 121 feet, 131 white LED, 132 light guide plate, 133 PD, 134 image sensor, 140 pixel filter, 141 UV filter, 142 BG filter , 143 R filter, 144 G filter, 145 B filter, 146 IR filter, 151 alignment unit, 152 aperture, 153 aperture, 161 gap, 171 filter, 172 lens array, 181 white LED, 182 near infrared LED, 210 bus , 211 control unit, 212 light emitting unit, 213 light receiving unit, 221 optical unit, 231 AGEs computing unit, 232 image processing unit, 233 propagation optical path length computing unit, 241 input unit, 42 output unit, 243 storage unit, 244 communication unit, 245 drive, 251 a removable media, 271 reflective film, 272 filter

Claims (20)

  1.  物体に照射する、所定の照射波長帯域を含む照射光を発光する発光部と、
     前記発光部が発光した前記照射光を側面で受光して内部で拡散し、前記側面よりも広面積な照射面から前記物体の表面の所定の範囲に略均一に照射する導光板と、
     前記導光板を介して前記物体の表面に照射された前記照射光が前記物体の表面で略波長シフトせずに反射した表面反射光と、前記導光板を介して前記物体の表面に照射された前記照射光が前記物体の内部で前記照射波長帯域から所定の励起波長帯域にシフトして反射した内部反射光とを、複数の画素で受光して受光量を計測する受光部と
     を備える光学計測装置。
    A light emitting unit for emitting irradiation light including a predetermined irradiation wavelength band, which irradiates an object;
    A light guide plate that receives the irradiation light emitted from the light emitting unit at a side surface and diffuses the light inside, and irradiates a predetermined range of the surface of the object from the irradiation surface having a larger area than the side surface substantially uniformly;
    The irradiated light irradiated on the surface of the object through the light guide plate is reflected on the surface of the object without being substantially shifted in wavelength, and is irradiated on the surface of the object through the light guide plate. An optical measurement comprising: a light receiving unit that receives the internally reflected light, which is reflected by shifting the irradiation light from the irradiation wavelength band to a predetermined excitation wavelength band in the object, by a plurality of pixels; apparatus.
  2.  前記照射波長帯域は、近紫外波長帯域であり、
     前記発光部は、前記照射光として、前記近紫外波長帯域の光若しくは白色光を発光する
     請求項1に記載の光学計測装置。
    The irradiation wavelength band is a near ultraviolet wavelength band,
    The optical measurement device according to claim 1, wherein the light emitting unit emits light in the near ultraviolet wavelength band or white light as the irradiation light.
  3.  前記導光板が前記側面を複数備える
     請求項1に記載の光学計測装置。
    The optical measurement device according to claim 1, wherein the light guide plate includes a plurality of the side surfaces.
  4.  複数の前記発光部が前記導光板の複数の前記側面に向かって前記照射光を発光するように配置されている
     請求項3に記載の光学計測装置。
    The optical measurement device according to claim 3, wherein a plurality of the light emitting units are arranged to emit the irradiation light toward the plurality of side surfaces of the light guide plate.
  5.  前記発光部が発光する前記照射光の光量を計測する計測部をさらに備える
     請求項1に記載の光学計測装置。
    The optical measurement device according to claim 1, further comprising a measurement unit that measures the amount of the irradiation light emitted from the light emitting unit.
  6.  前記検出部が前記導光板を挟んで前記発光部に対向する位置に配置されている
     請求項5に記載の光学計測装置。
    The optical measurement device according to claim 5, wherein the detection unit is disposed at a position facing the light emitting unit with the light guide plate interposed therebetween.
  7.  複数の前記発光部が前記導光板の複数の前記側面に向かって前記照射光を発光するように配置されており、
     単数若しくは複数の前記検出部が前記導光板を挟んで前記発光部の一部若しくは全部と対抗する位置に配置されている
     請求項6に記載の光学計測装置。
    A plurality of the light emitting portions are arranged to emit the irradiation light toward the plurality of side surfaces of the light guide plate;
    The optical measurement device according to claim 6, wherein the single or a plurality of the detection units are disposed at positions facing part or all of the light emitting units with the light guide plate interposed therebetween.
  8.  前記受光部が、受光した光を光電変換するイメージセンサを有している
     請求項1に記載の光学計測装置。
    The optical measuring device according to claim 1, wherein the light receiving unit includes an image sensor that photoelectrically converts received light.
  9.  前記受光部が、前記照射波長帯域の光を透過する第1のフィルタを備える画素と、前記励起波長帯域の光を透過する第2のフィルタを備える画素とを有している
     請求項1に記載の光学計測装置。
    The said light-receiving part has a pixel provided with the 1st filter which permeate | transmits the light of the said irradiation wavelength band, and a pixel provided with the 2nd filter which permeate | transmits the light of the said excitation wavelength band. Optical measuring device.
  10.  前記導光板の前記照射面に対向する面の一部に、前記照射波長帯域の光を反射し、前記励起波長帯域の光を透過するフィルタをさらに備える
     請求項1に記載の光学計測装置。
    The optical measurement device according to claim 1, further comprising a filter that reflects light in the irradiation wavelength band and transmits light in the excitation wavelength band on a part of the surface of the light guide plate that faces the irradiation surface.
  11.  前記導光板と前記受光部との間に配置され、前記表面反射光および前記内部反射光を前記受光部の画素に近接結像させるレンズアレイをさらに備える
     請求項1に記載の光学計測装置。
    The optical measurement device according to claim 1, further comprising a lens array that is disposed between the light guide plate and the light receiving unit and forms an image of the surface reflection light and the internal reflection light in proximity to a pixel of the light reception unit.
  12.  前記レンズアレイの各レンズが、前記物体の表面から前記受光部までの距離に応じたレンズ径および焦点距離を有している
     請求項11に記載の光学計測装置。
    The optical measurement device according to claim 11, wherein each lens of the lens array has a lens diameter and a focal length corresponding to a distance from the surface of the object to the light receiving unit.
  13.  前記受光部において得られる前記表面反射光および前記内部反射光の計測データを用いて、前記物体内の所定の成分値を求める演算部をさらに備える
     請求項1に記載の光学計測装置。
    The optical measurement apparatus according to claim 1, further comprising a calculation unit that obtains a predetermined component value in the object using measurement data of the surface reflection light and the internal reflection light obtained in the light receiving unit.
  14.  前記物体を前記導光板の前記照射面から所定の距離に位置させるための位置合わせ部をさらに備える
     請求項1に記載の光学計測装置。
    The optical measurement device according to claim 1, further comprising an alignment unit configured to position the object at a predetermined distance from the irradiation surface of the light guide plate.
  15.  前記位置合わせ部により形成される前記物体と前記導光板との隙間に向かって白色光を発光する他の発光部と、
     前記受光部において得られる計測データに対して画像処理する画像処理部と
     をさらに備え、
     前記受光部は、前記他の発光部が発光した前記白色光が前記物体の表面で反射した反射光をさらに受光し、
     前記画像処理部は、前記受光部において得られる前記反射光の計測データを画像処理して通常撮像画像を生成する
     請求項14に記載の光学計測装置。
    Another light emitting unit that emits white light toward a gap between the object formed by the alignment unit and the light guide plate;
    An image processing unit that performs image processing on measurement data obtained in the light receiving unit,
    The light receiving unit further receives reflected light of the white light emitted from the other light emitting unit reflected by the surface of the object,
    The optical measurement device according to claim 14, wherein the image processing unit generates a normal captured image by performing image processing on the measurement data of the reflected light obtained in the light receiving unit.
  16.  前記位置合わせ部により形成される前記物体と前記導光板との隙間に向かって近赤外光を発光する他の発光部と、
     前記受光部により受光された光のデータに基づいて前記物体内の伝搬光路長を求める演算部と
     をさらに備え、
     前記受光部は、前記他の発光部が発光した前記近赤外光が前記物体で反射した近赤外反射光をさらに受光し、
     前記演算部は、前記受光部が受光した前記近赤外反射光のデータを用いて前記伝搬光路長を求める
     請求項14に記載の光学計測装置。
    Another light emitting unit that emits near infrared light toward a gap between the object and the light guide plate formed by the alignment unit;
    A calculation unit for obtaining a propagation optical path length in the object based on data of light received by the light receiving unit;
    The light-receiving unit further receives near-infrared reflected light that the near-infrared light emitted by the other light-emitting unit is reflected by the object,
    The optical measurement device according to claim 14, wherein the calculation unit obtains the propagation optical path length using data of the near-infrared reflected light received by the light receiving unit.
  17.  前記他の発光部が発光した前記近赤外光の照射方向を制限する絞りをさらに備える
     請求項16に記載の光学計測装置。
    The optical measurement device according to claim 16, further comprising a diaphragm that restricts an irradiation direction of the near infrared light emitted from the other light emitting unit.
  18.  前記導光板の前記照射面に対向する面の一部に、光を反射する反射膜をさらに備える
     請求項1に記載の光学計測装置。
    The optical measurement device according to claim 1, further comprising a reflective film that reflects light on a part of a surface of the light guide plate that faces the irradiation surface.
  19.  前記導光板と前記受光部との間に配置され、近紫外波長帯域の光を透過する第1のフィルタと、
     前記導光板と前記受光部との間に配置され、前記励起波長帯域の光を透過する第2のフィルタと
     をさらに備える請求項1に記載の光学計測装置。
    A first filter disposed between the light guide plate and the light receiving unit and transmitting light in a near ultraviolet wavelength band;
    The optical measurement device according to claim 1, further comprising: a second filter that is disposed between the light guide plate and the light receiving unit and transmits light in the excitation wavelength band.
  20.  物体に照射する、所定の照射波長帯域を含む照射光を発光し、
     前記照射光を側面で受光して内部で拡散し、前記側面よりも広面積な照射面から前記物体の表面の所定の範囲に略均一に照射する導光板を介して前記物体の表面に照射された前記照射光が前記物体の表面で略波長シフトせずに反射した表面反射光と、前記導光板を介して前記物体の表面に照射された前記照射光が前記物体の内部で前記照射波長帯域から所定の励起波長帯域にシフトして反射した内部反射光とを、複数の画素で受光して受光量を計測する
     光学計測方法。
    Emits irradiation light that irradiates an object and includes a predetermined irradiation wavelength band,
    The irradiation light is received by the side surface, diffused inside, and irradiated to the surface of the object through a light guide plate that irradiates a predetermined range of the surface of the object substantially uniformly from the irradiation surface having a larger area than the side surface. The surface reflected light reflected by the surface of the object without substantially wavelength shift and the irradiation light irradiated on the surface of the object through the light guide plate are inside the object within the irradiation wavelength band. An optical measurement method in which internally reflected light that has been reflected by shifting to a predetermined excitation wavelength band is received by a plurality of pixels and the amount of received light is measured.
PCT/JP2016/077223 2015-09-29 2016-09-15 Optical measurement device and method WO2017057014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015190830 2015-09-29
JP2015-190830 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017057014A1 true WO2017057014A1 (en) 2017-04-06

Family

ID=58427481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077223 WO2017057014A1 (en) 2015-09-29 2016-09-15 Optical measurement device and method

Country Status (1)

Country Link
WO (1) WO2017057014A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344668A (en) * 2003-05-21 2004-12-09 Asulab Sa Portable measuring instrument measuring physiological numerical value and including device irradiating surface of organic tissue
US20100321696A1 (en) * 2009-06-22 2010-12-23 Malik Imran R Optical devices and methods for measuring samples
JP2011200534A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system and color imaging element
WO2013073244A1 (en) * 2011-11-16 2013-05-23 ソニー株式会社 Biometric device, biometric method, program, and recording medium
JP2013134243A (en) * 2011-12-27 2013-07-08 Sharp Corp Measurement apparatus
JP2013533766A (en) * 2010-06-18 2013-08-29 ディアフノプティクス ホールディング ベー.フェー. Method and apparatus for determining autofluorescence values of skin tissue
WO2014132415A1 (en) * 2013-02-28 2014-09-04 グローリー株式会社 Fluorescence and phosphorescence detecting method and device, and valuable media authenticity determining method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344668A (en) * 2003-05-21 2004-12-09 Asulab Sa Portable measuring instrument measuring physiological numerical value and including device irradiating surface of organic tissue
US20100321696A1 (en) * 2009-06-22 2010-12-23 Malik Imran R Optical devices and methods for measuring samples
JP2011200534A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system and color imaging element
JP2013533766A (en) * 2010-06-18 2013-08-29 ディアフノプティクス ホールディング ベー.フェー. Method and apparatus for determining autofluorescence values of skin tissue
WO2013073244A1 (en) * 2011-11-16 2013-05-23 ソニー株式会社 Biometric device, biometric method, program, and recording medium
JP2013134243A (en) * 2011-12-27 2013-07-08 Sharp Corp Measurement apparatus
WO2014132415A1 (en) * 2013-02-28 2014-09-04 グローリー株式会社 Fluorescence and phosphorescence detecting method and device, and valuable media authenticity determining method and device

Similar Documents

Publication Publication Date Title
TWI597476B (en) Optical sensor module, optical sensor accessory and optical sensor device
US10542920B2 (en) Measurement device, measurement method, program, and recording medium
US20170135617A1 (en) Optoelectronic modules operable to distinguish between signals indicative of reflections from an object of interest and signals indicative of a spurious reflection
US9924874B2 (en) Measurement device, measurement method, program and recording medium
JP4061409B2 (en) Sensor unit and biosensor
JP2023082712A (en) Depth tissue flow rate measurement using diffusion speckle contrast analysis
US10575766B2 (en) Measurement device, measurement method, program, and recording medium
WO2013094362A1 (en) Measurement device, measurement method, program, and recording medium
US11246498B2 (en) Sensor, sensor device, and sensor system
JP5970785B2 (en) Biological measuring device, biological measuring method, program, and recording medium
WO2017057014A1 (en) Optical measurement device and method
US10335067B2 (en) Optical unit and optical analysis device
US20160218238A1 (en) Information acquisition apparatus
KR20160053281A (en) Biological blood flow measuring module
JP6891441B2 (en) Detection device and measuring device
JP2020030143A (en) Optical sensor
JP2016106870A (en) Biological information acquisition device and biological information acquisition method
US10921248B2 (en) Measurement apparatus and measurement method
WO2016047754A1 (en) Inspection device, attachment configuring said inspection device, portable communication terminal, and program for controlling portable communication terminal
JP2008204388A (en) Optical mouse
JP2015188475A (en) Probe for biomedical measurement and biomedical measurement device
JP2016168090A (en) Photoacoustic imaging device
JP2016087063A (en) Optical biological imaging system
CN112798544A (en) Photoelectric detection device and detection product
WO2018070035A1 (en) Biological information measurement instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16851188

Country of ref document: EP

Kind code of ref document: A1