WO2017056756A1 - Light control film - Google Patents
Light control film Download PDFInfo
- Publication number
- WO2017056756A1 WO2017056756A1 PCT/JP2016/073830 JP2016073830W WO2017056756A1 WO 2017056756 A1 WO2017056756 A1 WO 2017056756A1 JP 2016073830 W JP2016073830 W JP 2016073830W WO 2017056756 A1 WO2017056756 A1 WO 2017056756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- light control
- film
- light
- control film
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
Definitions
- the present invention relates to a light control film that can be used for, for example, an electronic blind that is attached to a window to control the transmission of extraneous light.
- Patent Documents 1 and 2 various devices related to a light control film that controls the transmission of extraneous light by being attached to a window have been proposed (Patent Documents 1 and 2).
- One such light control film uses liquid crystal.
- the light control film using the liquid crystal is produced by sandwiching a liquid crystal material with a transparent film material on which a transparent electrode is produced, and producing the liquid crystal cell with a linear polarizing plate.
- the orientation of the liquid crystal is changed by changing the electric field applied to the liquid crystal, thereby blocking or transmitting the extraneous light, and further changing the amount of transmitted light. To control.
- JP 03-47392 A Japanese Patent Laid-Open No. 08-184273
- the present invention has been made in view of such a situation, and an object of the present invention is to make it possible to more reliably block transmitted light as compared with the related art with respect to a light control film.
- the present inventor conducted extensive research to solve the above-mentioned problems, and arranged the transparent film so that the optical axes (slow axis directions) are orthogonal on both sides of the liquid crystal layer.
- the idea of eliminating the influence and reducing the transmittance at the time of shading was led to the completion of the present invention.
- the slow axis is the direction in which the refractive index of a material having refractive index anisotropy is maximized.
- the present invention provides the following.
- a liquid crystal layer is sandwiched between first and second laminates obtained by providing at least an alignment layer on a substrate made of a transparent film material, Controlling the light distribution of the liquid crystal according to the liquid crystal layer by driving the transparent electrode provided in the first and / or the second laminate to control the transmitted light;
- the light control film in which the optical axis of the base material of the said 1st and 2nd laminated body orthogonally crosses.
- the phase difference of transmitted light imparted by the substrate of the first or second laminate can be canceled by the phase difference of the substrate of the second or first laminate, This effectively avoids an increase in transmittance due to optical anisotropy of the base material and can reduce the transmittance during light shielding, thereby blocking the transmitted light more reliably than in the past. it can.
- a light control film comprising an optical functional layer of a linearly polarizing plate on a side surface opposite to the liquid crystal layer of the first and second laminates.
- the transmitted light can be more reliably shielded by a more specific configuration than in the past.
- the transparent film material is A light control film that is either a polycarbonate film or a COP film.
- the transmitted light can be more reliably shielded by a more specific configuration of the substrate as compared with the conventional case.
- the transmitted light can be shielded more reliably than in the past.
- FIG. 1 is a cross-sectional view showing a light control film according to the first embodiment of the present invention.
- This light control film 1 is used by being attached to an area for light control such as a window glass of a building, a showcase, an indoor transparent partition, etc. with an adhesive layer or the like, and the amount of transmitted light can be reduced by changing the applied voltage. Control.
- This light control film 1 is a film material that controls transmitted light using liquid crystal, and is configured by sandwiching a liquid crystal cell 4 for light control film between linear polarizing plates 2 and 3.
- the linear polarizing plates 2 and 3 are formed by impregnating polyvinyl alcohol (PVA) with iodine or the like, and then stretched to form an optical functional layer that performs an optical function as a linear polarizing plate.
- PVA polyvinyl alcohol
- TAC triacetyl cellulose
- the optical functional layer is sandwiched between base materials made of a transparent film material such as the above.
- the linearly polarizing plates 2 and 3 are arranged in the liquid crystal cell 4 by an adhesive layer made of an ultraviolet curable resin or the like in a crossed Nicol arrangement.
- the linear polarizing plates 2 and 3 are provided with retardation films 2A and 3A for optical compensation on the liquid crystal cell 4 side, respectively, but the retardation films 2A and 3A may be omitted as necessary.
- the liquid crystal cell 4 controls the polarization plane of transmitted light by an applied voltage to a transparent electrode described later.
- the light control film 1 is comprised so that transmitted light can be controlled and various light control can be aimed at.
- the liquid crystal cell 4 is configured by sandwiching a liquid crystal layer 8 between an upper laminate 5U and a lower laminate 5D which are first and second laminates in a film shape.
- the lower laminate 5D is formed by producing the transparent electrode 11, the spacer 12, and the alignment layer 13 on the base 6 made of a transparent film material.
- the upper laminate 5U is formed by laminating a transparent electrode 16 and an alignment layer 17 on a base material 15 made of a transparent film material.
- the liquid crystal cell 4 controls the orientation of the liquid crystal material provided in the liquid crystal layer 8 by the TN (Twisted Nematic) method by driving the transparent electrodes 11 and 16 provided in the upper laminate 5U and the lower laminate 5D. This controls the plane of polarization of the transmitted light.
- TN Transmission Nematic
- a driving system such as a VA (Virtual Alignment) system or an IPS (In-Place-Switching) system may be applied.
- VA Virtual Alignment
- IPS In-Place-Switching
- a film material with small optical anisotropy Although various transparent film materials applicable to this kind of film material can be applied to the base materials 6 and 15, it is desirable to apply a film material with small optical anisotropy.
- a polycarbonate film is applied to the base materials 6 and 15, a COP (cycloolefin polymer) film or the like may be applied.
- the transparent electrodes 11 and 16 various electrode materials applied to this type of film material can be applied.
- the transparent electrodes 11 and 16 are formed of a transparent electrode material made of ITO (Indium Tin Oxide).
- the spacer 12 is provided to define the thickness of the liquid crystal layer 8 and various resin materials can be widely applied.
- the spacer 12 is made of a photoresist, and a substrate formed by producing the transparent electrode 11. It is produced by applying a photoresist on 6 and exposing and developing.
- the spacer 12 may be provided in the upper laminate 5U, or may be provided in both the upper laminate 5U and the lower laminate 5D.
- the alignment layers 13 and 17 are produced by rubbing a polyimide resin layer.
- the alignment layers 13 and 17 can be applied with various configurations capable of expressing the alignment regulating force with respect to the liquid crystal material related to the liquid crystal layer 8, and may be formed by a so-called photo-alignment layer. You may form and form the fine line-shaped uneven
- the spacer 12 may be provided on the alignment layer 13.
- the alignment is not changed by ultraviolet irradiation after the alignment, for example, a light dimerization type.
- a light dimerization type material “M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov: Jpn. J. Appl. Phys., 31, 2155 (1992)”, “M. Schadt. Seiberle and A. Schuster: Nature, 381, 212 (1996).
- liquid crystal materials applicable to this kind of light control film can be widely applied to the liquid crystal layer 8.
- a sealing material 19 is disposed so as to surround the liquid crystal layer 8, and the upper stacked body 5 ⁇ / b> U and the lower stacked body 5 ⁇ / b> D are integrally held by the sealing material 19, thereby preventing leakage of the liquid crystal material. .
- FIG. 2 is a diagram for explaining the arrangement of the base materials 6 and 15 in the light control film 1.
- the transparent material by the same material and thickness is applied to the base materials 6 and 15, and the base materials 6 and 15 are arrange
- the range perpendicular to the optical axis L1 includes practically sufficient transmittance at the time of light shielding although the angle formed by the two optical axes L1 including the measurement error and the manufacturing error is within 90 ° ⁇ 5 °. From the viewpoint of suppressing the angle, it is preferably within 90 ° ⁇ 2 °, and more preferably within 90 ° ⁇ 1 °.
- the thickness of the base material varies, and when the same film material is applied to the base materials 6 and 15, the thickness of the base material 6 is ⁇ 10 ⁇ m, which is the thickness of the base material 15; From the viewpoint of sufficiently suppressing the thickness of the base material 6, the thickness of the base material 6 is preferably ⁇ 10 ⁇ m, and the thickness of the base material 6 is more preferably ⁇ 5 ⁇ m. preferable.
- the thickness of the base material 6 is preferably ⁇ 10 ⁇ m, and the thickness of the base material 6 is more preferably ⁇ 5 ⁇ m. preferable.
- the transmitted light is controlled.
- the base materials 6 and 15 of the cell 4 have optical anisotropy
- the incident light of the liquid crystal layer 8 enters the liquid crystal layer 8 by elliptical polarization due to the optical anisotropy of the base materials 6 and 15. .
- transmitted light including the transmission axis direction component of the output side linearly polarizing plate is transmitted from the liquid crystal layer 8.
- a transparent film material with sufficiently small optical anisotropy is applied to the base materials 6 and 15.
- a polycarbonate film or the like is applied to the base materials 6 and 15, and this polycarbonate film has an extremely small in-plane retardation of about 10 nm.
- the incident-side base material gives the transmitted light.
- the phase difference thus made can be canceled out by the substrate on the emission side, whereby the transmittance during light shielding can be significantly reduced.
- the transmittance at the time of light shielding is about 2%, whereas the optical axis of this substrate is orthogonal.
- the transmittance at the time of light shielding can be reduced to about 0.2%, whereby the transmittance can be reduced to 1/10 as compared with the case of the optical axis parallel arrangement.
- the light control film 1 has the transmission axes L2 parallel to the linear polarizing plates 3 and 2 laminated on the substrates 6 and 15 with respect to the optical axes L1 of the substrates 6 and 15, respectively.
- the linearly polarizing plates 3 and 2 are arranged in a crossed Nicol arrangement so as to correspond to the alignment direction of the liquid crystal material by the alignment layers 13 and 17. What is necessary is just to be sufficient and can arrange
- Example 1 A polycarbonate film material having a thickness of 100 ⁇ m formed by forming hard coat layers on both sides was applied to the base materials 6 and 15, and a light control film was produced according to the configuration of the first embodiment described above.
- the retardation films 2A and 3A are omitted.
- the arrangement of the base materials 6 and 15 and the linear polarizing plates 2 and 3 is an arrangement according to the inclination described above with reference to FIG.
- the transmittance was 0.2% when there was no electric field, and it was confirmed that the transmitted light could be sufficiently shielded when shielded.
- Example 2 In Example 2, as shown in FIG. 3, the transmission axes L ⁇ b> 2 of the linearly polarizing plates 2 and 3 are arranged so as to form an angle of 45 degrees with respect to the optical axis L ⁇ b> 1 of the base materials 15 and 6. As a result, in Example 2, the alignment layers 13 and 17 are set to the rubbing direction at an angle of 45 degrees with respect to the optical axis L1 of the base materials 6 and 15.
- the second embodiment has the same configuration as that of the first embodiment except that the configuration regarding the arrangement of the linearly polarizing plates 2 and 3 is different. Also in Example 2, the transmittance was 0.2% when there was no electric field, and it was confirmed that the transmitted light could be sufficiently shielded when shielded.
- Comparative Example 1 As shown in FIG. 4, Comparative Example 1 was configured in the same manner as Example 1 except that the optical axes L1 of the base materials 5 and 16 were arranged in parallel. In Comparative Example 1, it was found that the transmittance was 2.0% when no electric field was applied, and the transmittance was high.
- Comparative Example 2 As shown in FIG. 5, Comparative Example 2 was configured in the same manner as Example 2 except that the optical axes L1 of the base materials 5 and 16 were arranged in parallel. In Comparative Example 2, it was found that the transmittance was 2.0% when no electric field was applied, and the transmittance was high.
- FIG. 6 is a flowchart showing the manufacturing process of the light control film.
- transparent electrodes 11 and 16 are respectively formed on the substrates 6 and 15 by applying a photolithography technique in the electrode manufacturing process SP2.
- a photoresist film is prepared on the substrate 6, and then exposed and developed, whereby the spacer 12 is prepared.
- the manufacturing step SP4 of the alignment layer the polyimide resin layer coating solution is formed on the base material 6 formed of the spacer 12 and on the base material 15 formed of the transparent electrode 16. After coating, drying and heat treatment are performed, thereby producing a polyimide film.
- the polyimide film is rubbed to produce the alignment layers 13 and 17.
- a sealant is applied in a frame shape using a dispenser to the substrate 6 formed with the alignment layer 13, and then a predetermined position surrounded by the frame shape.
- the liquid crystal material according to the liquid crystal layer 8 is dropped using a dispenser.
- the upper laminated body 5U and the lower laminated body 5D are sealed by the sealing material 19 so that the liquid crystal layer 8 is sandwiched by pressing and heating.
- the light control film 1 is produced by bonding and integrating.
- the present invention is not limited to this and can be widely applied to the case where the liquid crystal material is driven by the VA method and the IPS method.
- the spacer is manufactured using the photoresist.
- the present invention is not limited to this, and a so-called bead spacer may be applied.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
Abstract
The purpose of the present invention is, in regards to a light control film, to more reliably shield transmitted light than prior art. A liquid crystal layer (8) is sandwiched between first and second laminate bodies (5D, 5U) wherein at least alignment layers (13, 17) are provided on base materials (6, 15) made of a transparent film material. The light distribution of the liquid crystal in the liquid crystal layer (8)is controlled by driving transparent electrodes (11, 16) provided at the first and second laminate bodies (5D, 5U), thereby controlling the transmission of light. The optical axes of the base materials (6, 15) of the first and second laminate bodies (5D, 5U) are orthogonal to each other.
Description
本発明は、例えば窓に貼り付けて外来光の透過を制御する電子ブラインド等に利用可能な調光フィルムに関する。
The present invention relates to a light control film that can be used for, for example, an electronic blind that is attached to a window to control the transmission of extraneous light.
従来、例えば窓に貼り付けて外来光の透過を制御する調光フィルムに関する工夫が種々に提案されている(特許文献1、2)。このような調光フィルムの1つに、液晶を利用したものがある。この液晶を利用した調光フィルムは、透明電極を作製した透明フィルム材により液晶材料を挟持して液晶セルが作製され、この液晶セルを直線偏光板により挟持して作成される。これによりこの調光フィルムでは、液晶に印加する電界の可変により液晶の配向を可変して外来光を遮光したり透過したりし、さらには透過光量を可変したりし、これらにより外来光の透過を制御する。
Conventionally, various devices related to a light control film that controls the transmission of extraneous light by being attached to a window have been proposed (Patent Documents 1 and 2). One such light control film uses liquid crystal. The light control film using the liquid crystal is produced by sandwiching a liquid crystal material with a transparent film material on which a transparent electrode is produced, and producing the liquid crystal cell with a linear polarizing plate. As a result, in this light control film, the orientation of the liquid crystal is changed by changing the electric field applied to the liquid crystal, thereby blocking or transmitting the extraneous light, and further changing the amount of transmitted light. To control.
ところでこの種の調光フィルムでは、遮光時における透過率を低減して、従来に比して一段と確実に透過光を遮光できるようにすることが望まれる。
By the way, in this kind of light control film, it is desired to reduce the transmittance at the time of light shielding so that the transmitted light can be shielded more reliably than before.
本発明はこのような状況に鑑みてなされたものであり、調光フィルムに関して、従来に比して一段と確実に透過光を遮光できるようにすることを目的とする。
The present invention has been made in view of such a situation, and an object of the present invention is to make it possible to more reliably block transmitted light as compared with the related art with respect to a light control film.
本発明者は、上記課題を解決するために鋭意研究を重ね、液晶層の両側で光軸(遅相軸方向)が直交するように透明フィルムを配置することにより、この透明フィルムによる位相差の影響を排除し、遮光時おける透過率を低減する、との着想に至り、本発明を完成するに至った。なおここで遅相軸は、屈折率異方性を有する材料における屈折率が最大となる方向である。
The present inventor conducted extensive research to solve the above-mentioned problems, and arranged the transparent film so that the optical axes (slow axis directions) are orthogonal on both sides of the liquid crystal layer. The idea of eliminating the influence and reducing the transmittance at the time of shading was led to the completion of the present invention. Here, the slow axis is the direction in which the refractive index of a material having refractive index anisotropy is maximized.
具体的には、本発明では、以下のようなものを提供する。
Specifically, the present invention provides the following.
(1) 透明フィルム材による基材に少なくとも配向層を設けてなる第1及び第2の積層体により液晶層を挟持し、
前記第1及び又は第2の積層体に設けられた透明電極の駆動により前記液晶層に係る液晶の配光を制御して透過光を制御し、
前記第1及び第2の積層体の基材の光軸が直交する調光フィルム。 (1) A liquid crystal layer is sandwiched between first and second laminates obtained by providing at least an alignment layer on a substrate made of a transparent film material,
Controlling the light distribution of the liquid crystal according to the liquid crystal layer by driving the transparent electrode provided in the first and / or the second laminate to control the transmitted light;
The light control film in which the optical axis of the base material of the said 1st and 2nd laminated body orthogonally crosses.
前記第1及び又は第2の積層体に設けられた透明電極の駆動により前記液晶層に係る液晶の配光を制御して透過光を制御し、
前記第1及び第2の積層体の基材の光軸が直交する調光フィルム。 (1) A liquid crystal layer is sandwiched between first and second laminates obtained by providing at least an alignment layer on a substrate made of a transparent film material,
Controlling the light distribution of the liquid crystal according to the liquid crystal layer by driving the transparent electrode provided in the first and / or the second laminate to control the transmitted light;
The light control film in which the optical axis of the base material of the said 1st and 2nd laminated body orthogonally crosses.
(1)によれば、第1又は第2の積層体の基材で付与された透過光の位相差を、第2又は第1の積層体の基材の位相差により打ち消すことができ、これにより基材の光学異方性による遮光時における透過率の増大を有効に回避して、遮光時における透過率を低減することができ、従来に比して一段と確実に透過光を遮光することができる。
According to (1), the phase difference of transmitted light imparted by the substrate of the first or second laminate can be canceled by the phase difference of the substrate of the second or first laminate, This effectively avoids an increase in transmittance due to optical anisotropy of the base material and can reduce the transmittance during light shielding, thereby blocking the transmitted light more reliably than in the past. it can.
(2) (1)において、
前記第1及び第2の積層体の前記液晶層とは逆側面に、直線偏光板の光学的機能層を備える調光フィルム。 (2) In (1),
A light control film comprising an optical functional layer of a linearly polarizing plate on a side surface opposite to the liquid crystal layer of the first and second laminates.
前記第1及び第2の積層体の前記液晶層とは逆側面に、直線偏光板の光学的機能層を備える調光フィルム。 (2) In (1),
A light control film comprising an optical functional layer of a linearly polarizing plate on a side surface opposite to the liquid crystal layer of the first and second laminates.
(2)によれば、より具体的構成により、従来に比して一段と確実に透過光を遮光することができる。
According to (2), the transmitted light can be more reliably shielded by a more specific configuration than in the past.
(3) (1)又は(2)において、
前記透明フィルム材が、
ポリカーボネートフィルム、COPフィルムの何れかである調光フィルム。 (3) In (1) or (2),
The transparent film material is
A light control film that is either a polycarbonate film or a COP film.
前記透明フィルム材が、
ポリカーボネートフィルム、COPフィルムの何れかである調光フィルム。 (3) In (1) or (2),
The transparent film material is
A light control film that is either a polycarbonate film or a COP film.
(3)によれば、より具体的な基材の構成により、従来に比して一段と確実に透過光を遮光することができる。
According to (3), the transmitted light can be more reliably shielded by a more specific configuration of the substrate as compared with the conventional case.
本発明によれば、調光フィルムに関して、従来に比して一段と確実に透過光を遮光することができる。
According to the present invention, with respect to the light control film, the transmitted light can be shielded more reliably than in the past.
〔第1実施形態〕
〔調光フィルム〕
図1は、本発明の第1実施形態に係る調光フィルムを示す断面図である。この調光フィルム1は、建築物の窓ガラス、ショーケース、屋内の透明パーテーション等の調光を図る部位に、粘着剤層等により貼り付けて使用され、印加電圧の可変により透過光の光量を制御する。 [First Embodiment]
[Light control film]
FIG. 1 is a cross-sectional view showing a light control film according to the first embodiment of the present invention. Thislight control film 1 is used by being attached to an area for light control such as a window glass of a building, a showcase, an indoor transparent partition, etc. with an adhesive layer or the like, and the amount of transmitted light can be reduced by changing the applied voltage. Control.
〔調光フィルム〕
図1は、本発明の第1実施形態に係る調光フィルムを示す断面図である。この調光フィルム1は、建築物の窓ガラス、ショーケース、屋内の透明パーテーション等の調光を図る部位に、粘着剤層等により貼り付けて使用され、印加電圧の可変により透過光の光量を制御する。 [First Embodiment]
[Light control film]
FIG. 1 is a cross-sectional view showing a light control film according to the first embodiment of the present invention. This
この調光フィルム1は、液晶を利用して透過光を制御するフィルム材あり、直線偏光板2、3により調光フィルム用の液晶セル4を挟持して構成される。ここで直線偏光板2、3は、ポリビニルアルコール(PVA)にヨウ素等を含浸させた後、延伸して直線偏光板としての光学的機能を果たす光学機能層が形成され、TAC(トリアセチルセルロース)等の透明フィルム材による基材により光学機能層を挟持して作製される。直線偏光板2、3は、クロスニコル配置により、紫外線硬化性樹脂等による接着剤層により液晶セル4に配置される。なお直線偏光板2、3には、それぞれ液晶セル4側に光学補償に供する位相差フィルム2A、3Aが設けられるものの、位相差フィルム2A、3Aは、必要に応じて省略してもよい。
This light control film 1 is a film material that controls transmitted light using liquid crystal, and is configured by sandwiching a liquid crystal cell 4 for light control film between linear polarizing plates 2 and 3. Here, the linear polarizing plates 2 and 3 are formed by impregnating polyvinyl alcohol (PVA) with iodine or the like, and then stretched to form an optical functional layer that performs an optical function as a linear polarizing plate. TAC (triacetyl cellulose) The optical functional layer is sandwiched between base materials made of a transparent film material such as the above. The linearly polarizing plates 2 and 3 are arranged in the liquid crystal cell 4 by an adhesive layer made of an ultraviolet curable resin or the like in a crossed Nicol arrangement. The linear polarizing plates 2 and 3 are provided with retardation films 2A and 3A for optical compensation on the liquid crystal cell 4 side, respectively, but the retardation films 2A and 3A may be omitted as necessary.
液晶セル4は、後述する透明電極への印加電圧により透過光の偏光面を制御する。これにより調光フィルム1は、透過光を制御して種々に調光を図ることができるように構成される。
The liquid crystal cell 4 controls the polarization plane of transmitted light by an applied voltage to a transparent electrode described later. Thereby, the light control film 1 is comprised so that transmitted light can be controlled and various light control can be aimed at.
〔液晶セル〕
液晶セル4は、フィルム形状による第1及び第2の積層体である上側積層体5U及び下側積層体5Dにより液晶層8を挟持して構成される。下側積層体5Dは、透明フィルム材による基材6に、透明電極11、スペーサ12、配向層13を作製して形成される。上側積層体5Uは、透明フィルム材による基材15に、透明電極16、配向層17を積層して形成される。液晶セル4は、この上側積層体5U及び下側積層体5Dに設けられた透明電極11、16の駆動により、TN(Twisted Nematic)方式により液晶層8に設けられた液晶材料の配向を制御し、これにより透過光の偏光面を制御する。 [Liquid crystal cell]
The liquid crystal cell 4 is configured by sandwiching aliquid crystal layer 8 between an upper laminate 5U and a lower laminate 5D which are first and second laminates in a film shape. The lower laminate 5D is formed by producing the transparent electrode 11, the spacer 12, and the alignment layer 13 on the base 6 made of a transparent film material. The upper laminate 5U is formed by laminating a transparent electrode 16 and an alignment layer 17 on a base material 15 made of a transparent film material. The liquid crystal cell 4 controls the orientation of the liquid crystal material provided in the liquid crystal layer 8 by the TN (Twisted Nematic) method by driving the transparent electrodes 11 and 16 provided in the upper laminate 5U and the lower laminate 5D. This controls the plane of polarization of the transmitted light.
液晶セル4は、フィルム形状による第1及び第2の積層体である上側積層体5U及び下側積層体5Dにより液晶層8を挟持して構成される。下側積層体5Dは、透明フィルム材による基材6に、透明電極11、スペーサ12、配向層13を作製して形成される。上側積層体5Uは、透明フィルム材による基材15に、透明電極16、配向層17を積層して形成される。液晶セル4は、この上側積層体5U及び下側積層体5Dに設けられた透明電極11、16の駆動により、TN(Twisted Nematic)方式により液晶層8に設けられた液晶材料の配向を制御し、これにより透過光の偏光面を制御する。 [Liquid crystal cell]
The liquid crystal cell 4 is configured by sandwiching a
なおTN方式に代えて、VA(Virtical Alignment)方式、IPS(In-Place-Switching)方式等の駆動方式を適用するようにしてよい。なおIPS方式により駆動する場合、上側積層体5U又は下側積層体5Dの透明電極11又は16の何れか一方が省略され、他方の透明電極のパターンニングにより液晶材料に駆動用の電界を印加する。
In place of the TN system, a driving system such as a VA (Virtual Alignment) system or an IPS (In-Place-Switching) system may be applied. When driving by the IPS method, either the transparent electrode 11 or 16 of the upper laminate 5U or the lower laminate 5D is omitted, and a driving electric field is applied to the liquid crystal material by patterning the other transparent electrode. .
基材6、15は、この種のフィルム材に適用可能な種々の透明フィルム材を適用することができるものの、光学異方性の小さなフィルム材を適用することが望ましい。この実施形態において、基材6、15は、ポリカーボネートフィルムが適用されるものの、COP(シクロオレフィンポリマー)フィルム等を適用してもよい。
Although various transparent film materials applicable to this kind of film material can be applied to the base materials 6 and 15, it is desirable to apply a film material with small optical anisotropy. In this embodiment, although a polycarbonate film is applied to the base materials 6 and 15, a COP (cycloolefin polymer) film or the like may be applied.
透明電極11、16は、この種のフィルム材に適用される各種の電極材料を適用することができ、この実施形態ではITO(Indium Tin Oxide)による透明電極材により形成される。スペーサ12は、液晶層8の厚みを規定するために設けられ、各種の樹脂材料を広く適用することができるものの、この実施形態ではフォトレジストにより作製され、透明電極11を作製してなる基材6の上に、フォトレジストを塗工して露光、現像することにより作製される。なおスペーサ12は、上側積層体5Uに設けるようにしてもよく、上側積層体5U及び下側積層体5Dの双方に設けるようにしてもよい。
As the transparent electrodes 11 and 16, various electrode materials applied to this type of film material can be applied. In this embodiment, the transparent electrodes 11 and 16 are formed of a transparent electrode material made of ITO (Indium Tin Oxide). The spacer 12 is provided to define the thickness of the liquid crystal layer 8 and various resin materials can be widely applied. However, in this embodiment, the spacer 12 is made of a photoresist, and a substrate formed by producing the transparent electrode 11. It is produced by applying a photoresist on 6 and exposing and developing. The spacer 12 may be provided in the upper laminate 5U, or may be provided in both the upper laminate 5U and the lower laminate 5D.
配向層13、17は、ポリイミド樹脂層をラビング処理して作製される。なお配向層13、17は、液晶層8に係る液晶材料に対して配向規制力を発現可能な各種の構成を適用することができ、いわゆる光配向層により作製してもよく、ラビング処理、研磨処理による微細なライン状凹凸形状を賦型処理により作製して形成してもよい。なおスペーサ12は、配向層13の上に設けるようにしてもよい。
The alignment layers 13 and 17 are produced by rubbing a polyimide resin layer. The alignment layers 13 and 17 can be applied with various configurations capable of expressing the alignment regulating force with respect to the liquid crystal material related to the liquid crystal layer 8, and may be formed by a so-called photo-alignment layer. You may form and form the fine line-shaped uneven | corrugated shape by a process by a shaping process. The spacer 12 may be provided on the alignment layer 13.
なお光配向材料は、光配向の手法を適用可能な各種の材料を適用することができるものの、この実施形態では、一旦配向した後には、紫外線の照射によって配向が変化しない、例えば光2量化型の材料を使用する。この光2量化型の材料については、「M.Schadt, K.Schmitt, V. Kozinkov and V. Chigrinov : Jpn. J. Appl.Phys., 31, 2155 (1992)」、「M. Schadt, H. Seiberle and A. Schuster : Nature, 381, 212(1996)」等に開示されている。
In addition, although various materials to which the photo-alignment technique can be applied can be applied as the photo-alignment material, in this embodiment, the alignment is not changed by ultraviolet irradiation after the alignment, for example, a light dimerization type. Use materials. Regarding this light dimerization type material, “M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov: Jpn. J. Appl. Phys., 31, 2155 (1992)”, “M. Schadt. Seiberle and A. Schuster: Nature, 381, 212 (1996).
液晶層8は、この種の調光フィルムに適用可能な各種の液晶材料を広く適用することができる。なお液晶セル4は、液晶層8を囲むように、シール材19が配置され、このシール材19により上側積層体5U、下側積層体5Dが一体に保持され、液晶材料の漏出が防止される。
Various liquid crystal materials applicable to this kind of light control film can be widely applied to the liquid crystal layer 8. In the liquid crystal cell 4, a sealing material 19 is disposed so as to surround the liquid crystal layer 8, and the upper stacked body 5 </ b> U and the lower stacked body 5 </ b> D are integrally held by the sealing material 19, thereby preventing leakage of the liquid crystal material. .
〔基材の配置〕
図2は、調光フィルム1における基材6、15の配置の説明に供する図である。調光フィルム1は、同一の材料、厚みによる透明フィルム材が基材6、15に適用されて、光軸L1が直交するように基材6、15が配置される。ここでこの光軸L1の直交の範囲は、計測誤差、製造誤差等をも含めて2つの光軸L1の成す角度が90度±5度以内ではあるものの、遮光時における透過率を実用上充分に抑圧する観点からは、90度±2度以内であることが好ましく、さらには90度±1度以内であることがより好ましい。また基材の厚みは、バラツキがあることにより、同一のフィルム材を基材6、15に適用した場合、基材6の厚み±10μmが基材15の厚みであるものの、遮光時における透過率を実用上充分に抑圧する観点からは、基材6の厚み±10μmが基材15の厚みであることが好ましく、さらには基材6の厚み±5μmが基材15の厚みであることがより好ましい。これによりこの調光フィルム1では、基材6、15で面内位相差が等しくなるようにして、基材6で透過光に付与される位相差を、基材15で付与される位相差により打ち消すようにし、遮光時における透過率(いわゆる黒透過率である)を低減する。これにより調光フィルム1は、従来に比して一段と確実に透過光を遮光する。 [Base material arrangement]
FIG. 2 is a diagram for explaining the arrangement of the base materials 6 and 15 in the light control film 1. As for the light control film 1, the transparent material by the same material and thickness is applied to the base materials 6 and 15, and the base materials 6 and 15 are arrange | positioned so that the optical axis L1 may orthogonally cross. Here, the range perpendicular to the optical axis L1 includes practically sufficient transmittance at the time of light shielding although the angle formed by the two optical axes L1 including the measurement error and the manufacturing error is within 90 ° ± 5 °. From the viewpoint of suppressing the angle, it is preferably within 90 ° ± 2 °, and more preferably within 90 ° ± 1 °. Further, the thickness of the base material varies, and when the same film material is applied to the base materials 6 and 15, the thickness of the base material 6 is ± 10 μm, which is the thickness of the base material 15; From the viewpoint of sufficiently suppressing the thickness of the base material 6, the thickness of the base material 6 is preferably ± 10 μm, and the thickness of the base material 6 is more preferably ± 5 μm. preferable. Thereby, in this light control film 1, in-plane phase difference is equalized by the base materials 6 and 15, and the phase difference given to the transmitted light by the base material 6 is changed by the phase difference given by the base material 15. By canceling, the transmittance at the time of shading (so-called black transmittance) is reduced. Thereby, the light control film 1 shields transmitted light more reliably than before.
図2は、調光フィルム1における基材6、15の配置の説明に供する図である。調光フィルム1は、同一の材料、厚みによる透明フィルム材が基材6、15に適用されて、光軸L1が直交するように基材6、15が配置される。ここでこの光軸L1の直交の範囲は、計測誤差、製造誤差等をも含めて2つの光軸L1の成す角度が90度±5度以内ではあるものの、遮光時における透過率を実用上充分に抑圧する観点からは、90度±2度以内であることが好ましく、さらには90度±1度以内であることがより好ましい。また基材の厚みは、バラツキがあることにより、同一のフィルム材を基材6、15に適用した場合、基材6の厚み±10μmが基材15の厚みであるものの、遮光時における透過率を実用上充分に抑圧する観点からは、基材6の厚み±10μmが基材15の厚みであることが好ましく、さらには基材6の厚み±5μmが基材15の厚みであることがより好ましい。これによりこの調光フィルム1では、基材6、15で面内位相差が等しくなるようにして、基材6で透過光に付与される位相差を、基材15で付与される位相差により打ち消すようにし、遮光時における透過率(いわゆる黒透過率である)を低減する。これにより調光フィルム1は、従来に比して一段と確実に透過光を遮光する。 [Base material arrangement]
FIG. 2 is a diagram for explaining the arrangement of the
すなわちこの実施形態のように、クロスニコル配置による直線偏光板2、3を液晶セル4の両側に配置し、液晶セル4により透過光の偏光面を制御して透過光を制御する構成において、液晶セル4の基材6、15が光学異方性を備えている場合、液晶層8の入射光は、基材6、15の光学異方性により楕円偏光により液晶層8に入射することになる。その結果、何ら透明電極11、16に電圧を印加していない状態で(液晶層8への無電界時)、出射側直線偏光板の透過軸方向成分を含んでなる透過光が液晶層8から出射されることになり、これにより充分に透過率を低減できなくなる。これによりこの種の調光フィルムでは、基材6、15に充分に光学異方性の小さな透明フィルム材が適用される。具体的には、基材6、15にはポリカーボネートフィルム等が適用され、このポリカーボネートフィルムは面内位相差が10nm程度と極めて小さい。
That is, in the configuration in which the linearly polarizing plates 2 and 3 having a crossed Nicol arrangement are arranged on both sides of the liquid crystal cell 4 and the polarization plane of the transmitted light is controlled by the liquid crystal cell 4 as in this embodiment, the transmitted light is controlled. When the base materials 6 and 15 of the cell 4 have optical anisotropy, the incident light of the liquid crystal layer 8 enters the liquid crystal layer 8 by elliptical polarization due to the optical anisotropy of the base materials 6 and 15. . As a result, in a state where no voltage is applied to the transparent electrodes 11 and 16 (when no electric field is applied to the liquid crystal layer 8), transmitted light including the transmission axis direction component of the output side linearly polarizing plate is transmitted from the liquid crystal layer 8. As a result, the transmittance cannot be sufficiently reduced. Thereby, in this kind of light control film, a transparent film material with sufficiently small optical anisotropy is applied to the base materials 6 and 15. Specifically, a polycarbonate film or the like is applied to the base materials 6 and 15, and this polycarbonate film has an extremely small in-plane retardation of about 10 nm.
しかしながら種々に実験した結果によれば、このように光学異方性が小さな透明フィルム材であっても、この小さな面内位相差により遮光時の透過率が増大し、この透過率の増大にあっては、無視し得ないことが判った。
However, according to the results of various experiments, even with a transparent film material having such a small optical anisotropy, the transmittance at the time of light shielding increases due to this small in-plane retardation, and this increase in transmittance is observed. It was found that it cannot be ignored.
しかしながらこの実施形態のように、同一の材料、膜厚による透明フィルム材による基材6、15を、光軸L1が直交するように配置する場合には、入射側の基材で透過光に付与された位相差を、出射側の基材で打ち消すことができ、これにより遮光時における透過率を格段に低減することができる。具体的に、面内位相差が10nmの基材を光軸が平行となるように配置した場合、遮光時の透過率は2%程度であるのに対し、この基材を光軸が直交するように配置した場合、遮光時の透過率を0.2%程度にすることができ、これにより光軸平行配置の場合に比して透過率を1/10にすることができる。
However, as in this embodiment, when the base materials 6 and 15 made of a transparent film material having the same material and film thickness are arranged so that the optical axes L1 are orthogonal to each other, the incident-side base material gives the transmitted light. The phase difference thus made can be canceled out by the substrate on the emission side, whereby the transmittance during light shielding can be significantly reduced. Specifically, when a substrate having an in-plane retardation of 10 nm is arranged so that the optical axis is parallel, the transmittance at the time of light shielding is about 2%, whereas the optical axis of this substrate is orthogonal. When arranged in such a manner, the transmittance at the time of light shielding can be reduced to about 0.2%, whereby the transmittance can be reduced to 1/10 as compared with the case of the optical axis parallel arrangement.
なおこの実施形態において、調光フィルム1は、この基材6、15の光軸L1に対して、基材6、15に積層される直線偏光板3、2は、それぞれ透過軸L2方向が平行となるように設定されているものの、直線偏光板3、2にあっては、要はクロスニコル配置により配置して、配向層13、17による液晶材料の配向方向に対応するように配置されていれば良く、基材6、15の光軸L1に対して種々の向きに配置することができる。
In this embodiment, the light control film 1 has the transmission axes L2 parallel to the linear polarizing plates 3 and 2 laminated on the substrates 6 and 15 with respect to the optical axes L1 of the substrates 6 and 15, respectively. However, the linearly polarizing plates 3 and 2 are arranged in a crossed Nicol arrangement so as to correspond to the alignment direction of the liquid crystal material by the alignment layers 13 and 17. What is necessary is just to be sufficient and can arrange | position in various directions with respect to the optical axis L1 of the base materials 6 and 15. FIG.
〔実験結果〕
〔実施例1〕
両面にハードコート層が作製されてなる厚み100μmによるポリカーボネートフィルム材を基材6、15に適用し、上述の第1実施形態の構成により調光フィルムを作製した。なお位相差フィルム2A、3Aは省略した。基材6、15、直線偏光板2、3の配置は、図2について上述した傾きによる配置である。この実施例1では、無電界時、透過率が0.2%であり、遮光時、充分に透過光を遮光できることが確認された。 〔Experimental result〕
[Example 1]
A polycarbonate film material having a thickness of 100 μm formed by forming hard coat layers on both sides was applied to the base materials 6 and 15, and a light control film was produced according to the configuration of the first embodiment described above. The retardation films 2A and 3A are omitted. The arrangement of the base materials 6 and 15 and the linear polarizing plates 2 and 3 is an arrangement according to the inclination described above with reference to FIG. In Example 1, the transmittance was 0.2% when there was no electric field, and it was confirmed that the transmitted light could be sufficiently shielded when shielded.
〔実施例1〕
両面にハードコート層が作製されてなる厚み100μmによるポリカーボネートフィルム材を基材6、15に適用し、上述の第1実施形態の構成により調光フィルムを作製した。なお位相差フィルム2A、3Aは省略した。基材6、15、直線偏光板2、3の配置は、図2について上述した傾きによる配置である。この実施例1では、無電界時、透過率が0.2%であり、遮光時、充分に透過光を遮光できることが確認された。 〔Experimental result〕
[Example 1]
A polycarbonate film material having a thickness of 100 μm formed by forming hard coat layers on both sides was applied to the
〔実施例2〕
実施例2は、図3に示すように、直線偏光板2、3の透過軸L2が基材15、6の光軸L1に対して45度の角度を成すように配置した。なおこれによりこの実施例2において、配向層13、17は、基材6、15の光軸L1に対して斜め45度の方向がラビング方向に設定される。この実施例2では、この直線偏光板2、3の配置に関する構成が異なる点を除いて、実施例1と同一に構成される。この実施例2でも、無電界時、透過率が0.2%であり、遮光時、充分に透過光を遮光できることが確認された。 [Example 2]
In Example 2, as shown in FIG. 3, the transmission axes L <b> 2 of the linearly polarizing plates 2 and 3 are arranged so as to form an angle of 45 degrees with respect to the optical axis L <b> 1 of the base materials 15 and 6. As a result, in Example 2, the alignment layers 13 and 17 are set to the rubbing direction at an angle of 45 degrees with respect to the optical axis L1 of the base materials 6 and 15. The second embodiment has the same configuration as that of the first embodiment except that the configuration regarding the arrangement of the linearly polarizing plates 2 and 3 is different. Also in Example 2, the transmittance was 0.2% when there was no electric field, and it was confirmed that the transmitted light could be sufficiently shielded when shielded.
実施例2は、図3に示すように、直線偏光板2、3の透過軸L2が基材15、6の光軸L1に対して45度の角度を成すように配置した。なおこれによりこの実施例2において、配向層13、17は、基材6、15の光軸L1に対して斜め45度の方向がラビング方向に設定される。この実施例2では、この直線偏光板2、3の配置に関する構成が異なる点を除いて、実施例1と同一に構成される。この実施例2でも、無電界時、透過率が0.2%であり、遮光時、充分に透過光を遮光できることが確認された。 [Example 2]
In Example 2, as shown in FIG. 3, the transmission axes L <b> 2 of the linearly
〔比較例1〕
比較例1は、図4に示すように、基材5、16の光軸L1が平行になるように配置した点を除いて、実施例1と同一に構成した。この比較例1では、無電界時、透過率が2.0%であり、透過率が高いことが判った。 [Comparative Example 1]
As shown in FIG. 4, Comparative Example 1 was configured in the same manner as Example 1 except that the optical axes L1 of the base materials 5 and 16 were arranged in parallel. In Comparative Example 1, it was found that the transmittance was 2.0% when no electric field was applied, and the transmittance was high.
比較例1は、図4に示すように、基材5、16の光軸L1が平行になるように配置した点を除いて、実施例1と同一に構成した。この比較例1では、無電界時、透過率が2.0%であり、透過率が高いことが判った。 [Comparative Example 1]
As shown in FIG. 4, Comparative Example 1 was configured in the same manner as Example 1 except that the optical axes L1 of the base materials 5 and 16 were arranged in parallel. In Comparative Example 1, it was found that the transmittance was 2.0% when no electric field was applied, and the transmittance was high.
〔比較例2〕
比較例2は、図5に示すように、基材5、16の光軸L1が平行になるように配置した点を除いて、実施例2と同一に構成した。この比較例2では、無電界時、透過率が2.0%であり、透過率が高いことが判った。 [Comparative Example 2]
As shown in FIG. 5, Comparative Example 2 was configured in the same manner as Example 2 except that the optical axes L1 of the base materials 5 and 16 were arranged in parallel. In Comparative Example 2, it was found that the transmittance was 2.0% when no electric field was applied, and the transmittance was high.
比較例2は、図5に示すように、基材5、16の光軸L1が平行になるように配置した点を除いて、実施例2と同一に構成した。この比較例2では、無電界時、透過率が2.0%であり、透過率が高いことが判った。 [Comparative Example 2]
As shown in FIG. 5, Comparative Example 2 was configured in the same manner as Example 2 except that the optical axes L1 of the base materials 5 and 16 were arranged in parallel. In Comparative Example 2, it was found that the transmittance was 2.0% when no electric field was applied, and the transmittance was high.
〔製造工程〕
図6は、調光フィルムの製造工程を示すフローチャートである。この製造工程は、電極作製工程SP2おいて、フォトリソグラフィーの手法を適用して、基材6、15の上に透明電極11、16をそれぞれ作成する。さらに続いてスペーサ作製工程SP3において、基材6にフォトレジスト膜を作製した後、露光、現像処理し、これによりスペーサ12を作製する。続いて製造工程は、配向層作製工程SP4において、スペーサ12を作製してなる基材6の上に、また透明電極16を作製してなる基材15の上に、ポリイミド樹脂層の塗工液を塗工した後、乾燥、加熱処理し、これによりポリイミド膜を作製する。またこのポリイミド膜をラビング処理し、これにより配向層13、17を作製する。 〔Manufacturing process〕
FIG. 6 is a flowchart showing the manufacturing process of the light control film. In this manufacturing process,transparent electrodes 11 and 16 are respectively formed on the substrates 6 and 15 by applying a photolithography technique in the electrode manufacturing process SP2. Subsequently, in the spacer preparation step SP3, a photoresist film is prepared on the substrate 6, and then exposed and developed, whereby the spacer 12 is prepared. Subsequently, in the manufacturing step SP4 of the alignment layer, the polyimide resin layer coating solution is formed on the base material 6 formed of the spacer 12 and on the base material 15 formed of the transparent electrode 16. After coating, drying and heat treatment are performed, thereby producing a polyimide film. In addition, the polyimide film is rubbed to produce the alignment layers 13 and 17.
図6は、調光フィルムの製造工程を示すフローチャートである。この製造工程は、電極作製工程SP2おいて、フォトリソグラフィーの手法を適用して、基材6、15の上に透明電極11、16をそれぞれ作成する。さらに続いてスペーサ作製工程SP3において、基材6にフォトレジスト膜を作製した後、露光、現像処理し、これによりスペーサ12を作製する。続いて製造工程は、配向層作製工程SP4において、スペーサ12を作製してなる基材6の上に、また透明電極16を作製してなる基材15の上に、ポリイミド樹脂層の塗工液を塗工した後、乾燥、加熱処理し、これによりポリイミド膜を作製する。またこのポリイミド膜をラビング処理し、これにより配向層13、17を作製する。 〔Manufacturing process〕
FIG. 6 is a flowchart showing the manufacturing process of the light control film. In this manufacturing process,
また続いてこの製造工程は、封止工程SP5において、配向層13を作製してなる基材6に、ディスペンサーを使用して枠形状によりシール材を塗布した後、この枠形状により囲まれる所定位置に、ディスペンサーを使用して液晶層8に係る液晶材料を滴下する。その後、この製造工程は、基材6、15を積層した後、押圧して加熱し、これにより液晶層8を挟持するようにして、上側積層体5U及び下側積層体5Dをシール材19により貼り合せて一体化し、調光フィルム1を作製する。
Subsequently, in the manufacturing process, in the sealing process SP5, a sealant is applied in a frame shape using a dispenser to the substrate 6 formed with the alignment layer 13, and then a predetermined position surrounded by the frame shape. The liquid crystal material according to the liquid crystal layer 8 is dropped using a dispenser. Thereafter, in this manufacturing process, after the base materials 6 and 15 are laminated, the upper laminated body 5U and the lower laminated body 5D are sealed by the sealing material 19 so that the liquid crystal layer 8 is sandwiched by pressing and heating. The light control film 1 is produced by bonding and integrating.
〔他の実施形態〕
以上、本発明の実施に好適な具体的な構成を詳述したが、本発明は、本発明の趣旨を逸脱しない範囲で、上述の実施形態を種々に変更することができる。 [Other Embodiments]
As mentioned above, although the specific structure suitable for implementation of this invention was explained in full detail, this invention can be variously changed in the range which does not deviate from the meaning of this invention.
以上、本発明の実施に好適な具体的な構成を詳述したが、本発明は、本発明の趣旨を逸脱しない範囲で、上述の実施形態を種々に変更することができる。 [Other Embodiments]
As mentioned above, although the specific structure suitable for implementation of this invention was explained in full detail, this invention can be variously changed in the range which does not deviate from the meaning of this invention.
すなわち上述の実施形態では、TN方式により液晶材料を駆動する場合について述べたが、本発明はこれに限らず、VA方式、IPS方式により駆動する場合にも広く適用することができる。
That is, in the above-described embodiment, the case where the liquid crystal material is driven by the TN method has been described. However, the present invention is not limited to this and can be widely applied to the case where the liquid crystal material is driven by the VA method and the IPS method.
また上述の実施形態では、フォトレジストによりスペーサを作製する場合について述べたが、本発明はこれに限らず、いわゆるビーズスペーサを適用するようにしてもよい。
In the above-described embodiment, the case where the spacer is manufactured using the photoresist has been described. However, the present invention is not limited to this, and a so-called bead spacer may be applied.
1 調光フィルム
2、3 直線偏光板
2A、3A 位相差フィルム
4 液晶セル
5D 下側積層体
5U 上側積層体
6、15 基材
8 液晶層
11、16 透明電極
12 スペーサ
13、17 配向層
19 シール材 DESCRIPTION OFSYMBOLS 1 Light control film 2, 3 Linearly polarizing plate 2A, 3A Phase difference film 4 Liquid crystal cell 5D Lower laminated body 5U Upper laminated body 6, 15 Base material 8 Liquid crystal layer 11, 16 Transparent electrode 12 Spacer 13, 17 Orientation layer 19 Seal Material
2、3 直線偏光板
2A、3A 位相差フィルム
4 液晶セル
5D 下側積層体
5U 上側積層体
6、15 基材
8 液晶層
11、16 透明電極
12 スペーサ
13、17 配向層
19 シール材 DESCRIPTION OF
Claims (3)
- 透明フィルム材による基材に少なくとも配向層を設けてなる第1及び第2の積層体により液晶層を挟持し、
前記第1及び又は第2の積層体に設けられた透明電極の駆動により前記液晶層に係る液晶の配光を制御して透過光を制御し、
前記第1及び第2の積層体の基材の光軸が直交する
調光フィルム。 A liquid crystal layer is sandwiched between first and second laminates in which at least an alignment layer is provided on a substrate made of a transparent film material,
Controlling the light distribution of the liquid crystal according to the liquid crystal layer by driving the transparent electrode provided in the first and / or the second laminate to control the transmitted light;
The light control film with which the optical axis of the base material of the said 1st and 2nd laminated body orthogonally crosses. - 前記第1及び第2の積層体の前記液晶層とは逆側面に、直線偏光板の光学的機能層を備える
請求項1に記載の調光フィルム。 The light control film according to claim 1, further comprising an optical functional layer of a linearly polarizing plate on a side surface opposite to the liquid crystal layer of the first and second laminates. - 前記透明フィルム材が、
ポリカーボネートフィルム、COPフィルムの何れかである
請求項1又は請求項2に記載の調光フィルム。 The transparent film material is
The light control film according to claim 1, wherein the light control film is a polycarbonate film or a COP film.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-190322 | 2015-09-28 | ||
JP2015190322A JP5950014B1 (en) | 2015-09-28 | 2015-09-28 | Light control film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056756A1 true WO2017056756A1 (en) | 2017-04-06 |
Family
ID=56375177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073830 WO2017056756A1 (en) | 2015-09-28 | 2016-08-15 | Light control film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5950014B1 (en) |
TW (1) | TWI592724B (en) |
WO (1) | WO2017056756A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6128270B1 (en) * | 2016-07-11 | 2017-05-17 | 大日本印刷株式会社 | Light control film |
JP7110547B2 (en) * | 2016-12-27 | 2022-08-02 | 大日本印刷株式会社 | light control film |
JP7074071B2 (en) * | 2016-12-27 | 2022-05-24 | 大日本印刷株式会社 | Dimming film |
JP7155503B2 (en) * | 2016-12-28 | 2022-10-19 | 大日本印刷株式会社 | Light control member, structure, arrangement method of light control member |
JP7536417B2 (en) * | 2016-12-28 | 2024-08-20 | 大日本印刷株式会社 | Light-adjusting component, structure, and method for arranging the light-adjusting component |
JP2019101384A (en) * | 2017-12-08 | 2019-06-24 | 大日本印刷株式会社 | Dimming film and dimming member |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5933428A (en) * | 1982-08-19 | 1984-02-23 | Asahi Glass Co Ltd | Liquid crystal display element |
JPS6432229A (en) * | 1987-07-28 | 1989-02-02 | Ricoh Kk | Liquid crystal display element having plastic substrate |
JPH1138408A (en) * | 1997-07-17 | 1999-02-12 | Asahi Glass Co Ltd | Light control element |
JP2007249125A (en) * | 2006-03-20 | 2007-09-27 | Nec Corp | Viewing angle controlled display device and terminal equipment provided therewith |
JP2009103828A (en) * | 2007-10-22 | 2009-05-14 | Hitachi Displays Ltd | Liquid crystal display device |
-
2015
- 2015-09-28 JP JP2015190322A patent/JP5950014B1/en active Active
-
2016
- 2016-08-15 WO PCT/JP2016/073830 patent/WO2017056756A1/en active Application Filing
- 2016-08-30 TW TW105127880A patent/TWI592724B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5933428A (en) * | 1982-08-19 | 1984-02-23 | Asahi Glass Co Ltd | Liquid crystal display element |
JPS6432229A (en) * | 1987-07-28 | 1989-02-02 | Ricoh Kk | Liquid crystal display element having plastic substrate |
JPH1138408A (en) * | 1997-07-17 | 1999-02-12 | Asahi Glass Co Ltd | Light control element |
JP2007249125A (en) * | 2006-03-20 | 2007-09-27 | Nec Corp | Viewing angle controlled display device and terminal equipment provided therewith |
JP2009103828A (en) * | 2007-10-22 | 2009-05-14 | Hitachi Displays Ltd | Liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
JP5950014B1 (en) | 2016-07-13 |
TWI592724B (en) | 2017-07-21 |
JP2017067869A (en) | 2017-04-06 |
TW201712416A (en) | 2017-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6128270B1 (en) | Light control film | |
JP5950014B1 (en) | Light control film | |
JP2024050861A (en) | Light-modulating film and glass laminate | |
KR20190008183A (en) | Dimming device | |
JP2017181888A (en) | Light control film and laminate of light control film | |
JP2017068196A (en) | Light control film and manufacturing method of light control film | |
JP2018141891A (en) | Light control film and laminated glass | |
JP2017065945A (en) | Laminated glass | |
JP2016126289A (en) | Liquid crystal cell, light control material, and laminated glass | |
JP6520081B2 (en) | Laminated glass, method of producing laminated glass | |
JP2018141890A (en) | Light control film and laminated glass | |
JP6057012B1 (en) | Light control film | |
JP6156540B1 (en) | Light control film and method of manufacturing light control film | |
JP2017062362A (en) | Lighting control film | |
JP6065144B1 (en) | Light control film | |
JP2019070781A (en) | Dimming film, dimming member, and vehicle | |
JP6146489B1 (en) | Light control film and method of manufacturing light control film | |
JP7110547B2 (en) | light control film | |
WO2019103115A1 (en) | Laminated glass and liquid crystal film | |
JP2016126290A (en) | Liquid crystal cell, light control material, laminated glass, manufacturing method for liquid crystal cell, manufacturing method for light control material, and manufacturing method for laminated glass | |
JP7074071B2 (en) | Dimming film | |
JP2016126288A (en) | Liquid crystal cell, light control material, and laminated glass | |
JP2018005040A (en) | Light control film and method for forming the light control film | |
JP2017116844A (en) | Method for manufacturing light control film | |
JP2017181825A (en) | Light control film and window |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16850933 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16850933 Country of ref document: EP Kind code of ref document: A1 |